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Kurzfassung

Im Jahr 2007 wurde das Globale Geodätische Beobachtungssystem GGOS als eine vollwertige Komponente
der Internationalen Assoziation für Geodäsie (IAG) eingerichtet. Ein primäres Ziel von GGOS ist die Integra-
tion von geometrischen und gravimetrischen Beobachtungsverfahren zur konsistenten Bestimmung geodätisch-
geophysikalischer Parameter. Dabei stützt sich GGOS auf die Daten und Services der IAG. Um dieses Ziel zu
erreichen ist neben der Kombination unterschiedlicher Beobachtungstypen auch eine gemeinsame Schätzung von
Stationskoordinaten (TRF), Erdorientierungsparametern (EOP) und Koeffizienten des Erdschwerefelds (Stokes-
Koeffizienten) nötig. Bis jetzt wurde diese Kombination von geometrischen und gravimetrischen Beobachtungen
aber noch nicht vollständig realisiert.

Diese Dissertation untersucht die bestehenden Korrelationen zwischen den oben genannten Parametergrup-
pen und stellt damit einen wichtigen Schritt im Hinblick auf den Integrationsgedanken von GGOS dar. Eine
Möglichkeit dazu bietet die Laserentfernungsmessung zu Satelliten (SLR), die in dieser Arbeit innerhalb einer
inter-technischen (SLR kombiniert mit GNSS und VLBI) und einer intra-technischen Kombination (SLR zu
mehreren Satelliten) untersucht wird. SLR bietet aufgrund der hohen Sensitivität für die oben genannten Param-
eter (TRF, EOP, Stokes-Koeffizienten) die Möglichkeit, bestehende Parameterabhängigkeiten in einer gemein-
samen Schätzung zu untersuchen.

Die vorliegende Arbeit basiert im Wesentlichen auf fünf Hauptautor-Publikationen, deren Ergebnisse durch vier
Koautor-Publikationen ergänzt werden. Zum ersten Mal wird die Berechnung so genannter Epochenreferenzrah-
men (ERFs) vorgestellt, die eine gute Approximation von nicht modellierten nicht-linearen Stationsbewegungen
erlauben. Im Gegensatz zu dem konventionellen linearen Modell der Stationsbewegungen realisieren die ERFs
eine zeitlich-hochaufgelöste Schätzung der Stationspositionen. Dabei kommt SLR eine wesentliche Rolle zu, da
die zeitlich hoch aufgelösten Referenzrahmen ihre Ursprungsinformation von SLR erhalten. Im Gegensatz zu
den ERFs werden die vernachlässigten Stationsbewegungen im linearen Ansatz durch Parameterabhängigkeiten
von Translationen und Rotationen (aufgrund einer nicht-optimalen Verteilung von Bodenstationen) in zeitgleich
mitbestimmte Parameter wie z.B. die Polkoordinaten gezwungen. Allerdings weisen die ERFs aufgrund des
variablen Stationsnetzes ein instabileres geodätisches Datum auf als die konventionellen Referenzrahmen. Eine
Möglichkeit, die Datumsstabilität zu erhöhen, ist die Vergrößerung des Kombinationsintervalls (z.B. von einer
auf vier Wochen) was jedoch eine Verschlechterung der Approximationsgenauigkeit zur Folge hat.

Neben den Polkoordinaten ist die Tageslänge (engl. Length Of Day; LOD), die über Satellitenbeobachtungen
bestimmt wird, durch große Systematiken beeinflusst. Der Grund für diese Systematiken wird in dieser Ar-
beit mit Hilfe von SLR-Beobachtungen untersucht. Dabei werden die theoretischen Beziehungen zwischen der
Satellitenbahn, LOD und dem Stokes-Koeffizienten C20 hergeleitet. Für eine quantitative Abschätzung dieser
Parameterbeziehung werden LOD-Zeitreihen mit verschiedenen Erdschwerefeldmodellen und Satellitenkonstel-
lationen berechnet und verglichen. Zudem werden säkulare Effekte der Knotendrehung, hervorgerufen durch
relativistische und empirische Beschleunigungen, diskutiert.

Neben der separaten Schätzung von Stationskoordinaten und EOP wird auch die Schätzung von Stokes-
Koeffizienten analysiert. Um die Parameterabhängigkeit der Satellitenbahn von den Stokes-Koeffizienten 2.
Grades weiter zu reduzieren, werden SLR-Beobachtungen von bis zu zehn Satelliten miteinander kombiniert.
Dabei wird der Einfluss jedes Satelliten auf die kombinierte Lösung über die Dekorrelation von Satellitenbahn-
parametern und C20 bestimmt. Die geschätzten Koeffizienten werden anschließend durch externe Daten validiert
und diskutiert (z. B. äquatoriale Anregungsfunktionen von Polkoordinaten und antarktische Eismassentrends).

Der letzte Teil dieser Dissertation beschäftigt sich mit den Parameterabhängigkeiten, die bei einer gemein-
samen Schätzung aller genannten Parameter berücksichtigt werden müssen. Das Verständnis und die Behand-
lung dieser Abhängigkeiten ist grundlegend für eine integrierte Schätzung. Durch die Untersuchung der SLR-
Multisatellitenlösung, bei der alle Parameter gleichzeitig geschätzt werden, wird ein vertieftes Verständnis der
Parameterabhängigkeiten erreicht, das anschließend auch auf andere Beobachtungsverfahren übertragen wer-
den kann. Diese Erkenntnisse tragen zu einer Kombination von geometrischen und gravimetrischen Beobach-
tungsverfahren bei.
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Abstract

In 2007, the Global Geodetic Observing System (GGOS) was installed as a full component of the International
Association of Geodesy (IAG). One primary goal of GGOS is the integration of geometric and gravimetric
observation techniques to estimate consistent geodetic-geophysical parameters. Thereby, GGOS is based on
the data and services of the IAG. Besides the combination of different geodetic techniques, also the common
estimation of the station coordinates (TRF), Earth Orientation Parameters (EOP) and coefficients of the Earth’s
gravitational field (Stokes coefficients) is necessary in order to reach this goal. However, the combination of all
geometric and gravimetric observation techniques is not yet fully realized.

A major step towards the GGOS idea of parameter integration would be the understanding of the existing corre-
lations between the above mentioned fundamental geodetic parameter groups. This topic is the major objective
of this thesis. One possibility to study the interactions is the use of Satellite Laser Ranging (SLR) in an inter-
technique combination with Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry
(VLBI) or the intra-technique combination of multiple SLR-tracked satellites. SLR plays a key role in this thesis
since it is the unique technique which is sensitive to all parameter groups and allows an integrated parameter
estimation with very high accuracy.

The present work is based on five first-author publications which are supplemented by four co-author publica-
tions. In this framework, for the first time an extensive discussion of a refined global Terrestrial Reference Frame
(TRF) estimation procedure, the estimation of so-called Epoch Reference Frames (ERFs) is presented. In con-
trast to the conventional linear station motion model, the ERFs provide frequently estimated station coordinates
and Earth Orientation Parameters (EOP) which allow to approximate not modeled non-linear station motions
very accurately. Thereby, SLR provides the origin information for the frequently estimated ERFs. The neglected
non-linear station motions in the conventional TRF realizations are forced via the correlation of translations and
rotations (due to a non-optimal ground station network) into the terrestrial pole coordinates. In contrast to this,
the pole coordinates of the Epoch Reference Frame (ERF)s are only partly biased. However, due to the sparse
and varying ground station network, the ERFs have a more unstable datum than the conventional TRFs. One
possibility to improve the ERF datum stability is to enlarge the sampling interval (e.g., from one week to four
weeks) which results in a decreased ability of the ERFs to monitor short-term station motions.

Besides the pole coordinates, also significantly corrupted satellite-derived Length Of Day (LOD) values have
been found. The reason for this systematic error is investigated in this thesis on the basis of SLR estimates.
The theoretical relationship between the orbital elements, LOD and the Stokes coefficient C20 is worked out. To
quantify this interaction, several time series using different a priori models for the Earth’s gravitational field and
different satellite constellations have been computed and compared. Furthermore, secular effects on the nodal
precession due to relativistic effects and empirical accelerations are analyzed.

In addition to the separate estimation of station coordinates and EOP, also the estimation of Stokes coefficients
is analyzed. In order to further decorrelate the orbital elements and Stokes coefficients, the combination of up to
ten different SLR-tracked satellites have been studied. Thereby, the impact of each satellite on the decorrelation
of satellite orbit parameters and C20 is investigated. Afterwards, the resulting second-degree Stokes coefficients
are validated w.r.t. other external state-of-the-art time series and datasets (e.g., equatorial excitation functions of
polar motion, Antarctic ice mass trends).

The last part of this thesis discusses in detail the interactions and correlations which have to be considered if
the fundamental geodetic parameters are estimated in one common adjustment. The understanding and correct
handling of these interactions is essential for the integrated estimation. Based on the findings of the SLR single-
technique multi-parameter solution, the achieved understandings of the parameter interactions can be transferred
to other geodetic space techniques and might support the combination of geometric and gravimetric observations
in future.
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Preface (Reader’s guide)

This cumulative dissertation is primarily based on the following five first-author publications:

P-I Bloßfeld M., Seitz M., Angermann D. (2014) Non-linear station motions in epoch and multi-year refer-
ence frames, In: J Geodesy 88(1), pp: 45-63, DOI: 10.1007/s00190-013-0668-6

P-II Bloßfeld M., Gerstl M., Hugentobler U., Angermann D., Müller H. (2014) Systematic effects in LOD
from SLR observations, In: Adv Space Res 54, pp: 1049–1063, DOI: 10.1016/j.asr.2014.06.009

P-III Bloßfeld M., Müller H., Gerstl M., Štefka V., Bouman J., Göttl F., Horwath M. (2015) Second-
degree Stokes coefficients from multi-satellite SLR, In: J Geodesy 89(9), pp: 857–871, DOI:
10.1007/s00190-015-0819-z

P-IV Bloßfeld M., Seitz M., Angermann D. (2015) Epoch reference frames as short-term realizations of the
ITRS, In: IAG Symposia Series 143, online first, DOI: 10.1007/1345_2015_91

P-V Bloßfeld M., Štefka V., Müller H., Gerstl M. (2015) Satellite Laser Ranging – A tool to realize GGOS?,
In: IAG Symposia Series 143, online first, DOI: 10.1007/1345_2015_202

Within this dissertation, the papers are cited using the abbreviation ‘P’ for ‘publication’ and a Roman number for
the number of the paper.

This dissertation is split into two parts:

The first part comprises the scope of the thesis, the introduction, a description of the applied methodology, a short
introduction of the used software, the theoretical foundations of the estimated fundamental geodetic parameters,
discussions of parameter limitations and strategies to resolve them. Finally, the first-author publications are
summarized and the first-author‘s own contributions to each publication are described. In the “Abbreviations
and Nomenclature” chapter, the used abbreviations and parameter/variable definitions are summarized.

The second part of this dissertation contains full-text reformatted versions of the published, accepted or submitted
first-author publications.

In addition to the first-author publications, the following four co-author publications supplement the results of
this dissertation:

P-A Seitz M., Angermann D., Bloßfeld M., Drewes H., Gerstl M. (2012) The 2008 DGFI Realization of the
ITRS: DTRF2008. In: J Geodesy 86(12), pp: 1097–1123, DOI: 10.1007/s00190-012-0567-2

P-B Rodriguez-Solano C. J., Hugentobler U., Steigenberger P., Bloßfeld M., Fritsche M. (2014) Reducing the
draconitic errors in GNSS geodetic products, In: J Geodesy 88(6), pp: 559–574,
DOI: 10.1007/s00190-014-0704-1

P-C Haberkorn C., Bloßfeld M., Bouman J., Fuchs M., Schmidt M. (2015) Combined estimation of the
Earth’s gravity field using SLR and GRACE data, In: IAG Symposia Series 143, online first, DOI:
10.1007/1345_2015_76

P-D Göttl F., Schmidt M., Seitz F., Bloßfeld M. (2015) Separation of atmospheric, oceanic and hydrological
polar motion excitation mechanisms by a combination of geometric and gravimetric space observations,
In: J Geodesy 89(4), pp: 377-390, DOI: 10.1007/s00190-014-0782-0

http://link.springer.com/article/10.1007%2Fs00190-013-0668-6
http://dx.doi.org/10.1016/j.asr.2014.06.009
http://link.springer.com/article/10.1007%2Fs00190-015-0819-z
http://link.springer.com/article/10.1007%2Fs00190-012-0567-2
http://link.springer.com/article/10.1007/s00190-014-0704-1
http://link.springer.com/article/10.1007%2Fs00190-014-0782-0
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1 Introduction

The scope of geodesy has changed during the past two decades. 20 years ago, geodesy was the discipline
of measuring the shape, rotation and gravitational field of the Earth. Nowadays, this is only one part since
geodesy turned into the multidisciplinary science of providing reliable and accurate measurements of a highly
dynamic and complex system Earth including the discussion of causes for the observed changes (Plag and Pearl-
man, 2009). Due to the increased observation accuracy, former disturbances have changed into target values
(e.g., physical atmospheric and ionospheric parameters; Dettmering et al., 2010). The foundations for this de-
velopment are the significant technological improvements of the geodetic space techniques, namely the Global
Navigation Satellite Systems (GNSS), Lunar and Satellite Laser Ranging (LLR, SLR), Very Long Baseline Inter-
ferometry (VLBI), Doppler Orbithography and Radiopositioning Integrated by Satellite (DORIS), and the launch
of a wide range of Earth observing satellites such as, e.g., the altimeter missions Topex/Poseidon, Jason 1/2 or the
gravimetric missions CHAllenging Minisatellite Payload (CHAMP), GRAvity recovery and Climate Experiment
(GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) in the last 20 years.

Using this variety of sensor systems, geodesy is able to provide a significant contribution to the monitoring
and understanding of global change. In 1999, the geodetic community, organized under the umbrella of the
IAG, recognized the need to integrate this unique constellation of measurement techniques into one observation
system (Rummel et al., 2005). Therefore, in 2003, the International Union of Geodesy and Geophysics (IUGG)
is considering (IUGG Resolution 3, 2003)

“That the International Association of Geodesy (IAG) has taken an initiative towards the realization of the IUGG

Resolution no.1 adopted at the 22nd General Assembly in Birmingham 1999 by installing the Integrated Global

Geodetic Observing System (IGGOS);”

At the IUGG General Assembly in Perugia (Italy), the IUGG Resolution 3 (2007) recognizes the significant
progress of the IGGOS project since 2003 (the project was renamed to GGOS in 2005) and considers that the
IAG elevates the status of GGOS from a project to a full component of the IAG.

The scope of GGOS is the use of observations to provide the spatial and temporal changes of surface dynamics
on a global scale plus an assessment of mass anomalies, mass transports and mass exchange processes (Rummel
et al., 2005). The observations which are incorporated in GGOS serve as a basis for the so-called “three pillars”
of geodesy (Plag and Pearlman, 2009). These pillars are the Earth’s time-dependent geometric shape, rotation

and gravitational field. Terrestrial Reference Frames (TRFs) and satellite orbits act as the connection between
the pillars. The fundamental geodetic parameters associated to the three pillars are the station coordinates, the
Earth Orientation Parameters (EOP) and the Stokes coefficients.

The International Terrestrial Reference Frame (ITRF) plays a fundamental role in geodesy. The prerequisite for
the geodetic detection of climate change impacts is a long-term stable, globally uniform and universally avail-
able reference frame (Rummel, 2014). The EOP are necessary to transform the observations based on satellite
missions from the celestial reference system into an Earth-fixed reference system. The Stokes coefficients can
be used to describe mass-related phenomena in the Earth interior and in its non-rigid envelope (Torge, 2001).
As a qualitative goal, Gross et al. (2009) formulate a user requirement of 1 mm accuracy and 0.1 mm/y stability
for all parameters. This accuracy can only be achieved if current limitations are resolved and if the strengths of
different observation techniques are combined.

The integration of different observation systems and satellite constellations into one observing system results
in the integrated estimation of the fundamental geodetic parameters in one common adjustment. However, the
combination of all geometric and gravimetric observation techniques is still not well addressed in the current
literature. Physical interactions and parameter correlations have been studied using simulations or test cases. An
example for the inter-technique combination of GNSS, VLBI and SLR is the “Global Geodetic Observing System
– Deutschland (GGOS-D)” project (Rothacher et al., 2011). The authors show that a homogeneous reprocessing
plus a rigorous combination lead to a TRF which significantly improves the combined EOP.
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Since SLR is the only technique that provides information with very high accuracy to all three pillars of GGOS,
the technique is used in this thesis in order to study parameter interactions and correlations. Within this thesis,
the key role of SLR towards the integrated estimation of geometry, rotation and gravitational field of the

Earth is outlined. The thesis provides the framework for the following five first-author publications:

P-I Bloßfeld M., Seitz M., Angermann D. (2014) Non-linear station motions in epoch and multi-year refer-
ence frames, In: J Geodesy 88(1), pp: 45-63, DOI: 10.1007/s00190-013-0668-6

P-II Bloßfeld M., Gerstl M., Hugentobler U., Angermann D., Müller H. (2014) Systematic effects in LOD
from SLR observations, In: Adv Space Res 54, pp: 1049–1063, DOI: 10.1016/j.asr.2014.06.009

P-III Bloßfeld M., Müller H., Gerstl M., Štefka V., Bouman J., Göttl F., Horwath M. (2015) Second-
degree Stokes coefficients from multi-satellite SLR, In: J Geodesy 89(9), pp: 857–871, DOI:
10.1007/s00190-015-0819-z

P-IV Bloßfeld M., Seitz M., Angermann D. (2015) Epoch reference frames as short-term realizations of the
ITRS, In: IAG Symposia Series 143, online first, DOI: 10.1007/1345_2015_91

P-V Bloßfeld M., Štefka V., Müller H., Gerstl M. (2015) Satellite Laser Ranging – A tool to realize GGOS?,
In: IAG Symposia Series 143, online first, DOI: 10.1007/1345_2015_202

These publications focus on various aspects towards the integrated estimation of the mentioned parameters and
the role of SLR within GGOS. Therefore, the characteristics of SLR in the inter- and intra-technique combination
are studied. Furthermore, possibilities to fully exploit the potential of SLR to contribute to the determination of
TRF, EOP and Stokes coefficients are revealed. Figure 1.1 shows the three pillars and the main achievements of
the five first-author publications to the fundamental associated parameters.

Starting from the combined multi-year reference frame (MRF) computation, the investigations published in P-I
and P-IV lead to the combined Epoch Reference Frames (ERFs). As an output of the ERFs, improved terrestrial
pole coordinates but still strongly corrupted Length Of Day (LOD) values have been obtained. The reason for
this corruption is investigated in P-II. The output of P-II is the understanding of the correlations between LOD
and the Stokes coefficient C20. As a conclusion, the need for a higher decorrelation of these parameters (e.g., by
using SLR orbits with different altitudes and inclinations) can be formulated. P-III describes in detail the SLR
multi-satellite solution and presents an extensive validation of the obtained second-degree Stokes coefficients.
Finally, in P-V all three parameter groups are estimated using multi-satellite SLR.

Figure 1.1: Causal coherence of first-author publications in relation to the geodetic parameters. The boxes indicate the main achieve-
ments of the publications.

http://link.springer.com/article/10.1007%2Fs00190-013-0668-6
http://dx.doi.org/10.1016/j.asr.2014.06.009
http://link.springer.com/article/10.1007%2Fs00190-015-0819-z
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The methodology to combine different SLR-tracked satellites (intra-technique combination) is presented in Chap-
ter 2. The same formulas are used to combine SLR with other geometric observation techniques such as GNSS
and VLBI (inter-technique combination). It has to be emphasized that all results discussed in this thesis and
in the publications (P-I to P-V and P-A to P-D) are obtained by a combination of different techniques or satel-
lites. Hence, Chapter 2 provides the fundamental basics to obtain the results addressed in Chapter 3 and in the
publications. All matrix operations which are used in the analysis or combination process are derived for the
three levels of the Gauß-Markov model, the observation equation, the Normal EQuation (NEQ) and the solution
(parameter) level. A brief discussion of the pros and cons of the three levels is also included. At the end of Chap-
ter 2, two libraries of the DGFI Orbit and Geodetic parameter estimation Software (DOGS) are described; the
Orbit Computation library of DOGS (DOGS-OC) for the analysis of SLR observations and the Combination and
Solution library of DOGS (DOGS-CS). Furthermore, a short summary of the software developments performed
for DOGS-OC in the framework of this thesis is included.

The key topic of this thesis is addressed in Chapter 3. It describes the theoretical and computational foundations
of the TRF, EOP and Stokes coefficients. Each section is related to one parameter group and is structured into
a short description of the state-of-the-art, current parameter limitations and deficiencies, as well as strategies to
resolve them. A special focus is on the estimation of Epoch Reference Frames (ERFs; P-I, P-IV), the reduc-
tion of systematics in the LOD estimates of SLR (P-II), and the improved estimation of second-degree Stokes
coefficients using a multi-satellite SLR solution (P-III). The integrated estimation including a description of the
existing interactions of all parameters is addressed in the last section of this chapter. As a case study, the SLR
multi-satellite solution is used for the integrated estimation of the Earth’s geometry, rotation and gravitational
field (P-V).

The major findings of this thesis and the contributing publications are summarized in Chapter 4. Furthermore, an
outlook on strategies to improve the multi-satellite (SLR-only) and multi-technique solutions and to extend the
integrated approach to other space techniques is given. Finally, Chapter 5 summarizes the first- and co-author
publications.
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2 Combination theory

Nowadays, geodetic parameters are commonly estimated through a combination of different geodetic space tech-
niques or observations. This chapter describes the methodology for the inter- and intra-technique combination
as it is applied at the Deutsches Geodätisches Forschungsinstitut (DGFI) (see Figure 2.1). An example for an
inter-technique combination is the combination of different geodetic space techniques such as GNSS, SLR, VLBI
(P-I, P-IV) and DORIS (P-A) or the combination of SLR and GRACE (P-C). An example for the intra-technique
combination is the combination of different SLR-tracked satellites (P-II, P-III and P-V).

Going into detail, the first part of this chapter describes the fundamental formulas of the least squares adjustment
based on the Gauß1-Markov2 model. The formulas and derivations are primarily based on Angermann et al.
(2004), Koch (2004), Thaller (2008), Seitz M. (2009), Seitz M. (2015), Seitz M. et al. (2015), the description of
the Solution INdependent EXchange format (SINEX)3 and the manual of DOGS-CS 5.0 (Gerstl et al., 2001).

The second part of this chapter provides the formulas for different matrix operations which might be necessary
for a combination at the three levels of the least squares adjustment (observation equation, NEQ and solution
level). It may serve as a compendium for the intra- and inter-technique pre- and postprocessing ( 2 and 5 , 6 ,
7 in Figure 2.1). A short discussion of the pros and cons of each level is given at the beginning of Section 2.2.

An overview of the different matrix operations is given in Table 2.1. Figure 2.1 shows exemplarily the processing
procedure at the NEQ level in order to obtain an inter- or intra-technique combination.

The third part describes the combination of different techniques or satellites at the three levels of the least squares
adjustment. It has to be pointed out here that at DGFI, only the combination at the NEQ level is performed to
combine the four geodetic space techniques GNSS, SLR, VLBI and DORIS and to combine SLR and GRACE.
Also the multi-satellite SLR solution is obtained from a combination at the NEQ level.

Section 2.4 provides the formulas for a Variance Component Estimation (VCE) at the NEQ level according to
P-III, P-C, Koch (2004), Böckmann et al. (2010a), Böckmann et al. (2010b) and Bloßfeld and Seitz M. (2012).

The last section describes the software developed and used at DGFI to process SLR observations (DOGS-OC)
and to perform an intra- or inter-technique combination at the NEQ level (DOGS-CS).

2.1 Gauß-Markov model

The functional part f (x) of the Gauß-Markov model consists of n observation equations which contain u un-
known parameters. These equations give the relationship between the observations b and the unknown parame-
ters x which is based on mathematical and/or physical principles (quantitative relationship; Koch, 2004)

b + v = f (x). (2.1)

In Equation (2.1), v denotes a vector containing the errors of the functional model and the observations. In
general, the number of observations is chosen to be larger than the number of unknowns (n > u) in order to
minimize the impact of one single observation on the estimated parameters. If the relationship between the
observations and the unknown parameters is not linear, a linearisation has to be performed. Therefore, the
function f (x) is expanded into a Taylor series. If a priori values x0 of the parameters x are known with sufficient
accuracy, the Taylor series expansion could be terminated after the first order correction term ∆x:

f (x) = f (x0 + ∆x) = f (x0) +
∂ f

∂x

����x=x0

· ∆x + O(x2) (2.2)

1Carl Friedrich Gauß (Gauß, 1823)
2Andrei Andrejewitsch Markov (Markov, 1912)
3http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex_cont.html, (2014-08-09)

http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex_cont.html
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Input data (possibly of different types:
observation equations, NEQs, solutions)

tech./sat. 1 tech./sat. 2 tech./sat. 3

1 Reconstruction of constraint-free NEQs

Constraint-free NEQs
tech./sat. 1 tech./sat. 2 tech./sat. 3

2 Preprocessing before combination:
technique-/satellite-wise matrix operations
according to Table 2.1

Preprocessed NEQs
tech./sat. 1 tech./sat. 2 tech./sat. 3

3 Combination of NEQs
4 Accumulation of NEQs

Combined / Accumulated NEQs
tech./sat. 1 − 3 tech./sat. 1 tech./sat. 2 tech./sat. 3

Postprocessing: matrix operations
according to Table 2.1 and realization of
the geodetic datum in order to obtain
5 epoch-wise combined solutions
6 an accumulated single tech./sat. sol.
7 an accumulated combined solution

Solutions
tech./sat. 1 − 3 tech./sat. 1 tech./sat. 2 tech./sat. 3 tech./sat. 1 − 3

Figure 2.1: Example of a processing procedure for the inter- or intra-technique combination of three different techniques or three
different SLR-tracked satellites. The example shows the combination procedure at the NEQ level applied at DGFI.

with an error of second order O(x2) and the approximation of the unknowns

x = x0 + ∆x. (2.3)

The new linearized equation system reads

b + v = f (x0) + A∆x (2.4)

with the vector of observations b and the matrix A which contains the partial derivatives of the functional model
f (x) with respect to the parameters x. Neglecting the observation errors v, Equation (2.4) would not be consis-
tent. The expectation value of the observations E(b + v) = E(b) using the assumption E(v) = 0. Re-arranging
Equation (2.4) leads to

v = A∆x − (b − f (x0)) = A∆x − l (2.5)

wherein l = (b − f (x0)) is the vector called ‘observed’ minus ‘computed with a priori values’ (O-C). The
stochastic part of the Gauß-Markov model is defined by

Kll = σ
2
0P

−1
ll = σ

2
0Qll . (2.6)
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Therein, Kll is the variance-covariance matrix of the observations, σ2
0 is the unknown variance factor and Pll is

the weighting matrix of the observations. The diagonal elements of the co-factor matrix Qll are called weight
reciprocals. If the observations are uncorrelated and equally weighted, Pll is a unit matrix In with dimension
[n × n] and σ2

0 is called variance of the weight unit. The aim of the least squares adjustment is to minimize the
weighted square sum of the observation errors

S(∆x) = | |v | |2Pll
= vTPll v → min. (2.7)

Inserting (2.5) into (2.7) leads to the equation

S(∆x̂) = ∆x̂T AT PllA∆x̂ − 2AT Pll l∆x̂ + l
T Pll l . (2.8)

The function S (∆x̂) has an extremum at the point where ∂S (∆x̂)/∂∆x̂ = 0. According to (Koch, 2004), this
extremum is a minimum and leads to the NEQ system

AT Pll A∆x̂ = AT Pll l (2.9)

with the unique solution

∆x̂ =
(

AT Pll A
)
−1

AT Pll l, (2.10)

wherein the normal equation matrix is

N = AT Pll A (2.11)

with the rank rg(A) = rg(N ). If rg(N ) = u, the matrices A and N are of full rank which means that the u

parameters are linear independent. The vector of the right hand side of the NEQ system reads

y = AT Pll l . (2.12)

According to Equation (2.3), the corrected unknown parameters can be determined by

x̂ = x0 +
(

AT Pll A
)
−1

AT Pll l = x0 + N−1y. (2.13)

The least squares adjustment according to Gauß-Markov yields the same estimates as the best linear unbiased
estimation (Koch, 2004). The a posteriori variance factor σ̂2

0 is computed with

σ̂2
0 =

v̂T Pll v̂

r
. (2.14)

Therein, v̂ is the vector of the corrected errors which is obtained from minimizing the square sum of the obser-
vations errors using Equation (2.7) and r = n − u is the redundancy (degree of freedom) of the equation system.
The relationship between the weighted square sum of the observations and of the residuals can be written as

yT∆x̂ = lT Pll l − v̂T Pll v̂. (2.15)

The variance-covariance matrix of the estimated unknowns is derived from the variance-covariance matrix of the
observations through error propagation

K̂x̂ x̂ = σ̂
2
0

(

AT Pll A
)
−1
= σ̂2

0N
−1. (2.16)

In order to solve the NEQ with Equation (2.10), the matrix N which has to be inverted must be of full rank. This
is usually not the case. To achieve a regular NEQ, constraints (named pseudo observations in this thesis) have to
be added (see Section 2.2.5).
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2.2 Matrix operations at observation, normal equation and parameter level

Using the Gauß-Markov model, a combination can be performed at three different levels of the least squares
adjustment (Angermann et al., 2004; Seitz M., 2015; Seitz M. et al., 2015). Figure 2.2 illustrates the combination
of different geodetic space techniques at the observation equation, normal equation and parameter (solution)
level. The three levels are defined through the following quantities of the Gauß-Markov model:

observation equation level (Equation (2.5)): A, l, Pll , σ
2
0, x0

The combination at the observation equation level is the most rigorous combination model. The observation
equations of different techniques / satellites are directly stored together in one equation system and the data
preprocessing (editing, reduction, etc.) is done consistently for all techniques / satellites. If the observation
equations are created with different software packages, it has to be ensured that common a priori models
and standards are used. Nevertheless, the most rigorous combination at observation level might be realized,
when all the different techniques or satellite observations are processed in one software package because
identical routines are used for the preprocessing. Up to now, a software to combine all geometric and
gravitmetric observations at the observation equation level is not available although some software packages
already might combine the four geometric observations techniques at the observation level.

normal equation (NEQ) level (Equation (2.9)): N , y, lTPll l, σ
2
0, x0

The combination at the NEQ level is an alternative to the combination at observation equation level if the
same parametrization and a priori models are used. The advantage of this type of combination is that
NEQs which are processed with different software packages can be combined since an international conven-
tional exchange format for normal equations and solutions exists (Solution INdependent EXchange format;
SINEX). Thereby, it has to be ensured that the NEQs contain only non-distorting constraints (see 2.2.5),
because otherwise, the NEQs are deformed and systematics affect the combined solution. The most impor-
tant difference to the combination at observation level is the preprocessing separately performed for each
technique/satellite and the assumption of uncorrelated observations (block-diagonal structure of Pll ).

parameter (solution) level (Equation (2.13)): N−1, x̂, v̂TPll v̂, σ̂
2
0, x0

The combination at the parameter level cannot be considered as a straight-forward approach (Seitz M., 2015)
since pseudo-observations are applied multiple times. In a first step, single-technique / single-satellite solu-
tions are obtained by adding a minimum number of pseudo-observations. If more pseudo-observations are
applied, the solution is over-constrained (deformed; Seitz M., 2015). In addition, the combined solution
depends on the variance-covariance information of the input solutions which again depend on the pseudo-
observations. In a second step, the solutions are combined in another least squares adjustment process. It is
obvious that the new observation equations differ from the ones of the observation equation and NEQ ap-
proach. Furthermore, similarity transformation parameters have to be introduced for each technique/satellite
in order to ensure that the datum of the combined solution can be obtained independently.

Figure 2.2: Combination of geodetic space techniques at observation equation, normal equation and parameter (solution) level of the
Gauß-Markov model (taken from Seitz M. (2015); Seitz M. et al. (2015)). The gray arrows illustrate the four geodetic space techniques
GNSS, SLR, VLBI and DORIS.
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After the respective equation is reached in the processing chain of Equations (2.5) to (2.16), the different equation
systems can be combined using the formulas provided in Section 2.3. In case of the combination at observation
equation and NEQ level, the processing chain is completed by proceeding to Equation (2.16) to obtain a solution
(see Figure 2.3). In case of the combination at solution level, the processing chain has to be restarted at Equation
(2.5) with different observation equations (estimated parameters are used as new observations).

Figure 2.3: Processing chain for the combination at observation equation, normal equation and parameter level of the Gauß-Markov

model.

An overview of the different parameter vector and matrix operations and the corresponding equations related to
the three levels is presented in Table 2.1. Therein, the equations for the different transformations of the parameter
vector and for the introduction, reduction and elimination of parameters are referenced. Additionally, the table
provides the equations for the application of constraints and the reconstruction of constraint-free NEQs. Finally,
the equations for the combination of observation equations, NEQs and solutions (Section 2.3) are given.

Table 2.1: Overview of parameter vector and matrix operations performed at different levels of the least squares adjustment.

Parameter vector/matrix manipulation Observation equation level Normal equation level Parameter (solution) level

Transformation of a priori values Eq. (2.28) Eq. (2.29) Eq. (2.30)

Scaling of parameters Eq. (2.32) Eq. (2.33) Eq. (2.34)

Transformation of parametrization Eq. (2.37) in Eq. (2.32) Eq. (2.37) in Eq. (2.33) Eq. (2.37) in Eq. (2.34)

Transformation of parametrization with
regularization

Eq. (2.41) in Eq. (2.32) Eq. (2.41) in Eq. (2.33) Eq. (2.41) in Eq. (2.34)

Transformation of epoch Eq. (2.44) in Eq. (2.32) Eq. (2.44) in Eq. (2.33) Eq. (2.44) in Eq. (2.34)

Introduction of linear station motion Eq. (2.56) Eq. (2.57) Eq. (2.58)

Introduction of linear-trigonometric
station motion

Eq. (2.60) in Eq. (2.56) Eq. (2.60) in Eq. (2.57) Eq. (2.60) in Eq. (2.58)

Introduction of infinitesimal similarity
transformation parameters

Eq. (2.69) in Eq. (2.56) Eq. (2.69) in Eq. (2.57) Eq. (2.69) in Eq. (2.58)

Reduction of parameters
Eq. (2.75) Eq. (2.80) Eq. (2.83)

(Restitution-Eq. (2.76)) (Restitution-Eq. (2.79)) (Restitution-Eq. (2.82))

Elimination of parameters Eq. (2.90) Eq. (2.91) not possible

Application of constraints Eq. (2.93) Eq. (2.95) not possible
Reconstruction of constraint-free NEQ
systems

not possible Eq. (2.99) Eq. (2.100)

Combination of observation equations,
NEQs and solutions

Eq. (2.105) Eq. (2.107) Eq. (2.109)

In the following, based on the development of the DOGS-CS software, the presented operations of the equation
systems can generally be divided into a translation of a priori values (2.17) and an affine transformation of the
parameter vector x̂ (2.18). The translation of a priori values is a special case of the affine transformation of the
parameter vector.

x0 7→ x0 + t , ∆x̂ 7→ ∆x̂ − t , (2.17)

x̂ 7→ Rx̂ + d. (2.18)
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With T ..= R−1, the functional definition of this transformation yields

ˆ̃x = Rx̂ + d, ∆ ˆ̃x = R(∆x̂ − t ) (2.19)

x̂ = R−1( ˆ̃x − d) = T ( ˆ̃x − d), ∆x̂ = R−1
∆ ˆ̃x + t = T∆ ˆ̃x + t (2.20)

For the transformation of the a priori values x0, we have to distinguish between two cases:

1. conformal transformation of prescribed a priori values (new introduced a priori values are transformed with
the same functional model as the parameters)

x0, x̃0 = defined, t = T (x̃0 − d) − x0 (2.21)

2. conformal a priori values (existing a priori values are transformed with the same functional model as the
parameters)

x0 = T (x̃0 − d), x̃0 = T
−1x0 + d = Rx0 + d, t = 0 (2.22)

This general functional definition gives at the observation equation level: {A, l,Pll ,v, x0} 7→ {Ã, l̃, P̃ll , ṽ, x̃0}

Ã = AT ,

l̃ = l − At ,

P̃ll = Pll ,

ṽ = v,

t = T (x̃0 − d) − x0, x̃0 defined (case 1),

t = 0, x̃0 = T
−1x0 + d = Rx0 + d (case 2).

(2.23)

Applying the general functional definition to NEQ systems yields: {N ,y, lT Pll l, x0} 7→ {Ñ , ỹ, l̃
T P̃ll l̃, x̃0}

Ñ = TTNT ,

ỹ = TT (y − Nt ),

l̃T P̃ll l̃ = lTPll l − tT (2y − Nt ),

t = T (x̃0 − d) − x0, x̃0 defined (case 1),

t = 0, x̃0 = T
−1x0 + d = Rx0 + d (case 2).

(2.24)

At the solution (parameter) level, the general functional definition gives:

{x̂,N−1,∆x̂, lTPll l, v̂
TPll v̂, x0} 7→ { ˆ̃x, Ñ

−1,∆ ˆ̃x, l̃T P̃ll l̃, ˆ̃v
T
P̃ll

ˆ̃v, x̃0}

ˆ̃x = Rx̂ + d,

Ñ−1 = RN−1RT ,

∆ ˆ̃x = R(∆x̂ − t ),

l̃T P̃ll l̃ = lTPll l − tTN (2∆x̂ − t ),

ˆ̃v
T
P̃ll

ˆ̃v = v̂TPll v̂,

t = T (x̃0 − d) − x0, x̃0 defined (case 1),

t = 0, x̃0 = T
−1x0 + d = Rx0 + d (case 2).

(2.25)

From Equation (2.23), (2.24) and (2.25), one can see that a transformation of the parameter vector at obser-
vation equation and NEQ level is only possible, if the transformation matrix R is regular. At solution level,
this requirement is not necessary if the a priori values are conformal (case 2; see Eq. (2.22)). The two dif-
ferent cases (regular and irregular transformation matrix) are programmed in the TRAnsFOrmation routine of
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DOGS-CS (CS-TRAFO) and the TRAnsformation with SIngluar transformation matrix routine of DOGS-CS
(CS-TRASI). Examples for such transformations are given in the following section. Further details on the used
software routines are presented in Section 2.5.2.

If the parameter vector contains different parameter groups, e.g., station coordinates and velocities, EOP, Stokes
coefficients or orbit parameters, it can be divided into different parts x̂ = (x̂T

1
, x̂T

2
, . . . , x̂T

N
)T with j = 1, 2, . . . ,N

parameter groups, each with u j parameters. Using this separation, the transformation of a single parameter group
can be done with R j , d j and t j . If a parameter group should remain constant, the respective part of the functional
model reads R j = Iut , d j = 0 and t j = 0. The transformation model extended to the complete parameter vector
reads

R = diag(R1, R2, . . . , RN ), d = diag(dT1 , d
T
2 , . . . , d

T
N )T , t = diag(tT1 , t

T
2 , . . . , t

T
N )T . (2.26)

2.2.1 Transformation of the parameter vector

The transformations of the parameter vector described in this section are the transformation of the a priori values,
the scaling of parameters, the change of the parametrization with and without regularization and the change of
the parameter epoch.

a) Transformation of a priori values with equal epoch

An example for the transformation of the parameter vector is the transformation of the vector of a priori values
x0 7→ x̃0 (case 1) in order to ensure that two NEQs have the same a priori values. The transformation of the
vector of a priori values can be considered as a translation (special case of affine transformation; Seitz M., 2009).
The general functional model of the transformation reads

R = T = Iu , d = 0, t = x̃0 − x0. (2.27)

Inserting (2.27) in (2.23), we get for the observation equation level

Ã = A, l̃ = l − A(x̃0 − x0), P̃ll = Pll , ṽ = v, x̃0 = t + x0. (2.28)

With (2.27) and (2.24), the transformation of the a priori values at the NEQ level yields

Ñ = N , ỹ = y − N (x̃0 − x0),

l̃T P̃ll l̃ = lT Pll l − (x̃0 − x0)T (2y − N (x̃0 − x0)), x̃0 = t + x0.
(2.29)

The transformation at the parameter (solution) level can be expressed with (2.27) and (2.25) as

ˆ̃x = x̂ and

Ñ−1 = N−1, ∆ ˆ̃x = ∆x̂ − (x̃0 − x0),

l̃T P̃ll l̃ = lT Pll l − (x̃0 − x0)TN (2∆x̂ − (x̃0 − x0)),

ˆ̃v
T
P̃ll

ˆ̃v = v̂TPll v̂, x̃0 = t + x0.

(2.30)

As Equation (2.30) shows, the parameter estimates do not change if their a priori values are changed (only the
estimated corrections to the a priori values change).

b) Scaling of parameters

The scaling of parameters can be necessary, if, for example, the unit of the x-component of terrestrial pole coor-
dinates xp should be changed from [as] to [mas] or the NEQ matrix rows and columns should be equilibrated.
The scaled parameters read ˆ̃x j = 1000 · x̂ j = λ j x̂ j = Rx̂ j . The general functional model of the transformation
of ut parameters with j = 1, 2, . . . , ut and conformal a priori values (case 2) is

R = diag(λ0, λ1, . . . , λut
), d = 0, t = 0. (2.31)
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Equation (2.31) and (2.23) leads to the formula at the observation equation level

Ã = AT , l̃ = l, P̃ll = Pll , ṽ = v, x̃0 = Rx0. (2.32)

The NEQ system reads

Ñ = TTNT , ỹ = TT y, l̃T P̃ll l̃ = lT Pll l, x̃0 = Rx0. (2.33)

using (2.31) and (2.24). The transformation at the parameter level by applying (2.31) to (2.25) yields

ˆ̃x = Rx̂ and

Ñ−1 = RN−1RT , ∆ ˆ̃x = R∆x̂, l̃T P̃ll l̃ = lT Pll l,

ˆ̃v
T
P̃ll

ˆ̃v = v̂TPll v̂, x̃0 = Rx0.

(2.34)

c) Transformation of parametrization of terrestrial/celestial pole coordinates

If the functional model f (x) should be changed or if different space techniques are combined (e.g., P-I, P-A), it
could be necessary to transform the vector of unknowns x̂ together with its a priori values x0 into a new vector
ˆ̃x with conformal a priori values x̃0 (case 2). An example is the transformation of EOP which is described in the
following:
The time dependency of EOP within the interval of one VLBI-only NEQ (usually 1 h or 24 h) is expressed
by an offset at the reference epoch p(ti ) (mid epoch of observation interval) and a drift ṗ(ti ) (see Figure 2.4).
In contrast to this, the Global Positioning System (GPS)-only or SLR-only EOP might be parametrized as a
piece-wise linear (pwl) polygon with offsets at 0 h epochs (P-I). This parametrization has the advantages, that
(i) continuity at the day boundaries is ensured and therefore less parameters are needed to express the time
dependency within a time interval longer than one day and furthermore, (ii) the offsets can be determined more
stably than the rates. Therefore, a more stable solution can be obtained (Thaller, 2008; Seitz M., 2009). For an
n-day time interval, 2n parameters are necessary in the (p(ti ), ṗ(ti ))T parametrization and only n+1 parameters
for the (p(t1), p(t2))T representation. The linear relationship between the two representations reads

x̂i =

(

p(ti )
ṗ(ti )

)

=

[ t2−ti
t2−t1

ti−t1
t2−t1

−1
t2−t1

1
t2−t1

] (

p(t1)
p(t2)

)

= Ti
ˆ̃xi or vice-versa (2.35)

ˆ̃xi =

(

p(t1)
p(t2)

)

=

[

1 t1 − ti
1 t2 − ti

] (

p(ti )
ṗ(ti )

)

= T−1
i x̂i = Ri x̂i . (2.36)

For a parameter vector containing EOP and station coordinates, the general functional transformation model
yields

R =

[

Ri 0

0 Iu−2

]

, d = 0, t = 0. (2.37)

The corresponding quantities at the three levels of the Gauß-Markov model can be computed by inserting Equa-
tion (2.37) into Equation (2.23), (2.24) and (2.25), respectively.

It is important to mention here, that the above described linear interpolation from an offset and drift representation
to a piecewise-linear polygon with offsets at midnight epochs is not valid for all EOP. Besides the reduction
of subdaily, daily and long-term effects due to ocean tides and libration for all EOP (see also Section 3.2.2),
the interpolation of, e.g., Universal Time 1 (UT1) and LOD needs a reduction (and conversion afterwards) of
well-known conventional correction terms caused by zonal tides which have periods between 5 days and 18.6
years in order to minimize the interpolation error. The transformation of parametrization using this so-called
“regularization” (consideration of effects caused by zonal tides) is discussed in the next section. Nevertheless,
the interpolation error for all EOP due to the linear interpolation is at the limit looking at today’s accuracy of the
geodetic space techniques.
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Figure 2.4: Different EOP parametrizations of (1) GPS-only, (2) SLR-only (red diamonds) and (3) VLBI-only input NEQs (3a) before
the parameter transformation (blue triangles + line) and (3b) after the parameter transformation (green circles). The VLBI-only EOP
are transformed into the starting day boundaries of each session.

d) Transformation of parametrization of UT1/LOD with regularization (consideration of zonal terms)

In case of UT1 and LOD, the change of the offset/drift parametrization cannot be done solely by linearly interpo-
lating these quantities to midnight epochs due to the fact that the interpolation error due to the linear interpolation
would be too large. Before interpolating, conventional correction terms r (ti ), caused by the effect of zonal tides
(tidal deformation of the Earth with a decoupled core, an elastic mantle and equilibrium oceans) on the Earth
rotation have to be subtracted (Petit and Luzum, 2010). The advantage of such a “regularization” is, that the cor-
rected time-dependent parameters p̄(ti ) and ˙̄p(ti ) can be approximated much better by a linear interpolation than
the uncorrected parameters p(t) (Gerstl et al., 2001). After the interpolation, the subtracted effects are restored
again at the midnight epochs t1 and t2. Condensed, the interpolation of UT1 and LOD can be divided into three
steps (P-I)

i reduction of [UT1(ti ), LOD(ti )] to [UT1R(ti ), LODR(ti )] by tidal signal corrections according to Petit
and Luzum (2010)

ii linear parameter transformation with [UT1R(ti ), LODR(ti )] to the midnight epochs t1 and t2 (like terres-
trial pole coordinates)

iii conversion of UT1R offsets at midnight epochs to UT1 offsets at midnight epochs (re-adding the respective
tidal signal corrections at midnight epochs).

The regularization for a time-dependent parameter reads

p(t) = p̄(ti ) + r (ti ) and ṗ(ti ) = ˙̄p(ti ) + ṙ (ti ). (2.38)

After replacing p(ti ) and ṗ(ti ) in Equation (2.35) with p̄(ti ) and ˙̄p(ti ) and applying Equation (2.38), the linear
relationship between the two regularized parametrizations reads

x̂i =

(

p(ti )
ṗ(ti )

)

=

[ t2−ti
t2−t1

ti−t1
t2−t1

−1
t2−t1

1
t2−t1

] (

p(t1)
p(t2)

)

+

(

r (ti )
ṙ (ti )

)

−

[ t2−ti
t2−t1

ti−t1
t2−t1

−1
t2−t1

1
t2−t1

] (

r (t1)
r (t2)

)

= Ti
ˆ̃xi − Tidi . (2.39)

Re-arranging Equation (2.39) yields

ˆ̃xi =

(

p(t1)
p(t2)

)

=

[

1 t1 − ti
1 t2 − ti

] (

p(ti )
ṗ(ti )

)

+

(

r (t1)
r (t2)

)

−

[

1 t1 − ti
1 t2 − ti

] (

r (ti )
ṙ (ti )

)

= Ri x̂i + di . (2.40)

Using Equation (2.40), we can derive the quantities

Ri =

[

1 t1 − ti
1 t2 − ti

]

, di =

(

r (t1) − r (ti ) − (t1 − ti )ṙ (ti )
r (t2) − r (ti ) − (t2 − ti )ṙ (ti )

)

, ti = 0. (2.41)

The change of the mathematical model with regularization can be done at the three levels of the Gauß-Markov

model by applying Equation (2.41) to Equation (2.23), (2.24) and (2.25), respectively.
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e) Transformation of epoch

An example for the epoch transformation of parameters and their a priori values is the transformation of the
coordinates of the j-th station with the corresponding velocities from a reference epoch t1 to a new epoch t2 of a
TRF realization. This task is often done in order to compare different TRF realizations.

x̂i =

(

p(t1)
ṗ(t1)

)

=

[

1 t1 − t2

0 1

] (

p(t2)
ṗ(t2)

)

= Ti
ˆ̃xi or vice-versa (2.42)

ˆ̃xi =

(

p(t2)
ṗ(t2)

)

=

[

1 t2 − t1

0 1

] (

p(t1)
ṗ(t1)

)

= T−1
i x̂i = R j x̂i with ṗ(t1) = ṗ(t2). (2.43)

The general functional model of the epoch transformation for a parameter vector containing EOP, station coor-
dinates and velocities yields

R =

[

Iu−2 0

0 Ri

]

, d = 0, t = 0. (2.44)

As it was the case for the transformation of parametrization (Section 2.2.1), the quantities at the three levels of
the Gauß-Markov model can be computed by inserting Equation (2.44) in Equation (2.32), (2.33) and (2.34),
respectively.

2.2.2 Introduction of additional parameters

This section provides the formula for the extension of a parameter vector x̂ by a vector of ua additional parameters
q̂ which are in affine relation to ut parameters of x̂. The dimension of q̂ is [ua × 1]. This means, the vector x̂ with
the dimension [u × 1] consists of u− ut parameters which are in non-affine relation to q̂ and ut parameters which
are in affine relation to q̂. If all parameters q̂ are non-affine to x̂, ut = 0 and q̂ can be added like an independent
equation system (see Section 2.3). Using the affine relation, the parameter vector x̂ can be extended using the
transformation

(
ˆ̃x

q̂

)

7→ x̂. (2.45)

Since the vector
(

ˆ̃x q̂
)T

has the dimension [(u + ua ) × 1] and x̂ has [u × 1], this mapping can be defined
uniquely only in the shown direction. Similar to the functional transformation model (2.19), the extension reads

x̂ = T ( ˆ̃x − d) + Sq̂ =
[

T S
]
(

ˆ̃x

q̂

)

− Td, (2.46)

∆x̂ = T∆ ˆ̃x + S∆q̂ + t =
[

T S
]
(

∆ ˆ̃x

∆q̂

)

+ t . (2.47)

As it was the case for the transformation of the a priori values x0 in Equation (2.21) and (2.22), we have to
distinguish between two cases:

1. conformal transformation of prescribed a priori values (new introduced a priori values are transformed with
the same functional model as the parameters)

x0, x̃0 = defined, t = T (x̃0 − d) + Sq0 − x0 (2.48)

2. conformal a priori values (existing a priori values are transformed with the same functional model as the
parameters)
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x0 = T (x̃0 − d) + Sq0, x̃0 = T
−1(x0 − Sq0) + d, t = 0 (2.49)

According to Equation (2.26), the parameter subvector x̂ j with j = 2, 3, . . . , N is extended by new parameters q̂ j

to a new parameter vector
(

ˆ̃x j q̂ j

)T
through a transformation defined by R j , S j , d j , t j . The non-transformed

parameters (e.g., EOP) are stored in the subvector x̂1 (dimension: [(u − ut − ua ) × 1]). This means, the new

complete parameter vector reads
(

x̂1
ˆ̃x j q̂ j

)T
with the dimension [(u + ua ) × 1]. The transformation of the

complete system (2.46) is done with

T =



I[u−ut−ua ] 0 · · · 0

0 T1

...
. . .

0 TN



, S =



0 · · · 0

S1

. . .

SN



, d =




0

d1

...

dN



, t =




0

t1
...

tN



. (2.50)

The identity matrix I and the quadratic zero matrices 0 in Equation (2.50) have the dimension [u − ut − ua]
and correspond to the non-transformed parameters of the original equation system. The matrix T (dimension:
[u × u]) has always the form of a block-diagonal matrix whereas the form of S (dimension: [(u + ua ) × ua])
may vary (Gerstl et al., 2001). Using Equation (2.5) and (2.47), the general functional model at the observation
equation level yields

Ã =
[

AT AS
]

,

l̃ = l − At ,

P̃ll = Pll ,

ṽ = v,

t = T (x̃0 − d) + Sq0 − x0, x̃0 defined (case 1),

x̃0 = T
−1(x0 − Sq0) + d = R(x0 − Sq0) + d (case 2).

(2.51)

At the NEQ level, the functional model reads

Ñ =

[

TTNT TTNS

STNT STNS

]

,

ỹ =

(

TT (y − Nt )
ST (y − Nt )

)

,

l̃T P̃ll l̃ = lTPll l − tT (2y − Nt ),

t = T (x̃0 − d) + Sq0 − x0, x̃0 defined (case 1),

x̃0 = T
−1(x0 − Sq0) + d = R(x0 − Sq0) + d (case 2).

(2.52)

If q0 and q̂ are given, the general functional model at the solution level is

ˆ̃x = Rx̂ + d − RSq̂, or

Ñ−1 =

Ñ11 Ñ12

Ñ21 Ñ22



−1

=

TTNT TTNS

STNT STNS



−1

=

=


(Ñ11 − Ñ12Ñ
−1
22

Ñ21)−1 −Ñ−1
11

Ñ12(Ñ22 − Ñ21Ñ
−1
11

Ñ12)−1

−Ñ−1
22

Ñ21(Ñ11 − Ñ12Ñ
−1
22

Ñ21)−1 (Ñ22 − Ñ21Ñ
−1
11

Ñ12)−1


∆ ˆ̃x = R(∆x̂ − S∆q̂ − t ),

l̃T P̃ll l̃ = lTPll l − tTN (2∆x̂ − t ),

ˆ̃v
T
P̃ll

ˆ̃v = v̂TPll v̂

t = T (x̃0 − d) + Sq0 − x0, x̃0 defined (case 1),

x̃0 = T
−1(x0 − Sq0) + d = R(x0 − Sq0) + d (case 2).

(2.53)
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a) Introduction of linear station motions

The station coordinates x j (ti ) of the j-th station (1 ≤ j ≤ N ) can be represented through a linear model relative
to t0 as

x j (ti ) = x j (t0) + (ti − t0) ẋ j (t0). (2.54)

Thereby, the parameter vector is extended by the 3-dimensional station velocities ẋ j (t0). The a priori values
x j,0 (ti ) of the coordinates of the j-th station at the i-th epoch (1 ≤ i ≤ T) are kept (which means that x j,0 (ti ) =
x j,0 (t0) is assumed) and new a priori values q j,0(t0) are introduced into the a priori vector x̃0(t0). Using Equation
(2.54), the general functional model for the epoch ti yields d = 0, t = 0 and

T = Iu , q0 =




ẋ1,0

...

ẋN,0


 , S =



0 · · · 0

S1

. . .

SN



, with S j = (ti − t0)I3. (2.55)

For a detailed description of the above matrices and its structure, please see Equation (2.50) and its description.

At the observation equation level, Equation (2.55) and (2.51) result in

Ã =
[

A AS
]

, l̃ = l, P̃ll = Pll , ṽ = v, x̃0 = x0 − Sq0. (2.56)

At the NEQ level, applying Equation (2.55) to (2.52) gives

Ñ =

[

N NS

STN STNS

]

, ỹ =

(

y

ST y

)

, l̃T P̃ll l̃ = lT Pll l, x̃0 = x0 − Sq0. (2.57)

The transformed quantities of the solution level with Equation (2.55) and (2.53) are

ˆ̃x = x̂ − Sq̂, and

Ñ−1 =


N NS

STN STNS



−1

=

Ñ11 Ñ12

Ñ21 Ñ22



−1

=

=


(Ñ11 − Ñ12Ñ
−1
22

Ñ21)−1 −Ñ−1
11

Ñ12(Ñ22 − Ñ21Ñ
−1
11

Ñ12)−1

−Ñ−1
22

Ñ21(Ñ11 − Ñ12Ñ
−1
22

Ñ21)−1 (Ñ22 − Ñ21Ñ
−1
11

Ñ12)−1


∆ ˆ̃x = ∆x̂ − S∆q̂,

l̃T P̃ll l̃ = lTPll l,

ˆ̃v
T
P̃ll

ˆ̃v = v̂TPll v̂,

x̃0 = x0 − Sq0.

(2.58)

b) Introduction of linear-trigonometric station motion

A refined mathematical approach for modeling the motion of a station x j is the linear-trigonometric representa-
tion relative to t0

x j (ti ) = x j (t0) + (ti − t0) ẋ j (t0) + c j (t0) cos ((ti − t0)ω) + s j (t0) sin ((ti − t0)ω). (2.59)

In this case, the parameter vector is extended by the 3-dimensional station velocities ẋ j (t0) and the amplitudes
of the sine- and cosine-terms s j (t0) and c j (t0). The frequency ω can be arbitrarily chosen (e.g., ω = 2π

1 yr
). This

leads to the general functional model with ∆ti = (ti − t0)
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T = Iu , q0 =




ẋ1,0

c1,0

s1,0

...

ẋN,0

cN,0

sN,0




, S =



0 · · · 0

S1

. . .

SN



, d = 0, t = 0 with

S1 =
[

∆ti I3 cos (∆tiω)I3 sin (∆tiω)I3

]

.

(2.60)

For a detailed description of the structure of S, please see Equation (2.50) and its description. The introduction
of a linear-trigonometric station motion model at the three levels of the Gauß-Markov model can be done by
inserting Equation (2.60) in Equation (2.56), (2.57) and (2.58), respectively.

c) Introduction of infinitesimal similarity transformation parameters

If k different equation systems with j stations x̂k
j

at the same epoch are given and should be combined to common
unknown station coordinates x̂ j , it is important that they have a common geodetic datum. Therefore, sometimes
it is necessary to transform the datum of one equation system to another or to remove undocumented constraints
from it. In case of Cartesian coordinates, a 7-parameter similarity (Helmert) transformation (ua = 7) or in case
of Cartesian coordinates and velocities, a 14-parameter similarity transformation (ua = 14) can be used for k

different equation systems. The seven parameters are

µ = µ(t) ∈ R: the scale parameter,

α =
[

α β γ
]T
=

[

α(t) β(t) γ(t)
]T
∈ R3: the three Cardan angles or rotations,

h =
[

h1 h2 h3
]T
=

[

h1(t) h2(t) h3(t)
]T
∈ R3: the 3-dimensional translation vector of origin.

The 14 parameters are the above described seven parameters plus their rates. The vector of additional unknowns
of the k-th equation system in case of the (ua = 7)-parameter similarity transformation reads

q̂ik =
(

q̂1
k
. . . q̂

ua

k

)T
=

(

q1
0 + ∆q̂1

k
. . . q

ua

0 + ∆q̂
ua

k

)T
=

(

µk α
T
k

hT
k

)T
and

q̂ik =
(

q̂1
k
. . . q̂

ua

k

)T
=

(

q1
0 + ∆q̂1

k
. . . q

ua

0 + ∆q̂
ua

k

)T
=

(

µk α
T
k

hT
k

µ̇k α̇
T
k

ḣT
k

)T
(2.61)

in case of the (ua = 14)-parameter transformation, respectively. The 7-parameter similarity transformation of a
station j with 1 ≤ j ≤ N of the k-th equation system can be written as

ˆ̃x
k

j = (1 + µk )Dk x̂
k
j + hk = H7

j
(x̂kj , q̂k ) with Dk = D1

k (αk )D2
k (βk )D3

k (γk ) (2.62)

using the elementary three dimensional rotation matrices D1
k

, D2
k

and D3
k

around the x−, y− and z−axis

D1
k (αk ) =



1 0 0
0 cos αk sin αk

0 − sin αk cos αk


, D2

k (βk ) =


cos βk 0 − sin βk
0 1 0

sin βk 0 cos βk


, D3

k (γk ) =


cos γk sin γk 0
− sin γk cos γk 0

0 0 1


.

(2.63)

The inverse transformation with respect to Equation (2.62) yields

x̂kj = H
ua=7
j

( ˆ̃x
k

j , q̂k ) =
1

(1 + µk )
DT

k (αk )( ˆ̃x
k

j − hk ). (2.64)

Since only small datum differences between two equation systems are assumed, infinitesimal similarity trans-
formation parameters are computed through a Taylor series expansion (terminated after the first order correction
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term) of Hua

j
( ˆ̃x

k

j , q̂k ) using x̃k
j

as starting points and assuming common a priori values for the unknowns q0 = 0

for all k equation systems (see also Gerstl et al., 2001):

H
ua

j
( ˆ̃x

k

j , q̂k ) = H
ua

j
( ˆ̃x

k

j ,q0 + ∆q̂k ) = H
ua

j
( ˆ̃x

k

j ,0) +
ua∑

i=1

∂H
ua

j
( ˆ̃x

k

j ,0)

∂q̂i
k

· ∆q̂i
k
+ O(∆q̂2). (2.65)

By inserting the partial derivatives of Equation (2.64) into Equation (2.65), the transformation reads

x̂kj =
ˆ̃x
k

j +

ua=7∑

i=1

∂H
ua

j
( ˆ̃x

k

j ,0)

∂q̂i
k

· ∆q̂k = ˆ̃x
k

j +



x̃k
j

0 − z̃k
j

ỹ
k
j

1 0 0
ỹ
k
j

z̃k
j

0 − x̃k
j

0 1 0
z̃k
j
− ỹk

j
x̃k
j

0 0 0 1


·



−∆µk
−∆αk

−∆hk


 . (2.66)

The negative signs of the unknown transformation parameters are caused by the inverse transformation of Equa-
tion (2.64) compared to Equation (2.62) (see Gerstl et al., 2001). If the equation system contains coordinates

and velocities, ua = 14 and ∂Hua

j
( ˆ̃x

k

j ,0)/∂q̂k reads

∂H14
j

( ˆ̃x
k

j ,0)

∂q̂k
=



∂H7
j ( ˆ̃x

k
j ,0)

∂q̂k
0

∂Ḣ7
j ( ˆ̃x

k

j ,0)

∂q̂k

∂H7
j ( ˆ̃x

k

j ,0)

∂q̂k


with

∂Ḣ7
j
( ˆ̃x

k

j ,0)

∂q̂k
=



˙̃xk
j

0 − ˙̃zk
j

˙̃yk
j

0 0 0
˙̃yk
j

˙̃zk
j

0 − ˙̃xk
j

0 0 0
˙̃zk
j
− ˙̃yk

j
˙̃xk
j

0 0 0 0


. (2.67)

The Equations (2.66) and (2.67) can now be used to define the mapping of j stations of the k-th equation system
on the combined solution as

x̂kj = Tk ( ˆ̃x
k

j − dkj ) + Sk∆q̂k ,

∆x̂kj = Tk∆
ˆ̃x
k

j + Sk∆q̂k + t
k
j ,

(2.68)

with

Tk =



Iu−ut−ua
0 · · · 0

0 T1

...
. . .

0 TN



= Iu , Sk =



0

∂H
ua
1

( ˆ̃x
k

1 ,0)
∂q̂k
...

∂H
ua
N ( ˆ̃x

k
N ,0)

∂q̂k



, dkj = 0 and tkj = 0 (2.69)

for the (ua )-parameter transformation. In Equation (2.69), ut is the number of transformed coordinates (and
velocities). The corrections for the unknowns of the (ua = 7)-parameter transformation as well as of the (ua =
14)-parameter transformation are explained in Equation (2.61) with q0 = 0. The introduction of infinitesimal
similarity transformation parameters at the three levels of the Gauß-Markov model can be done by inserting
Equation (2.69) in Equation (2.56), (2.57) and (2.58), respectively.

2.2.3 Reduction of parameters

In order to keep the NEQs easy to handle (limited dimension of NEQs), technique-specific parameters might be
reduced from a NEQ system. The reduction of ur parameters ∆x1 can be performed at each level of the Gauß-

Markov model. The reduction at the observation equation and the NEQ level is based on the partial inversion of
the Jacobian matrix A and the NEQ matrix N . Thereby, the part of A and N associated with the unknowns ∆x1

(A1, N11) must be regular and of full rank.

To reduce the unknowns ∆x1 at the observation equation level, the n observation equations are reordered in such
a way that the unknowns to be reduced are stored at the beginning of the equation system

∆x =

(

∆x1

∆x2

)

⇔
[

A1 A2

]
(

∆x1

∆x2

)

= A1∆x1 + A2∆x2 = b + v. (2.70)
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Using Cholesky decomposition, the positive definite weight matrix Pll is split up into RTR. With R being the
‘root of Pll ’, Equation (2.70) is ‘homogenized’ and changes to

RA1∆x1 + RA2∆x2 = Rl + Rv ⇔ Ā1∆x1 + Ā2∆x2 = l̄ + v̄. (2.71)

For the reduction of unknowns at the observation equation level, the non-quadratic Jacobian matrix A1 has to be
inverted. If rg(A1) = ur (≤ u), the pseudoinverse matrix

Ā+
1
= ( ĀT

1 Ā1)−1 ĀT
1 with Ā+1 Ā1 = Iur

(2.72)

can be used. Multiplying Equation (2.71) with Ā+
1

from the left leads to the so-called Restitution-Equation

∆x1 = Ā+1 (l̄ + v̄) − Ā+1 Ā2∆x2. (2.73)

With this equation, the reduced unknowns ∆x1 can be restored again in the observation equations. Multiplying
Equation (2.71) with (I[n] − Ā1 Ā

+
1

) from the left leads to the reduced observation equation

(I[n] − Ā1 Ā
+
1 ) Ā2∆x2 = (I[n] − Ā1 Ā

+
1 )(l̄ + v̄). (2.74)

Back-substituting Ā1 = RA1 and Ā2 = RA2 in Equation (2.74) yields to

Ã = (I[n] − A1(AT
1 PllA1)−1AT

1 Pll )A2,

l̃ = (I[n] − A1(AT
1 PllA1)−1AT

1 Pll )l,

P̃ll = Pll ,

ṽ = (I[n] − A1(AT
1 PllA1)−1AT

1 Pll )v

(2.75)

at the observation equation level. The Restitution-Equation reads

∆x1 = (AT
1 Pll A1)−1AT

1 Pll (l + v) − (AT
1 Pll A1)−1AT

1 PllA2∆x2. (2.76)

If we assume that rg(A) = rg([A1 A2]) = u and rg(A1) = ur , it follows that rg( Ã) = u − ur (Gerstl et al.,
2001). Since Equation (2.75) has the dimension n (linear independent observation equations), the first ur obser-
vation equations (rows of the equation system) disappear in the reduced observation equation system. For the
redundancy of the reduced observation equation system r̃ , it follows

r̃ = ñ − ũ = (n − ur ) − (u − ur ) = n − u = r. (2.77)

In the same way as it was done at the observation equation level, the reduction of unknowns at the NEQ level
starts with a symmetric sorting of unknowns

(

y1

y2

)

=

[

N11 N12

NT
12

N22

] (

∆x̂1

∆x̂2

)

. (2.78)

Using Gaussian elimination method, Equation (2.78) changes to




N−1
11

y1

y2 − NT
12
N−1

11
y1


 =


Iur

N−1
11

N12

0 N22 − NT
12
N−1

11
N12





∆x̂1

∆x̂2


 . (2.79)

The first row of Equation (2.79) is the Restitution-Equation at the NEQ level. The second row provides

Ñ = N22 − NT
12N

−1
11 N12,

ỹ = y2 − NT
12N

−1
11 y1,

l̃T P̃ll l̃ =
(

(In − A1(AT
1 Pll A1)−1AT

1 Pll )l
)T

Pll

(

(In − A1(AT
1 PllA1)−1AT

1 Pll )l
)

= lT Pll l − yT1 N
−1
11 y1.

(2.80)
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The reduction of unknowns at the parameter (solution) level is trivial. Since no partial inversion of A or N is
necessary, the remaining unknowns can simply be extracted from the sorted solution system

x̂ =

(

x̂1

x̂2

)

=

(

x0,1

x0,2

)

+

(

∆x̂1

∆x̂2

)

with

(

∆x̂1

∆x̂2

)

=

[

N11 N12

NT
12

N22

]
−1 (

y1

y2

)

=

[

(N−1)11 (N−1)12

(N−1)T12 (N−1)22

] (

y1

y2

)

=

[

M11 M12

MT
12

M22

] (

y1

y2

)

.

(2.81)

In Equation (2.81), the first row is the Restitution-Equation at the parameter level

∆x̂1 = M11y1 + M12y2. (2.82)

The second row of Equation (2.81) provides the quantities of the reduced equation system at the parameter
level:

ˆ̃x = x̂2, and

Ñ−1
= M22 = (N−1)22,

∆ ˆ̃x = ∆x̂2,

l̃T P̃ll l̃ = v̂TPll v̂ + ∆x̂
T
2 M

−1
22 ∆x̂2,

ˆ̃v
T
P̃ll

ˆ̃v = l̃T P̃ll l̃ − ỹT∆ ˆ̃x = v̂T Pll v̂ with Equation (2.79) and (2.80).

(2.83)

2.2.4 Elimination of parameters

The elimination of ue parameters has two main applications:

(i) Fix parameters x̂1 to the values z1. Thus, the corrections read ∆x̂1 = z1 − x0,1. If the parameters are fixed
to their a priori values, the corrections are zero. This application is a possibility to fix the geodetic datum if,
e.g., the latitude and longitude of one station and the longitude of another station (in total three conditions)
are fixed to its a priori value. Then, no additional constraints are necessary (see also Section 2.2.5).

(ii) Equalize parameters x̂1 and x̂2 (e.g., EOP offsets at day boundaries). This application is not really an
elimination, but a transformation. As a result, the restriction equation ∆x̂1 − ∆x̂2 = x0,2 − x0,1 can be
formulated.

Both applications can be expressed through the generalized linear equation

C1∆x̂1 +C2∆x̂2 = z with





C1 = I[ue ], C2 = 0 and z = z1 − x0,1 + d,

C1 = I[ue ], C2[ue × (u−ue )] and z = x0,2 − x0,1 + d.
(2.84)

Therein, ∆x̂1 are the parameters to be eliminated and ∆x̂2 are the parameters which remain in the equation
system. The matrixC1 must be a quadratic (regular) matrix. The structure of the matrixC2 depends on where the
second group of parameters x̂2 is stored in the equation system. If it is stored at the beginning of the remaining
(u − ue ) equations, C2 would have the structure

[

−I[ue ] 0[ue × (u−2ue )]

]

. Multiplying Equation (2.84) with C−1
1

yields

∆x̂1 = C
−1
1 z −C−1

1 C2∆x̂2. (2.85)

With Equation (2.85), the general transformation function can be expressed as

∆x̂ =

(

∆x̂1

∆x̂2

)

7→ ∆ ˆ̃x = ∆x̂2 (2.86)
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(

∆x̂1

∆x̂2

)

=

[

−C−1
1
C2

I[u−ue ]

]

︸       ︷︷       ︸

∆ ˆ̃x +

(

C−1
1

z

0

)

︸  ︷︷  ︸

=.. T , =.. t , d = 0

(2.87)

After separating the parameters ∆x̂2, the observation equations and the NEQ system read

b + v =
[

A1 A2

]
(

∆x1

∆x2

)

, (2.88)
(

y1

y2

)

=

[

N11 N12

N21 N22

] (

∆x̂1

∆x̂2

)

. (2.89)

At the observation equation level, Equation (2.87) and (2.23) result in

Ã = AT =
[

A1 A2

]
[

−C−1
1
C2

Iu−ue

]

= A2 − A1C
−1
1 C2,

l̃ = l − At = l −
[

A1 A2

]
[

C−1
1

z

0

]

= l − A1C
−1
1 z,

P̃ll = Pll ,

ṽ = v.

(2.90)

At the NEQ level, applying Equation (2.87) to (2.24) gives

Ñ = TTNT = (N22 − N12C
−1
1 C2) − (C−1

1 C2)T (N12 − N11C
−1
1 C2),

ỹ = TT (y − Nt ) = (y2 − (C−1
1 C2)T y1) − (NT

12C
−1
1 z) + (C−1

1 C2)TN11C
−1
1 z,

l̃T P̃ll l̃ = lT Pll l − tT (2y − Nt ) =

= lT Pll l − 2(C−1
1 z)T y1 + (C−1

1 z)TN11(C−1
1 z).

(2.91)

According to Equation (2.25), the transformation matrix R = T−1 is used at the solution level. Since T is not
a quadratic matrix (dimension is [u × (u − ue )]) and therefore not invertible, the elimination of parameters at
the solution level is not possible. A possibility to eliminate parameters from a given solution system would be
the reconstruction of the NEQ system (see Section 2.2.6) and the application of Equation (2.91). Afterwards, a
solution can be computed again using Equation (2.13).

If solutions are combined, the estimated parameters are used to built new observation equations and start a second
least squares adjustment process (see Figure 2.3). Therein, the elimination of parameters is possible.

2.2.5 Application of constraints on equation systems

In Section 2.1, the NEQ matrix has the rank rg(N ) = u. If the NEQ matrix has a rank deficiency of nc =

u− rg(N ) with rg(N ) < u, this singularity can be removed by introducing appropriate and sufficient constraints.
The constraints can be introduced as additional observations c with the standard deviations σc in an independent
(l and c uncorrelated) linear equation system

vc = C∆x − c. (2.92)

This kind of observations is called ‘pseudo observations’ hereafter. If σc is infinitely small, the equations of
conditions have to be exactly fulfilled within the adjustment. Otherwise, the impact of the pseudo observations
can be varied.
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At the observation equation level, the new observation vector l̃ and the new weight matrix P̃ll using the
Jacobian matrix C of the pseudo observations read

Ã =

[

A

C

]

, l̃ =

(

l

c

)

, ṽ =

(

v

vc

)

,

P̃ll =

[

Pll 0
0 Pcc

]

with Pcc = diag(σc).

(2.93)

The pseudo observations c are transformed to a NEQ system of constraints with

CT PccC∆x̂ = C
T Pccc. (2.94)

If the matrixC has the rank rg(C) = nc = u−rg(N ) and rg(Ñ ) = u, the applied constraints are called ‘minimum
constraints’.

The constrained NEQ system is

Ñ = (N +CT PccC),

ỹ = y +CT Pccc,

l̃T P̃ll l̃ = lTPll l + c
TPccc.

(2.95)

The variance-covariance matrix of the pseudo observations reads

Kcc = σ
2
0P

−1
cc . (2.96)

The above discussed constraints are used to remove the rank deficiency of a NEQ system. Therefore, an applica-
tion at the solution level is not necessary since the NEQ have already been inverted at this level. If the constrained
solution fulfills the requirements based on Equation (2.7),

ṽT P̃ll ṽ =
(

vT vTc

)
[

Pll 0

0 Pcc

] (

v

vc

)

= vTPll v + v
T
c Pllvc → min, (2.97)

it can be concluded that the weighted square sum of the residuals of the constrained solution reads

ˆ̃v
T
P̃ll

ˆ̃v = v̂T Pll v̂, (2.98)

and ∆x̃ solves the unconstrained NEQ system N−1y (Gerstl et al., 2001). This kind of constraints is called “non-
distorting” constraints. Minimum constraints are always non-distorting constraints. In contrast, non-distorting
constraints are not always minimum constraints. An example for problem-specific minimum constraints are the
No-Net-Rotation (NNR) conditions for positions and velocities which are used to remove the rank deficiency
w.r.t. the orientation of a NEQ. NNR means that a network of stations is not allowed to show any rotations
around the coordinate axes of a previously and arbitrarily defined station network. This constraint is addressed
in more detail in Section 3.1 and P-I. The formalism of the NNR conditions is described in Angermann et al.
(2004). Besides the NNR conditions, the No-Net-Translation (NNT) conditions and the No-Net-Scale (NNS)
conditions are used to remove rank deficiencies for the origin and the scale, respectively.

Loose constraints are non-minimum constraints which have a non-distorting character. Their weight (2.93) is
chosen so small that their distorting impact on the equations or on the solution may be neglected (Angermann
et al., 2004).

Another group of constraints are conditions for stabilizing weak parameters, e.g. conditions for satellite orbit
parameters, clock jumps or tropospheric parameters (stabilizing constraints). An Analysis Center (AC) might
apply these conditions and reduce the technique-specific parameters afterwards. The last group of constraints are
real constraints such as Lagrange scaling factors for perturbing accelerations.
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2.2.6 Reconstruction of constraint-free NEQ systems

For various combination studies at DGFI, input data of external institutions, software packages or users might
be necessary. Therefore, the exchange of data which are usually stored in SINEX files is required. A detailed
description of the SINEX format can be found in the SINEX format description4. Examples for such input
data are the contributions for the computation of the ITRF which are provided by the four Technique Center
(TC)s of the International Earth Rotation and Reference Systems Service (IERS). The TCs of the International
GNSS Service (IGS), International Laser Ranging Service (ILRS), International VLBI Service for Geodesy and
Astrometry (IVS) and International DORIS Service (IDS) are asked5 to provide (i) solutions with removable
constraints, (ii) loosely constrained solutions (constraint level: σ > 1 m) or (iii) constraint-free NEQ systems,
which are used by the DGFI Combination Center (CC) to compute a TRF solution.

In the case of the ITRF2008, constrained-free NEQ systems (VLBI) and solutions (GPS, SLR and DORIS)
had been provided for the combination (P-A). If any constraints have been applied on the input NEQ matrices
to remove the rank deficiency and to achieve a solution, the constraint-free NEQs have to be reconstructed.
Otherwise, the applied constraints will impact the combined solution. This step is necessary for the computation
at DGFI since the used combination software realizes a combination at the NEQ level. In general, two different
types of equation systems are stored in the SINEX files:

- NEQ system with stabilizing constraints {N , y, lT Pll l, x0, n, u},

- solution with minimum constraints { ˆ̃K x̂ x̂ , Kcc , ˆ̃x, ˆ̃v
T
P̃ll

ˆ̃v, σ̂2
0, x0, n + nc , u}.

For a constraint-free NEQ system, the corresponding right-hand side and the weighted square sum of O-C
can be reconstructed by using Equation (2.95)

N = Ñ − CT PccC,

y = ỹ −CT Pccc, (2.99)

lT Pll l = l̃T P̃ll l̃ − cTPccc.

Usually, the quantities c and Pcc are not stored in the SINEX files. In addition, stabilizing constraints of reduced
parameters are also not stored in the SINEX files. Thus, the constrained NEQ systems has to be used for the
combination.

Starting from the parameter level, the reconstruction of a constraint-free NEQ system by using Equation
(2.98) and assuming ˆ̃x = x̂ (non-distorting constraints) reads

N = σ̂2
0

ˆ̃K
−1

x̂ x̂ − σ
2
0K

−1
cc ,

y = N∆x̂ = N∆ ˆ̃x =
(

σ̂2
0K̂

−1
x̂ x̂ − σ

2
0K

−1
cc

)

( ˆ̃x − x0),

lT Pll l = yT∆x̂ + v̂TPll v̂ = yT∆ ˆ̃x + ˆ̃v
T
P̃ll

ˆ̃v.

(2.100)

A critical issue in the reconstruction of constraint-free NEQs is the lack of lT Pll l or v̂T Pll v̂ since these quantities
are needed for the correct stochastic part of the NEQ system. In Equation (2.100), the reconstructed NEQs are
assumed to have an a priori variance factor which is equal to σ̂2

0 . If an a priori variance factor of 1.0 is required,
the NEQs have to be rescaled. This leads to

N ′ =
ˆ̃K
−1

x̂ x̂ −
σ2

0

σ̂2
0

K−1
cc ,

y′ = N ′
∆x̂,

(lT P̃ll l)
′ = y′T∆x̂ +

1

σ̂2
0

v̂T Pll v̂.

(2.101)

4http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex_cont.html (2014-08-09)
5IERS Message No. 137: ITRF2008 Call for Participation, http://datacenter.iers.org/eop/-/somos/5Rgv/getMeta/2/message_137.txt, (2014-

08-09)

http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex_cont.html
http://datacenter.iers.org/eop/-/somos/5Rgv/getMeta/2/message_137.txt
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If the applied constraints are not documented in the SINEX file, the free NEQ cannot be reconstructed using
Equation (2.99) or (2.100). To remove the datum definition, infinitesimal similarity transformation parameters q̂
have to be introduced (see Section 2.2.2) using all station coordinates stored in the NEQ system. In contrast to
this, the datum was fixed by using only a subset of station coordinates (see Section 2.2.5). Figure 2.5 compares
the two possibilities to create a free NEQ.

Figure 2.5: Comparison of reconstruction of a constraint-free NEQ system and introduction of infinitesimal similarity transformation
parameters to restore the NEQ matrix singularity.

To test the datum information of the input data, Sillard and Boucher (2001) developed a strategy based on an
S-transformation (similarity-linked transformation) to split the covariance matrix into (1) a part related to the
internal noise in the observations and (2) a part related to the geodetic datum of the covariance matrix. Thereby,
the internal part must be independent from the chosen reference system. Using the approach of Sillard and
Boucher (2001), a given covariance matrix K̂x̂ x̂ can be split up into

K̂x̂ x̂ = K̂x̂ x̂ − S(ST K̂−1
x̂ x̂ S)−1ST + S(ST K̂−1

x̂ x̂ S)−1ST = ˆ̄K x̂ x̂ + SK̂q̂q̂S
T . (2.102)

Therein, ˆ̄K x̂ x̂ is the part related to the internal noise in the observations and SK̂q̂q̂S
T is the part related to

the geodetic datum of the covariance matrix. From this it follows that the covariance matrix of the ua datum
parameters q̂ is equal to

K̂q̂q̂ = (ST K̂−1
x̂ x̂ S)−1 with S =



H
ua

1
...

H
ua

N


. (2.103)

For the definition of the matrices Hua

j
with 1 ≤ j ≤ N , please see Section 2.2.2. An example for the datum test

can be found, e.g. for GPS, in Sillard and Boucher (2001) and for SLR in Angermann and Müller (2009). It is
important to mention, that the matrix K̂x̂ x̂ should contain only station coordinates, since otherwise, the S matrix
has the wrong dimension. Furthermore, if K̂x̂ x̂ has a rank deficiency, the matrix ST K̂−1

x̂ x̂
S cannot be inverted.

Therefore, loose constraints have to be added before the datum test.

2.3 Combination at observation, normal equation and parameter level

Based on Equation (2.5) and (2.6), the linearized observation equation system for the k-th technique with 1 ≤
k ≤ m, each containing nk observation equations and uk unknowns, reads

vk = Ak∆xk − lk ,

Kll,k = σ
2
0,k (Pll,k )−1 = σ2

0,kQll,k .
(2.104)

If all observation equations are related to the same parameters ∆x and the same a priori reduction models and
a priori values are used for the preprocessing, the combined equation system at the observation level is




v1

...

vm



=



A1

...

Am


∆x −




l1
...

lm



, Pll = σ

2
0



Pll,1 0 0

0
. . . 0

0 0 Pll,m


. (2.105)

This kind of combination is called “combination on the observation level”.
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The advantage of a combination at the observation level is that a common preprocessing (data editing, outlier
detection) can be performed. In contrast to the combination at the NEQ level, the weighting of single observations
or the weighting of groups of observations can be done at the combination at the observation level. Furthermore,
the combination might be realized in a much more efficient way (w.r.t. computation time) than a combination at
the NEQ level.

As an example, the combination of GNSS clock parameters clearly identify this advantage. When GNSS obser-
vation equations are combined, the clock parameters can be reduced after the data editing. As a consequence,
already reduced equation systems are combined. When GNSS NEQs are combined, the clock parameters must
be still stored in the NEQ. This fact leads to huge NEQ systems where the combination needs a long computation
time. After the combination, the clock parameters can be reduced.

Using Equation (2.105), the solution of the combined observation equation system can be computed according
to Equations (2.7) to (2.16). The k-th NEQ system reads according to Equation (2.9)

Nk∆xk = yk . (2.106)

The NEQ systems can be combined by adding the elements which correspond to the same parameters. If the
equation systems have different dimensions uk , rows and columns with zero elements have to be inserted in the
NEQ matrices Nk and zero elements in the NEQ vectors yk . Afterwards, a common sorting of all NEQ systems
is done.

The combined NEQ system Nc with the a priori variance factor σ2
0 can then be written as

Nc = λ1
σ2

0

σ2
0,1

N1 + · · · + λm

σ2
0

σ2
0,m

Nm =

m∑

k=1

λk
σ2

0

σ2
0,k

Nk ,

yc = λ1
σ2

0

σ2
0,1

y1 + · · · + λm

σ2
0

σ2
0,m

ym =

m∑

k=1

λk
σ2

0

σ2
0,k

yk ,

(lTPll l)c = λ1
σ2

0

σ2
0,1

lT1 Pll,1l1 + · · · + λm

σ2
0

σ2
0,1

lTmPll,m lm =

m∑

k=1

λk
σ2

0

σ2
0,k

lTk Pll,k lk .

(2.107)

The coefficients λk in Equation (2.107) are the individual weighting factors of the NEQs. This kind of
combination is called “combination on the normal equation level”. The solution of the combined NEQ system
can be computed according to Equations (2.13) to (2.16).

At DGFI, the intra- and inter-technique combination of geodetic space techniques is performed at the NEQ level
(P-I, P-A, Gerstl et al., 2001; Angermann et al., 2004).

The following paragraph briefly describes, for completeness, the “combination at parameter (solution) level”
which is used by, e.g., the Institute Nationale de l’Information Géographique et Forestière (IGN) to combine
different geodetic space techniques. The software used is called Combination and Analysis of Terrestrial REf-
erence Frames (CATREF; Altamimi et al., 2011). The individual technique solutions are obtained by using
Equations (2.5) to (2.16). Therefore, individual minimum constraints to remove the rank deficiencies of the m

NEQ matrices are applied. This step results in the NEQ matrix (Nk +Ck
T Pcc,kCk ) of the k-th equation system.

The combination of the technique-dependent solutions is done afterwards by setting up a second least squares
adjustment where the individual solutions are used as new observations (lk = x̂k ) with the Ak -matrix containing
only zeros and ones

Ak[nk ×uk ]∆xk = x̂k + vk ,

Kll,k = σ
2
0,kP

−1
ll,k = σ

2
0,k (Nk +Ck

T Pcc,kCk )−1.
(2.108)

In this equation system, individual infinitesimal similarity transformation parameters have to be introduced in
order to ensure that the datum of the combined solution can be realized independently from the individual input
solutions.



2.4. Variance Component Estimation (VCE) at normal equation level 33

With Equation (2.108) and the assumption that all m equation systems are related to the same parameters ∆x
(ensured through expansion with zero elements and common a priori sorting), the combined equation system
at the solution level reads




v1

...

vm


 =



A1[n1 ×u]

...

Am[nm ×u]


∆x −




x̂1

...

x̂m


 , Pll = σ

2
0



(N1 +C
T
1
Pcc,kC1) 0 0

0
. . . 0

0 0 (Nm +C
T
mPcc,mCm )


.

(2.109)

In this combined equation system, the individual solution vectors are assumed to be uncorrelated (block-diagonal
structure of Pll ). Using Equation (2.109), the solution of the combined observation equation system can be
computed according to Equations (2.7) to (2.16).

2.4 Variance Component Estimation (VCE) at normal equation level

When combining the NEQs, the weighting of the different techniques can be done by, e.g., using equal weights,
empirically derived weights (P-A) or by using an iteratively performed VCE (Koch and Kusche, 2002; Koch,
2004; Böckmann et al., 2010a; Bloßfeld and Seitz M., 2012; P-III). In this section, the iterative VCE algorithm
based on a posteriori variance factors for NEQs is explained in detail.

Based on Equation (2.107), the combined NEQ system N
( j )
c of the ( j)-th iteration step reads

N
( j )
c =

m∑

k=1

1

σ̂2( j )

0,k

Nk ,

y
( j )
c =

m∑

k=1

1

σ̂2( j )

0,k

yk ,

(lTPll l)
( j )
c =

m∑

k=1

1

σ̂2( j )

0,k

(lTk Pll,k lk )

(2.110)

with the a priori variance factor of the combined NEQ σ2
0 = 1 and λk = 1 for 1 ≤ k ≤ m. The solution of

the NEQ system of the ( j)-th iteration step is computed with Equation (2.13). The a posteriori variance factor
of each NEQ of the first iteration is computed according to Equation (2.14). This means, the relative weighting
factors of the NEQs depend on the a priori standard deviations of each individual NEQ system.

For the ( j)-th iteration step, the weighted square sum of the residuals w.r.t. the combined parameter vector x̂c
and the partial redundancy of each of the k input NEQs can be computed according to

(v̂TPll v̂) ( j )
c,k
= x̂

( j )T
c Nk x̂

( j )
c − 2yTk x̂

( j )
c + l

T
k Pll,k lk ,

r
( j )
c,k
= n + nc −

1

σ̂2( j )

k

tr (NkN
( j )−1

c ).
(2.111)

The updated variance factor results from

σ̂2( j+1)

0,k =
(v̂TPll v̂) ( j )

c,k

r
( j )
c,k

(2.112)

and the iteration starts again from Equation (2.110). Due to the fact that the iterative estimation of the variance
factors is based on the individual NEQs, no iterative correction of the individual design matrices Ak is done. The
a priori values of the first iteration are kept.



34 Chapter 2. Combination theory

2.5 DGFI Orbit and Geodetic parameter estimation Software (DOGS)

The DOGS software, developed at DGFI since 1980 mainly by Dr. rer. nat. Michael Gerstl, provides the ability to
process observations of different geodetic space techniques and to combine equation systems at different levels
of the Gauß-Markov model. The program package is split up into the observation processing libraries

DOGS-OC Orbit Computation library of DOGS (see Section 2.5.1 and Gerstl, 1997),

DOGS-RI Radio Interferometry library of DOGS (not further discussed in this thesis)

and the combination library

DOGS-CS Combination and Solution library of DOGS (see Section 2.5.2 and Gerstl et al., 2001).

All libraries are programmed in Fortran 2003 standard. In the following two sections, the main properties of
DOGS-OC and DOGS-CS are introduced.

2.5.1 Orbit Computation library of DOGS (DOGS-OC)

DGFI is developing and maintaining the software package DOGS-OC to process and analyze laser ranging
observations to Retro-Reflector-Array (RRA) equipped satellites. This software is also used by the ILRS ACs
located at DGFI. Figure 2.6 shows a simplified flow chart of the DOGS-OC program package. In general, it is
possible to distinguish between four different execution modes (Gerstl, 1997):

MODUS = 0 Numerical integration of a satellite orbit and recording of the satellite positions and velocities
together with selected disturbing accelerations along the integrated orbit.

MODUS = 1 Numerical integration of a satellite orbit and simulation of the observations of this satellite
from given stations.

MODUS = 2 Numerical integration of a satellite orbit and setting up the normal equations for a set of model
parameters using the given observations.

MODUS = 3 Numerical integration of a satellite orbit and fitting a set of model parameters to the given
observations using an iterative least squares adjustment.

Figure 2.6: Schematic overview of DOGS-OC program package. The program is executed by starting dogsoc which calls the programs
on the right from top to bottom. In the computation module “orbiko”, an iterative minimization of the squared sum of the residuals
vT Pll v is done (for details, see Section 2.1).

Within DOGS-OC, the functional model for processing laser ranging observations is set up as (P-C; Gerstl,
1997)

ρ + ǫ =| |rsat(tM + ∆t) − rsta(tM + ∆t) | |

+ ∆ρ + ctrop(1 + ∆r) + crel + csta + cmasc + cmesc
(2.113)

and comprises
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ρ one-way range measurement (the vector of all ρ values is called b in Section 2.1),

ǫ measurement error (the vector of all ǫ values is called v in Section 2.1),

rsat 3-dimensional position of the satellite in the GCRS [m],

tM approximated epoch of reflection of the laser pulse at the satellite [s],

∆t time bias of measurement [s],

rsta 3-dimensional position of the station in the ITRS [m],

∆ρ range bias of measurement [m],

ctrop tropospheric range correction [m],

∆r bias of tropospheric refraction [-],

crel relativistic range correction [m],

csta station-dependent SLR correction [m],

cmasc satellite-specific center of mass correction (difference between reflector and center of mass of the
satellite in measurement direction) [m],

cmesc SLR array-dependent correction (e.g., phase center offset in measurement direction) [m].

In this modeling, two simplifications are assumed: (i) the two-way runtime is averaged and modeled as a one-
way range measurement and (ii) the station position in the International Terrestrial Reference System (ITRS)
is assumed to be constant during the runtime of the laser pulse (in the strict sense, the station rotates together
with the Earth and Earth tides affect the station position during the pulse runtime). Besides the corrections of
the range measurement, the station position rsta(tM + ∆t) is corrected in advance for various effects at the epoch
tM + ∆t. Displacements are conventionally corrected for solid Earth tides, ocean tides, diurnal and semidiurnal
atmospheric pressure loading, rotational deformation due to polar motion and ocean pole tide loading (Petit and
Luzum, 2010). Simultaneously, the position of the satellite rsat(t) is affected by numerous gravitational and
non-gravitational disturbing accelerations. The overall acceleration at the epoch t of a near-Earth satellite in the
Geocentric Celestial Reference System (GCRS) is modeled in DOGS-OC as a sum of the direct gravitational
acceleration aDG(t) (direct effect on satellite), the indirect gravitational acceleration aIG(t) (indirect effect on
satellite via the Earth) and the non-gravitational acceleration aNG(t)

r̈sat(t) = a(t) = aDG(t) + aIG(t) + aNG(t)

=
︷                                          ︸︸                                          ︷

aKEP(t) + aGE(t) + aGM(t) + aGP(t) +
︷            ︸︸            ︷

aGT(t) + aGNT +aNG(t).
(2.114)

with

r̈sat 3-dimensional total acceleration acting on a near-Earth satellite,

aKEP 3-dimensional gravitational acceleration caused by the point-concentrated mass of the Earth (Stokes
coefficient C00),

aGE 3-dimensional gravitational acceleration caused by the Earth (Stokes coefficients Cnm , Snm with
n,m ∈ N+ and m ≤ n),

aGM 3-dimensional gravitational acceleration caused by the Moon,

aGP 3-dimensional gravitational acceleration caused by the Sun and other planets,

aGT 3-dimensional gravitational acceleration caused by mass variations due to solid Earth and ocean
tides,

aGNT 3-dimensional gravitational acceleration caused by mass variations due to non-tidal loading effects
(e.g., atmospheric, hydrological, oceanic).

In the context of this thesis, the DOGS-OC software has been further developed. Numerous improvements
have been carried out for the indirect gravitational and the non-gravitational acceleration. In the following, the
improvements are briefly discussed and the impact on the first-author publications is outlined.
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The indirect gravitational acceleration consists of the acceleration aGT, caused by solid Earth and ocean tides,
and the acceleration aGNT which is caused by the gravitational effect due to non-tidal atmospheric, hydrological
and oceanic crustal loading phenomena. Refined models for solid Earth and ocean tides and the ocean pole
tide loading have been implemented in DOGS-OC version 5.3 according to the recommendations of the IERS
Conventions 2010 (Petit and Luzum, 2010). Furthermore, the ocean tide modeling was improved in such a way
that also secondary tidal waves are taken into account. The amplitudes of the secondary waves are linearly
interpolated between the main wave amplitudes (provided via ocean tide models) under the assumption of a
linear variation of the tidal admittance between closely spaced tidal frequencies. A detailed description of the
programmed algorithm can be found in Petit and Luzum (2010). Especially the refined ocean tide modeling and
the ocean pole tide modeling lead to significant improvements of the Stokes coefficients C21 and S21. Hence, the
accurate second-degree Stokes coefficients of P-III could be achieved.

According to Ciufolini (1987) and Lucchesi (2001; 2002), the non-gravitational acceleration aNG can be split up
into

- radiation forces (direct solar radiation pressure, Earth albedo, satellite eclipses, Poynting-Robertson effect,
Yarkovski-Rubincam effect (anisotropic thermal radiation), Yarkovski-Schach effect (infrared radiation)),

- drag-like forces (atmospheric drag, solar wind, interplanetary dust),

- other forces (e.g., Earth magnetic field, relativistic effect).

In order to compute the atmospheric drag, a refined model for the high atmosphere, JB2008 (Bowman et al.,
2008), was implemented in the software. This improvement makes it possible to achieve a reliable orbit modeling
for satellites at low altitudes (satellite height smaller than 2000 km; P-II, P-III, P-V) since for the precise orbit
determination of these satellites, the high atmosphere has to be modeled (Sośnica, 2014).

The IERS Conventions 2010 recommend to model the relativistic acceleration of a near-Earth satellite by taking
into account the Schwarzschild term, the gravitomagnetic effect (Lense-Thirring effect; Lense and Thirring,
1918) and the gravitoelectric effect (de Sitter effect; de Sitter, 1916). Up to version 5.2 of DOGS-OC, only
the Schwarzschild term was considered. In the new version, all three types of the relativistic accelerations are
implemented in the software. The effect of Lense-Thirring and de Sitter affect the satellite orbit and correlated
geodetic parameters like LOD. In P-II, a secular effect of 0.0088 ms in LOD due to these accelerations was
found.

The routines to import different non-tidal loading models and to compute the station displacement and satellite
accelerations have been developed and integrated in the DOGS-OC version 5.3. Since these models are provided
in various formats (0.5 degree to 2.5 degree grids) and temporal resolutions (three hours to one month), the
models have been preprocessed by the Bundesamt für Kartographie und Geodäsie (BKG) in the framework of
the Forschergruppe “Space-time reference systems for monitoring global change and for precise navigation in
space” (FOR 1503; Nothnagel et al., 2010) of the Deutsche Forschungsgemeinschaft (DFG).

Currently, the treatment of non-spherical satellites is implemented in the software. This means, the new version
has to take into account the satellite surface model (surface orientation and material properties), the orientation of
the satellite (quaternions based on observations of star cameras), the orientation of solar panels, possible steering
maneuvers and fuel consumption (variable center of mass).

2.5.2 Combination and Solution library of DOGS (DOGS-CS)

At DGFI, the program package used to combine observations or NEQs is called Combination and Solution library
of DOGS (DOGS-CS). The software consists of several specialized routines which can be used to (i) apply
operations on equation systems, (ii) combine equation systems and (iii) solve NEQ systems. In the following, a
short description of the most important DOGS-CS routines is given.

i) Apply matrix operations with DOGS-CS

CS_TRAFO TRAnsFOrmation routine of DOGS-CS. This routine consists of various parameter trans-
formations which use a regular transformation matrix R. Examples for such transforma-
tions are given in Section 2.2.1.
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CS_TRASI TRAnsformation with SIngluar transformation matrix routine of DOGS-CS. In contrast
to CS-TRAFO, this routine consists of various transformations which use an irregular
transformation matrix R. Therefore, these transformations can be applied only at solutions.
An example for such transformations is the differentiation of daily EOP or the interpolation
between daily EOP.

CS_INPAR This routine can be used for the transformation of parameters with an introduction of new
parameters into a NEQ system. The mathematical foundations and examples such as the
introduction of station velocities, the introduction of a linear-trigonometric station motion
model and the introduction of infinitesimal similarity transformation parameters are given
in Section 2.2.2.

CS_REDUC With CS_REDUC, parameters of a NEQ or solution system can be reduced in order to
keep the NEQs easy to handle (limited dimension of NEQs). The basics for this routine
are summarized in Section 2.2.3.

CS_ELIM This routine is used to create elimination equations and apply them to NEQ systems ac-
cording to Section 2.2.4. It can be used to fix parameters of an equation system to an
arbitrarily defined value or to equalize two different parameters.

CS_COND This routine is used to create condition equations and apply them to an equation system
(see Section 2.2.5). Examples for condition equations implemented in this routine are the
NNT, NNR and NNS conditions (see also Angermann et al., 2004).

ii) Combine equation systems with DOGS-CS

CS_ADD CS_ADD is used to add two equation systems with arbitrary relative weights (see Section
2.3). If observation or condition equations are added to a NEQ, the additional NEQ system
is set up in advance.

CS_WICHT This routine can be used to scale or re-weight a given equation system. An example for
such an application is the re-weighting of the GNSS contribution w.r.t. the other geodetic
space techniques in the computation of the DGFI Terrestrial Reference Frame (DTRF)2008
(for details, please see P-A).

iii) Solve NEQ systems with DOGS-CS

CS_INVERT This routine is used for the inversion of a NEQ and the solution of a linear equation system.

The advantage of the DOGS-CS program architecture is that computation procedures such as shown in Figure 2.1
can be built modular and therefore fit very well to any problem. Some examples for the use of DOGS-CS at DGFI
are the computation of global TRF solutions like the DTRF2008 (Section 3.1.2), the computation of ERFs (Sec-
tion 3.1.6a, 3.2.4a and P-I, P-IV and P-V) and the computation of multi-satellite SLR solutions (Section 3.2.4b,
3.3.5a and P-III, P-V). Furthermore, DOGS-CS is used at DGFI to combine SLR and GRACE NEQs (Section
3.3.5b and P-C). The examples given above emphasize the importance of DOGS-CS for the work presented in
this thesis.

The DOGS-CS program package is also used by the official combination center of the IVS which is jointly
operated by BKG and DGFI (Bachmann et al., 2014).
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3 Fundamental geodetic parameters

This chapter provides general information about the fundamental geodetic parameter groups Terrestrial Refer-
ence Frame (TRF), EOP and Stokes coefficients which are associated with the three pillars of GGOS. They are
addressed in the publications P-I to P-V and P-A to P-D. The theoretical basis (definition and realization) for
each parameter group is recapitulated and the current state-of-the-art of the products is discussed and evaluated.
Going into details, the sections discuss limitations of current products and present selected investigations on
the combined solutions which are published in the first-author journal articles used for this dissertation in order
to improve the products. In each section, the key role of SLR in the inter- and intra-technique combination is
outlined. Figure 3.1 shows the first-author publications in relation to the geodetic parameters discussed in this
chapter. The causal coherence of the first-author publications is emphasized in Figure 1.1.

Thereby, the main focus of P-I, P-IV and P-A is the optimal estimation of station coordinates and velocities
through a combination of GNSS, SLR and VLBI (and DORIS in case of P-A). An optimal TRF determination
involves the correct realization of the geodetic datum (origin, orientation, scale). A major result of P-I was the
quantification of the annual variation of the terrestrial pole coordinates xp and yp which is caused by the neglect
of center of network variations in the multi-year reference frame (MRF). In P-IV, the length of the combination
interval is varied and the stability of different datum realizations is evaluated.

Publication P-II investigates the interactions of secular perturbations of the orbit and LOD. The study shows that
systematics in the Stokes coefficient C20 significantly affect the LOD estimates. This impact is reduced, when
observations to more than one satellite are combined.

The paper P-III studies the estimation of second-degree Stokes coefficients when observations of up to ten satel-
lites are combined. Thereby, the impact of each satellite on the decorrelation of highly correlated parameters is
investigated.

Finally, P-V uses this multi-satellite SLR solution to estimate all three parameter groups in one common adjust-
ment.

Figure 3.1: Overview of first-author publications incorporated in this cumulative dissertation. The content of the publications is related
to the discussed parameters.
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3.1 The Terrestrial Reference Frame (TRF)

This section gives a short overview of the state-of-the-art research and products of global TRFs and identifies
their current limitations. Furthermore, strategies to overcome these limitations based on the publications P-I,
P-IV and P-V are presented.

A Geocentric Terrestrial Reference System (GTRS) is defined to be a trihedron, whose basic vectors span a 3-
dimensional, orthogonal and right-handed Euclidean vector space (Petit and Luzum, 2010). The system contains
geocentric space-time coordinates within the framework of Special and General Relativity. It co-rotates with the
Earth and is related to the GCRS through spatial rotations using the Earth Orientation Parameters (EOP) (IUGG
Resolution 2, 2007).

3.1.1 Definition of the ITRS

Within the previously mentioned IUGG Resolution, the ITRS is defined as a specific GTRS with an orientation
which was maintained by the Bureau International de l’Heure (BIH). This means, the ITRS

origin coincides with the geocenter which is theCM of the Earth including oceans and atmosphere at
any epoch,

orientation is equatorial and equal to the orientation initially given by the BIH at the epoch 1984.0,

scale is consistent with the Temps Coordonné Geocentrique (engl.: Geocentric Coordinate Time)
(TCG) time coordinate for a geocentric local frame. The unit of length is the meter (SI).

The time evolution of the orientation of this frame is ensured by using a No-Net-Rotation (NNR) condition
w.r.t. horizontal tectonic motions over the whole Earth. The ITRS is defined, realized and promoted by the IERS
(Petit and Luzum, 2010).

3.1.2 The realization of the ITRS, the ITRF

The ITRS is realized through 3-dimensional coordinates and velocities of points fixed to the Earth’s crust (Ko-
valevsky and Mueller, 1989). These points can be monument points such as markers or reference points such as
the intersection of axes of an SLR telescope, a VLBI antenna reference point or a DORIS/GNSS antenna refer-
ence point. They undergo changes due to various geophysical, instrumental and anthropogenic phenomena. The
realization of the ITRS is called the International Terrestrial Reference Frame (ITRF) and is computed usually
every three to five years by the ITRS Combination Centers. (and finally released by the ITRS Center). The most
recent realization of the ITRS is the ITRF2008.

For the ITRF computation, input data of the four geodetic techniques GNSS, SLR, VLBI and DORIS are pro-
vided by the IERS Technique Centers (TCs). The datum of the ITRF2008 is realized as follows (see also Table
3.1):

origin The origin is realized solely through SLR.

orientation No rotation offsets neither rates are allowed between ITRF2008 and ITRF2005 at epoch 2005.0.
These conditions are realized through a NNR condition applied to a selected subnet of stations.

scale The scale is realized as a weighted mean scale of VLBI and SLR.

For the ITRF2008, two ITRS CCs, namely the IGN and DGFI, computed two different and independent solutions
using different software packages. The two solutions are named

ITRF2008 (Altamimi et al., 2011), which is the official IERS product and available at ftp://itrf.ign.
fr/pub/itrf/itrf2008/ and the

DTRF2008 DTRF (P-A), which is available via doi.pangaea.de/10.1594/PANGAEA.834714.

Table 3.1 summarizes the contributions of the four geodetic space techniques to the fundamental geodetic pa-
rameters estimated in the DTRF2008. Furthermore, it is shown which technique was used for the realization of
the geodetic datum.

ftp://itrf.ign.fr/pub/itrf/itrf2008/
ftp://itrf.ign.fr/pub/itrf/itrf2008/
doi.pangaea.de/10.1594/PANGAEA.834714
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technique station coordinates
terrestrial pole

UT1-UTC
nutation offsets

origin scale orientation
coordinates (xp , yp ) (∆XCIP, ∆YCIP)
offset rate UT1-UTC LOD

GNSS X X X ✗ X ✗ ✗ ✗ X

SLR X X ✗ ✗ X ✗ X X ✗

VLBI X X X X X X ✗ X ✗

DORIS X X ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 3.1: Usage of geodetic space techniques to determine fundamental geodetic parameters and to realize the DTRF2008 datum
(P-A).

3.1.3 Parametrization of station coordinates in the ITRF

The instantaneous station position X (ti ) which is fixed to the Earth’s crust is defined in the IERS Conventions
2010 (Petit and Luzum, 2010) as the sum of a regularized station position XR (ti ) and n correction terms ∆Xn (ti )
which are described by n conventional geophysical models provided in the IERS Conventions

X (ti ) = XR (ti ) +
∑

n

∆Xn (ti ). (3.1)

Examples for conventional models are models for solid Earth tides (including the time-independent part), ocean
tides, atmospheric tidal pressure loading, rotational deformation due to polar motion and ocean pole tide loading.
For further descriptions, see (P-I) and Petit and Luzum (2010). The reason for this reduction is to obtain station
positions with a time variation as close as possible to a linear variation. Since these models cannot account for
all known or unknown geophysical, technical or anthropogenic phenomena and due to model inconsistencies, the
remaining station motion is not purely linear (see red curve in Figure 3.2). However, the current mathematical
model for the regularized station position comprises only a mean position XITRF (t0 is the reference epoch) and
a constant station velocity ẊITRF (blue line in Figure 3.2). This means, a station position at an epoch ti can be
extrapolated using the ITRF2008 coordinates (reference epoch t0 of ITRF2008 is 2005.0) by

XR (ti ) = XITRF(t0) + (ti − t0) ẊITRF(t0). (3.2)

The ability to extrapolate a station position over multiple years leads to the nomenclature multi-year reference
frame (MRF) which is used for the conventional TRF realization in the following.

In the case of an abrupt change of the station position, e.g., due to a change of the GNSS antenna, a change in the
VLBI or SLR antenna system or, e.g., due to an earthquake, the station position cannot be extrapolated linearly
beyond this epoch using the position and velocity adjusted before the event. An example for an abrupt change
due to the Chile earthquake in 2010 is shown in Figure 1 of P-IV. To incorporate the abrupt change in the station
motion model, discontinuities are introduced at the epochs of such events. Afterwards, a new station position
and a new velocity are estimated.

3.1.4 Removable discrepancies between ITRS definition and realization

Between the ITRS definition and realization, there exist two discrepancies which can be removed with the fol-
lowing formulas without causing any inconsistency.

a) Relativistic scale

The ITRS scale is specified to be consistent with TCG. Since all IERS ACs use a scale consistent to Temps
Terrestre (engl.: Terrestrial Time) (TT) which is related to the Earth’s crust, also the ITRF scale is TT. This
means, in order to achieve a station position consistent with TCG, the following scaling has to be applied (IAU
Resolution B1.9, 2006)

XRTCG
(ti ) = (1 − LG) XR (ti ) with LG = 6.969290134 · 10−10. (3.3)

The scale difference has an amplitude of about 4.5 mm in the height component on the Earth’s crust.
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b) Treatment of permanent tide

In the IAG Resolution 16 (1983), it is recommended to use “mean-tide” values (only time-dependent tidal dis-
placements are subtracted from the theoretical station position) for quantities associated with station displace-
ments (Petit and Luzum, 2010). Nevertheless, the geodetic community has not implemented this recommenda-
tion in their data processing algorithms (Mäkinen and Ihde, 2008). The technique-specific ACs use a conventional
model to account for the time-dependent and the time-independent part of the tidal displacement. The station co-
ordinates are then related to the “conventional tide-free” crust. To adopt a different model than the conventional
one, the ITRF station coordinates have to be transformed with the following formula

XRdiff. model (ti ) = XR (ti ) − ∆Xconv. model(ti ) + ∆Xnew model(ti ). (3.4)

In the height component, the permanent tide reaches a magnitude of −12.0 cm at the poles and about +6.0 cm
at the equator (Petit and Luzum, 2010). This inconsistency of the definition and realization of the ITRS must be
taken into account when using the ITRF in relation with other products, e.g., global gravitational field models or
in the integrated estimation of station coordinates and Stokes coefficients (see Section 3.4).

3.1.5 Limitations of current ITRF realizations

The deficiencies of current ITRF realizations can be split up into the following five groups: origin, orientation,
scale, station positions and velocities, and other limitations:

a) Origin

The ITRS is defined to be geocentric. Its realization, the ITRF is a so-called “crust-fixed” TRF (Petit and Luzum,
2010) which means that its station coordinates are realized as regularized (linear) coordinates fixed to the Earth’s
crust. Due to the neglect of non-linear station motions (P-I), the obtained coordinates are only geocentric in
a sense of a mean. In order to access coordinates related to the instantaneous CM , the neglected translations
common to all stations have to be corrected with

XRGC (ti ) = XR (ti ) − dct (ti ) with the definition CM ≡ 0 in the CM-frame. (3.5)

The translations common to all stations dct (ti ) are explained in detail in P-I. In the geodetic literature, dct (ti )
is called “geocenter motion”. It has to be emphasized here that the sign of the correction is not unique in the
geodetic literature. The sign depends on how the vector dct (t) is defined: pointing from theCM away or towards
the CM . Furthermore, in the most recent IERS Conventions, there is no recommended model to account for
dct (t).

Notice on “geocenter motion”

- The CM of the Earth is the barycenter of the Earth (solid Earth plus its non-rigid envelope; Blewitt,
2003; Dong et al., 2003; Tregoning and van Dam, 2005; Wu et al., 2012).

- The coordinates of the CM are always
(

0 0 0
)T

in the CM-frame.

- Changes in the system Earth which cause mass redistributions force theCM (t) to vary over time w.r.t. a
“crust-fixed” frame

- Satellites are sensitive to the CM due to orbit dynamics at any time. Therefore, it is a matter of fact
that they refer to the instantaneousCM .

- Station positions are not sensitive to the CM since they undergo only changes due to loading effects.
Mass redistributions which cause no site displacements are invisible for them.

- In the case of satellite techniques, theCM (t)-sensitive satellites are observed by theCM (t)-insensitive
stations. Due to the connection via the observations, the station positions rely on the CM (t). However,
observation and/or instrumental errors affect the measured range.
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In principle, all satellite techniques are sensitive to the CM and can contribute to the ITRF origin. Nevertheless,
the GNSS origin is not used in the ITRF datum realization. The reason for this is twofold: on the one hand,
the GNSS geocenter coordinates are affected by orbit modeling deficiencies and the high altitude of the GNSS
satellites. On the other hand, the GNSS origin is affected by the simultaneous estimation of epoch-wise clock
offsets and tropospheric parameters (Rebischung, 2014). Proposed strategies to obtain a reliable GNSS origin
are a refined modeling of the satellite clock offsets or the inclusion of GNSS Low Earth Orbiter (LEO) data
(Rebischung, 2014).

In the case of DORIS, the modeling of, e.g., the solar radiation pressure is still a critical issue. In addition, the
estimation of once-per-revolution cross-track accelerations is not uniquely performed by the IDS ACs (Willis
et al., 2015). These inhomogeneities might cause systematic errors in the DORIS origin and therefore, the role
of DORIS for the realization of the ITRF origin will be evaluated by the IERS CCs within the computation of
the next release of the ITRF.

The most valuable satellite technique to realize the geocentric ITRS definition is SLR. The altitude of the SLR
satellites used for the ITRF computation is about 6000 km for LAser GEOdynamics Satellite (LAGEOS) 1/2
and about 20000 km for Etalon 1/2, respectively. In addition, their spherical shapes and their cross-section-to-
mass ratios allow a very accurate computation of the non-gravitational perturbation accelerations. If the station
coordinates are estimated together with the satellite orbits and if, in addition, the first degree Stokes coefficients
are fixed to zero (P-I), the obtained station coordinates are geocentric. SLR is sensitive to the CM (t) at any
epoch. Therefore, for short time intervals (e.g., one day until one week), the CM coordinates are accessible, but
not necessarily very accurate. However, in conventional ITRF solutions, the geocentric station coordinates are
not accessible since the linear station positions are only geocentric in a mean sense. Furthermore, the network
of SLR stations is not homogeneous over time. This variation causes a scatter of the “observed”CM (t) of about
1.5 mm (SLR network effect; Collilieux et al., 2009).

b) Orientation

The orientation is currently realized by a pure mathematical constraint which is based on a selected station
network. This selection is not uniquely defined and therefore depends strongly on each individual ITRS CC.
As a consequence, although the ITRF2008 and the DTRF2008 are aligned to the ITRF2005 (Altamimi et al.,
2007), the orientation and the linear time evolution of the orientation are not consistent. After applying the
NNR conditions, the DTRF2008 has a residual horizontal rotation of 0.06 ms/year (P-A) w.r.t. the Actual Plate
KInematic and crustal deformation Model (APKIM; Drewes , 2009). APKIM is based on velocities of geodetic
sites and takes 17 rigid plates and various deformation zones into account. In contrast to this, the ITRF2005 was
aligned to the ITRF2000 (Altamimi et al., 2002) which in turn is aligned to the geophysical plate kinematic model
NNR NUVEL-1A (mean plate motion modeled over millions of years and only 12 rigid plates are considered;
Argus and Gordon, 1991). A more recent version of a plate motion model is NNR-MORVEL56 (56 plates
included; Argus et al., 2011). Furthermore, translations common to all stations propagate into the orientation.
This fact is caused by the correlations between translation and orientation parameters due to the inhomogeneously
distributed station network (P-I).

c) Scale

The ITRF scale is realized as a weighted mean scale of VLBI and SLR. In the DTRF2008, both individual scales
differ by about 0.55 to 0.9 parts-per-billion (P-A). In a strict sense, the scale difference is not a limitation since it
fulfills the requirements of the ITRS definition. However, the scale difference restricts the accuracy potential of
the current ITRF.

The scale information of GNSS and DORIS is not used in the DTRF2008 for the determination of the geodetic
datum due to instrumental and computational aspects. Rebischung (2014) stated that the GNSS scale is highly
correlated with satellite z-Phase Center Offsets (z-PCOs), zenith wet delays, station heights and satellite clock
offsets. Strategies to reduce these correlations are given by Rebischung (2014) who proposed to include GNSS
LEO observations in the ITRF input data or to estimate satellite Phase Center Offset (PCO)s relative to one fixed
PCO for which pre-launch antenna calibrations are publicly available.

Willis et al. (2015) report inhomogeneities in the DORIS data processing which may cause systematic errors in
the DORIS scale. As it is the case for the DORIS origin, the role of the DORIS scale will be evaluated by the
CCs during the combination.
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d) Station positions and velocities

Limitations of included station positions and velocities are

- the inaccessibility of the instantaneous station position due to the linear station motion model. Resid-
ual (not modeled or wrongly modeled) geophysical, technical and anthropogenic non-linear (periodic,
episodic, abrupt) station motions are completely neglected in the current conventional mathematical model
for the regularized station positions (see Figure 3.2). Strategies to overcome this lack of modeling (P-I and
P-IV) are explained in Section 3.1.6.

- the exclusion of stations with observation intervals shorter than 2.5 years. This threshold is used since
Blewitt and Lavallée (2002) showed that the estimated station velocity is affected significantly by annual
signals when using a data span shorter than 2.5 years. This fact makes the ITRF partly “out-of-date” right
in the moment of its publication.

- the approximation of post-seismic relaxations (exponential/logarithmic shape) through intervals with piece-
wise linear (pwl) segments. If an interval is shorter than 2.5 years (which is usually the case such approxi-
mations), the segment is usually not included in the ITRF (sometimes, in order to achieve more continuity
for a station, shorter segments are still included).

Figure 3.2 shows schematically the regularized station position XR (t) after all conventional models have been
applied (red curve) and the conventionally parametrized (secular) ITRF position XITRF(t). Due to non-modeled
effects or inconsistencies in the conventional models, XR (t) does not vary just linearly. In P-I, examples of
such non-periodic effects are summarized such as: (i) post-seismic relaxations (logarithmic-shape) which might
cause surface motions of 15 to 20 mm per year even 45 years after the earthquake (Freymueller, 2010) and (ii)
neglected seasonal variations which can reach amplitudes of 50 to 75 mm (e.g., GPS station in Manaus; Bevis
et al., 2005). Therefore, the conventional linear approximation of XR (t) causes errors. The difference between
both positions at an epoch ti can be written as

ǫ1(ti ) = XR (ti ) − XITRF(ti ). (3.6)

The difference ǫ1(ti ) can be split up into common motions of all stations (translations, rotations and scale
changes) and individual station motions such as local crustal dynamics due to groundwater withdrawal (Bawden
et al., 2001). The common motions affect the TRF datum whereas the individual motions only partly bias the
TRF datum. One strategy to approximate the non-linear station motions is the frequent estimation of station
positions X̃ (ti ) in so-called Epoch Reference Frames (ERFs). More details on ERFs are presented in Section
3.1.6 and P-I, P-IV.

e) Other limitations

Other limitations of current ITRS realizations are

- the latency of ITRS realizations of three to five years.

- the non-availability of the ITRF coordinates after a large earthquake. Such events may affect large areas.

- the inhomogeneous global distribution of (i) the ground station networks (see Figure 16 in P-A), (ii) the co-
location sites (see Figure 13 in P-A) and (iii) the measured terrestrial difference vectors between technique-
related reference points called Local Ties (LT). For the ITRF2008 processing, there have been only three
co-location sites with LT for all four geodetic techniques.

- In addition to the global distribution, also the quality of the LT is inhomogeneous. The discrepancies
between the single-technique solutions and the measured LT can reach magnitudes of several centimeters.

- the constraints in some input data that are not reported in the SINEX files (see Section 2.2.6 and P-A).

3.1.6 Strategies to resolve the ITRF limitations

In this section, selected strategies to overcome current limitations of ITRF realizations are presented. The Epoch
Reference Frame (ERF) computation is discussed in detail in Section 3.1.6a) and P-I, P-IV, whereas the extended
station parametrization and the refined geophysical modeling are only briefly addressed. It has to be mentioned
here that the numbering of Section 3.1.5 is independent from the numbering within this section.
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a) Epoch Reference Frames (ERFs)

The main strategy addressed in this thesis to overcome the lack of modeling of conventional MRFs is the frequent
estimation of station position coordinates based on an epoch-wise combination of NEQs of different geodetic
space techniques (Epoch Reference Frames (ERFs); P-I). The presented epoch-wise solutions contain instanta-
neous geocentric station coordinates and EOP. The time interval of the estimated ERF solutions can be varied
(P-IV). Figure 3.2 shows, in addition to the residual regularized and conventionally extrapolated station posi-
tions, the frequently estimated station positions X̃ (ti ) (white boxes). It is obvious that their approximation error
ǫ2 (ti ) is, in general, much smaller than ǫ1(ti ).

Figure 3.2: Approximation of the regularized station position through the conventional ITRS realization and the ERF realization (taken
from P-I).

At DGFI, MRFs such as global TRFs (e.g., DTRF2008) are computed in the same way as ERFs using a com-
bination method based on the Gauß-Markov model at NEQ level (see Chapter 2). In contrast to this approach,
the ITRF2008 computation at IGN is based on the Gauß-Markov model at solution level (see Chapter 2 and
Altamimi et al., 2011). In P-I, the procedure to compute ERFs is presented for the first time in detail and com-
pared to the procedure for the computation of a conventional MRF. Both TRF realizations are based on identical
input data which allows to study the impact of the epoch-wise estimation of station coordinates on (i) the geode-
tic datum of the obtained ERFs, (ii) the individual and common motions of all stations and (iii) the impact on
commonly adjusted parameters such as the EOP. The investigations showed that

- individual non-linear station motions bias other parameters (e.g., EOP) in the secular approach.

- the non-linear station motions can be separated into common and individual station motions.

- the sparser the global station network is, the more correlated are the network translation and network
rotation parameters.

- the geocentric NNR condition is affected by neglected non-linear variations in the a priori coordinates of
the ERFs. In the MRFs, common non-linear variations are neglected and partly forced into the terrestrial
pole coordinates. The signal can be found, if the pole coordinates of the MRF and the ERFs are compared.
With this method, annual amplitudes of 23.6 µas and 39.8 µas were found for xp and yp of the combined
solution (GNSS, SLR and VLBI). In case of the SLR-only solution, much larger (non-annual) amplitudes
of 77.4 µas have been found.

- in the conventional approach, all existing LT can be used for the combination whereas for the ERF com-
putation, only the LT at the co-location sites which observe during the particular week can be used. This
causes instabilities regarding the integration of the different techniques and the datum definition for the
ERFs.

One possibility to strengthen the combination of the different techniques is the introduction of computed LT. With
more LT available in a week, the datum transfer from one technique-specific subnet to the other would improve.
Another possibility to increase the datum stability of ERFs is the extension of the combination interval. This
investigation is discussed in P-IV. There, three different combination intervals (weekly, two-weekly and four-
weekly) have been tested and evaluated w.r.t. their ability to monitor non-linear station motions and to stabilize
the ERF datum. The study shows that



3.1. The Terrestrial Reference Frame (TRF) 45

- the larger the sampling interval for the ERFs is, the better is the network geometry (global coverage) and
therefore, the more LT can be introduced. These improvements allow to realize a more stable geodetic
datum and a better integration of the different space techniques.

- the shorter the sampling interval for the ERFs is, the better can the high-frequency motions be sampled
(abrupt signals or periodic signals with at least twice the sampling interval can be monitored).

As a conclusion, we can state that an optimal TRF type or ERF sampling interval depends on the application the
TRF is used for (see Table 3 of P-IV).

Another possibility to increase the datum stability of ERFs is the inclusion of observations to more satellites
tracked by SLR. P-V shows that

- if only LAGEOS 1/2 observation are considered for an SLR-only solution, the origin and scale vary be-
tween 0.5 mm and 1.2 mm.

- if, in addition, observations to the LAser RElativity Satellite (LARES) are included, the variation of the
datum parameters decrease by between 14 % and 22 %.

- if, in total, observations to 10 satellites are combined, the scatter in the x-coordinate of the origin and the
scale increases. This fact might be caused by the perturbed orbits of some LEOs due to, e.g., not accurately
modeled non-gravitational perturbations.

- The more satellites included in the combination, the better is the station coordinate repeatability, especially
in the horizontal components. The RMS of the height component does not benefit significantly from the
combination of 10 satellites since the annual signal dominates the height repeatability. Furthermore, the
poor observation geometry is a limiting factor since only satellites in the hemisphere above the station can
be observed. (see also Sośnica et al., 2014).

The characteristics of both TRF types are summarized below (see also Table 9 and 10 of P-I) and possible
applications for both TRF types are given in Table 3 of P-IV.

ERFs describe instantaneous geocentric coordinates with a very short latency. Hence, ERFs are important to
evaluate geophysical models. This fact makes them interesting especially after large earthquakes, when the
secular station position is not valid any longer. However, ERFs have a less stable datum than the MRFs and can
provide station positions only for the past.

MRFs are important for long-term studies. They can also be used for coordinate extrapolations which is very
important for Precise Orbit Determination (POD) since station positions and EOP are kept fixed. Therefore, the
station position should be described as accurately as possible (e.g. using the linear-trigonometric station motion
model) in order to simply extrapolate into the future.

In summary, the investigations of P-I and P-IV show that ERFs can support and validate the MRFs.

b) Extended parametrization of station motions

In order to describe the time-varying station positions more accurately, an extension of the current mathemati-
cal model could be the additional estimation of trigonometric functions. This extended (linear-trigonometric)
parametrization reads according to Equation (2.59)

XRext (ti ) = XITRF(t0) + (ti − t0) ẊITRF(t0) + cITRF(t0) cos ((ti − t0)ω) + sITRF(t0) sin ((ti − t0)ω). (3.7)

The advantage of this extended parametrization is, that the non-linear residuals of XR (t) can be approximated
much more accurately than when using only a linear parametrization. This extended parametrization is currently
investigated in a joint project of DGFI and BKG within the framework of the DFG research unit Forschergruppe
“Space-time reference systems for monitoring global change and for precise navigation in space” (FOR 1503;
Nothnagel et al., 2010). In order to realize the geodetic datum of such an extended MRF, the NNR condition has
to be modified to prevent common periodic motions of all stations from aliasing into the translation, orientation
and scale. There are two main limitations of such an extension: (i) only strictly periodic signals with constant
period and amplitudes can be approximated. Most of the geophysical and equipment related effects do not occur,
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however, with a constant frequency and amplitude. To reduce this discrepancy, also semi-annual functions can
be estimated in addition to the annual functions (Meisel et al., 2009). Furthermore, non-periodic signals such as
post-seismic deformations can only be approximated accurately by, e.g., additional exponential or logarithmic
functions. (ii) Spurious periodic variations which are estimated due to outliers (e.g., due to snow coverage during
winter-time), might disturb the station coordinate estimates.

c) Refined geophysical modeling of non-tidal loading effects

A refined geophysical modeling for taking into account the non-tidal loading effects caused by, e.g., atmosphere,
ocean and hydrology is currently not recommended in the IERS Conventions. The geodetic community accom-
modates the importance of a better understanding of non-tidal loading effects and installed the Joint Working
Group (JWG) 1.2 of the IAG and the IERS which is named “Modeling environmental loading effects for ref-

erence frame realizations”. Furthermore, a joint project of BKG and DGFI investigates the effect of different
geophysical model combinations on geodetic parameters (station coordinates, EOP, Stokes coefficients). This
project is funded within the DFG research unit FOR 1503 (Nothnagel et al., 2010). The obtained refined geo-
physical models for non-tidal loading effects can be used, e.g., for accounting for translations common to all
stations dct (t) in Equation (3.5).

3.2 The Earth Orientation Parameters (EOP)

In this section, a short introduction on the definition of the EOP is given and current official time series are
presented. Selected limitations of the time series are addressed and strategies to resolve them based on the
publications P-II and P-V are discussed. The results have been obtained within the DFG Forschergruppe “Earth
Rotation and Global Dynamic Processes” (FOR584; Schuh et al., 2003).

3.2.1 Definition of the EOP

The transformation from the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Ref-
erence System (GCRS) comprises the three rotation matrices

[

GCRS
]

= Q(t)R(t)W (t)
[

ITRS
]

, (3.8)

which describe the motion of the Celestial Intermediate Pole (CIP) in the celestial reference system Q(t), the
rotation R(t) of the Earth around the axis associated with the pole and polar motionW (t), respectively (Petit and
Luzum, 2010). Thereby, polar motion describes the motion of the CIP in the ITRS including all terms outside
the retrograde diurnal band. The celestial motion of the CIP includes all terms with periods larger than 1.5 days
in the GCRS. In principle, there exist two different procedures for this transformation (see Table 3.2), where
the first one described below is the currently recommended transformation and the second one is the classical
transformation.

The “Celestial Intermediate Origin (CIO)-based transformation” was introduced to ensure a Non Rotating Origin
(NRO) in the GCRS and ITRS. This transformation has the advantage that the Earth Rotation Angle (ERA) is
insensitive at the milliarcsecond level to the International Astronomical Union (IAU) precession-nutation model
(Mathews et al., 2002) and to the observed celestial pole offsets.

The second procedure is called the “Equinox-based transformation” which composes the classical nutation-
precession matrices using the nutation angles ∆ψ and ∆ǫ in longitude and obliquity referred to the ecliptic of
date and the mean obliquity of date. This procedure uses the Greenwich Apparent Sideral Time (GAST) angle Θ
to rotate from the Terrestrial Intermediate Reference System (TIRS) into the “True equinox and equator of date”
system. The angle depends on the precession-nutation model and the observed celestial pole offsets which is
in contrast to the desirability of describing the rotation of the Earth independently from its orbital motion (IAU
Resolution B1.8, 2006). The “Equinox-based transformation” is shown for completeness in Table 3.2 but is not
further discussed in this thesis. A detailed description of both transformations can be found in Capitaine (2002)
and Petit and Luzum (2010). Göttl (2013) provides a descriptive explanation of both transformations. Kaplan
(2005) describes how to transform the IERS values (∆XCIP, ∆YCIP)IERS into the nutation angles ∆ψ and ∆ǫ .
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Table 3.2: Transformation from the ITRS to the ICRS. The alignment of the ICRS and the GCRS orientation to the Fifth Fundamental
Catalogue (FK5) is described in detail in Arias et al. (1995).
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1 This transformation comprises a translation from the Geocenter to the Barycenter and a scaling due to a change of the time system TCG

TCB = 1 − LC

with LC = 1.48082686741 · 10−8
± 2 · 10−17 (IAU Resolution B1.5, 2006).

∗
2 In the equinox-based transformation, this system is called “True equinox and equator of date” system.

The three rotation matrices of Equation (3.8) for the “CIO-based transformation” can be written as

W (t) = R3(−s′)R2(xp )R1(yp),

R(t) = R3(−ERA),

Q(t) = R3(−E)R2(−d)R3(E)R3(s)

=



1 − aX2
CIP −aXCIPYCIP XCIP

−aXCIPYCIP 1 − aY2
CIP YCIP

−XCIP −YCIP 1 − a(X2
CIP + Y 2

CIP)


R3(s),

(3.9)

using a = 1
2 +

1
8 (X2

CIP + Y 2
CIP) and

ERA(t) = 2π(UT1 + 0.7790572732640 + 0.00273781191135448 t). (3.10)

The time t is the Julian UT1 date - 2451545.0 in day fractions. The “CIO-locator” s and the “Terrestrial In-
termediate Origin (TIO)-locator” s′ can be modeled using the formulas described in Petit and Luzum (2010).
Thereby, s provides the position of the CIO on the equator of the CIP. The main constituents of s′ are caused by
the Chandlerian and annual Earth rotation wobbles.

3.2.2 EOP products

The EOP in Equation (3.9) and (3.10) comprise

(xp , yp) = (x, y)IERS + (∆x,∆y)ocean tides + (∆x,∆y)libration,

UT1 = UTC + (UT1 − UTC)IERS + ∆UT1ocean tides + ∆UT1libration,

LOD = LODIERS + ∆LODocean tides + ∆LODlibration,

(XCIP,YCIP) = (XCIP,YCIP)IAU + (∆XCIP,∆YCIP)IERS

(3.11)

in which the quantities with the index IERS are provided at daily 0h Universal Time Coordinated (UTC) epochs
in the IERS 08 C04 time series (see Figure 3.3; Bizouard and Gambis, 2011; Gambis et al., 2013). All IERS
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quantities except (UT1-UTC)IERS and LODIERS can be interpolated to any epoch using a linear interpolation
although the interpolation error is at the limit looking at today’s accuracy of the geodetic space techniques.
Besides the linear interpolation of (UT1-UTC)IERS and LODIERS, zonal terms have to be considered (see Section
2.2.1). The other quantities (without the index IERS) are based on conventional models which are provided in the
IERS Conventions (Petit and Luzum, 2010). Errors in these quantities are caused by possible model errors. As an
example, the modeling of (XCIP,YCIP)IAU is based on the IAU 2000/2006 precession-/nutation model (Mathews
et al., 2002; Capitaine et al., 2003) which has an accuracy of about 10 µas for most of its terms (Petit and Luzum,
2010). Besides, this model does not include a Free Core Nutation (FCN) model since this free retrograde diurnal
motion of the Earth’s rotation axis w.r.t. the Earth comprises a time-varying excitation and damping. Due to the
neglect of the FCN, the accuracy of the CIP direction in the GCRS of the IAU 2000/2006 precession-/nutation
model is limited to about 0.3 mas (Petit and Luzum, 2010). The so-called Length Of Day (LOD) is related to
UT1 through

d

dt
(∆UT1) = −

∆LOD
86400 s

with ∆LOD = LOD − 86400 s and ∆UT1 = UT1 − UTC. (3.12)

If time is measured in days of 86400 s, the excess Length Of Day (∆LOD) describes the difference between LOD
and 86400 s (Seitz F. and Schuh, 2010). Since UTC contains leap seconds, the first derivative is not unique at
these epochs. To compute an unique derivative, the continuous time scale Temps Atomique International (engl.:
International Atomic Time) (TAI) can be used instead of UTC. The relationship between both time scales is
given by UTC = TAI − N with N being the number of leap seconds introduced since 1972 (currently 35 s). The
leap seconds are announced and published by the IERS in the Bulletin C6. Besides the IERS EOP, also other
time series of combined EOP are publicly available. One example for such a time series are the SPACE2011,
COMB2011 and POLE2011 time series (Ratcliff and Gross, 2013) of the Jet Propulsion Laboratory (JPL).

Figure 3.3: Screenshot of the official IERS 08 C04 data file (available at http://hpiers.obspm.fr/eop-pc/).

3.2.3 Limitations of current EOP realizations

a) Alignment to the ITRF and the International Celestial Reference Frame (ICRF)

The IERS EOP time series is based on the combination of input data of different technique-dependent ACs. The
input data are often referred to different terrestrial and celestial frames (Bizouard and Gambis, 2011). To align
the EOP (celestial and terrestrial pole coordinates, UT1) to the most recent realization of the ITRF and ICRF, a
linear model (offset and drift) is estimated and subtracted from the input data. The obtained EOP time series are
then considered to be consistent to the current ITRF and ICRF. Until now, it has not clearly been demonstrated
by the authors of the IERS 08 C04 time series that their approach can be considered as fully rigorous.

6http://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html, (2014-07-31)

http://hpiers.obspm.fr/eop-pc/
http://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
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b) Systematics in the terrestrial pole coordinates of conventional MRFs

Due to an inhomogeneous station distribution, translations common to all stations are correlated with common
rotations. As described in Section 3.1.6a) and P-I, the neglected non-linear translations affect the orientation of
any conventional global MRF. This means, that the pole coordinates as complementary parameters to the TRF
orientation are equally affected by the annual variations suppressed in the linear station motion model.

c) Systematics in satellite-technique LOD estimates

The relationship between the rotation of the Earth around its pole and the precession of the orbital plane of any
satellite is investigated in P-II and can be written as

d

dt
(∆UT1) = −

∆LOD
86400 s

= −
(

Ω̇ + cos (i) · u̇0

)

ρ−1. (3.13)

Thereby, ρ is the ratio between UT and sidereal time (rate of advance of ERA: ρ = 1.273781191135448 rev/UT1
day; Petit and Luzum, 2010). This means that LOD estimates derived from satellite observations are corrupted
by the precession of their orbital plane and by the cos (i)-mapped along-track motion of the satellites. These
parameters are themselves highly correlated with the even zonal Stokes coefficients.

In contrast to the alignment of the terrestrial and celestial pole coordinates, the LODGNSS values are made consis-
tent with the LODVLBI values by filtering and removing all spurious drifts above 20 days (Bizouard and Gambis,
2011). Nearly 99 % of the total signal have a period below 19 days (Bizouard and Gambis, 2009). The LODSLR

values are not used for the LOD combination. A detailed theoretical discussion and additional numerical exam-
ples are presented in P-II and P-V.

If, instead of LOD, UT1-UTC values parametrized as piece-wise linear (pwl) polygons, the absolute offset of
these polygons cannot be determined with satellite techniques (P-I). To remove this singularity, at least one value
of the polygon has to be fixed to its a priori value (see Section 2.2.4).

3.2.4 Strategies to resolve the EOP limitations

The strategies to resolve the EOP limitations addressed in this thesis follow two different approaches. The
first approach is based on the combination of different geodetic space techniques and a simultaneous frequent
estimation of commonly adjusted parameters (station coordinates), whereas the second approach is based on the
combination of multiple SLR-tracked satellites.

a) Epoch Reference Frames (ERFs)

The estimation of ERFs is presented in detail in P-I, P-IV and Section 3.1.6. The results show that the frequent
estimation of station positions do not force the common non-linear rotations of the station network to propagate
into the terrestrial pole coordinates. Hence, the ERF pole coordinates are only affected by the datum instability
and can be considered as “reduced biased” (Figure 1.1).

In order to avoid the artificial removal of the UT1-UTC polygon singularity, the satellite techniques can be
combined with VLBI. This is the only space technique which is sensitive to the full set of EOP.

b) Combination of satellites with different orbit characteristics

In P-II, the correlations of the orbit parameter rates with C20 using the first order Gaussian perturbation equations
are worked out (please note that the Stokes coefficients Cnm , Snm are explained in detail in Section 3.3). Thereby,
only secular perturbations during one week are discussed since only weekly C20 values are estimated.

The major results and findings of P-II and P-III are summarized below:

- Secular perturbations in the orbital elements Ω, ω and M are caused by the even zonal Stokes coefficients
(especially C20). Hence, the estimated ∆LOD values are affected as they describe the same rotations. In
the single-satellite solutions, the impact of the fixed a priori gravitational field is significant. If a maximum
difference of 8 · 10−10 is assumed for the C20 values (Figure 6 in P-II), the effect for a satellite at 500 km
altitude and i = 0◦ (maximum effect) is about 1.0 ms

d
.
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- Estimated offsets in the semi-major axis a cause a change of the mean motion n of the satellite. This mean
motion compensates the along-track perturbation caused by C20.

- To decorrelate Ω̇ and LOD, the combination of satellites with different inclinations are necessary. In P-
II, the combination of LAGEOS 1 and 2 leads to a significant decorrelation. In P-II, various satellite
constellations are tested if they are able to decorrelate Ω̇ and C20. It can be concluded, that LAGEOS 1 and
2, Ajisai, Stella, Starlette and LARES have a significant impact on the decorrelation whereas the impact
of Etalon 1 and 2, Ball Lense In The Space (BLITS) and Larets vanishes.

- In comparison to the single-satellite solutions, the reduced correlations allow it to estimate improved LOD
values in an SLR-only multi-satellite solution.

Within the SLR-only solutions, the orbit modeling refinements described below are considered to be correct. In
the obtained solutions, the LOD information is stored in the pwl UT1-UTC polygons. The mid-arc value of these
polygons is fixed to its corresponding a priori value in order to remove the rank deficiency (see Figure 4 in P-V).
The outcome of the studies is, that

- the LAGEOS 1 LOD values are significantly and systematically affected by deviations of up to ±20 ms.
Hence, if LOD and C20 are estimated together using only one satellite, no reliable results can be obtained.

- the deviations of the LAGEOS 1/2 LOD values are about 10 times smaller than the LAGEOS 1 LOD
values.

- the deviations of the combined LAGEOS 1/2 and LARES LOD values are about ±0.3 ms.

- nearly no systematic deviations occur in the ten satellite LOD values.

The terrestrial pole coordinates also benefit significantly from the inclusion of more satellites in the SLR-only
solution. Their weighted Root Mean Square (WRMS) w.r.t. the IERS 08 C04 time series is reduced by about
60 % in the x-coordinate and about 67% in the y-coordinate. The results of P-V confirm the most recent plans of
the ILRS Analysis Working Group (AWG) to include LARES in its official TRF-EOP-products.

c) Refined orbit modeling

In addition to the interaction of the satellite orbit and C20, other secular perturbations of the orbital precession
are discussed in P-II:

- Periodic empirical accelerations estimated perpendicular to the orbital plane (once-per-revolution sine-
term in cross-track direction) cause only very small secular rotations if the parameter is constrained (Equa-
tion (7) in P-II). If a typical maximum value of 1 ·10−12 m

s2 is used (Combrinck, 2010), the maximum effect
of 0.1 µs

d
for i = 90◦ is obtained. If the empirical accelerations are not constrained, no reliable estimates

can be achieved.

- If relativistic accelerations for satellites due to Lense-Thirring (Lense and Thirring, 1918) or deSitter (de
Sitter, 1916) are neglected, secular nodal rotations of 0.0088 ms are caused for satellites at LAGEOS
altitude.

Besides the multi-satellite combination in the case of SLR, P-B presents a strategy to reduce the LOD error in
GNSS solutions by an improved modeling of the solar radiation pressure. This improvement is achieved by the
use of an adjustable box-wing model (Rodriguez-Solano et al., 2012).

3.3 The Earth’s gravitational field (Stokes) coefficients

The third parameter group addressed in this thesis are the Stokes coefficients. In the following section, the
definition of the Stokes coefficients is presented. Furthermore, the geometrical and physical interpretation of
the low-degree coefficients is shown since this knowledge is fundamental for the understanding of the correla-
tions between the different parameter groups. Finally, strategies for a reliable estimation of low-degree Stokes
coefficients based on the publications P-III and P-V are presented.
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The gravitational potential V expanded into spherical harmonics of degree n and order m can be written as
(Heiskanen and Moritz, 1967)

V =
GM

r


1 +

∞∑

n=1

(
a

r

)n l∑

m=0

(Cnm · cos mλ + Snm · sin mλ) Pnm (cosϑ)


 . (3.14)

Therein, GM is the gravitational constant multiplied with the Earth’s mass M , (ϑ,λ,r)T are the geocentric
spherical coordinates of a satellite in the ITRS, a is the equatorial semi-major axis of the Earth and Pnm are
the associated Legendre functions. Equation (3.14) provides a special solution of Laplace’s second-degree dif-
ferential equation ∆V = 0 for the Earth’s exterior gravitational field. The harmonic coefficients (Stokes‘ coeffi-
cients/constants) of degree n and order m are given by
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(3.15)

From Equation (3.14), it is obvious that for zero order the coefficients Sn0 disappear. The factor
(
a
r

)n
causes a

decreasing sensitivity of a test mass on the Earth’s gravitational field with higher altitude (upward continuation).
The relation between the normalized Stokes coefficients (Cnm , Snm ) and associated Legendre functions (Pnm )
and the corresponding unnormalized quantities (Cnm , Snm and Pnm ) is

Cnm = NnmCnm , Snm = NnmSnm and Pnm = NnmPnm (3.16)

with

Nnm =

√

(2 − δ0m )(2n + 1)
(n − m)!
(n + m)!

, δ0m =






1 if m = 0

0 if m , 0
. (3.17)

Figure 3.4: Laplace’s fully normalized surface spherical harmonic functions of degree 0 ≤ n ≤ 3 and order 0 ≤ m ≤ n.
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3.3.1 Geometric interpretation of the spherical harmonic functions

Figure 3.4 shows Laplace’s fully normalized surface spherical harmonic functions Pnm (cosϑ) cos mλ with Pnm

being the fully normalized associated Legendre functions of degree 0 ≤ n ≤ 3 and order 0 ≤ m ≤ n. The
shown amplitudes and signs depend on the normalization formula used (e.g., Equation (3.17)). The zero points
of these functions divide the surface of the Earth into regions with alternating signs, bounded by meridians and
parallels (Torge, 2001). If the order m is equal to zero, the Legendre polynomials Pn (cosϑ) are independent of
the geographical longitude λ and the Earth is divided by parallels into n + 1 regions with positive and negative
signs in the interval 0 ≤ ϑ ≤ π. Because of the parallel division, the spherical harmonic functions, realized
through Legendre polynomials with order m = 0, are called “zonal” harmonics. If the degree is even, the Earth
is divided symmetrically w.r.t. the equator. For odd degrees, the division is asymmetric. For the order m , 0 and
m , n, the Pnm (cosϑ) have n − m zero points in the interval 0 ≤ ϑ ≤ π. Due to the longitude dependency, 2m

zero points are caused in the interval 0 ≤ λ ≤ 2π. These harmonic functions are called “tesseral” harmonics.
The last group of harmonic functions with m = n are called “sectoral” harmonics since the latitude dependency
vanishes. The amplitudes of the spherical harmonics are given by the Stokes coefficients (see Equation (3.14)).

3.3.2 Physical interpretation of the Stokes coefficients

The physical interpretation of the Stokes coefficients can be done using Equation (3.14). For n = m = 0, Equation
(3.14) yields

V0 =
GM⊕

r
(3.18)

which describes a radially layered spherical Earth (Torge, 2001). If C00 , 1, Equation (3.18) is scaled by
C00, which corresponds to a change of the global scale. According to Equation (3.15) and by transforming
the spherical coordinates into Cartesian coordinates (Torge, 2001; Hofmann-Wellenhof and Moritz, 2006), the
first-degree coefficients can be written as

C10 =
1

aM

$

Earth

ZdM, C11 =
1

aM

$

Earth

X dM and S11 =
1

aM

$

Earth

Y dM. (3.19)

The three integrals divided by the Earth mass M give the coordinates
(

X Y Z
)T

of the CM . Since the
coordinate system should be centered in the CM , the first-degree Stokes coefficients have to be fixed to zero
(C10 = C11 = S11 = 0). This condition ensures that an estimated satellite orbit is geocentric (P-I). If the first-
degree terms are estimated, neither the resulting satellite orbit nor the adjusted station coordinates are geocentric
any longer. This is also not the case if the origin is realized through an NNT condition (P-I and Section 3.1.5).
The same procedure as applied for Equation (3.19) yields to the second-degree coefficients
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(3.20)

According to Torge (2001) and Hofmann-Wellenhof and Moritz (2006), the above expressions are functionals of
the moments of inertia
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dM (3.21)
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and the products of inertia

D =

$

Y ZdM, E =

$

X ZdM and F =

$

XY dM. (3.22)

If the Z-axis is equal to the principal axis of maximum inertia (no polar motion), the products of inertia D and
E become zero which results in zero C21 and zero S21 coefficients. The remaining product F would be zero if
the conventionally defined x-axis (axis through Greenwich meridian; see Table 3.2) coincides with one of the
equatorial principal axes (Torge, 2001).

The Stokes coefficient C20 is also known as the dynamical form factor of the Earth and describes its polar
flattening. This coefficient is about three orders of magnitude larger than all other coefficients. C22 describes
the asymmetry of the equatorial mass distribution w.r.t. the rotation axis and S22 quantifies the rotation of the
equatorial principal axes w.r.t. the conventionally defined axes. The coefficient C30 can be interpreted as the
difference of the Earth flattening for the northern and the southern hemisphere.

Notice on the realization of a “physical TRF orientation”

- C21 and S21 describe the deviations of the Earth’s mean rotation axis (CIP) w.r.t. the principal axis of
maximum inertia. If C21 and S21 are fixed to zero, both axes coincide. The coefficients should not
be mixed up with the terrestrial pole coordinates xp and yp which describe the deviation of the ITRS
z-axis w.r.t. the CIP.

- S22 describes the rotation of the conventional coordinate system relative to the equatorial principal axes
of inertia.

- Since the tensor of inertia I is uniquely defined through six independent components and only five
second-degree Stokes coefficients refer to them (see Equations (3.20), (3.21) and (3.22)), an additional
piece of information is required to determine I uniquely (Liu and Chao, 1991).

- The rotation angle of the equatorial principal axes of inertia w.r.t. the conventional equatorial axes
according to Liu and Chao (1991) reads Λ = 1

2 arg(C22 + iS22).

Hence, to physically orientate a TRF, C21, S21 and Λ have to be fixed to zero. The problem thereby is,
that the satellite (system) must be sensitive enough on variations of the second-degree Stokes coefficients.
Otherwise, the realized reference system would still contain a degree of freedom w.r.t. the orientation. An
example for such a satellite system is given in P-III. Therein, the significant sensitivity of a multi-satellite
SLR system to the second-degree Stokes coefficients is discussed. Further investigations should study, if
a “physical TRF orientation” can be determined through such a system. An example for such studies is
the currently running project “Consistent dynamic satellite reference frames and terrestrial geodetic datum
parameters (PN6)” of DGFI and the Forschungseinrichtung Satellitengeodäsie (FESG) of the Technische
Universität München (TUM) within the DFG research unit FOR 1503 (Nothnagel et al., 2010).

3.3.3 Static and temporal global gravity field models

Current gravity field missions such as GRACE and GOCE have been developed to measure the Earth’s gravi-
tational field with high temporal resolution (Tapley et al., 2004) or its mean gravitational field with very high
spatial resolution, respectively (ESA, 1999; Bouman et al., 2013). Various global gravity field models are pro-
vided through the International Center for Global Gravity Field Models (ICGEM) webpage7. Most recent static
gravity field models combine observations of GRACE, GOCE and LAGEOS (e.g., GOCO01S; Pail et al., 2011).
The maximum degree and order of such models vary from 230 to 360. An exception are the static EIGEN grav-
ity field models which provide Stokes coefficients up to degree and order 1949 (Förste et al., 2012) by including
terrestrial and other measurements.

In addition to the static global gravitational field models, the ICGEM webpage also provides temporal global
models for dedicated time periods with weekly and monthly resolution. These models are primarily based on
GRACE measurements.

7http://icgem.gfz-potsdam.de/ICGEM/

http://icgem.gfz-potsdam.de/ICGEM/
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3.3.4 Limitations of temporal global gravity field models

Chen et al. (2005) stated that the GRACE mission lacks the ability to determine the long wavelengths of the
Earth’s gravitational field with very high accuracy. This means that the weekly/monthly gravitational fields
contain C20 coefficients that are not well determined. The latest state-of-the-art is that Flechtner et al. (2013)
recommended to replace the C20 coefficients in the GRACE monthly solutions by values obtained from SLR
measurements (P-III, P-C). The commonly used SLR time series of monthly (and weekly) low-degree Stokes
coefficients is computed by CSR (Cheng and Ries, 2012; 2013). These time series are based on consistent
a priori models used for the ReLease (RL) 04 and RL05 monthly GRACE solutions and use observations to the
5 satellites LAGEOS 1/2, Stella, Starlette and Ajisai. It has to be emphasized here that the replacement of the
coefficients in the GRACE solution is not a rigorous combination with a proper error propagation.

3.3.5 Strategies to improve the low-degree Stokes coefficients

The low-degree Stokes coefficients can be estimated accurately by a) combining multiple SLR-tracked satellites
ond/or by b) rigorously combine SLR and GRACE measurements.

a) Combination of multiple SLR-tracked satellites

In order to validate the commonly used Center for Space Research (CSR) time series, a CSR-comparable time
series is presented and evaluated in detail in P-III. Thereby, a special focus was on the detailed description of how
the time series has been computed in order to simplify the interpretation of results for users. The main results of
P-III are:

- Reliable second-degree Stokes coefficients have been achieved by combining observations of up to 10
different satellites. Thereby, the correlations of the Stokes coefficients themselves and of the Stokes coef-
ficients and the orbital parameters are significantly reduced.

- Various satellite constellations have been compared w.r.t. their ability to decorrelate Ω̇ and C20. Whereas
both LAGEOS satellites, Ajisai, Stella, Starlette and LARES significantly contribute to a decorrelation,
the impact of the Etalon satellites, BLITS and Larets nearly vanishes.

- The formal errors of the monthly DGFI Stokes coefficients are about four times smaller than the CSR
RL04 and RL05 coefficients. This fact is caused by the different orbit modeling and the higher number
of observations (due to a higher number of observed satellites) than in the CSR solution. In contrast to
the monthly arc of the CSR solution, the DGFI solution contains four weekly arcs stacked to a monthly
solution. Therefore, the number of parameters in the DGFI solution is much higher than in the CSR
solution.

- The coefficients obtained show a much smaller variation in the standard deviation since the variation of
the global network geometry is reduced by the inclusion of more than five satellites.

The external accuracy is validated by comparing the C21-/S21-derived mass-related equatorial excitation functions
χmass

1,2 of polar motion among themselves and w.r.t. external geophysical model combinations. A more detailed
evaluation of the monthly DGFI C21 and S21 coefficients is published in P-D. This study presents a procedure to
separate geophysical excitation mechanisms of Earth rotation. Thereby, the C21 and S21 time series of CSR and
DGFI are compared on the basis of relative weighting factors in the adjustment process. The obtained relative
weights for the CSR solution are smaller than those for the DGFI solution.

A geophysical application is also given in P-III. Since the fact, that Antarctic ice mass change estimates are
dominated by the used time-varying C20 estimates, P-III studies the quantity of C20-induced ice mass changes
in Antarctica. Thereby, differences of 12.3 Gt per year are found in the long-term trends between the GRACE
solutions with C20 from DGFI and CSR, respectively. This is about 13 % of the total ice mass loss in Antarctica
(Shepherd et al., 2012).

In P-V, the sensitivity of different SLR-only satellite constellations w.r.t. the Stokes coefficients up to degree and
order 20 is investigated. Therefore, a monthly gravitational field up to degree and order 20 has been computed
for January 2007. If only LAGEOS 1 and 2 are combined, the NEQ matrix is singular and constraints have to
be added. If 8 satellites are combined, the sensitivity is increased, no additional constraints are necessary and
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reliable estimates can be obtained for all Stokes coefficients. Nevertheless, in this solution, the zonal Stokes
coefficients between order 10 and 18 have a higher standard deviation than the other Stokes coefficients. The
small standard deviations of the zonal coefficients between order 18 and 20 are explained by the fact, that the
higher degree and order Stokes coefficients are fixed to its a priori values and therefore, they implicitly constrain
these coefficients.

b) Rigorous combination of SLR and GRACE

In P-C, it is shown that the low even degree Stokes coefficients of SLR are correlated. These correlations are
neglected, if the C20 values are simply replaced in the GRACE solutions. The results of P-C show that the
rigorous combination of the NEQs of SLR and GRACE leads to a NEQ with smaller standard deviations of
nearly all Stokes coefficients in the NEQ. Furthermore, the correlations in the rigorously combination NEQ are
decreased.

3.4 Integrated estimation of TRF, EOP and Stokes coefficients

As one of the main goals of GGOS, the integrated estimation of TRF, EOP and Stokes coefficients is investigated
in this thesis. In the previous three sections, each of the parameter groups was discussed and potential improve-
ments have been revealed. This section now focuses on their integrated estimation which involves the need for
separating parameters which are highly correlated (see Figure 3.5). Since SLR is a suitable observation technique
which is able to provide contributions to all three “pillars” of GGOS with very high accuracy, this technique al-
lows to study the interactions of the different parameter groups shown in Figure 3.5. Hence, SLR might serve
as a case study for the realization of GGOS. In this thesis, a point of special interest is the performance of the
multi-satellite SLR solution.

EOPs (terrestrial pole 

coordinates, UT1-UTC)

(zonal) Stokes

coefficients (GFCs)

orbit parameters 

(satellite-dependent)

Figure 3.5: Interactions between the three “pillars” of GGOS and the satellite orbits (according to Figure 1 of P-V).

3.4.1 Limitations of the integrated estimation

Below, some critical aspects and existing interactions concerning the integrated estimation of TRF, EOP and
Stokes coefficients are summarized. Furthermore, the link to the publications incorporated in this thesis is shown.

a) Correlation of orbit parameters and EOP

The rotation of the orbital plane of a satellite is equal to a rotation of the Earth around its z-axis, the “motion”
of the stations projected to the equatorial plane, which is described by UT1-UTC and ∆LOD. The relationship
between both parameter groups is given in Equation (3.13). The magnitude and direction of the rotation of the
orbital plane depends on its inclination. If orbital planes with different inclinations are combined, the different
orbital plane rotations can be distinguished from the common Earth rotation. Detailed studies on this topic can
be found in Section 3.2.4, P-II and P-V.

Besides the ability of satellite techniques to determine LOD, they are also able to determine other rates of Earth
orientation angles such as nutation rates ∆ǫ̇ and ∆ψ̇ in obliquity and longitude. This fact was discussed by
Rothacher et al. (1999) for the first time. They stated that offsets in (UT1 − UTC), ∆ǫ and ∆ψ can be fully
absorbed by rotations around Ω, i and u0. However, their rates can be determined.
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b) Correlation of orbit parameters and (zonal) Stokes coefficients

The correlation of orbit parameters and (zonal) Stokes coefficients is described by the Gaussian perturbation
equations of first order (see, e.g., Kaula, 1966; Beutler, 2005a;b). The total differential of these equations is used
in P-II in order to compute the secular rates of Ω, ω and M which are caused by offsets in the Stokes coefficient
C20. For the other three Keplerian elements a, e and i, no secular rates are caused. The perturbation equations of
Ω and ω for higher degrees (Cn0 with n = 3, . . . ,10) can be found in Iorio (2002).

c) Correlation of EOP and (zonal) Stokes coefficients

Due to the two interactions described above, there is also an indirect relationship between the measured Earth
rotation and an offset in the estimated C20 coefficient. In P-II, the correlations of the Keplerian elements, C20 and
the daily estimated LOD values are studied and shown in the cases (a), (b) and (c) of Figure 4.

The Stokes coefficients C21 and S21 describe the offset of the principal axis of maximum inertia w.r.t. the mean
rotation axis of the Earth. In contrast to this, the terrestrial pole coordinates xp and yp describe the offset of the
realized ITRS z-axis w.r.t. the mean Earth rotation axis. If the orientation of the ITRS realization changes, the
Stokes coefficients must compensate this rotation since they are determined in the ITRS realization. Due to this
interaction, the Stokes coefficients C21, S21 and the pole coordinates xp , yp are correlated (see case (e) in Figure
4 of P-II).

d) Correlation of EOP and TRF orientation

The terrestrial pole coordinates describe the motion of the CIP in the ITRS. Complementary to this rotation, the
non-equatorial orientation of the TRF is also described through rotations around the x- and y-axis. If the station
network of the geocentric NNR condition contains systematic variations or outliers, the TRF x-/y-orientation is
biased. This bias is forced into the terrestrial pole coordinates (P-I).

e) Correlation of TRF datum and Stokes coefficients

The relationship between the TRF datum and the Stokes coefficients can be explained by the correlations sum-
marized in the cases (c) and (d). As explained in Section 3.3.2, the degree-zero and degree-one coefficients
correspond to the scale and the origin of the TRF, respectively. The coefficients C22 and S22 are related to the
orientation of the conventional TRF w.r.t. the equatorial principal axes of inertia. It has to be mentioned here
again that according to the IAG Resolution 16 (1983), the Stokes coefficients should be related to the “zero-tide”
system and the TRF coordinates to the “mean-tide” system. In contrast to this definition, the ITRF is related
nowadays to the “conventional tide-free” system (Petit and Luzum, 2010). However, this inconsistency can be
corrected using Equation (3.4).

3.4.2 Strategies to improve/stabilize the integrated estimation

In this thesis, two possibilities are discussed which lead to a stabilized integrated estimation of station coordi-
nates, EOP and Stokes coefficients. Within both approaches, the special role of SLR is addressed.

a) Epoch Reference Frames (ERFs)

In P-I, the weekly ERFs are derived from a combination of the geodetic space techniques GNSS, SLR and VLBI.
The combination allows to use the strengths of each technique in order to remove singularities and to decorrelate
parameters. A selected network of dense and homogeneously distributed GNSS stations is used for the realization
of the orientation of the combined ERFs. In addition, this network allows to decorrelate common translations
and rotations and to decrease the impact of the variable SLR origin on the orientation. This means, that the
EOP as complementary parameters to the TRF orientation and the station coordinates are decorrelated (case
(d) of Section 3.4.1). The scale of the ERFs is obtained from a combination of SLR and VLBI and therefore,
technique-specific systematics are reduced. If the combination interval is extended (e.g., to four weeks), the
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density of the station networks and hence the datum stability are increased (P-IV). In addition, the number of
co-locations and LT is increased and allows a better connection of the technique-dependent station coordinates.

Since VLBI is the only technique to determine the full set of EOP, it is used in the ERF computation to remove
the singularity of the UT1-UTC polygon of the satellite techniques.

b) SLR multi-satellite solution

The multi-satellite SLR solution can be used to significantly stabilize the SLR-only solution. If observations to
satellites with different inclinations are combined (two perpendicular orbital planes with inclinations smaller and
larger than 90 degree would allow a perfect decorrelation), various parameter groups decorrelate (case (a), (b)
and (c) of Section 3.4.1). In P-II, the significant decrease of the correlation between LOD and C20 due to the
combination of LAGEOS 1 and 2 is shown. P-III presents second-degree Stokes coefficients which are obtained
from a ten-satellite SLR solution. The sensitivity of this solution for C2m and S2m is so high that it contributes
to decorrelate the TRF and the Stokes coefficients (case (e) of Section 3.4.1). Furthermore, this solution can be
used to study the possibilities to physically orientate the TRF (Section 3.3.2). Finally, P-V discusses a multi-
satellite SLR solution, where satellite orbits, station coordinates, EOP and second-degree Stokes coefficients are
estimated in one common adjustment. If up to ten satellites are used, all parameters can be determined more
accurately.
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4 Summary and Outlook

Summary

The integration of multiple sensor systems into one consistent Global Geodetic Observing System (GGOS) re-
quires the understanding of the interactions and correlations of the different fundamental geodetic parameters.
The rigorous combination of the diverse observations into one observing system has become an important re-
search topic in the geodetic community due to current accuracy requirements. Nowadays, geodesy is faced to
monitor the effects of global change and to provide reliable observations and interpretations for other scientific
disciplines.

This thesis provides an extensive investigation on how the geodetic space technique SLR can contribute to the
realization of GGOS. Going into details, the key role of SLR for the estimation of station coordinates, EOP and
Stokes coefficients is studied. SLR is the unique geodetic space technique to provide the ability to study and
quantify the correlations of the above mentioned parameters with high accuracy. In the first part, the mathe-
matical foundations are presented in detail. The combination methodology is compared at the three levels of
the Gauß-Markov model, namely the observation equation, NEQ and solution level, and the pros and cons of
each level are described. In the second part, the theoretical and computational foundations of the state-of-the-art
realizations of TRF, EOP and Stokes coefficients are worked out and their correlations are discussed. In addition
to the interactions of fundamental geodetic parameters, the interactions of the satellite orbit with each parameter
group are addressed. The contribution of SLR to GGOS is evaluated using two different approaches: (i) by
combining SLR with the geodetic space techniques GNSS and VLBI (inter-technique combination) and (ii) by
combining observations to multiple SLR-tracked satellites (intra-technique combination). The specific investi-
gations documented in the first-author publications P-I to P-V are integrated as strategies for the improvement
and stabilization of the fundamental geodetic parameters.

For the first time, the strategy to compute combined Epoch Reference Frames (ERFs) is documented in detail
in this thesis and in P-I. In this new development, the station coordinates are estimated frequently (e.g., weekly)
in contrast to the conventional linear station motion model realized in multi-year reference frames (MRFs). By
studying the combined ERFs and the differences to a combined MRF, the following results have been achieved:

- The geodetic datum of the ERFs and the MRF is realized in such a way that the origin is derived from SLR
only, whereas the scale is a weighted mean scale of SLR and VLBI. The orientation is realized through an
NNR condition applied on a subnet of selected GNSS stations.

- Since the ERFs allow to approximate non-linear station motions with high accuracy, they provide instanta-
neous geocentric (CM-related) station positions. In the conventional MRF, the station position refers only
to a CM in a mean sense. This fact makes the ERFs a valuable tool to evaluate geophysical models.

- The geodetic datum of the ERFs is unstable. Due to the sparse weekly SLR station network, the common
translations of all stations are correlated with the orientation of the ERFs. This correlation can be reduced,
if SLR is combined with, e.g., GNSS which provides a very dense and homogeneously distributed global
station network. Another effect of the sparse weekly station networks are the reduced number of LT
available for the combination. This fact additionally causes instabilities of the geodetic ERF datum. In
the MRF solutions, the networks are more dense and consequently the integration of the different space
techniques and the datum definition is more stable.

- To increase the ERF datum stability, one possibility is to enlarge the computation interval (P-IV). If, e.g.,
a four-weekly interval is used, the datum stability increases but the ability to monitor short-term station
motions decreases. Hence, the optimal combination interval depends on the application of the ERFs.

- In order to improve the datum stability without enlarging the computation interval, the number of SLR-
tracked satellites can also be increased. The study published in P-V quantifies the effect of including up to
six more satellites in addition to the standard ILRS TRF-determination satellite system (usually LAGEOS
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1/2 and Etalon 1/2 are considered). The study shows that with a ten satellite solution, the stability of the
origin (especially in the z-direction) can be increased by about 30 %. The station repeatability can be
improved in the horizontal components by about 35 %.

- Besides the datum stability, the frequent computation of ERFs also reduces the latency of global inter-
technique TRFs after large earthquakes since the conventional MRF is updated usually every three to five
years. The latency of ERF solutions only depends on the availability of observations after an earthquake.

In summary, the computation of ERFs is a valuable strategy to account for non-linear station motions. Its main
limitation is the unstable geodetic datum. However, due to the characteristics mentioned above, the ERFs provide
an important supplement to conventional MRFs.

In addition to the TRF computation, SLR can also contribute to improve the realization of the EOP. The investi-
gations of this thesis address the impact of non-linear station motions on the terrestrial pole coordinates and the
systematic spurious effects in satellite-technique derived LOD values.

- Due to the correlation of common translations and rotations (network orientations), the neglected com-
mon non-linear station motions of the MRF systematically affect the commonly estimated terrestrial pole
coordinates (complementary parameters to the network orientation). In the ERFs, this effect is reduced
since they account for non-linear station motions. In P-I, the common translations are quantified and their
effect on the terrestrial pole coordinates is shown by comparing the differences of the combined MRF and
ERFs. The differences show systematic annual variations with amplitudes of up to 39.8 µas. Due to the
use of identical input models for both TRF approaches, only the non-linear station motions can cause these
systematics.

- In P-II, the interactions between the Earth’s gravitational field and the orbital precession of a satellite are
studied theoretically and numerical examples are presented. It is shown, that LOD is highly correlated with
C20 if only one satellite is used. This correlation is caused by the fact that the Earth’s flattening (described
by the even low degree Stokes coefficients) forces the orbital plane of a satellite into a precession in the
equatorial plane. Consequently, this motion cannot be separated from the Earth’s rotation. Hence, if LOD
and C20 are estimated together using only one satellite, no reliable results can be obtained. Furthermore,
the satellite orbit is secularly affected by, e.g., relativistic effects such as Lense-Thirring and deSitter and
estimated once-per-revolution empirical accelerations in cross-track direction.

- If the orbit modeling is done correctly and if observations to satellites with different inclinations (LA-
GEOS1/2 in P-II) are combined, the parameters decorrelate. Hence, the combined adjustment of EOP and
Stokes coefficients can be realized and reliable results can be obtained.

- To further improve the estimates of LOD and C20, P-III study various SLR-tracked satellite constellations
in order to quantify the impact of each satellite on the decorrelation of Ω̇ and C20. In a ten-satellite solution,
only LAGEOS 1, 2, Ajisai, Stella, Starlette and LARES contribute significantly to this decorrelation.
The other four satellites, namely Etalon 1, 2, BLITS and Larets do not contribute significantly. P-V
investigates the usage of the multi-satellite SLR solution for the integrated estimation of TRF, EOP and
Stokes coefficients. The scatter of the terrestrial pole coordinates could be decreased by up to 67 % w.r.t. a
single-satellite solution. The systematic offsets of LOD w.r.t. the IERS08C04 time series are reduced by
about 10 times compared to a LAGEOS 1/2 solution. The results of P-II, P-III and P-V show that the
SLR multi-satellite solution allows to obtain reliable estimations of station coordinates, EOPs and Stokes
coefficients in one common adjustment.

The major findings of the EOP part of this thesis are the understanding of the interaction of non-linear station mo-
tions and terrestrial pole coordinates and the understanding of the LOD correlations with the Earth’s gravitational
field.

For the Stokes coefficients, the following improvements could be achieved:

- If up to ten satellites are combined (P-III), the estimation of orbital elements, EOP and Stokes coefficients
can be done very accurately. Furthermore, the inclusion of LEOs increases the sensitivity of the SLR
solution on higher degree Stokes coefficients. All this leads to the ability to frequently estimate low degree
Stokes coefficients over a long time span (in P-III about 13 years) with very high accuracy.

- In comparison with the Stokes coefficient time series provided by CSR, the variation of the time series of
formal errors is significantly decreased since the observation geometry improves with incorporating more
satellites into the solution.
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- In comparison with geophysical models on the basis of equatorial excitation functions of polar motion,
the ten-satellite solution performs equal to the CSR time series in the χ2 component. In contrast to this,
the χ1 values derived from the ten-satellite solution agree better in amplitude and phase to three of four
geophysical models.

- The second-degree Stokes coefficients provide a valuable basis for the long-term monitoring of effects of
global change. As an example, P-III quantifies the impact of two different C20 time series (ten-satellite
solution and CSR solution) on the Antarctic ice mass loss determination. It is found that the different time
series cause a trend difference of 12.3 Gigatons per year which corresponds to about 13 % of the total ice
mass loss in Antarctica.

The results for the Stokes coefficients emphasize the potential of the multi-satellite SLR solution. Since numerous
correlations are decreased, also the TRF and EOP can be estimated together with the Stokes coefficients in one
common adjustment.

In addition to the individual discussion of the fundamental geodetic parameters, also their integrated estimation
based on a multi-satellite SLR solution is discussed (P-V). In this thesis, a special focus is on the correlations
between the different parameters. The understanding of these interactions is essential for their integrated estima-
tion. The obtained results from the case study of SLR can be transferred to other geodetic space techniques, in
particular when a combination of geodetic and gravimetric observations is done.

Outlook

Curretnly, the main limitation for the ERFs is the datum instability. To improve the geodetic datum and the
integration of the geodetic space techniques for the ERFs, different approaches are currently under investigation
at DGFI. The most important one studies the effect of different LT handling strategies on the ERFs. Until now, the
introduction and weighting of available LT is purely based on experiments performed for MRF computations.
In addition, the benefit of so-called space ties (difference vector between two satellite instruments) should be
evaluated. Furthermore, the relative weighting of the techniques can be improved by applying VCE. First results
were already published by Bloßfeld and Seitz M. (2012). Another possibility to improve the ERF datum is
to incorporate the multi-satellite SLR solution to the inter-technique combination with GNSS and VLBI. The
improvement of the geodetic datum in the SLR-only solution was clearly shown in this thesis. This strategy
is also adapted by the ILRS which plans to include observations to LARES (in addition to LAGEOS 1/2 and
Etalon 1/2 observations) in its standard TRF and EOP solution. The inclusion of LARES make it necessary to
enlarge the parameter spectrum to the low degree Stokes coefficients in the standard solution since this satellite
is very sensitive to the Earth’s gravitational field. The benefit of the inclusion of LARES for the TRF and EOP is
demonstrated in P-V.

In the case of the MRFs, the main limitation currently is the handling of non-linear station motions. The DFG
research unit Forschergruppe “Space-time reference systems for monitoring global change and for precise nav-
igation in space” (FOR 1503) focuses on two different approaches to improve global TRF solutions: (i) the
extended parametrization of the station motion in conventional MRF realizations and (ii) the refined geophysical
modeling of site dependent loading effects. Both approaches can be supported by the estimation of ERFs since
the estimated amplitudes of annual (and semi-annual) signals and the refined geophysical models have to be
validated. Therefore, the ERFs can provide combined, global and geocentric station coordinate time series.

Nowadays, there are two main limitations for global TRF computations: (i) non-unified a priori models and (ii) an
inhomogeneous and a sometimes sparse global station network in particular for VLBI and SLR. These limitations
cannot be solved by refined processing strategies. They are well addressed in the IAG/GGOS community and go
beyond the scope of this thesis. In order to overcome these shortcomings, the GGOS community installed two
bureaus which should coordinate and support the way towards a unified observing system.

The GGOS Bureau for Products and Standards8 (formerly the Bureau for Standards and Conventions; Hugen-
tobler et al., 2012; Angermann et al., 2014) shall ensure the use of common standards and conventions for all
geodetic techniques and satellite missions. The bureau is currently operated by DGFI and the Institut für As-
tronomische und Physikalische Geodäsie, Technische Universität München, Germany (IAPG) under the umbrella
of the Forschungsgruppe Satellitengeodäsie (FGS).

8http://bsc-ggos.dgfi.badw.de/en., (2014-08-12)

http://bsc-ggos.dgfi.badw.de/en.
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The second GGOS Bureau for Networks and Observations9) (formerly the Bureau for Networks and Commu-
nications) primarily focuses on the improvement of the global ground network of tracking stations of the four
geodetic space techniques GNSS, SLR, VLBI and DORIS. Different countries and organizations realize strate-
gies to achieve the GGOS goals of 1 mm accuracy and 0.1 mm/y stability for all parameters (Gross et al., 2009).
Examples are the VLBI2010 project10 of the IVS or the “Space Geodesy Project”11 of the National Aeronautics
and Space Administration (NASA). Both projects aim to meet the requirements of GGOS core sites (Donovan
et al., 2011).

To further support the GGOS goals, several working groups have been installed. One example is the Working
group for Performance simuLations and Architectural Trade-Offs (PLATO) in order to assess the impact of the
ground station network size, distribution and LT quality and the data quality on the TRF accuracy and datum.
Another working group called Working Group on Satellite and Space Missions should provide the framework to
incorporate new missions into GGOS.

In summary, the geodetic community proceeds on its way towards the Global Geodetic Observing System. Never-
theless, it has to be mentioned here that the potential of the integration of geometric and gravimetric observations
in order to estimate the fundamental geodetic parameters in one common adjustment is not yet fully exploited.
The findings of this thesis can be seen as a case study using SLR to identify the parameter interactions and might
support the combination of geometric and gravimetric observations in future.

9http://192.106.234.28/Components/BNC/BNChome.html, (2014-08-12)
10http://ivscc.gsfc.nasa.gov/about/wg/wg3/IVS_WG3_report_050916.pdf, (2014-08-12)
11http://space-geodesy.nasa.gov/, (2014-08-12)

http://192.106.234.28/Components/BNC/BNChome.html
http://ivscc.gsfc.nasa.gov/about/wg/wg3/IVS_WG3_report_050916.pdf
http://space-geodesy.nasa.gov/


62

5 Content of publications

This chapter provides for a short summary and a declaration of the individual contributions of the co-authors for
each of the five first-author publications. For each of the four co-author publications, also a short summary and
a declaration of the contribution of M. Bloßfeld is included in this chapter. An overview of all publications and
the contributions of M. Bloßfeld in categorized percentage is compiled in Table 5.1.

paper
idea and conceptual implementation and analysis and manuscript writing and total own

design realization discussion figure compilation contribution

first-author publications

P-I 70 % 90 % 80 % 70 % 77.5 %

P-II 90 % 80 % 70 % 90 % 82.5 %

P-III 80 % 60 % 80 % 70 % 72.5 %

P-IV 100 % 100 % 80 % 80 % 90.0 %

P-V 100 % 70 % 80 % 90 % 85.0 %

co-author publications

P-A 0 % 10 % 20 % 10 % 10.0 %

P-B 0 % 10 % 20 % 10 % 10.0 %

P-C 30 % 10 % 20 % 30 % 22.5 %

P-D 10 % 20 % 10 % 0 % 10.0 %

Table 5.1: Contributions of M. Bloßfeld to the papers P-I to P-V and P-A to P-D in categorized percentage. All given percentage are
pragmatic and rounded values. For a detailed description of the contributions of M. Blossfeld, please see the sections below.

5.1 P-I: Non-linear station motions in epoch and multi-year reference frames

Bloßfeld M., Seitz M., Angermann D. (2014) Non-linear station motions in epoch and multi-year reference
frames. In: J Geodesy 88(1), pp: 45-63, DOI: 10.1007/s00190-013-0668-6

Copyright

This publication is available at link.springer.com.

Summary of publication I

In this paper, an alternative approach to the conventional ITRS realization is introduced. For the first time, the
methodology to compute epoch-wise (weekly) estimated TRFs called Epoch Reference Frames (ERFs) from a
combination of the geodetic space techniques GNSS, SLR and VLBI is presented. The procedures to obtain
an MRF and an ERF are directly compared to each other and the differences are discussed in detail. In this
new approach, the station positions are estimated weekly and thus all non-linear station motions are sampled
frequently. Differences between the conventional (linear) approach (multi-year reference frame (MRF)) and the
new approach (ERF), mainly caused by neglected atmospheric, oceanic and hydrological site-dependent loading
effects, comprise common motions of all stations and individually performed station motions.

A major topic of this publication is the investigation of the datum stability of both TRF types. Therefore, all
computed solutions are compared to the DTRF2008 using a seven and 14-parameter similarity transformation,

http://link.springer.com/article/10.1007%2Fs00190-013-0668-6
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respectively. Whereas the (single-technique and combined) MRFs have a very stable geodetic datum (all transfor-
mation parameters and rates below a few millimeter), the datum of the ERF solutions is more unstable (variations
at the centimeter level). This fact is caused by the varying weekly ground station networks and the consequently
variable availability of LT. In the MRF, the common translations are neglected by the linear station motion model.

Due to correlations of the similarity transformation parameters, the translations are forced into the terrestrial
pole coordinates (complementary parameters to the network orientation). In contrast to the MRF, this variation
is not forced into the pole coordinates when ERFs are computed. As a consequence, the differences between
both pole coordinate time series show systematics with non-annual periods and amplitudes of up to 77.3 µas in
the SLR-only solution and systematics with an annual period and an amplitude of up to 39.8 µas in the combined
solution, respectively. The amplitudes in the SLR-only differences are larger since the combined solutions have
a more dense and more homogeneously distributed station network and consequently the correlations between
common translations and rotations are smaller. In addition to the common motions, also the individual station
motions affect other commonly adjusted parameters.

In the case of the station coordinates, there are two major findings achieved by this paper: (i) the station co-
ordinates of the MRF are geocentric coordinates only in a mean sense whereas (ii) the ERF coordinates are
instantaneous geocentric coordinates. To be able to discuss this finding, a detailed review on currently used
definitions of CM , CF and other important points is documented in the paper.

At the end of this paper, a short outlook on strategies to improve the ERF datum stability is given. One possibility
is the improvement of the global ground station network and the simultaneous improvement of the quality and
global coverage of LT. Since the availability of improved networks will take some time, other strategies have to
be considered such as the extension of the sampling interval from one week to four weeks or the incorporation
of other geodetic space techniques (e.g, DORIS).

If a stable datum and unbiased EOP can be achieved, the ERFs will be valuable for (i) the supporting of secular
ITRF realizations to ensure accurate station positions with high timeliness, (ii) monitoring non-linear station
motions (geophysical and anthropogenic phenomena), (iii) the determination of EOP since the strengths of all
techniques are used and the EOP are unbiased, (iv) geophysicists who need coordinate time series in aCM frame
to interpret geophysical phenomena and validate their models.

Declaration of individual contribution

The idea of computing ERFs is already documented in the thesis of M. Seitz (Seitz M., 2009). The develop-
ment of the computation strategy as well as the development of the software package which uses the DOGS-CS
routines was done by M. Bloßfeld. The reprocessing of the complete SLR input data and the processing of the
various MRF and ERF solutions was also done by M. Bloßfeld. The reprocessing of the GNSS input data was
done by P. Steigenberger in the framework of the GGOS-D project. In the same project, the VLBI data was com-
puted by S. Böckmann. The conception of the paper, the creation of figures and the writing of the first manuscript
version was done by M. Bloßfeld. The co-authors contribute to the publication through various discussions of
the results and very constructive iterations of the manuscript. Finally, the three anonymous reviewers and the
associated editor (J. Freymueller) improved the publication through comments on content and linguistic issues.

5.2 P-II: Systematic effects in LOD from SLR observations

Bloßfeld M., Gerstl M., Hugentobler U., Angermann D., Müller H. (2014) Systematic effects in LOD from SLR
observations. In: Adv Space Res 54, pp: 1049–1063, DOI: 10.1016/j.asr.2014.06.009

Copyright

This publication is available at journals.elsevier.com.

Summary of publication II

In this paper, the reasons for the spurious systematic effects in SLR-derived Length Of Day (LOD) values are
investigated. The theoretical relationship between the orbital elements, EOP and second-degree Stokes coef-
ficients is worked out using first-order Gaussian perturbation equations. It is shown that the flattening of the

http://dx.doi.org/10.1016/j.asr.2014.06.009
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Earth, described by even low-degree Stokes coefficients, forces the orbital plane of a satellite into a precession
motion in the equatorial plane. This motion cannot be separated from the Earth’s rotation which is described by
LOD. Therefore, C20 and LOD are highly correlated. Besides this correlation, also the orbit modeling causes a
secular effect in LOD. If the relativistic accelerations due to the Lense-Thirring and deSitter effect are neglected,
a constant offset in LOD is caused. Furthermore, the estimation of empirical once-per-revolution accelerations in
cross-track direction, originally introduced to absorb non-modeled effects in the orbit, can cause secular effects
in the satellite’s nodal precession and consequently in LOD.

In order to quantify the different effects in LOD, different test cases w.r.t. altitude, inclination, a priori values
of C20 and a priori empirical accelerations have been evaluated. Secular rotations of up to 1.0 ms for an error
of 8.0 · 10−10 in the a priori C20 model are caused for satellites at 500 km altitude and zero-degree inclina-
tion (maximum effect). Periodic empirical accelerations estimated perpendicular to the orbital plane (sine-term
s(W ′) constrained) cause only very small secular rotations. This impact increases if the accelerations are not
constrained. If relativistic accelerations of near-Earth satellites are neglected, secular rotations of 0.0088 ms are
caused for satellites at LAGEOS altitude. One way to reduce the high correlations is to combine observations to
different satellites with different inclinations.

The theoretical effects, derived in the first part of this paper, have been verified in the second part. For quantifica-
tion, several test computations have been computed using in total 31 years of SLR data of the satellites LAGEOS
1 and 2 between 1983.0 and 2014.0. The first four solutions contain four different a priori gravity field models
(GGM02S, GGM02C, EIGEN-6S, EIGEN-6C2). Especially when only LAGEOS 1 is available (1983.0 until
1993.0), systematics such as periodical variations or long-term drifts of up to 0.02 ms can be found in the ∆LOD
values. These systematics are the reason for the exclusion of the SLR ∆LOD in the DTRF2008 computation
(P-A). A possibility to reduce the systematics would be to combine LAGEOS 1 and Starlette observations (also
available since 1982.0). Thereby, the modeling of the atmospheric drag is problematic due to the lack of accurate
high atmosphere models (altitude of Starlette is about 957 km) in the early years. The investigations of this
paper point out very clearly that it is important to use the same a priori gravity field model to compute the SLR
∆LOD values. For the ITRF2013 reprocessing, the ILRS requests its ACs to use one common model for the
reprocessing.

Another topic, addressed in this paper, is the combined estimation of different parameter groups. To test the
parameter correlations, we computed two more test solutions. In one solution, the gravity field coefficients of
degree and order two are estimated. The correlations of ∆LOD and Ω cause large errors in the ∆LOD values (no
reliable results) derived solely from LAGEOS 1 observations. If the observations to both LAGEOS satellites are
combined, the spurious signals in ∆LOD are reduced. The major part of the ∆LOD errors can be explained with
the nodal precession due to an offset in C20. Changes in a, e and i which could also affect Ω̇, ω̇ and Ṁ , are not
considered here since only Gaussian perturbation equations of first order are used. The secular precession of ω
and M is compensated through variations in the semi-major axis a, which induce changes in the mean angular
velocity n of the satellite. In addition, the along-track motion might be compensated by estimated along-track
empirical accelerations. If the s(W ′) once-per-revolution acceleration is estimated, the single-satellite solution
only slightly improves. If the cross-track accelerations are not constrained, the effects in ∆LOD and C20 are
much larger.

The last section of this paper deals with the secular effect of the relativistic accelerations due to the Lense-

Thirring and deSitter effect in ∆LOD. Whereas the total effect due to these accelerations in ∆LOD is 0.0088 ms,
the effect of the partial derivatives is very small (δ(∆LOD) < 1.3 µs after the first iteration).

Declaration of individual contribution

The idea of investigating the reasons for the spurious systematic signals in SLR derived LOD values was of
M. Bloßfeld (as a consequence of P-I). Furthermore, M. Bloßfeld suggested to analyze the impact of relativistic
accelerations on the LOD values. The implementation of the relativistic accelerations in DOGS-OC was done
by M. Bloßfeld with help of M. Gerstl. U. Hugentobler derived the formula for the secular effect of the once-
per-revolution cross-track acceleration and supported significantly the understanding of the compensation of the
secular precession of ω and M through variations in the semi-major axis a. The conception of the paper, the
creation of figures and the writing of the first manuscript version was done by M. Bloßfeld. H. Müller and
D. Angermann helped to improve the SLR-related content. Furthermore, the three anonymous reviewers and the
associated editor improved the publication through comments on content and linguistic issues.
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5.3 P-III: Second-degree Stokes coefficients from multi-satellite SLR

Bloßfeld M., Müller H., Gerstl M., Štefka V., Bouman J., Göttl F., Horwath M. (2015) Second-degree Stokes
coefficients from multi-satellite SLR. In: J Geodesy 89(9), pp: 857–871, DOI: 10.1007/s00190-015-0819-z

Copyright

This publication is available at springer.link.com.

Summary of publication III

This paper presents reliable weekly and monthly estimates of the second-degree Stokes coefficients of the Earth’s
gravitational field. They are derived from the iterative VCE-based combination of NEQs of up to ten satellites
(equipped with RRA) with different orbit characteristics between 2000.0 and 2014.0. The diversity of orbit
altitudes, inclinations, cross-section-to-mass ratios and orbital resonances with the Earth’s gravitational field
allows to decorrelate the second-degree Stokes coefficients and the orbital parameters. Since the correlation
of C20 and the right ascension of the ascending node Ω is the largest one, various satellite constellations are
tested to what extend each satellites contributes to the decorrelation. A significant contribution has been found
for LAGEOS 1 and 2, Ajisai, Stella, Starlette and LARES. No significant contribution on the decorrelation
has been found for Etalon 1 and 2, BLITS and Larets. The solution setup and the computation procedure are
presented in detail in order to give the user of this publicly available time series the opportunity to obtain reliable
interpretations of their final results.

In order to validate the solutions, the internal precision is assessed by comparing the obtained formal errors in
terms of second-degree geoid errors. The formal errors of the monthly DGFI multi-satellite solutions are about
four times smaller than the CSR ReLease04 (RL04) or RL05 errors. This fact is caused by the different orbit
modeling and the higher number of observations in the DGFI solution than in the CSR solution. Whereas the CSR
computes monthly arcs, the DGFI monthly solution comprises four weekly arcs that are stacked to one monthly
arc. This means that four initial sets of orbit elements remain in the DGFI monthly NEQ. Nevertheless, the DGFI
second-degree geoid errors show a much smaller variation in the standard deviations than the CSR errors. This
fact is caused by the stabler long-term observation geometry since the variation in the global network coverage
is reduced due to the incorporation of up to ten satellites. The obtained monthly DGFI time series of second-
degree Stokes coefficients has nearly constantly the same formal errors which allows a better comparison of the
obtained coefficients at different epochs. Therefore, time-variable geophysical phenomena might be interpreted
more reliable.

The external accuracy is validated by comparing the mass-related equatorial excitation functions χmass
1,2 (derived

from the different C21, S21) among themselves and with respect to external geophysical model combinations and
reduced geodetic excitation functions. Thereby, large differences in amplitudes and phases between the different
solutions can be seen. For χmass

1 , the DGFI monthly solution fits better to three of four model combinations
than the CSR time series. The highest agreement is achieved between the DGFI solution and the NEGmass

model combination, where the mass-related excitation function is derived from a combination of the atmospheric
(NCEP), the oceanic (ECCO) and the hydrological (GLDAS) model. For χmass

2 , the annual amplitudes and
phases of the DGFI, both CSR and the CSR GRACE solution show only small differences (∆ < 10 %).

In addition to the internal and external validation, a geophysical application of the derived Stokes coefficients is
presented. Since C20 dominates the estimation of the Antarctic ice mass loss, C20-induced ice mass changes in
Antarctica, estimated from different C20 time series, are compared. If the long-term trends (2003.0 until 2013.0)
of the GRACE solutions (C20 replaced using CSR RL05 and monthly DGFI values) are compared, a difference of
about 12.3 Gt/y is found. This difference has a magnitude of about 13 % of the total ice mass loss in Antarctica.

The results presented in this paper emphasize the importance of accurately determined second-degree Stokes
coefficients. The presented SLR solution allows a validation of results obtained with the CSR RL05 SLR time
series. Comparing at least two independent SLR solutions provides the ability to assess their impact on geophys-
ical investigations.

http://link.springer.com/article/10.1007%2Fs00190-015-0819-z
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Declaration of individual contribution

The idea for the computation of a multi-satellite solution was of M. Bloßfeld and V. Štefka. The reprocessing
of the various satellites and their combination using VCE was done by M. Bloßfeld and supported by H. Müller.
The software developments, necessary for the processing of the LEOs was developed primarily by V. Štefka and
implemented in DOGS-OC by M. Bloßfeld and M. Gerstl. The VCE algorithm was implemented in an external
routine by M. Bloßfeld. The geophysical application of the Stokes coefficients (Antarctic ice mass trends) was
based on the idea of J. Bouman. F. Göttl helped to validate the obtained Stokes coefficients and the CSR time
series through equatorial excitation functions. M. Horwath provided the GRACE solution. The conception of
the paper, the creation of figures and the writing of the first manuscript version was done by M. Bloßfeld. The
co-authors helped to improve the manuscript through comments on content and linguistic issues.

5.4 P-IV: Epoch reference frames as short-term realizations of the ITRS

Bloßfeld M., Seitz M., Angermann D. (2015) Epoch reference frames as short-term realizations of the ITRS. In:
IAG Symposia Series 143, online first, DOI: 10.1007/1345_2015_91

Copyright

This publication is available at rd.springer.com.

Summary of publication IV

This paper studies the effect of an enlarged sampling interval for the ERFs on the geodetic datum of the obtained
TRFs and on their ability to monitor non-linear station motions. Therefore, the sampling interval is varied from
one to four weeks. To evaluate the datum stability, the obtained ERF time series are transformed on a combined
MRF using a common subnet of GNSS stations. In order to obtain interpretable results, all TRF solutions are
based on identical input models and data.

The longer the sampling interval is, the more stable is the geodetic datum. The scatter of the four-weekly
transformation parameter time series is reduced by up to 50 % compared to the weekly time series. However, the
annual variations in the parameter time series are not damped. The increase of the ERF datum can be explained
with the larger number of LT in the longer sampling intervals and the more stable ground station network.

The trade-off for the higher datum stability is the decreased ability to monitor short-term non-linear station mo-
tions. Signals with periods below twice the sampling interval cannot be sampled correctly. As an example, the
paper presents a time series of Yakutsk (Russia) and discusses the ability of the different ERF solutions to ap-
proximate a spurious signal between 2005.6 and 2006.1 (maybe due to snow coverage). The best approximation
can be achieved with the 7- and 14-day ERFs where the 14-day ERFs already cause an error of about 10 mm in
the east and height component. The error increases to 20 mm for the 28-day ERFs.

At the end of this paper, the properties of the MRF and the different ERFs are summarized. The major finding
of the paper is that the optimal sampling interval of the ERFs depends on their application. Whereas the 28-
day ERFs are suitable to monitor annual variations or post-seismic deformations, the main application for the
7- and 14-day ERFs would be to monitor abrupt changes or short-term local environmental effects. The main
application of the MRFs are the monitoring of long-term changes, sea level rise or plate tectonics.

Declaration of individual contribution

The idea of enlarging the sampling interval was of M. Bloßfeld. The used data was equal to the data used for
paper P-I. The conception of the paper, the creation of figures and the writing of the first manuscript version was
done by M. Bloßfeld. The co-authors M. Seitz and D. Angermann helped to improve the manuscript through
discussions of the results and proof reading. Finally, the three reviewers and the editor improved the paper with
their corrections about content and linguistic issues.
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5.5 P-V: Satellite Laser Ranging – A tool to realize GGOS?

Bloßfeld M., Štefka V., Müller H., Gerstl M. (2015) Satellite Laser Ranging – A tool to realize GGOS? In: IAG
Symposia Series 143, online first, DOI: 10.1007/1345_2015_202

Copyright

This publication is available at rd.springer.com.

Summary of publication V

This paper focuses on the intra-technique combination of SLR satellites with different orbit altitudes, inclina-
tions, and satellite characteristics. It discusses the ability of SLR to contribute to GGOS by estimating station
coordinates, EOP and Stokes coefficients of degree two to twenty in one common adjustment. The satellites are
relatively weighted using VCE. In total, three different solution types are computed: (i) estimating only station
coordinates, (ii) estimating station coordinates and EOP and (iii) estimating station coordinates, EOP and Stokes
coefficients.

In a first step, the different obtained relative weights of the satellites w.r.t. the estimated parameters are discussed.
Whereas the relative weights for LAGEOS 1/2 and Etalon 1/2 nearly do not change, the relative weights of the
LEOs increase significantly when Stokes coefficients are estimated. This fact can be explained with the high
sensitivity of the LEOs on the Earth’s gravitational field. Furthermore there exist large differences between the
LEO weights which are caused by orbit and/or satellite characteristics.

The major part of this paper studies the different parameters obtained from a common adjustment. Therefore,
three different solution types are computed: (i) only observations to LAGEOS 1/2 are considered, (ii) observa-
tions to LAGEOS 1/2 and LARES are considered (this solution setup is tested since the ILRS plans to include
LARES in its official product computation) and (iii) the observations to up to ten satellites are considered. In the
following, the results are summarized:

- The stability of the geodetic datum can be improved by including more satellites into the solution. Espe-
cially the Root Mean Square (RMS) of the z-translation is reduced when up to ten satellites are considered
(reduction of about 30 %). The station repeatability is also improved. When ten satellites are used, the
horizontal WRMS is reduced by about 35 %. The scatter of the height component only slightly improves
since the observation geometry does not change significantly (only satellites in the hemisphere above the
station are observed).

- As it was the case for the station coordinates, also the EOP are improved significantly when more satellites
are considered. The systematics in the LOD values nearly totally disappear and the scatter of the terrestrial
pole coordinates w.r.t. the IERS08C04 time series is reduced by about 67 % in comparison to a single-
satellite solution.

- The Stokes coefficients with degree two to twenty are significantly decorrelated and their standard de-
viations are decreased. If the standard deviations of the two satellite solution (only LAGEOS 1/2) are
compared to the standard deviations of the ten satellite solution, an improvement of especially the de-
grees greater than five can be seen. This fact is caused by the incorporation of LEOs in the multi-satellite
solution.

In summary, several advantages of a multi-satellite SLR solution are found. Due to the mix of various orbit
and satellite characteristics, the obtained multi-satellite solutions provide reliable estimates of the parameters
associated to the three pillars of GGOS, the station coordinates, EOP and Stokes coefficients.
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The idea for using a multi-satellite SLR solution to estimate station coordinates, EOP and Stokes coefficients in
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The conception of the paper, the creation of figures and the writing of the first manuscript version was done by
M. Bloßfeld. The co-authors helped to improve the manuscript through comments on content and linguistic is-
sues. Furthermore, the three anonymous reviewers and the editor improved the manuscript with their corrections
about content and linguistic issues.

5.6 Co-author publications

In the following, the four co-author publications are briefly described. Since they are not directly part of this
thesis, they are not attached to this thesis.

5.6.1 P-A: The 2008 DGFI Realization of the ITRS: DTRF2008

Seitz M., Angermann D., Bloßfeld M., Drewes H., Gerstl M. (2012) The 2008 DGFI Realization of the ITRS:
DTRF2008. In: J Geodesy 86(12), pp: 1097–1123, DOI: 10.1007/s00190-012-0567-2

Copyright

This publication is available at link.springer.com.

Summary of publication A and declaration of own contribution

This publication presents in detail the methodology for the inter-technique combination at NEQ level applied at
DGFI which is one of the ITRS CCs. The derived algorithm is used in order to compute a realization of the ITRS
using input data of the IAG Services IGS, ILRS, IVS and IDS. The computed global TRF is named DTRF2008.
The obtained station coordinates are compared with the second (official) realization of the ITRS, the ITRF2008.
In addition, the commonly estimated EOP are compared with the IERS 08 C04 time series.

The processing of the ILRS input data, including the time series analysis, introduction of discontinuities and
the accumulation of NEQs was done by M. Bloßfeld. In addition, several analysis done by M. Bloßfeld helped
to validate the DTRF2008 solution. Finally, M. Bloßfeld helped to improve the paper through comments and
corrections on content and linguistic issues.

5.6.2 P-B: Reducing the draconitic errors in GNSS geodetic products

Rodriguez-Solano C. J., Hugentobler U., Steigenberger P., Bloßfeld M., Fritsche M. (2014) Reducing the dra-
conitic errors in GNSS geodetic products. In: J Geodesy, 88(6), pp 559–574, DOI: 10.1007/s00190-014-0704-1

Copyright

This publication is available at springer.link.com.

Summary of publication B and declaration of own contribution

This publication investigates the impact of orbit modeling deficiencies due to solar radiation pressure on GNSS-
derived geodetic products such as station coordinates and EOP. The paper shows that using the adjustable box-
wing model derived by Rodriguez-Solano et al. (2012) clearly improves the GNSS orbit during non-eclipse
seasons. In addition, different non-nominal yaw attitude models are tested and the GNSS orbit could be further
improved during eclipse seasons. These improvements result in a nearly completely decreased draconitic error
in the geocenter Z-component. The draconitic errors in the rates of the terrestrial pole coordinates and LOD are
not conclusively reduced. In the case of the station coordinates, the draconitic errors are reduced but still visible
in the obtained time series.

The idea of testing the impact of the new solar radiation pressure and altitude models on the EOP (especially on
the y-pole rates) was of M. Bloßfeld. Finally, M. Bloßfeld helped to improve the paper through comments and
corrections on content and linguistic issues.
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5.6.3 P-C: Combined estimation of the Earth’s gravity field using SLR and GRACE data

Haberkorn C., Bloßfeld M., Bouman J., Fuchs M., Schmidt M. (2015) Combined estimation of the Earth’s gravity
field using SLR and GRACE data. In: IAG Symposia Series 143, online first, DOI: 10.1007/1345_2015_76

Copyright

This publication is available at rd.springer.com.

Summary of publication C and declaration of own contribution

Nowadays, it is recommended to replace the Stokes coefficient C20 in temporal gravitational field models de-
rived from GRACE observations. In this study, we investigate the impact of a rigorous combination of an SLR
NEQ and a GRACE NEQ on a combined NEQ in order to quantify the improvement due to a rigorous com-
bination. The SLR NEQ (test month is January 2007) is obtained from a multi-satellite SLR solution which
DOI: 10.1007/1345_2015_7to account observations to up to 8 different satellites. The analysis shows that the
impact of SLR on the GRACE NEQ in minor, but positive. Improvements (lower standard deviations) of the
combined NEQ w.r.t. the GRACE NEQ can be found in the very low degree, sectoral and near-sectoral, as well
as in resonance-order Stokes coefficients.

The computation of the SLR input NEQ was done by M. Bloßfeld. Furthermore, M. Bloßfeld helped to improve
the paper through comments and corrections on content and linguistic issues.

5.6.4 P-D: Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms by a

combination of geometric and gravimetric space observations

Göttl F., Schmidt M., Seitz F., Bloßfeld M. (2015) Separation of atmospheric, oceanic and hydrological polar
motion excitation mechanisms by a combination of geometric and gravimetric space observations. In: J Geodesy
89(4), pp: 377-390, DOI: 10.1007/s00190-014-0782-0

Copyright

This publication is available at link.springer.com.

Summary of publication D and declaration of own contribution

In this publication, observations to various geodetic space techniques such as GNSS, SLR, VLBI and DORIS,
satellite altimetry and satellite gravimetry are combined to separate geophysical excitation mechanisms of the
Earth rotation. In the case of the atmospheric and oceanic mass effect, good agreements with the geodetic
solutions and model estimates are found. In contrast to this, the hydrological and integral mass effect differ
significantly from the model estimates. In comparison to RMS differences of the solutions which are based on
geophysical models, the formal errors of the adjusted geodetic results are significantly smaller which means a
step forward w.r.t. the understanding of individual contributions of the subsystems to Earth rotation variations.

The computation of the SLR input time series was done by M. Bloßfeld. Parts of the analysis published here
have been addressed in P-III.
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Abbreviations

LODR
“regularized” Length Of Day (LOD corrected for tidal
signals)

20

UT1R
“regularized” Universal Time 1 (UT1 crrected for tidal
signals)

20

AC Analysis Center
29, 34, 40–42, 48,

64
APKIM Actual Plate KInematic and crustal deformation Model 42
AWG Analysis Working Group 50

BCRS Barycentric Celestial Reference System 47
BIH Bureau International de l’Heure 39, 47
BKG Bundesamt für Kartographie und Geodäsie 36, 37, 45, 46
BLITS Ball Lense In The Space 50, 54, 59, 65

CATREF Combination and Analysis of Terrestrial REference Frames 32
CC Combination Center 30, 39, 42, 68
CHAMP CHAllenging Minisatellite Payload 9
CIO Celestial Intermediate Origin 46, 47, 75, 76
CIP Celestial Intermediate Pole 46–48, 53, 56, 76
CIRS Celestial Intermediate Reference System 47, 75
CS-TRAFO TRAnsFOrmation routine of DOGS-CS 17, 36, 37

CS-TRASI
TRAnsformation with SIngluar transformation matrix
routine of DOGS-CS

18, 37

CSR Center for Space Research 54, 59, 60, 65, 66

DFG Deutsche Forschungsgemeinschaft 36, 45, 46, 53, 60

DGFI Deutsches Geodätisches Forschungsinstitut
12, 13, 30, 32, 34,
36, 37, 39, 44–46,
53, 54, 60, 65, 68

DOGS DGFI Orbit and Geodetic parameter estimation Software 11, 34

DOGS-CS Combination and Solution library of DOGS
11, 12, 16, 18, 34,

36, 37, 63, 70

DOGS-OC Orbit Computation library of DOGS
11, 12, 34–36, 64,

66, 67, 77
DOGS-RI Radio Interferometry library of DOGS 34

DORIS
Doppler Orbithography and Radiopositioning Integrated by
Satellite

9, 12, 15, 30,
38–40, 42, 61, 63,

69

DTRF DGFI Terrestrial Reference Frame
37, 39, 40, 42, 44,

62, 64, 68, 77

EOP Earth Orientation Parameters

3, 4, 9–11, 18–22,
27, 37–39, 44–50,
55–60, 63, 67, 68,

77
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ERA Earth Rotation Angle 46, 47

ERF Epoch Reference Frame
3, 4, 10, 11, 37,

43–45, 49, 56–60,
62, 63, 66, 77

FCN Free Core Nutation 48
FESG Forschungseinrichtung Satellitengeodäsie 53
FGS Forschungsgruppe Satellitengeodäsie 60
FK5 Fifth Fundamental Catalogue 47

FOR 1503
Forschergruppe “Space-time reference systems for
monitoring global change and for precise navigation in
space”

36, 45, 46, 53, 60

FOR584
Forschergruppe “Earth Rotation and Global Dynamic
Processes”

46

GAST Greenwich Apparent Sideral Time 46, 47
GCRS Geocentric Celestial Reference System 35, 39, 46–48, 75

GGOS Global Geodetic Observing System
3, 4, 9, 10, 38, 55,
58, 60, 61, 67, 77

GGOS-D Global Geodetic Observing System – Deutschland 9, 63

GNSS Global Navigation Satellite Systems

3, 4, 9, 11, 12, 15,
32, 37–40, 42, 44,
50, 56, 58, 60–63,

66, 68, 69
GOCE Gravity field and steady-state Ocean Circulation Explorer 9, 53

GPS Global Positioning System
19, 20, 30, 31, 77,

80

GRACE GRAvity recovery and Climate Experiment
9, 12, 37, 53–55,

65, 66, 69
GTRS Geocentric Terrestrial Reference System 39

IAG International Association of Geodesy 3, 4, 9, 46, 60, 68

IAPG
Institut für Astronomische und Physikalische Geodäsie,
Technische Universität München, Germany

60

IAU International Astronomical Union 46
ICGEM International Center for Global Gravity Field Models 53
ICRF International Celestial Reference Frame 48
ICRS International Celestial Reference System 47, 77
IDS International DORIS Service 30, 42, 68

IERS International Earth Rotation and Reference Systems Service
30, 36, 39, 40, 42,
46–48, 50, 59, 67,

68

IGN
Institute Nationale de l’Information Géographique et
Forestière

32, 39, 44

IGS International GNSS Service 30, 68

ILRS International Laser Ranging Service
30, 34, 50, 58, 60,

64, 67, 68

ITRF International Terrestrial Reference Frame
9, 30, 39–44, 48,

56, 64, 68

ITRS International Terrestrial Reference System
35, 39–44, 46, 47,
51, 53, 56, 68, 76,

77
IUGG International Union of Geodesy and Geophysics 9
IVS International VLBI Service for Geodesy and Astrometry 30, 37, 61, 68
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JPL Jet Propulsion Laboratory 48
JWG Joint Working Group 46

LAGEOS LAser GEOdynamics Satellite
42, 45, 50, 53, 54,
57–60, 64, 65, 67

LARES LAser RElativity Satellite
45, 50, 54, 59, 60,

65, 67
LEO Low Earth Orbiter 42, 45, 59, 66, 67
LLR Lunar Laser Ranging 9

LOD Length Of Day

3, 4, 10, 11, 19, 20,
36, 38, 40, 48–50,
55–57, 59, 63, 64,

67, 68

LT Local Ties
43–45, 57, 58, 60,

61, 63, 66

MRF multi-year reference frame
10, 38, 40, 44, 45,
49, 58–60, 62, 63,

66

NASA National Aeronautics and Space Administration 61

NEQ Normal EQuation

11–20, 22, 23, 25,
26, 28–33, 36, 37,
44, 54, 55, 58, 65,
68, 69, 73, 75–77

NNR No-Net-Rotation
29, 37, 39, 42, 44,

45, 56, 58
NNS No-Net-Scale 29, 37
NNT No-Net-Translation 29, 37, 52
NRO Non Rotating Origin 46

O-C ‘observed’ minus ‘computed with a priori values’ 13, 30, 74, 75

PCO Phase Center Offset 42
PLATO Performance simuLations and Architectural Trade-Offs 61
POD Precise Orbit Determination 45
pwl piece-wise linear 19, 43, 49, 50

RMS Root Mean Square 50, 67, 69
RRA Retro-Reflector-Array 34, 65

SINEX Solution INdependent EXchange format 12, 15, 30, 31, 43

SLR Satellite Laser Ranging

3, 4, 9–13, 15, 19,
20, 30, 31, 37–40,
42, 44, 45, 49, 50,
53–65, 67, 69, 77

TAI
Temps Atomique International (engl.: International Atomic
Time)

48

TC Technique Center 30, 39

TCB
Temps Coordonné Barycentrique (engl.: Barycentric
Coordinate Time)

47

TCG
Temps Coordonné Geocentrique (engl.: Geocentric
Coordinate Time)

39, 40, 47
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TDB
Temps Dynamique Barycentrique (engl.: Barycentric
Dynamical Time)

47

TIO Terrestrial Intermediate Origin 47, 76
TIRS Terrestrial Intermediate Reference System 46, 47, 75, 76

TRF Terrestrial Reference Frame

3, 4, 9–11, 21, 30,
37–41, 43–45, 49,
50, 53, 55–62, 66,

68
TT Temps Terrestre (engl.: Terrestrial Time) 40
TUM Technische Universität München 53

UT1 Universal Time 1
19, 20, 40, 47–50,

55, 57
UTC Universal Time Coordinated 40, 47–50, 55, 57

VCE Variance Component Estimation 12, 33, 60, 65–67

VLBI Very Long Baseline Interferometry

3, 4, 9, 11, 12, 15,
19, 20, 30, 38–40,
42, 44, 49, 56–58,

60–63, 69, 77

Nomenclature

∆ρ scalar range bias of measurement [m] 34, 35
∆r scalar bias of tropospheric refraction [-] 34, 35
∆t scalar time bias of measurement [s] 34, 35
∆x [u × 1] vector of first order correction terms to x0 12
∆x̂ [u × 1] vector of estimated first order correction terms to x0 14

∆xk [uk × 1]
vector of first order correction terms to x0 of the k-th equation
system

31

Ω̇ scalar rate of the right ascension of the ascending node Ω 49
Υ scalar Vernal Equinox 47
ǫ scalar measurement error 34, 35
λk scalar individual weighting factor of the k-th equation system 32
ω scalar frequency of linear-trigonometric station motion model 23
ρ scalar one-way range measurement 34, 35
σ2

0 scalar a priori variance factor 14, 15
σc [nc × 1] vector of standard deviations of pseudo observations c 28
σ̂2

0 scalar a posteriori variance factor 14, 15
σ2

0,k scalar a priori variance factor of the k-th equation system 31
ϑ scalar geographic latitude 51

A [n × u]
(Jacobian) matrix with first derivatives of f (x0) at the point x0

(design matrix of the NEQ system)
13, 15

aDG [3 × 1]
direct 3-dimensional gravitational acceleration (direct effect
on the satellite)

35

aGE [3 × 1]
3-dimensional gravitational acceleration caused by the Earth
(Stokes coefficients Cnm , Snm with n,m ∈ N+ and m ≤ n

35

aGM [3 × 1] 3-dimensional gravitational acceleration caused by the Moon 35

aGNT [3 × 1]
3-dimensional gravitational acceleration caused by mass
variations due to non-tidal loading effects (e.g., atmospheric,
hydrological, oceanic)

35

aGP [3 × 1]
3-dimensional gravitational acceleration caused by the Sun
and other planets

35
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aGT [3 × 1]
3-dimensional gravitational acceleration caused by mass
variations due to solid Earth and ocean tides

35

aIG [3 × 1]
indirect 3-dimensional gravitational acceleration (indirect
effect on the satellite via the Earth)

35

Ak [nk × uk ] (Jacobian) matrix of the k-th equation system 31

aKEP [3 × 1]
3-dimensional gravitational acceleration caused by the
point-concentrated mass of the Earth (Stokes coefficient C00)

35

aNG [3 × 1]
3-dimensional non-gravitational acceleration (e.g., due to solar
radiation pressure, atmospheric drag)

35

Ā+
1

[ur × n] pseudoinverse of matrix Ā1 with rg( Ā1) = ur 26
Ã [n × u] matrix with constrained/transformed first derivatives 17, 26
b [n × 1] vector of observations 12
C [nc × u] Jacobian matrix of pseudo observations 29
c [nc × 1] vector of pseudo observations (constraints) 28, 73
CF [3 × 1] Center of Figure 63

c j [3 × 1]
3-dimensional cosine amplitudes of linear-trigonometric
motion model of station j (named cITRF in Section 3.1.6b)

23

Ck [nc,k × uk ]
Jacobian matrix of pseudo observations of the k-th equation
system

32

CM [3 × 1]
Center of Mass of the whole Earth (solid Earth plus its
non-rigid envelope)

39, 41, 42, 52,
58, 63

cmasc scalar

satellite-specific center of mass correction (difference between
reflector and center of mass of the satellite in measurement
direction) [m]

34, 35

cmesc scalar
SLR array-dependent correction (e.g., phase center offset in
measurement direction) [m]

34, 35

Cnm scalar Harmonic cosine (Stokes) coefficient of degree n and order m 51
Cnm scalar normalized Stokes (cosine) coefficient of degree n and order m 51
crel scalar relativistic range correction [m] 34, 35
csta scalar station-dependent SLR correction [m] 34, 35
ctrop scalar tropospheric range correction [m] 34, 35

D [3 × 3]
3-dimensional rotation matrix around the Cardan angles with
D = D1(α)D2(β)D3(γ)

24

d [u × 1] transformation (translation) vector of affine transformation 16
dct (ti ) [3 × 1] 3-dimensional translations common to all stations at epoch ti 41

GM scalar
Geocentric gravitational constant
GM = GM⊕ = 3.986004418 · 1014 m3

s2

51

H14
j [6 × 14]

(ua = 14)-parameter similarity transformation matrix for the
j-th station

25

H7
j [3 × 7]

(ua = 7)-parameter similarity transformation matrix for the
j-th station

24

I [u × u] (quadratic) identity matrix (I[u] has the dimension [u × u]) 18
i scalar inclination of orbital plane of a satellite 49
k scalar index for k-th equation system with 1 ≤ k ≤ m 31
K̂q̂q̂ [7/14×7/14] variance-covariance matrix of the 7/14 datum parameters 31
K̂x̂ x̂ [u × u] variance-covariance matrix of the corrected unknowns 14
Kll [n × n] variance-covariance matrix of the observations 14

Kll,k [nk × nk ]
variance-covariance matrix of the observations of the k-th
equation system

31

l [n × 1] vector of O-C 13, 15
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LC scalar

scaling factor between TCG and TCB with
TCG/TCB = 1 − LC and
LC = 1.48082686741 · 10−8 ± 2 · 10−17

47

LG scalar
scaling factor between TT and TCG with
LG = 1 − d (TT)/d (TCG) = 6.969290134 · 10−10 40

lk [nk × 1] vector of O-C of the k-th equation system 31
l̃ [n × 1] vector of constrained/transformed O-C 17, 26
M [u × u] inverse matrix of N 27
m scalar number of equation systems 31
N scalar number of parameter groups or stations (1 ≤ j ≤ N ) 18
N [u × u] NEQ matrix 14, 15, 75
n scalar number of observation equations 12
Nc [u × u] combined NEQ matrix 32
nc scalar number of pseudo observations (constraints) 28
Nk [uk × uk ] k-th NEQ matrix 32
nk scalar number of observation equations of the k-th equation system 31

Nnm scalar
normalization factor of degree n and order m for Stokes
coefficients

51

Ñ [u × u] transformed NEQ matrix 17, 22
p(ti ) scalar parameter offset at epoch ti 19
p̄(ti ) scalar “regularized” parameter offset at epoch ti 20
˙̄p(ti ) scalar “regularized” parameter drift at epoch ti 20
Pcc [nc × nc ] positive definite weight matrix of the pseudo observations 29

Pcc,k [nc,k × nc,k ]
positive definite weight matrix of the pseudo observations of
the k-th equation system

32

ṗ(ti ) scalar parameter drift at epoch ti 19
Pll [n × n] positive definite weight matrix of the observations 14, 15

Pll,k [nk × nk ]
positive definite weight matrix of the observations of the k-th
equation system

31

P̃ll [n × n]
constrained/transformed positive definite weight matrix of the
observations

17, 26

Pnm scalar associated Legendre functions of degree n and order m 51

Q(t) [3 × 3]
rotation matrix from the CIRS into the GCRS (using the
“CIO-based transformation”)

46

q0 [ua × 1] vector of a priori values of the additional unknowns 21, 22
q̂ [ua × 1] vector of corrected additional parameters 21, 76

Qll [n × n]
positive definite weight coefficient (cofactor) matrix of the
observations

13

Qll,k [nk × nk ]
positive definite weight coefficient (cofactor) matrix of the
observations of the k-th equation system

31

R [u × u] transformation matrix of affine transformation 16, 76

r (ti ) scalar
conventional “regularization” term r at the epoch ti to account
for effects due to zonal tides on Earth’s rotation

20

r scalar redundancy (degree of freedom) 14

r
( j )
c,k

scalar
partial redundancy of the k-th NEQ system w.r.t. the combined
NEQ system in the j-th iteration step

33

r̈sat [3 × 1]
3-dimensional total acceleration acting on a near-Earth
satellite

35

rsat [3 × 1] 3-dimensional position of the satellite in the GCRS [m] 34, 35
rsta [3 × 1] 3-dimensional position of the station in the ITRS [m] 34, 35

R(t) [3 × 3]
rotation matrix from the TIRS into the CIRS (using the
“CIO-based transformation”)

46
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S [u × ua]
transformation matrix of the additional unknowns q̂ to the
unknown x̂

21

s scalar CIO locator: position of the CIO on the equator of the CIP 47

s j [3 × 1]
3-dimensional sine amplitudes of linear-trigonometric motion
model of station j (named sITRF in Section 3.1.6b)

23

Snm scalar harmonic sine (Stokes) coefficient of degree n and order m 51
Snm scalar normalized Stokes (sine) coefficient of degree n and order m 51
s′ scalar TIO locator: position of the TIO on the equator of the CIP 47
T scalar number of epochs (1 ≤ i ≤ T ) 23
T [u × u] inverse of regular transformation matrix R 17
t [u × 1] translation vector of a priori values 16

tM scalar
approximated epoch of reflection of the laser pulse at the
satellite [s]

34, 35

u scalar number of unknowns 12
u̇0 scalar rate of argument of latitude of a satellite at osculation epoch t0 49
ua scalar number of additional unknowns 21
ue scalar number of eliminated unknowns 27
u j scalar number of unknowns in j-th parameter group 18
uk scalar number of unknowns of the k-th equation system 31
ur scalar number of reduced unknowns 25, 74
ut scalar number of transformed unknowns 18
V scalar gravitational potential 51
v [n × 1] vector of (observation and functional model) errors 12, 13
vc [nc × 1] vector of pseudo observation errors 29
v̂ [n × 1] vector of corrected (observation and functional model) errors 14

vk [nk × 1]
vector of (observation and functional model) errors of the k-th
equation system

31

ṽ [n × 1]
vector of transformed (observation and functional model)
errors

17, 26

W (t) [3 × 3] rotation matrix from the ITRS into the TIRS 46
XCIP scalar X -coordinate of celestial intermediate pole 47
x [u × 1] vector of unknowns 12
x0 [u × 1] vector of a priori values of the unknowns 12, 15
x̂c [u × 1] vector of corrected parameters of the combined NEQ system 33
x̂ [u × 1] vector of corrected parameters 14, 15
XITRF [3 × 1] ITRF station position 40
ẊITRF [3 × 1] ITRF station velocity 40
x̂k [uk × 1] vector of corrected parameters of the k-th equation system 32
Xn (ti ) [3 × 1] correction term n for XR at epoch ti 40
xp scalar x-component of terrestrial pole coordinates (angles) 18, 47
XR (ti ) [3 × 1] regularized station position at epoch ti 40
X (ti ) [3 × 1] instantaneous station position at epoch ti 40
x̃0 [u × 1] vector of transformed a priori values 17
ˆ̃x [u × 1] constrained/transformed vector of corrected parameters 19
X̃ (ti ) [3 × 1] estimated station position offset at frequent epochs ti 43
y [u × 1] right hand side of the NEQ system 14, 15
yc [u × 1] right hand side of the combined NEQ system 32
YCIP scalar Y -coordinate of celestial intermediate pole 47
yk [uk × 1] right hand side of the k-th NEQ system 32
yp scalar y-component of terrestrial pole coordinates (angles) 47
ỹ [u × 1] right hand side of the transformed NEQ system 17, 22
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