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Abstract

The monitoring of the Earth’s gravity field is of major scientific and societal importance. Gravity
field observations reflect the mass distribution and its changes with time in the Earth’s system. The
knowledge on many geophysical processes as, for example, the global water cycle and ice sheet mass
variations, can be improved with these observations. With dedicated satellite missions the Earth’s
gravity field can be observed on a global scale. In this thesis Virtual Constellations of Next Generation
Gravity Missions (NGGM) are assessed. The key questions for the NGGM concern science requirements,
mission objectives, instrument accuracies and orbit constellations.

The science requirements are the basis for assessing the NGGM. The whole set of science requirements
are 19 signals of interest in the fields of hydrology, glaciology, oceanography, solid Earth physics, and
geodesy. They are unified to monthly geoid height accuracy requirements, i.e. the basic temporal
resolution and the basic gravitational unit used in this thesis. The number of satellites in the NGGM
constellations is limited, and therefore there is also a limit for the spatial resolution which can be
achieved after one month. Constellations of 1, 2, and 4 satellites are investigated and nearly 50% of the
science requirements can not be met with the required resolution.

This assessment leads to the mission objectives for the NGGM. The mission objectives ensure the NGGM
to fulfil the selected science requirements with required accuracy and required spatial and temporal
resolution. Four mission objectives are formulated concerning the orbital groundtrack coverage, the
mission duration and the required monthly geoid height accuracies for specific spatial resolutions. The
two main monthly geoid height accuracy requirements are 0.01 mm at a spatial resolutions of 500 km,
and 0.4 mm for 150 km.

The basic satellite scenarios for the NGGM are discussed for different measurement concepts. The most
promising measurement concept is satellite-to-satellite tracking (SST) between two low Earth orbiting
satellites (low-low SST). This concept is operated by the Gravity Recovery and Climate Experiment
(GRACE), which is now in orbit for 13 years and allows for estimating a global gravity field every
month.

For the NGGM the low-low SST concept of GRACE has to be improved concerning instrument accuracy
and observation geometry. The observation geometry of GRACE is weak, because the two satellites
are on the same orbit with constant inter-satellite distance. This is called an in-line formation, and
the inter-satellite observations for polar in-line pairs such as GRACE are mainly north-south directed.
Therefore the observations are weak in east-west direction. The optimum are isotropic observations
which are invariant with respect to direction. Two possibilities for a single and a double low-low SST
pair are analysed in order to increase isotropy of the observations. For a single pair it is the so-called
Pendulum formation where the trailing satellite of the single pair is in a different orbit with a separation
in the ascending node. A double pair scenario consists of an in-line polar and an in-line pair in a 70◦

inclined orbit.

The instrument requirements for the NGGM depend on the orbital altitude. The selected single and
double pair scenarios are in three altitude bands around 300, 360, and 420 km. From semi-analytical
simulations results are derived in terms of the formal errors of the scenarios the instrument requirements
for the key instruments of a low-low SST mission, i.e. the inter-satellite ranging instrument and the
accelerometer. For the ranging instrument a noise level between 2 nm (high altitude) and 20 nm (low
altitude) is required. For the accelerometer it is around 2 · 10−12 m/s2.

The largest error contribution for the NGGM is temporal aliasing mainly due to high-frequency tidal and
non-tidal mass variations in the ocean and atmosphere. The effect of temporal aliasing is analysed based
on the simulation of the sampling of signals with discrete frequencies with single and double pairs. The
effects of temporal aliasing are resonances at specific spherical harmonic (SH) orders. The magnitude of
the effects at these orders depends on the basic periods of a satellite orbit, i.e. the revolution time and
the length of the nodal day. In order to avoid large resonances optimal altitude bands are selected in
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which the orbits of the NGGM are found. Two methods to reduce the resonances for single and double
pairs are presented as well.

The final simulation results in terms of monthly gravity retrievals include the three main error contri-
butions of the instrument noise and of temporal aliasing from tidal and non-tidal sources. It is shown
that the high-frequency signal contents have to be reduced from the observations in order to benefit
from the highly sensitive instruments. There are basically two options to reduce these contents. One is
a classical de-aliasing approach (applied also for current GRACE solutions) which aims at a reduction
of the high-frequency signal contents in atmosphere and ocean (tidal and non-tidal) with a priori model
information. Another option is the co-estimation of short period gravity field parameters. This option
is discussed and validated with respect to a double low-low SST pair.

The best monthly gravity retrieval performance out of the basic scenarios is reached for the double
low-low SST pairs in the low selected altitude band (300 km). The required monthly geoid accuracy is
reached, if the temporal aliasing effects from full tidal and non-tidal variations are reduced by a factor
of between 30 and 60. With this reduction the three best NGGM double pair scenarios with polar
pairs in 300, 360, and 420 km altitude combined with a 70◦ inclined pair in 270 km altitude are able
to provide a global geoid with an accuracy of 0.01 mm at 500 km spatial resolution, and of 0.4 mm at
150 km spatial resolution.

The NGGM is of great importance for science and society. Increased spatial and temporal resolution
as well as increased accuracy of global gravity field models will improve the understanding of many
processes in system Earth. The science requirements which can be fulfilled with the NGGM with the
required resolution are in the fields of geodesy, oceanography, hydrology, glaciology, and solid Earth
physics. For example, the requirements for unified height systems, ground water, glacial isostatic
adjustment, and ice mass balance are fulfilled with the NGGM.
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Zusammenfassung

Die Beobachtung des Schwerefeldes der Erde hat große wissenschaftliche und gesellschaftliche Be-
deutung. Das Schwerefeld beinhaltet Informationen über die Massenverteilung und ihre zeitlichen
Änderungen im System Erde. Somit können daraus die Kenntnise über viele geophysikalische Prozesse
vertieft werden, wie zum Beispiel über den globalen Wasserkreislauf und die Massenveränderungen
der Eisschilde. Mit Satellitenmissionen kann das Erdschwerefeld global erfasst werden. In dieser Dis-
sertation werden optimale Konstellationen für Schwerefeldsatellitenmissionen der nächsten Generation
(Next Generation Gravity Mission, NGGM) ermittelt. Die wichtigsten Fragen beziehen sich dabei auf
die wissenschaftlichen Anforderungen, die konkreten Ziele der Satellitenmission, sowie Instrumentenge-
nauigkeiten und Orbitkonstellationen.

Die wissenschaftlichen Anforderungen sind die Grundlage für die Planung der NGGM. Die Auswahl für
diese Dissertation besteht aus 19 zu beobachtenden Signalen in Hydrosphäre, Kryosphäre, den Ozea-
nen, der festen Erde und im Bereich Geodäsie. Zunächst werden diese Anforderungen vereinheitlicht
bezüglich ihrer physikalischen Einheit und der zeitlichen Auflösung. Als Einheit werden Geoidhöhen,
und als zeitliche Auflösung ein Monat verwendet. Weil die Anzahl der Satelliten für die NGGM
beschränkt ist, gibt es auch eine Grenze der erzielbaren räumlichen Auflösung nach einem Monat. Die
NGGM-Konstellationen bestehen aus 1, 2 und 4 Satelliten. Damit können beinahe 50% der gewünschten
Signale nicht mit der geforderten Auflösung ermittelt werden.

Aus den wissenschaftlichen Anforderungen werden die Ziele der NGGM abgeleitet. Diese ermöglichen
es der NGGM, die ausgewählten Signale mit geforderter Genauigkeit und Auflösung zu beobachten.
Vier solche Ziele sind formuliert bezüglich der globalen Überdeckung mit Satellitenbodenspuren, der
Missionsdauer und der erforderlichen monatlichen Geoidhöhengenauigkeit für verschiedene räumliche
Auflösungen. Die geforderte (mittlere globale) monatliche Geoidhöhengenauigkeit ist 0.01 mm für eine
räumliche Auflösung von 500 km und 0.4 mm für 150 km.

Verschiedene Beobachtungskonzepte werden in den Basisszenarien der NGGM herangezogen. Das
vielversprechendste Konzept ist die genaue Messung der Intersatellitendistanz zwischen zwei tieffliegen-
den Satelliten (satellite-to-satellite tracking in low-low mode, low-low SST). Dieses Konzept wird bereits
erfolgreich in der Satellitenmission Gravity Recovery and Climate Experiment (GRACE) angewendet,
welche seit 13 Jahren im Orbit ist und es erlaubt, das globale Erdschwerefeld monatlich zu erfassen.

Für die NGGM muss das low-low SST Konzept von GRACE im Hinblick auf Instrumentengenauigkeit
und Beobachtungsgeometrie verbessert werden. GRACE besitzt eine schwache Beobachtungsgeometrie,
weil sich die beiden Satelliten im selben polaren Orbit mit konstanter Entfernung zueinander bewegen.
Dies wird In-line Formation genannt, und die Intersatellitenbeobachtungen sind damit vorwiegend in
Nord-Süd-Ausrichtung orientiert. Das In-line-Konzept ist somit weniger sensitiv in Ost-West-Richtung.
Eine optimale Beobachtung wäre isotrop und damit unabhängig von der Richtung. Für das low-low SST
Konzept bieten sich zwei Möglichkeiten, die Isotropie zu erhöhen. Bei einem Einzelpaar in einer soge-
nannten Pendel-Formation erhalten die Intersatllitenbeobachtungen mehr Anteile quer zur Flugrichtung,
weil sich das zweite Paar in einem Orbit mit versetztem aufsteigenden Knoten befindet. Für ein Dop-
pelpaar kommen mehr Ost-West-gerichtete Beobachtungen hinzu aufgrund der niedrigeren Inklination
eines der beiden Paare. Für die NGGM wird für das zweite Paar eine Inklination von 70◦ gewählt.

Die Instrumentenanforderungen hängen von der Orbithöhe ab. Die ausgewählten Einzel- und Doppel-
paar-Szenarien befinden sich in drei Höhenbändern um 300, 360 und 420 km. Mit Hilfe von semi-
analytischen Simulationen resultierend in formalen Fehlern für die Schwerefeldlösungen der Szenarien
werden die Anforderungen an die beiden wichtigsten Instrumente einer low-low SST Mission abgeleitet.
Dies sind das Instrument zur Messung der Intersatellitendistanz und die Beschleunigungsmesser. Die
geforderte Genauigkeit für die Distanzmessung liegt zwischen 2 nm für die hoch und 20 nm für die
niedrig fliegenden Szenarien. Die Genauigkeitsanforderungen an die Beschleunigungsmesser liegt bei
2 · 10−12 m/s2.
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Die größten Fehlerbeiträge der NGGM kommen von zeitlichem Aliasing vorwiegend aufgrund von
hochfrequenten Massenvarationen in den Ozeanen und der Atmosphäre. Dieser Effekt von zeitlichem
Aliasing ist analysiert mit Simulationen der Abtastung von Signalen mit diskreten Frequenzen mit
Einzel- und Doppelpaaren. Ein wichtiger Effekt von zeitlichem Aliasing sind Resonanzen bei bestimmten
sphärisch-harmonsichen (SH) Ordnungen. Die Größenordung dieser Resonanzen hängt von den beiden
Hauptperioden eines Orbits ab. Diese sind die Umlaufperiode und die Länge des Knotentages. Durch
eine optimale Wahl der Flughöhe eines Satelliten können große Resonanzen vermieden werden. Die
Szenarien der NGGM befinden sich alle in solchen optimalen Höhenbändern. Desweiteren werden auch
zwei Prozessierungsansätze aufgezeigt, um die Resonanzeffekte zu reduzieren.

Die abschließenden Simulationsergebnisse der monatlichen Ermittlung eines globalen Schwerefeldes mit
den Basisszenarien beinhalten die drei Hauptfehlerbeiträge, Instrumentenfehler und zeitliches Aliasing
von Gezeiten- und Nicht-Gezeitenanteilen. Damit die NGGM von den hohen Instrumentengenauigkeiten
profitieren kann, müssen die hochfrequenten Signalanteile und damit die Effekte von zeitlichem Aliasing
reduziert werden. Hierfür werden zwei Ansätze beschrieben. Einer ist ein klassischer Ansatz, wie er auch
für die GRACE-Prozessierung verwendet wird. Die hochfrequenten Signalanteile in der Atmosphäre und
den Ozeanen werden mit a priori Modellinformationen reduziert. Ein weiterer Ansatz beinhaltet die
Mitschätzung von kurzperiodischen Schwerefeldparametern. Diese Option wird im Hinblick auf die
Anwendung mit einem Doppelpaar validiert.

Die beste monatliche globale Schwerefeldermittlung wird mit den Doppelpaaren aus den Basisszenarien
in niedriger Flughöhe (300 km) erreicht. Die geforderte monatliche Genauigkeit der NGGM kann aber
nur erriecht werden, wenn die Effekte von zeitlichem Aliasing um einen Faktor zwischen 30 und 60
reduziert werden. Mit dieser Reduktion erreichen die drei besten NGGM low-low SST Doppelpaare
mit polaren Paaren in 300, 360 und 420 km Flughöhe kombiniert mit dem 70◦ geneigten Paar eine
Genauigkeit des globalen Geoids von 0.01 mm bei 500 km räumlicher Auflösung und 0.4 mm bei 150 km
räumlicher Auflösung.

Die NGGM hat große wissenschaftliche und gesellschaftliche Bedeutung. Sowohl mit erhöhter räumlicher
und zeitlicher Auflösung, als auch mit erhöhter Genauigkeit des globalen Erdschwerefeldes wird das
Verständnis einer Vielzahl an Prozessen im System Erde verbessert werden. Die wissenschatlichen An-
forderungen, die mit der NGGM errfüllt werden können, liegen in Bereichen der Geodäsie, Ozeanogra-
phie, Hydrologie, Glaziologie und der Physik der festen Erde. Zum Beispiel können die Anforderungen
für die Vereinheitlicheung von Höhensystemen, das Grundwasser, die postglaziale Landhebung und die
Eismassenbilanz mit der NGGM erfüllt werden.
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1 Introduction

1.1 Motivation

The Earth’s gravity field is an important quantity to be observed in presence and future. Especially the
monitoring of the temporal changes of the mass distributions in the system Earth requires continuous
and long time series. Several geophysical disciplines derive various information from the Earth’s gravity
field. Three important examples of mass variations shall be named here, i.e. continental hydrology, ice
masses and ocean circulation.

Besides terrestrial and airborne gravimetry, satellite observations play an important role for gravity
field determination. In comparison with terrestrial and airborne gravimetry, the greatest advantage
of satellite missions is the ability of providing global gravity field models with homogeneous accuracy.
In contrast to terrestrial measurements the observations taken in satellite altitudes of usually 200 to
500 km contain less signal content. Another challenge for global mass variation estimates from satellite
observations is signal separation. Gravitational satellite observations are integrated measurements of
the sum of the masses in all sub-systems of the Earth (solid Earth, ocean, continental hydrology, ice and
atmosphere). Therefore it is necessary to separate the target signal, e.g. continental hydrology, from
these measurements. One possibility to do so is the subtraction of model information representing all
the other signal contents. But then of course the result can not be of higher accuracy than the models
used in this separation step. Nevertheless, global and long term monitoring of the Earth’s gravity field
needs satellite missions.

Three satellite gravity field missions have been successfully launched. The first was CHAllenging Mini-
satellite Payload (CHAMP) launched in 2000 (Reigber et al., 2000) and ended in 2010 after more than
10 years in orbit. Besides the CHAMP mission tasks related to the Earth’s magnetic and electrical
fields its primary mission goal was the improvement of the estimation of the Earth’s gravity field. For
this CHAMP carried an accelerometer measuring the non-conservative forces acting on it and a Global
Navigation Satellite System (GNSS) receiver for precise positioning. From these Satellite-to-Satellite
tracking (SST) observations in high-low mode gravity field models have been estimated down to a
spatial resolution of approximately 170 km (Weigelt et al., 2013).

Table 1.1: Basic mission parameters of CHAMP, GRACE and GOCE and one example of current static satellite-only
gravity field models.

CHAMP GRACE GOCE

Altitude 450 km (decaying 500 km (decaying 260 km (decaying to

to 300 km) to 400 km) 230 km in 4 steps)

Inclination 87◦ 89◦ 97◦ (sun-synchronous)

Measurement concept high-low SST high-low SST and high-low SST and

low-low SST SGG

Inter satellite distance - 200 km -

Gravity field model ULux CHAMP2013s GGM05S CO CONS GCF 2 TIM R5

Weigelt et al. (2013) Tapley et al. (2013) Brockmann et al. (2014)
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Figure 1.1: SH degree RMS for current satellite-only models compared with EGM2008 (Pavlis et al., 2012). For the GOCE
model the median is used instead of the RMS because of the polar gap.

The Gravity Recovery and Climate Experiment (GRACE) mission has been in orbit now for nearly 13
years (Tapley et al., 2004). Its main focus is the observation of the temporal variations of the Earth’s
gravity field. It is sensitive to such variations with a spatial resolution of approximately 300 km and a
temporal resolution between 10 and 30 days (Tapley et al., 2013). The static gravity field is observed
with GRACE down to a resolution of approximately 120 km. The key instrument to reach this increased
accuracy compared to CHAMP is a microwave inter-satellite ranging instrument. It measures the biased
ranges between two twin satellites in polar orbits with a mean along-track separation of 200 km (SST
in low-low mode). As CHAMP both GRACE satellites have an accelerometer and GNSS receiver on
board.

The third dedicated gravity satellite mission in orbit was the Gravity and Ocean Circulation Explorer
(GOCE). After the launch of GOCE in March 2009 the mission phase ended in November 2013. Besides
precise position and attitude observations the low orbit altitude of less than 260 km and the satellite
gravity gradiometer are the key characteristics of this mission. The gradiometer consists of 6 accelero-
meters placed on three orthogonal axes around the center of mass (CoM) of the satellite (Drinkwater
et al., 2003). With these instruments the second derivatives of the Earth’s gravitational potential
(gravity gradients) can be measured. This is why this measurement concept is called satellite gravity
gradiometry (SGG). The static gravity field can be estimated with GOCE down to a spatial resolution
of approximately 80 km (Brockmann et al., 2014). Table 1.1 shows the basic mission parameters of
CHAMP, GRACE and GOCE.

In Fig. 1.1 the three static gravity field models listed in Tab. 1.1 are compared with the combined
gravity field model EGM2008 (Pavlis et al., 2012) in terms of Spherical Harmonic (SH) degree RMS in
geoid heights (cf. Sec. 2.1). As GOCE-only models suffer from the polar gap (inclination of 97◦), the
median is used instead of the RMS for CO CONS GCF 2 TIM R5. For each model the formal errors
of the SH coefficients and the residuals with respect to (wrt.) EGM2008 are shown. Both consist of
error information of the model per SH degree l. Comparing the three models among each other, two
main characteristics of gravity field determination from satellite observations become visible. Signal
attenuation with satellite altitude increases the errors especially in high SH degrees, i.e. high spatial
resolution. The observation type affect this increase as well. As GOCE has the lowest orbit and
measures the second derivatives of the gravitational potential the errors of CO CONS GCF 2 TIM R5
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Figure 1.2: Left: SH degree RMS in mm geoid height for monthly CSR Release 05 solutions compared with modeled annual
mass variations (hydrology, ice and solid Earth of Gruber et al. (2011)) in 2005. The GRACE residuals are computed with
respect to the mean of the monthly solutions in 2005. The annual mass variations are represented by the absolute annual
amplitude estimated from the model with 6 hour sampling. Right: unfiltered GRACE residuals of January (top) and July
(bottom) in mm geoid height up to lmax = 60.

increase less strongly in high degrees compared to ULux CHAMP2013s and GGM05S. Furthermore,
low-low SST seems to be more sensitive to low SH degrees than SGG. In a combined gravity field
model using GRACE and GOCE data, GRACE dominates the low SH degrees and GOCE contributes
significantly above l = 100 and dominates above l = 150 (Pail et al., 2010; Brockmann et al., 2014).
The differences between the formal errors and the residuals indicate where the analysed models contains
new signal compared to EGM2008. Hence, with respect to EGM2008 GOCE contributed mainly to
l > 60. The formal errors of EGM2008 support this assumption, because the residuals of GGM05S and
CO CONS GCF 2 TIM R5 show similar behaviour for l > 100.

With GRACE also temporal variations of the Earth’s gravity field can be observed. The comparison of
current monthly GRACE solutions with modeled mass variations give an idea of the resolution, to which
GRACE is sensitive to mass variations. Figure 1.2 (left) shows such a comparison of the monthly CSR
Release 05 solutions (Tapley et al., 2013) and a mass variation model (Gruber et al., 2011) in terms of
SH degree RMS. The residuals are computed with respect to the mean of the monthly solutions in 2005.
The annual mass variations are represented by the absolute annual amplitude estimated from the 6 hour
sampled model. The residuals consist of the mean monthly mass variations and of the GRACE errors.
The GRACE gravity fields suffer not only from instrument errors but also from temporal aliasing.
Temporal aliasing due to under sampling of high-frequency signal contents from both the observed
signals and from background model errors. This effect is pronounced by the not optimal observation
geometry of the GRACE mission. Both GRACE satellites in in-line formation fly in nearly the same
polar orbit only separated by the mean anomaly. Except for the polar areas the line of sight between
the two satellites is north-south directed leading to anisotropic errors. A typical error characteristic
of GRACE can be seen in the right images in Fig. 1.2. Global geoid height residuals with respect to
the mean are shown for two months in 2005 (top: January, bottom: July). The annual variations
of the large continental hydrological mass variations are visible when comparing the two months (e.g.
the Amazon and Congo region). These signals are superimposed with errors of north-south directed
striping patterns. Without any post-processing the mass variations can be estimated significantly up to



4 Introduction

l = 30 (approximately 700 km spatial resolution). Reducing the striping patterns with post-processing
filtering strategies, this resolution can be increased to 300 km (Tapley et al., 2013).

The next gravity satellite mission in orbit will be GRACE Follow-On (GRACE-FO) with a proposed
launch date in 2017 (Sheard et al., 2012). It is planned to have the same orbit configuration as GRACE.
An improved gravity retrieval performance is expected with respect to (wrt.) GRACE, because in
addition to the inter-satellite microwave ranging instrument GRACE-FO will carry an inter-satellite
laser ranging interferometer (LRI) with an improved measurement accuracy. Nevertheless the microwave
instrument is the primary instrument, the LRI is included as a demonstrator experiment (Sheard et al.,
2012).

Comprehensive discussions of future gravity satellite missions from a technological and geodetic point
of view can be found in Reubelt et al. (2014), Gruber et al. (2014), Wiese et al. (2012), Elsaka (2012)
and Iran Pour (2013). The findings of this thesis are partly based on the results of these studies. New
insight is given for example in the definition of mission objectives from science requirements and the
optimization of the orbit choice regarding error effects from temporal aliasing.

1.2 Subject of this Thesis

In this thesis, issues of a Next Generation Gravity Mission (NGGM) are discussed. Most of the technical
aspects like instrument accuracies refer to a launch date around 2030. This NGGM aims to observe
the Earth’s gravity field and especially its temporal variations. The conclusions are drawn mainly
based on the results of two types of gravity retrieval simulations (Sec. 2.4). Using the semi-analytical
approach (Sneeuw, 2000) spectral instrument noise characteristics are propagated onto the SH spectrum
(Sec. 2.4.1). The results of this approach used in this thesis are formal errors of SH coefficients. The
second numerical simulation environment is a numerical closed-loop based on full normal equation
matrices (Sec. 2.4.2).

The main results are optimal virtual constellations of NGGMs (Chap. 8). The optimization focuses
on the best fulfilment of science requirements. Therein different functionals of the gravity potential
like geoid heights and gravity anomalies are analysed. This thesis focuses on geodetic aspects, but the
proposed concepts satisfy technical conditions of a NGGM with a launch date around 2030 as well.

After explaining the theoretical principles needed for this thesis (Chap. 2), the mission objectives are
derived from a consolidated set of science requirements (Chap. 3). The mission objectives contain ma-
ximum cumulative geoid errors for specific spatial and temporal resolution. Other mission requirement
aspects are mission duration, groundtrack coverage and sub-cycle assessment. In Chap. 4 based on
semi-analytical simulations instrument requirements for selected basic scenarios are derived. These
requirements in terms of amplitude spectral densities assure the reference scenarios to be sensitive to
the target signals with the required temporal and spatial resolution.

The scenario performance simulations are based on instrument noise assumptions for the key instruments
of the different observing techniques. For a GRACE-like low-low SST mission, for example, the main
noise contributions for the gravitational observations come from the microwave ranging instrument
and from the accelerometer. In Chap. 5 the gravity retrieval error contributions of other sources are
simulated and discussed. Besides star sensor and GNSS-positioning sensor errors the effects of so-called
tone errors are analysed. Tone errors mainly result from temperature variations within the satellite
leading to harmonic signals with the orbital frequency, i.e. (revolution time)−1 and integer multiples
of it. With closed loop simulations requirements for the tone error amplitudes for the NGGM can be
derived (Gruber et al., 2014).

Current monthly GRACE gravity fields (and most likely for short term GRACE-FO solutions) suffer
from temporal aliasing from background model errors. In the standard GRACE processing the high
frequency signals from ocean tides and non-tidal oceanic and atmospheric mass variations are reduced
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from the GRACE observations using model information (Tapley et al., 2013). The errors of such state-
of-the-art models restrict the quality of monthly GRACE solutions to lower accuracies than it could be
expected from the instrument accuracy. In Chap. 6 the mechanism of temporal aliasing is described
in general. And based on model error assumptions the effects are analysed in both, the spectral and
spatial domain. One of the main characteristics of temporal aliasing are resonances on specific SH order
bands (Murböck et al., 2014). As these bands mainly depend on the orbital altitude, optimal altitude
bands regarding temporal aliasing can be derived (Chap. 7). Herein it is focused on how double pair
constellations can help to reduce temporal aliasing effects. Special emphasis is put on optimal SH order
dependent weighting.

Finally, mission concepts for the reference scenarios are set up (Chap. 8), taking into account the
findings in this thesis, to fulfil the science requirements. Besides a validation of the gravity field
retrieval, technical and financial aspects are discussed as well. This chapter directly leads to the overall
summary and conclusions including an outlook to additional scientific aspects (Chap. 9).
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2 Theory

2.1 The Earth’s Gravity Field in Spherical Harmonics

The Earth’s gravity field is defined by its gravitational potential. The gradient of this potential gives
the gravitational force. Together with the centrifugal force due to the Earth’s rotation this is called
gravity (Heiskanen and Moritz, 1967). Regarding the Earth as a solid body its gravitational potential
V can be formulated as an integral over the entire Earth (Heiskanen and Moritz, 1967)

V = G

∫∫∫

Earth

dM

ρ
. (2.1)

Here, G is the Newtonian constant of gravitation with a value of 6.674 · 10−11m3kg−1s−2 (Mohr et al.,
2012), dM is an element of mass, and ρ is the distance between dM and the attracted point. Outside
the attracting masses the gravitational potential is a harmonic function and meets Laplace’s equation
∆V = 0. Furthermore, any harmonic function is continuous and has continuous derivatives of any order
(Heiskanen and Moritz, 1967).

The term 1/ρ in Eq. (2.1) can be expressed with Legendre polynomials Pl (cosψ) of degree l with the
central angle ψ between dM and the attracted point leading to (Torge, 2003)

1

ρ
=

1

R

∞
∑

l=0

(

R

r

)l+1

Pl (cosψ) . (2.2)

Through the addition theorem Pl (cosψ) can be expressed in a geocentric spherical reference frame with
coordinates longitude λ and co-latitude θ. Thereby associated Legendre polynomials of the first kind
Plm (cos θ) (degree l and order m) are used which are order m derivatives of Pl (cosψ) with respect
to cos θ. This together with Eq. (2.2) gives the Spherical Harmonic (SH) expansion of the reciprocal
distance 1/ρ. With SH base functions the Earth’s gravitational potential V can be expressed by the
series expansion (Heiskanen and Moritz, 1967)

V (r, θ, λ) =
GM

R

∞
∑

l=0

(

R

r

)l+1 l
∑

m=0

P̄lm (cos θ)
(

C̄lm cosmλ+ S̄lm sinmλ
)

, (2.3)

with

(r, θ, λ) the spherical coordinates (radius, co-latitude, longitude),
GM the product of gravitational constant and the Earth’s mass,
R the Earth’s equatorial radius,

(l,m) the SH degree and order,
P̄lm (cos θ) the fully normalized associated Legendre functions and
(

C̄lm, S̄lm
)

the fully normalized SH coefficients.

If not denoted otherwise, for R, GM and also for the other two defining physical constants of a Geodetic
Reference System (GRS), the Earth’s flattening term J2 and the angular velocity of rotation ωE, the
following values of GRS80 are used:

R = 6.378137 · 106 m

GM = 3.986005 · 1014 m3

s2

J2 = 1.08263 · 10−3

ωE = 7.292115 · 10−5 rad
s .

(2.4)
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A short notation for SH coefficients and base functions using complex valued quantities is also used in
this thesis. Hence, the gravitational potential is (Sneeuw, 2000)

V (r, θ, λ) =
GM

R

∞
∑

l=0

(

R

r

)l+1 l
∑

m=−l

K̄lmȲlm (θ, λ) (2.5)

with

Ȳlm (θ, λ) = P̄lm (cos θ) eimλ (2.6)

and the SH coefficients K̄lm associated with Ȳlm (θ, λ). For m < 0 the fully normalized Legendre
functions are (−1)m P̄l,−m (cos θ).

Thereby it is

Ȳlm (θ, λ) = P̄l|m| (cos θ)

{

cosmλ, m ≥ 0
sin |m|λ, m < 0

. (2.7)

and the relation for the coefficients reads

K̄lm =







(−1)m
(

C̄lm − iS̄lm
)

/
√
2, m > 0

C̄lm, m = 0
(

C̄lm + iS̄lm
)

/
√
2, m < 0

. (2.8)

The normalization is defined in a way, that the integral over the surface of a unit sphere of the squares
Ȳ 2
lm is 4π. Furthermore, the SH base functions fulfil orthogonality, i.e.

1

4π

∫∫

σ

Ȳl,mȲ
∗
l′,m′dσ = δll′δmm′ . (2.9)

In order to quantify the signal/error in a set of SH coefficients per SH degree and SH order different
quantities are used. Equations (2.10) and (2.11) give the notations and formulas for the unit-less
quantities for SH degree and order respectively. The variances (var), amplitudes (amp) and cumulative
amplitudes (cum) represent full signal/error information for all coefficients of each degree/order. And
the RMS (rms) and median (med) values represent the information per degree/order and per coefficient.
The measures are formulated for SH coefficients

{

C̄lm, S̄lm
}

, but are used analogously for their error
information

{

σC̄,lm, σS̄,lm
}

as well. Except the SH degree/order variances each of these measures can
be expressed in terms of geoid heights by applying a factor R.

κvar (l) =
l
∑

m=0

(

C̄2
lm + S̄2

lm

)

κamp (l) =
√

κvar (l)

κrms (l) =

√

κvar (l)

2l + 1

κmed (l) =medianl
(∣

∣C̄lm

∣

∣ ,
∣

∣S̄lm
∣

∣

)

, for 0 ≤ m ≤ l

κcum (l) =

√

√

√

√

l
∑

lmin

κvar (l)

(2.10)
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κvar (m) =

lmax
∑

l=m

(

C̄2
lm + S̄2

lm

)

κamp (m) =
√

κvar (m)

κrms (m) =

√

κvar (m)

2min(m,1) (lmax + 1−m)

κmed (m) =medianm
(∣

∣C̄lm

∣

∣ ,
∣

∣S̄lm
∣

∣

)

, for m ≤ l ≤ lmax

κcum (m) =

√

√

√

√

m
∑

mmin

κvar (m)

(2.11)

2.2 Least Squares Adjustment

Equation (2.3) is the basis of the functional models of global gravity field determination. The goal is
the determination of all SH coefficients C̄lm and S̄lm up to a maximum SH degree lmax from gravi-
tational observations (various functionals of the gravitational potential). This is done in a least squares
adjustment (LSA) minimizing the squared residuals in the L2-norm (Gauss-Markov model).

In a LSA parameters x (number of parameters u) are estimated from observations l (number of obser-
vations n > u) based on a functional and a stochastic model resulting in the parameter estimates x̂.
The functional model l+ v̂ = f (x̂) gives the relation between x̂ and l̂ = l+ v̂ with the residuals v̂. In
this context the hatˆmarks an estimated quantity. The stochastic model is described with the first two
statistical moments of v. The expectation value of v is assumed to be zero, i.e. E {v} = 0. The variance
covariance matrix (VCM) of v (Qvv) is the expectation value of vvT , i.e. D {v} = E

{

vvT
}

= Qvv.
Thereby, normal distribution is assumed for v.

The a priori variance covariance matrix (VCM) of the observations is Qll which is the inverse of the
weighting matrix P = Q−1

ll . Hence, minimizing vTPv, a best linear unbiased estimate of x is given by

x̂ =
(

ATPA
)−1

ATPl (2.12)

with the design matrix A containing the partial derivatives ∂f (x) /∂x. This is the basic formula of
LSA. It has to be modified, for example, when conditions in general or conditions between the unknowns
are introduced. The inverse of the normal matrix ATPA is the a priori VCM of the parameters

Qx̂x̂ =
(

ATPA
)−1

. (2.13)

The residuals read

v̂ = Ax̂− l (2.14)

and the unit weight variance is

σ̂20 =
v̂TPv̂

n− u
. (2.15)

With σ̂20 the formal VCMs Q of the observations, the unknowns and the residuals are scaled to get the
VCMs Σ̂.

Σ̂x̂x̂ = σ̂20Qx̂x̂ = σ̂20
(

ATPA
)−1

Σ̂v̂v̂ = σ̂20Qv̂v̂ = σ̂20
(

Q
l̂̂l
−AQx̂x̂A

T
)

Σ̂
l̂̂l
= σ̂20Ql̂̂l

= σ̂20AQx̂x̂A
T

(2.16)
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Having more than one set of uncorrelated observations, e.g. l1 and l2, the unknown parameters x

are estimated in a combination at normal equation level with the corresponding design and weighting
matrices evaluating

x̂ =
(

AT
1 P1A1 +AT

2 P2A2

)−1 (
AT

1 P1l1 +AT
2 P2l2

)

. (2.17)

In reality Qll is not known. The simplest case are independent and equally accurate observations with
standard deviation σl. ThenQll is the identity matrix scaled with σ−2

l . It is also possible to approximate
Qll in an iterative LSA analysing the residuals v̂.

An alternative approach to model Qll or the inverse of it as weighting matrix P is the use of auto-
regressive moving-average (ARMA) filters (Schuh, 1996; Siemes, 2008). In this context, the observations
and the columns of the design matrix are filtered in order to decorrelate the system. In general, a digital
filter represented by filter coefficients ak and bk is applied to a series of numbers x [j] with j = {1, 2, . . . J}
resulting in the filtered series (Schuh, 1996)

x̄ [j] =
1

a0

(

Kb
∑

k=0

bkx [j − k]−
Ka
∑

k=1

akx̄ [j − k]

)

. (2.18)

If Ka = 0, it is a moving average (MA) filter (Kb > 0), if Kb = 0 it is an auto-regressive (AR) filter
(Ka > 0) and if Ka > 0 and Kb > 0 it is an ARMA filter. The complex valued frequency response of
the filter is given by

H
(

eiω
)

=

∑Kb

k=0 bke
−ikω

∑Ka

k=0 ake
−ikω

. (2.19)

The filtering can also be represented by the multiplication by matrix F. The filtered Eq. (2.14) is

Fv̂ = FAx̂− Fl. (2.20)

and F is chosen in such a way, that FTF approximates P. Then Eq. (2.12) becomes

x̂ =
(

ATFTFA
)−1

ATFTFl

x̂ =
(

Ā
T
Ā
)−1

Ā
T
l̄

(2.21)

with the filtered observations l̄ = Fl and the filtered design matrix Ā = FA.

There are different ways to estimate the filter in order to decorrelate l. This is done in the spectral
domain. The coefficients bk and ak are chosen in a way, that the absolute frequency response of the filter
approximates the inverse of the amplitude spectrum of the noise in l. As mentioned before, this noise is
not known in real gravity field determination from satellite observations. In a simulation environment
of course it is, and in reality it can be estimated iteratively from the analysis of the residuals of the
LSA. An example with such a stochastic modeling is shown in Sec. 2.4.3 comparing the two simulation
procedures.

2.3 Satellite Orbits

The orbit trajectory of a satellite is determined by the integration of all forces acting on the satellite.
These forces can be divided into gravitational (conservative) forces mainly from Earth, Moon and Sun
(incl. solid Earth and ocean tides), and non-gravitational forces, e.g. atmospheric drag and solar and
Earth radiation. The magnitudes of the different forces depend mainly on the orbital altitude of the
satellite. For Low Earth orbiters (LEO) in altitudes between 200 and 500 km the largest forces are
due to C̄00 and C̄20 of the Earth’s gravity field with average magnitudes of 9 m/s2 (C̄00) and 0.1 m/s2

(C̄20), respectively. Depending on solar activity atmospheric drag reaches 10−7 to 10−5 m/s2 for LEOs
(cf. Sec. 5.1).
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Figure 2.1: Circular satellite orbit in space-fixed frame with Keplerian elements r, I, Ω and u.

In this thesis satellite orbits are approximated by only taking into account the C̄00 and C̄20 terms
leading to precessing ellipsoidal orbits. Based on Kepler’s three laws of planetary motion such elliptic
orbits are modeled by six Keplerian elements. The six elements are

• the semi-major axis a,

• the eccentricity e,

• the inclination I,

• the right ascension of the ascending node Ω,

• the argument of the perigee ω, and

• the mean anomaly M .

The C̄20 term is connected to the Earth’s flattening term J2 = −
√
5C̄2,0 and causes the precession of

the orbit with constant Ω̇. As in this thesis only circular orbits (e = 0) are analysed a is replaced by
the radius r and M is equal to the true anomaly ν and the eccentric anonaly E. Furthermore, there is
the orbital element of the argument of latitude u which is the sum of ω and ν.

A graphical representation of these elements for a circular orbit is shown in Fig. 2.1. The right ascension
of the ascending node Ω is counted positive from the x-axis of the space-fixed frame. The argument
of latitude u and the inclination I are counted positive from the equatorial plane. The Earth-fixed
longitude of the ascending node is Λ = Ω−Θ with Greenwich sidereal time Θ. From Kepler’s third law
the mean motion of the satellite is given by

n =

√

GM

r3
. (2.22)

Hence, the argument of latitude is

u = ω +M = ω + n (t− t0) (2.23)

with the epoch of the passage through the perigee t0. From these elements the geocentric space-fixed
positions rS are determined

rS = r





cosu cosΩ− sinu sinΩ cos I
cosu sinΩ− sinu cosΩ cos I

sinu sin I



 . (2.24)
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The transformation from the space-fixed to the Earth-fixed reference frame is approximated by a rotation
around the z-axis with rotation angle Θ with Θ̇ = ωE. A more accurate model of this transformation
is recommended in the International Earth Rotation and Reference System Service (IERS) conventions
(Petit and Luzum, 2010). Here this transformation is described with three transformation matrices
according to the motion of the celestial pole, Earth rotation and the Earth’s polar motion.

2.3.1 Repeat Cycles

Global gravity field determination requires global coverage of satellite groundtracks. This is assured
when having a repeat cycle. An orbit with a repeat cycle reaches the same Earth-fixed position after
a certain integer repeat period of Nday nodal days. This means that it performs an integer number of
revolutions Nrev in one repeat period. It is a real repeat orbit when Nday and Nrev have no common
divisors and it is also denoted as Nday/Nrev repeat cycle. One nodal day is the time interval after which
the same meridian of the Earth crosses the ascending node of the orbit. Because of the precession of
Ω due to Earth’s flattening nodal days differ from solar days except for sun-synchronous orbits. For
LEOs on polar orbits the nodal day is shorter than the solar day by 4 minutes (shorter by 15 minutes
for I = 70◦ and shorter by 20 minutes for I = 60◦).

The radius r of an orbit with repeat cycle (repeat orbit) with a given number of revolutions Nrev in
Nday days can be determined iteratively (Vallado, 2013). The initial value for the mean motion n0 is

n0 =
Nrev

Nday
ωE (2.25)

The initial value for r is

r0 =

(

GM

n20

)1/3

. (2.26)

In the iteration steps for ri the rates for the orbital parameters Ω̇, ω̇ and Ṁ are computed from Eq. (2.32)
for ni and ri (i = {0, 1, . . . , imax}). And ri is derived from Eq. (2.26) with the new value for the mean
motion

ni =
Nrev

Nday

(

ωE − Ω̇
)

−
(

Ṁ + ω̇
)

. (2.27)

In the case of a sun-synchronous orbit the rates for the orbital parameters are computed for the incli-
nation Isun-sync.i with

Isun-sync.i = arccos

(

−2Ω̇sun-sync.

3R2J2

√

r7i
GM

)

. (2.28)

Thereby Ω̇sun-sync. is the required node rate for a sun-synchronous orbit with a value of 2π/365.2422 days =
1.991064 · 10−7 rad/s.

Table 2.1: Altitude difference in km of orbits with the same repeat cycle for selected inclinations and sun-synchronous
orbits with respect to polar altitudes (positive values belong to higher altitudes than the polar orbits).

Inclination in deg.

Polar altitude in km 60 70 89 sun-synchronous

500 −42.9 −30.6 −1.69 13.0

400 −44.6 −31.8 −1.76 12.8

300 −46.5 −33.1 −1.82 12.6
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Figure 2.2: Repeat cycles of LEOs for I ∈ {90◦, 75◦}.

Repeat orbits with the same repeat cycle (Nrev revolutions in Nday days) are found in different altitudes
depending on the inclination (Tab. 2.1). Figure 2.2 shows repeat cycles for LEOs with nodal days
between Nday = 1 and Nday = 30 for two different inclinations. For the polar orbits it can be seen
that in this altitude range there are two 1 day repeat cycles with 15 revolutions at 548 km altitude
and with 16 revolutions at 256 km altitude. At 398 km altitude there is the 2 day repeat cycle with 31
revolutions. The cycles with larger repeat period result in a characteristic pattern which is also related
to the resonance analyses in Chap. 7.

2.3.2 Spatio-Temporal Sampling

The spatio-temporal sampling of a repeat orbit defines the temporal evolution of the global coverage
of the orbit. One important parameter in order to get an idea of the spatio-temporal sampling is
the Earth-fixed longitude of the ascending equator crossings during one repeat cycle. For LEOs with
circular repeat orbits the evolution of these longitudes are monotonously decreasing (Ω̈ = 0) by

∆λ = −2πNday

Nrev
. (2.29)

With the initial longitude λ0 the longitude at the equator after revolution i is λ0 + i∆λ and at the end
of the repeat cycle the orbit closes at the same longitude

mod (λ0 +Nrev∆λ, 2π) = mod (λ0 − 2πNday, 2π) = λ0.

With the analysis of the gap evolution based on the equator crossing longitudes the repeat orbits can be
divided into fast- and slow-skipping orbits (Iran Pour, 2013). For fast-skipping orbits the largest gaps
between the equator crossings drop to small values already after a few days. Therefore fast-skipping
orbits are favored for the NGGM with the aim of detecting the temporal gravity variations on a global
scale. The period of Nsub < Nday nodal days after which the largest gap drop to a smaller value is
the period of a sub-cycle. The periods of all sub-cycles of a repeat cycle can be derived from the two
integers Nday and Nrev.
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Figure 2.3: Evolution of the equator gap statistics for two 31 day repeat cycles (Top: 478 revolutions. Bottom: 481
revolutions).

The period of the first sub-cycle p1 is the only integer with

p1Nrev = Ndayn− 1 (2.30)

for n ∈ {1, 2, . . . , Nrev}. The repeat period Nday is considered as the 0th sub-cycle period p0. Then the
next sub-cycle periods pj for j ∈ {2, . . . , J} can be found iteratively by

pj = |pj−2 − pj−1| . (2.31)

The following hypothesis is formulated without a complete mathematical proof. For all real repeat
orbits (no common divisors of Nday and Nrev), there is exactly one integer p1 in Eq. (2.30) for Nday > 1
and the iteration in Eq. (2.31) leads to a J <∞ (with pj ∈ {0, 1} for all j ≥ J).

Figure 2.3 shows the evolution of the equator gap statistic for two 31 day cycles. According to Iran Pour
(2013) the orbit in the top is a fast- and the one in the bottom is a slow-skipping orbit. The drops of
the minimum gap lines clearly indicate the different sub-cycles. Equation (2.30) leads to p1 = 19 for
the 31/478 cycle (19 · 478 = 31 · 293 − 1) and p1 = 29 for the 31/481 cycle (29 · 481 = 31 · 450 − 1).
Thereby the two sub-cycles are reached after 293 and 450 revolutions respectively. Then the iteration of
Eq. (2.31) leads to the series of sub-cycles in Tab. 2.2. For the 31/478 cycle it is J = 8 and for 31/481 it

Table 2.2: Sub-cycles of the 31/478 and the 31/481 repeat cycle in nodal days according to Eq. (2.31).

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

31/478 19 12 7 5 2 3 1 2 1 1 0 1 1 0 1 . . .

31/481 29 2 27 25 2 23 21 2 19 17 2 15 13 2 11

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31/481 9 2 7 5 2 3 1 2 1 1 0 1 1 0 1 . . .
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is J = 23. There are 8 unique numbers pj (0 ≤ j ≤ J) for 31/478 and 17 for 31/481, which correspond
to the drops of the minimum gap lines in Fig. 2.3. Both the total number J and the number of unique
sub-cycles in relation to Nday seem to be an indication for the repeat cycle being a fast- (small J/Nday)
or a slow-skipping (large J/Nday) orbit. For LEOs the relation J/Nday has values between 0 and 1.5
and for the relation with unique sub-cycles it is between 0 and 1. From such an analysis one could
divide the repeat cycles into groups according to this unique sub-cycle relation which approaches with
increasing Nday the values 1/k (1.5/k for J/Nday) with positive integer k.

In this field there seem to be a lot more interesting questions related to number theory. In this thesis
the most important conclusion from these repeat cycle and sub-cycle analyses is the following. In the
search space of LEOs for the NGGM there are many fast-skipping orbits which are sufficient to provide
homogeneously distributed global observations even after a few days. A more detailed selection of
optimal orbits will be discussed in Chap. 7.

2.4 Simulation Environment

2.4.1 Semi-analytical Approach

The semi-analytical approach (Sneeuw, 2000) is used to estimate the VCM of unknown gravity field
SH coefficients in a least squares sense according to gravitational observations along a satellite orbit.
Assuming a circular repeat orbit with constant inclination the Earth’s gravitational potential can be
expressed by a SH expansion in a local orbit reference frame. With these simplifications the rates of
the Keplerian elements due to the Earth’s oblateness can be computed with (Kaula, 1966)

Ω̇ =− 3

2
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(
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(
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(
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r

)2
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(2.32)

The right-handed local orbit reference frame is defined with its equator in the orbital plane (x-axis
radial outwards, y-axis in along-track and z-axis in cross-track direction). Rotating the SH expansion
of the Earth’s gravitational potential V from the Earth-fixed to this local frame (coordinates r, u and
Λ) a third sum over the index k is introduced, it reads (Sneeuw, 2000)

V (r, u,Λ) =
∞
∑

m=−∞

∞
∑

k=−∞

Amke
i(ku+mΛ) =

∞
∑

m=−∞

∞
∑

k=−∞

∞
∑

l=max(|m|,|k|)

HlmkK̄lme
i(ku+mΛ). (2.33)

Equation (2.33) represents a 2D Fourier expression of V with the Fourier coefficients Amk. The Amk

consist of a sum over SH degree l and are also called lumped coefficients. For each l it is a product of
transfer coefficients Hlmk and the SH coefficients of the Earth’s gravitational potential K̄lm. For the
gravitational potential V the transfer coefficients are

Hlmk =
GM

R

(

R

r

)l+1

F̄lmk (I) (2.34)
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with the inclination functions F̄lmk. If I and r are constant, Eq. (2.32) may be applied and the
coordinates u and Λ can be written as u̇t and Λ̇t, respectively (Sneeuw, 2000). Hence, the Fourier
coefficients Amk become constant as well, because the exponent depends linearly on t.

In the same way the corresponding transfer coefficients of other functionals of V can be set up. The
transfer coefficients for SGG are computed from the second derivatives of V with respect to radial,
along-track and cross-track direction. Hence, the Vrr transfer coefficients read (Sneeuw, 2000)

HVrr

lmk =
GM

R3

(

R

r

)l+3

(l + 1) (l + 2) F̄lmk (I) . (2.35)

High-low SST is assessed in terms of 3D orbit perturbations in the preferred coordinate frame with
x-axis in along-track, y-axis in cross-track, and z-axis in radial direction. This frame is obtained by a
permutation of the axes of the local orbit frame to which V is rotated (Eq. (2.33)). The transfer for
the orbit perturbations (∆x,∆y,∆z) is derived based on linearized Hill equations with harmonic force
term. With the normalized frequencies (Sneeuw, 2000)

βmk =
ku̇+mΛ̇

n
= k +m

Λ̇

u̇
(2.36)

the transfer coefficients for high-low SST are (Sneeuw, 2000)
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) F̄lmk (I) .

(2.37)

For the cross-track high-low SST component ∆y the cross-track inclination function F̄ ∗
lmk (I) is used

which is the cross-track derivative of F̄lmk (I).

The transfer coefficients for low-low SST in terms of inter-satellite ranges ∆ρ are a combination of the
along-track and radial orbit perturbation transfer coefficients (in-line pair) making use of the inter-
satellite distance ρ = 2r sin η with half opening angle η. It is (Sneeuw, 2000)

H∆ρ
lmk = 2i cos η sin (ηβmk)H

∆x
lmk + 2 sin η cos (ηβmk)H

∆z
lmk. (2.38)

In contrast to a low-low SST in-line formation in a so-called Pendulum formation the trailing satellite
performs periodic movements in cross-track direction wrt. the leading satellite. Hence, for a Pendulum
pair the cross-track orbit perturbation transfer coefficients contribute to the low-low SST transfer as
well. Furthermore, the time derivatives of the ranges, i.e. range rates and range accelerations are
implemented applying a factor inβmk and −n2β2mk to H∆ρ

lmk, respectively.

The semi-analytical approach (SANA) in this thesis is used to estimate the VCM of SH coefficients
Qx̂x̂ from the inversion of normal equation matrices (cf. Eq. 2.13) up to maximum SH degree lmax. The
above described transfer coefficients are computed in the spectral domain and fill the design matrix of
the least squares system. The corresponding stochastic model is computed from the amplitude spectral
density (ASD) of the observation noise. The ASD of a stationary time series x (t) is the square-root of
the power spectral density (PSD). The PSD is the Fourier Transform of the autocorrelation function
of x. For ARMA filters the PSD is given by the absolute square of the frequency response (2.19), i.e.
∣

∣H
(

eiω
)∣

∣

2
. In this thesis all ASDs of time series are derived from PSDs computed with Welch’s method

(Welch, 1967).

The inversion of the normal equation matrix is done independently for each SH order m, which makes
the SANA computationally fast. In real gravity field determination with GOCE this approach was
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Figure 2.4: Scheme of the linear closed-loop simulation (cf. Murböck et al. (2014)). The four boxes in the top represent the
main input and the three boxes in the bottom represent the main output. The main processing steps are the SH synthesis
and the least squares adjustment.

successfully implemented with iterative processing (Pail et al., 2007). In this thesis, the SANA is
used to estimate the formal errors of SH coefficients, not the coefficients themselves. Therefore no
observations are needed and hence no deterministic observation contents, e.g. temporal aliasing, can be
assessed. More details and several simulation examples can be found in Sneeuw (2000) and Murböck
(2011).

2.4.2 Linear Closed-loop Approach

The second simulation environment used in this thesis is a numerical linear closed-loop approach
(LCLA). The observations are computed from static and time varying background gravity field mo-
dels for each epoch up to lmax. In a LSA the unknown gravity field parameters together with their
variance-covariance information are estimated from the inversion of a full normal equation matrix. The
functional model for the gravitational potential V is given by Eq. (2.3) with the gravity field parameters
C̄lm and S̄lm to be estimated. For SGG, only the radial component is shown here, which is the second
derivative of V with respect to r

l̂Vrr
(r, θ, λ) =

GM

R3

lmax
∑

l=0

(l + 1) (l + 2)

(

R

r

)l+3 l
∑

m=0

P̄lm (cos θ)
(

ˆ̄Clm cosmλ+ ˆ̄Slm sinmλ
)

. (2.39)

The functional model for low-low SST is formulated in terms of inter-satellite gravitational acceleration
differences along the line of sight (LoS), it reads

l̂low−low SST = 〈∆agrav.,∆r0〉 . (2.40)

Here the ∆ means the difference between the two satellites, ∆agrav. are the gravitational acceleration
differences containing the gravitational potential gradient differences, and ∆r0 is the unit vector pointing
from one satellite to the other.

In all NGGM low-low SST simulations with the LCLA the error contributions of the two main instru-
ments are taken into account, i.e. the laser ranging instrument (LRI) and the accelerometer (ACC). The
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LRI measures the total contribution to the LoS acceleration differences from which the non-gravitational
part has to be subtracted with ACC observations, i.e.

〈∆agrav.,∆r0〉 = 〈∆atotal,∆r0〉 − 〈∆anon−grav.,∆r0〉 . (2.41)

The total LoS acceleration differences contain a range dependent term and a term depending on the
velocity differences between the two satellites. It reads

〈∆atotal,∆r0〉 = ρ̈+
ρ̇2 − ‖∆ṙ‖2

ρ
(2.42)

and the very right part of Eq. (2.42) is called the velocity term. The error contribution of the velocity
term is neglected in this thesis, it is assumed that the total error is dominated by the range dependent
part ρ̈ and therefore by the LRI noise. This is a major simplification according to Rummel (1979); Jekeli
(1999); Sharifi (2004); Keller and Sharifi (2005); Reubelt et al. (2006). Methods in order to approximate
the velocity term with range observations are described in Chen et al. (2008); Liu (2008); Liu et al.
(2010). However, the SANA low-low SST functional model is derived from orbit perturbations (Eq. 2.38)
and therefore contains the velocity term contribution. In Sec. 2.4.3 comparable low-low SST SANA
and LCLA results are shown based on the same noise assumptions for ∆ρ̈ (Eq. 2.38) and l̂low−low SST

(Eq. 2.40), respectively. Therefore this simplification is assumed to be not critical.

As for SGG, the LoS acceleration differences depend linearly on the unknown gravity field parameters,
no iteration, no linearization and no a priori gravity field information are needed. Figure 2.4 shows the
scheme of this LCLA. In contrast to the previous discussed SANA simulations, here the observations are
used to estimate not only the formal errors but also the gravity field parameters. Here, the stochastic
model is applied with ARMA filters according to Eq. 2.21. The inverse frequency response of the filter
approximates the ASD of the introduced noise time series.

The comparison of variance-covariance information with the residuals between the estimated and the
reference background gravity field carries important information. The stochastic model is represented

Table 2.3: Static and time varying background gravity field models used in this thesis.

Name Reference lmax

Static gravity CO CONS GCF 2 TIM5 Brockmann et al. (2014) 280

GGM05S Tapley et al. (2013) 180

ULux CHAMP2013s Weigelt et al. (2013) 120

EGM2008 Pavlis et al. (2012) 2190

ITG-Grace2010s Mayer-Gürr et al. (2010) 180

GOCO02S Pail et al. (2010) 250

EIGEN-GL04C Förste et al. (2006) 360

Monthly GRACE solutions CSR RL05 Tapley et al. (2013) 96

GFZ RL05 Dahle et al. (2014) 90

JPL RL05 Watkins and Yuan (2012) 90

ITSG-Grace2014 Mayer-Gürr (2014) 90

Ocean tides EOT08a Savcenko and Bosch (2008) 80

FES2004 Lyard et al. (2006) 80

Non-tidal temporal gravity ESA-AOHIS Gruber et al. (2011) 180

upd-ESA-AOHIS Dobslaw et al. (2014) 180
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by an ARMA filter (cf. Sec. 2.2). If the true errors of the observations are modeled adequately by
this filter, the variance-covariance matrix of the unknowns model also the true errors of the unknowns.
This is the case if the observations contain only stochastic noise and the absolute frequency response of
the filter coincides with the noise ASD. The situation is different when the background gravity field is
time varying. Then the residuals between unknowns (mean gravity field for observation duration) and
the mean background gravity field are not only stochastic and contain also deterministic signal from
temporal aliasing (cf. Chap. 6 and 7).

The background gravity field consists of up to three parts, i.e. a static gravity field model, an ocean
tide model and a non-tidal time varying gravity field model. Table 2.3 shows the background gravity
models used in this thesis. From these models the observations for each epoch t are computed by SH
synthesis from SH coefficients

K̄lm (t) = K̄static
lm + K̄ocean tides

lm (t) + K̄non-tidal temporal
lm (t) . (2.43)

For each tidal constituent the SH coefficients for the ocean tides K̄ocean tides
lm (t) are computed from

pro- and retrograde ocean tide coefficients. Thereby the six Doodson variables are used, which denote
fundamental arguments of the orbit of the Sun and the Moon (Montenbruck and Gill, 2005). In this
thesis the eight major diurnal and semi-diurnal constituents are used from the ocean tide models in
Tab. 2.3. The SH coefficients for the non-tidal temporal variations K̄non-tidal temporal

lm (t) are computed
from the models in Tab. 2.3 which are provided with 6 hours sampling. The models represent mass
distributions in Atmosphere (A), Ocean (O), continental Hydrology (H), Ice (I) and Solid Earth (S),
and they are linearly interpolated to the observation epochs.

2.4.3 Simulation Approach Comparison

Sections 2.4.1 and 2.4.2 give the basis for two independent simulation approaches. Here, their results
are compared for low-low SST and radial SGG observations. A similar comparison for low-low SST can
be found in Murböck and Pail (2014), and comparisons of these two approaches with other independent
simulation procedures are given in Gruber et al. (2014).

Three test cases are used for different aspects of this comparison (cf. Tab. 2.4). A spectral representation
of the observation noise for all three cases in terms of ASDs is shown in Fig. 2.5. These noise spectra
are directly used to form the weighting matrices in the spectral domain for the normal equations of
the SANA. For the LCLA an ARMA filter model is adjusted to these spectra according to Eq. (2.21).
The absolute error scale of all simulations in this section depends linearly on the scale of the noise
ASDs. Case 1 is the comparison for the radial SGG component Vrr for a monthly (29/462) circular
polar repeat orbit in 273 km altitude. The ASD of the observation noise aVrr

is shown in comparison
with a GOCE-like Vrr accuracy (left). The analytical noise model is

aVrr
(f) = 10−4 ·

√

(

0.001 Hz

f

)4

+ 1 +

(

f

0.1 Hz

)4 E√
Hz

(2.44)

with 1 Eötvös Unit = 1 E = 10−9s−2. Hence, the SGG instrument for Case 1 is much more sensitive
than a GOCE-like gradiometer. The white noise part at 0.1 mE/

√
Hz is smaller than the GOCE-like

white noise level by a factor of 200 and it is broader (down to 1 mHz instead of 5 mHz for GOCE-like).

Figure 2.6 shows the formal errors (top left) compared with the residuals (top right) wrt. the static
reference model EIGEN-GL04C (Förste et al., 2006) in the SH domain up to lmax = 60. Because of
two reasons both approaches give the same formal errors for Case 1. First, a circular repeat orbit with
constant inclination satisfies the conditions of the SANA. Second, for Vrr the functional model is the
same in both approaches, although it is evaluated in the spectral domain for the SANA and in the
spatial domain for the LCLA (bottom left). The weakness of Vrr for large spatial scales is reflected in
larger errors for low SH degrees.
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Figure 2.5: Noise ASDs for the three simulation cases (cf. Tab. 2.4) of radial SGG (left) in E (1 Eötvös Unit = 1 E
= 10−9s−2) and low-low SST noise contributions in terms of ranges (center) and range accelerations (right).

An analysis with white Vrr noise would lead to an isotropic error spectrum. The colored noise used in
Case 1 makes the error spectra in Fig. 2.6 (top) anisotropic especially for the low SH degrees. Here
the errors increase with increasing m resulting in larger errors for sectorial (m = l) than for zonal
(m = 0) coefficients. The good matching of the formal errors with the LCLA residuals indicates a
realistic stochastic model, which is in accordance with the actual noise behaviour.

The SH degree RMS curves (bottom left) representing global mean geoid errors emphasize, that the
two simulation approaches lead to realistic comparable results for radial SGG. An error propagation
of the block-diagonal variance-covariance matrices lead to the cumulative geoid error depending on the
latitude φ for the SANA (bottom right). For the LCLA the Root-Mean-Square (RMS) rms for each
latitude of global (1◦ × 1◦ grid) geoid height residuals δN is shown. It reads

rms (φ) =

√

√

√

√

1

n

n
∑

i=1

δ2N,i (2.45)

Table 2.4: Simulation cases for the inter-comparison of the semi-analytical and the linear closed-loop approach.

Observation lmax Scenario Orbit Noise ASD

Case 1 Vrr 60 single polar 29/462 repeat orbit Figure 2.5 left

(I = 89◦) (273 km alt.)

Case 2 low-low SST 100 single polar pair 31/478 repeat orbit Figure 2.5 right

(range acc.) (I = 89◦) (420 km alt.)

Case 3 low-low SST 150 double pair, polar realistic orbits (32 days), Figure 2.5 right

(range acc.) (I = 89◦) and 420 km (polar) and

inclined (I = 70◦) 429 km (inclined) alt.
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Figure 2.6: Simulation comparison for radial SGG Vrr for a circular repeat orbit. Top: log
10
-scaled formal errors (left) and

residuals of the closed-loop simulation with respect to the static reference (right). Bottom left: SH degree RMS in mm
geoid height. Bottom right: geoid error (lmax = 60) depending on the latitude.

with n = 180 longitudinal grid points. The geoid error decreases with increasing latitude because of
increasing spatial observation density (bottom right). For the SANA this cumulative geoid error up
to lmax = 60 is larger than for the LCLA by approximately 10% for low to medium latitudes. This
is mainly due to lower residuals compared with the formal errors in the low SH degrees (cf. Fig. 2.6,
bottom left).

The Case 2 scenario (cf. Tab. 2.4) is a single polar low-low SST pair with a monthly repeat cycle
(31/478, cf. Fig. 2.3) in a mean altitude of 420 km. Both Case 2 and 3 contain a GRACE-like in-line
formation which means that the two satellites are on the same orbit with a constant shift in the mean
anomaly. Therefore the LoS has mainly along-track components and the error spectrum is anisotropic.
The inter-satellite distance is 100 km and the ranging instrument is assumed to be a laser interferometer
similar to the one on GRACE-FO with an ASD of (Gruber et al., 2014)

aSST (f) = 1.5 · 10−8 ·

√

(

0.01 Hz

f

)2

+ 1
m√
Hz

. (2.46)

The noise ASD for low-low SST in terms of range rates and range accelerations then is given by the
multiplication of aSST (f) with 2πf and (2πf)2, respectively. The accelerometers (ACC) measuring the
non-gravitational forces acting on both satellites are the second dominating error source. The ACC
noise ASD assumption is also taken from (Gruber et al., 2014) with

aACC (f) = 4 · 10−11 ·

√

(

0.001 Hz

f

)4

+ 1 +

(

f

0.1 Hz

)4 m

s2
√
Hz

. (2.47)

Then the total low-low SST noise ASD in terms of range accelerations is given by

atotal (f) =

√

(

aSST (f) · (2πf)2
)2

+ a2ACC (f)
m

s2
√
Hz

. (2.48)

At this point other noise contributions in a low-low SST satellite mission as for example the attitude
errors are neglected (cf. Chap. 5). Figure 2.5 shows the total noise ASD for Case 2 and 3 with its two
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Figure 2.7: Simulation comparison for low-low SST for a circular repeat orbit. Top: log
10
-scaled formal errors of the

semi-analytical (left) the linear closed-loop approach (center) and log
10
-scaled residuals of the closed-loop simulation with

respect to the static reference (right). Bottom left: SH degree RMS in mm geoid height. Bottom right: geoid error
(lmax = 100) depending on the latitude.

components in comparison with a GRACE-like range rate accuracy of 1 µm/s, transformed to ranges
and range accelerations respectively (center and right). The ACC noise dominates below f = 6 mHz
and the SST noise above. The GRACE-like noise ASD is higher than the total noise ASD by up to 3
orders of magnitude.

As in Case 1 the orbits are repeat orbits, but now different functional models for the range acceleration
observations are used in the two simulators (cf. Sec. 2.4.1 and 2.4.2). Nevertheless, the two approaches
lead to comparable results in terms of formal errors (lmax = 100) with typical GRACE-like error
characteristics with high sensitivity (low formal errors) for the zonal and low sensitivity for the sectorial
coefficients (cf. Fig. 2.7, top). The formal errors of the SANA (left) are larger than the ones of the
LCLA (center) by up to a factor of 2 around the sectorials, around the zonals they match. Due to
larger errors around the sectorials the SH degree RMS of the SANA formal errors are larger than the
formal errors and residuals of the LCLA by a factor between 1.2 and 1.8. The geoid errors per latitude
(bottom right) show the largest differences at the equator with a factor of 1.8. These deviations give
an estimate of how realistic the results of the two simulators are for low-low SST.

In this thesis only simplified circular orbits are used for the simulations (cf. Sec. 2.3). Simulation
comparison Case 3 shows that the results are realistic up to lmax = 150 despite this simplification.
Furthermore it proves that the differences between the two approaches for a double low-low SST pair
are smaller than for a single polar in-line pair. This double low-low SST pair is in a Bender-type
constellation (Bender et al., 2008) with one polar and one inclined pair. The inclined pair of Case 3 has
an inclination of 70 degrees. The realistically integrated 32 days orbits for the LCLA are also used in
the final full-scale simulations in Gruber et al. (2014). For the SANA 32 day repeat orbits are chosen
with the same altitudes as the realistic orbits (cf. Tab. 2.4).

The noise ASD for both pairs of Case 3 is the same as in Case 2. Figure 2.8 shows the spectral error
characteristics for the single polar (top row) and inclined pair (center row) and for the combined solution
(bottom row). As the residuals (right column) fit the formal errors the stochastic model is correct. As
in Case 2 the formal errors of both approaches (left and center) show small differences around the
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Figure 2.8: Simulation comparison for double low-low SST mission on realistic orbits in terms of log
10
-scaled formal errors

of the semi-analytical (left column) and the linear closed-loop approach (center column) and log
10
-scaled residuals of the

closed-loop simulation with respect to the static reference (right column). The top row shows the error spectra of the
single polar, the center row for the single inclined and the bottom row for the combined double pair.

sectorials. For the inclined pair the deviations are smaller. The effects of the polar gap for the inclined
pair can be seen in large errors around the zonals. The combined solution shows the advantage of this
Bender-type scenario. The sectorial coefficients benefit from high sensitivity of the inclined pair, and
the zonals benefit from the polar pair. This makes the error spectrum more isotropic compared to a
single in-line pair.

The geoid errors in terms of SH degree RMS and the cumulative (lmax = 150) geoid errors depending on
the latitude are shown in Fig. 2.9. Again the formal errors for the SANA are compared with the RMS
of the LCLA residuals. For the polar pair the relative error characteristics of the two approaches are
the same as in Case 2. The SH degree RMS curves for the double pair solutions approach each other
with increasing SH degree. This results in a good agreement of the cumulative geoid errors per latitude
(max. deviations at low latitudes up to 15%). The single inclined solution of the LCLA results in very
large errors for the polar gap but for low latitudes the geoid errors are smaller than for the single polar
solution.

With these three simulation cases it is shown that both approaches lead to comparable results for both
radial SGG and low-low SST. The largest deviations are observed for single in-line polar solutions. In
this thesis, the computationally fast SANA is used to estimate the sensitivity of different scenarios up to
high SH degrees and orders. In chap. 4 the instrument requirements are derived from SANA simulations
in comparison with the mission objectives. With the LCLA effects of non-stochastic processes, e.g.
temporal aliasing from tidal and non-tidal mass variations, are assessed (Chap. 7). The different error
sources addressed in this thesis are stochastic instrument noise as in the above examples and non-
stochastic temporal aliasing errors.
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25

3 From Science Requirements to Mission
Objectives

In this chapter the mission objectives (MO) of the NGGM are derived from the science requirements
(SR). The starting point are consolidated SR for different sub-systems of the Earth. The SR are
defined in terms of required accuracies for specific spatial and temporal resolutions for different signals
of interest. After the conversion to geoid heights (depending on the spatial resolution, Sec. 3.1) they
are converted to requirements for the basic temporal resolution of 1 month. For this the SR for static
and trend signals are translated based on formal error propagation (sec. 3.2). The SR are shown in
Tab. 3.2. The MO are defined in Sec. 3.3 taking into account current mission accuracies and signal
attenuation due to the orbital altitude.

3.1 Translation to Geoid Heights

The SR formulated in required accuracies for required temporal and spatial resolutions for specific
(geophsyical) signals of interest can be found in Sneeuw et al. (2005), Panet et al. (2013), and Gruber
et al. (2014). Four different physical units are used in these studies for the different signals in the fields
of hydrology, cryosphere, ocean, solid Earth, and geodesy. These units are geoid heights N in m, gravity
anomalies ∆g in Gal (1 Gal = 10−2 m/s2), radial gravity gradients Vrr in E (1 E = 10−9 s−2) and surface
densities S in kg/m2. In this thesis surface densities are regarded as equivalent water heights (EWH) in
m, i.e. 1 mm of EWH corresponds to a surface density of 1 kg/m2. In spherical approximation the SH
expansions of N , ∆g, Vrr and S are given in Eq. (3.1) using the short notation for the SH coefficients
and base functions in Eq. (2.5).

N (θ, λ) =R

lmax
∑

l=0

l
∑

m=0

K̄lmȲlm (θ, λ)

∆g (θ, λ) =
GM

R2

lmax
∑

l=0

(l − 1)
l
∑

m=0

K̄lmȲlm (θ, λ)

Vrr (θ, λ) =
GM

R3

lmax
∑

l=0

(l + 1) (l + 2)
l
∑

m=0

K̄lmȲlm (θ, λ)

S (θ, λ) =
M

4πR2

lmax
∑

l=0

2l + 1

1 + k′

l
∑

m=0

K̄lmȲlm (θ, λ)

(3.1)

In order to compare different signals of different units with each other, a conversion can be derived from
Eq. (3.1) from the relation between the cumulative degree variances up to a specific SH degree lmax. This
max. degree corresponds to a spatial resolution on the Earth’s surface of πR/lmax ≈ 20, 000 km/lmax.
Figure 3.1 and Tab. 3.1 give the graphical and numerical representations of this conversion, respectively.
This analytical approach gives comparable values as numerical simulations based on Gaussian bell
shaped signals in Panet et al. (2013).
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Table 3.1: Conversion between geoid heights in mm, gravity anomalies in µGal, gravity gradients in mE and EWH in cm depending on the spatial resolution in km.

1 mm geoid height 1 µGal gravity anomaly 1 mE gravity gradient 1 cm EWH

spatial gravity gravity geoid gravity geoid gravity geoid gravity gravity
res. SH anomaly gradient EWH height gradient EWH height anomaly EWH height anomaly gradient
in km degree in µGal in mE in cm in mm in mE in cm in mm in µGal in cm in mm in µGal in mE

10 2,004 218 560 520 0.00460 2.57 2.39 0.00179 0.389 0.930 0.00192 0.418 1.08
20 1,002 109 140 260 0.00920 1.29 2.40 0.00713 0.776 1.86 0.00384 0.417 0.538
30 668 72.4 62.4 174 0.0138 0.862 2.40 0.0160 1.16 2.79 0.00574 0.416 0.359
40 501 54.3 35.2 131 0.0184 0.648 2.41 0.0284 1.54 3.71 0.00765 0.415 0.269
50 401 43.4 22.6 105 0.0230 0.520 2.41 0.0443 1.92 4.64 0.00955 0.415 0.216
60 334 36.2 15.7 87.4 0.0276 0.434 2.42 0.0636 2.30 5.56 0.0114 0.414 0.180
70 286 31.0 11.6 75.0 0.0323 0.373 2.42 0.0864 2.68 6.48 0.0133 0.413 0.154
80 250 27.1 8.88 65.7 0.0369 0.328 2.43 0.113 3.05 7.40 0.0152 0.412 0.135
90 223 24.1 7.03 58.5 0.0415 0.292 2.43 0.142 3.42 8.32 0.0171 0.412 0.120
100 200 21.7 5.71 52.7 0.0462 0.263 2.43 0.175 3.80 9.24 0.0190 0.411 0.108
200 100 10.8 1.46 26.7 0.0928 0.135 2.48 0.686 7.39 18.3 0.0374 0.403 0.0546
300 67 7.15 0.662 18.1 0.140 0.0926 2.53 1.51 10.8 27.3 0.0554 0.396 0.0367
400 50 5.34 0.380 13.7 0.187 0.0713 2.57 2.63 14.0 36.0 0.0729 0.389 0.0278
500 40 4.25 0.249 11.1 0.235 0.0585 2.61 4.02 17.1 44.6 0.0902 0.383 0.0224
600 33 3.53 0.176 9.34 0.284 0.0500 2.65 5.67 20.0 52.9 0.107 0.378 0.0189
700 29 3.01 0.132 8.08 0.332 0.0440 2.69 7.56 22.7 61.0 0.124 0.372 0.0164
800 25 2.62 0.103 7.13 0.382 0.0395 2.72 9.67 25.3 68.9 0.140 0.367 0.0145
900 22 2.32 0.0835 6.39 0.431 0.0360 2.76 12.0 27.8 76.6 0.156 0.363 0.0131
1,000 20 2.08 0.0690 5.80 0.481 0.0332 2.79 14.5 30.1 84.1 0.172 0.358 0.0119
2,000 10 0.997 0.0210 3.15 1.00 0.0211 3.16 47.6 47.5 150 0.318 0.317 0.00667
3,000 7 0.643 0.0113 2.30 1.56 0.0176 3.58 89.2 56.9 204 0.436 0.279 0.00491
4,000 5 0.464 0.00752 1.89 2.16 0.0162 4.09 133 61.6 252 0.528 0.245 0.00397
5,000 4 0.359 0.00568 1.68 2.79 0.0158 4.68 176 63.2 295 0.596 0.214 0.00339
6,000 0.297 0.00475 1.56 3.47 0.0160 5.37 216 62.3 334 0.642 0.189 0.00302
7,000 3 0.245 0.00401 1.47 4.17 0.0164 6.10 252 60.9 370 0.681 0.166 0.00272
8,000 0.215 0.00364 1.42 4.95 0.0172 6.93 283 58.4 399 0.706 0.150 0.00254
9,000 0.185 0.00327 1.37 5.72 0.0180 7.76 314 55.8 428 0.731 0.133 0.00237
10,000 2 0.154 0.00290 1.32 6.49 0.0188 8.60 345 53.2 457 0.755 0.116 0.00219
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Figure 3.1: Conversion between geoid heights in mm, gravity anomalies in µGal, gravity gradients in mE and EWH in cm
depending on the spatial resolution in km. For example, 1 mm geoid height (left) corresponds to the blue line in terms of
gravity anomalies in µGal.

3.2 Translation to Monthly Resolution

The next step is the translation of the different required temporal resolutions to the basic temporal
resolution of 1 month. This period is chosen because of the max. required spatial resolution in the SR
of 50 km (cf. Tab. 3.2). Assuming a homogenous global groundtrack pattern, this requires a minimum
number of revolutions of 401. And for satellite altitudes lower than 500 km (more than 15 revolutions
per day), this is reached after 1 month at the latest.

The MO of course must take into account also the temporal resolutions of the SR, which are higher
than one month, i.e. 1 and 10 days (cf. Tab. 3.2). After 1 day any satellite with an altitude smaller than
500 km will reach a near homogeneous global coverage. This also holds for periods around 10 days if
the orbit of the NGGM has a sub-cycle with this period. Furthermore, science requirements regarding
static and trend signals require a long mission duration of at least 11 years. As this covers one full
solar cycle, it helps to separate the results from systematic effects related to external disturbances (e.g.
atmospheric drag and solar radiation).

With formal error propagation the translation to the basic temporal resolution is assessed. A time
depending signal with unit U is observed with a regular temporal sampling (k observations per year)
over a period of N years. Hence, in total there are n = k · N observations. The observations l̂ are
assumed to be independent and to have the same accuracy. For this time series a constant and linear
term p̂0 and p̂1 shall be estimated in a least-squares sense. The functional model is l̂ = p̂0 + p̂1 · t
with the time vector ti = (i− n/2) /k years (reference epoch t = 0 in the middle of the period) and
i = 0, . . . , n − 1. The formal errors of the parameters p̂0 and p̂1 are the square root of the diagonal
of the inverse normal equation matrix, i.e. the variance co-variance matrix of the unknown parameters
Qp̂p̂. The matrix Qp̂p̂ can be derived analytically to

Qp̂p̂ =
1

n
∑

t2i − (
∑

ti)
2

( ∑

t2i −∑ ti
−∑ ti n

)

. (3.2)

Thereof, depending on the standard deviation of each single observation σi with unit U the standard
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Figure 3.2: Science requirements for the five different areas in mm geoid heights. Top left: hydrology and geodesy. Top
right: cryosphere. Bottom left: ocean. Bottom right: solid Earth. The SR, which are not achievable with the specified
temporal and spatial resolution with the NGGM are marked with [ ] (cf. Fig. 3.2). The SR, which are not achievable with
the required accuracy with the NGGM are marked with ( ). And the requirements, which are only achievable with the
NGGM fulfilling the optimal mission objectives are marked with ∗ (cf. Fig. 3.3).

deviations for the constant term σp̂0 and the linear term σp̂1 result in

σp̂0 =σi

√

n2 + 2

n (n2 − 1)

σp̂1 =σi

√

12k2

n (n2 − 1)
.

(3.3)

The unit for σp̂0 is U and for σp̂1 it is U/year. With Eq. (3.3) the science requirements for all static
and secular signals are converted to monthly requirements. With monthly observations (k = 12) and
a 11 years mission duration (N = 11, n = kN = 132) a formal standard deviation of the trend
of σp̂1 = 1 U/year is reached for standard deviations for each monthly observation of σi = 36.5 U.
And a formal standard deviation of the mean of σp̂0 = 1 U is reached for σi = 11.5 U. For the
conversion of the science requirements a safety factor of 2 is applied leading to σi (σp̂1 = 1 U/year) =
20 U and σi (σp̂0 = 1 U) = 6 U (one significant digit). The safety factor accounts for error effects, which
are neglected here (e.g. correlated observations, imperfect homogenous global coverage, estimation of
harmonic signals in addition to p̂0 and p̂1).

For the signals with higher required temporal resolution than 1 month a simple
√
n-rule is applied for

the translation to monthly requirements. To derive the monthly requirement for ground water (SR2)
for example the 10 days requirement is divided by

√
3 as there are three times more observations.

The consolidated SR in terms of signals of interest with required spatial and temporal resolution and
required accuracy and with the translated monthly geoid accuracy are shown in Tab. 3.2. The selection
of these signals is based on Sneeuw et al. (2005), Gruber et al. (2014), and Panet et al. (2013). A
graphical representation of the SR in geoid heights is shown in Fig. 3.2. The maximum required spatial
resolutions is 50 km (e.g. for ice sheets) and the max. temporal resolution is daily (e.g. for soil moisture).

The values are compared with the achievable spatio-temporal resolution of a single- and double-pair
(solid black lines). These lines are derived from the assumption that a single satellite performs 16 revo-
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Table 3.2: Science requirements (SR) for the NGGM in five different areas with required spatial and temporal resolution and the required accuracy. The last column contains the
required monthly geoid accuracy derived from unit conversion (cf. Fig. 3.1) and scaling according to formal error propagation. The SR, which are not achievable with the required
temporal and spatial resolution with the NGGM are marked with [ ] (cf. Fig. 3.2). The SR, which are not achievable with the required accuracy with the NGGM are marked with
( ). And the requirements, which are only achievable with the NGGM fulfilling the optimal mission objectives are marked with ∗ (cf. Fig. 3.3).

SR Required spatial Required temporal Required Required monthly
Area Number Signal resolution in km resolution accuracy geoid accuracy in mm

Hydro- (1) Snow, precipitation, dams, 50 monthly 1 mm geoid 1
logy run-off, evapo-transpiration

2 Ground water 200 10 days 1 mm geoid 0.6
[3] Soil moisture 150 1 day 1 mm geoid 0.2
3r Soil moisture (r=reduced res.) 150 5 days 1 mm geoid 0.4

Cryo- 4 Ice mass balance 200 to 400 monthly 1 to 10 cm EWH 0.07 to 0.4
sphere (5) Bottom topography, ice 50 quasi-static 0.01 to 0.1 mGal gravity 1 to 10

compaction
6∗ Geoid for sea ice thickness 50 static 100 mm geoid 600
7∗ Ice sheets (rock basement) 50 static 1 to 5 mGal gravity 100 to 600

Ocean 8∗ Narrow currents, topographic 50 quasi-static 5 to 10 mm geoid 30 to 60
control, coastal currents,
eddies, ocean fronts

9 Basin scale mass change 1,000 monthly 0.1 to 2 mm geoid 0.1 to 2
(10) Bottom barotropic currents 100 10 days 0.1 to 10 mm geoid 0.06 to 6
11 Global sea level change 200 secular 0.2 to 0.3 mm/year geoid 4 to 6

Solid 12 Glacial isostatic adjustment 400 secular 1 to 10 µm/year geoid 0.02 to 0.2
Earth [(13)] Co-/Postseismic deformation, 50 1 day 0.5 mm geoid 0.1

slow silent earthquakes
14 Plate tectonics, mantle 500 to 5,000 monthly 0.01 mm geoid 0.01

convection, volcanos
15 Core motion 5,000 monthly 1 nGal to 1 µGal gravity 0.003 to 3
16 Lithosphere (continental 100 static 0.5 to 2 mGal gravity 100 to 500

and oceanic)
17 Seismic hazards 100 static 1 mGal gravity 300

Geodesy 18∗ GNSS leveling 50 km static 5 to 20 mm geoid 30 to 100
19 Unified height systems, 200 km monthly 1 mm geoid 1

satellite orbits
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Figure 3.3: Monthly requirements in mm geoid heights and mission objectives. The SR, which are not achievable with
the specified temporal and spatial resolution with the NGGM are marked with [ ] (cf. Fig. 3.2). The SR, which are
not achievable with the required accuracy with the NGGM are marked with ( ). And the requirements, which are only
achievable with the NGGM fulfilling the optimal mission objectives are marked with ∗ (cf. Fig. 3.3).

lutions per day and that this is sufficient to estimate a global gravity field up to lmax = 16 corresponding
to a spatial resolution of 1,250 km. With a second orbit which doesn’t follow the same groundtrack the
spatial resolution is doubled. It can be seen, that SR3 (soil moisture) and SR13 (co-/postseismic defor-
mation, slow silent earthquakes) are not achievable with a single- and a double-pair with the specified
resolution. By decreasing the temporal resolution of these two requirements to the double-pair line, the
achievable values for the NGGM can be approximated. This leads to achievable temporal resolutions
of 5 days for SR3 (cf. SR3r) and 10 days for SR13. Doing so, it is clear that a NGGM with only one
satellite or satellite pair will fulfil these SR only with reduced resolution (temporal and/or spatial).
The translated monthly geoid requirements for the NGGM are shown numerically in the last column of
Tab. 3.2.

3.3 Mission Objectives

In this section the mission objectives (MO) of the NGGM are derived from the SR. At first there is
a need for a general MO assuring global coverage of the resulting gravity field models. This requires
at least 1 polar orbit for the NGGM. The required geoid accuracy is formulated for different spatial
resolutions for the basic temporal resolution of 1 month. The monthly SR are shown in the last column
of Tab. 3.2 and in Fig. 3.3. Here, the SR are compared with mean monthly GRACE and GOCE-like
(monthly repeat cycle) cumulative geoid errors. Compared to these current baselines, the NGGM shall
fulfil significantly more SR.

A reasonable choice with respect to technical limits taking into account also the signal attenuation in
satellite altitude are the chosen MO shown in blue and red circles. The blue circles mark the basic
MO at spatial resolutions of 500 and 150 km. For the max. spatial resolution of the SR of 50 km the
red circle represents the optimum high resolution MO. With the basic MO in blue more than half of
the SR are fulfilled with the required temporal resolution (SR without brackets and ∗) and with the
optimal MO nearly 3/4 (SR without brackets). The signals related to the not fulfilled SR can only be
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Table 3.3: Mission Objectives (MO) for the NGGM.

MO1 The gravity field solutions for different periods must provide global coverage.

MO2 The maximum monthly cumulative geoid error of the NGGM is 0.01 mm at a spatial resolution
of 500 km and 0.4 mm at 150 km. Really nice to have would be a NGGM with 30 mm geoid
accuracy for a spatial resolution of 50 km.

MO3 The orbital groundtrack distribution must be sufficient to retrieve global gravity field models
after 5 days down to a spatial resolution of 150 km and after 10 days down to a spatial
resolution of 100 km.

MO4 The minimum mission duration is 11 years (one solar cycle).

observed with reduced resolution or accuracy. To account for the higher temporal resolution of SR2,
SR3r, SR10, and SR13 the third MO of the NGGM requires a homogenous global coverage after 5 and
10 days which is achievable by a proper sub-cycle choice. The condition for the formal error propagation
in the previous section is a minimum mission duration of 11 years, which is the last MO. The MO for
the NGGM are given in Tab. 3.3.

A single satellite (pair) is not able to provide the required spatial resolution for the short term MO3.
With the approximation of the previous section a spatial resolution of 250 km can be reached with a
single LEO after 5 days and 130 km after 10 days. This means that a constellation of at least two
satellites or satellite pairs is required providing spatial resolutions of 130 km and 63 km after 5 and
10 days respectively. From this point of view the max. required spatial resolution after one month of
50 km is not crucial. Theoretically even a single satellite (pair) with monthly repeat cycle provides
enough observations to estimate SH coefficients at least up to lmax = 400, corresponding to a spatial
resolution of 50 km.
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4 Basic Scenarios and Instrument Requirements

In this chapter requirements are derived for the key sensors for selected basic mission scenarios (Sec. 4.1).
These requirements ensure that each scenario is able to fulfil the science requirements and mission
objectives defined in Chap. 3. In Sec. 4.2 typical noise characteristics are analyzed. Based on these
sensor noise ASDs instrument requirements are determined from semi-analytical simulation results for
selected mission scenarios.

4.1 Basic Scenarios

A large number of different NGGM scenarios are analysed for both low-low SST and SGG missions,
e.g. in Anselmi (2010), Wiese et al. (2012), Elsaka (2012), Iran Pour (2013), Reubelt et al. (2014), and
Gruber et al. (2014). The most promising scenarios with respect to both scientific and technical issues
are low-low SST missions (single and double pairs) with a laser ranging instrument. For single low-low
SST pairs the weakness of an in-line formation is reduced with so-called Pendulum formations. Adding
a second pair in an inclined orbit (Bender-type formation) further increases the isotropy of the error
spectrum, and a higher resolution can be achieved. The third chosen basic scenario in this thesis is the
combination of low-low SST and radial SGG.

The inter-satellite vectors of other low-low SST scenarios like the so-called Cartwheel or Helix (Wiese
et al., 2009; Anselmi, 2010; Reubelt et al., 2014) contain also a radial component. But the technological
complexity of these scenarios is much higher. This is why they are not addressed in this thesis. Fur-
thermore, there is a promising next NGGM concept developed in the context of the GETRIS project
(Schlicht et al., 2014). One component of GETRIS are links between geostationary (GEO) satellites
and LEOs with which the range is determined with micrometer accuracy. First simulations based on the
LCLA show that such a precise high-low SST outperforms a GRACE-like scenario (Schlie et al., 2014).
This is reasonable, because the inter-satellite vector between LEO and GEO contains more isotropic
radial information especially at low latitudes than a polar in-line low-low SST pair. This study show
another big advantage of this precise GEO-LEO tracking concept for gravity field determination. If
more LEOs are tracked from the GEOs, the temporal resolution can be increased down to a few days.

For each of the basic scenarios repeat cycles are determined according to the mission objectives. It is
required to have a monthly repeat orbit with sub-cycles of approximately 5 and 10 days. In general,

Table 4.1: Parameters for the four basic repeat orbits. Polar orbits (I = 89◦) are marked with p, inclined orbits (I = 70◦)
with i.

Altitude in km

Name Nday Nrev polar inclined

ORB1p/ORB1i 31 491 299 268

ORB2p/i 31 484 363 333

ORB3p/i 31 478 420 390

ORB4p/i 31 471 487 458
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the lowest altitude is the best for the NGGM. But the assessment of a NGGM always has not only
scientific requirements, but also technical and financial constraints. Therefore for each possible NGGM
the choice of the orbital altitude is restricted to higher altitudes than a specific threshold. From a
technical point of view the main effects of having a lower altitude is increasing demand of power or fuel
and decreasing mission duration.

Another impact of orbital altitude are SH order resonances which increase the temporal aliasing error
effect at specific SH order bands. This effect is described in Murböck et al. (2014) and further addressed
in Chap. 6 and 7. The main conlusions of Murböck et al. (2014) contain four optimal orbital altitude
bands for polar orbits. The repeat cycles within these bands lead to the smallest temporal aliasing error
effects. For each of these four bands one repeat cycle is chosen with the required properties regarding
sub-cycles. The parameters of the four basic polar and inclined repeat orbits are given in Tab. 4.1.
Each of them is a fast-skipping orbit (cf. Iran Pour (2013) and Sec. 2.3.2) and has subcycles of 5 and
approximately 10 days. Each of the four repeat cycles is chosen from a set of near monthly repeat
cycles in one of the four altitude bands. There are several other possible orbit choices which lead to
very similar results. Of course for 31 days more repeat cycles in one altitude band can be found, because
it is a prime. The noise ASDs defined in Sec. 2.4.3 are the basic noise models for the ranging instrument
(Eq. (2.46)), the accelerometers (Eq. (2.47)) and the gradiometer (Eq. (2.44)). With this simulation
setup in the following the instrument requirements are estimated for the four altitudes.

For each low-low SST pair a reference inter-satellite distance of ρ0 = 100 km is defined. On the one
hand a larger distance increases the sensitivity especially in the low SH degrees (Gruber et al., 2014).
On the other hand there is the effect of common mode attenuation which leads to increased errors for
SH degrees (Sneeuw, 2000) l ≈ k2πR/ρ0 with integer k. As for the NGGM a max. spatial resolution
of 50 km is formulated (MO2), there shall be no attenuation for l < 400. Hence it is ρ0 < 100 km. Of
course the choice of the distance has also technical constraints, because the laser ranging instrument
accuracy depends on the absolute range as well. For the laser described in Gruber et al. (2014) 100 km
was chosen, fulfilling the defined instrument requirement.

4.1.1 Double pair (Bender-type)

The low-low SST double pair in a Bender-type constellation has big advantages compared to a single
in-line pair (Bender et al., 2008). It has been studied in Visser et al. (2010), Anselmi (2010), Wiese
et al. (2012), Elsaka (2012), and Reubelt et al. (2014). The Bender-type constellation provides more
isotropic measurements and the temporal (spatial) resolution is doubled for the same spatial (temporal)
resolution. For the NGGM one polar pair is needed because global coverage is required. The selection of
an optimal inclination Iopt of the inclined pair can be assessed with respect to different parameters. For
smaller Iopt the combined solution gets more isotropic but the errors in high latitudes (observations only
from the polar pair) increase. Although the MOs (Tab. 3.3) are formulated in terms of global mean
geoid accuracy requirements the SRs must not be forgotten. Especially the SRs for the cryosphere
concern the polar areas and Greenland.

Wiese et al. (2012) and Gruber et al. (2014) estimate from independent simulations an optimal inclina-
tion of the inclined pair of 70◦ to 75◦. For this thesis 70◦ is chosen for which in Fig. 2.8 semi-analytical
simulation results are shown for ORB3p/i. The SH degree RMS curves show an average improvement
by a factor of 10 when adding the inclined to the polar pair. At a spatial resolution of 150 km the
factor is decreased to 5. The improvement is even larger for non-stochastic error contributions like
temporal aliasing from background model errors. Different independent simulations in Gruber et al.
(2014) taking such errors into account estimate a factor of 20 for the same spatial resolution.

In Tab. 4.1 the double pair for each altitude consists of two pairs with the same repeat cycle. The
same repeat cycle with different inclination is found in a different altitude, in this case the inclined
orbits are 30 km lower than the polar ones. The choice of the repeat cycle in this case is driven by the
MOs (Tab. 3.3). Further investigations could also take gravity field retrieval performances into account.
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Figure 4.1: Equator gap statistics for the single polar and the double Bender-type pair of ORB1 (cf. Tab. 4.1). Left: mean
over all ∆Ω (cf. Eq. (4.1)) for single and double pair. Right: max. gaps for the double pair and ∆Ω < 180◦.

Especially for certain processing strategies with the aim of reducing temporal aliasing the choice of the
two repeat cycles should be further elaborated. An example for such a strategy is the estimation of low
resolution gravity fields at short time intervals as described in Wiese et al. (2011). In Sec. 6.2 there is
a discussion of this method regarding the variances of geophysical signals at certain frequencies.

With a double pair the spatial resolution can be doubled compared to a single pair for the same temporal
resolution. Having the same repeat cycles for the polar and inclined pair as defined in Tab. 4.1 this is
simply ensured by putting the inclined pair orbit tracks between the polar ones. The separation between
two consecutive ascending tracks after one full repeat cycle is 360/Nrev for both pairs. Doubled spatial
resolution with homogeneous groundtrack coverage is reached for the double pair if the separation
between the ascending nodes is

∆Ω = (2k − 1)π/Nrev (4.1)

with integer k. Hence, analogously to Fig. 2.3 for a single pair, Fig. 4.1 shows the equator gap statistic
for the double pair of ORB1. The evolution averaged over all ∆Ω (left) compares the single polar with
the double pair. The sub-cycles can clearly be seen in the single pair max. gaps line (red dashed). After
the full cycle all lines (min, mean and max) for the single and double pair coincide at 82 km and 41 km,
respectively. The max. gaps dependency on ∆Ω (right) is nearly periodic with 22.5◦ = 360◦/16 which
is related to the number of revolutions per day. In the first 6 days within each 22.5◦ there are smaller
max. gaps for ∆Ω close to 180◦/16. Above 6 days the dependency of the max. gaps on ∆Ω is not so
strong which is of course driven by the gap statistic of the single pair (left).

4.1.2 Pendulum

The Pendulum scenario is investigated and analysed regarding gravity field retrieval performance in
Anselmi (2010), Elsaka (2012), and Reubelt et al. (2014). In a Pendulum formation with two satellites
at the same altitude the trailing satellite performs periodic movements in cross-track direction with
respect to the leading satellite. Therefore it leads to global multidirectional observations along the LoS
between the two satellites. It is favorable to implement the Pendulum with a constant shift in Ω and
not in I. A shift in Ω improves the observation geometry in lower latitudes whereas the shift in I
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Figure 4.2: Unit-less formal errors (log10) for low-low SST in an in-line (top left) and a Pendulum (bottom left) formation
with opening angle of 23◦ on ORB1p (cf. Tab. 4.1). Both single pairs use the same observation noise assumption (Fig. 4.5
for ORB1). Right: SH degree RMS in mm geoid height for the two formations in comparison with static Kaula-rule.

has this effect in high latitudes. However, at high latitudes the observations during one repeat period
are anyhow multidirectional, because satellites cross the poles along different meridians. Furthermore
different I would require more orbit control manoeuvres over a long period in order to keep a stable
formation, because of different ascending node precession due to the Earth’s flattening. The magnitude
of the pendulum motion depends on the angle 0◦ ≤ α < 90◦, which is the smallest angle between the
LoS and the velocity vector of the leading satellite. For Ω shifted Pendulum scenarios the largest α
occurs at the equator. The most isotropic observations for a Pendulum are reached for α = 45◦. Hence
for a polar orbit during one repeat cycle the LoS vectors for ascending tracks are perpendicular to
descending ones in low latitudes.

But there is a technical constraint for α. For increasing α the absolute range rate ρ̇ increases to more
than 40 m/s for LEO Pendulum scenarios with α = 45◦. For an inter-satellite laser interferometer as on
GRACE-FO and assumed in Reubelt et al. (2014) the limit for the absolute range rate |ρ̇| is 10 m/s. For
a constant along-track separation ρx (constant ∆M) the range depending on the argument of latitude
u can be approximated by

ρ (u) =
ρx
2

(

1

cosα
+ 1

)

+
ρx
2

(

1

cosα
− 1

)

cos (2u) . (4.2)

Then the range rate reads

ρ̇ (u) = ρxn

(

1− 1

cosα

)

sin (2u) (4.3)

with the mean motion n from Eq. (2.22).

From Eq. (4.2) and (4.3) it is clear that the extreme range values for a polar Pendulum occur at the
equator (maximum) and at the poles (minimum). There, the range rate is zero, and it reaches its
absolute maxima at latitudes of ±45◦. Hence, for polar Pendulum formations between 200 and 600 km
altitude with ρx = 100 km the technical constraint of |ρ̇| < 10 m/s is satisfied for α < 24◦. In Gruber
et al. (2014) there is a comparison of polar Pendulum formations (α ∈ {7◦, 24◦, 45◦}) with a double
Bender-type low-low SST pair at the same altitude. For the inclined pair of the double pair I = 70◦

is chosen. The simulations take the same colored instrument noise for all pairs and also deterministic
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error contributions from temporal aliasing into account. Up to lmax = 90 the double pair exceeds the
24◦-Pendulum by a factor of 2 and the 7◦-Pendulum by a factor of 5.

A comparison of the in-line formation with the Pendulum formation with α = 23◦ for the basic single
polar orbit ORB1p is assessed with the LCLA up to lmax = 140. Assuming the same observation
noise according to Fig. 4.5 with this comparison the effects of the improved observation geometry can
be analysed. Figure 4.2 shows the unit-less formal errors (log10) of the two formations for each SH
coefficient (left) and in terms of SH degree RMS (right). The improved observation geometry of the
Pendulum formation (bottom left) leads to decreased formal errors mainly in the sectorials (where the
in-line formation is less sensitive). The formal errors at the sectorials for constant SH degree are even
smaller than the ones at the zonals.

The SH degree RMS curves show an improved sensitivity of the Pendulum wrt. the in-line formation
nearly for all SH degrees (maximum around l = 30 by a factor of more than 2.5). The improvement
decreases with SH degree to nearly the same sensitivity at l = 140. But for the SH degree 2 and 4 the
Pendulum shows worse sensitivity which is due to the two zonal coefficients C̄20 and C̄40 (cf. Fig. 4.2,
bottom left).

Due to a more complex attitude and orbit control from a technological point of view the Pendulum
formation is more difficult to realize than a Bender-type double pair. But of course for a double-pair
more resources are needed because of having four satellites instead of two. Furthermore, to put the
satellites in different inclinations a second launch vehicle might be required.

4.1.3 Combination of low-low SST and radial SGG

Another possibility to overcome the weak observation geometry of a single in-line pair is the combination
with radial SGG. Because of its isotropic characteristic, radial SGG (Vrr) with sufficient accuracy helps
to increase sensitivity especially in the sectorials where the single in-line pair is weak. The simulation
environment consists of a low-low SST pair like ORB1p (cf. Tab. 4.1) with total observation noise ASD
from Eq. (2.48) combined with radial SGG observations on one of the two satellites.

The Vrr accuracy must be on the level of 1.2 · 10−5 E/
√
Hz to reach equal contribution as low-low SST

to the total cumulative geoid error up to lmax = 134 of 0.7 mm. The results of the SANA simulations
on this combination is shown in Fig. 4.3. The typical error characteristics of the two contributions can
clearly be seen when comparing the formal errors (left, top and center). The SH degree RMS curves
(right) indicate that the Vrr-only solution exceeds low-low SST-only above l = 30. Compared to the
low-low SST solution the combined solution is improved by a factor of approximately 4. A more detailed
view on the contribution of Vrr to this combination is given by the relation between the variances of
the combined and the Vrr-only solution (bottom left). For a wide spectrum around the zonals the
Vrr-contribution is less than 20%, but it increases to 100% for the sectorials.

The SH degree RMS error curves in Fig. 4.3 (right) are compared with an approximation of the signal
SH degree variances of the Earth’s gravity field given by Kaula,

σ2 (l) =
1.6 · 1010

l3
. (4.4)

Hence, the Kaula-rule for SH degree RMS reads

√

σ2 (l)

2l + 1
. (4.5)

As radial SGG in general has less error increase with increasing SH degree as low-low SST, the contri-
bution of Vrr to such a combination increases with the SH degree. Furthermore, the impact of radial
SGG is larger in the case of deterministic errors such as, for example, temporal aliasing. An analysis
on this issue is elaborated in Anselmi (2010). On the one hand this means that, aiming for a high
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Figure 4.3: Unit-less formal errors (log10) and contribution analysis for the combination of low-low SST and Vrr on ORB1p
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Left: formal errors for Vrr (top) and low-low SST (center) and the contribution of Vrr to the combined solution. Right:
SH degree RMS in mm geoid height of the two contributions and the combination in comparison with static Kaula-rule.

spatial resolution gravity field (down to 50 km) this combination might be a promising candidate for
the NGGM. But on the other hand, due to current technical limits it is not reasonable to assume an
accuracy for the NGGM Vrr-accuracy more than 1,000 times better than that of GOCE. A gradiometer
design with improved sensitivity compared to the GOCE gradiometer by a factor of 10 is described in
Zhu et al. (2013).

4.2 Instrument Requirements

This thesis deals with mission scenarios with similar instrument concepts as the successfully flown and
planned mission scenarios GOCE and GRACE-FO. There are other promising instrument concepts,
which in the future might be able to reduce the noise level of current instruments. In Reubelt et al.
(2014) alternative ranging measurement concepts are discussed as, for example, interferometry with
optical frequency combs (Cui et al., 2009). But in this thesis the currently available instrument concepts
are selected. Furthermore, in this section only the key instruments are addressed, which do not include
Global Navigation Satellite System (GNSS) receivers. Their contribution to the total error budget and
corresponding requirements are discussed in Chap. 5.

The instrument requirements for all basic scenarios (Pendulum, Double pair Bender-type and SST-SGG
combination) are derived for the weakest scenario, the single polar in-line pair. Hence, the instrument
requirements assure that all scenarios have lower cumulative geoid errors than required in MO2. MO2
is divided regarding spatial resolution: there are two objectives for low and medium resolution (500
and 150 km) and one for high resolution (50 km). At the end of this section the high resolution
requirement is addressed, but the instrument requirements at first are determined for low and medium
spatial resolution based on SANA simulations. The approach for this investigation is the following (cf.
Tab. 4.2).

The total observation noise of a polar in-line single-pair depends mainly on the errors of the two key
instruments, i.e., the ranging instrument (SST) and the accelerometers (ACC). The reference noise
ASDs for these noise contributions are given in Eq. (2.46) and (2.47). Applying a safety factor of 2 the
total geoid error must not sum up to more than 50% of the requirements formulated in MO2. The error
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Figure 4.4: Cumulative geoid errors in mm for the 4 basic single polar in-line pairs (cf. Tab. 4.1) with required noise levels
for the ranging instrument (SST), the accelerometer (ACC) and the total noise. The required noise levels of SST and ACC
are scaled in order to reach 25% of MO2 for 500 km (l = 40) and 150 km (l = 134) spatial resolution.

contributions of SST and ACC then account for 25% each. As the formal errors depend linearly on
the scale factor of the noise ASDs, the instrument requirements can be determined from only one set
of simulations based on the reference noise ASDs. With the SANA the formal errors for the four polar
in-line pairs (cf. Tab. 4.1) are estimated up to lmax = 140 separately for SST and ACC. Then the scale
factors are determined from dividing the 25% MO2 values (2.5 µm for l = 40 and 0.1 mm for l = 134)
by the cumulative geoid errors. As the cumulative errors must be below both requirements for l = 40
and l = 134, the smallest scale factor is needed to determine the instrument requirements.

Figure 4.4 shows the cumulative geoid error for the four single in-line polar pairs with the corresponding
scale factors applied. Therefore the SST and ACC error curves meet one of the 25% requirements exactly.
It can be seen that this approach leads to different error contributions of the two sensors. Whereas for
the two lower pairs (ORB1p and ORB2p) the ACC geoid error contribution dominates only the lower
SH degrees, it dominates nearly the whole degree range for the higher pairs. Furthermore it can be
seen, that the total error reaches at the maximum 50% of the requirements of MO2. As the other basic
scenarios have improved sensitivity compared to a single in-line polar pair, they fulfil MO2 for 500 and
150 km spatial resolution as well.

Table 4.2: Approach for deriving the NGGM instrument requirements for the two key instruments, the ranging instrument
(SST) and the accelerometer (ACC).

1. Basic single polar in-line pairs (Tab. 4.1).

2. Reference SST/ACC noise ASDs (Eq. (2.46) and (2.47)).

3. SANA simulations separately for SST and ACC.

4. Cumulative geoid errors κcum (l = 40, l = 134) for reference SST/ACC noise (Eq. (2.10)).

5. Scale factors f (l = 40, l = 134) = 25% MO2(l = 40, l = 134) / κcum (l = 40, l = 134)

6. SST/ACC instrument requirements: reference noise ASD scaled by min(f (l = 40, l = 134))
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Figure 4.5: Required noise ASDs for SST and ACC compared with a GRACE-like accuracy in terms of ranges (left) and
range accelerations (right). The SST and ACC noise ASD requirements for ORB1 to ORB4 are shown from light to dark
in red and blue respectively (cf. Tab. 4.3)

The corresponding required noise levels for SST and ACC are given in Tab. 4.3. For each scenario
(altitude) the given number for SST replaces the factor 1.5 · 10−8 of the noise ASD in Eq. (2.46).
For ACC it replaces the factor 4 · 10−11 in Eq. (2.47). A graphical representation of the noise ACC
requirements for the four scenarios is shown in Fig. 4.5 in comparison with a GRACE-like range rate
accuracy of 1 µm/s, transformed to ranges and range accelerations respectively.

Obviously, to reach the same cumulative geoid error with a higher low-low SST scenario increased
instrument accuracies are necessary. The required SST noise level for ORB1 (299 km polar altitude)
is nearly the same as assumed in Gruber et al. (2014). The required ACC noise level is similar to
the accuracy reached with the GOCE accelerometers, and one order of magnitude smaller than the
ACC requirement in Gruber et al. (2014). For ORB2 and ORB3 (363 km and 420 km polar altitude
respectively) the required ACC noise levels are similar as for ORB1. But the SST requirements are
significantly more stringend, 2 nm/

√
Hz for ORB3 instead of 20 nm/

√
Hz for ORB1. With current

technical limits for laser ranging and accelerometers it seems not to be realistic to reach MO2 at an
altitude of ORB4 (487 km polar altitude). Therefore this scenario is not considered further in this
thesis.

Figure 4.6 shows cumulative geoid errors up to lmax = 401 for the single polar and double Bender-type
pair of ORB1 with the required total noise (cf. Tab. 4.3 and Fig. 4.5) in comparison with the three geoid
accuracy requirements of MO2, i.e. 0.01 mm at l = 40 , 0.4 mm at l = 134 and 30 mm at l = 401. It can

Table 4.3: Required noise levels for the basic noise ASDs (Eq. (2.46) and (2.47)) in order to reach MO2 with the four basic
single polar in-line pairs.

SST in m/
√
Hz ACC in m/s2/

√
Hz

ORB1p 2.0 · 10−8 2.2 · 10−12

ORB2p 6.2 · 10−9 1.8 · 10−12

ORB3p 2.1 · 10−9 1.5 · 10−12

ORB4p 6.3 · 10−10 4.4 · 10−13
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Figure 4.6: Cumulative geoid errors in mm of the single polar and double Bender-type pair of ORB1 with required total
noise (cf. Tab. 4.3 and Fig. 4.5) in comparison with MO2 and of a possible triple pair scenario fulfilling the 50 km spatial
resolution requirement of MO2.

be seen that even the double Bender-type pair of ORB1 cannot fulfil the high resolution requirement
(l = 401 corresponding to 50 km spatial resolution). The single pair reaches 30 mm approximately at
80 km (l = 252) and the double pair at 70 km (l = 282) resolution. To reach the 50 km requirement
with ORB1 the total noise would have to be decreased by more than 2 (3) orders of magnitude for the
double Bender-type (single polar) pair.

A possible scenario which could reach the 50 km requirement is a triple pair (polar, 80◦ and 70◦

inclined) on 200 km altitude with an instrument accuracy 10 times better than the ORB1 requirements,
i.e. 2.0 · 10−9 m/

√
Hz for SST and 2.2 · 10−13 m/s2/

√
Hz for ACC. But, as discussed before, such

instrument requirements are not realistic to be reached for the NGGM, possibly for the generation
thereafter. Therefore the 50 km requirement is not further discussed in this thesis. But the science
requirements show that definitely there is a need for 50 km spatial resolution.

At this point it has to be emphasized that the gravity field retrieval performance in this chapter is
addressed only with the formal errors of a rigorous solution. These errors represent the true errors
of the scenarios observing a static gravity field. With temporal variations deterministic errors are
introduced and the retrieval performance cannot only be assessed with formal errors. Temporal aliasing
as the major deterministic error contribution is discussed in Chap. 6 and 7. But it is reasonable not to
include temporal aliasing effects in the instrument requirements estimation. This is because the Earth’s
time varying gravity field which leads to temporal aliasing contains many signals which the NGGM
should observe, e.g. mass variations in the global water cycle.
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5 Other Error Contributions

In this chapter other error contributions are discussed which are neither taken into account in the deriva-
tion of the instrument requirements in the last chapter nor in the gravity field retrieval performance
simulations in the following chapters. Therefore requirements have to be determined in order to assure
the results to be realistic. On the one hand these error contributions belong to other sensors on the
satellites, i.e. star sensors and GNSS receivers. On the other hand error contributions of environmental
variations and couplings of such variations with the key sensors are analysed.

5.1 Star Sensors

The NGGM requires a good knowledge of the inertial attitude of all satellites for which star sensor
(usually 2 or 3 on each satellite) observations are used. In addition, on a low-low SST pair with a laser
ranging instrument attitude information can also be retrieved from specific laser interferometer data,
the so-called differential wave front sensing (Gruber et al., 2014). But in this section only the star
sensor error contribution to the attitude determination is discussed and star sensor requirements are
derived from error propagation.

For a low-low SST pair with laser ranging instrument there are already high attitude requirements
(10−4 rad in Gruber et al. (2014)) in order to assure laser link acquisition. But there is also a direct
connection from attitude angles to the gravitational observations via the accelerometer (ACC). Op-
timally the ACC is placed in the center of mass of the satellite and measures the non-gravitational
forces acting on the satellite. The projection of this observed acceleration vector onto the LoS between
the two satellites has to be subtracted from the total acceleration differences (derived from the SST
observations), i.e.

〈∆agrav.,∆r0〉 = 〈∆aSST,∆r0〉 − 〈∆aACC,∆r0〉 . (5.1)

Neglecting misalignment and scale factor errors of the three ACC axes, in the following the star sensor
errors in terms of attitude angle errors are propagated onto the LoS acceleration differences. Figure
5.1 shows a sketch of a low-low SST pair in space-fixed frame with local LoS fixed frame and ACC
reference frames. The non-gravitational accelerations are measured in the ACC reference frame and
have to be rotated into the LoS reference frame with rotation angles α1/2, β1/2, γ1/2. These angles
belong to rotations around the LoS-axes along-track or roll axis (xLoS), cross-track or pitch axis (yLoS),
and radial or yaw axis (zLoS), respectively. Assuming that the non-gravitational accelerations are
dominated by atmospheric drag, and therefore are anti-parallel to the velocity vector, the projection of
the non-gravitational accelerations is

〈∆aACC,∆r0〉 = 〈− |a1,ACC| ·R (α1, β1, γ1) · v1,0 + |a2,ACC| ·R (α2, β2, γ2) · v2,0,∆r0〉 (5.2)

with the rotation matrices R from ACC to LoS reference frame and with the normalized velocity vectors
v1/2,0. The components of the normalized velocity vector in the LoS-frame are v0 = (vx,0 vy,0 vz,0)

T.
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Figure 5.1: low-low SST pair in space-fixed frame, local LoS fixed frame and accelerometer reference frames (ACC1, 2).

The error propagation is done for each of the two satellites separately. For the variance of the non-
gravitational accelerations projected on the LoS σ2ACC-LoS it is (leaving out indices 1 and 2 for the two
satellites)

σ2ACC-LoS

|aACC|2
=

〈

∂R

∂α
· v0,∆r0

〉2

σ2α +

〈

∂R

∂β
· v0,∆r0

〉2

σ2β +
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∂R

∂γ
· v0,∆r0

〉2

σ2γ

= cos2 ( 6 (v0,∆r0))
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∣
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∣

∂R

∂γ
v0

∣

∣

∣

∣

2

· σ2γ

) (5.3)

with the angle between the velocity vector and the LoS 6 (v0,∆r0).

The rotation matrix describes a rotation around all three axes with R = Rz (γ)·Ry (β)·Rx (α). Therefore
the derivative of R wrt. α contains zero in the first column and the derivative wrt. γ contains zero in
the last row. Assuming a successfully acquired laser link, the rotation angles are small. Applying
approximations for small angles the wanted variance in Eq. (5.3) is

(

σACC-LoS

|aACC| cos ( 6 (v0,∆r0))

)2

≈
(

v2
y,0 + v2

z,0

)

· σ2α+
(

v2
x,0 − 2αvy,0vz,0 + v2

z,0

)

· σ2β+
(

v2
x,0 + 2αvy,0vz,0 − 2βvx,0vz,0 + v2

y,0

)

· σ2γ .

(5.4)

As for an in-line formation the velocity vector is nearly parallel to the LoS it can be approximated by

σACC-LoS ≈
√
2 |aACC|σβ (5.5)

assuming σβ = σγ . And because Eq. (5.5) is applied to both satellites the error propagation for both
satellites is the right side of Eq. (5.5) times

√
2 (assuming equal attitude angle variances on both

satellites).
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Table 5.1: Atmospheric densities for low and high short term activity (from CIRA-2012) and absolute drag accelerations
for the altitudes of the three lower polar reference orbits (Tab. 4.1).

density in kg/m3 abs. drag acc. in m/s2

altitude in km low activity high activity low activity high activity

300 5.9 · 10−12 6.2 · 10−11 1.6 · 10−6 1.7 · 10−5

360 1.2 · 10−12 2.6 · 10−11 3.3 · 10−7 7.1 · 10−6

420 2.9 · 10−13 1.2 · 10−11 7.8 · 10−8 3.2 · 10−6

The error propagation depends on the absolute non-gravitational acceleration, which is dominated by
atmospheric drag. The absolute drag acceleration is (Montenbruck and Gill, 2005)

|a| = 1

2
CD

A

m
ρ |v|2 . (5.6)

The following reference values for LEOs are used for the drag coefficient CD = 2.3, the satellite’s
cross-sectional area A = 2 m2 and the satellite mass m = 500 kg (Montenbruck and Gill, 2005). The
COSPAR (Committee on Space Research) International Reference Atmosphere (CIRA) 2012 is the fifth
in the series (Rees, 1988; Rees et al., 1990) and provides total atmospheric density values ρ for low and
high solar activities. With these values the absolute non-gravitational accelerations are approximated
and given in Tab. 5.1.

The propagated attitude angle errors (Eq. (5.5)) of both satellites must not exceed the total ACC noise
requirements in Tab. 4.3. For low solar activity this is ensured if the pitch and yaw angle standard
deviation (σβ = σγ) is smaller than 7 · 10−7 rad for 300 km altitude (3 · 10−6 and 10−5 rad for 360
and 420 km, respectively). For high activity the requirements are 6 · 10−8, 10−7 and 2 · 10−7 rad,
respectively. Current accuracies of attitude angle determination from star sensors on LEOs are in the
order of 10−5 rad for GOCE (Stummer, 2013), Anselmi (2010) assumes accuracies of 10−6 rad. The
mission duration of the NGGM covers one full solar cycle. Therefore the attitude angle requirements
must hold also for high solar activity. And because the attitude angle requirements for high activity
are smaller than current technical star sensor limits the drag has to be compensated, e.g. with cold gas
(Gruber et al., 2014) or ion thrusters (Drinkwater et al., 2003). To get attitude angle requirements in
the order of 10−6 rad the drag accelerations have to be reduced by at least a factor of 30 for 300 km
altitude and by a factor of 10 for 420 km altitude (safety factor of 2 applied).

Drag compensation may be required because of another reason as well, i.e. the saturation limit of the
ACCs. The maximum acceleration limits the sensitivity of the instrument. In Gruber et al. (2014) a
drag compensation requirement of 200 times the ACC requirement is determined. For the NGGM in this
thesis this would lead to a drag compensation requirement of approximately 4 · 10−10 m/s2 within the
measurement bandwidth for the three lower polar orbits. If no higher non-gravitational accelerations
are observed by the ACC the attitude angle requirements are in the order of 2 mrad and feasible with
current star sensors.

For SGG the situation is different, as a misorientation of the gradiometer directly affects the observed
SGG components. In Pail (2005) the effects of different misalignments are analysed with respect to
gravity field retrieval performance for GOCE. The main conclusion is, that the results are mostly
affected by random misalignment errors as assumed above for low-low SST. For random errors of the
three rotation angles in the order of 10−5 rad the misalignment errors are the major error component
in a GOCE-like SGG gravity field retrieval. In the case of the NGGM an approximately 1,000 times
higher sensitivity of radial SGG is required to contribute significantly to a combined solution with low-
low SST. Therefore, random misalignment errors in the order of 10−6 rad (as assumed above) would
dominate the Vrr solution and no contribution to a combined solution is expected.
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The accuracies and requirements in this section are formulated independently of the frequency. In reality
the attitude angle noise is not white, but it depends on the frequency. Furthermore, the requirements
for the ACCs are formulated depending on the frequency as well (Fig. 4.5). Therefore the attitude angle
requirements have to be applied to the measurement bandwidth of the ACC, i.e. 1 < f < 100 mHz. For
f < 1 mHz the attitude angle requirements can be considered more relaxed analogously to the ACC
ASD with a 1/f2 behavior.

5.2 GNSS Positioning

In this thesis the positions derived from Global Navigation Satellite System (GNSS) observations are not
used as gravity field observations. Satellite positions on purely circular orbits are used in least squares
adjustment as given error free values. Of course, in reality, precise GNSS observations of the positions
of a satellite in orbit contain gravity field information because the movement of the satellite depends on
gravity. This observation type uses orbit perturbations in along-track, cross-track and radial direction
and is called high-low SST. The accuracy of LEO high-low SST derived from GNSS is in the order
of a few centimeters (usually radial component worse than the horizontal components). For example
for GOCE it amounts to a level of 2 cm (Bock et al., 2011). With these observations collected during
the whole GOCE mission phase (in total approximately 3.5 years) a global gravity field (except for the
polar gaps) is estimated up to lmax = 150 (Brockmann et al., 2014).

But the sensitivity of this observation type is not sufficient to contribute significantly to a combined
gravity field solution with low-low SST laser ranging observations. Figure 5.2 shows SANA results in
terms of SH degree RMS of the formal errors of high-low SST in comparison with low-low SST for ORB1
(single polar and double Bender-type pair).The high-low SST sensitivity is assessed by the combination
of 3D orbit perturbation observations (∆x,∆y,∆z) according to Eq. 2.37 with cm accuracy. The low-
low SST formal errors assume the required noise levels for SST and ACC in Tab. 4.3. Only for the very
low SH degrees high-low SST contributes to the combined solution for the single polar pair (left). For
the double Bender-type pair (right) there is no significant contribution of high-low SST to the combined
solution.
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Figure 5.2: SANA simulation results in terms of SH degree RMS in mm geoid height for the single polar pair (ORB1p, left)
and the double Bender-type pair (ORB1p+i, right) in comparison with static Kaula-rule. The formal errors of high-low
SST (3D orbit perturbations, red), low-low SST (required SST and ACC noise from Fig. 4.5 and Tab. 4.3, blue) and the
combined solution (black), respectively, are shown.
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Nevertheless GNSS positioning is required for the NGGM. The NGGM studies in Elsaka (2012) and
Wiese et al. (2012) use white noise assumptions for the positions of 1 and 2 cm, respectively. And, as
expected, the final gravity retrieval performance simulations in these studies are not dominated by the
positioning errors. Therefore it is reasonable to require GNSS positioning accuracies for the NGGM of
1 cm for the horizontal and 2 cm for the radial component.

5.3 Tone Errors

Tone errors are harmonic errors mainly due to temperature variations within the satellites (Gruber
et al., 2014). They affect both laser ranging and accelerometer observations and contain multiples of
the orbital frequency n · f0. Such signals contain periods measured in cycles per revolution (cpr). In
Gruber et al. (2014) the first 6 tone errors (1 ≤ n ≤ 6) with 1 to 6 cpr are addressed. This error
contribution is analysed for the basic single polar pairs (Tab. 4.1). As this is a deterministic error the
SANA is not able to assess it adequately, and therefore LCLA simulations are used.

Tone errors τn are expressed depending on time t or argument of latitude u with

τn (t) = ξn sin (n2πf0t+ ϕn)

τn (u) = ξn sin (nu+ ϕn)
(5.7)

with amplitude ξn and phase ϕn.

Figure 5.3 (top) shows normalized tone errors (ξ = 1) for 1 ≤ n ≤ 3 (1, 2 and 3 cpr) depending on the
argument of latitude u and on the phase ϕ. The mean contribution of tone errors to a global gravity
field can be derived by averaging the tone errors for each co-latitude θ. For polar orbits the co-latitude
can be expressed with the argument of latitude by θ = π−|π − |u− π/2||. Therefore the two tone error
values for each θ (ascending and descending) are averaged resulting in the bottom plots in Fig. 5.3. It
can be seen that tone errors for odd n are averaged to zero for ϕ = 90◦ and ϕ = 270◦. For even n
this is the case for ϕ = 0◦ and ϕ = 180◦. Hence, the largest tone error effects are expected for odd n
for sine terms (ϕ = 0◦ and ϕ = 180◦) and for even n for cosine terms (ϕ = 90◦ and ϕ = 270◦). And
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Figure 5.3: Normalized tone errors for 1 to 3 cpr depending on the argument of latitude u (top) and on the co-latitude θ
(bottom). The gray lines represent locations of the same spherical latitude 30◦ for polar orbits.
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Figure 5.4: Maximum tone error geoid contribution for ORB1p in log
10

(mm) in the SH domain for 1 to 6 cpr.

from Fig. 5.3 (bottom) for polar orbits it can be concluded that tone errors τn only affect the zonal
coefficients C̄l0 with l ≤ n (Gruber et al., 2014).

Requirements are derived for the amplitudes of the tone errors for 1 ≤ n ≤ 6 based on LCLA simu-
lations for the basic single polar pairs. Thereby the amplitudes for different n are not assumed to be
independent. In Gruber et al. (2014) it is described how the amplitudes decrease with increasing n.
The reference amplitudes in terms of ranges are 20 · 51−n µm and

ξn = (n2πf0)
2 2 · 10−5 · 51−n m/s2 (5.8)

in terms of range accelerations. This leads to the reference amplitudes given in Tab. 5.2 for the first 6
tone errors.

The effects of tone errors on global gravity retrievals is simulated with the LCLA applying tone errors
with the reference amplitudes in Tab. 5.2 in terms of range accelerations. As the maximum effects shall
be analysed, for odd n sine terms and for even n cosine terms are used. The results of the LCLA are
shown in Fig. 5.4 in terms of log10 scaled absolute SH coefficients in mm geoid height. As expected
from Fig. 5.3 (bottom) it can be seen that tone errors τn affect only zonal coefficients with l ≤ n.
Furthermore, odd tone errors affect only odd zonals and even tone errors affect only even zonals. As
the amplitudes decrease with increasing n the SH coefficients affected by tone errors show a decrease
as well.

Table 5.3 gives the geoid contributions of the tone errors with reference amplitudes for the single polar
in-line pairs (cf. Tab. 4.1). The total geoid error contribution (l ≥ 0) is 0.26 mm for 1 cpr down to

Table 5.2: Tone error amplitudes for 1 to 6 cpr in terms of ranges and range accelerations.

1 cpr 2 cpr 3 cpr 4 cpr 5 cpr 6 cpr

range amplitudes in µm 20 4.0 0.80 0.16 0.032 0.0064

range acc. amp. in 10−12 m/s2 26 21 9.4 3.3 1.0 0.30
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0.4 µm for 6 cpr and 0.47 mm for the sum of all 6 tone errors. As with the NGGM no degree 0
and 1 coefficients are estimated, the contribution is also given for l ≥ 2. Here, the total geoid error
contribution of the tone errors is 0.13 mm.

This contribution has to be compared with the strongest geoid requirement of MO2, i.e. 0.01 mm for
l = 40. Hence, in order to derive tone error amplitude requirements for the NGGM, the reference
amplitudes in Tab. 5.2 have to be divided by 13 (130 for a safety factor of 10). As the amplitude
requirements belong to the total tone errors on the LoS acceleration differences the requirements are
distributed equally to the two main instruments (SST and ACC). This leads to a requirement for 1 cpr
of 0.8 µm for the laser ranging instrument and of 4 · 10−14 m/s2 for the accelerometer.

On the one hand these requirements are very critical to be fulfilled from a technological point of view,
especially for the accelerometers (Gruber et al., 2014). On the other hand the total tone error amplitudes
on the LoS observations depend on the phase differences ∆ϕ of the tone errors on each satellite. The
total tone error on the LoS observations τLoS is the difference between the tone errors on satellite 1 and
2, i.e. τ1,n − τ2,n. Hence, the total amplitude is

ξLoS,n =
√

ξ21,n + ξ22,n − 2ξ1,nξ2,n cos (∆ϕ). (5.9)

For equal tone error amplitudes on both satellites ξn = ξ1,n = ξ2,n and ∆ϕ closer than 60◦ to a multiple
of 360◦ the total tone error amplitude ξLoS,n is smaller than ξn. It is smaller than 10% of ξn if ∆ϕ
is closer than 6◦ to a multiple of 360◦. As the inter-satellite distance of the NGGM is only 100 km
the environmental variations on the two satellites are expected to be similar. Therefore the tone error
amplitude on the LoS observation might be smaller than the amplitudes on each satellite.

Of course the tone errors can also be included in the functional model. But as the analysis in this section
shows there are high correlations with the low SH degree zonal coefficients. Hence, tone error amplitude
requirements are postulated for the NGGM in order to prevent larger errors in low SH degrees.

Table 5.3: Maximum tone error geoid contribution in mm for the basic single polar scenarios.

1 cpr 2 cpr 3 cpr 4 cpr 5 cpr 6 cpr total

l ≥ 0 0.26 0.17 0.033 0.0082 0.0016 0.00037 0.47

l ≥ 2 0 0.097 0.025 0.007 0.0015 0.00034 0.13





51

6 Temporal Aliasing

In this chapter temporal aliasing is discussed which is the major deterministic error contribution for the
NGGM. For all the simulations in the previous chapters a static gravity field has been assumed. And
only stochastic error contributions have been analysed. Obviously this is a major simplification, because
the Earth’s gravity field is continuous in space and time and has an infinite spectrum wrt. spatial and
temporal resolution. The sampling of the gravity field can only be realized with finite spatial and
temporal resolution. Therefore, both spatial and temporal aliasing cannot be avoided. Spatial aliasing
is not further discussed in this thesis. In the simulations spatial aliasing is excluded by limiting the
input gravity field models to the same lmax as the adjusted set of SH coefficients.

In this chapter temporal aliasing is elaborated based on two numerical sampling examples. Furthermore
the characteristics of the geophysical sources which are responsible for the largest temporal aliasing
effects are analysed and different strategies are discussed which are able to reduce the effects of temporal
aliasing.

At first the issue of temporal aliasing is visualized in the case of the discrete sampling of a 1D time
series in Fig. 6.1. A continuous periodic signal x with period Px = 10 s (frequency fx = 1/Px = 0.1 Hz)
is sampled with discrete sampling intervals ∆t1 = 3 s and ∆t2 = 8 s. If the Nyquist frequency fN =
1/ (2∆t) is smaller than fx there is temporal aliasing and x cannot be reconstructed with its sampled
representation. Furthermore, the discrete Fourier transform of the under-sampled representation shows
aliased amplitudes at an aliasing frequency falias = |mod (fx + fN, 2fN)− fN|. Figure 6.1 shows an
example with and without temporal aliasing. With ∆t1 = 3 s < Px/2 the signal x can be reconstructed.
But in the case of temporal aliasing (∆t2 = 8 s > Px/2) the spectrum is distorted with the alias
frequency falias = 25 mHz (Palias = 40 s).
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Figure 6.1: Temporal aliasing in the case of 1D time series sampling. Top: normalized continuous cosine time series with
10 s period (black) sampled with 3 s (red) and 8 s (blue) respectively. Bottom: discrete Fourier amplitudes of the three
time series in the top.

6.1 Optimal Sampling regarding Temporal Aliasing

The next step towards a better understanding of temporal aliasing for the NGGM is a numerical
simulation of the spatio-temporal sampling with single and double repeat orbits. The main characteris-
tics of this sampling are described by the spatio-temporal function of the orbital crossings of a constant
latitude. For circular orbits the longitudes of these crossings do not change with latitude. Only the time
interval between two consecutive ascending and descending crossings varies. In the following temporal
aliasing is analysed for direct observations of discrete time varying signals at the equator crossings for
single and double pair repeat orbits.

The functional model of the time varying signal at the equator x (λ, t) is given in Eq. (6.1) with a
combination of three Fourier series expansions in order m. One expansion describes the static signal
with coefficients (cm, sm). The other two describe a signal with discrete frequency f = 1/T (period
T ). It contains sine and cosine amplitudes depending on the longitude a (λ) and b (λ) which are series
expansions with coefficients (acm, a

s
m) and (bcm, b

s
m), respectively.

x (λ, t) =

mmax
∑

m=1

(cm cosmλ+ sm sinmλ) + a (λ) cos

(

2π

T
t

)

+ b (λ) sin

(

2π

T
t

)

a (λ) =

mmax
∑

m=1

(acm cosmλ+ asm sinmλ)

b (λ) =

mmax
∑

m=1

(bcm cosmλ+ bsm sinmλ) .

(6.1)

A spectral representation of the amplitudes for the static and time varying contents of Eq. (6.1) is given
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Figure 6.2: Synthetic harmonic signal (maximum order mmax = 100) at the equator with discrete time variations super-
imposed (1 day period) in the spatio-temporal domain (left) and the spectral domain (right, cf. Eq. (6.2)). The diurnal
variations (bottom left) are shown with the ascending (dots) and descending (circles) equator crossing samples of the two
orbits ORB1p (black) and ORB2p (gray) with an ascending node separation of 90◦. The order amplitudes of the residuals
of the least squares estimates wrt. the static signal are shown for the single pairs ORB1p and ORB2p and the combined
solution ORB1p + ORB2p (right).

by the order amplitudes

κstatic (m) =
√

c2m + s2m

κtemp.var. (m) =

√

(acm)2 + (asm)2 + (bcm)2 + (bsm)2.
(6.2)

For geophysical signals on the Earth a characteristic order amplitude behaviour of m−1 is assumed.
Figure 6.2 gives a graphical representation of such a characteristic unit-less signal according to Eq. (6.1)
in the spatio-temporal and the spectral domain (maximum order mmax = 100, period T = 1 day). The
random coefficients for the static signal are scaled with m−1. For the time varying signal the coefficients
are scaled with m−1/10. The static signal is shown as function of longitude (top left), and the diurnal
signal is shown as function of longitude and time for two days (bottom left). The order amplitudes
(right) show the static signal in gray, the diurnal signal in black.

For the initial longitude λ0 the spatio-temporal sampling with a repeat orbit depends on Nday and
Nrev. The longitude of the ascending equator crossings at epochs t = k · trev is λ0 + (k − 1)∆λ with
integer 0 ≤ k ≤ Nrev (cf. Eq. (2.29)). For descending equator crossings λ0 + π + (2k + 1)∆λ/2 holds
for t = (2k + 1) trev/2.

Figure 6.1 (bottom left) shows the equator crossings of the two single repeat orbits ORB1p and ORB2p
(cf. Tab. 4.1) in black and gray dots (ascending) and circles (descending), respectively. ORB1p starts at
λ0 = 0◦ and ORB2p at λ0 = 90◦. With this analysis of equator crossings the benefit of an inclined pair
can not be assessed. The only different parameter between a polar and an inclined pair with the same
Nday and Nrev which is relevant for this analysis is the revolution time (approximately 40 s difference
between I = 89◦ and I = 70◦). Therefore only polar pairs and combinations of polar pairs are analysed
here.

The effects of temporal aliasing are analysed on the basis of least-squares estimates of static coefficients
for the basic single and double pairs ORB1p, ORB2p and ORB3p (cf. Tab. 4.1). For each orbit the
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Figure 6.3: Spatial residuals wrt. the static signal (0◦ ≤ λ ≤ 180◦) for ORB1p, ORB2p and the combination of both for
mmax = 50 (top) and mmax = 100 (bottom).

observations contain the total signal in Eq. (6.1) evaluated at the equator crossings. No stochastic noise
is applied, the weighting matrix is the unit matrix and the unknowns are (ĉm, ŝm).

The differences between the static reference and the estimated coefficients of this LSA are dominated
by temporal aliasing effects of the diurnal signal. Figure 6.2 (right) shows the residuals in terms of
order amplitudes κstatic (Eq. (6.2)) for the single orbits ORB1p and ORB2p and the combined solution
of ORB1p and ORB2p. All three residual amplitudes show smaller values than the mean diurnal signal
amplitudes (black) for m < 70. Around specific orders the residuals show increased amplitudes. These
orders are integer multiples of Nrev/Nday and the magnitude of these effects differs for the different
solutions.

The effects are referred to as order resonances (later SH order resonances, cf. Chap. 7). ORB1p shows
a stronger order resonance at m = 94 than ORB2p which shows stronger resonance at m = 78. The
combined solution does not benefit much from the different behaviour of the two single orbits. For pure
stochastic error effects the combined solution would show smaller residuals for all m than each single
solution. But as temporal aliasing is non-stochastic the larger residuals of ORB1p around the resonance
order m = 94 and of ORB2p around m = 78 partly remain in the combined solution as well.

In the spatial domain the residuals are shown in Fig. 6.3 for the same three solutions as in Fig. 6.2.
The temporal aliasing effects occur as oscillations around zero. The residuals for mmax = 50 (top) of
course contain less spectral content as for mmax = 100 (bottom). From the order amplitudes in Fig. 6.2
(right) it is expected that the residuals up to mmax = 100 are dominated by different order resonances
for the ORB1p and ORB2p, respectively. Counting the cycles of the dominating period in the residuals
for mmax = 100 leads to approximately 47 for ORB1p and 39 for ORB2p. Because here only half the
equator is shown there are 94 cycles for ORB1p in total and 78 for ORB2p, which is related to the
largest order resonances at orders 94 and 78, respectively.

This characteristic of temporal aliasing is strongly connected with the SH order resonance analyses in
Murböck et al. (2014). This is elaborated in more detail in Chap. 7. The results in Fig. 6.2 show the
effects for diurnal variations. In reality the total temporal aliasing effect is dominated by the sum of
tidal and non-tidal mass variations in system Earth. In the following the residuals for eight frequencies
where such variations have their dominant amplitudes are analysed in the spectral domain.
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Figure 6.4: Unit-less order amplitudes (log
10
, mmax = 100) of residuals wrt. the static signal for the three basic single polar

pairs (ORB1p, ORB2p and ORB3p, cf. Tab. 4.1) for 8 different periods.

For the basic single and double orbits for ORB1, ORB2, and ORB3 (cf. Tab. 4.1) the same analysis
is done for the eight periods T ∈ {0.5, 1, 2, 4, 7, 10, 14, 20} days. This selection contains possible alias
frequencies of dominant signals of geophysical mass variations in system Earth or at least frequencies
which are close to them. Such geophysical mass variations are due to ocean tides with dominant diurnal
and semi-diurnal periods, or non-tidal oceanic and atmospheric variations with periods of a few days.
But also for the periods between the selected periods there are geophysical mass variation periods.

The unit-less order amplitudes (log10) of the residuals wrt. the static signal of all 9 solutions are shown
in Fig. 6.4 (single solutions ORB1p, ORB2p, and ORB3p), 6.5 (double solutions ORB1p + ORB2p,
ORB1p + ORB2p, and ORB1p + ORB3p), and 6.6 (double solutions ORB2p + ORB2p, ORB2p +
ORB3p, and ORB3p + ORB3p). The amplitudes for each of the 8 periods are shown up to mmax = 100.
All single solutions show high residuals for the semi-diurnal period for small m. But these residuals are
reduced for all double solutions.

Besides the order resonances for the single pairs for the diurnal period at m = 78 and m = 94 (cf.
Fig. 6.2), Fig. 6.4 shows even stronger resonances for different orbits and periods. There is a strong
resonance at m = 47 for ORB1p for 2 days and two dominant resonances for ORB3p at m = 78 for
10 days and at m = 94 for 2 days. Another characteristic of all these resonance effects are less strong
amplitudes exactly at the resonance order mr and maximum amplitudes for mr ± 2.

As shown in Fig. 6.2 the combined solution on the one hand results in only slightly smaller residuals
compared to the single pairs. But on the other hand the resonances of both single pairs occur in the
combined solution. This is also visible in Fig. 6.5 and 6.6 in comparison with the single orbit resonances.
All double solutions including ORB1p (Fig. 6.5) show the largest resonances of ORB1 as well, especially
m = 47 for 2 days. For orders and periods which are not affected by the resonances the double pair
solution shows smaller residuals than the single pair. This is clearly visible, for example, for ORB1p +
ORB1p (Fig. 6.5, top) in comparison with ORB1p (Fig. 6.4, top).

An optimal selection for a single and a double pair out of the basic scenarios can be done on the basis
of the total RMS values of the analysis of the 8 periods. Table 6.1 gives the total RMS values and
the relative improvement wrt. the worst scenario for this analysis (ORB3p). The pre-selection of the
scenarios in Sec. 4.1 is already based on an analysis on optimization of orbit selection regarding temporal
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Figure 6.5: Unit-less order amplitudes (log
10
, mmax = 100) of residuals wrt. the static signal for the three basic double

polar pairs (ORB1p + ORB1p, ORB1p + ORB2p and ORB1p + ORB3p, cf. Tab. 4.1) for 8 different periods and an
ascending node separation of 90◦.

aliasing (Murböck et al., 2014). Therefore the total RMS of the different single scenarios differs only
by up to 34%. ORB1 and ORB2 show a smaller total RMS than ORB3 and the double pairs without
ORB3 show the smallest RMS. As for these 9 scenarios there are no large resonances above m = 100,
the relative rating wrt. the total RMS does not change for mmax = 140.

Table 6.1: Total unit-less RMS (over all periods and orders m) for the equator sampling residuals.

Total RMS Improvement in % wrt. ORB3p

Double Double

Single ORB1p ORB2p ORB3p Single ORB1p ORB2p ORB3p

ORB1p 0.169 0.098 0.095 0.131 32 60 62 47

ORB2p 0.164 0.087 0.130 34 65 47

ORB3p 0.247 0.174 0 30
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Figure 6.6: Unit-less order amplitudes (log
10
, mmax = 100) of residuals wrt. the static signal for the three basic double

polar pairs (ORB2p + ORB2p, ORB2p + ORB3p and ORB3p + ORB3p, cf. Tab. 4.1) for 8 different periods and an
ascending node separation of 90◦.

6.2 Spectral Analysis of Non-tidal Mass Variations

The numerical sampling exercise in Sec. 6.1 gives important insight into the error effects of temporal
aliasing for discrete frequencies. In addition to this sampling effect of temporal aliasing, in gravity field
retrievals as discussed in Chap. 7 there are upward continuation, and of course the functional model is
different.

For ocean tides with their well-known discrete excitation frequencies it is reasonable to apply the
analysis in Sec. 6.1 in order to estimate the sampling effects of temporal aliasing. Though the synthetic
signal in Eq. (6.1) of course does not describe sufficiently the highly non-linear variations due to ocean
tides especially in coastal areas. But the results in Chap. 7 show that one of the main characteristics
of error effects due to temporal aliasing form both tidal and non-tidal signals is partly described and
analysed with the numerical equator sampling in Sec. 6.1. These characteristics are SH order resonances
depending on the orbit.

For the non-tidal mass variations in atmosphere (A), ocean (O), hydrology (H), ice (I), and solid Earth
(S) the assumption of discrete frequencies is not sufficient. A spectral analysis of models for mass
variations in AOHIS gives the information for the amplitudes for specific frequencies. The model with
a temporal resolution of 6 hours and lmax = 180 is described in Gruber et al. (2011) and the data of
January 2005 is used. The SH coefficients are provided separately for the 5 parts (AOHIS). There is
also an updated version of this model described in Dobslaw et al. (2014) which leads to comparable
results.

After subtracting a mean and trend signal content, a discrete Fourier transform is applied to the time
series for each SH coefficient. The results are SH coefficients of Fourier amplitudes for periods T between
0.5 and 30 days. Figure 6.7 shows the SH degree amplitudes in mm geoid height (log10) of the Fourier
amplitudes for the different periods for 0 ≤ l ≤ 100. The beforehand subtracted mean and trend
contents are also shown in the two top rows of each plot. Because AO (right) contains higher variations
for short periods its variations are shown separately from HIS (left).

The means of HIS and AO are larger than the trend and the Fourier amplitudes. All degree amplitudes
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Figure 6.7: SH degree amplitudes in log
10

(mm) geoid heights of non-tidal temporal variations depending on the period in
days. Left: hydrology, ice and solid Earth (HIS). Right: atmosphere and ocean (AO). The amplitudes for different periods
are computed from the Fourier series of the AOHIS time series for January 2005 from Gruber et al. (2011). The blue lines
approximate the maximum possible SH degree of expansion for a single and double pair respectively.

show approximately a l−3/2 behaviour in accordance with the Kaula-rule (Eq. (4.5)). Their largest
Fourier amplitudes of more than 0.1 mm geoid height are visible for AO for l < 10 and T < 3 days.
For all periods AO shows amplitudes of more than 0.01 mm for l < 20 (30 days) and l < 10 (12 hours).
A peak occurs for the diurnal period. The only component showing larger amplitudes for HIS than for
AO is the mean. For all Fourier amplitudes HIS amplitudes are smaller than AO amplitudes by more
than a factor of 10. This means that the gravitational potential of HIS is smoother than the one of AO
for all periods analysed in this study.

The distribution of amplitudes for HIS and AO is also analysed depending on the SH order (Fig. 6.8)
analogously to Fig. 6.7. Again there is a m−3/2 behaviour. The HIS part shows larger amplitudes than
AO only for T < 10 days and for high SH orders. Neglecting m = 0 and m = 1 there are no larger HIS
amplitudes than 1 µm for T < 2 days. Therefore the largest temporal aliasing effects from non-tidal
sources in a gravity field retrieval are due to AO.

The maximum SH degree and order which can be reached with LEO single and double orbits is displayed
in all plots of Figs. 6.7 and 6.8. With Nrev equally spaced revolutions a spectral resolution is reached
according to lmax = Nrev. For example, the signals which lead to temporal aliasing in a 3 day single
orbit solution (approximately 47 revolutions) are signals with periods T < 6 days (Nyquist) and l < 47
and m < 47.

This directly leads to a promising method to reduce temporal aliasing. The idea of the method described
in Wiese et al. (2011) is the amplitude reduction of the signals leading to temporal aliasing. This
reduction is reached by estimating short period low resolution gravity fields together with one high
resolution gravity field for the whole observation period.

From the analysis of Fig. 6.7 and 6.8 an extension of this method is derived without elaborating it in
more detail. Optimum temporal aliasing reduction is reached when estimating as much of the temporal
variations as possible. This could be assessed by estimating not only daily low resolution gravity fields
but a series of gravity fields for several periods up to the highest possible SH degree and order (cf.
Sec. 8.2).
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Figure 6.8: SH order amplitudes in log
10

(mm) geoid height of non-tidal temporal variations depending on the period in
days. Left: hydrology, ice and solid Earth (HIS). Right: atmosphere and ocean (AO). The amplitudes for different periods
are computed from the Fourier series of the AOHIS time series for January 2005 from (Gruber et al., 2011). The blue lines
approximate the maximum possible SH order of expansion for a single and double pair, respectively.
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7 Optimal Orbits regarding Temporal Aliasing

In this chapter it is discussed how optimal orbits regarding temporal aliasing can be determined. This
topic is strongly connected with the analyses in Chap. 6. In the conclusions of Murböck et al. (2014)
possibilities are shown of how to reduce temporal aliasing for single and double pairs. Optimal altitude
bands regarding temporal aliasing for the NGGM are derived as well.

7.1 Spherical Harmonic Order Resonances

In Murböck et al. (2014) it is shown that errors due to temporal aliasing from tidal and non-tidal sources
affect mainly specific SH order bands. These orders are referred to as SH resonance orders, and they
only depend on the two basic rates of a satellite orbit, i.e. the rate of the argument of the latitude u̇
and of the Earth fixed longitude of the ascending node Λ̇ (cf. Eq. (2.32)). With −lmax ≤ k ≤ lmax these
two parameters define the observation frequencies ω (m) of a signal along the satellite orbit, which are
mapped on the SH order 0 ≤ m ≤ lmax (Sneeuw, 2000)

ω (m) = ku̇+mΛ̇. (7.1)

This equation can be evaluated in terms of frequencies in units of Hz or in terms of angular rates. The
smaller the absolute minimum value of ω (m), the larger is the resonance effect from temporal aliasing.
For orbits between 200 and 600 km altitude strong temporal aliasing effects are expected at SH order
m when min(|ω (m)|) ≤ 1.8 · 10−6 Hz (≈ u̇/100) (Murböck et al., 2014).

Figure 7.1 shows min(|ω (m)|) in log10 (Hz) for polar orbits (I = 89◦) between 200 and 600 km altitude
and m ≤ 150. Orders with small frequency are affected by resonance effects. The critical limit of
1.8 · 10−6 Hz (5.6 days period) is marked with a gray line. In order to minimize the disturbance of
monthly gravity field retrievals by temporal aliasing resonance effects orbits with strong resonances in
low SH orders should be avoided. Therefore 4 optimal altitude bands for polar LEOs are selected,
i.e. around 301, 365, 421, and 487 km altitude (Murböck et al., 2014). The pre-selection of the basic
scenarios (Tab. 4.1) is done based on these altitude bands.

It can be seen, that the resonances occur at integer multiples of the numbers of revolutions per day,
i.e. −u̇/Λ̇ which is equal to Nrev/Nday for circular repeat orbits. For the selected orbits this ratio is
between 15 and 16. The pattern in Fig. 7.1 corresponds to specific repeat cycles. The absolute minima
are reached for short period repeat cycles. A Nday days repeat orbit has its largest resonances at all
integer multiples of Nrev. One day polar repeat orbits with 15 and 16 revolutions, respectively, are in
altitudes of 548 and 256 km, respectively. Between these 1 day cycles one 2 day cycle is shown with 31
revolutions at 398 km altitude (cf. Fig. 2.2). This 2 day cycle shows its largest resonances at all even
multiples of m = 2 · 15.5 = 31. In addition to the discussions on these resonances in Kim (2000) the
connection with temporal aliasing errors is explained in Murböck et al. (2014).
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Figure 7.1: SH order resonances in log
10

(Hz) for polar orbits between 200 and 600 km altitude. The gray lines mark the
max. SH orders without strong resonances (values below 1.8× 10−6 Hz) (Murböck et al., 2014).

7.2 GRACE Resonances

These resonances are also visible in current monthly GRACE solutions. A representation is shown for
the official release 5 solutions of CSR, GFZ, and JPL and for ITSG-Grace2014 (cf. Tab. 2.3). More
than 8 years (August 2002 to December 2010) of monthly GRACE solutions up to lmax = 90 (96 for
CSR RL05) are used for this analysis. Figure 7.2 shows residual SH order amplitudes of all monthly
solutions. In the following it is explained how these residual SH order amplitudes are derived.

The dominating contents in each monthly solution K̄lm are the mean gravity signal for this month,
stochastic noise (mainly from the microwave ranging instrument and from the accelerometers) and non-
stochastic errors from temporal aliasing. At first the mean SH coefficients for the whole time series are
subtracted. Hence, the signal part in each monthly residual ∆K̄lm is reduced to the difference wrt. this
mean representing mainly hydrology and ice mass distributions.

SH order amplitudes are computed for each residual monthly solution κamp

(

m,∆K̄lm

)

(Eq. (2.11)). A
smooth behaviour of the logarithm of the SH order amplitudes for the residual signal and the stochastic
noise is assumed. Hence, a best fitting low degree polynomial Pn (m) with coefficients ai (0 ≤ i ≤ n) is
able to reduce these two components (m = 0 is excluded from the polynomial fitting). A degree n = 4
for the polynomial is chosen and the residual SH order amplitudes read

∆κamp

(

m,∆K̄lm

)

= log10
(

κamp

(

m,∆K̄lm

))

− Pn (m) = log10
(

κamp

(

m,∆K̄lm

))

−
4
∑

i=0

aim
i. (7.2)

Please note that the residual SH order amplitudes in Eq. (7.2) are evaluated in log10 (κamp). The values
in Fig. 7.2 range from −0.5 to more than 1. For values of 1 the SH order amplitudes κamp

(

m,∆K̄lm

)

are 10 times larger than the smooth polynomial in m. The largest residual SH order amplitudes and
thereby the largest resonances are around m = 60 in 2004 for all four solutions. Figure 7.1 shows
this resonance at 470 km altitude. During the whole period the altitude of GRACE decreases from
approximately 490 to 460 km. All four solutions show the m = 75 resonance at the very beginning
in 2002 and the m = 45 resonance approximately from 2008 to 2011. Only the CSR RL05 shows the
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Figure 7.2: SH order resonances in four GRACE solutions, i.e. RL05 of CSR (top left), GFZ (top right) and JPL (bottom
left) and ITSG-Grace2014. Shown are reduced SH order amplitudes for each monthly solution.

m = 90 resonance for the whole period. A possible reason for this is the higher lmax compared to the
other three. Furthermore, the residual order amplitudes of GFZ RL05 contain large values at m = 83
and m = 85 in 2006 which can not be explained by the order resonances in Fig. 7.1.

From GRACE orbit data the basic rates u̇ and Λ̇ are derived in diurnal mean values. Equation (7.1)
gives ω (m) and min(|ω (m)|) is computed for the whole period. Figure 7.3 shows the resonance periods
1/min(|ω (m)|) for the mainly affected orders (center and right). These periods are compared with the
total RMS of the mean reduced solutions for the four GRACE solutions in Fig. 7.2.

In the period from 2007 to 2009 there are the smallest RMS between 5 and 10 mm geoid height. Before
2007 the RMS is increased, and especially in 2002 and 2004 it contains peak values between 30 and 50
mm for the different solutions. Obviously the total RMS of the GRACE solutions is related with the
SH order resonances. The peaks occur for the periods when GRACE meets a 5 day repeat cycle in 2002
and a 4 day repeat cycle in 2004. The m = 61 resonance dominates the observed period, and a possible
reason for the increased total RMS in 2003 and 2005 is this resonance. As the m = 61 resonance period
decreases towards 2011 the total RMS decreases as well. In 2010 the m = 46 resonance becomes the
dominant part, and this could be a reason for the again increased RMS.

It is shown that the gravity retrieval performance of GRACE depends on the SH order resonances.
Excluding the peak values for the short period repeat cycles, the total RMS increases by up to a
factor of 2 from periods with low resonances for all orders to periods with increased resonance periods.
Furthermore, Chap. 6 explains the relation of these resonances with temporal aliasing. For the NGGM
it is required to avoid high resonances, i.e. large resonance periods. As the NGGM has increased
instrument accuracies wrt. GRACE temporal aliasing will be the dominant error source of the NGGM.
Therefore taking into account the resonance effects becomes even more important.
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Figure 7.3: Total RMS in mm geoid height of the residual coefficients wrt. the mean of the four monthly GRACE solution
series.

7.3 Order Resonance Reduction

Temporal aliasing effects are reduced with dedicated satellite formations, e.g. a double Bender-type
pair or a single Pendulum formation (cf. Sec. 4.1). Furthermore, a clever orbit choice avoids the largest
SH order resonances (Murböck et al., 2014). But the knowledge of the SH order resonances can also
directly be used in order to reduce resonance effects. Two examples for such methods are explained in
Secs. 7.3.1 and 7.3.2 based on LCLA results.

7.3.1 Weighting of Double Pairs

In Sec. 6.1 it is shown that each order resonance of a single pair is also an order resonance of a double
pair solution including this single pair. If two single pairs have different order resonances the relative
weighting should account for the larger errors around the affected SH orders. This idea is tested on
the basis of polar double low-low SST pair simulations regarding tidal and non-tidal temporal aliasing.
The chosen scenarios consist of GRACE-like 31 day repeat orbits for which the orbit parameters are
given in Tab. 7.1.

The low-low SST observations are computed from the tidal models EOT08a and FES2004 and from

Table 7.1: Basic orbit parameters for the simulations in Sec. 7.3.

Nodal days 31

Revolutions 472, 475, 477, and 479

Altitudes 410 to 480 km

Inter-satellite distance 220 km

Start epoch March 1, 2004
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Figure 7.4: SH order resonance frequencies in Hz for two double polar pairs consisting of 31/475 with 31/477 (top left) and
31/479 (top right), respectively. SH order depending weights (bottom) for the two double pairs derived from the peak
value relations of the SH order resonance frequencies.

the non-tidal AOHIS models (cf. Tab. 2.3) without a static gravity model. A de-aliasing approach is
applied for the ocean tides and AOHIS. This means that high-frequency signal content is reduced in
order to reduce temporal aliasing effects. Therefore the full signal of EOT08a is reduced by FES2004
and the AO part of AOHIS is reduced by its mean. Assuming independent observations a white noise
in terms of range accelerations with a standard deviation of 10−10 m/s2 is added.

One set of gravity field parameters is estimated from the monthly observations up to lmax = 80 separately
from the tidal and the non-tidal observations, i.e. EOT08a− FES2004 and AO−mean(AO). The results
contain the temporal aliasing effects from tidal and non-tidal sources, and therefore SH order resonances
are expected. Figure 7.4 (top) shows the SH order resonance frequencies min(|ω (m)|) (Eq. (7.1)) in
log10 Hz for two polar (I = 89◦) 31 days double pairs (31/475 with 31/477, and 31/479, respectively),
respectively. The largest resonances are at m = 46 for 31/475, at m = 77 for 31/477, and at m = 31
for 31/479.

The relative weights of the two orbits in a double pair shall account for the large resonances in each pair.
Therefore they depend on m and are computed from the relation between the resonance frequencies at
the peak values (multiples of approximately 15). For the combination of 31/475 and 31/479 (top left)
for m = 46 this relation is approximately 0.1. Between these values the weights are interpolated with
a piecewise cubic interpolation. Figure 7.4 (bottom) shows the weights for each single pair of the two
double pairs.

The weights for each pair wi (m) (i ∈ {1, 2} and w1 + w2 = 1) are applied to all coefficients and the
combined coefficients are the weighted mean values

K̄lm,combination = w1 (m) K̄lm,1 + w2 (m) K̄lm,2. (7.3)

This combination does neither take into account the variances nor covariances but only the relative
resonance frequencies. For comparison a rigorous combination on normal equation level is assessed as
well (Eq. (2.17)). This rigorous combination takes into account only the variances and co-variances into
account but not the resonances.
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Figure 7.5: SH order RMS (Eq. (2.11)) in mm geoid height for each single pair (black and blue, cf. Tab. 7.1) and the two
different combinations (red: weighted mean, green: rigorous) for tidal (top) and non-tidal (bottom) de-aliasing errors.

The results are shown in Fig. 7.5 in terms of SH order RMS (Eq. (2.11)) in mm geoid height for each
single pair and the two different combinations, respectively. All curves represent temporal aliasing from
background model error assumptions, and the range is between 1 µm and 1 mm. The ocean tide aliasing
(top) shows pronounced peak values at the resonance orders, whereas the non-tidal results (bottom) are
smoother. Similar to Sec. 6.1 the rigorous combination (green) suffers from all resonances of the single
pairs nearly with the same RMS. In contrast, the weighted mean combinations (red) result in smaller
resonance effects than the rigorous combination by down weighting the affected single pairs. Therefore
the weighted mean combination shows smaller temporal aliasing effects, especially around the order
resonances.

This effect of temporal aliasing reduction by weights depending on the SH order resonances is also visible
in the spatial domain. In Fig. 7.6 global geoid heights on a 1◦ × 1◦ grid computed up to lmax = 80 are
displayed for the tidal double pair results in Fig. 7.5 (top). There is a strong systematic error effect for

Table 7.2: Statistics of global geoid height residuals in mm for .

Tidal aliasing Non-tidal aliasing

472 472 472 475 475 477 472 472 472 475 475 477

475 477 479 477 479 479 475 477 479 477 479 479

rigorous RMS 2.4 8.1 1.6 6.4 1.1 4.3 3.6 2.7 1.9 2.9 2.3 1.8

combination min −9.1 −36 −5.6 −29 −4.5 −19 −20 −17 −16 −17 −14 −11

max 9.7 32 7.6 28 6.8 17 20 15 14 17 14 11

weighted RMS 1.9 4.0 2.2 1.8 0.80 2.5 2.3 2.1 1.9 2.7 1.6 1.6

mean min −6.8 −18 −7.4 −11 −3.4 −11 −16 −11 −9.7 −16 −9.9 −11

max 7.2 15 8.0 9.3 3.6 9.9 15 12 9.7 15 9.2 9.8
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Figure 7.6: Global geoid height residuals in mm for the double pair tidal aliasing results in Fig. 7.5 (top) computed on
a 1◦ × 1◦ grid up to lmax = 80. Top: rigorous combination of 31/475 with 31/477 (left) and 31/479 (right). Bottom:
weighted mean (Eq. (7.3)).

the rigorous combination of 31/475 and 31/477 (top left) in terms of latitudinal stripes with amplitudes
of more than 1 cm geoid height. It is mainly caused by the strong resonance at m = 77 (Figs. 7.4 and
7.5). These effects are less prominent for the second double pair (top right), but they are reduced with
the weighted mean solutions for both double pairs (bottom).

The global RMS for the rigorous combinations is 6.4 mm (top left) and 1.1 mm (top right). It is
reduced with the weighted mean solutions to 1.8 mm (by a factor of 3.6) and 0.8 mm (by a factor of
1.4), respectively. The global RMS (and min. and max.) for all double pairs for tidal and non-tidal
temporal aliasing and for the two combination approaches is summarized in Tab. 7.2. Only for one
double pair (31/472 with 31/479) the weighted mean solution does not lead to a smaller global RMS.
On average the weighted mean solutions lead to smaller global RMS of tidal aliasing errors by a factor
of 1.8. For the non-tidal results this factor is 1.3.

It is shown that the SH order resonances should be used in order to reduce temporal aliasing effects.
The approach of SH order depending weighting could be further improved by taking into account also
the variances and co-variances of the single solutions. This is even more important for Bender-type
double pairs. Because without applying the variances and covariances for the combination it cannot be
taken full advantage of the improved observation geometry with the polar and the inclined pair.

7.3.2 Single Pair Regularization

In Sec. 7.3.1 order resonances are used to optimize the relative weighting of a double low-low SST
constellation. Here it is explained how the knowledge of the order resonances can be applied for the
regularization of a single pair in order to reduce temporal aliasing. In least squares adjustment (LSA)
regularization means the combination (Eq. (2.17)) with a regularization matrix R and corresponding
pseudo observations l0. Assuming independent l0 the least squares estimate of the unknowns reads

x̂ =
(

ATPA+R
)−1 (

ATPl+ l0
)

. (7.4)
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Figure 7.7: Weighting function for regularization according to resonance periods for the 31/475 orbit.

Regularization can be used to reduce SH order resonances from temporal aliasing. The deterministic
error effects around the resonance orders are to be reduced by applying regularization at these orders de-
pending on the resonance periods. As no a priori information shall be used here the pseudo-observations
are zero l0 = 0 and R is a diagonal matrix with non-zero entries w (m) · diag

(

ATPA
)

for m > mmin.
The empirical weighting function w (m) is again derived by piecewise cubic interpolation of values at
the resonance orders mr depending on the resonance period T (mr). It reads

w (mr) = a · T (mr)
e (7.5)

with regularization parameters a ≥ 0 and e ≥ 0. In between the resonance orders there should be no
regularization, and therefore zero weights are introduced there as interpolation points. As a and e are
positive, w (mr) is positive as well and the regularized normal equation matrix ATPA+R is the same
except for increased values on the diagonal by w (mr) for m > mmin.

In Fig. 7.7 the resonance periods together with the weighting function are shown for the 31/475 orbit
(cf. Tab. 7.1) with the empirically derived regularization parameters a = 0.1 and e = 1 up to lmax = 60.
The resonance periods are the inverse of the resonance frequencies in Fig. 7.4 (top black). At mr = 46
the resonance period is 31 days, and therefore the weighting function at this order is w (mr = 46) =
0.1 · 311 = 3.1. Hence, the regularization accounts for the large resonance at m = 46 with introducing
pseudo zero observations with weights more than 3 times larger than the diagonal elements of the
unregularized normal equation matrix around this order.

This regularization is tested for ocean tide aliasing similar to Sec. 7.3.1. The low-low SST observations
are computed from the difference between the two ocean tide models EOT08a and FES2004 plus the
mean hydrology and ice signal (HI) for March 2004. The unregularized residuals wrt. mean HI are
shown up to lmax = 60 in Fig. 7.8 (left, blue curves) in terms of SH degree and order RMS, respectively.
It can be seen that the large resonance at m = 46 leads to increased residuals (even larger than mean
HI) for SH degrees l > 45. The SH order RMS show more pronounced peaks around m = 46.

An important parameter for the regularization is mmin. Applying the regularization for orders where
the signal (mean HI) to noise (EOT08a − FES2004) ratio is high would deteriorate this ratio. Therefore
the regularization should only be applied for m > 38 (between the resonances at m = 31 and m = 46).
The effect is seen in the regularized results in terms of SH degree and order RMS in Fig. 7.8 (left, red
curves). The regularization decreases the residuals for nearly all affected SH degrees and orders below
the mean HI signal. The order dependent regularization effect is also shown for the whole spectrum
(top right) in terms of log10 residual relations. Values of −1 mark coefficients where the residuals after
regularization are decreased by a factor 10. It can be seen that the regularization improves all SH
degrees in a broad band around m = 46.

The improvement of this ocean tide aliasing reduction with order dependent regularization is also shown
in the spatial domain. Similar to the approach described in Sec. 7.3.1 the regularization decreases the
systematic latitudinal striping pattern. The global RMS is decreased from 0.9 mm for the unregularized
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Figure 7.8: Effects of regularization according to SH order resonances for the 31/475 orbit with tidal aliasing up to lmax = 60.
Left: SH degree (top) and order (bottom) RMS in mm geoid height for the residuals of the unregularized and the regularized
solution wrt. the mean HI signal. Top right: unregularized residuals wrt. mean HI divided by regularized residuals (log10).
Right: global geoid height residuals in mm for the unregularized (center) and the regularized (bottom) solution computed
on a 1◦ × 1◦ grid up to lmax = 60.

residuals by nearly a factor of 2 to 0.5 mm for the regularized residuals. From both analyses, in this
section and Sec. 7.3.1 it is concluded, that the information of the SH order resonances can be used to
reduce temporal aliasing effects from tidal and non-tidal signals.

Applying a regularization in general means that the estimated coefficients are not un-biased any more.
They are biased towards the pseudo-observations according to R which plays the role of the normal
equation matrix for the pseudo-observations. In order to minimize signal corruption regularization
should only be used for unknowns with small signal to noise ratio. This is the case in the here discussed
example of reducing SH order resonances.
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8 Proposed Mission Scenarios

In this chapter gravity field retrieval results of the mission scenarios which are proposed for the NGGM
are elaborated. The results are analysed in the spectral and spatial domain, and the major error sources
are taken into account. One major error source is stochastic instrument noise for which in Chap. 4 the
requirements are derived for basic orbits (Tab. 4.1). But the dominating error source is temporal
aliasing from tidal and non-tidal sources. One of the main characteristic of temporal aliasing are SH
order resonances which are discussed in Chaps. 6 and 7.

The basic orbits are chosen in specific altitude bands where large resonances do not occur in low SH
degrees and orders (Murböck et al., 2014). The resonance periods for the three basic orbits ORB1,
ORB2, and ORB3 are shown in Fig. 8.1 up to mmax = 140. The dominant resonances with resonance
periods larger than 10 days are at m = 95 for ORB1, at m = 78 and m = 125 for ORB2, and at
m = 108 and m = 77 for ORB3. In Sec. 7.3 it is shown how the resonances can be reduced, especially
for a bad signal-to-noise ratio (Sec. 7.3.2). These methods are not applied in this chapter.

The mission scenarios proposed for the NGGM are double Bender-type low-low SST pairs and Pendulum
formations in three different altitudes (cf. Chap. 4). The combined scenario with low-low SST and radial
SGG is neglected, because current instrument accuracies of SGG are not sufficient to significantly
contribute to a low-low SST solution with laser accuracy.

In the first part of this chapter low resolution (31 days, lmax = 80) gravity retrieval results are discussed
in order to see the impact of tidal and non-tidal temporal aliasing for the different scenarios (Sec. 8.1).
Another method to reduce temporal aliasing is elaborated in Sec. 8.2 on the basis of gravity retrievals
with high temporal resolution (0.5, 1, and 2 days).

The scheme of the simulations is displayed in Fig. 2.4 and the references for the background models
can be found in Tab. 2.3. The total low-low SST observation noise for the three basic scenarios is
derived from scaling the spectrum of normally distributed numbers according to the total noise model
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Figure 8.1: SH order resonance periods in days for the three basic orbits ORB1, ORB2, and ORB3.
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Figure 8.2: Signal, noise and filter application in the spectral and time domain for ORB1p. Left: range acceleration ASD
in m/s2/

√
Hz for the AOHIS low-low SST observations (black), the total noise (gray), the inverse frequency response of

the ARMA filter (green) and the noise models. Top right: ASD of filtered AOHIS signal and total noise in 1/
√
Hz. Bottom

right: unit-less filtered total noise time series.

(cf. Fig. 4.5 and Tab. 4.3). Fig. 8.2 (left) shows the ASD of the total noise (gray) together with the
AOHIS low-low SST signal on ORB1p (lmax = 80, black), the noise models, and the inverse frequency
response of the ARMA filter (green) to be applied in Eq. (2.21). The total noise model (black dashed)
consists of the laser ranging instrument or SST (red) noise and the accelerometer (ACC, blue) noise.
The orbital frequency f0 is approximately 1.8 · 10−4 Hz for the three scenarios according to revolution
times of 5,438 s for ORB1p, 5,517 s for ORB2p, and 5,586 s for ORB3p. The respective inclined orbits
have a revolution time that is shorter by 41 s.

For the filters of all three scenarios a 2nd order Butterworth bandpass filter (maximally flat in pass and
stop band) is used, for ORB1 with a pass band at 0.4 < f < 3 mHz. The inverse frequency response
approximates the total noise ASD with small deviations above 1 mHz. Adequate filtering of the noise
time series with this Butterworth filter results in a rather flat filtered spectrum (cf. Fig. 8.2, top right).
As in Eq. (2.21) the observations consisting of signal and noise are filtered, the filtered AOHIS signal is
also shown (black). Furthermore it is important to take warming up effects of such filters into account.
This warm-up effect can be seen in Fig. 8.2 (bottom right) prominently within the first hour of the
filtered noise time series. Therefore for all scenarios the first 1,500 epochs (approximately 2 hours) are
not used for setting up the normal equation system. A digital filter in general does not only change
the amplitudes but also the phases. But in Eq. (2.21) the filter is applied in both forward and reverse
directions which is why the phase remains unchanged.

A graphical 3D representation of the orbit configuration is given in Fig. 8.3 for ORB1p (blue) and
ORB1i (red) after 1 and 6 days. After 1 and 6 days, respectively, a nearly homogeneous groundtrack
pattern is reached. After one day the polar and inclined orbit reach nearly 16 revolutions leading to
mean gaps around the equator of 1,300 km (ascending and descending tracks), respectively. After 6
days the mean gaps are decreased to nearly 200 km for one orbit and 100 km for the double orbit.
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Figure 8.3: 3D orbit positions of ORB1p and ORB1i after 1 day (left) and 6 days (right).

8.1 Low Resolution Gravity Retrieval

In this section the results of low resolution gravity retrievals based on LCLA simulations up to lmax = 80
are discussed. The scenarios are the 3 single polar pairs ORB1p, ORB2p, and ORB3p, the 9 different
double pairs with these polar pairs, and the 3 single inclined pairs ORB1i, ORB2i, and ORB3i (cf.
Tab. 4.1). The key parameter to be analyzed is the effect of temporal aliasing from non-tidal and tidal
sources on each scenario. The signal to be observed with each scenario is the mean AOHIS signal.
Therefore the residuals wrt. this mean signal represents the real errors. No de-aliasing approach is
applied for AOHIS, which means that the full content of the high-frequency variations (mainly AO)
aliases into the solutions. For the ocean tide part de-aliasing is applied by using the difference between
EOT08a and FES2004 as ocean tide input for the LCLA. The results are shown in the spectral and
spatial domain.

8.1.1 Temporal Aliasing from Non-Tidal Variations

At first non-tidal aliasing is addressed and Fig. 8.4 shows the residuals wrt. the mean AOHIS for the 3
single pairs and the 9 double pairs in terms of unit-less SH coefficients (log10), respectively. Resonances
are visible for the single pairs (top row) in terms of high residuals around specific SH order bands.
These resonances are reduced for the double pair residuals, but especially the double pairs with ORB3p
(right column) suffer from the resonances. This effect is even enhanced because of the higher orbital
altitude of ORB3. All scenarios show small residuals around the zonal coefficients (m = 0), but for the
zonals the single pairs are even more sensitive than the double pairs. And the double pair residuals
have less variability with SH order.

Figures 8.5 and 8.6 show the corresponding SH degree and order amplitudes of the residuals in mm
geoid height in comparison with the mean AOHIS signal (black) and the formal errors (dashed curves).
The formal errors represent the performance level of each scenario in a static simulation case. It can be
seen that the temporal aliasing effects due to the high-frequency AOHIS variations are around 2 orders
of magnitude larger than the formal errors. This means that the high-frequency variations have to be
reduced to be able to benefit from the sensitive instruments. This issue is discussed in Sec. 8.2.

The effects of the SH order resonances can be seen (Fig. 8.6). Especially for the single pairs the
resonances lead to step-wise increases of the SH degree amplitudes for l = mr. These steps reach one
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Figure 8.4: Non-tidal temporal aliasing: residuals of the full AOHIS analyses wrt. the mean AOHIS for the 3 single pairs
(top row) and the 9 double pairs in terms of fully normalized unit-less SH coefficients (log10) up to lmax = 80, respectively.
The second row contains the double pair residuals of ORB1p (left), ORB2p (center), and ORB3p (right) with ORB1i,
respectively. The two bottom rows display the residuals analogously for the combinations with ORB2i and ORB3i.

order of magnitude for l = 15 for all three single pairs and nearly one order of magnitude for l = 30 for
ORB3p. The SH degree amplitudes for the double pairs stay below the mean AOHIS signal up to SH
degrees between 57 (ORB3p + ORB1i) and 78 (ORB1p + ORB1i). This means that the scenarios are
able to observe the mean AOHIS signal on global average significantly with a spatial resolution of 350
and 260 km, respectively.

The spatial distribution of the residuals representing non-tidal temporal aliasing effects is displayed in
Fig. 8.7 in terms of global geoid heights in mm. The single pair solutions (top row) show strong striping
patterns with amplitudes of more than 20 mm geoid height for ORB3p. These errors are significantly
reduced for all 9 double pair cases. The double pair residuals are dominated by systematic errors up to
5 mm geoid height in areas with high temporal AOHIS (mainly AO) variations around ±60◦ latitude.

The lowest double pair scenario with ORB1p and ORB1i has the smallest residuals, and any combination
of ORB1p and ORB2p with ORB1i and ORB3i is superior to the others. This becomes clearer when
comparing the global RMS of these residuals in Tab. 8.1. The single pairs show a global RMS between
1 and 6 mm geoid height. The combination with the inclined pairs reduces the polar single pair RMS
on average by a factor of 2 for ORB1p, 4 for ORB2p, and 9 for ORB3p. The double pair ORB1p +
ORB1i has a global RMS of 0.3 mm.
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Figure 8.5: Non-tidal temporal aliasing: SH degree amplitudes in mm geoid height up to lmax = 80 of the full AOHIS
analyses residuals wrt. the mean AOHIS for the 3 single pairs (gray) and the 9 double pairs in comparison with the mean
AOHIS signal and the formal errors, respectively.
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Figure 8.6: Non-tidal temporal aliasing: SH order amplitudes in mm geoid height up to lmax = 80 of the full AOHIS
analyses residuals wrt. the mean AOHIS for the 3 single pairs (gray) and the 9 double pairs in comparison with the mean
AOHIS signal and the formal errors, respectively.
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Figure 8.7: Non-tidal temporal aliasing: global geoid height residuals in mm computed on a 1◦ × 1◦ grid up to lmax = 80
of AOHIS wrt. the mean AOHIS for the 3 single pairs (top row) and the 9 double pairs, respectively. The second row
contains the double pair residuals of ORB1p (left), ORB2p (center), and ORB3p (right) with ORB1i, respectively. The
two bottom rows display the residuals analogously for the combinations with ORB2i and ORB3i. Note the different scales
of the first row and the three bottom rows (double pair solutions).

8.1.2 Temporal Aliasing from Ocean Tides

In order to analyse the effects of temporal aliasing from ocean tides a de-aliasing approach is applied.
The observations are computed from the mean AOHIS signal and the differences between the ocean
tide models EOT08a and FES2004 (cf. Tab. 2.3). This ocean tide model difference (OTD) represents
the model error assumption. The results are shown analogously to the figures in Sec. 8.1.1.

Figure 8.8 shows the SH spectrum of the residuals representing ocean tide temporal aliasing. Here
the resonances are more prominently visible than for non-tidal aliasing (Sec. 8.1.1). The SH degree
amplitudes (Fig. 8.9) show clearly the resonance at m = 47 for ORB2p, and at m = 31 for ORB3p. As
in the non-tidal case (Fig. 8.5), the SH degree amplitudes of the ocean tide aliasing errors for double
pairs are between 0.01 and 0.1 mm geoid height with minima around l = 40. For high SH degree in
these analyses the ocean tide temporal aliasing is smaller than the non-tidal temporal aliasing. This
also holds for the SH order amplitudes in Fig. 8.10, and as in the non-tidal case the smallest residuals

Table 8.1: Global geoid height residual RMS (weighted with cosine of latitude) in mm for non-tidal (AOHIS, cf. Fig. 8.7)
and tidal (residual ocean tides, cf. Fig. 8.11) aliasing for the 3 single pairs and the 9 double pairs, respectively.

AOHIS aliasing Residual ocean tide aliasing

ORB1p ORB2p ORB3p ORB1p ORB2p ORB3p

1.0 2.1 5.7 0.43 1.5 6.1

ORB1i 0.27 0.44 0.75 0.24 0.37 0.75

ORB2i 0.68 0.63 0.62 0.34 0.36 0.56

ORB3i 0.54 0.52 0.49 0.67 0.66 0.85
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Figure 8.8: Ocean tide temporal aliasing: residuals of the OTD (EOT08a − FES2004) analyses wrt. the mean AOHIS for
the 3 single pairs (top row) and the 9 double pairs in terms of fully normalized unit-less SH coefficients (log10) up to
lmax = 80, respectively. The second row contains the double pair residuals of ORB1p (left), ORB2p (center), and ORB3p
(right) with ORB1i, respectively. The two bottom rows display the residuals analogously for the combinations with ORB2i
and ORB3i.

are given by ORB1p + ORB1i.

The global geoid height residuals (Fig. 8.11) are dominated by the resonance effects, especially by
the m = 79 resonance. This resonance effect results in a narrow band around the equator with high
residuals of more than 20 mm geoid height for ORB3p and up to 5 mm for the double pairs with
ORB3p and ORB3i. The single polar pair ORB1p gives even smaller residuals and a smaller global
RMS (Tab. 8.1) than its combination with ORB3i. In comparison with the non-tidal temporal aliasing
effects (Sec. 8.1.1) the average improvement of the single polar pair solutions by combinations with the
inclined pairs is smaller for the ocean tide aliasing case.

In comparison with an in-line pair a Pendulum pair improves the observation geometry by adding more
cross-track information to the inter-satellite range measurements. Figure 8.12 shows the reduction of the
temporal aliasing effects from AOHIS and OTD in comparison with the corresponding in-line pairs for
this formation in terms of SH degree amplitudes for the three scenarios ORB1p, ORB2p, and ORB3p.

For all these Pendulum results the zonal coefficients for l ∈ {2, 4, 6} have been excluded. This is
because the low degree zonals of the Pendulum solutions have very large residuals and formal errors
(cf. Fig. 4.2). As this effect is included in the formal errors as well, it is related to the observation
geometry (in combination with the weight matrix). The pendulum solutions could be stabilized in the
low degrees, for example, by combining low-low and high-low SST. By excluding these three coefficients
from the residuals, the Pendulum results must be considered as optimistic for the low degrees.

In comparison with the in-line pairs the Pendulum pairs reduce the SH degree amplitudes of the residuals
wrt. the mean AOHIS signal by a factor of 2 to 3. For these tidal and non-tidal results up to lmax = 80
the Pendulum pairs show comparable AOHIS retrieval performance to the average Bender-type double
pair solutions (cf. Figs. 8.5 and 8.9). The scenario with the smallest residual of all the simulations in
this section outperforms the Pendulum scenarios approximately by a factor of 2 for tidal aliasing and
by a factor of 3 for non-tidal aliasing.

Together with Sec. 8.1.1 this section gives important information for the selection of the mission scenarios
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Figure 8.9: Ocean tide temporal aliasing: SH degree amplitudes in mm geoid height up to lmax = 80 of the OTD (EOT08a
− FES2004) analyses residuals wrt. the mean AOHIS for the 3 single pairs (gray) and the 9 double pairs in comparison
with the mean AOHIS signal and the formal errors, respectively.
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Figure 8.10: Ocean tide temporal aliasing: SH order amplitudes in mm geoid height up to lmax = 80 of the OTD (EOT08a
− FES2004) analyses residuals wrt. the mean AOHIS for the 3 single pairs (gray) and the 9 double pairs in comparison
with the mean AOHIS signal and the formal errors, respectively.

for the NGGM and for the issue of temporal aliasing from tidal and non-tidal sources. For these low
resolution results (lmax = 80) the single polar pair ORB3p and double pairs including ORB3p and
ORB3i give the worst mean AOHIS retrieval performance. Of course this sequence may look different
for high resolution retrievals. The effects of the large SH order resonance of ORB1p at m = 95 (cf.
Fig. 8.1) is not visible in the results in this section.
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Figure 8.11: Ocean tide temporal aliasing: global geoid height residuals in mm computed on a 1◦ × 1◦ grid up to lmax = 80
of OTD (EOT08a − FES2004) wrt. the mean AOHIS for the 3 single pairs (top row) and the 9 double pairs, respectively.
The second row contains the double pair residuals of ORB1p (left), ORB2p (center), and ORB3p (right) with ORB1i,
respectively. The two bottom rows display the residuals analogously for the combinations with ORB2i and ORB3i. Note
the different scales of the first row and the three bottom rows (double pair solutions).

The NGGM does not benefit from the required accurate instruments in the case of temporal aliasing
from full AOHIS variations and ocean tide de-aliasing with an accuracy similar to the difference between
EOT08a and FES2004. In order to fulfil the mission objectives the reduction of these variations is
required. In Wiese et al. (2011) it is described how temporal aliasing can be reduced by estimating low
resolution gravity fields with high temporal resolution in addition to one high resolution gravity for the
whole observation period. Based on this method in Sec. 8.2 this procedure is discussed for the NGGM
and the gain of temporal aliasing reduction is estimated.
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Figure 8.12: SH degree amplitudes in mm geoid height up to lmax = 80 of the residuals of the AOHIS and the OTD
(EOT08a − FES2004) analyses wrt. the mean AOHIS for the polar Pendulum pairs in comparison with the mean AOHIS
signal, the polar in-line pair residuals and the formal errors, respectively. From left to right there are the results for
ORB1p, ORB2p, and ORB3p. The zonal coefficients for l ∈ {2, 4, 6} have been excluded from the Pendulum results.

8.2 High Temporal Resolution Gravity Retrieval

High-frequency mass variations mainly in atmosphere and oceans lead to large temporal aliasing errors
in monthly gravity field retrievals. In Sec. 8.1 it is shown for the basic scenarios that the errors from
temporal aliasing from the full variations of AOHIS and the difference between two ocean tide models
are around 2 orders of magnitude above the instrument noise of the NGGM. One possibility to reduce
temporal aliasing errors is the estimation of short period low resolution gravity field parameters in
addition to one set of high resolution gravity field parameters for the whole observation period (Wiese
et al., 2011). In this section this method is discussed for the NGGM with respect to the short period
gravity retrieval performance and the approximation of the reduction rate of non-tidal variations.

The largest temporal variations of non-tidal mass distributions have periods of several days (Fig. 6.7,
right). Hence, estimating gravity fields every nday ∈ {0.5, 1, 2} days provides a big advantage. A global
gravity field is observed with high temporal resolution (although with low spatial resolution). Therefore
the variations above the Nyquist period of 2 · nday do not alias into the high resolution retrieval for the
main observation period (31 days for the NGGM).

The short period gravity retrieval performance is estimated for the double low-low SST in-line pair
ORB1p + ORB1i. In order to take different AOHIS variabilities during one month into account three
different epochs during January 2005 are chosen for the initial epoch of the short periods. The 12 hour
period starts at 1 January, the 1 day period at 10 January, and the 2 day period at 20 January. As
each of ORB1p and ORB1i performs more than 15 revolutions per day after 12 hours the gravity field
parameters are set to lmax = 15 (30 for 1 day and 60 for 2 days).

As for the simulations in Sec. 8.1 the low-low SST observations are computed from the AOHIS model
with full variations and from the differences between the two ocean tide models EOT08a and FES2004
(cf. Tab. 2.3). Figure 8.13 shows the SH degree amplitudes of the residuals wrt. the mean AOHIS signal
for the three short periods, separately for the contributions of AOHIS and of the ocean tide model
difference (OTD). The residuals for all three periods are significantly below the mean AOHIS signals.
Only OTD leads to residuals as big as the mean AOHIS signal around the resonance orders. The AOHIS
aliasing does not show these resonances and the residuals stay below the mean AOHIS signal for all SH
degrees.
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Figure 8.13: SH degree amplitudes in mm geoid height of the residuals of the AOHIS and the OTD (EOT08a − FES2004)
analyses wrt. the mean AOHIS for the double pair ORB1p + ORB1i in comparison with the mean AOHIS signal for the
three short periods of 0.5, 1, and 2 days.

In Fig. 8.14 the estimated mean gravity field (row 2) and the residuals for AOHIS (row 3) and OTD
(row 4) is displayed in comparison with the mean AOHIS signal (row 1) in terms of global geoid heights
computed up to the different lmax. The mean AOHIS signal shows geoid heights of more than 50 mm for
the areas with large hydrological variations, especially for the Congo region. It changes from 1 January
(0.5 days period) to 10 January (1 day period) and 20 January (2 days period) with a global RMS of 3
and 4 mm (maximum geoid height changes of 15 and 25 mm), respectively.

The residuals for AOHIS and OTD are one order of magnitude smaller than the mean AOHIS signal.
For the 0.5 days period the characteristic of the geoid height residuals are similar for AOHIS and OTD.
A possible reason for this is spatial aliasing due to large gaps. It has to be analysed how the double
pair orbit configuration, especially the ascending node separation, could be optimized in order to reduce
spatial aliasing in this case. However, the effects are small compared to the mean AOHIS signal. For
1 and 2 days the geoid height residuals for AOHIS and OTD show the same behaviour as the monthly
retrievals in Sec. 8.1 with lower spatial resolution (cf. Figs. 8.7 and 8.11).

The global RMS values of the geoid heights in Fig. 8.14 are given in Tab. 8.2. The residuals show global
RMS values of around 1 mm and the mean AOHIS signals of around 8 mm. This confirms that a global
gravity field can be observed in short periods of 0.5, 1, and 2 days. In the following it is discussed how
this estimation reduces the temporal aliasing errors of the NGGM.

The main advantage of co-estimating short period gravity field parameters together with one set of
high resolution gravity field parameters for the whole monthly period is temporal aliasing reduction.
The signals above the Nyquist period of the short period estimates do not alias into the high resolution
solution, because they are observed with high temporal resolution. This effect is analysed in Wiese
et al. (2011) for a single polar pair and two double pairs. Without post-processing filtering but with
AO de-aliasing the short period gravity estimates improve the results without additional short period
gravity estimates approximately by a factor of 2. However, Wiese et al. (2011) estimate the smallest
improvements for the Bender-type double pair. This improvement rate agrees with the results of the
following assessment for the estimation of 0.5, 1, and 2 days gravity retrievals.

Analogously to Fig. 6.7 the amplitudes of the non-tidal AOHIS variations are shown in Fig. 8.15 de-
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Figure 8.14: Global geoid heights in mm computed on a 1◦ × 1◦ grid of mean AOHIS, estimated AOHIS, and the residuals
of OTD (EOT08a − FES2004) and AOHIS wrt. the mean AOHIS for the 3 short periods of 0.5 (lmax = 15), 1 (lmax = 30),
and 2 (lmax = 60) days, respectively.

pending on the period between 0.5 and 30 days and on the SH degree 0 ≤ l ≤ 100. The amplitudes for
each period are computed from the Fourier series of the AOHIS time series for January 2005 (Gruber
et al., 2011). The signals which are observed with the three short period retrievals are marked with
blue boxes. Except for the AOHIS signals with periods below 1 day the largest amplitudes are covered
by the three short period retrievals.

All AOHIS signal contents outside the blue boxes in Fig. 8.15 alias into the monthly high resolution
solution. By summing up the total RMS for each period the total temporal aliasing error RMS of
AOHIS can be estimated. This is done for 2 ≤ l ≤ 140 for the three short periods separately and for the
combination of the three short periods. Figure 8.16 shows the cumulative geoid heights over the periods
of the total AOHIS variations (gray) in comparison with the variations without the 4 short period cases
(blue) and the reduction (red).

As the short period estimates reduce the AOHIS signal contents with the largest amplitudes the RMS
of the reduced variations shows no significant increase above each Nyquist period. Especially the signal
contents with periods larger than 3 days and amplitudes larger than 0.1 mm are observed (cf. Fig. 8.15).
The total RMS of the AOHIS variations (gray) for this month sums up to 2.3 mm geoid height. With
the combined short period retrievals (0.5, 1, and 2 days) the RMS for this month is reduced to 1 mm.

Table 8.2: Global geoid height RMS (weighted with cosine of latitude) in mm for the mean AOHIS signal and for the non-
tidal (AOHIS) and tidal (OTD) residuals for the double pair ORB1p + ORB1i for 0.5, 1, and 2 days periods, respectively
(cf. Fig. 8.14).

Period in days 0.5 (lmax = 15) 1 (lmax = 30) 2 (lmax = 60)

mean AOHIS signal 7.0 7.6 8.4

AOHIS residuals 0.35 1.7 2.1

OTD residuals 1.3 1.1 0.89
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Figure 8.15: SH degree amplitudes in log
10

(mm) geoid heights of non-tidal AOHIS variations depending on the period in
days. The amplitudes for different periods are computed from the Fourier series of the AOHIS time series for January
2005 from Gruber et al. (2011). The red line represents the maximum possible SH degree of expansion for a double pair.
The blue lines mark the amplitudes which are observed with the three short periods of 0.5, 1, and 2 days, respectively.
With the 1 day retrieval, for example, the signals above the Nyquist period of 2 days are observed up to lmax = 30.

This analysis applies only for AOHIS and not for ocean tides. But as Wiese et al. (2011) include ocean
tide de-aliasing errors in the analyses, and a similar reduction is shown, it can be assumed for the ocean
tide aliasing reduction as well.

The largest part is reduced already with the 12 hours estimates. Therefore it is recommended to take
this period into account for the NGGM. As described above, the orbit configuration of the double pair
has to be opimized wrt. optimal sampling in each 12 hours in order to avoid spatial aliasing and to
increase the spatial resolution. The main conclusions of this section are used for the discussions of the
final high resolution results in Secs. 8.3 and 8.4.
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Figure 8.16: Cumulative geoid heights in mm over the periods of the total AOHIS variations (gray) in comparison with the
variations without the 3 short period retrievals separately and without the combination of the three short period retrievals,
respectively. The geoid heights are computed from the total RMS for each period of AOHIS for 2 ≤ l ≤ 140 with and
without the blue boxes in Fig. 8.15. The red curves represent the reduction of AOHIS variations with each of the 4 short
period cases.

8.3 High Spatial Resolution Gravity Retrieval

In this section the results of gravity retrievals with high spatial resolution (lmax = 140) are assessed
and discussed. This spatial resolution is sufficient for the comparison of these final results with the
mission objectives. The results are presented analogously to the low resolution results in Sec. 8.1.
The simulation scheme is given in Fig. 2.4. As static gravity field model GOCO02S (second release of
Pail et al. (2010)) and as non-tidal variations AOHIS (Gruber et al., 2011) is chosen. The ocean tide
aliasing effects are not assessed with high resolution. The low resolution results in Sec. 8.1 are used for
the discussion.

The best gravity retrieval results in Sec. 8.1 are reached for the double low-low SST pairs combining the
observations of a polar and a 70◦ inclined pair. The double pairs consist of pairs of the basic scenarios
(Tab. 4.1). As observation noise the same data is used as described in Sec. 8.1 (cf. Fig. 8.2).

At first a static simulation is discussed for the single polar pair ORB1p and the double pair ORB1p +
ORB1i. Figure 8.17 shows the static residuals of these two scenarios in terms of SH degree amplitudes
(left) and in terms of global geoid heights (right). The SH degree amplitudes of the residuals show
good agreement with the formal errors. This shows, that the observations are weighted correctly with
the ARMA filter according to the colored noise. The small deviations between the slopes of the formal
errors compared to the static residuals for high SH degrees for the single and double pair are due to
the different slopes of the inverse frequency response of the filter compared to the noise ASD for high
frequencies (cf. Fig. 8.2).

The spatial distribution of the static geoid height residuals computed up to lmax = 134 (corresponding
to a spatial resolution of 150 km) does not show systematic effects (Fig. 8.17, right). The absolute
maximum residuals are 0.35 mm for the single, and 0.17 mm for the double pair. The global RMS of
the double pair residuals is smaller than a factor of 2 as well (34 µm for double, and 72 µm for single).
Furthermore, the double pair residuals show the impact of the inclined pair. The residuals at latitudes
φ with only polar pair observations (|φ| > 70◦) are higher than the residuals for |φ| < 70◦.
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Figure 8.17: Left: SH degree amplitudes in mm geoid height up to lmax = 140 of the static residuals for the single polar
pair ORB1p and the double pair ORB1p + ORB1i in comparison with the mean AOHIS signal and the formal errors.
Right: global geoid heights in mm computed up to lmax = 134 on a 0.5◦ × 0.5◦ grid of the single (ORB1p, top) and double
(ORB1p + ORB1i, bottom) pair residuals. Note the different range between the spatial geoid height residuals.

The high resolution AOHIS aliasing results are shown analogously to Fig. 8.5 in terms of SH degree am-
plitudes including instrument noise and temporal aliasing from full AOHIS. Figures 8.18, 8.19, and 8.20
display the results for the three single polar pairs ORB1p, ORB2p, and ORB3p and the corresponding
double pairs combining the polar pair with the three 70◦ inclined pairs. As for the low resolution results
the single pair residuals show strong resonance effects, especially at l = 15, whereas the double pair
residuals are much smoother. For high SH degrees the combinations of ORB1p with ORB2i and ORB3i,
respectively, do not improve the results of the single polar pair ORB1p (Fig. 8.18).

The residuals including full AOHIS aliasing are larger than the formal errors approximately by a factor
of 100. For low SH degrees the resonances have more impact on the residuals, but towards lmax = 140
the impact of the orbital altitude increases. Hence, the residuals for all double pairs consisting of ORB1i
(270 km altitude, blue lines) are smaller than the double pairs with ORB2i (330 km altitude, red lines),
which are slightly smaller than the double pairs with ORB3i (390 km altitude, green lines).
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Figure 8.18: Non-tidal temporal aliasing: SH degree amplitudes in mm geoid height up to lmax = 140 of AOHIS residuals
wrt. the mean AOHIS for the polar single pair ORB1p (gray) and the 3 double pairs with ORB1p in comparison with the
mean AOHIS signal and the formal errors, respectively.
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Figure 8.19: Non-tidal temporal aliasing: SH degree amplitudes in mm geoid height up to lmax = 140 of AOHIS residuals
wrt. the mean AOHIS for the polar single pair ORB2p (gray) and the 3 double pairs with ORB2p in comparison with the
mean AOHIS signal and the formal errors, respectively.
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Figure 8.20: Non-tidal temporal aliasing: SH degree amplitudes in mm geoid height up to lmax = 140 of AOHIS residuals
wrt. the mean AOHIS for the polar single pair ORB3p (gray) and the 3 double pairs with ORB3p in comparison with the
mean AOHIS signal and the formal errors, respectively.

8.4 Comparison with Mission Objectives

In this section the high resolution results are compared to mission objective MO2 with required global
geoid accuracies of 0.01 mm for 500 km and of 0.4 mm for 150 km spatial resolution. In Sec. 4.2 it is
explained that the instrument noise of the ranging instrument and the accelerometers accounts for 50%
of these required geoid accuracies. As in the final simulations the total effect of instrument noise plus
temporal aliasing is assessed, temporal aliasing must account for less than 50% of the requirements in
order to fulfil MO2.

At first this is only applied to the non-tidal aliasing contributions and the required geoid accuracy of the
final AOHIS simulations is 5 µm at l = 40 (500 km spatial resolution) and 0.2 mm at l = 134 (150 km
spatial resolution). The cumulative geoid errors representing global mean geoid errors depending on
the SH degree are displayed for the basic scenarios in Figs. 8.21, 8.22, and 8.23 in comparison with the
formal errors and the static residuals (without AOHIS aliasing).

In comparison with the SH degree amplitude plots in Sec. 8.3 they show a much smoother behaviour. As
the amplitudes decrease for the very low SH degrees before they increase above approximately l = 10,
the cumulative errors are flat for the low SH degrees. The cumulative geoid errors of the static residuals
(black) are well represented by the cumulative formal errors. But the cumulative errors including the
full AOHIS aliasing are two orders of magnitude above the formal errors.

On the basis of the cumulative geoid errors at l = 40 and l = 134 the comparison with MO2 is
assessed. Table 8.3 shows the cumulative geoid errors for the 3 single and the 9 double pairs for the two
spatial resolutions. As these errors are dominated by temporal aliasing from full AOHIS variations, a
requirement for the reduction of these variations is formulated in order to reduce the AOHIS temporal
aliasing errors to the in MO2 required values. This required reduction rate is given in brackets for each
scenario and the two resolutions, respectively. This means that the cumulative geoid errors divided by
the numbers in brackets give the requirements in MO2. The required reduction rates are larger for the
high spatial resolution at 150 km. Therefore these rates for l = 134 represent the NGGM requirements
for the reduction of AOHIS variations.

The best scenarios with the smallest cumulative errors at l = 134 and therefore the smallest required
AOHIS reduction rate are the three double pairs consisting of the inclined pair in the lowest altitude
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Figure 8.21: Cumulative geoid errors up to lmax = 140 of AOHIS residuals wrt. the mean AOHIS for the polar single pair
ORB1p (gray) and the 3 double pairs with ORB1p in comparison with the formal errors and the static residuals (black),
respectively.

ORB1i. How the required AOHIS reduction rates around 40 for these three scenarios can be achieved is
discussed in Chap. 9. If this reduction is not achieved the signals of interest in the science requirements
(Tab. 3.2) can only be measured with decreased resolution.

The global geoid height residuals wrt. mean AOHIS including full AOHIS temporal aliasing for the
best single pair scenario (ORB1p) and three best double pair scenarios (double pairs including ORB1i)
computed up to lmax = 134 are shown in Fig. 8.24. The global RMS of these grids is the same
as the cumulative geoid errors for these scenarios given in Tab. 8.3. But the absolute geoid height
residuals reach maximum values of around 10 cm for ORB1p (top left) and ORB3p + ORB1i (bottom
right) and values around 6 cm for ORB1p + ORB1i (top right) and ORB2p + ORB1i (bottom left).
Furthermore the residuals are not randomly distributed and show systematic effects. For the single pair
these systematic effects are visible in a narrow North-South striping pattern with maximum values in
latitude bands around ±40◦. This striping pattern is significantly reduced for the three double pairs
but especially around 40◦ latitude it is still visible for all three double pairs.

As for ocean tides there are no high resolution results, the low resolution results in Sec. 8.1.2 are used

Table 8.3: Cumulative geoid error in mm including instrument errors and full AOHIS aliasing in mm together with the
required reduction of the AOHIS variations (in brackets) in order to reach 50% of MO2 (5 µm at 500 km and 0.2 mm at
150 km). For example, the double pair ORB1p + ORB1i results in a cumulative geoid error of 5.7 mm at l = 134. This
error is dominated by full AOHIS aliasing and therefore the AOHIS variations have to be reduced by a factor of 29 to
reach 0.2 mm.

Spatial resolution 500 km (lmax = 40) 150 km (lmax = 134)

ORB1p ORB2p ORB3p ORB1p ORB2p ORB3p

0.80 (160) 1.1 (220) 2.4 (480) 16 (80) 39 (195) 110 (550)

ORB1i 0.12 (24) 0.14 (28) 0.19 (38) 5.7 (29) 7.3 (37) 9.0 (45)

ORB2i 0.10 (20) 0.10 (20) 0.12 (24) 13 (65) 16 (80) 17 (85)

ORB3i 0.11 (22) 0.11 (22) 0.11 (22) 15 (75) 18 (90) 19 (95)



8.4 Comparison with Mission Objectives 89

SH degree
0 20 40 60 80 100 120 140

cu
m

ul
at

iv
e 

ge
oi

d 
er

ro
r 

in
 m

m

10-4

10-3

10-2

10-1

100

101

102

ORB2p residuals
ORB2p + ORB1i res.
ORB2p + ORB2i res.
ORB2p + ORB3i res.
ORB2p formal errors ...
static residuals

Figure 8.22: Cumulative geoid errors up to lmax = 140 of AOHIS residuals wrt. the mean AOHIS for the polar single pair
ORB2p (gray) and the 3 double pairs with ORB2p in comparison with the formal errors and the static residuals (black),
respectively.
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Figure 8.23: Cumulative geoid errors up to lmax = 140 of AOHIS residuals wrt. the mean AOHIS for the polar single pair
ORB3p (gray) and the 3 double pairs with ORB3p in comparison with the formal errors and the static residuals (black),
respectively.

for deriving the cumulative geoid errors displayed in Fig. 8.25 for all 3 single pairs and 9 double pairs,
respectively. Two sets of cumulative geoid errors are shown in each plot. The full ocean tide aliasing
geoid error contribution is derived from the full signal in EOT08a (dashed lines), and the residual signal
as before is derived from the difference between EOT08a and FES2004 (solid lines). It can be seen that
the residual ocean tide contribution is approximately one order of magnitude smaller than the full ocean
tide contribution. The low SH degree residual content is larger than in the non-tidal case (cf. Fig. 8.9).
Therefore the cumulative geoid errors are flat up to l = 60 for the double pairs.

Analogously to the non-tidal case the cumulative geoid errors of the full and reduced ocean tide (OT)
contributions at l = 40 are compared with 50% of the required geoid accuracy in MO2 of 5 µm (Tab. 8.4).
Here the impact of the orbital altitude is smaller than for the high resolution non-tidal case and the
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Figure 8.24: Global geoid height residuals in mm computed up to lmax = 134 on a 0.5◦ × 0.5◦ grid for the best single pair
ORB1p (top left) and the three best double pairs ORB1p + ORB1i (top right), ORB2p + ORB1i (bottom left), and
ORB3p + ORB1i (bottom right).

cumulative geoid errors for the double pairs in the reduced ocean tide case range only from 0.22 to
0.3 mm. The required reduction rate of the full and the reduced OT contribution is given in brackets,
and for the reduced OT contribution it is around 50 and therefore in the same order of magnitude as
the required AOHIS reduction rates.

The main error contribution for the NGGM is temporal aliasing from non-tidal (AOHIS) and tidal
(OT) sources. The main results of this section are requirements for the reduction of the high-frequency
signal contents in AOHIS and OT. In Chap. 9 these results are discussed also wrt. whether and how
this reduction is achievable.

Table 8.4: Cumulative geoid error at l = 40 due to full (EOT08a) and reduced (EOT08a − FES2004) ocean tide (OT)
variations in mm together with the required OT reduction in brackets in order to fulfil the 50% geoid accuracy requirement
of MO2 for 500 km (5 µm).

full OT reduced OT

ORB1p ORB2p ORB3p ORB1p ORB2p ORB3p

3.8 (760) 4.5 (900) 4.8 (960) 0.38 (76) 0.41 (82) 0.63 (130)

ORB1i 3.0 (600) 2.6 (520) 2.8 (560) 0.22 (44) 0.29 (58) 0.30 (60)

ORB2i 3.5 (700) 2.9 (580) 3.0 (600) 0.22 (44) 0.23 (46) 0.24 (48)

ORB3i 3.4 (680) 2.8 (560) 2.9 (580) 0.23 (46) 0.23 (46) 0.23 (46)
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Figure 8.25: Cumulative geoid errors up to lmax = 80 of full (EOT08a, dashed lines) and reduced (EOT08a − FES2004,
OTD, solid lines) ocean tide residuals wrt. the mean AOHIS for the three single pairs (gray) and the corresponding double
pairs, respectively.
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9 Summary, Conclusions, and Outlook

Several issues on a Next Generation Gravity Mission (NGGM) are discussed. The time series of gravity
fields derived from GRACE is continued with GRACE-FO without a large gap. But there is a need
for having a NGGM after GRACE-FO with which the spatial and temporal resolution shall be further
increased. This thesis gives significant information for the scientific assessment of the NGGM.

The theoretical basis for the assessment of the NGGM is given in Chap. 2 with the physical description
of the Earth’s gravity field. The gravitational potential of the Earth is expressed as a series of spherical
harmonic (SH) base functions. The SH expansion of the gravitational potential and its functionals is
used in spherical approximation.

The observations collected by a gravity satellite mission are used to estimate the SH coefficients of
the gravitational potential in a least squares sense (Sec. 2.2). Thereby the application of an adequate
stochastic model is necessary in order to weight the observations correctly. The satellite orbits are
approximated by only taking into account the effects of the zonal coefficients of degree 0 and 2. Hence,
the orbit positions can be formulated analytically (Sec. 2.3).

An important issue for the NGGM is a homogeneous groundtrack coverage. This is valid for repeat
orbits performing an integer number of revolutions in an integer number of nodal days. The altitude
of a repeat orbit is derived iteratively taking into account the rates of the orbital parameters due to
the Earth’s flattening term J2. Aiming also at short period gravity field signals it is also recommended
to find orbits which give a nearly homogeneous groundtrack coverage not only after the whole repeat
period but also for specific sub-cycles. An approach is presented how to derive the spatio-temporal
sampling of an orbit with its sub-cycles.

For the simulation of gravity retrievals from satellite observations two independent simulation environ-
ments are used in this thesis (Sec. 2.4). The first is a semi-analytical approach which is used to estimate
in a least squares sense the formal errors of a gravity field retrieval. This simulator is based on the
expression of the gravitational potential in a local orbit reference frame. Furthermore, it is compu-
tationally fast because of using fast Fourier techniques to evaluate the variance covariance matrix for
a gravity field retrieval in the spectral domain. This simulator does not use the observations them-
selves, but only the spectral representation of the observation noise. Therefore only stochastic effects
of a gravity field retrieval can be assessed with this simulator. The second environment is a numer-
ical closed-loop simulator which estimates the variance covariance and the adjusted unknown gravity
field parameters by inverting a full normal equation matrix. With this environment also non-stochastic
effects can be analysed, which are introduced together with the observations.

The two simulators are compared with respect to the different observation types used in this thesis.
The most important observation type for the NGGM is low-low SST in terms of inter-satellite range
accelerations. The numerical closed-loop simulator approximates this observation type with the gra-
vitational acceleration differences along the line of sight between the two satellites. Thereby a term
consisting of velocity differences between the satellites is neglected. The semi-analytical simulator in
this case uses a functional model derived from orbit perturbations implicitly including this term. As
the simulation comparison of the two environments in the case of low-low SST gives comparable results
this simplification may be seen as not critical.

The objectives of the NGGM are derived from a set of science requirements (Chap. 3). They are
consistently expressed in terms of geoid heights and to the basic temporal resolution of one month.
Assuming a NGGM with 2 satellites or 2 satellite pairs at maximum the science requirements are
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consolidated to a set of observable signals which shall be observed with the required accuracy, and
temporal and spatial resolution. From this set the objectives of the NGGM are derived. The NGGM
must provide global coverage for specific periods and a long mission duration covering one solar cycle.
In order to fulfil the science requirements the geoid must be derived with an accuracy of 0.01 mm at
a spatial resolution of 500 km and 0.4 mm at 150 km. The objective for a high spatial resolution of
50 km is not achievable with the NGGM, possibly, as discussed here, for the generation thereafter.

For a set of promising mission scenarios instrument requirements are derived which enable the NGGM to
be sensitive to the signals defined in the science requirements (Chap. 4). The scenarios are low-low SST
scenarios with improved observation geometry compared to a GRACE-like in-line formation. This is a
single low-low SST Pendulum formation and a double low-low SST pair combining two in-line formations
on a polar and a lower inclined orbit. Furthermore, the combination of low-low SST and radial satellite
gravity gradiometry (SGG) is analysed. But with current technology the radial SGG observations are
not able to contribute significantly to a low-low SST mission with a laser interferometry as inter-satellite
ranging instrument. The instrument requirements are derived for the two key instruments for a low-low
SST mission, i.e. the inter-satellite ranging instrument and the accelerometers measuring the non-
gravitational forces acting on the satellite. The instrument requirements depend on the orbital altitude
and for the low basic scenarios around 300 km altitude an inter-satellite ranging accuracy of 20 nm is
required. For the higher scenarios around 420 km altitude 2 nm are required. For the accelerometers
an accuracy around 2 · 10−12 m/s2 is required. An important computational aspect for the assessment
of the NGGM is described in Daras et al. (2015): enhanced numerical precision is required to benefit
even more from the high instrument accuracies.

In the final simulations error contributions of star sensors, GNSS positioning and so-called tone errors
are neglected. These error contributions are discussed in Chap. 5 and requirements are derived for them
as well. The largest error contribution for the NGGM is temporal aliasing from high-frequency mass
variations due to tidal and non-tidal sources. In Chap. 6 this effect is analysed based on the sampling of
signals with discrete frequencies on the equator, observed at the equator crossings of single and double
pairs, respectively. Main characteristics of temporal aliasing are resonances depending on the repeat
orbit and on the frequency of the signal. The largest high-frequency mass variations are due to ocean
tides and non-tidal mass variations in the atmosphere and the oceans. The amplitudes of the non-tidal
signals are analysed based on a Fourier series of mass variation models including atmosphere, ocean,
hydrology, ice and solid Earth (AOHIS).

Optimal orbits regarding temporal aliasing avoid large resonances and can be found in specific altitude
bands in which the basic scenarios are chosen (Chap. 7 and Murböck et al. (2014)). Temporal aliasing
leads also to SH resonances in monthly GRACE solutions. This is analysed based on GRACE monthly
gravity field time series longer than 8 years from four processing centers. Furthermore, two methods to
reduce the SH resonances from a gravity field solution are analysed in the case of double low-low SST
pairs and a single pair. For the double pairs it is shown that an optimal weighting depending on the
resonance periods for each SH order improves the combination without taking this effect into account.
In the case of a single pair a regularization method is applied which introduces pseudo zero observations
for the affected SH orders. With both methods an improvement of approximately a factor 2 is achieved.

For the basic single and double pair scenarios closed-loop simulations are performed in order to assess the
gravity retrieval performance for the three main error contributions (Chap. 8). This is the instrument
noise and the dominating effect of temporal aliasing due to tidal and non-tidal sources. The monthly
gravity field retrievals for low and high spatial resolution show that the temporal aliasing effects of the
full content of AOHIS is 2 orders of magnitude larger than the instrument noise. For ocean tides the
situation is even worse. Temporal aliasing from full ocean tides is 3 orders of magnitude larger than
the instrument noise. The double pairs with a polar and inclined pair give the best gravity retrieval
performance. The single polar Pendulum formation shows large residuals for the low SH degree zonal
coefficients. But for high SH degrees it is nearly as good as the double pairs.

There are different options to reduce high-frequency signals in order to reduce temporal aliasing effects.
As applied for GRACE gravity field processing, for example, the high frequency signal contents of AO
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Figure 9.1: Cumulative geoid error in mm for the best NGGM scenario (ORB1p + ORB1i) for different error contributions
in comparison with the monthly GRACE error, the science requirements (the numbers correspond to Tab. 3.2), and the
mission objectives (cf. Fig. 3.3). The NGGM total geoid error contribution of full (bue dashed) and reduced AOHIS (blue
solid) and of full (red dashed) and reduced (red solid) ocean tide differences (OTD).

and ocean tides are reduced with a priori model information. Doing so the effects are reduced by
approximately one order of magnitude. But of course the model errors alias into the solution. Further-
more, the functional model can be extended in order to co-estimate additional empirical parameters
like, for example, piecewise linear parameters. This option is not analysed in this thesis. A third option
of co-estimating short period low resolution gravity parameters in addition to one set of high resolution
gravity parameters for one month is described in Wiese et al. (2011). This method is discussed in
Sec. 8.2 with respect to an increased temporal resolution of 12 hours in the case of a double pair. With-
out fully assessing this approach the reduction of temporal aliasing from AOHIS is quantified resulting
in an expected improvement of more than a factor of 2.

From the final monthly high spatial resolution gravity field retrievals the main conclusions are derived.
The best scenarios are the double pairs including the lowest inclined pair. However, even for these
scenarios the cumulative geoid error at 150 km spatial resolution including temporal aliasing from full
AOHIS is larger than the required accuracy by a factor between 30 and 50. In the case of temporal
aliasing from full ocean tides it is larger than the requirements by a factor of more than 500. A reduced
ocean tide impact is analysed by using the difference between two ocean tide model as representation of
the ocean tide model errors. In this case the three best scenarios reach a cumulative geoid error larger
than the requirements by a factor between 40 and 60.

For the best scenario ORB1p + ORB1i these factors are applied to the full AOHIS signal (reduced by a
factor of 29) and the ocean tide differences (reduced by a factor of 44). The resulting cumulative geoid
errors for the different contributions are shown in Fig. 9.1 together with the science requirements (the
numbers correspond to Tab. 3.2) and mission objectives analogously to Fig. 3.3 depending on the spatial
resolution. This NGGM scenario fulfils the mission objectives at 500 and 150 km spatial resolution.
It gives an improved geoid error by a factor of approximately 100 compared to a monthly GRACE
solution (black dashed line). The NGGM is able to fulfil the requirements above the combined blue and
red solid line with required resolution. The requirements with high spatial resolution of 50 km are not
fulfiled but the corresponding signals can be observed with reduced spatial resolution.

These applied reduction factors are ambitious requirements. Compared to that, in Gruber et al. (2014)
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a classical de-aliasing approach is applied for AOHIS by subtracting the best knowledge on the high-
frequency AO variations. This best knowledge is assumed to reach 90% of the full AO signal. Hence,
it corresponds approximately to a AOHIS reduction factor of 10 and only a factor of 3 is missing. The
reduction factor of 44 for ocean tide model errors has to be seen much more critical.

But for ocean tides there is another possibility to separate these effects from the gravity field parameters.
The amplitudes and phases of the different ocean partial tides can be co-estimated in the gravity field
retrieval. This is not possible within a monthly retrieval but a long time series is needed in order to
separate the different partial tide parameters. It has to be analysed whether a double pair as proposed
here for the NGGM is able to reach sufficient accuracy.

Furthermore, the co-estimation of short period gravity parameters (Wiese et al., 2011) including a
12 hours period has to be validated. In this context the formation parameters, especially the ascending
node separation of a double pair, has to be further optimized. Another promising mission scenario is
able to further improve temporal aliasing reduction. This is the precise ranging between GNSS satellites
or GEOs and a number of LEOs on different orbits. This scenario is shortly discussed in Sec. 4.1.

The proposed NGGM scenarios are on the one hand promising wrt. the gravity field retrieval perfor-
mance. Thereby, the required instrument accuracies are comparable to the accuracies of instruments
on present satellite missions. The GOCE accelerometers provide observations with an accuracy in the
order of 10−12 m/s2 (Stummer, 2013) and the laser interferometer for GRACE-FO reaches the 10−8 m
level. But the realization of these accuracies in a low orbital altitude around 300 km requires an ex-
pensive and comprehensive satellite instrument concept. Especially the thruster system must be able
to fulfil the requirements for the drag compensation and the laser pointing.

The NGGM is of great importance for science and society. Increased spatial and temporal resolution
as well as increased accuracy of global gravity field models will improve the understanding of many
processes in system Earth. Figure 9.1 shows the science requirements which can be fulfilled with
the NGGM with the required resolution. They are in the fields of geodesy, oceanography, hydrology,
glaciology, and solid Earth physics (cf. Tab. 3.2). For example, the requirements for unified height
systems (SR19), ground water (SR2), glacial isostatic adjustment (SR12), and ice mass balance (SR4)
are fulfilled with the NGGM.
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