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

G employ signal processing techniques on the sphere to analyse gravity field data, and
the primary mathematical tool of choice has been the spherical harmonics. Harmonic analysis

and synthesis were the predominant signal processing techniques that were employed. However,
with the launch of the Gravity Recovery And Climate Experiment () satellite mission, there
was a strong need for low-pass filtering techniques as the  data is heavily contaminated with
noise. Now, after a decade since the launch there is a garden of filters that have been proposed,
which has brought with it the problem of filter choice. It is in this context that this study would
like to understand the anatomy of low-pass linear filters, their mechanics of filtering, and measure
their performance that will enable consistency in the choice of a filter for the problem in hand.

The central idea behind these filters is the moving weighted averaging using weighting windows
defined on the sphere. The filter functions belong to a broad class of functions called the two-point
functions, similar to the covariance functions. The weighting functions provide weights to the data
points on the sphere depending on the direction and distance of the data points with respect to the
point where the filter is located, called the calculation point. Since the provision of a weight requires
the knowledge of the calculation point and the data points, the weight functions, and eventually
the filter functions, are two-point functions.

Special forms of the filter functions can be generated by applying certain restrictions on the
structure of the weights with respect to the location of filter and direction and distance of the data
points to the calculation point. These special forms are characterized by the properties of isotropy
and homogeneity. The windows are isotropic if the weights vary only with the angular distance,
and are homogeneous if and only if the weight structure is one and the same at all the calculation
points. The former is also referred to as direction invariant and the latter as translation invariant.
Convolution, in the classical sense, on the sphere is guaranteed if and only if homogeneity is ensured.

The weighting windows are designed either in a deterministic manner or using stochastic infor-
mation, and sometimes data-driven techniques are also employed. The simplest class of windows
that can be defined on the sphere are the homogeneous isotropic windows as they only depend
on the spherical distance in the spatial domain and the spherical harmonic degree in the spectral
domain. However, the complexity of the design multiplies manifold and deterministic design of
inhomogeneous and/or anisotropic filters becomes difficult if not impossible. This difficult realm is
filled-in by the stochastic and data-driven designing methods. While stochastic methods are borne
out of the optimization principles, the data-driven techniques do not follow a specific principle, for
example, polynomial fitting methods and empirical orthogonal functions.

When applying filters there is always a question of choice, and from the experiences in filtering
, it can be said that the output is heavily influenced by the chosen filter. Irrespective of the
filter chosen, filtering smudges part of the signal in addition to smoothing out noise, and the amount
of signal lost depends on the filter. In order to assess the suitability of a filter and to understand its
behaviour, a framework has been developed. The framework consists of a set of metrics designed



on the basis of the energy of the filters and log-normal of the filter weights.
Filtering smothers the data, eventually changing its resolution. Resolution turns out to be

important information when combining/comparing two different datasets, and it directly affects the
filter choice. To this end an empirical method has been developed to ascertain the ideal resolution
of any given filter, and further, a metric for quantifying the contrast, called the modulation transfer
function, has also been devised. The latter concept is an adaptation of the modulation transfer
functions used in optics. Applying these methods to both the isotropic and anisotropic filters, it
is clear that the resolving power of anisotropic filters depends heavily on the direction, and for
inhomogeneous filters it is based on the calculation point as well.

Since the filtering method follows a weighted average approach, strong signals that are far away
from the calculation point, sometimes, contribute significantly to the filtered value. This is termed
as signal leakage, and it is an undesirable effect of filtering. Although leakage is inevitable with
low-pass filtering, it can be quantified when the true signal is known or with a model that is nearly
as good as the true signal. A generic estimate of leakage can be computed by considering energy
contribution beyond the ideal resolution as leakage.

This thesis elucidates a number of attributes of the filters and filtering on the sphere, but is
far short of a comprehensive treatment. Only the low-pass linear filters have been studied, which
leaves out high-pass and band-pass filters. Having said that this work makes positive strides in the
direction of understanding the mechanics of linear low-pass filtering on the sphere, especially with
respect to resolution and leakage. Further, it also puts forth a set of metrics that provide a generic
understanding of the filter in hand, enabling appropriate filter choice.
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

U S zu analysieren, wenden Geodäten üblicherweise Methoden der Sig-
nalverarbeitung auf einer Kugel an, was mit Hilfe von Kugelflächenfunktionen ermöglicht

wird. Hierbei sind die harmonische Analyse und Synthese die gängigsten Signalverarbeitungsmeth-
oden. Zusätzlich werden jedoch seit dem Start des Gravity Recovery and Climate Experiment ()
spezielle Tiefpaß-Filter-Methoden benötigt, da -Daten üblicherweise stark fehlerbehaftet sind.
In den vergangenen 10 Jahren seit dem Start von  wurde daher eine Vielzahl von Filtern
entwickelt, was die Nutzer vor die Wahl einer geeigneten Filtermethode stellt. In dieser Studie soll
daher die Anatomie von linearen Tiefpaß-Filtern und ihre speziellen Filtermechaniken untersucht
sowie ihre Effizienz bestimmt werden. Dies soll einen konsistenten Vergleich und letztendlich die
Wahl eines problemspezifisch geeigneten Filters zulaßen.

Das zugrunde liegende Prinzip aller Filter ist eine gewichtete gleitende Mittelung, welche auf der
Kugel definiert ist, mit Hilfe eines Gewichtsfunktion. Die Filterfunktionen gehören, ähnlich wie die
Kovarianzfunktionen, zur Klasse der Zwei-Punkt-Funktionen. Die Gewichtsfunktionen liefern hierbei
die Gewichte zu den einzelnen Datenpunkten auf der Kugel, abhängig von Richtung und Entfernung
zu dem Ort, wo der Filter angewendet wurde (dem sog. Berechnungspunkt). Für die Berechnung
dieser Gewichte müssen somit sowohl der Berechnungspunkt, als auch die Datenpunkte bekannt
sein, was die Zugehörigkeit von Gewichts- und Filterfunktionen zu den Zwei-Punkt-Funktionen
verdeutlicht.

Spezielle Formen der Filterfunktionen können durch Einschränkungen der räumlichen Struktur
der Gewichte im Bezug auf die Position des Filters sowie Richtung und Entfernung der Datenpunkte
zum jeweiligen Berechnungspunkt erzeugt werden. Diese speziellen Formen werden durch die
Eigenschaften Isotropie und Homogenität beschrieben. Dabei hängen die (räumlichen) Gewichte
bei einem isotropen Fenster lediglich vom Winkelabstand zwischen Daten- und Berechnungspunkt
ab. Falls die Struktur der Gewichte in allen Berechnungspunkten identisch ist, spricht man von
einem homogenen Fenster. Daher bezeichnet man isotrope Fenster auch als richtungsinvariant
und homogene als translationsinvariant. Eine Faltung auf der Kugel ist somit ausschließlich bei
Homogenität durchührbar.

Die Gewichtsfenster werden entweder deterministisch oder stochastisch bestimmt, in manchen
Fällen kommen auch datenbasierte Methoden zum Einsatz. Die einfachste Klasse von Filtern, welche
auf einer Kugel angewendet werden können, sind die homogenen isotropen Filter, da diese lediglich
vom Winkelabstand im Ortsraum bzw. sphärisch harmonischen Grad im Spektralbereich abhängen.
Der Aufbau von Filtern kann aber beliebig komplex gestaltet werden und die deterministische Bes-
timmung von inhomogenen und/oder anisotropen Filtern ist äußerst schwierig, wenn nicht sogar
unmöglich. Hier gewinnen daher die stochastischen und datenbasierten Ansätze an Bedeutung.
Während stochastische Filter auf Optimierungsprinzipien basieren, leiten sich die datenbasierten
Ansätze aus einer Vielzahl von Methoden, wie z.B. der Schätzung von Polynomen oder den Em-
pirischen Orthogonalen Funktionen, ab.



Die Filterung von -Daten hat deutlich gezeigt, daß die gefilterten Daten maßgeblich vom
gewählten Filter beeinflußt werden. Somit steht man immer vor der schwierigen Wahl eines problem-
spezifisch geeigneten Filters. Unabhängig von dem eingesetzten Filter wird neben der Verringerung
des Rauschens immer auch ein Teil des Signals verwischt. Der Anteil des Signals, welcher durch die
Filterung verloren geht, hängt dabei stark von dem eingesetzten Filter ab. Um daher die problem-
spezifische Eignung eines Filters zu beurteilen und dessen Eigenschaften besser zu verstehen, wurde
in dieser Studie ein entsprechendes Rahmenkonzept aus Filtermetriken entwickelt. Diese Metriken
basieren auf der Energie der Filter und den log-normalen Filter-Gewichten.

Durch Anwendung eines Filters werden Daten geglättet, wobei sich aber auch deren Auflösung
ändern kann. Da bei einem Vergleich oder der Kombination zweier Datensätze die Auflösung eine
entscheidende Rolle spielt, muß diese natürlich auch bei der Wahl eines entsprechenden Filters
berücksichtigt werden. Hierür wurde ein empirischer Ansatz entwickelt, mit welchem sich die
ideale Auflösung eines beliebigen Filters bestimmen lässt. Darüber hinaus wurde auch eine Metrik
zur Beschreibung des Kontrasts entwickelt, die sogenannte Modulationsübertragungsfunktion. Das
zugrunde liegende Konzept basiert auf den Modulationsübertragungsfunktionen, welche in Bere-
ichen der Optik eingesetzt werden. Eine Analyse von isotropen und anisotropen Filter mit Hilfe der
entwickelten Metriken zeigt, dass das Auflösungsvermögen der anisotropen Filter stark richtungsab-
hängig ist und bei den inhomogenen Filtern von der Lage des Berechnungspunktes abhängt.

Da die Filterung einer gewichteten Mittelung entspricht, können starke Signale, welche weit
vom Berechnungspunkt entfernt sind, unter gewissen Umständen den gefilterten Wert maßgeblich
beeinflussen. Dieser unerwünschte, bei einer Tiefpaß-Filterung aber unvermeidbare, Nebeneffekt
wird als Signal Leakage bezeichnet. Dessen Einfluss kann bestimmt werden, wenn das wahre Sig-
nal bekannt ist oder ein Modell vorliegt, welches das wahre Signal ausreichend gut approximiert.
Eine allgemeingültige Schätzung hingegen erhält man, wenn der Energiebeitrag jenseits der idealen
Auflösung als Leakage betrachtet wird.

In dieser Arbeit wurden etliche Eigenschaften von Filtern beschrieben und erläutert. Die dargestell-
ten Ergebnisse sind somit ein wichtiger Schritt zum Verständnis von linearen Tiefpaß-Filtern auf
der Kugel, vor Allem in Hinblick auf Auflösung und Leakage. Des Weiteren wurde eine Reihe von
Metriken entwickelt, mit deren Hilfe Filter konsistent analysiert und verglichen werden können,
was die Wahl problemspezifisch geeigneter Filter erheblich erleichtert.
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“It was both odd and unjust, said Gauss, a real example of
the pitiful existence, that you were born into a particular time
and held prisoner there whether you wanted it or not. It
gave you an indecent advantage over the past and made you
a clown vis-à-vis the future. … in another two hundred years
each and every idiot would be able to make fun of him and
invent the most complete nonsense about his character.”

– Daniel Kehlmann
(Measuring the world)
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 

T G G O S () proposed by the International Association
of Geodesy () defines geodesy as the science that determines the geometry, gravity

field and rotation of the Earth and also their evolution in time [Plag and Pearlman, 2009,
pg. xiii]. Evolution of the Earth’s geometry, gravity field and rotation around the polar axis
is driven by the mass transport and redistribution that is continuously taking place between
the lithosphere, hydrosphere, atmosphere, cryosphere, the mantle and the core. By frequently
or continuously monitoring the evolution of the Earth’s geometry, gravity field and rotation,
the geophysical phenomena behind the mass transport and redistribution can be studied. This
ability of geodetic measurement tools and techniques casts them as geodetic sensors. However,
this role of geodetic methods has been possible largely due to the advent of space-geodetic
techniques like satellite altimetry, satellite interferometry, satellite ranging and positioning and
satellite gravimetry. Space-geodetic techniques have brought with them global coverage and
uniform accuracy [Rummel, 2010], and have established themselves as an indispensable tool
for Earth system science [Jin et al., 2013].

Traditionally, remote sensing of the Earth has been carried out by satellites equipped with
active and passive electromagnetic radiation sensors. With the advent of satellite gravimetry
missions such as the CHAllenging Minisatellite Payload () [Reigber et al., 2002], Gravity
Recovery and Climate Experiment () [Tapley et al., 2004] and Gravity field and steady-
state Ocean Circulation Explorer () [Rummel et al., 2011] a novel method of Earth
observation has been introduced.

In particular, the  satellite mission, with more than a decade of observations, has been
an overwhelming success, particularly for climatology and global hydrology. This is supported
by vast literature on those areas of research: Estimation of basin- to continental-scale water
storage [Crowley et al., 2006; Schmidt et al., 200] or evapotranspiration [Rodell et al., 2004];
regional weather analysis [Seitz et al., 200]; large-scale moisture flux divergences [Swenson
and Wahr, 2006a; Fersch et al., 2012]; groundwater depletion in India [Rodell et al., 2009];
runoff from landmasses [Syed et al., 2009; Lorenz et al., 2014; Sneeuw et al., 2014] and polar
ice mass loss monitoring [Schrama and Wouters, 2011]. For this reason  mission has
been identified as an important mission for climate studies [Gleick et al., 2013].

   

The  satellite mission is a twin satellite mission that fly in an in-line orbit configuration
(cf. Figure 1.1), and in a near-polar sun-synchronous orbit. The two satellites are linked
by a micrometer precise K-band ranging radar instrument, and are further tracked by global



2 1 

navigation satellite systems. The satellites were launched into a 500 km near-circular orbit
within the Earth’s gravity field. Due to orbital decay and ageing of the instruments, the
satellites currently fly at an altitude of ≈390 km. The inter-satellite distance is maintained
between 170–270 km. The distance between the satellites is perturbed by the changes in the
gravity field caused by the distribution and redistribution of mass in the system Earth. By
precisely tracking these low-earth orbiting satellites, their positions can be inverted for gravity
field mapping.

Figure .: Artists impression of the  satellite mission. Courtesy: Wikipedia

One of the primary intentions of the  mission is to study the changes in continental
water storage [Tapley et al., 2004]. Water storage changes over landmasses is part of the
hydrologic cycle and it is what that remains after the precipitated water (P ) is transported
back to the oceans via runoff (R) and to the atmosphere as evapotranspiration (E).

P −R−E =
dS
dt
, (1.1)

where S is the water storage over landmasses. The water storage constitutes only 3.5 % of
the hydrologic cycle, but has a greater influence on climate and weather. Up until the launch
of , the measurements of water storage were sparse both in space and time [Rodell
and Famiglietti, 1999]. For the first time, after the launch of the  satellites, hydrologers
were able to close the global water balance equation (1.1) using observations [Trenberth et al.,
2007].

      

Nevertheless, the  data, being novel, comes with its own problems. The most persistent
of them being the noise that manifests itself as stripes (cf. top right panel of Figure 1.2),
which is mainly caused by the in-line orbit configuration of the  mission [Kusche et al.,
2009]. The effect of the noise is particularly severe on the higher spherical harmonic degrees
of the monthly gravity field estimated from : The higher degree spherical harmonics
contain more energy than their lower degree counterparts, which is not realistic (cf. left
panel of Figure 1.2). The in-line configuration of the  satellites causes the sectorial and

http://www.csr.utexas.edu/grace/operations/configuration.html
https://en.wikipedia.org/wiki/Gravity_Recovery_and_Climate_Experiment
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the near-sectorial elements of the spherical harmonic coefficients (cf. Figure A.1) to be more
sensitive to the noise. This is shown by their higher noise levels compared to the noise
levels of the tesseral and zonal harmonics for a given spherical harmonic degree (cf. bottom
right panel of Figure 1.2). The signal amplitudes also show the impact of the  orbit,
where the sectorial coefficients have higher amplitudes compared to the tesseral and zonal
coefficients for a given harmonic degree (cf. bottom right panel of Figure 1.2).
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Figure .: Unfiltered temporal gravity field variations retrieved from  observations. The degree
variances of the spectrum (left panel) shows the typical high frequency (higher harmonic
degrees) noise, and its spatial manifestation, the characteristic “stripe” like noise (map in
the top right panel).

The orbit configuration of  also does not allow it to retrieve the spherical harmonic
degree 2 and order 0 coefficient, C20, (Figure 1.3), which is the single largest coefficient in the
spherical harmonic series of the gravity field. This problem is currently remedied by replacing
the  C20 with the ones estimated from  observations [Cheng and Ries, 2013].

The above problems are exacerbated by another source of major errors: mismodelling of
dealiasing models. Changes in gravity are brought in by the sum total of all the sources
of mass changes. In order to retrieve the mass changes from a particular source, the other
well known sources are modelled and removed from the observations. Further, there are also
mass changes that are shorter than the temporal sampling of  and these also have to
be modelled and removed. This procedure is called dealiasing and is reliant upon a priori
knowledge of the sources. The known sources of mass changes include tides (atmospheric,
ocean and solid earth) and non-tidal mass variations of the atmosphere and ocean. Improving
these models is an ongoing process, as they are one of the stumbling blocks for the accurate
estimation of mass changes from satellite gravimetry [Murböck et al., 2014].
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Figure .: Time-series of the degree 2 order 0 (C20) coefficient estimated from  and 
observations.

     

While the improvement of the dealiasing models is a work of the larger scientific community,
mitigation of stripes are user manageable. The standard method of removing stripes is by
way of spectral filtering or by spatial averaging of the  gravity field. Much of the
progress in scientific understanding that has been made relies upon this filtering as 
data is nearly unusable without proper filtering. A whole garden of filters has been proposed
to mitigate the striping behaviour and retrieve mass changes: [Wahr et al., 199; Swenson and
Wahr, 2002; Han et al., 2005; Swenson and Wahr, 2006a; Sasgen et al., 2006; Chen et al.,
2006; Wouters and Schrama, 2007; Klees et al., 200; Wu et al., 2009; Zhang et al., 2009].
This has brought with it the problem of filter choice and a few studies have attempted at
providing (mostly subjective) solutions [e.g., King et al., 2006; Werth et al., 2009]. Filtering
brings with it certain side-effects, namely, signal loss, leakage and poor spatial resolution,
which limit the utility of  data only to catchments with a sizeable area, for example,
≈ 200,000 km2 or more [Longuevergne et al., 2010]. These side-effects have also been studied
extensively [e.g., Klees et al., 2007, 200; Landerer and Swenson, 2012], but again mostly in
a subjective perspective.



Although the majority of the scientific understanding from  data hinges on filtering,
there has not been a definitive effort, except for the early effort of Jekeli [191], to study
filtering and approach it from a data agnostic manner. It is this void that this work will fill
with the following salient objectives:

i. to understand the mechanics of filtering on the sphere

ii. to provide metrics for analysing the performance of filters in order to make an informed
choice with the filters
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  

The second chapter will deal with the idea of filtering on the sphere, where we will deal
with filters of different spatial and spectral structures. Thereafter, the design elements of some
of the widely used filters in the  community will be discussed in the third chapter. In
the fourth chapter, ways to evaluate the performance of a given filter prior to its usage in
the real world will be dealt with. The focal point of the sixth chapter will be filtering of
 data, where we will also discuss couple of not so well-known issues concerning 
and filtering. In chapter 7, the work will be summarised and conclusions drawn.



     

S a dataset given on a sphere can be achieved by taking a weighted mean at each
data-point, where the weights are provided by a kernel function defined on the sphere.

Any square integrable scalar function defined on the sphere can be transformed into a more
compact spherical harmonic spectrum and the smoothing operations can be performed in the
spectral domain as well. Smoothing operations on the sphere are quite different to their Fourier
counterparts on the planar domain or on the line, where they are convolution operations.
It will be shown here that the smoothing operations on the sphere are convolutions only
under specific conditions. Nevertheless, smoothing operations are compact and computationally
efficient in the spherical harmonic spectral domain as in the Fourier domain. In order to
differentiate the spatial and spectral operations, hereafter smoothing operations in the spatial
domain will be referred to as smoothing, and the corresponding operation in the spectral
domain will be referred to as filtering. Due to this differentiation the spectral representation
of the smoothing kernel will be called a filter, and the kernel itself will also be referred to
as the smoothing operator.

In this chapter, a general representation of smoothing kernels on the sphere and their
spherical harmonic spectrum representations will be provided after which particular cases of the
kernels will be discussed. The particular cases are arrived at after imposing some restrictions
on the degrees of freedom of the general case. Due to the compactness and easiness of
filtering compared to smoothing, filtering is the preferred method of computation in physical
geodesy. During the course of the discussion we will also elaborate, where possible, the
analytical formulae in terms of matrix algebra.

§.  

Given a square integrable scalar function (e.g., gravity field) f (θ,λ) on a sphere (Ω), it
can be represented in terms of a spherical harmonic spectrum as

f (θ,λ) =
∞∑
l=0

l∑
m=−l

Flm Ylm(θ,λ) =
∑
l,m

Flm Ylm(θ,λ) , (2.1a)

Flm =
1
4π

∫
Ω

f (θ,λ) Y ∗lm(θ,λ) dΩ , Flm ∈ C (2.1b)

dΩ = sinθdθdλ, (2.1c)
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Ylm(θ,λ) =


Nlm Plm(cosθ) eimλ , m ≥ 0

(−1)m Y ∗l,−m(θ,λ) , m < 0
, Ylm(·) ∈ C (2.1d)

Nlm = (−1)m
√
(2l +1)

(l −m)!
(l +m)!

, Nlm ∈ R. (2.1e)

where

Ylm(θ,λ) – Geodetic normalised complex surface spherical harmonics of degree l and
order m with |m| ≤ l.

θ, λ – Co-latitude and longitude of a point on the sphere.
Flm – Geodetic normalised spherical harmonic coefficients of degree l and order

m.
Plm(cosθ) – Associated Legendre functions of degree l and order m.

Nlm – Normalisation factor.

The above analytical expressions can be expressed in matrix form as well to facilitate
computational understanding.

f = YF , (2.2a)

F =
(
Y†Y

)−1
Y† f , (2.2b)

where Y is the matrix of geodetic normalised complex surface spherical harmonics, Y† is
the Hermitian of Y and K is the vector of spherical harmonic coefficients of the field f.
The equations (2.2) together represent the computational form of spherical harmonic analysis
(2.1a) and synthesis (2.1b), where we have used least-squares approach to spherical harmonic
analysis. Henceforth, it will be used as the standard technique for spherical harmonic analysis.

Smoothing kernels

Our aim is to smooth the field f (θ,λ), and one of the methods employed to smooth a field
is to take a weighted average of the field at the point whose smoothed value is sought.
Weighting functions that are defined on the sphere carry the information of the weights.
These weights vary according to the distance and direction from the point whose smoothed
value needs to be calculated. Before we move further we need a few definitions for our
discussion: The point whose smoothed value is sought will be called the calculation point,
and the rest of the points that are involved in the smoothing operation will be called the
data points (cf. Figure 2.2). Since we always need the calculation point and the data points
to specify the weighting functions, these weighting functions are called two-point weighting
functions. It should be noted that the term point(s) is merely used as a figure of speech.
The two-point functions b(·, ·) and the field f (·) are all continuous functions, and the term
point(s) is used here to provide an intuitive understanding to the computations. The two-point
weighting functions we will use throughout this document are all scalar unless and otherwise
specified.
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Remark The smoothing operation is similar to the ideas of moving average and convolution.
Looked at it from the point of view of convolution in the classical Fourier sense, there
is a point of departure from those concepts. The point of departure is that the weighting
function for each of the calculation points is completely different, but in moving average and
convolution the weighting function remains the same for all calculation points.

A general two-point scalar weighting function w(·, ·) defined on the sphere can be
represented in terms of a spherical harmonic transform pair, which is given as [e.g., Rummel
and Schwarz, 1977]

w(θ,λ,θ′ ,λ′) =
∞∑
l=0

l∑
m=−l

Ylm(θ,λ)
∞∑
n=0

n∑
k=−n

W nk
lm Y ∗nk(θ

′ ,λ′) ,

=
∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm Y ∗nk(θ

′ ,λ′) , (2.3a)

W nk
lm =

1
16π2

"
Ω,Ω′

w(θ,λ,θ′ ,λ′) Y ∗l′m′ (θ,λ)Yn′k′ (θ
′ ,λ′)dΩdΩ′ . (2.3b)

The matrix form of the transform pair is given as follows

w = YWY† , (2.4a)

W =
(
Y†Y

)−1
Y†wY

(
Y†Y

)−1
. (2.4b)

Smoothing the field f (θ,λ) with a general two-point weighting function w(θ,λ,θ′ ,λ′)
results in the smoothed field f̄ (θ,λ):

f̄ (θ,λ) =

1
4π

∫
Ω′

f (θ′ ,λ′) w(θ,λ,θ′ ,λ′) dΩ′

1
4π

∫
Ω′

w(θ,λ,θ′ ,λ′) dΩ′
, (2.5a)

=
1
4π

∫
Ω′

f (θ′ ,λ′)
w(θ,λ,θ′ ,λ′)
w(θ,λ)

dΩ′ ,

=
1
4π

∫
Ω′

f (θ′ ,λ′) b(θ,λ,θ′ ,λ′) dΩ′ , (2.5b)

where

w(θ,λ) =
1
4π

∫
Ω′

w(θ,λ,θ′ ,λ′) dΩ′ ,

=
1
4π

∫
Ω′

∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm Y ∗nk(θ

′ ,λ′) dΩ′ , ∵ (2.3a) ,

=
∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm δn0 δk0 ,
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=
∑
l,m

Ylm(θ,λ)W
00
lm , and (2.5c)

b(θ,λ,θ′ ,λ′) =
w(θ,λ,θ′ ,λ′)
w(θ,λ)

. (2.5d)

Here, b(·, ·) is the smoothing kernel, and it is clear from (2.5b) that b(·, ·) is the normalised
form of the two-point weighting function w(·, ·) and the entire operation is a weighted
average. Pellinen [1966] used such a formulation to spatial smoothing, and thereafter Jekeli
[191] used the terms weighting function to denote w(·, ·) and smoothing kernel for b(·, ·), and
this convention is followed here as well.

The two-point smoothing kernel being a scalar, it can also be expanded in terms of
spherical harmonics, and therefore, it has its own spectrum:

b(θ,λ,θ′ ,λ′) =
∑
l,m

Ylm(θ,λ)
∑
n,k

Bnklm Y
∗
nk(θ

′ ,λ′) . (2.6)

The relationship between the spectra of the weighting function and the smoothing kernel can
be derived as follows:

b(θ,λ,θ′ ,λ′) =
w(θ,λ,θ′ ,λ′)
w(θ,λ)

,

⇒ w(θ,λ,θ′ ,λ′) = w(θ,λ) b(θ,λ,θ′ ,λ′) , (2.7a)

1
16π2

"
Ω,Ω′

w(θ,λ,θ′ ,λ′)Y ∗l′m′ (θ,λ)Yn′k′ (θ
′ ,λ′)dΩ′ dΩ =

1
16π2

"
Ω,Ω′

w(θ,λ)b(θ,λ,θ′ ,λ′)Y ∗l′m′ (θ,λ)Yn′k′ (θ
′ ,λ′)dΩ′ dΩ , (2.7b)

W nk
lm =

1
16π2

"
Ω,Ω′

w(θ,λ)b(θ,λ,θ′ ,λ′)Y ∗l′m′ (θ,λ)Yn′k′ (θ
′ ,λ′)dΩ′ dΩ ,

=
1

16π2

"
Ω,Ω′

∑
p,q

Ypq(θ,λ)W
00
pq ×

∑
l,m

Ylm(θ,λ)
∑
n,k

Bnklm Y
∗
nk(θ

′ ,λ′) ×

Y ∗l′m′ (θ,λ)Yn′k′ (θ
′ ,λ′)dΩ′ dΩ ,

=
1
4π

∫
Ω

∑
p,q

Ypq(θ,λ)W
00
pq ×

∑
l,m

Ylm(θ,λ)
∑
n,k

Bnklm δnn′ δkk′ × Y
∗
l′m′ (θ,λ)dΩ ,

=
∑
p,q

W 00
pq

∑
l,m

Bnklm ×
1
4π

∫
Ω

Ypq(θ,λ)Ylm(θ,λ)Y
∗
l′m′ (θ,λ)dΩ ,

=
∑
p,q

W 00
pq

∑
l,m

Bnklm


√

(2l +1)(2p+1)
2l′ +1

Cl
′0
l0p0C

l′m′
lmpq

 , (2.7c)

where Cl
′0
l0p0 and Cl

′m′
lmpq are the Clebsch-Gordan coefficients [Varshalovich et al., 19, p.14].
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The relationship derived in (2.7) is done purely for academic purposes as it only provides a
way to relate the spectra of the weighting and smoothing kernels, but it is impractical for
computational purposes. The impracticality is explained by the fact that one needs to know
both the spectra, W nk

lm and Bnklm, to calculate one from the other, which negates the whole
purpose of the relationship. However, given a weighting kernel the corresponding smoothing
kernel can be computed numerically as follows:

b = (w)−1w , (2.a)

YBY† = (w)−1YWY† ,

YBY†Y
(
Y†Y

)−1
= (w)−1YWY†Y

(
Y†Y

)−1
,(

Y†Y
)−1

Y†YB =
(
Y†Y

)−1
Y†(w)−1YW ,

B =
(
Y†Y

)−1
Y†(w)−1YW . (2.b)

Although (2.b) presents a numerical solution, the computation of the term
(
Y†Y

)−1
Y†(w)−1Y

becomes expensive for reasonably higher degrees of spherical harmonic degrees, for e.g.
l > 100.

Smoothed field

Inserting equations (2.6) and (2.1a) into (2.5b) gives

f̄ (θ,λ) =
1
4π

∫
Ω′

∑
l,m

Ylm(θ,λ)
∑
n,k

Bnklm Y
∗
nk(θ

′ ,λ′)
∑
n′ ,k′

Fn′k′ Yn′k′ (θ
′ ,λ′) dΩ′ ,

=
∑
l,m

Ylm(θ,λ)
∑
n,k

Bnklm

∑
n′ ,k′

Fn′k′
1
4π

∫
Ω′

Y ∗nk(θ
′ ,λ′) Yn′k′ (θ

′ ,λ′) dΩ′ ,

=
∑
l,m

Ylm(θ,λ)
∑
n,k

Bnklm

∑
n′ ,k′

Fn′k′ δnn′δkk′ ,

=
∑
l,m

Ylm(θ,λ)
∑
n,k

Bnklm Fnk , (2.9a)

F̄lm =
∑
n,k

Bnklm Fnk , (2.9b)

which is the smoothed field obtained by using the spherical harmonic coefficients of the
smoothing kernel. The same can be expressed in matrix form as follows:

f̄ = bf ,

= YBY†Y
(
Y†Y

)−1 (
Y†Y

)−1
Y†YF ,

= YBF , (2.10a)

F̄ = BF . (2.10b)
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§.     

An alternative representation of (2.3a) can be obtained by taking the calculation point as the
pole of the sphere Ω′ . This accounts for a rotation of the coordinate system of the sphere
Ω′ , and the rotation of the coordinate system is carried out using the Euler rotations (cf.
Figure 2.1), R(α,β,γ), where

α = [0,2π) , rotation about the initial x-axis, (2.11a)

β = [0,π] , rotation about the new y-axis, and (2.11b)

γ = [0,2π) , rotation about the final z-axis. (2.11c)

⇒R(α,β,γ) = Rz′′ (γ)Ry′ (β)Rz(α) . (2.11d)

z

xx yy

α

α

β

x′

y′

z′

β

γ

x′′

y′′

z′′

γ

x′′′

y′′′

z′′′

Figure .: Euler rotations on the sphere: {x,y,z}
Rz(α)−−−−−→ {x′ , y′ , z′}

Ry′ (β)
−−−−−−→ {x′′ , y′′ , z′′}

Rz′′ (γ)−−−−−−→ {x′′′ , y′′′ , z′′′}.

This rotation also corresponds to a transformation of the spherical harmonics, which is
accomplished by the use of Wigner-D functions [e.g., Edmonds, 1960].

Ynq(ψ,π −A) =
∑
k

Dnqk(λ,θ,0) Ynk(θ
′ ,λ′) , (2.12a)

=
∑
r,k

Dnqr(0,θ,0)Dnrk(λ,0,0) Ynk(θ
′ ,λ′) ,

=
∑
r

Dnqr(0,θ,0) Ynr(θ
′ ,∆λ) , (2.12b)

Ynk(θ
′ ,λ′) =

∑
q

D∗nqk(λ,θ,0) Ynq(ψ,π −A) ,
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=
∑
q

Dnkq(0,−θ,−λ) Ynq(ψ,π −A) , (2.12c)

where Dnkq(0,−θ,−λ) are the fully normalised Wigner-D symbols with the three Euler rotation
angles (α = 0, β = −θ, γ = −λ). The Wigner-D symbol is defined as

Dnqk(α,β,γ) = e−iqγ dnqk(β) e
−ikα , (2.13a)

D∗nqk(α,β,γ) = eiqγ dnqk(β) e
ikα , (2.13b)

dnqk(β) = (−1)k−q
√

(n− q)!
(n− k)!

(n+ q)!
(n+ k)!

t2∑
t=t1

(
n+ k
t

)(
n− k
n− q − t

)
(−1)t c2n−p sp , (2.13c)

with c = cos
β

2
, (2.13d)

s = sin
β

2
, (2.13e)

p = k − q+2t , (2.13f)

t1 = max(0,q − k) , (2.13g)

t2 = min(n− k,n+ q) . (2.13h)

For a complete overview on different normalisation conventions and the methods of computation
used for the Wigner-D functions, consult Sneeuw [1991].

Inserting (2.12c) into (2.3a) gives

w(θ,λ,ψ,A) =
∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm

∑
q

D∗nkq(0,−θ,−λ)Y
∗
nq(ψ,π −A) , (2.14a)

=
∑
l,m

Ylm(θ,λ)
∑
n,q

Y ∗nq(ψ,π −A)
∑
k

W nk
lm D∗nkq(0,−θ,−λ) . (2.14b)

Such an expression was already presented to the geodetic community by Rummel and Schwarz
[1977], where they use expression (2.14a) to compute non-homogeneous weighting functions
for use in collocation studies. Also, Martinec and Pěč [195] provide another expression for
representing the two-point weighting function, which arise by the use of bipolar spherical
harmonics and Clebsch-Gordan coefficients as used in the quantum mechanics and astronomy
communities. Here, we will follow the expressions and methods of Rummel and Schwarz
[1977].

The convenience of the representation shown in (2.14a) is that, as mentioned before, all the
points on the sphere can be referred and/or visualised as points at certain spherical distances
and azimuths. The representation shown in equation (2.14a) allows an intuitive understanding
of the behaviour of the weighting function in terms of the distribution of the weights over
the whole sphere, and will make the job of classifying, designing and analysing a lot more
easier. This will become more clear as we proceed with the discussion in the subsequent
sections and chapters.
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Q
P

ψ

NP

P

NP

ψ

Q

θ, λ

ψ, A

Figure .: Alternative representation of weighting functions. Here, NP is the north pole, P is the
calculation point and Q is a data point, and P is related to Q with the spherical distance
ψ and azimuth A.

§.    

It should also be noted here that smoothing with a two-point weighting function does not
result in a convolution in the spatial domain (in the classical Fourier sense), because every
single point on the sphere has its own smoothing kernel. Smoothing in the spatial domain
becomes a convolution operation, only when homogeneity (location independence) is enforced
on the smoothing kernel i.e. every point on the sphere has one and the same smoothing
kernel. This statement provides a basis for a broader classification of smoothing kernel types,
where the kernels can be classified as homogeneous if the kernel remains the same for all
points on the sphere, and inhomogeneous if the kernel changes for different points on the
sphere. Homogeneous smoothing kernels are also referred to as translation invariant smoothing
kernels.

A further classification of the kernels comes from the rotational invariance of the weights
of the kernel. Here, the kernels whose weights are directional invariant, i.e. the weighting
structure of the smoothing kernel is the same in every direction, are called isotropic, and those
kernels whose weights are directionally variant are called anisotropic. A third classification is
also possible, mainly for anisotropic kernels, which is based on the symmetry of the kernels
across a great circle section. A general two-point smoothing will be completely anisotropic,
and hence, asymmetric across a great circle section, while isotropic smoothing kernels will
be radially symmetric. Nevertheless, symmetry can also be enforced on anisotropic smoothing
kernels, which eventually would mean that the kernel is not completely anisotropic. This
classification terminology is in fact used by Klees et al. [200] to name the different types
of filters that they derive, compute and compare.

It is evident from the classification criteria that homogeneity/inhomogeneity is a global
property, whereas isotropy/anisotropy (and symmetry/asymmetry) is a local property. Further,
the properties of inhomogeneity and anisotropy are an expression of the four degrees of
freedom—co-latitude (θ), longitude (λ), spherical distance (ψ) and azimuth (A)—accorded to the
general two-point kernel. In other words, the general two-point smoothing kernel does not
have any restrictions in the values that it can take based on location (θ,λ), spherical distance
and azimuth. However, for the homogeneous kernels or the isotropic kernels there are certain
restrictions. By applying these restrictions either individually or as a combination a variety
of kernels can be generated, and in the following sections the restrictions are applied to the
general two-point kernel.
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Rummel and Schwarz [1977] showed that the restrictions on the degrees of freedom can
be imposed by integrating along each of them, and we will follow their method here. In
fact, they provide a detailed derivation of most of the weighting functions that we discuss
here, but we repeat it here for the sake of consistency and completeness. The aim of this
exercise is to show the type of spectrum that has to be expected for each of the type of
smoothing kernels that will be generated after applying the restrictions. A good understanding
of the spectrum allows for a better understanding of the smoothing effects associated with
the smoothing kernels in question. At the end of the section the spectra of all the different
forms of smoothing kernels is visualised in Figure 2.3 for a quick overview.

Homogeneous smoothing kernels

Homogeneous windows are characterised by the invariance of the window shape and the
weight distribution under translations and rotations on the sphere. Smoothing with the
homogeneous windows is essentially a convolution (in the classical sense). These convolutions
can be performed either using an isotropic or an anisotropic kernel, and Jekeli [191] refers to
the convolutions with homogeneous isotropic kernels as convolution of the first kind and those
with homogeneous anisotropic kernels as convolution of the second kind. Here, the general
form of the isotropic and anisotropic homogeneous windows will be described and discussed.

Isotropic

The weights of homogeneous isotropic windows on the sphere depend only on the spherical
distance ψ between the window location and the points on the sphere, which implies that
they are independent of the location and direction. They are the simplest class of windows
defined on the sphere, and they can be derived from the general two-point function as follows:

w(ψ) =
1

8π2

∫
Ω

∫
A

w(θ,λ,ψ,A)dAdΩ ,

inserting (2.14a) on the right hand side gives

w(ψ) =
1

8π2

∫
Ω

∫
A

∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm

∑
q

D∗nkq(0,−θ,−λ)Y
∗
nq(ψ,π −A) dAdΩ ,

=
1
4π

∫
Ω

∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm

∑
q

D∗nkq(0,−θ,−λ) P̄nq(cosψ) δq0 dΩ ,

=
1
4π

∫
Ω

∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm D

∗
nk0(0,−θ,−λ) P̄n0(cosψ) dΩ ,

=
1
4π

∫
Ω

∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm Dn0k(λ,θ,0) P̄n0(cosψ) dΩ ,

=
1
4π

∫
Ω

∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm

1
√
2n+1

Y ∗nk(θ,λ)
√
2n+1Pn(cosψ) dΩ ,

=
∑
l,m

∑
n,k

W nk
lm Pn(cosψ) δln δmk ,



. Classification of smoothing kernels 15

=
∑
l

Pl(cosψ)
∑
m

W lm
lm =

∑
l

W ′l Pl(cosψ) . (2.15)

The final equation (2.15) is the spectrum of a homogeneous isotropic weighting function
as derived from an inhomogeneous anisotropic weighting function, which suggests that the
spectrum is purely degree dependent. The other implication of degree dependence is that the
values W ′l are all real-valued as opposed to W nk

lm , which are complex-valued.

Now, to derive the smoothing kernel, b(ψ), from the weighting function we have to
compute the normalisation factor w(ψ).

w(ψ) =
1
4π

∫
Ω′

w(ψ)dΩ′ ,

inserting (2.15), the spectrum of w(ψ)

=
1
4π

∫
Ω′

∑
l

Pl(cosψ)
∑
m

W lm
lm dΩ′

rewriting Pl(cosψ) using (A.3a)

=
1
4π

∫
Ω′

∑
l,k

1
2l +1

Ylk(θ,λ)Y
∗
lk(θ

′ ,λ′)
∑
m

W lm
lm dΩ′

=
∑
l,k

1
2l +1

Ylk(θ,λ)
1
4π

∫
Ω′

Y ∗lk(θ
′ ,λ′)dΩ′

∑
m

W lm
lm ,

=
∑
l,k

1
2l +1

Ylk(θ,λ)δl0 δk0
∑
m

W lm
lm = W 00

00 . (2.16a)

⇒ b(ψ) =
w(ψ)
w(ψ)

=
∑
l

Pl(cosψ)
W ′l
W 00

00

, (2.16b)

Bl =
W ′l
W 00

00

. (2.16c)

The normalisation factor for the weighting function clearly indicates the homogeneity of the
weighting as it is independent of the point where the weighting function is located.

Smoothing a field f (θ,λ) with a homogeneous isotropic smoothing kernel, b(ψ), is done
as follows:

f̄ (θ,λ) =
1
4π

∫
Ω′

f (θ′ ,λ′)b(ψ) dΩ′ ,

=
1
4π

∫
Ω′

∑
l,m

FlmYlm(θ
′ ,λ′)

∑
n

Bn Pn(ψ) dΩ
′ ,

=
1
4π

∫
Ω′

∑
l,m

FlmYlm(θ
′ ,λ′)

∑
n

Bn
2n+1

∑
k

Ynk(θ,λ)Y
∗
nk(θ

′ ,λ′) dΩ′ ,
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=
∑
l,m

Flm
∑
n

Bn
2n+1

∑
k

Ynk(θ,λ)
1
4π

∫
Ω′

Ylm(θ
′ ,λ′)Y ∗nk(θ

′ ,λ′) dΩ′ ,

=
∑
l,m

Flm
∑
n

Bn
2n+1

∑
k

Ynk(θ,λ) δln δmk ,

=
∑
l

Bl
2l +1

∑
m

FlmYlm(θ,λ) , (2.17a)

F̄lm =
Bl

2l +1
Flm . (2.17b)

Anisotropic

The weights of homogeneous anisotropic windows depend both on the spherical distance
ψ and the azimuth A between the window location and the points on the sphere. These
windows can be derived by averaging the general two-point weighting function over all the
window locations on the sphere.

w(ψ,A) =
1
4π

∫
Ω

w(θ,λ,ψ,A) dΩ ,

=
1
4π

∫
Ω

∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm

∑
q

D∗nkq(0,−θ,−λ)Y
∗
nq(ψ,π −A) dΩ ,

=
1
2

∫
θ

∑
l,m

P̄lm(cosθ)
∑
n,k

W nk
lm δmk

∑
q

dnkq(−θ)Y ∗nq(ψ,π −A) sinθdθ ,

using (A.16b), (A.15b) and (A.15c) P̄lm(cosθ) can be written as a Wigner-d symbol,

=
1
2

∫
θ

∑
l,m

√
2l +1dl0m(θ)

∑
n

W nm
lm

∑
q

dnqm(θ)Y
∗
nq(ψ,π −A) sinθdθ ,

=
∑
l

√
2l +1

∑
n,m

W nm
lm

∑
q

Y ∗nq(ψ,π −A)
1
2

∫
θ

dl0m(θ) dnqm(θ) sinθdθ ,

inserting (B.4) for the integral gives

=
∑
l

√
2l +1

∑
n,m

W nm
lm

∑
q

I
nqm
l0m Y ∗nq(ψ,π −A) ,

=
∑
n,q

Y ∗nq(ψ,π −A)
∑
l,m

√
2l +1W nm

lm I
nqm
l0m ,

=
∑
n,q

Y ∗nq(ψ,π −A)W ′nq . (2.1)

Equation (2.1) is the spherical harmonic transform of the homogeneous anisotropic weighting
function. The smoothing kernel b(ψ,A) of the homogeneous anisotropic weighting function
w(ψ,A) is given by

b(ψ,A) =
w(ψ,A)
w(ψ,A)

, (2.19a)
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where

w(ψ,A) =
1
4π

∫
Ω′

w(ψ,A) dΩ′ ,

=
1

16π2

∫
Ω′

∫
Ω

w(θ,λ,ψ,A) ,

= W 00
00 , (2.19b)

substituting (2.1) and (2.19b) in (2.19a) gives

b(ψ,A) =
∑
n,q

Y ∗nq(ψ,π −A)
W ′nq

W 00
00

,

=
∑
n,q

Bnq Y
∗
nq(ψ,π −A) . (2.19c)

Smoothing a field f (θ,λ) with the smoothing kernel b(ψ,A) is done as follows:

f̄ (θ,λ) =
∫
Ω′

f (θ′ ,λ′) b(ψ,A) dΩ′ ,

=
1
4π

∫
Ω′

∑
l,m

Flm Ylm(θ
′ ,λ′)

∑
n,q

Bnq Y
∗
nq(ψ,π −A) dΩ′ ,

=
1
4π

∫
Ω′

∑
l,m

Flm Ylm(θ
′ ,λ′)

∑
n,q

Bnq
∑
k

D∗nqk(λ,θ,0) Y
∗
nk(θ

′ ,λ′) dΩ′ ,

=
∑
l,m

∑
n,q

Flm Bnq
∑
k

D∗nqk(λ,θ,0)
1
4π

∫
Ω′

Ylm(θ
′ ,λ′) Y ∗nk(θ

′ ,λ′) dΩ′ ,

=
∑
l,m

∑
n,q

Flm Bnq
∑
k

D∗nqk(λ,θ,0) δln δmk ,

=
∑
l,m

Flm
∑
q

Blq D
∗
lqm(λ,θ,0) ,

=
∑
l,m

Flm Blm(θ,λ) , (2.20a)

F̄lm(θ,λ) = Flm Blm(θ,λ) . (2.20b)

Equation (2.20a) is the spherical harmonic spectrum of a field smoothed using a homogeneous
anisotropic smoothing kernel, where Blm(θ,λ) signify that the spectrum of the anisotropic
kernel, Blk , has to be rotated to the computation point (θ,λ) prior to filtering. Due to the
rotation, every point has its own filtered spectrum, F̄lm(θ,λ). Jekeli [191] also derives an
identical equation [pg. 10, equation (29)], but proceeds further to derive the spectrum of
f̄ (θ,λ) in terms of surface spherical harmonics rather than Wigner-D functions. The problem
with (2.20a) is that for every point on the sphere a rotation matrix must be computed,
which is an expensive computation compared to the spherical harmonic synthesis computation.
However, the symmetries between Wigner-D coefficients help in speeding up the calculation
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manifold, and with modern computer power this should not be an issue. Nevertheless, we
find that such kernels have not been used before in geodesy.

Table .: Deriving different types of weighting functions from the general two-point weighting
function. The corresponding spectra of all the weighting functions are also provided.

Isotropic Anisotropic

H
om

og
en
eo
us

w(ψ) =
1

8π2

∫
Ω,A

w(θ,λ,ψ,A) dA dΩ

=
L∑
l=0

2l +1
2

Wl Pl(cosψ)

w(ψ,A) =
1
4π

∫
Ω

w(θ,λ,ψ,A) dΩ

=
∑
n,k

Wnk Y
∗
nk(ψ,π −A)

In
ho
m
og
en
eo
us

La
ti
tu
de

de
pe
nd
en
t

w(θ,ψ) =
1

4π2

∫
λ,A

w(θ,λ,ψ,A)dAdλ

=
∑
l,m,n

P̄lm(cosθ)W
nm
lm ×

P̄nm(cosθ) P̄n(cosψ)

w(θ,ψ,A) =
1
2π

∫
λ

w(θ,λ,ψ,A) dλ

=
∑
l,m,n

Ylm(θ,λ)W
nm
lm Y ∗nm(θ

′ ,λ′)

Lo
ca
ti
on

de
pe
nd
en
t

w(θ,λ,ψ) =
1
2π

∫
A

w(θ,λ,ψ,A) dA

=
∑
l,m,n,k

Ylm(θ,λ)W
nk
lm ×

Y ∗nk(θ,λ) P̄n(cosψ)

w(θ,λ,ψ,A) =
∑
l,m,n,q

Ylm(θ,λ)Y
∗
nq(ψ,π −A)×∑

k

W nk
lm D

∗
nkq(0,−θ,−λ)

Inhomogeneous smoothing kernels

Inhomogeneous windows appear in smoothing, when different calculation points have different
smoothing kernels centred on them, which in other words mean that they are calculation
point-dependent. Therefore, at any point of time the location of the kernel has to be specified.
These type of kernels are, in general, derived from covariance functions (stochastic information)
of the field. Unlike homogeneous windows, where there were only two types of windows
(isotropic and anisotropic), here a number of possibilities are available to design the kernels
due to the fact that four variables (θ, λ, ψ, and A) are involved in the definition. Martinec
and Pěč [195] explore these possibilities in terms of covariance functions on the sphere, and
here those possibilities are revisited and extended for the case of smoothing kernels.
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Inhomogeneous Homogeneous
(θ,λ) (θ)

Anisotropic

l,
m

n,k

l,
m

n,m

l,
m

Isotropic

l

n

(θ,λ)

l

n

θ

l

n

Figure .: The different classes of the weighting windows can be derived by averaging the general
form over the calculation points (θ,λ) and over the azimuth A. While the special forms of
weighting windows need not always be derived in this manner, such averaging immediately
clarifies spectral structure of the special forms. The knowledge of the respective spectra
is an important aide in the design of filters.

Location-dependent and isotropic

Inhomogeneous isotropic windows are generated by choosing different smoothing radii for
different points on the sphere. This is achieved by integrating the general two-point kernel
over the azimuth.

w(θ,λ,ψ) =
1
2π

2π∫
0

w(θ,λ,ψ,A) dA, (2.21a)

=
1
2π

2π∫
0

∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm

∑
q

D∗nkq(0,−θ,−λ) Y
∗
nq(ψ,π −A) dA,

=
∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm

∑
q

D∗nkq(0,−θ,−λ) P̄nq(cosψ) δq0 ,

=
∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm D∗nk0(0,−θ,−λ) P̄n0(cosψ) ,

=
∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm

Y ∗nk(θ,λ)√
2n+1

P̄n(cosψ) ,

=
∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm Y ∗nk(θ,λ) Pn(cosψ) ,

=
∑
n

Wn(θ,λ) Pn(cosψ) . (2.21b)
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Equation (2.21b) is the spectrum for a location-dependent isotropic weighting function, and
that of the smoothing kernel is given by

b(θ,λ,ψ) =
w(θ,λ,ψ)
w(θ,λ,ψ)

, (2.22a)

=
1

w(θ,λ,ψ)

∑
n

Wn(θ,λ) Pn(cosψ) ,

=
∑
n

Bn(θ,λ) Pn(cosψ) , (2.22b)

with

w(θ,λ,ψ) =
1
4π

∫
Ω′

w(θ,λ,ψ) dΩ′ ,

=
1

8π2

∫
Ω′

2π∫
0

w(θ,λ,ψ,A) dA dΩ′ ,

=
1
2π

2π∫
0

∑
l,m

W 00
lm Ylm(θ,λ) dA,

=
∑
l,m

W 00
lm Ylm(θ,λ) . (2.22c)

Smoothing a field with the kernel (2.22b) gives

f̄ (θ,λ) =
∫
Ω′

f (θ′ ,λ′) b(θ,λ,ψ) dΩ′ ,

=
1
4π

∫
Ω′

∑
l,m

Flm Ylm(θ
′ ,λ′)

∑
n

Bn(θ,λ)Pn(cosψ) dΩ
′ ,

=
1
4π

∫
Ω′

∑
l,m

Flm Ylm(θ
′ ,λ′)

∑
n

Bn(θ,λ)
2n+1

∑
k

Ynk(θ,λ) Y
∗
nk(θ

′ ,λ′) dΩ′ ,

=
∑
l,m

Flm
∑
n

Bn(θ,λ)
2n+1

∑
k

Ynk(θ,λ) δln δmk ,

=
∑
l,m

Bl(θ,λ)
2l +1

Flm Ylm(θ,λ) , (2.23a)

F̄lm(θ,λ) =
Bl(θ,λ)
2l +1

Flm . (2.23b)
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Latitude-dependent and isotropic

The inhomogeneity of the weighting function in (2.21a) can be restricted only to the latitude
and this results in

w(θ,ψ) =
1
2π

2π∫
0

w(θ,λ,ψ) dλ, (2.24a)

=
∑
l,m

∑
n,k

W nk
lm Pn(cosψ)

1
2π

2π∫
0

Ylm(θ,λ) Y
∗
nk(θ,λ) dλ,

=
∑
n

∑
l,m

P̄lm(cosθ)W
nm
lm P̄nm(cosθ) Pn(cosψ) ,

=
∑
n

Wn(θ) Pn(cosψ) , (2.24b)

and the smoothing kernel of the latitude-dependent isotropic function is

b(θ,ψ) =
w(θ,ψ)

1
4π

∫
Ω′

w(θ,ψ) dΩ′
, (2.25a)

=
∑
n

Wn(θ)
w(θ,ψ)

Pn(cosψ) ,

=
∑
n

Bn(θ) Pn(cosψ) , and (2.25b)

w(θ,ψ) =
1
4π

∫
Ω′

w(θ,ψ)dΩ′ ,

=
1

16π3

∫
Ω′

2π∫
0

2π∫
0

w(θ,λ,ψ,A) dλ dA dΩ′ ,

=
1

4π2

2π∫
0

2π∫
0

∑
lm

W 00
lm Ylm(θ,λ) dλ dA,

=
1
2π

2π∫
0

∑
lm

W 00
lm P̄lm(cosθ) δm0 dA,

=
∑
l

W 00
l0 P̄l(cosθ) . (2.25c)

A field smoothed with the latitude-dependent isotropic kernel, will lead to the following
spectrum

f̄ (θ,λ) =
∫
Ω′

f (θ′ ,λ′) b(θ,ψ) dΩ′ , (2.26a)



22 2     

=
1
4π

∫
Ω′

∑
l,m

Flm Ylm(θ
′ ,λ′)

∑
n

Bn(θ)Pn(cosψ) dΩ
′ ,

=
1
4π

∫
Ω′

∑
l,m

Flm Ylm(θ
′ ,λ′)

∑
n

Bn(θ)
2n+1

∑
k

Ynk(θ,λ) Ynk(θ
′ ,λ′) dΩ′ ,

=
∑
l,m

Flm
∑
n

Bn(θ)
2n+1

∑
k

Ynk(θ,λ)
1
4π

∫
Ω′

Ylm(θ
′ ,λ′) Ynk(θ

′ ,λ′) dΩ′ ,

=
∑
l,m

Flm
∑
n

Bn(θ)
2n+1

∑
k

Ynk(θ,λ) δln δmk ,

=
∑
l,m

Bl(θ)
2l +1

Flm Ylm(θ,λ) (2.26b)

F̄lm(θ) =
Bl(θ)
2l +1

Flm . (2.26c)

Latitude-dependent and anisotropic

The general two-point kernel is a completely inhomogeneous and completely anisotropic kernel
(i.e., asymmetric), which has been discussed in detail in the section 2.1. Klees et al. [200]
describe an optimal filter for  data, and their anisotropic asymmetric filter () is an
example of the general two-point kernel. Also, Kusche [2007] designs a kernel that is a
general two-point kernel, but the anisotropy is only partial due to the kernel symmetry in
the spatial domain. Later Kusche et al. [2009] designed a latitude-dependent anisotropic kernel
that was shown to be as effective as the earlier general two-point kernel design in filtering
noise. The reason was attributed to the observation pattern in satellite geodesy, which has a
constant sampling space in the longitude direction. Thus, the latitude-dependent anisotropic
kernel has a special place in satellite geodetic studies [e.g., Sneeuw, 2000].

As in the isotropic case, anisotropic weighting functions can also be made latitude-dependent
only. Again, it is accomplished by averaging the general two-point weighting function over
the longitudes of the calculation points.

w(θ,ψ,A) =
1
2π

2π∫
0

w(θ,λ,ψ,A) dλ, (2.27a)

=
1
2π

2π∫
0

∑
l,m

Ylm(θ,λ)
∑
n,k

W nk
lm

∑
q

D∗nkq(0,−θ,−λ) Y
∗
nq(ψ,π −A) dλ,

=
∑
l,m

P̄lm(cosθ)
∑
n,k

W nk
lm

∑
q

dnkq(−θ) Y ∗nq(ψ,π −A)
1
2π

2π∫
0

eimλ e−ikλ dλ,

=
∑
l,m

P̄lm(cosθ)
∑
n,k

W nk
lm

∑
q

dnkq(−θ) Y ∗nq(ψ,π −A) δmk ,

=
∑
l,m

P̄lm(cosθ)
∑
n

W nm
lm

∑
q

dnmq(−θ) Y ∗nq(ψ,π −A) ,
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=
∑
l,m

P̄lm(cosθ)
∑
n

W nm
lm

∑
q

D∗nmq(0,−θ,0) Y ∗nq(ψ,π −A) , (2.27b)

The above spectrum of the weighting function can be further simplified by rotating back the
spherical harmonics Y ∗nq(ψ,π−A) using D∗nmq(0,−θ,0) as in (2.12b) as shown in the following
derivation.

w(θ,ψ,A) =
∑
l,m,n

P̄lm(cosθ)W
nm
lm Y ∗nm(θ

′ ,∆λ) ,

=
∑
l,m,n

P̄lm(cosθ)W
nm
lm P̄nm(cosθ

′)e−im(∆λ) , (2.27c)

=
∑
l,m,n

P̄lm(cosθ)W
nm
lm P̄nm(cosθ

′)e−im(λ′−λ) ,

=
∑
l,m,n

P̄lm(cosθ) e
imλW nm

lm P̄nm(cosθ
′) e−imλ

′
,

=
∑
l,m

Ylm(θ,λ)
∑
n

W nm
lm Y ∗nm(θ

′ ,λ′) . (2.27d)

The spectrum of the latitude-dependent weighting function has two forms (2.27c) and
(2.27d), and the former is the same as that derived by Rummel and Schwarz [1977] for their
weighting function C(θP ,θQ,∆λ) in equation (30). Therefore, the functions w(θ,ψ,A) and
w(θ,θ′ ,∆λ) are one and the same, and the difference is only in the representation, which
comes from the fact that whether the kernel is rotated such that the pole is at the calculation
point or not. Although the w(θ,ψ,A) is an attractive and appealing representation, the
representation w(θ,θ′ ,∆λ) reveals a peculiar behaviour of the latitude-dependent anisotropic
kernel. Since the kernel depends on the difference between the longitudes of the two points, at
the pole ∆λ becomes zero due to convergence of the longitudes. Furthermore, the associated
Legendre functions at the poles are order independent. Therefore, the kernel at the pole
becomes completely isotropic. This can be visualised mathematically as follows:

w(θ,ψ,A) = w(θ,θ′ ,∆λ) ,

=
∑
l,m

P̄lm(cosθ) e
im∆λ

∑
n

W nm
lm P̄nm(cosθ

′) , (2.27c)

when θ = 0

w(0,θ′ ,∆λ) =
∑
l,m

P̄lm(1) e
im∆λ

∑
n

W nm
lm P̄nm(cosθ

′) ,

using (A.7b) and (A.10a)

=
∑
l,m

δm0

√
2l +1 eim∆λ

∑
n

W nm
lm P̄nm(cosθ

′) ,

=
∑
l,n

√
2l +1W n0

l0 P̄n0(cosθ
′) ,

w(0,θ′) =
∑
l,n

√
(2l +1)(2n+1)W n0

l0 Pn(cosθ
′) ,
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also when θ = 0, θ′ becomes the spherical distance ψ between the two points, and therefore
the above equation can be re-written in the following form:

w(0,ψ) =
∑
l,n

√
(2l +1)(2n+1)W n0

l0 Pn(cosψ) , (2.2a)

which reveals the isotropic nature of the latitude-dependent anisotropic weighting function at
the pole (cf. Figure 3.4).

The smoothing kernel associated with (2.27d) is given as

b(θ,ψ,A) =
w(θ,ψ,A)

1
4π

∫
Ω′

w(θ,ψ,A) dΩ′
, (2.29)

=
∑
l,m

Ylm(θ,λ)
∑
n

W nm
lm

w(θ,ψ,A)
Y ∗nm(θ

′ ,λ′) ,

=
∑
l,m

Ylm(θ,λ)
∑
n

Bnmlm Y ∗nm(θ
′ ,λ′) , (2.30)

where w(θ,ψ,A) will have the same form as in (2.25c).

An interesting case develops when the off-diagonal elements of each of the m blocks of
the spectrum of the weighting function become zero. Then the spectrum of the weighting
function takes the following form:

w(θ,ψ,A) =
∑
l,m

Ylm(θ,λ)W
lm
lm Y ∗lm(θ

′ ,λ′) , (2.31a)

and the normalisation factor becomes

1
4π

∫
Ω′

w(θ,ψ,A) dΩ′ =
∑
l,m

Ylm(θ,λ)W
lm
lm

1
4π

∫
Ω′

Y ∗lm(θ
′ ,λ′) dΩ′ ,

=
∑
l,m

Ylm(θ,λ)W
lm
lm δl0 δm0 ,

= W 00
00 , (2.31b)

which implies that the sum of the weighting function is independent of the latitude. The
underlying meaning is that no matter which latitude the kernel is located, the sum of the
weights of the function must be a constant. This is an important design criteria in the design
of such latitude-dependent anisotropic weighting functions. Therefore, the smoothing kernel
becomes

b(θ,ψ,A) =
∑
l,m

Ylm(θ,λ)
W lm
lm

W 00
00

Y ∗lm(θ
′ ,λ′) ,

=
∑
l,m

Ylm(θ,λ) B
lm
lm Y

∗
lm(θ

′ ,λ′) . (2.31c)

Latitude-dependent anisotropic smoothing kernels are the most widely designed kernels in the
 community, for example, Han et al. [2005]; Chen et al. [2006]; Swenson and Wahr
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[2006b]; Kusche et al. [2009]. This should not be surprising, because of the equispaced
observations of the satellite geodetic observables in the longitude directions lend themselves
to latitude-dependent anisotropic smoothing kernels.

Smoothing a field with these kernels is carried out in the following equations:

f̄ (θ,λ) =
1
4π

∫
Ω′

f (θ′ ,λ′) b(θ,ψ,A) dΩ′ , (2.32a)

=
∑
p,q

Fpq
∑
l,m

Ylm(θ,λ)
∑
n

Bnmlm
1
4π

∫
Ω′

Ypq(θ
′ ,λ′) Y ∗nm(θ

′ ,λ′) dΩ′ ,

=
∑
l,m

Ylm(θ,λ)
∑
n

Bnmlm Fnm (2.32b)

F̄lm =
∑
n

Bnmlm Fnm . (2.32c)

Similarly, if the smoothing kernel has a diagonal form as in (2.31c), then the spectrum of the
smoothed field will be

f̄ (θ,λ) =
∑
l,m

Ylm(θ,λ) B
lm
lm Flm , (2.33a)

F̄lm = Blmlm Flm . (2.33b)

§.        

The spherical harmonic spectrum Flm of a field f (θ,λ) is a complex number, and so it can
be re-written in terms of the magnitude and argument of a complex number as follows:

Flm = Alm eiϕlm , (2.34a)

Alm = |Flm| =
√
Re(Flm)

2 + Im(Flm)
2 , (2.34b)

ϕlm = arg(Flm) = arctan
(
Im(Flm)
Re(Flm)

)
. (2.34c)

Further, substituting (2.34a) in (2.1a) gives

f (θ,λ) =
∑
l,m

Alm eiϕlm P̄lm(cosθ) e
i(mλ) ,

=
∑
l,m

Alm P̄lm(cosθ) e
i(mλ+ϕlm) . (2.34d)

In harmonic analysis, the representation in (2.34a) is called amplitude and phase spectrum
of the field. The amplitude and phase spectrum is not a frequently used representation for
spherical harmonic spectra in geodesy. It is quite often used in the Fourier analysis of
time-series, where the idea of phase of the frequency is easily interpretable. Whereas the
phase of the spherical harmonic spectrum has a spatial connotation to it, and therefore, it
is not straightforward to interpret it. Notwithstanding these difficulties in interpretation, we
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form the amplitude and phase spectrum of the filtered spectrum F̄lm.

F̄lm =
∑
n,k

BnklmFnk = Ālm eiϕ̄lm ,

Ālm =
∣∣∣F̄lm∣∣∣ =

Re
∑
n,k

BnklmFnk


2

+ Im

∑
n,k

BnklmFnk


2

1
2

, (2.35a)

ϕ̄lm = arg(F̄lm) = arctan


Im

∑
n,k

BnklmFnk


Re

∑
n,k

BnklmFnk




. (2.35b)

From (2.35a) and (2.35b), we see that the amplitude and phase change completely after the
spectrum is filtered. Further, the filtered and unfiltered spectra share a non-linear relationship
between them. However, they represent only the general case of filtering with the spectrum
of a completely inhomogeneous and anisotropic smoothing kernel. Now, we will extend this
to the different classes of filters and see what happens to the amplitude and phase of the
corresponding filtered spectra.

Homogeneous and isotropic

The spectrum of the field filtered with a homogeneous isotropic smoothing is given by

F̄lm =
Bl

2l +1
Flm . (2.17b)

A point to be noted here is that Bl is a real-valued variable, because the smoothing kernel
b(ψ) and the Legendre polynomials Pl(ψ) in (2.16b) are both real-valued functions. Thus, Bl
are real numbers and act as scaling factors for the complex coefficients Flm, and therefore
the amplitude spectrum takes the following form:

Ālm =
∣∣∣∣∣ Bl
2l +1

Flm

∣∣∣∣∣ ,
=

∣∣∣∣∣ Bl
2l +1

∣∣∣∣∣ |Flm| ,
=
|Bl |

2l +1
Alm , (2.36a)

where |Bl | denotes the absolute value of the spectral weight Bl . Now the phase spectrum
of the filtered field is

ϕ̄lm = arg
( Bl
2l +1

Flm

)
,

after factoring out 2l +1, we get

= arctan
(
Im(Bl Flm)
Re(Bl Flm)

)
= arctan

(
Bl Im(Flm)
Bl Re(Flm)

)
, ∵ Bl is a real number.
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Although the weights Bl are scalar and get factored out, the phase is still affected by the
sign of the weights Bl . This is written as follows

= arctan
(
sgn(Bl) Im(Flm)
sgn(Bl) Re(Flm)

)
,

= arg(sgn(Bl) Flm) .

∴ ϕ̄lm =

ϕlm , Bl ≥ 0

ϕlm −π, Bl < 0
, (2.36b)

which clearly indicates that the homogeneous isotropic smoothing kernel affects both the
amplitude and phase of the spherical harmonic spectrum. Nevertheless, the phase is unaffected
if the spectral weights of the homogeneous isotropic filter are all positive, but it is rotated
by an angle of π for the degrees whose spectral weights are negative. Finally, the smoothed
field in terms of amplitude and phase spectrum reads as

f̄ (θ,λ) =
∑
l,m

Ālm P̄lm(cosθ) e
i(mλ+ϕ̄lm) ,

=
∑
l,m

|Bl |
2l +1

Alm P̄lm(cosθ) e
imλ

eiϕlm , Bl ≥ 0

ei(ϕlm−π) , Bl < 0
. (2.36c)

Homogeneous and anisotropic

Again, we start with the spectrum of the smoothed field, (2.20b),

F̄lm(θ,λ) = Blm(θ,λ) Flm , (2.20b)

Ālm(θ,λ) =
∣∣∣F̄lm(θ,λ)∣∣∣ ,

= |Blm(θ,λ) Flm|

where Blm(θ,λ) and Flm are both complex, and hence Alm and Ālm are related as follows:

Ālm(θ,λ) = |Blm(θ,λ)| |Flm| ,

= |Blm(θ,λ)| Alm , (2.37a)

Now, the phase of the spectrum of the smoothed field is given by

ϕ̄lm(θ,λ) = arg(F̄lm) ,

= arg(Blm(θ,λ) Flm) ,

= arg(Blm(θ,λ)) + arg(Flm) .

Setting arg(Blm(θ,λ)) as Φlm(θ,λ) we get

ϕ̄lm = Φlm(θ,λ) +ϕlm . (2.37b)

In the above equation, it is evident that the phase of Flm is further rotated by Φlm (θ,λ).
This is in contrast to the isotropic filter, where there was either no rotation or a rotation
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of π. However, here there is a range of rotations from 0 to 2π. Also, the phase of the
unsmoothed and the smoothed spectra are linearly related.

Rewriting the smoothed field in terms of the amplitude and phase spectrum, we get

f̄ (θ,λ) =
∑
l,m

Ālm(θ,λ) e
iϕ̄lm(θ,λ) ,

=
∑
l,m

|Blm(θ,λ)| Alm ei(ϕlm+Φlm(θ,λ)) . (2.37c)

Location-dependent and isotropic

Starting with the filtered spectrum (2.23b) we have,

F̄lm(θ,λ) =
Bl(θ,λ)
2l +1

Flm , (2.23b)

where the coefficients Bl(θ,λ), by virtue of (2.22b), will all be real-valued numbers. Therefore,
they will behave similar to the homogeneous isotropic kernel.

Ālm(θ,λ) =
∣∣∣∣∣Bl(θ,λ)2l +1

Flm

∣∣∣∣∣ ,
=
|Bl(θ,λ)|
2l +1

Alm , (2.3a)

ϕ̄lm(θ,λ) = arg
(
Bl(θ,λ)
2l +1

Flm

)
,

= arg(sgn(Bl(θ,λ)) Flm) ,

=

ϕlm , Bl(θ,λ) ≥ 0

ϕlm −π, Bl(θ,λ) < 0
. (2.3b)

Therefore the smoothed field becomes

f̄ (θ,λ) =
∑
l,m

Ālm P̄lm(cosθ) e
i(mλ+ϕ̄lm) ,

=
∑
l,m

|Bl(θ,λ)|
2l +1

Alm P̄lm(cosθ) e
imλ

eiϕlm , Bl(θ,λ) ≥ 0

ei(ϕlm−π) , Bl(θ,λ) < 0
. (2.3c)

Latitude-dependent and isotropic

The latitude-dependent isotropic smoothing kernels will show a similar behaviour as the
location-dependent isotropic smoothing kernel, because Bl(θ) is also a real-valued number that
forms a real-valued function b(θ,ψ) with the Legendre polynomials Pl(cosψ). Therefore,

F̄lm = Bl(θ) Flm , (2.26c)

Ālm(θ) = |Bl(θ)| Alm , (2.39a)

ϕ̄lm =

ϕlm , Bl(θ) ≥ 0

ϕlm −π, Bl(θ) < 0
(2.39b)
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f̄ (θ,λ) =
∑
l,m

|Bl(θ)|
2l +1

Alm P̄lm(cosθ) e
imλ

eiϕlm , Bl(θ) ≥ 0

ei(ϕlm−π) , Bl(θ) < 0
. (2.39c)

Latitude-dependent and anisotropic

The general form of the filtered spectrum of the field smoothed with a latitude-dependent
anisotropic kernel (2.32c) has the same form as the field filtered with a location-dependent
anisotropic filter kernel (2.9b), and therefore, the amplitude and phase have the same behaviour.

F̄lm =
∑
n

Bnmlm Fnm , (2.32c)

Ālm = |F̄lm| , (2.40a)

ϕ̄lm = arg(F̄lm) , (2.40b)

f̄ (θ,λ) =
∑
l,m

Ālm P̄lm(cosθ)e
i(mλ+ϕ̄lm) . (2.40c)

In the special case that the spectrum is diagonal-only (cf. (2.33b)), two cases arise depending
on whether the Blmlm is a real number, i.e., real-valued [e.g., Han et al., 2005] or complex.
The filtered spectrum is given by

F̄lm = Blmlm Flm . ((2.33b))

If the spectral weights are complex, then the amplitude and phase are given by

Ālm =
∣∣∣Blmlm∣∣∣ Alm , (2.41a)

ϕ̄lm = arg
(
BlmlmFlm

)
= Φ lm

lm +ϕlm , (2.41b)

where Φ lm
lm is the phase of Blmlm. In the case that Blmlm are real then the amplitude and phase

behave the same way as in the case of homogeneous isotropic filters (cf. (2.36)).

Ālm =
∣∣∣Blmlm∣∣∣ Alm , (2.42a)

ϕ̄lm =

ϕlm , Blmlm ≥ 0

ϕlm −π, Blmlm < 0
, (2.42b)

f̄ (θ,λ) =
∑
l,m

∣∣∣Blmlm∣∣∣ Alm P̄lm(cosθ) eimλ


ei(ϕlm+Φ
lm
lm ) , Blmlm ∈ C ,

eiϕlm , Blmlm ∈ R | B
lm
lm ≥ 0 ,

ei(ϕlm−π) , Blmlm ∈ R | B
lm
lm < 0 ,

(2.42c)

In the preceding discussion we saw how the different filters affect both the amplitude and
phase. The amplitude is always affected due to filtering, and in most cases this amounts to
scaling of the unfiltered amplitude. In others the relationship is non-linear. The phase of the
spectrum is also affected due to filtering, which in the case of isotropic filter kernels have a
distinct character: The phase is rotated by an angle of π if the spectral weight is negative
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and is unaffected when the spectral weight is positive. In the case of anisotropic kernels
there is an additional phase rotation if the amplitude of the filtered and unfiltered fields
are linearly related. This linear and non-linear relationships should not come as a surprise
as they are inherent in the definitions of the polar form of the spectrum. We will discuss
this concept further and explicate the influence of the polar form in the choice of filters in
chapters 5 and 6.
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O aim in this chapter will be to demonstrate the design of a few well-known smoothing
kernels. We know, now, that every smoothing kernel provides a weight to the data

point depending on its distance and orientation from the calculation point, but with the sole
aim of getting a smoothed value. We will start our discussion by looking to trivial designs
of smoothing kernels, which leads us to a qualitative bound for the quality, smoothness.
Within these bounds a number of kernels can be designed, and we will discuss three ways
of designing the kernels: deterministic, stochastic and empirical/data-driven methods. There-
after, we will demonstrate the deterministic designs of the common homogeneous isotropic
smoothing kernels used in the  community, wherein it will become clear that they are
the easiest class of smoothing kernels to design. We will then extend the design ideas to
latitude-dependent anisotropic smoothing kernels, where we will also introduce the stochastic
and data-driven methods.

§.      

The easiest smoothing kernel can be designed by taking a weighting function that provides
the same weights for all the data points without any discrimination. Therefore, such a function
will be a homogeneous isotropic kernel that can be formulated as follows:

wΩ(ψ) = 1, ∀ ψ ∈ [0,π]. (3.1a)

Now, using the above equation in (2.5a), we get

f̄ (θ,λ) =

1
4π

∫
Ω′

f (θ′ ,λ′) wΩ(ψ) dΩ
′

1
4π

∫
Ω′

wΩ(ψ) dΩ
′

, (3.1b)

=

1
4π

∫
Ω′

f (θ′ ,λ′) dΩ′

1
4π

∫
Ω′

dΩ′
, (3.1c)

f̄Ω(θ,λ) = F00 . (3.1d)
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which is the same as the spatial mean of the field. It is also obvious from the above
equations that

bΩ = wΩ . (3.2)

The other trivial smoothing kernel design is the one that provides weight only to the
calculation point, and therefore, reproduces the unsmoothed value of the calculation point.
Such a smoothing kernel is the Dirac’s delta function on the sphere

wδ(ψ) = δ(ψ) = δ(θ,λ,θ′ ,λ′) , (3.3a)

where δ(·, ·) is the Dirac’s delta function on the sphere [Freeden and Schreiner, 2009].

1
4π

∫
Ω′

δ(ψ) dΩ′ =

1 , ψ = 0 ⇒ (θ,λ) = (θ′ ,λ′)

0 , elsewhere
, (3.3b)

and its spectrum is

δ(ψ) =
∑
l,m

Ylm(θ,λ)Y
∗
lm(θ

′ ,λ′) . (3.3c)

Smoothing a field f (·) with the wδ gives

f̄ (θ,λ) =

1
4π

∫
Ω′

f (θ′ ,λ′) wδ(ψ) dΩ
′

1
4π

∫
Ω′

wδ(ψ) dΩ
′

, (3.3d)

f̄δ(θ,λ) = f (θ,λ) =
∑
l,m

Flm Ylm(θ,λ) . (3.3e)

Again from the above equations, similar to (3.2), it can be deduced that the smoothing
function which reproduces the calculation point is also the same as its weighting function:

bδ = wδ . (3.4)

Although these two weighting functions are trivial from the design point of view, their
smoothing kernels, and subsequently their smoothed values, set up a platform for understanding
the design of smoothing kernels. The smoothed values f̄

Ω
(·) and f̄δ(·) form a qualitative bound

for the smoothed values f̄ (·), and therefore, also for the smoothing kernels: There cannot be
a smoother value than f̄

Ω
(·), and a more unsmoothed value than f̄δ(·). In a similar vein, no

smoothing kernel can smoothen a field f (·) smoother than b
Ω
(ψ), and similar is the argument

for bδ(ψ). Therefore, any smoothing kernel that we design will generate a smoothed field
f̄ (·), whose smoothness will linger between f̄

Ω
(·) and f̄δ(·).

Another interesting aspect to these two trivial smoothing kernels are the corresponding
smoothed spectra, (3.1d) and (3.3e). While the spectrum of f̄

Ω
(·) is just the degree zero value

F00 that of f̄δ(·) is the complete set Flm. In other words, the mean value of the entire
spherical domain Ω is concentrated in one spherical harmonic coefficient, F00, while the value



. Some trivial designs of smoothing kernels 33

of a point (θ,λ) is distributed over the entire spectrum Flm. This is indeed the principle
of uncertainty in signal processing [Strang, 196, pg. 313–314], which states that a function
cannot be simultaneously localised both in the signal domain and the spectral domain. This
is extended to the case of the sphere by Freeden and Schreiner [2009, sec. 7.3, pg. 343–357].
Thus, it should be noted that all the smoothing kernels that will be developed will lie between
these two trivial kernels.

e ideal low-pass filter

In practice, it is rather straightforward to realise the smoothing kernel bΩ, but not so with
bδ as they require infinite number of degrees to reproduce the point value. For this reason,
bδ is often approximated by expanding the spherical harmonics to a finite value of spherical
harmonic degree, which then becomes

bδ ≈ δL(ψ) =
L∑
l=0

l∑
m=−l

Ylm(θ,λ)Y
∗
lm(θ

′ ,λ′) . (3.5a)

The approximate kernel is called the Shannon kernel [Freeden and Schreiner, 2009]. The first
thing that we observe about δL(ψ) in (3.5a) is that it is band-limited ({l ∈ N |0 ≤ l ≤ L}), and
the kernel δL(ψ) can be rewritten in terms of the spectrum of δ(ψ) as

δL(ψ) =
∑
l,m

Bl Ylm(θ,λ)Y
∗
lm(θ

′ ,λ′) , (3.5b)

where

Bl =

1 , {l ∈ N |0 ≤ l ≤ L}
0 , otherwise

(3.5c)

are the spectral weights that relate the kernel δL(ψ) with δ(ψ). These weights act as a filter
and suppress the degrees higher than l = L, which is why it is also called a box-car filter.
By virtue of its filtering characteristics it produces a filtered value f̄ (·) of f (·), and since it
omits the higher frequencies, f̄ (·) is a low-pass filtered smooth value. Here again, we note
that even in the band-limited case, δL(ψ) will form the bound for the most unsmoothed value
for the given band-limit, because it uses all the information provided within the band-limit
(0 ≤ l ≤ L). This characteristic of the box-car makes it the ideal low-pass filter in the spherical
harmonic spectral domain [Jekeli, 191].

In the end, we are able to merge together two synonymous ideas – low-pass filtering and
smoothing – into a single idea: smoothing blurs the (noisy) high frequency details, which is
also the effect of low-pass filters. The above discussion has given us an important hint for
designing the smoothing kernel, and that is a smoothing operator is the same as a low-pass
filter and it must, therefore, suppress the higher frequencies. Nevertheless, we must first
identify whether there is a need for designing a new filter when we have an ideal low-pass
filter in hand.

The need arises from the spatial form of the ideal low-pass filter (Figure 3.1), which does
not become zero but oscillates around it. These oscillations are an artefact of the truncation of
the spectrum at degree L as harmonic functions cannot handle sudden jumps in the weights,
and these oscillations are the well known Gibbs phenomenon [Hamming, 199]. Due to these
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Figure .: Shannon kernel δL(ψ) for L =
10, 20, 30, 60, 90 (light to dark
colour order). Notice the oscillating
nature of the kernel around zero.
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oscillating weights the ideal low-pass filter changes the sign of the signal, and, further, as
they take a long distance to dampen, they bring data from locations that are far off from
the calculation point. In chapters 4 and 5 it will be demonstrated that these are undesirable
characteristics, and therefore, the ideal low-pass filter is not “ideal”. Thus, there is a need for
designing smoothing kernels, keeping in mind the qualitative bound and the idea of low-pass
filtering while designing them.

§.    

Filters on the sphere have been designed in different ways, which can largely be classified into
deterministic [e.g., Jekeli, 191; Sardeshmukh and Hoskins, 194; Zhang et al., 2009]; stochastic
[e.g., Swenson and Wahr, 2002; Kusche, 2007; Klees et al., 200]; data-driven [e.g., Swenson
and Wahr, 2006b; Wouters and Schrama, 2007; Rangelova et al., 2007]; and variational calculus
[Khalid et al., 2011] methods. This classification is based on the principles behind the design
of the filters, but another attempt has been made by Werth et al. [2009] to classify filter
design based on the parameters used.

Deterministic filtering

Deterministic filter design is by far the most widely used method for designing filters, and it
is characterised by analytical functions that determine the weights of filter functions either in
the spatial domain or in the spectral domain. The earliest known deterministic kernels come
from Pellinen [1966]; Jekeli [191], who adapted the deterministic filters from harmonic analysis
on the line to smooth gravity anomalies; and Sardeshmukh and Hoskins [194] designed a
few kernels for filtering atmospheric fields. However, after the launch of the  satellite
mission a number of deterministic filters have been proposed [e.g., Longuevergne et al., 2010;
Zhang et al., 2009; Han et al., 2005], but the most prominent of them all, in  data
processing, has been the homogeneous and isotropic Gaussian smoothing operator designed
by Jekeli [191]. In table 3.1, formulae, spatial cross-sections and spectral weights of a few
other well-known homogeneous isotropic deterministic windows used in physical geodesy and
allied fields are depicted.
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Table .: Definitions, and spectral and spatial cross-sections of some deterministic homogeneous
isotropic windows.

Filter Definition Spatial Spectral

Pellinen Bl =
1

2l +1
Pl−1 (cosψ0)− Pl+1 (cosψ0)

1− cosψ0

Box-car Bl =

 1 , l ∈ N | [0, lc]
0 , otherwise

Gauss b(ψ) =
a

sinha
ea cosψ , a =

ln(n)
1− cosψ0

, n ∈ R>1

Diffusion Bl = exp

−
(
l(l +1)
lc(lc +1)

)k  , k ∈ N∗

Spatial co-
sine

w(ψ) =

 cosk
(
πψ

2ψ0

)
, ψ ∈ R | [0,ψ0] , k ∈ N∗

0 , otherwise

Spectral
cosine

Bl =


1 , l ∈ N | [0, ls]

cosk
(
π
2
l − ls
lc − ls

)
, l ∈ N | (ls, lc] , k ∈ N∗

0 , otherwise

Butterworth Bl =
1√

1+
(
l
lc

)2k , k ∈ N∗

Stoastic filter design

Stochastic filtering, unlike deterministic filtering, utilises the behaviour of signal and noise
described by their respective covariances to filter out noise. However, the difficulty in designing
the stochastic filters lies in the knowledge of signal and noise covariances. In  data
processing, Swenson and Wahr [2002] demonstrated the stochastic filter design principles by
fine-tuning filter kernels according to a given error budget, which included satellite error
and leakage error. This they demonstrated for the case of regional averages, where they
used Gaussian functions of different filter radii as the signal covariance model. This was
extended by Seo and Wilson [2005] to use signal covariance information from geophysical
models. Sasgen et al. [2006] used these principles but modelled the signal covariance of the
time-variable gravity field as a power law, similar to the Kaula rule for static gravity field
[Kaula, 1966, pg. 9]. The power law signal covariance model is a homogeneous isotropic
covariance model derived from the observation that the power of the gravity field signal
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decreases exponentially with increasing spherical harmonic degree. Sasgen et al. [2006] also
modelled their noise covariance in terms of a homogeneous isotropic function, and both the
signal and noise covariance modelling was carried out using  data. Kusche [2007] used
a fully populated noise covariance matrix, although simulated, in place of the isotropic noise
covariance of Sasgen et al. [2006]. Stochastic filtering with fully populated noise and signal
covariance matrices was successfully demonstrated by Klees et al. [200], who computed the
signal covariance matrix from the complete  dataset by iterative techniques.

Data-driven filtering methods

Data-driven methods of filtering are those in which the filter designed is dataset-specific. Such
a filter designed for one dataset might not filter other datasets with the same efficacy. In
the  community, the most widely used destriping filter proposed by Swenson and Wahr
[2006b] is a modified form of moving polynomial smoothing, also known as the Suavity’s-Golay
filter [Savitzky and Golay, 1964]. Other data-driven filters used in the  community are
principal component analysis () [Wouters and Schrama, 2007; Rangelova et al., 2007] and
independent component analysis () [Frappart et al., 2011], which are standard tools in climate
data analysis. PCA and ICA are empirical techniques based on orthogonal data transformation
principles, and are mainly used for studying the patterns underlying the datasets. In addition
to these methods Davis et al. [200] employ a statistical filter on the time-series of 
data, where they statistically test the goodness of fit of a priori known periodic components
and linear trend to the time-series of the dataset.

Filter design by variational calculus methods

Variational calculus methods of filtering are a standard feature of geophysical inversion
techniques [Wu et al., 2009]. In fact the stochastic filter design is a variational calculus
method, but here we distinguish them both for the sake of convenience. We will only denote
filters that use stochastic information—signal and noise covariance information—as stochastic
filters. Variational calculus principles have also been used to design filters that do not use
any stochastic information. For example, Khalid et al. [2011] designed a homogeneous isotropic
low-pass filter by formulating the filtering problem on the sphere as a Slepian problem on
the sphere [Albertella et al., 1999]. The central idea is to concentrate the smoothing of the
data within the prescribed filter radius in order to avoid leakage problems. Nevertheless, the
design process of such a filter is complex, and for this reason Khalid et al. [2011] provide an
analytic expression after non-linear fitting to a series of such low-pass filters.

In the following sections we will discuss the principle behind the design of the three of
the most commonly used filters in the  community: the Gaussian smoothing operator
[Jekeli, 191], the destriping filter [Swenson and Wahr, 2006b] and the  filter [Kusche,
2007]. Further, we will use these three filters to expound the filter behaviour in the succeeding
chapters.

§.   

The Gaussian function on the sphere, which is the basis of the Gaussian smoothing operator,
is introduced by Fisher [1953] in the context of statistical analysis of directional data. However,
Fisher et al. [197] inform that it was already introduced in a more general form as early as
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1905 by Paul Langevin in the context of magnetism studies. Jekeli [191] introduced it as a
smoothing operator among others for smoothing observed gravity anomalies on the sphere,
and thereafter Wahr et al. [199] modified it to the needs of the  data processing.

The Gaussian weighting function on the sphere is written as

w(ψ) = e−a (1−cosψ) = e−2a sin
2 ψ

2 , (3.6a)

but it degenerates to

w(ψ) = e−a
ψ2

2 , ψ is small, (3.6b)

which is the well known form of the Gaussian distribution function. For this reason, Fisher
[1953] argues that the form in (3.6a) should in fact be the superset of the Gaussian functions,
and he further reduces the form in (3.6a) to

w(ψ) ∝ ea cosψ . (3.6c)

In addition he also imposes the condition that a ≥ 0 for the function to generate a bell
shaped curve. Comparing (3.6a) and (3.6c) it is clear that the proportionality constant is e−a.
Therefore, rewriting (3.6a) we get

w(ψ) = e−a ea cosψ . (3.6d)

Now, the corresponding smoothing operator is given by

b(ψ) =
a

sinha
ea cosψ , (3.6e)

with the normalising constant being

w̄(ψ) =
1
4π

∫
Ω′

e−a ea cosψ dΩ′ =
1
a
e−a sinha. (3.6f)

From the above set of equations, it is clear that the weight of the Gaussian smoothing
operator depends on the parameter a and the cosine of the spherical distance ψ between the
calculation and data point, where the parameter a has a similar function as the variance in
the case of the univariate Gaussian distribution. Thus, it is clear that a controls the width,
and hence the shape, of the operator. One of the most important characteristics of this
operator is that it becomes zero only asymptotically, thus remains positive. Another important
characteristic is that the shapes of both its spatial and its spectral form remain the same
[Wahr et al., 199].

In order to construct this window, the value of the parameter a needs to ascertained.
Wahr et al. [199] compute the value of a by fixing a distance at which the weight function
drops to one-half of the weight of the smoothing operator at the calculation point. Here,
this computation will be demonstrated, but for any desired fraction (1/n) of the weight at the
calculation point (w(ψ = 0)). Let ψ0 be the distance at which the Gaussian weight function
drops to the desired fraction 1/n of w(0). Assuming the weight at the calculation point as
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unity we can write,

w(ψ0) =
1
n

= e−a ea cosψ0 ,

−ln(n) = − a+ a cosψ0 ,

∴ a =
ln(n)

1− cosψ0
. (3.7)

Since by design the Gaussian weights w(ψ) are positive, the value of n will also always be a
positive (integer) value. Further, as the value of (1−cosψ0) will also be positive, (3.7) satisfies
the condition that a ≥ 0. The spherical distance ψ0 then becomes the smoothing radius. It
should be clear now that the control variable a is conveniently defined by the two parameters:
n and ψ0. Thus, the Gaussian smoothing operator can be mathematically summarised as

b(ψ) =
a

sinha
ea cosψ , with a =

ln(n)
1− cosψ0

. (3.)

Figure 3.2 shows the spatial and the corresponding spectral weights of the Gaussian smoothing
kernel for a few smoothing radii. The bell-shape of the Gaussian smoothing kernels and also
their asymptotic behaviour is clearly visible.
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Figure .: Spatial and spectral weights of the Gaussian smoothing operators with n = 2 and ψ0 = 0.9◦,
2.7◦, 4.5◦, 7.2◦, 9◦ (dark to light colours).

The spectrum of the Gaussian smoothing kernel is given by

Bl =
1
2

π∫
0

a
sinha

ea cosψ Pl(cosψ) dψ , (3.9a)

B0 = 1 ,

B1 = cotha− 1
a
,

Bl+1 = −2l +1
a

Bl + Bl−1 . (3.9b)

The spectrum does not have a closed form expression, but it follows the above recursion.
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In practice, the above recursion degenerates quickly that the values of Bl+1 start to become
higher than Bl and also start to oscillate around zero (cf. Table 3.2). Therefore, we numerically
integrate (3.9a) after taking the Gauss-Neumann samples of the Legendre polynomials (Pl(cosψ))
and the Gaussian smoothing operator (b(·)), which is generally stable up to machine precision.

Table .: Comparison of the Gaussian smoothing window spectral weights computed using the
recursion in (3.9b) with those by numerical integration. Here the spectral weights of a
smoothing radius of ◦ is shown.

Degree Recursion Numerical integration

0 1.0 1.0
1 0.9593 0.9596
2 0.953 0.9547
3 0.9150 0.9167
4 0.6791 0.61
5 0.05 0.097
10 0.45932 0.46012
20 0.05206 0.05241
30 0.00152 0.00154
40 1.2077 · 10-5 1.2373 · 10-5
50 2.244 · 10- 2.9254 · 10-
60 4.360 · 10- 2.1952 · 10-11
75 -1.430 · 10-2 0.0
90 4.100 · 104 0.0

§.  

Swenson and Wahr [2006b] identified that the stripe-like errors in the temporal gravity
variations estimated from  observations (see Figure 1.2) are caused by the correlation
between the spherical harmonic coefficients that are of the same order and parity, irrespective
of the degree (cf. Figure 3.3). They also note that such a behaviour is evident only for orders
m ≥ 8. This correlation was later attributed to the near polar orbit geometry of the 
satellite pair by Kusche et al. [2009]. Since spherical harmonics are orthogonal functions,
ideally, their coefficients must not have any correlation between them. Thus, the correlated
coefficients need to be decorrelated to get rid of the noise. This they achieved by modelling
the correlation by a moving polynomial average, which is then subtracted from the coefficients
to obtain the decorrelated coefficients. Here we will explain the procedure in detail.

Let Flm be the spherical harmonic coefficients estimated from  observations that are
correlated, and F′lm be the estimate of Flm after fitting a polynomial to the points around Flm
that have the same order m and the same parity as (l −m). Then the “destriped” spherical
harmonic coefficient F̄lm is given as

F̄lm = Flm −F
′
lm , where (3.10a)

F′lm =
p∑
n=0

w∑
ω=−w

Qn (l +2ω)n, (3.10b)

where Qn are the unknown polynomial coefficients, l the spherical harmonic degree and p
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the order of the polynomial. Qn is estimated from a system of equations after choosing
the window w around the coefficient Flm. This procedure of computing F′lm is indeed the
Savitzky-Golay filter [Savitzky and Golay, 1964], and the system of equations are given as

F(l−2w)m
F(l−2(w−1))m
...

F(l−2)m
Flm
F(l+2)m
...

F(l+2(w−1))m
F(l+2w))m



=



1 l − 2w · · · (l − 2w)p−1 (l − 2w)p

1 l − 2(w − 1) · · · (l − 2(w − 1))p−1 (l − 2(w − 1))p
...

...
. . .

...
...

1 l − 2 · · · (l − 2)p−1 (l − 2)p

1 l · · · l(p−1) lp

1 l +2 · · · (l +2)p−1 (l +2)p
...

...
. . .

...
...

1 l +2(w − 1) · · · (l +2(w − 1))p−1 (l +2(w − 1))p

1 l +2w · · · (l +2w)p−1 (l +2w)p





Q0

Q1
...

Qp−1
Qp



Writing the above system in matrix notation we get

Flm = VlmQlm ,

where Flm is the vector of data points within the chosen window, Vlm is the design matrix,
which has the form of a Vandermonde matrix, Qlm is the vector of polynomial coefficients
and the subscripts lm indicate that these matrices and vectors are for the data points centred
around the spherical harmonic lm. Now, by introducing a selection matrix Mlm we can
rewrite the left hand side with the vector of full set of spherical harmonic coefficients F as

Mlm F = VlmQlm .

The purpose of the selection matrix is to select only the coefficients Flm from the complete
set F. Continuing, the estimate of Qlm is then given as

Q̂lm =
(
VT
lmVlm

)−1
VT
lmMlmF . (3.10c)

With the help of the estimate Qlm, we can now compute the smoothed value F′lm of the
coefficient Flm as

F′lm = vlm Q̂lm , (3.10d)

where vlm is the row vector corresponding to the coefficient Flm in the matrix Vlm. Finally,
combining (3.10a), (3.10c) and (3.10d), we get

F̄lm = Flm − vlm
(
VT
lmVlm

)−1
VT
lmMlmF. (3.10e)

Putting

B′lm = vlm

(
VT
lmVlm

)−1
VT
lmMlm , (3.10f)
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we get

F̄lm = Flm −B′lm F . (3.10g)

Extending the above equation for the complete set of spherical harmonic coefficients we get

F̄ = F−B′ F ,

= (I−B′) F ,

= BF , (3.10h)

where the term B = (I−B′) is the required destriping filter matrix. Since, the destriping filter is
constructed only for the individual orders, the filter matrix has an order-leading block-diagonal
structure (cf. Figure 2.3). Thus, the destriping filter is a latitude dependent inhomogeneous
anisotropic filter.

The spherical harmonic coefficients for a few orders, before and after applying the destriping
filter, is depicted in Figure 3.3. The window size for the destriping filter used here was
determined by an empirical formula provided by Duan et al. [2009] and a second degree
polynomial was used for modelling the correlations. A minimum window size of 5 is used and
typical window sizes hover between 5 and . The destriping procedure was carried out for
orders m ≥ 8 as suggested by Swenson and Wahr [2006b], which implies that the coefficients
with order m < 8 are left untouched. Such moving polynomial methods suffer from edge
effects, especially when (l − 2w) < m or (l +2w) > L. In such cases a minimum window size
of 5 is used to obtain the smoothed value.

It is evident from both the cosine (Figure 3.3(a)) and the sine (Figure 3.3(b)) plots that
order m = 9 is not affected by correlation, but there is still some signal reduction happening
there. As the orders increase it is clear that the correlation also increases. The destriping filter
does an effective job of removing the correlations, especially the even parity sine coefficients
of order m = 27. Nevertheless, the method also suffers from mismodelling problems, for
example, whenever there is a trough between two peaks, invariably excess signal is removed
from the trough and thereby changing the sign of the coefficient (cf. both cosine and sine
coefficients of order m = 54 around degree 0).

So far we have been looking at the spectrum of the destriping filter and its efficacy in
decorrelating the  coefficients. The intention behind decorrelating the coefficients was
to rid the spatial fields of the stripes. The spatial structure of the destriping filter in fact
reveals this attribute, where we see that the filter is elongated in the east-west direction
(cf. top panel of Figure 3.4) in order to smoothen the stripes that alternate in sign in the
east-west direction (Figure 1.2). In order to decorrelate the signals in the north-south direction,
which share the same sign, the filter alternates the sign by providing negative weights in
that direction. However the east-west elongation of the kernel is more pronounced at the
mid-latitude than at the equator as the kernel tends towards isotropy at the equator. Due to
the block diagonal structure of the destriping filter we see that the kernel is isotropic at the
pole and changes with the latitude.

The destriping filter works like a preprocessor requiring further filtering with an isotropic
filter like the Gaussian filter. The kernel dilates significantly at all the latitudes after cascading
it with the Gaussian smoothing kernel (cf. bottom panel of Figure 3.4). Due to the isotropic
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Figure .: Spherical harmonic coefficients of the temporal gravity field for a particular harmonic
order m before (gray) and after (black) applying the destriping filter. The middle column
denotes the full set of coefficients for a particular order and the left column denotes even
parity of (l −m) coefficients and the right column the odd parity coefficients.

nature of the Gaussian smoothing kernel the east-west elongation is retained. Since the
weights of the Gaussian kernel are all positive the negative weights of the destriping kernel
are also retained. Although the spectrum of the Gaussian filter is diagonal, cascading works
only in one direction due to the non-commutative nature of matrix multiplication. In other
words, first filtering the  spectrum with the Gaussian filter and then destriping it will
not give the same results as first destriping the  spectrum and then filtering it with a
Gaussian filter.
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Figure .: Spatial structure of the destriping filter and the filter after combining with a Gaussian
filter of radius 3.5◦ and n = 2. Notice the east-west symmetry of the smoothing kernel
in the mid-latitude and equator, and additionally also in the north-south direction at the
equator. At the pole the smoothing kernel is isotropic due to the block-diagonal structure
of the destriping filter spectrum.

§.  

The regularization filter proposed by Kusche [2007] reformulates the filtering problem into
an estimation problem with stochastic constraints. The reformulation is based on the principles
of Bayesian regularization [Koch and Kusche, 2002]. Given the monthly estimates of spherical
harmonic spectrum of the temporal gravity field variations F̂, whose stochastics are described
by the covariance matrix Q, then the linear stochastic model can be written as

E
{
F̂
}
= F ; D

{
F̂
}
= σ2Q , (3.11a)

where F is the unknown true value of F̂, E{·} is the expectation operator, D{·} is the dispersion
operator and σ2 is the variance component of Q. If there is a priori knowledge about the
stochastic behaviour of F provided by the signal covariance matrix S, then the linear model
in (3.11a) can be extended as

E
{(

F̂

F0

)}
=

[
I

I

]
F ; D

{(
F̂

F0

)}
=

[
σ2Q 0
0 σ2

0 S

]
, (3.11b)

where F0 is one of the possible realisations of F, which is again unknown and σ2
0 is the
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variance component of the signal covariance matrix S. These set of equations can be cast
into an objective function with the aim of minimising the norm of the residuals:

F̄ : min
F

1
σ2 ∥ F− F̂ ∥

2
Q
−1 +

1

σ2
0

∥ F− F0 ∥2S−1 . (3.11c)

The solution that minimises the objective function is given by

F̄ =
(
γ S−1 +Q−1

)−1 (
Q−1 F̂+γ S−1 F0

)
, (3.11d)

γ =
σ2

σ2
0

. (3.11e)

Both the inputs F̂ and F0 contribute to the final estimate, but their contribution is controlled
by the size of the variance components, which are the squared norm of the residuals [Bouman
and Koop, 199]. In practice, the values of F0 and S are not known. In the case of F0, it is
generally assumed to be 0 [Sneeuw, 2000], and therefore (3.11d) reduces to

F̄ =
(
γ S−1 +Q−1

)−1
Q−1 F̂ . (3.11f)

In the above equation there is only contribution from F̂, and therefore, any information that is
too noisy or lacking in F̂ will not be replaced hence resulting in a solution F̄ that is replete
of some details and effectively smooth. The contribution of F̂, and hence the smoothness of F̄,
is directly controlled by the value of γ : The larger the value of γ , the smoother the value of
F̄. This can be visualised mathematically by taking the expectation of (3.11d) [Sneeuw, 2000]:

E
{
F̄
}
= E

{(
γ S−1 +Q−1

)−1 (
Q−1 F̂+γ S−1 F0

)}
,

E
{
F̄
}
=

(
γ S−1 +Q−1

)−1 (
Q−1E

{
F̂
}
+γ S−1E {F0}

)
,

F =
(
γS−1 +Q−1

)−1 (
Q−1F+γ S−1F

)
. (3.11g)

Putting

Rx =
(
γS−1 +Q−1

)−1
γ S−1 , (3.11h)

Ry =
(
γS−1 +Q−1

)−1
Q−1 , (3.11i)

where Rx and Ry are called the constraint and the data redundancy matrices, respectively.
Their diagonal elements indicate the relative contribution of the data and the constraints to
the final solution [Sneeuw, 2000]. Inserting (3.11i) and (3.11h) into (3.11g) we get

F = Ry F+Rx F ⇒ Ry +Rx = I . (3.11j)

Equation (3.11j) demonstrates that contributions from both the data and the constraints flow
into the estimate F̄. As we assumed the realisation of F, F0 to be 0, we get, after comparing
(3.11f) and (3.11i)

F̄ = Ry F̂ . (3.11k)
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Thus, (3.11k) clearly shows that the final estimate F̄ will only have contribution from F̂, but
that after being constrained by the stochastic constraints S. This implies that in essence we
will get a filtered estimate F̄ of the spectrum F.

In order to construct the regularization filter we need the signal and noise covariance
matrix. In general, the noise covariance is readily available if the data are estimates from a
linear least squares estimation, but the signal covariance matrices are more often than not
unavailable. In the case of  data analysis both the covariance matrices are not available.
Although, the spherical harmonic coefficients of the monthly gravity field snapshots from
 are estimated via least squares, the covariance matrices are not always disseminated
by the data centres for reasons of size of those matrices. Nevertheless, the estimated standard
deviations are provided with the data. Kusche [2007] proposed to simulate the covariance
via the energy balance approach [Gerlach et al., 2003], and demonstrated the ability of the
simulated covariance matrix to filter out noise. A clear account of the procedure to simulate
the  variance-covariance matrix is given by Lorenz [2009, sec. 4.2]. In contrast, Klees
et al. [200] used covariances from in-house least squares estimates of the monthly 
gravity field harmonic spectra.

Due to the unprecedented nature of the data that was produced by , the signal
covariances of the temporal gravity field variations remained elusive. Nevertheless, the signal
covariance of the static gravity field was very well studied. It was established by Kaula [1966]
that the power spectrum of the signal covariance of the static gravity field has a power-law
behaviour, whose power decreases with increasing degree. Taking this cue, Sasgen et al. [2006]
computed the signal covariance of the temporal variations of the gravity field by fitting a
power law to the  spherical harmonic power spectra. On the other hand, Kusche [2007]
computed the same from geophysical models. A fully populated signal covariance matrix was
computed iteratively by Klees et al. [200].

Another aspect of the regularization filter that we have not discussed so far is the ratio
γ , also known as the regularization parameter. From least squares estimation it is well known
that the inverse of the covariance matrices are used as weight matrices. With this in mind,
looking at (3.11f) we can see that if the ratio γ is greater than 1 then the signal covariance
is weighted more than the noise covariance, and hence less contribution from F̂, and vice
versa. Since γ is the ratio of the squared norm of the residuals from the data (σ2) and a
priori information (σ2

0 ) (cf. (3.11e)), it will be a large value if the data is noisy resulting in
larger residuals and thereby a larger value for σ2 compared to σ2

0 . Thus, the regularization
parameter acts as a tuning parameter that decides the level of filtering of the data. This idea
is illustrated in terms of a multi-resolution concept by Kusche [2007]. The optimum value of
the regularization parameter is estimated via variance component estimation [Lorenz, 2009],
but can also be tweaked to the desired smoothness as demonstrated by Kusche [2007].

Figure 3.5 shows the spatial structure of the regularization filter for nine different calculation
points spread over three different latitudes and three different longitudes. By virtue of using a
fully populated covariance matrix, the resultant smoothing operator will be an inhomogeneous
anisotropic kernel, that means the smoothing operator should change for every single location.
However, as Kusche et al. [2009] observed the covariance structure of the  observed
temporal gravity field variations is order-leading block-diagonal dominant due to its orbit
configuration. Therefore, even if one would use a fully populated covariance matrix the
smoothing operator will be a latitude dependent anisotropic kernel. This is clear in the
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Figure .: Spatial structure of the regularization filter for the month of September 2004 at three
different latitudes. Due to the dominance of the order-leading block-diagonal elements
of the filter spectrum, the regularization filter also shows latitude-dependent anisotropy.
Notice the symmetry of the smoothing kernels similar to that of the destriping filters
(Figure 3.4).

smoothing operator at the pole (Figure 3.5), where we see that the smoothing operator is
isotropic, which is the case for a latitude dependent anisotropic kernel. Despite this fact,
Lorenz [2009] found benefit in using the full covariance matrix for filtering the  datasets.

In this work we will follow the method of Sasgen et al. [2006] to model the signal
covariance, and there we will demonstrate its cyclo-stationary nature. Since, the idea of cyclo-
stationarity requires the knowledge of the signal content in  data, we will demonstrate
the signal covariance modelling in chapter 6. For computing the noise covariance matrix we
will follow the method of Lorenz [2009], and for the regularization parameter we will use
the approach of [King et al., 2006] by comparing regularized solutions of different γ values
with  deformation time-series to find out the optimum value.



   
 



G the existence of different possible filters and a variety of filter design options, we
are at a juncture, where we have the problem of choosing the appropriate filter. It has

been one of the never-ending problems in the application of  data to study various
geophysical phenomena [e.g., Seo and Wilson, 2005; Werth et al., 2009; Longuevergne et al.,
2010; Lorenz et al., 2014]. It is in this context that we will develop metrics for evaluating
the performance of a given filter, which will eventually provide us with a generic impression
of the effect of the filter on any given dataset. Further, it will also provide us a good
understanding of the mechanics of the filter. These metrics have largely been inspired by the
metrics developed for data windows in one dimensional Fourier analysis by Harris [197].

The performance metrics that are developed here use the energy associated with the filter
kernel and/or the weighted field as the basis. Energy and power are the only quantities that
have a straight-forward and simple relationship between the spatial and spectral representations
of a smoothing kernel due to Parseval’s theorem. Energy of a smoothing kernel at the calculation
point, E(θ,λ), is given as

E(θ,λ) =

2π∫
0

π∫
0

b2(θ,λ,ψ,A) sinψ dψ dA, (4.1a)

= 2

2π∫
0

E(θ,λ,A) dA, (4.1b)

= 4π
∑
lm

∑
nk

∑
pq

Ylm(θ,λ) B
nk
lm B

pq
nk Ypq(θ,λ) , (4.1c)

where E(θ,λ,A) is the energy associated with the kernel along the azimuth A. Another
commonly used quantity in signal processing literature is the power associated with the
function, which is the average energy over the unit sphere. The power of a function defined
on the unit sphere is

P (θ,λ) =
1
4π

E(θ,λ) , (4.2a)

and

P (θ,λ,A) =
1
2
E(θ,λ,A) , (4.2b)
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Figure .: Anatomy of a smoothing kernel along
a particular azimuth. -100
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When the filter spectrum is synthesised to the spatial domain, the smoothing operator
demonstrates a certain structure. This structure is clearly evident when the filter is depicted
in the log-normal scale. The log-normal magnitude of the smoothing kernel weights is given
as

b̃(θ,λ,ψ,A) [dB] = 20 log10

(
b(θ,λ,ψ,A)
b(θ,λ,0,0)

)
(4.3a)

= 10 log10

(
b2(θ,λ,ψ,A)
b2(θ,λ,0,0)

)
(4.3b)

In Figure 4.1, the log-normal scale plot of the box-car smoothing operator along a particular
azimuth is shown, where we see that the kernel has a dominant main-lobe and the oscillating
ripples as its side-lobes. The magnitude and the geometry of the main-lobe and the side-lobes
will impact the way the signal is being smoothed, and therefore, also energy associated with
the smoothed signal. In the sequel we will demonstrate as to how the anatomy of the
smoothing kernel enables us to understand the mechanics of filtering leading us to evaluate
its performance.

§.  

Any filtering applied to a field, dampens the amplitude to a certain extent. The first measure
that already provides an overview of the smoothing window is the damping factor [Kusche,
2007]. It is defined as the ratio between the energy of the smoothed and the non-smoothed
fields:

α =

∫
Ω

f̄ 2(θ,λ) dΩ

∫
Ω

f 2(θ,λ) dΩ
=

∑
l,m

F̄2lm∑
l,m

F2lm
=

∑
l,m

∑
n,k

Bnklm Fnk


2

∑
l,m

F2lm
. (4.4)

The damping factor provides a coarse estimate of the amount of damping of the signal
amplitude due to smoothing. The term coarse is used in order to emphasise the point
that the damping factor indicates only an average value for the amplitude damping of the
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smoothed field. This is easier to understand in the spectral domain, where every single
frequency (spherical harmonic degree) will have its own specific damping value irrespective
of the type of smoothing window used, and the damping factor provides an average value
for all frequencies put together. In the following equation this idea is explicitly illustrated by
the homogeneous isotropic filter coefficients:

α =

∑
l,m

B2l F
2
lm∑

l,m

F2lm

. (4.5)

The damping factor takes an interesting form if the field that is being smoothed is
band-limited and has a white spectrum, i.e., the degree variance of the spherical harmonic
expansion of the field has the same magnitude for any given spherical harmonic degree (

∑
m
F2lm

= κ2). Applying this restriction to equation (4.5) and referring α as αw gives,

αw =

L∑
l=0

B2l κ
2

L∑
l=0

κ2

=

L∑
l=0

B2l

L+1
(4.6)

where L is the maximum degree of expansion of the band-limited function. A careful look
at equation (4.6) will show that it describes the average power of the spherical harmonic
coefficients of the smoothing window. While (4.5) is a field-specific quantity, (4.6) is a general
quantity as it gives the potential damping due to the filter being used. Further, it should
also be clear from (4.6) that the computation of αw is only possible for the degree-dependent
homogeneous isotropic filters.

Processing gain

Processing gain is the ratio between the signal-to-noise ratios of the unsmoothed and the
smoothed fields. This measure explains how much improvement in terms of signal-to-noise
ratio is achieved by smoothing the field, which is the reason that this measure is referred to
as processing gain.

αG =
SNR(f̄ (Ω))
SNR(f (Ω))

, where SNR =
Signal power

Noise power
, (4.7a)

αG =

∫
Ω

f̄ 2(θ,λ) dΩ
/ ∫
Ω

ϵ̄2(θ,λ) dΩ∫
Ω

f 2(θ,λ) dΩ
/ ∫
Ω

ϵ2(θ,λ) dΩ
, (4.7b)

where ϵ(θ,λ) is the noise associated with the unsmoothed field f (θ,λ) and ϵ̄(θ,λ) is the
noise associated with the smoothed field f̄ (θ,λ).
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Processing loss

A certain amount of the signal is lost when a field is filtered. Processing loss measures
the amount of signal energy lost due to filtering, and it is defined as the ratio between
the difference in the signal energy before and after smoothing and the signal energy before
smoothing.

αL = 1−

∫
Ω

f̄ 2(θ,λ) dΩ

∫
Ω

f 2(θ,λ) dΩ
= 1−α , (4.)

where α is the damping factor. As can be seen from (4.) processing loss purely describes
the energy loss in the signal and there is no reference to the reduction in noise. Further,
equation (4.) is a field-specific quantity. Again, by restricting the signal spectrum to be a
white spectrum processing loss can be expressed as a general quantity, and it will be explicitly
denoted as αℓ . The general processing loss is given as

αℓ = 1−αw . (4.9)

Values close to 1 indicate heavy processing loss and values closer to zero indicate nearly no
loss.

§.  

As we saw in the design of filter kernels, especially in the deterministic design, there is
either a smoothing radius that defines the set of data points that will be weighted more than
the others, or a spherical harmonic degree beyond which the frequencies are down-weighted,
which eventually corresponds to a spatial wavelength. In the case of the stochastic filter
this is controlled by the regularization parameter. No matter the type of design every filter
has a region, where most of the smoothing occurs and this is called the main-lobe of the
filter. The main-lobe is accompanied by the side-lobes that are generally the ripples from the
Gibbs phenomenon due to sharp jumps in the weights of the smoothing kernel, either in
the spatial or the spectral domains. These ripples start to form at around the sharp changes,
which in this case would be around the intended smoothing radius. However, the ripples
need not always be due to sharp changes in the weights, but can also be due to the design
of the filter/smoothing kernel. For example, in stochastic filters the side-lobes are mainly due
to negative covariances, which means that care must be taken to interpret the side-lobes. So,
a typical smoothing kernel will have a central main-lobe surrounded by side-lobes of varying
magnitudes (Figure 4.1). Since we expect that most of the smoothing to take place within
the main-lobe, it becomes important to ascertain how much of the filter area is under the
main-lobe and what is the areal extent of this main-lobe. Thus, the main-lobe plays a central
role in analysis of filters.

In general, the first zero-crossing of the smoothing kernel is taken as the half-width of
the main-lobe. This definition has been taken from one-dimensional Fourier analysis. There,
Oppenheim et al. [1999, section 7.2] demonstrate that the full-width of the main-lobe of the
spectral transfer function of a box-car data window corresponds to the width between the
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ripples immediately before and after the discontinuity in the reconstructed window. However,
there are exceptions to this “typical” anatomy of the smoothing kernel, for example the
Gaussian smoothing kernel (cf. Figure 5.1), which does not have a side-lobe as the function
slowly decays to zero but never crosses it. Only in practical cases, where the spectrum of
the Gaussian function is truncated according to the required band-width, the reconstructed
Gaussian function exhibits some ripples (cf. Figure 3.2). In such cases, the first zero crossing
rule cannot be applied as this might produce very big numbers for the main-lobe width that
are unrealistic. This calls for some alternative methods to ascertain the main-lobe width.

Spatial variance of the smoothing kernel

A possible definition for the main-lobe width can be the spatial variance of the energy of
the smoothing kernel. It is calculated by taking the second moments of the integrand of
the energy function normalised by the total energy of the smoothing kernel in the cartesian
coordinate system.

S =
∫
Ω′

uuT
b2(x,u)
E(x)

dΩ′ , (4.10a)

where

x =


x

y

z

 =


sinθ cosλ
sinθ sinλ
cosθ

 , and (4.10b)

u =


u

v

h

 =


sinψ cos(π −A)
sinψ sin(π −A)
cosψ

 , (4.10c)

which leads to the following mappings and changes:

(θ,λ) −→ (x,y,z) −→ x ∈ Ω

(ψ,A) −→ (u,v,h) −→ u ∈Ω′

⇒ b(θ,λ,ψ,A) −→ b(x,u) .

By virtue of the normalisation, the area under the energy integrand becomes unity. This
allows us to interpret it as a probability density function on the sphere. The incentive of
such an interpretation is that we can apply methods of directional statistics [e.g., Fisher
et al., 197] on the energy integrand. In fact (4.10a), is a continuous form of the spatial
variance formulation used in directional statistics [Fisher et al., 197]. However, there are
minor differences in the way those methods are adapted here. In directional statistics, in
general, the distribution of the directions is not known and also the mean direction. In our
case, both the distribution (cf. (4.10a)) and also the mean direction (direction cosines of the
calculation point) are all known. And, here we only seek to compute the variance of the
distribution located at the calculation point. To proceed, we also abbreviate the infinitesimal
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element of the density function, following Fisher [1953]:

dÊ =
b2(θ,λ,ψ,A)
E(θ,λ)

dΩ′ =
b2(x,u)
E(x)

dΩ′ , (4.10d)

∴ S =
∫
Ω′

uuTdÊ . (4.10e)

The spatial variance obtained from (4.10e) is a 3× 3 matrix of the following form:

S =


σ2
u σuv σuh

σvu σ2
v σvh

σhu σhv σ2
h

 , (4.11a)

where

σ2
u =

∫
Ω′

sin2ψ cos2 (π −A) dÊ ,

σ2
v =

∫
Ω′

sin2ψ sin2 (π −A) dÊ , (4.11b)

σ2
h =

∫
Ω′

cos2ψ dÊ ,

σuv = σvu =
∫
Ω′

sin2ψ cos(π −A)sin(π −A) dÊ ,

σhv = σvh =
∫
Ω′

cosψ sinψ sin(π −A) dÊ , (4.11c)

σuh = σhu =
∫
Ω′

cosψ sinψ cos(π −A) dÊ .

In order to describe the spatial variance of the density function, we need the entire matrix S
if all of its elements have a value significantly greater than zero. Interestingly, the eigenvalues
of S that describes the variance in the direction of u- and v-axes provide the semi-major
and semi-minor axes of an ellipse that best describe the density function. The eigenvalues are
found by rotating the density function around the h-axis by an angle γ , which is given as

γ =
1
2
arctan

(
2σuv
σ2
u − σ2

v

)
. (4.12a)

Computing the rotation matrix

Rh(γ) =


cosγ −sinγ 0
sinγ cosγ 0

0 0 1

 , (4.12b)
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and rotating the matrix S , we get the required spatial variance matrix ΣM:

ΣM = RT
h S Rh . (4.12c)

The values of the elements Σ′11 and Σ′22 of ΣM provide the semi-major and semi-minor axes
of the elliptical confidence region that we seek.

σ11 = arcsin
(√

Σ′11

)
, (4.12d)

σ22 = arcsin
(√

Σ′22

)
, (4.12e)

where σ11 is the semi-major axis of the spatial variance ellipse in radians and σ22 the
semi-minor axis. The procedure described above is the same as the one used for finding the
semi-major and semi-minor axes of error ellipses in adjustment theory, and also the principal
component analysis technique in the two-dimensional case. Thus, we can now describe the
spatial variance of the density function, and therefore the smoothing kernel, by the set of
values σ11, σ22 and γ . It should also be noted here that the value σ2

h , which is unaffected by
the above rotation, also provides a value that describes the overall dispersion of energy under
the signal. This is because it is the integral of squared distances of the energy distribution
as can be seen from (4.11b).

σE = arccos(σh) . (4.13)

Remark Fisher et al. [197] discuss another statistic to describe the spread of the density
function. It is intriguing to note that it is based on the first-order moment of the density
function, which they denote as the resultant length. The resultant length is calculated as
follows:

R̄ = ∥ ū∥ , where ū =
∫
Ω′

u dÊ . (4.14a)

Since we are interested mainly in the main-lobe width and not just the localising ability of
the smoothing kernel, we will transform the resultant length to spherical distance:

ψE = arccos(R̄) . (4.14b)

The value of the resultant length is between zero and one (0 ≤ R̄ ≤ 1). A value close to one
indicates that the energy of the smoothing kernel is localised into a small area, and hence,
the smoothing kernel has a narrow main-lobe width. And, vice versa is the case when the
smoothing kernel is close to zero. The resultant length was already introduced by Narcowich
and Ward [1996] in the context of spherical basis functions, which was later used by Kusche
[2007].

The drawback of the resultant length is that it describes only one aspect of the spatial
variance: energy localisation. It does not give us an idea of the shape of the smoothing
kernel we are working with, because the same amount of localisation can be achieved by a
wide variety of shapes. This drawback of the resultant length must be borne in mind, if it
is used as the sole measure for describing the spatial variance of the smoothing kernel.
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Scattered Concentrated

Figure .: Depiction of the concept of resultant length. The gray dots depict the weights as
distribution of points – the higher the weight the denser the distribution and vice versa,
and the black dot is the resultant length. The resultant length is the radius of the black
dot from the centre of the sphere, and it is short when the weights are dispersed and
long when they are concentrated.

Half-width of the fraction of maximum

It is defined as the half-width from kernel location along a particular azimuth at which
the kernel attains a certain fraction of the peak value of the kernel.

b(θ,λ,ψM,A) =
1
n
b(θ,λ,0,0) (4.15)

This definition is a generalisation of half-width at half of maximum definition used by Jekeli
[191] for defining the smoothing radii of Gaussian smoothing kernels, which is similar in
character to the definition of correlation length of the empirical covariance functions designed
in collocation studies [e.g., Moritz, 199]. Half-width at half of maximum corresponds to -6 dB
in terms of normalised magnitude, which is used by Harris [197] to define the resolution
of windowing functions in one-dimensional Fourier analysis. This is the most convenient and
pragmatic of all the definitions for main-lobe half-width as it simply corresponds to one of
the isolines of the smoothing kernel weights. For a smoothing kernel like Pellinen, whose
weights are either zeros or ones, this definition is not applicable.

Half-width at fraction of energy

It is defined as the half-width at which the filter has accumulated a desired fraction of
total energy contained in the function.

ψM(A)∫
0

b2(θ,λ,ψ,A) sinψ dψ =
1
n
E(θ,λ,A) (4.16)

This definition is a utilitarian definition as it is possible to prescribe the main-lobe half-width
for a smoothing kernel based on the desired amount of accumulated beyond a certain distance
from the calculation point. This definition is (again) an isoline of the accumulated energy of
the kernel along each azimuth. This definition shares a lot of similarities with the idea of
spatial leakage (cf. section 4.5), and therefore, it can be used to define a main-lobe width
that has a tolerable level of spatial leakage.

§.   

The main-lobe is the region where most of the smoothing takes place, and therefore the
energy contained within this main-lobe is a direct measure of the amount of smoothing that
is taking place in the main-lobe. It is computed by taking the ratio between the integral of
the kernel energy within the main-lobe region (ΩM) and the total energy of the smoothing
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kernel:

β2(θ,λ) =

2π∫
0

ψM(A)∫
0

b2(θ,λ,ψ,A)
E(θ,λ)

sinψ dψ =

2π∫
0

β2(θ,λ,A) dA. (4.17a)

Similarly, a quantity that relates to the field being smoothed can also be applied, but here
the quantity will only deal with signal and hence, will be referred to as main-lobe signal
concentration:

βf (θ,λ) =
1

ΩM

2π∫
0

ψM(A)∫
0

f (ψ,A) b(θ,λ,ψ,A)

f̄ (θ,λ)
sinψ dψ dA. (4.17b)

§.  

Spatial resolution defines the smallest possible feature that can be identified distinctly from
its surroundings [Lillesand and Kiefer, 1994]. In signal processing, resolution is in general
associated with sampling as expounded by the corresponding sampling theorem, for example,
Nyquist-Shannon sampling theorem in the Euclidean space. In physical geodesy, spatial
resolution of a gravity field, given in terms of spherical harmonic coefficients up to complete
degree L, is expressed as the half-wavelength (ψ 1

2
) of the harmonic L at the equator.

ψ 1
2
=
πaE
L
≈ 20,000

L
, (4.1)

where aE is the semi-major axis of the ellipsoid approximating the Earth. The value ψ 1
2
is

the Nyquist-Shannon sampling required along the equator, and also approximately the spacing
between the zeros of the Legendre polynomial of degree L. Due to the isotropic nature of
spherical harmonics, this value is assumed to hold over the entire sphere. However, Laprise
[1992] points out that the half-wavelength at equator is one of many possible values for the
resolution, and also proposes that at best such values can only be used as an upper limit.

When we apply a filter to a band-limited field, we are still left with a field that is
band-limited up to L, but with a different resolution. In one-dimensional Fourier analysis,
the resolution of a filter is taken to be the -6 dB point as suggested by Harris [197]. The
-6 dB value is the filter width at half of the amplitude at the peak, however, this definition
comes out of intuitive reasoning. In contrast, the optical and remote sensing communities use
resolution charts to determine the resolution of lenses, which can be adapted for our problem.
The resolution chart consists of a number of vertical and horizontal lines of varying thickness
drawn at varying spacings. These charts are then imaged by the sensors and the least distance
between the fully resolved lines is taken as the resolution of the lenses [Lillesand and Kiefer,
1994]. We base our method on this technique to determine the resolution of the homogeneous
isotropic filters.
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Methodology

We define a scalar field g(θ,λ) on a unit sphere defined as

g(θ,λ) =
∑
j=P,Q

δ(θ,λ, θ̃j , λ̃j ) , (4.19)

where δ(·, ·) is the Dirac’s pulse on the sphere [Freeden and Schreiner, 2009], located at the
points P and Q, which are separated by a spherical distance of ψPQ. Smoothing g(θ,λ) with
a general two-point smoothing kernel gives

ḡ(θ,λ) =
1
4π

∫
Ω′

b(θ,λ,θ′ ,λ′)g(θ′ ,λ′) dΩ′ ,

=
1
4π

∫
Ω′

∑
l,m

Ylm(θ,λ)
∑
n,k

BnklmY
∗
nk(θ

′ ,λ′)
∑
j,l ′ ,m′

Yl′m′ (θ
′ ,λ′)Y ∗l′m′ (θ̃j , λ̃j ) dΩ′ ,

=
∑
j

∑
l,m

BnklmYlm(θ,λ)
∑
n,k

∑
l′ ,m′

Y ∗l ′ ,m′ (θ̃j , λ̃j ) δnl′ δk,m′ ,

=
∑
j

∑
l,m

Ylm(θ,λ)
∑
n,k

BnklmY
∗
nk(θ̃j , λ̃j )

ḡ(θ,λ) =
∑
j

b(θ,λ, θ̃j , λ̃j ). (4.20)

The above equation shows that the filtered field ḡ(θ,λ) is the sum of the weights at calculation
points with respect to the points P and Q.

Remark In the case of homogeneous isotropic filters, (4.20) takes an interesting form. The
spectrum of the filtered signal ḡ(θ,λ), when filtered with a homogeneous isotropic filter is
given as

ḡ(θ,λ) =
∑
j

b(θ,λ, θ̃j , λ̃j ) =
∑
j

b(ψj ) ,

=
∑
j

∑
l

Bl
∑
m

Y ∗lm(θ̃j , λ̃j )Ylm(θ,λ) ,

=
∑
j

∑
l

(2l +1) Bl Pl(cosψj ) , ∵ (A.3a) ,

=
∑
j

∑
l

Bl
∑
m

Ylm(θ̃j , λ̃j )Y
∗
lm(θ,λ) ,

ḡ(θ,λ) =
∑
j

b(θ̃j , λ̃j ,θ,λ). (4.21)

This clearly shows that the ḡ(θ,λ), is equivalent to the sum of the homogeneous isotropic
kernels located at the points P and Q. In other words, the smoothing operation of a field like
g(θ,λ) with a homogeneous isotropic kernel is commutative. Commutativity of the smoothing
operation on the sphere is only possible when the spectrum of the field as well as the filter
are both degree dependent.
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Figure .: Methodology for determining the resolution of homogeneous isotropic filters. The light
gray lines indicate the unfiltered input signal and the dark gray lines indicate the filtered
output. The level of distinction between the two peaks in the filtered and resolved field
can be quantified by the quantity modulation. The method is illustrated using the Gaussian
smoothing kernel.

After filtering, we scrutinise the filtered field to see if the two Dirac’s pulses are resolved.
If they are not resolved, we increase the separation ψPQ between the signals until they can
be seen distinctly in the filtered field. The sequence is depicted in Figure 4.3. This method
was also employed by Harris [197] to demonstrate the spectral resolution of different filter
windows in the harmonic analysis of time-series.

Modulation transfer functions

The concept of spatial resolution does not merely stop at the point where we are able to
identify the two signals as distinct. It continues with the question of how distinct are those
signals from each other before and after filtering. At the point of resolution, the two signals
are distinct, but as we separate the two signals a bit further, then they are readily recognisable
as two different entities (cf. Figure 4.3). Therefore, there is a need for quantifying the level
of distinctness of the resolved signals in comparison with the unfiltered signals. Again, this
has already been treated by the remote sensing community, where they use the concept of
modulation transfer function () to quantify the distinction between the two signals.

Originally, in the unfiltered field, there is no signal in the region between the points
P and Q, but due to filtering we initially see only one ‘peak’ (Figure 4.3a and 4.3b) and
then a ‘valley’ between the two resolved ‘peaks’ (Figure 4.3c). As we separate the signals
farther apart, beyond the point of resolution, the valley deepens (Figure 4.3d). We will denote
the ordinate of the local minimum in the valley as modulation, which when zero indicates
completely resolved signals (Figure 4.3e).

The modulation is rather straight-forward to compute in the case of homogeneous isotropic
smoothing kernels. Since they are rotationally symmetric functions, the mid-point along the
geodesic between the two functions will be the only unique point. Further, it is at this point
the local minimum in the valley will always occur. Thus, modulation of the homogeneous
isotropic filtered field g(·) is

Modulation = 2b
(
ψPQ

2

)
. (4.22)

Since the modulation and peak signal values are subjective to the filter function, we need
to devise a relative measure that enables us to compare the different filters. We denote such
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a measure as the modulation transfer. It is defined as

MT = 1− Modulation
Peak signal

. (4.23)

As the name suggests modulation transfer indicates how the original modulation between the
two signals is transferred to the filtered field. The modulation transfer takes a value zero
until the signals are resolved, because the peak signal always resides at the mid-point until
the signals are resolved. As soon as the signals are resolved the valley starts appearing at
which point the peak signal and modulation cease to be at the same point. This means that
modulation takes a value that is smaller than the peak signal. As we increase the distance
between P and Q, the modulation starts decreasing. Therefore, the value of modulation
transfer starts to increase. Numerically speaking, the signals are said to be resolved as soon
as modulation transfer takes a value greater than zero.

Plotting the modulation transfer against the signal separation for a given set of filter
parameters we get a unique curve, which we denote as the modulation transfer function ()
(Figure 5.2). The important feature of the  curve is the slope of the curve between 0 and
1 modulation transfer, which directly depends on the speed at which the filter function decays
from peak value to zero. This is indicated by (4.22), where filters which decay slowly to zero
(e.g., Gaussian) will not reduce quickly to zero modulation, and therefore, the corresponding
 will have a gentle slope and vice versa (cf. Figure 5.2).

§.  

The intention of prescribing a smoothing radius is to dictate the use of data points within
the given radius to arrive at a smoother value for the calculation points. Ideally, this radius
is the intended resolution. However, for some designs there is still some significant filter
energy left beyond the point of resolution. This energy as we saw in the modulation transfer
function is what dictates the slope of the  curve. Thus, we will define spatial leakage as
the fraction of energy contributed to the total energy by the smoothing kernel beyond the
point of resolution. Thus, the total energy contained in the filter is the sum of leakage and
the energy within the unresolvable part of smoothing kernel:

ξ2(θ,λ) =

2π∫
0

π∫
ψ◦(A)

b2(θ,λ,ψ,A)
E(θ,λ)

dΩ , (4.24a)

where ψ◦(A) is the anisotropic spatial resolution distance. The above set of equations describe,
in general, the potential spatial leakage of the smoothing kernel. However, the idea of spatial
leakage can also be reformulated to account for the field that is being smoothed. Such a
type of spatial leakage will be referred to as field-specific spatial leakage:

ξf (θ,λ) =

2π∫
0

π∫
ψ◦(A)

f (ψ,A) b(θ,λ,ψ,A)

f̄ (θ,λ)
dΩ . (4.24b)

Remark It must be noted that there is a significant difference in the term leakage as it was
proposed here and the connotation it has in the  community [e.g., Klees et al., 200].
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In the  community, leakage is associated to the mass exchange due to the smoothing
operation between two entities under study, for example, catchments in hydrological studies.
However, here we attempt at defining leakage as a concept associated solely related to the
filter, and therefore it is agnostic to the type of application. This also has been our intention
while designing this performance metric.

§.   

The side-lobes beside the main-lobes are mostly effects of harmonic transforms of non-smooth
spectral filter windows [Hamming, 199]. Nevertheless, they can also be due to the negative
correlation between the points as well as in the case of stochastic filters. In general, if these
side-lobes occur due to truncation effects or non-smooth filter windows, they are considered
as one of the major contributors to leakage [Harris, 197], and hence, their suppression
is an important design criteria in filter design literature (e.g., Nutall [191]; Bergen and
Antoniou [2004]). The highest side-lobes contribute the most to the leakage of signal, and
therefore, measuring their amplitude gives a good idea of the leakage one can expect. This
is an important quantity both for noise reduction and resolution reduction as it determines
the single largest unwanted contribution from outside the main-lobe. For non-zero-crossing
windows, we will take the value of the window immediately after the resolution distance as
the highest side-lobe level.

§.   

The faster the side-lobes decay to zero the lesser the spatial leakage will be. The rate of
decay of the side-lobes is measured by the side-lobe roll-off ratio. It is defined as the ratio
between peak window weights of the first and last side-lobe (cf. figure 4.1). In some windows
the side-lobes might not decay linearly, but even in those cases this measure will give a
sense of the rate of side-lobe decay. For non-zero-crossing windows, we will take the ratio
between window weights at the resolution distance and at the end of the window. It should
be noted that the side-lobe roll-off ratio and highest side-lobe level are explanatory metrics
for the spatial leakage metric.
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I   we will put to test the filters whose designs were discussed in chapter
3 using the performance metrics in chapter 4. For the analysis, we will deal with the

isotropic and homogeneous filters separately from the others. The reason for dealing with
them separately should become clear as soon as we distinguish the performance metrics, for
the sake of convenience, into global and local performance measures.

We will discuss the performance of the filters one by one starting with the homogeneous
isotropic filters. Thereafter, we will continue with the inhomogeneous anisotropic filters, and
finally provide remarks on the performance of the filters put to test. Since we draw from our
experiences on filtering gravity field data in general and  data in particular, whenever
the metrics require the knowledge of the signal or noise they will be drawn from the spherical
harmonic models of the gravity field and its temporal variations. Due to this dependence the
remarks here will mostly pertain to the signals similar in character to the gravity field and
its temporal variations.

In order to illustrate the use of the performance metrics, in this chapter we have used the
static gravity field model 24 from  [Rummel et al., 2011] data computed
by Bruinsma et al. [2013]; and for the temporal variations of the gravity field, we have used
 data  release 05, processed by GeoForschungsZentrum (), Potsdam [Dahle et al.,
2013]. The static gravity field model from  will be used mainly for illustrating the spatial
resolution, and the other performance metrics will be calculated using the  data. In
this analysis a total of nine different filters have been used, of which seven are homogeneous
isotropic filters and the other two are latitude dependent anisotropic filters.

§.   

The homogeneous isotropic filters have been grouped according to whether their filter design
is done in the spatial domain or in the spectral domain. For the filters that have a spectral
design (ideal low-pass, diffusion, spectral cosine and Butterworth filters), cut-off degree is one
of the parameters, for which we take values from l = 10 to 80 in steps of 10. For the
filters that have a spatial design (Pellinen, Gauss and von Hann filters), smoothing radius is
the design parameter, and for which we take values between 1◦ to 20◦ in uneven steps (cf.
Figure 5.2).
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Ideal low-pass filter

In general, gravity field estimates are disseminated as spherical harmonic expansions up to a
maximum spherical harmonic degree (L), thereby making the field band-limited between the
frequencies 0 and L. As per (2.1a), by definition the spherical harmonic expansion extends up
to infinity, but in practice these are developed up to degree L due to a variety of reasons:
spatial sampling, measurement accuracy and computational limits. This band-limitation can be
expressed as a low-pass filter as shown in Table 3.1. This filter is referred to as the ideal
low-pass filter, Shannon window and box-car filter. Due to the nature of its spectrum the filter
is homogeneous and isotropic.

Anatomy

The spectral design of the filter is straight-forward with the value ‘1’ for all the degrees that
need to be retained and zeros for the others (cf. Figure 5.1). The corresponding spatial form
of the filter shows that there are many side-lobes of high magnitude and also of similar
width to the filter main-lobe. These side-lobes are the oscillations due to the abrupt change
in the spectral weights of the filter. Due to the high magnitude of the side-lobes we see
that the filter takes significant magnitudes of signal far away from the calculation point in
order to perform smoothing. Also, due to the oscillating nature of the smoothing kernel, we
see that the sign of the signal is inverted.

Spatial resolution

The resolution of any given filter is depicted by its modulation transfer function () (cf.
section 4.4). The  of the ideal low-pass filter is shown in Figure 5.2 for a range of
spherical harmonic degrees. The striking features of the curves are their steep slopes and
the oscillation of the modulation transfer values around one. While the steep slope of the
 indicates that the filters decay to zero very quickly, the oscillation is caused by the
well-known ringing effect caused by the truncation of a harmonic series at a finite degree
L. Further, the magnitude of the overshoot remains nearly the same for all the degrees of
truncation shown here, but their convergence to unity clearly depends on the number of
spherical harmonic degrees involved in the synthesis: the more the harmonic degrees faster
the convergence.

Truncating a field of gravity anomalies, expanded up to degree L = 260, to degree L = 60
we see the smoothing effects of the ideal low-pass filter in Figure 5.3. The ideal resolution of
the filter is 4.54 ◦, and we see that it resolves the features that are separated by as much as
or more than the ideal resolution. Here, we also see the outcome of the steep , i.e. the
filter is able to depict the modulations that are separated by shorter distances, but more than
the ideal resolution. Nevertheless, due to its big side-lobes it also overshoots the unfiltered
modulation, for example at 160 ◦ co-latitude. The panel depicting a portion of the filtered field
also shows that the smoothed field faithfully represents the unfiltered field to a large extent.

Performance

The performance metrics in Figures 5.5 and 5.6 also show the peculiarities of the ideal low-pass
filter. For any given spatial resolution the ideal low-pass filter has the largest variance, the
least processing loss, constant spatial leakage and highest side-lobe level. Also the spatial
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leakage is the largest for all the filters analysed here. The fact that the ideal low-pass filter
takes a lot signal from data points far away from the calculation point affects its variance.
The large spatial leakage is explained by the facts that the filter has very high side-lobe
level and poor roll-off ratio. On the positive side it is the best filter when it comes to the
trade-off between processing loss and processing gain.

Diffusion filter

The diffusion filter on the sphere was introduced by Sardeshmukh and Hoskins [194] for
smoothing global atmospheric data. The diffusion filter of order k = 1 provides nearly the
same weights as that of Gauss filter for a given spatial resolution. This is not surprising as
Gaussian functions are used for solving diffusion equations. For the analysis here, though, we
will use diffusion filters of order k = 2.

Anatomy

The spectral form of the diffusion filter gradually reduces to insignificant values, but the
spatial form is ridden with a lot of low magnitude ripples (cf. Figure 5.3). The highest
side-lobe is less than one order of magnitude and it rolls off very quickly to insignificant
magnitudes. Due to the quick damping of the filter weights the signal from data points far
away from the calculation point are not taken for computing the filtered field.

Spatial resolution

The  of the diffusion filter has moderately steep slope. Due to the presence of ripples
in the spatial form, the  overshoots but quickly recovers to unity. This quick recovery
can be attributed to the steep roll-off of the side-lobes. The filtered gravity anomalies also
reiterate the moderately steep slope of the diffusion filter as they depict only the overall
profile of the field. All but the features that are separated by distances much greater than
the ideal resolution are smothered, resulting in a smooth field.

Performance

There are a number of performance metrics in which the diffusion filter displays desirable
characteristics. It has a smaller variance for any given spatial resolution and it has good
processing gain for gravity field type signals and a highly desirable balance between processing
loss and processing gain. It also nearly has a constant highest side-lobe level and a constant
spatial leakage. Like in the case of the ideal low-pass filter the leakage is dictated by the
highest side-lobe level. Among the filters analysed here it has the steepest roll-off slopes.

Spectral cosine filter

The spectral cosine filter is an adaptation of the cosine taper [Harris, 197], adapted by
Longuevergne et al. [2010]. The distinct design of this filter is that it can be used to smooth
a particular bandwidth of the spectrum by way of the two parameters start degree ls and
cut-off degree lc (cf. Table 3.1). The parameter lc allows for changing the bandwidth of the
given field.



. Homogeneous isotropic filters 63

-100

-50

0

50

100

150

G
ra

v
it

y
 a

n
am

o
li

es
 [

m
G

al
]

75 90 105 120

Co-latitude [º]

-120

-80

-40

0

M
ag

n
it

u
d

e 
[d

B
]

0 15 30 45

Spherical distance [º]

0 50 100 150 200 250

Spherical harmonic degrees []

von Hann (4.54º)

Gauss (2.54º)

Pellinen (2.27º)

Butterworth

lc = 34, k = 5

Spectral cosine

ls = 5, lc = 81, k = 2

Diffusion

lc = 53, k = 2

Ideal low-pass

lc = 60

Figure .: Depiction of the log-magnitude of the filters used in Figure 5.3 and also the amount of
signal gathered by a filter to provide the smoothed value at the calculation point (left-most
panels)



64 5     

0.0

0.5

1.0

M
o

d
u

la
ti

o
n

 t
ra

n
sf

e
r 

[]

0 10 20 30 40 50 60

Spherical distance [º]

Butterworth (k = 5)

0.0

0.5

1.0

Spectral cosine

(ls = 5, k = 2)

0.0

0.5

1.0

Diffusion (k = 2)

0.0

0.5

1.0

l c
 =

 1
0

2
0

3
0

8
0

Ideal low-pass

1
º

2
º

3
º

4
º

5
º

8
º 1
0
º

2
0
º

Pellinen

Gauss

0 10 20 30 40 50 60

von Hann

Figure .: Modulation transfer functions of the homogeneous isotropic filters for different filter
parameters. Filtering radius is the parameter for the filters on the right-hand-side and
spherical harmonic degree for the filters on the left-hand-side.

Anatomy

The spectrum of the spectral cosine filter has a sharp decrease at around the cut-off degree.
This sharp decrease results in side-lobes that are less than two orders of magnitude than the
peak main-lobe value. This makes sure that not a lot of signal is drawn from data points
far away from the calculation point. In comparison with the diffusion filter the spectral
cosine has a slightly wider main-lobe. Further, the side-lobes roll-off far more gently than
the diffusion filter.

Spatial resolution

Due to the similarities between the main-lobe behaviour of the spectral cosine and the diffusion
filters, their modular functions also have similar behaviour if their ideal resolutions match. For
example, the spectral cosine filter of order 2 with a cut-off degree of 30 and starting degree
of 5, has the nearly the same  as a diffusion filter of order 2 with a cut-off degree of
20, except for the level of the modulation overshoot (Figure 5.2). The spectral cosine also has
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modulation overshoot due to the presence of negative side-lobes. The longitude profile of the
spectral cosine filtered  field shows a lot of similarities with the profile filtered with the
diffusion filter. However, the maps of the filtered fields show the dissimilarities quite clearly:
the spectral cosine filter smothers the field a bit more than the diffusion filter (Figure 5.3).

Performance

The spatial variance of the spectral cosine filter is very desirable when the bandwidth between
the cut-off degree and the starting degree is wide enough. When the smoothing bandwidth
becomes smaller there are a lot of high magnitude ripples (not shown here). Also the
processing gain and the balance between processing gain and processing loss are at highly
desirable levels. It is also quite clear that spatial leakage shoots up as soon as the bandwidth
becomes very narrow (lc− ls = 25) (Figure 5.5). This is also the case with the highest side-lobe
level, which also increases with decreasing bandwidth (bottom panel Figure 5.6). Here again,
we see that the highest side-lobe influences the spatial leakage (top panel Figure 5.6). From
the performance metrics it is obvious that although this filter offers a way to reduce the
bandwidth of the field in hand, it cannot reduce it below a certain level (35 degrees for the
filter analysed here) without some undesirable results.

Butterworth filter

The Butterworth filter is also an adaptation of the filter of the same name in one-dimensional
Fourier analysis. This is a two parameter filter like the diffusion filter—cut-off degree lc
and order k—with the interesting property that the cut-off degree always receives half the
weight of the peak. Another interesting aspect is that a Butterworth filter of very high order
approximates an ideal low-pass filter, but such high orders are never used in practice.

Anatomy

The spectral form of the filter has a gradual decrease in weight as the filter approaches the
higher degrees and provides equal weight to the degrees lower than the cut-off. This causes
the spatial form to have ripples that are as wide as the main-lobe. The side-lobes roll off
pretty quickly and their magnitude is less than one order of magnitude of the main-lobe peak.
Also, the main-lobe is rather wide compared to the other filters. Due to its high side-lobes
it also grabs signal from data points that are far away from the calculation point. Figure 5.1
shows that such signal values are as big as the ideal low-pass filter.

Spatial resolution

Butterworth filters transfer modulation like the diffusion and the spectral cosine filters when
the cut-off degree is not very close to the total bandwidth. If the cut-off degree is close to
the total bandwidth, then the  shares similarities with the ideal low-pass filter with big
modulation overshoot and oscillating around unity (Figure 5.2). The longitude profile like in
the case of the spectral cosine filter shows normal behaviour, but the spatial plot shows that
areas that are disconnected in the other filtered fields are all connected here (Figure 5.3).
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Performance

The best feature of the Butterworth filter is that it can balance processing gain and processing
loss better than all the filters except ideal low-pass filter (Figure 5.5). On the contrary, it has
very high spatial leakage, which hovers around a constant value for low spatial resolutions.
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The spatial leakage has an intriguing relationship with the highest side-lobe level: the spatial
leakage is bounded within a small range, and highest side-lobe level varies heavily irrespective
of its resolution (Figure 5.6). The other undesired characteristic of the Butterworth filter is its
large variance compared to the other filters compared here, but a lot smaller than the ideal
low-pass filter.

Pellinen filter

The Pellinen filter gets its name from L. P. Pellinen who devised a method to calculate
[Pellinen, 1966] the Legendre spectrum of the spherical cap filter. For this reason, the Pellinen
filter is a reconstructed form of the spherical cap filter (cf. Figure 5.4). The spherical cap
filter is designed to provide uniform weights for all the data points within the smoothing
radius (cf. Table 3.1), which is similar in design, though spatially, to the ideal low-pass filter.
Although the weights of the Pellinen filter are not uniform within the prescribed smoothing
radius, due to the Gibbs effect (cf. Figure 5.4), it can still be considered as the spatial
counterpart of the ideal low-pass filter.

−→ −→

Spherical cap Spectrum Pellinen
(Reconstructed)

Figure .: Depiction of Pellinen filter, which is the reconstruction of a spherical cap from its spectrum.
The ripples in the reconstructed form is the well-known Gibbs effect.

Anatomy

The Pellinen filter displays the Gibbs phenomenon in its full form. The log-magnitude of the
filter shows plenty of ripples, and also a few within the smoothing radius (cf. Figure 5.1.
Although there are ripples, their magnitude is mostly two to three orders of magnitude of
the main-lobe. Not only does the spatial form contain ripples, but also the spectral form, and
their magnitude is close to one order of magnitude less than the main-lobe magnitude. In
comparison with the spectra of other filters, the side-lobe magnitude of the Pellinen is the
highest. Due to this reason it cannot be strictly classified as a low-pass filter. More precisely,
because they retain a large part of the higher harmonic degrees, they cannot be classified as
low-pass filters in its strictest sense. This brings up the problem of differentiating smoothing
and low-pass filters. Based on the above observation it can be said that not all smoothing
operations enable low-pass filtering, but all low-pass filtering naturally enables smoothing. The
anatomy of the Pellinen filter reinforces the uncertainty principle that in order to constrict
the signal within a small space a large part of the spectrum must be used.

Spatial resolution

The ideal spatial resolution of the spherical cap filter is twice the radius of the spherical cap,
and will have a right angular modulation transfer function. It means that all the features that
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are separated by twice the spherical cap radius will be resolved with the same modulation
as the unfiltered field. However, the reconstructed spherical cap also has the same ideal
resolution as the spherical cap filter, but the modular transfer function is not right angular.
The Pellinen filter has the steepest modulation transfer function of all the filters analysed
here (cf. Figure 5.2).

The impact of the steep modulation transfer function can be seen in the filtered 
gravity anomalies (Figure 5.3). The Pellinen filtered field retains a lot more details compared
to other filters. The reason for this can be ascribed to the significant power left in the higher
harmonics even after filtering (Figure 5.1). However, it is clear from the longitude profile of
the filtered field that the peaks and valleys are shifted in space (Figure 5.3). The reason for
this might be the interplay between equal weight given to all the data points within the filter
radius and the Gibbs effect. For example, the negative peak at around 97◦ in the longitudinal
profile appears at about 96◦. The smoothing kernel located at the valley point takes the
complete negative peak. The remaining positive values are to some extent compensated by
the negative ripples that invert parts of the neighbouring positive peaks to negative values.

Equal weights given to all the data points within the smoothing radius flattens the big
peaks and valleys in the smoothed field. This is very obvious in the longitude profile between
the co-latitudes 70 ◦–105 ◦. The side effect of this flattening is that the overall profile of the
field is not faithfully reproduced.

Performance

The strongest feature of the Pellinen filter is that it has strong localisation properties, because
for any given spatial resolution it has the smallest spatial variance. This is also clearly visible
in the map of the Pellinen filtered field (right panel of Figure 5.3), where the filtered peaks
and valleys are not spread out as in the case of the other filters, but rather confined to a
smaller area. This localisation property also explains the coarseness of the filtered field and
also the lower levels of spatial leakage. However, in other performance metrics the Pellinen
filter falters: for any given spatial resolution it has the least processing gain and also it is
the poorest in terms of balancing processing loss and processing gain. Due to the Gibbs
effect some of the performance metric curves also show jumps and are jagged unlike the
other filters.

Spatial cosine filter

The spatial cosine filter is an adaptation of the cosine taper function from one-dimensional
Fourier analysis. Spatial cosine filter like its spectral counterpart (spectral cosine filter) has a
cut-off radius (ψ0) and an order (k). The spatial cosine filter of order k = 2 is called the von
Hann filter [Jekeli, 191]. For the von Hann and the other cosine taper windows, their weight
reduces to half of the peak value at half of the smoothing radius. This is very similar to
the definition of the Gauss filter used here. Due to this reason the filtering radii of the von
Hann filters analysed here are taken to be twice that of the Gaussian filters analysed here.

Anatomy

There are a number of similarities between the anatomies of the Pellinen and the von Hann
filters. Like the Pellinen filter the spectral form of the von Hann filter also has negative
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Figure .: Scatterplots of the different performance metrics.

side-lobes but their magnitude is nearly two orders of magnitude less than that at the peak.
Also the spatial form of the filter has a lot of side-lobes, but except for the highest side-lobe
all of them are four orders of magnitude less than the value of the peak of the main-lobe.
From the profile it is also easy to see that the von Hann filter does not take value outside
its smoothing radius due to the insignificant filter window weights.

Spatial resolution

The remarkable feature of the von Hann filter is that the ideal resolution of the filter is its
smoothing radius. However, the  curves for the von Hann filter show that the resolution is
slightly more than the smoothing radius itself, which is due to the presence of the side-lobes
in the reconstructed filter. The slope of the  curves are moderately steep and reflect
the piece-wise nature of the filter as the  values increase sharply from zero. In contrast
to the previously discussed filters the modulation overshoot is only present for filters that
have a relatively smaller smoothing radius (ψ0 < 8◦). The smoothed longitude profile of the
gravity anomalies shows that the von Hann filter is able to transfer the modulations to a
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Figure .: Scatterplots of the the different performance metrics with high side-lobe level and side-lobe
roll-off ratio.

large extent, but damps the output much more than the other filters.

Performance

For any given spatial resolution the von Hann filter provides the lowest spatial leakage (Figure
5.5), and it has also one of the lowest side-lobe levels (bottom panel of Figure 5.6). The
filter localises the signal in a desirable manner and it is only superseded by the Pellinen
filter. Nevertheless, the filter suffers from significant processing loss and even though it has
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a desirable processing gain, it cannot balance between them both. Here again the spatial
leakage is strongly influenced by the highest side-lobe level.

Gauss filter

The Gaussian function is a unique function in that its spatial and spectral forms are both
bell-shaped curves that converge to zero asymptotically. Further, the smoothing radius of the
generic form of the Gaussian filter is the spread of the filter, but for the sake of convenience
the smoothing radius is defined at a certain fraction of the peak value – in geodesy the
fraction is taken to be one-half of the peak value.

Anatomy

The Gauss filter has one of the most unique and simple anatomies. It is unique, because it is
the only filter whose spatial and spectral forms share the same shape and do not have any
ripples. And simple, because as mentioned previously, both the spatial and spectral forms of
the filter take the shape of a bell (cf. Figure 3.2). In addition to this, the filter kernel and its
spectra become zero only asymptotically, which is why the log-magnitude gradually diminishes
away to insignificance. It should also be noted that the Gauss filter is predominantly wider
than the other filters analysed here.

Spatial resolution

The  of the Gaussian filter shows that the resolution is almost double the smoothing
radius. It rises from zero and converges to one in an asymptotic manner, while increasing
along a gentle slope. Due to these characteristics, the Gaussian filter takes a lot of distance to
completely reproduce the input modulation. For example, the Gauss 5◦ filter – a very widely
used smoothing radius in the  community – needs a signal separation of at least 20◦ to
completely resolve the signals (cf. Figure 5.2). This can again be explained by the asymptotic
nature of the Gaussian filter, which implies that in realistic signal scenarios the Gauss filter
will not be able to reproduce the unfiltered modulations and provide smoother signals.

The profile filtered with the Gauss filter provides the smoothest profile, and therefore,
shows very few details. In addition to the lack of details, the amplitude of the filtered field
is also considerably reduced. The spatial map of the Gaussian filtered field is replete of
any features that are visible in the other filtered fields due to the high level of smoothing.
In Figure 5. we can see the impact of using different filter radii for filtering the gravity
anomalies. Beyond a smoothing radius of 4◦ the details are completely lost and we see only
the long wavelength profile of the field. It is interesting to note that the field filtered with
20◦ smoothing radius does not have any semblance to the anomalies in the area in view.
This can be taken as an indicator to the way filtering works when we deal with a field with
details smoothed by a disproportionately large smoothing radius.

Remark The smoothing radius of the Gauss filter is chosen as the -6 dB point, which is
defined as the filter resolution in one-dimensional signal processing [Harris, 197]. However,
we have demonstrated here that the ideal resolution is far more than the -6 dB point. The
ideal resolution point in general lies between 1/8 and 1/10 of the peak with the fraction
decreasing with increasing resolution. To facilitate the user the Gauss smoothing radius can
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Figure .: Comparison of unfiltered and filtered  data along a longitudinal profile of 120◦ E. The
filter parameters are given in the brackets adjacent to the label indicating the filter.

be redefined as 1/10 rather than 1/2 to directly reflect the ideal resolution of the filter. We
can thus rewrite (3.) as

b(ψ) =
a◦

sinha◦
ea◦ cosψ , with a◦ =

ln(10)
1− cosψ◦

. (5.1)
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Performance

The strength of the Gauss filter lies in its ability to subdue noise, thereby providing a very
good processing gain (Figure 5.5). It is clear that it provides the highest possible processing
gain for any given spatial resolution, but this comes at the cost of heavy processing loss. This
is also reflected in the poor balance between processing gain and processing loss. The Gauss
filter also suffers from poor variance and an undesirable leakage level, which is explained by
the highest side-lobe levels* that are on par with those of the ideal low-pass filter. Despite
such high side-lobe levels, the steep roll-off of the filter keeps the spatial leakage under check.
For filter radii greater than 3◦, the spatial leakage increases only gradually stabilising around
-1 dB.

§.   

The difficulties in analysing inhomogeneous anisotropic filters are immediately apparent from
Figures 5.11 and 5.1, where we need to consider the direction of the data points, the location
of the calculation points and the different filter parameters. In the case of homogeneous
isotropic filters, we could analyse the spatial resolution with other performance metrics and
study their inter-relationship. Here, due to the involvement of inhomogeneity and anisotropy
we will not be able to make such a study.

In the following sections we will analyse the destriping filter cascaded with a Gauss
filter and the regularization filter. Since these filters change their spatial structure with the
latitude, we have shown the performance metrics that depend on the calculation point and
azimuth for four different co-latitudes (0◦, 30◦, 60◦ and 90◦). Those that depend only on
the calculation point have been shown for three additional co-latitudes (15◦, 45◦ and 75◦).
As these filters are symmetric across the equator in the direction of the poles, only the
co-latitudes in the northern hemisphere are considered. The performance metrics then hold
good for the complementary co-latitudes in the southern hemisphere.

For the cases of the processing gain and processing loss, we will use field-specific quantities
rather than those derived from the power-laws. This is because the amplitudes of the unfiltered
and filtered coefficients do not share a linear relationship, if an inhomogeneous and anisotropic
filter is used (cf. (2.35a)). In the case of the homogeneous isotropic filters, the damping factor
we used was

α =

∑
l,m

B2l F
2
lm∑

l,m

F2lm
. (4.5)

=

∑
l

B2l

∑
m

F2lm∑
l

∑
m

F2lm
≈

∑
l

B2l σ
2
l∑

l

σ2
l

, (5.2)

where we have replaced the degree variances of the field
∑
m
F2lm with the power-law degree

*It must be recalled that for smoothing kernels that do not have a side-lobe the largest weight outside the ideal
resolution is taken as the highest side-lobe level.
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variances σ2
l . The damping factor for the case of the latitude-dependent anisotropic filters

reads

α =

∑
l,m

∑
n

Bnmlm Fnm

2∑
l,m

F2lm
, (5.3)

where we cannot replace the degree variance of the field with the power-law based degree
variances. This necessitates the computation of the damping factor as follows:

α =

∑
l,m

∑
n

Bnmlm Fnm

2∑
l

σ2
l

. (5.4)

Destriping filter

The destriping filter is always used in conjunction with the another low-pass filter (predom-
inantly the Gauss filter), and we termed it a cascading filter (cf. section 3.4). Due to the
block-diagonality structure of its spectrum, it is anisotropic and inhomogeneous across the
latitudes (Table 2.2 and Figures 5.10 & 5.12).

Spatial resolution

The spatial resolution of the cascade of destriping and Gauss filters is shown in Figure 5.11,
for different smoothing radii of the Gauss filter, and in Figure 5.13, for different parameters
(minimum spherical harmonic orders) of the destriping filter. We see that the spatial resolution
is affected by both the smoothing radius of the Gauss filter and the order at which destriping
is commenced. The influence of the smoothing radius of the Gauss filter is predictable in
that the resolution decreases with increasing smoothing radius.

A peculiarity of the latitude dependent kernels shows up in the modulation transfer
function at the pole of the destriping filter. The modulation transfer function is isotropic at
the poles (Figures 5.11 and 5.13). This is due to an interplay between the isotropy at the
poles (cf. (2.2a)) and latitude-only dependence of the smoothing kernel. At every spherical
distance the polar kernel interacts with the other kernels at their zero azimuth. Further, at
every azimuth for a given spherical distance from the polar kernel the smoothing kernels do
not change. Thus, the polar kernel encounters the same weight at a given spherical distance
for every azimuth. This is the reason that we get an isotropic  for the smoothing kernel
at the pole.

Overall there is a strong congruence between the filter structure and the corresponding
 in terms of the shape and size of the ideal resolution isoline. However, for the case
when destriping commences at order m = 2, the  of the smoothing kernel at the pole is at
odds with its filter structure. While the filter structure at the pole is the same for the cases
of m = 8 and 20, the ideal resolution is far more wider than for those two cases (cf. Figure
5.13). By commencing the destriping from order 2 we reduce the weight of the spectrum for



76 5     

Box-car

lc = 30

Pellinen

ψ0 = 4.25º

Diffusion

lc = 28, k = 2

Gauss

ψ0 = 5º

Spectral cosine

ls = 5, lc = 40,
k = 2

von Hann

ψ0 = 8.5º

Butterworth

lc = 18, k = 5

-300 -200 -100 0 100 200 300

[mm]

Figure .: GRACE data for April 200 filtered with the homogeneous isotropic filters analysed here.
All the filters have the same ideal resolution of .5 ◦.

the very low degrees. Therefore, as soon as the tesseral and the sectorial coefficients begin
to play a role in the spatial structure of the non-polar calculation points they increase the
smoothing. The commencing order for destriping affects the filter structure at almost all the
calculation points.

In general, the  starts from isotropy at the poles becoming anisotropic at the mid-
latitudes, and again tending towards isotropy at the equator. At the mid-latitudes the filters
have a very coarse resolution in the east-west direction and, nearly, doubly fine resolution
in the north-south direction. The level of anisotropy at the mid-latitudes depends mainly on
the commencing order of destriping. Due to the use of the Gaussian filter the  has a
gradual slope. Further, only in the cases of filter truncation (ψ0 = 2◦ in Figure 5.11) and early
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Figure .: Smoothing kernels of the destriping and Gaussian filter cascade for different radii at
different co-latitude. The gridlines for the spherical distance are 5◦ apart.

commencement of destriping (m = 2 in Figure 5.13) we see modulation overshoot.
The left panel of Figure 5.16 shows the  fields filtered with the cascade of destriping

and Gauss filters. The field filtered with Gaussian filter with 2◦ smoothing radius shows the
need for cascading an additional filter with the destriping filter to subdue all the striping
behaviour. Further, the signal intensity and their locations are all affected by the use of
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different parameters. For example, the destriping filter commencing at order m = 20 is able to
distinguish between the signals of Ganges and south east Asia, but for all the other parameters
the destriping filter smothers these two signals. Similarly, when destriping is commenced from
order m = 2, the filtered field does not have any semblance with the other filtered fields in
the polar areas.
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Figure .: Modulation transfer function of the destriping and Gaussian filter cascade for different
radii. The gridlines for the spherical distance are 5◦ apart.
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Figure .: Smoothing kernels of the destriping and Gaussian filter for different commencing order
of destriping. The gridlines for the spherical distance are 5◦ apart.

Performance

The cascade of destriping and Gaussian filters have very good processing gain, which apparently
is effected by the use of the destriping filter (cf. Figure 5.14). Both processing loss and
processing gain are affected by the choice of parameters, especially the choice of commencing
order for the destriping filter dictates the amount of loss and gain. Comparing the curve
with that of the Gaussian filter, shows the impact of the destriping filter. The destriping filter
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Figure .: Modulation transfer function of the destriping and Gaussian filter cascade for different
commencing order of destriping. The gridlines for the spherical distance are 5◦ apart.

definitely improves the processing gain, and at the same time does not lose a lot of signal
in comparison with the fields that were filtered only with Gaussian filters. The commencing
order of m = 8 provides the best balance between processing loss and processing gain.

Apart from processing gain and processing loss all the other metrics depend on the
calculation point. The spatial leakage of the destriping filter plotted as a function of co-
latitude (cf. Figure 5.14), shows that most of the variation due to parameter choice is borne
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at the poles and the mid-latitudes. Spatial leakage at the equator seems rather stable for the
parameter choices made here. It is interesting to note that destriping commencing at order
m = 2 has the least leakage at the poles, whereas for the other choices co-latitude 15◦ has
the least spatial leakage.

The spatial variance of the destriping and Gaussian filter cascade shows different behaviour
for different filter parameters (cf. Figure 5.15). The overall pattern seems to be that the
variance is much larger in the north-south direction than the east-west direction. This is caused
mainly by the big side-lobes in the north-south direction. Further, there is an alternation
of near-isotropy and anisotropy in the variance as one goes from the pole to equator for
every given parameter choice. It can also be seen that the spatial variance is directly affected
by the highest side-lobe level. The roll-off ratio is not substantial but significant, and it is
steepest at the poles and becoming gradual towards the equator. The high leakage at the
equator is corroborated by the highest side-lobe level and the side-lobe roll-off as in the case
of the homogeneous and isotropic filters.
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Figure .: Scatterplot of processing loss against processing gain for the anisotropic filters (left panel).
Spatial leakage with respect to co-latitude for the different filter parameter choices (right
panel). The dotted lines indicate weak smoothing (γ = 1 and ψ0 = 2◦), the solid lines
moderate smoothing (γ = 3 and ψ0 = 3.5◦) and the dashed lines strong smoothing (γ = 5
and ψ0 = 5◦).

Regularization filter

The regularization filter, as described in section 3.5, comes from the minimisation principles,
and is reliant on the stochastic information of the field that has to be filtered. The main
ingredients of the filter are the signal and noise covariance matrices and the regularization
parameter (γ) that decides the level of smoothing. In the ensuing analysis, we have chosen
three levels of smoothing (γ = 1, 3 and 5) and three different months to depict the influence
of change in stochastic information.
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Figure .: Performance metrics for different parameters of the destriping and Gaussian filters. The
colours and the line styles are the same as in Figure 5.14. The circular grid lines for the
spatial variance are 5◦ apart. For the highest side-lobe and roll-off the axis in the radial
direction goes from 0 in the centre to −∞ and its grid lines are -10 dB apart.

Spatial resolution

The spatial resolution of the regularization filter is depicted by the s in Figures 5.1 and
5.20. The striking pattern that one can see is the near-isotropy of the resolution in co-latitudes
other than the poles, and also the consistency in the shape of the  across the co-latitudes
irrespective of the choice of the parameter. It is also worth noting that the difference in the
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Figure .: GRACE observed water storage anomalies filtered using the cascade of destriping and
Gaussian filters (left panel) and regularization filter (right panel) for different choices of
filter parameters.
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resolutions at the poles and at the mid-latitudes is not that drastic. This is clearly reflected
in the filter structure as well (Figures 5.17 and 5.19), where the filter structure remains the
same starting from the equator through the mid-latitudes. In comparison with the cascade of
destriping and Gauss filters, the  of the regularization filters are rather uniform in their
structure and size in the mid-latitudes up to the equator.
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Figure .: Smoothing kernels of the regularization filter at different co-latitudes for the different
months to depict the variation due to different choice of signal and noise covariances.
The gridlines for the spherical distance are 5◦ apart.
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Figure .: Modulation transfer function of the regularization filter for the different months to depict
the variation in  for different choice of signal and noise covariances. The resolution of
the filter is anisotropic except at the poles, and it is nearly constant from the mid-latitudes
to the equator. The gridlines for the spherical distance are 5◦ apart.

The fine resolution of the regularization filter is clearly visible in the maps of filtered
 fields (Figure 5.16). Comparing the maps of the regularized fields with other filtered
fields, the spatial resolution is apparent with the number of features that we can identify. A
good example is the band of negative water storage anomalies in central Africa, where we
clearly see four different peaks that are well resolved. Similarly, the anomalies in Gangetic
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basin in northern India and south east Asia are clearly resolved as two different signals.
The differences between the map with γ = 1 and γ = 3 are much larger than that between

γ = 3 and γ = 5, especially the oceans. For the case of γ = 1, the oceans are more noisy
compared to the other two smoothing levels. On the continents, the amplitude of the signals
are reduced with increasing level of smoothing, but the location of the signals are retained.
Having said that, the different smoothing levels do not introduce considerable changes in
resolution.

Performance

The regularization filters perform pretty poorly with respect to the processing loss metric
(Figure 5.14), which belies their fine resolution. The processing loss for the field of July
200 is less than -1 dB, which means that nearly all of the signal has been removed by
smoothing. It is to be borne in mind that we are dealing with gravity field signals, whose
lower harmonic degrees have multiple orders of magnitude of power compared to the higher
harmonic degrees. Therefore, any filtering in the lower harmonic degrees will severely affect
the total power of the signal (cf. Figure 6.4). It is worth noting that there are significant
differences in the processing gain and loss between the different months. None of the other
filter metrics explain these differences.

The spatial leakage of the filter is concentrated in a thin band that is minimum at
the poles and slightly increasing in the mid-latitudes with a decreasing trend again towards
the equator. This should not be surprising given the nearly-constant resolution across the
co-latitudes. The low spatial leakage at the poles are supported by the low levels of side-lobes
and also a healthy side-lobe roll off (cf. Figure 5.21). However, for the other co-latitudes
the side-lobe roll off is not as healthy as that at the poles, and also have marginally higher
side-lobe levels. This explains the higher spatial leakage at the mid-latitudes.

The highest side-lobe levels and side-lobe roll-off ratios of the regularized filter (Figure
5.21) is a lot higher than those of the cascade of the destriping and Gaussian filters (Figure
5.15). Nevertheless, the spatial leakage values are nearly the same, which only indicates that
the energy retained by the main-lobe is considerably higher in the regularized fields than
the destriping and Gaussian filter cascade. This instance demonstrates that the performance
metrics should be evaluated in a holistic manner.

The spatial variance of the regularization filter (left panel of Figure 5.21) demonstrates its
strong signal localising abilities. While the choice of parameters does not make a difference
at the poles, it makes a significant difference especially in the variance in the north-south
directions. Further, the spatial variance keeps increasing in the north-south direction as we
move from the poles to the equator. Interestingly, there are hardly any changes to the
east-west variances as we move from the mid-latitudes to the equator. This increase in the
variance in the north-south direction is clearly supported by the nearly flat side-lobe roll off
and high side-lobe levels.

§. 

Spatial resolution

The spatial resolution of filters was considered to be the -6 dB point, however all the filters
that were analysed here have shown that the filter resolution is far beyond that point. For
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Figure .: Smoothing kernels of the regularization filter at different co-latitudes for the different
values of the regularization parameter (γ). The gridlines for the spherical distance are 5◦

apart.

filters like the Pellinen, the spatial resolution is twice the smoothing radius, which is literally
outside the smoothing kernel. In the case of the von Hann filter, the smoothing radius is
itself the resolution of the filter. For the Gaussian filter the spatial resolution lay at around 1/8
to 1/10 of its peak. The spatial resolution points for the diffusion, spectral cosine, Butterworth
and the ideal low-pass filter lay in the side-lobe of the respective filter.
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Figure .: Modulation transfer function of the regularization filter for the different values of the
regularization parameter (γ).The structure of the s does not change, but only dilates
with increase in the size of the regularization parameter. The gridlines for the spherical
distance are 5◦ apart.

In the case of the inhomogeneous anisotropic filters the filter resolution is dependent on
the calculation point and also the filter kernels located at each of the other data points. This
implies that the spatial resolution is interdependent on the inhomogeneity and anisotropy of
the filter under study, which make it complicated and cumbersome to compute their spatial
resolution. The filters we studied here were all latitude-dependent, which allowed us to analyse
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Figure .: Performance metrics for different parameters of the regularization filter. The colours and
the line styles are the same as in Figures 5.14. The circular grid lines for the spatial
variance are 5◦ apart. For the highest side-lobe and roll-off the axis in the radial direction
goes from 0 in the centre to −∞ and its grid lines are -10 dB apart.

a variety of filter parameters over a few latitudes. The same might have proven difficult,
if not impossible, for a completely inhomogeneous and anisotropic filter. However, such a
filter design is not easy to accomplish deterministically. Even stochastic filters for signals of
natural phenomena that are completely anisotropic are also ruled out as such stochastics are
unrealistic [Rummel and Schwarz, 1977].
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Figure .: Depiction of the effects of truncating the spectra of filter kernels due to band-limitedness
of the field that is to be smoothed. Here, we have used a Gauss filter with a radius of
ψ0 = 2◦ (n = 2) with different spherical harmonic degrees of truncation.

Effects of truncating filters

Sometimes, in order to reduce the amount of processing loss, shorter smoothing radii are
used to smoothen the given field. If in such cases the smoothing radius is smaller than the
resolution of the given bandwidth, then some spurious effects occur. One of the spurious
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effects is the modulation overshoot as can be observed in the shortest smoothing radius of
the homogeneous isotropic filters in Figure 5.2.

This is far more clearly illustrated in Figure 5.22, where we have taken a Gauss filter
with a smoothing radius of 2◦ and truncate its spectrum at various bandwidths. Here, we see
that as long as we truncate the filter at bandwidths whose spatial resolution exceeds that of
the filter there are no side-lobes. The side-lobes start to appear as the spatial resolution of
the given bandwidth and that of the filter approach each other. Further, the side-lobe levels
also keep increasing as the spatial resolutions approach each other.

The other effect of the truncation is the reduction in energy of the main-lobe of the filter.
Also the main-lobe cannot be smaller than the main-lobe of the kernel of the given bandwidth.
Thus, the properties of the filter in its design form does not hold for the truncated and
they would have to be evaluated individually. If on the other hand the filter were sampled
with a sampling that is wider than the spatial resolution of the filter (undersampling), then
we would have an aliased form of the filter spectrum. Therefore, care must be taken when
choosing the smoothing radius.

Alternatives to the Gaussian filter for filtering GRACE data

The main aim of this work is to facilitate the  data user to choose the appropriate
filter for his needs. A wide variety of choice is available for the homogeneous isotropic
filters as we have demonstrated in this chapter. However, most of the studies in the 
community have been mostly reliant on the Gaussian filter. In this section we will try to
find homogeneous and isotropic filter alternatives for the Gaussian filter.

Figure 5.9 shows  mass anomalies filtered using homogeneous isotropic filters, where
we already see a couple of alternatives to the Gauss filter. The diffusion, spectral cosine
and the Butterworth filters provide better results compared to the Gaussian, both in terms of
reduction of noise and retention of signal. These are the filters that balance processing gain
and processing loss far better than the Gaussian filter. The spectral cosine filter, especially,
performs better than the rest, whose filtered field shows details that were seen with the
regularization filter in Figure 5.16. For example, the band of negative anomalies in central
Africa is very well resolved. In fact the diffusion filter resolves all the signals better, but at
the same time also retains more noise.

Similar is the case with the von Hann filter, which despite having comparable properties
with the Gaussian is unable to reduce noise. The main problem with the underperformance
of the von Hann filter compared to the Gaussian and spectral cosine, even though it has
similar performance in terms of the metrics, is primarily due to the Gibbs effect it suffers
in the spectral domain. The spectral coefficients of the von Hann in addition to the Pellinen
are the only filters that have side-lobes in the spectral domain. The choppy nature of the
fields filtered with these filters can be ascribed to their side-lobes.

Finally, based on our analysis, we can say that there are certainly better alternatives to
the Gaussian filter, and they must be preferred to the Gaussian filter for filtering  data.
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

F   of the mass anomalies computed from  data brings with it
certain side effects that need to be considered in addition to the performance of the

filters. These effects are largely related to the nature of the  data and to the type
of data analysis carried out in the  community, and hence subjective. Some of the
widely studied side effects of filtering are leakage of signal between catchments and the bias
introduced by filtering [e.g., Swenson and Wahr, 2006a; Klees et al., 2007, 200; Landerer
and Swenson, 2012]. In this chapter, first we will introduce the basics of computing mass
anomalies from  gravity data. After which we will study the not so well known
effects of filtering: changes to signal covariance and those to the amplitude and phase of the
spherical harmonic coefficients of the  monthly solutions.

§.   

The  satellite mission provides monthly snapshots of the gravity field in terms of spherical
harmonic coefficients, from which monthly geoid anomalies are calculated by removing a long-
term mean of the geoid. This long-term mean is usually the average of the available monthly
solutions up to an integer number of years.

N (θ,λ)[t] = aE
∑
l,m

Ylm(θ,λ)Klm[t] , (6.1)

∆N (θ,λ)[t] = N (θ,λ)[t]− N̄ (θ,λ) with (6.2)

N̄ (θ,λ) =
1
T

T∑
t=0

N (θ,λ)[t] (6.3)

in which aE is the semi-major axis of the ellipsoid approximating the Earth (637.1363 km),
N (·) is the geoid height, θ and λ are the co-latitude and longitude of a point on Earth, t is
the temporal coordinate, T is the total number of monthly snapshots within a chosen integer
number of years, Ylm are the geodetic normalised spherical harmonics and Klm[t] are the
monthly spherical harmonic coefficients. Here we have denoted time as a coordinate within
square brackets to denote the fact that it is a discrete quantity and only serves as an index.
The total change in geoid is then written as

∆N (θ,λ)[t] = aE
∑
l,m

Ylm(θ,λ)∆Klm[t] . (6.4)



. Signal covariance of mass anomalies 93

This monthly geoid anomaly is contributed by a) monthly surface mass redistribution and
b) the loading effects of the surface mass redistribution. The quantity ∆N (·)[t] represents the
sum total of all the changes induced by a variety of geophysical phenomena, one of which
is the continental water storage anomalies. In order to retrieve the continental water storage
anomalies from the monthly geoid anomalies, contributions of the well known phenomena
like tides (ocean, solid earth and atmospheric), atmospheric and oceanic mass changes are
removed. The remnant signal contains contributions from continental water storage, glacier
and (ant)arctic ice mass changes, and solid earth phenomena like glacial isostatic adjustment
[Wahr et al., 199]. This remnant signal of interest can be quantified from the monthly geoid
anomalies as follows [Wahr et al., 199]:

∆ρA(θ,λ)[t] =
aEρE
3

∞∑
l=0

2l +1
1+ kl

l∑
m=−l

Ylm(θ,λ)∆Klm[t] , (6.5)

where ∆ρA(·)[·] (kg/m2) is the surface mass density anomaly, ρE is the average density of
Earth (5515 kg/m3), and kl is the load Love number for the spherical harmonic degree l. The
surface mass density can also be represented in terms of equivalent water height as

hw(θ,λ)[t] =
∆ρA(θ,λ)[t]

ρw
, (6.6)

where ρw is the density of water (1000 kg/m3). The quantities hw and ∆ρA(θ,λ, t) only represent
mass deviations or anomalies, but they have to be differentiated to arrive at dS/dt storage
changes. In practice, this is done by numerical differentiation using a three-point mid-point
differentiator.

Monthly sampling

GRACE, as has been mentioned before, is designed to provide monthly snapshots of the
changes in the gravity field, and thus providing a time-series with a sampling rate of one
measurement per month. It is important to clarify the time unit month here as it is a crucial
element in our understanding of the natural periodicities with which the phenomena observed
by  vary. Spectral methods such as fast Fourier transforms () are used to estimate
the periodicities, but  can be used only when the dataset is sampled at equal intervals
of time. In the case of  the sampling interval, month, is thought of as a constant
period of 31 days, and hence an uniform sampling interval is assumed. However, in reality
the sampling interval varies between 27 and 31, with the predominant values being 30 and
31, and therefore the sampling interval is mildly non-uniform. Tourian [2013, section 4.4.3]
discusses the impact of such non-uniform temporal sampling on  data processing.

§.     

The signal autocovariance of the gravity field [Kaula, 1967] has been the tool of choice for
analysing the behaviour of the gravity field. It was established by Kaula [1966] that the auto-
covariance follows a power-law and can be approximated by an analytical expression. Pellinen
[1970] demonstrated the ability of such analytical expressions in studying the inestimable parts
of the signal. They also have aided in stabilising the ill-posed inverse problem of estimating
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the gravity field from the observations of different gravity functionals [e.g., Bouman and Koop,
199; Sneeuw, 2000].

Autocovariance functions on the sphere

Covariance functions on the sphere are also two-point functions and have been extensively
studied in physical geodesy (e.g., Kaula, 1967; Rummel and Schwarz, 1977). In fact, we took
inspiration from [Rummel and Schwarz, 1977] to study the spectral structure of the different
forms of smoothing kernels (cf. section 2.3). Kaula [1967] defines the autocovariance function
of a field given on the sphere as the covariance of the field with itself at different spatial
lags. The spatial lags being the spherical distance between the points whose covariance is
sought. Following [Kaula, 1967] it can be mathematically expressed as

C(ψ) =
∞∑
l=0

σ2
l Pl(cosψ) , (6.7)

where C(·, ·) is the autocovariance function, ψ is the spherical distance between the points
whose covariance is sought, σ2

l is the variance of the field for a particular spherical harmonic
degree l, widely known as the degree variance and Pl(·) is the unnormalised Legendre
polynomial of degree l. We have deliberately written the autocovariance as a two-point
function to indicate that the spherical distance is between two points, and hence the function
is still a two-point function.

Conversely, if we are given a field f (·) with a covariance C(·, ·), then the general behaviour
of the covariance over the entire region can be studied with the autocovariance function. This
can be expressed as follows:

D {f (·)} = C(·, ·) , (6.a)

= C(θ,λ,θ′ ,λ′), (6.b)

where D{·} is the dispersion operator. Taking the alternative form of the covariance function

C(θ,λ,θ′ ,λ′) = C(θ,λ,ψ,A) , (6.c)

and by integrating it over all the calculation points and the azimuth, we get

1
8π2

∫
Ω

∫
A

C(θ,λ,ψ,A)dAdΩ = C(ψ). (6.d)

This is the autocovariance function of f (·) and as it is clear from the expression that it has
the same form as (6.7). Thus, the spectrum of the C(ψ) is given as

C(ψ) =
∞∑
l=0

σ2
l Pl(cosψ) , where (6.e)

σ2
l =

∑
m

|Flm|2 =
∑
m

A2
lm , (6.f)
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following equation (22) of Rummel and Schwarz [1977]. Now, at ψ = 0, we get the variance

C(0) =
∞∑
l=0

σ2
l =

∞∑
l=0

l∑
m=−l
|Flm|2 , (6.g)

which is the energy contained in the field.

Eigenvalues of the field of mass anomalies

Following (6.f), we can compute the degree variances of the spherical harmonic coefficients
of the monthly geoid anomalies in (6.4). However, these coefficients are dimensionless with
the dimensioning for the geoid being provided by aE. Similarly, the dimensioning for the
surface mass densities is given by

Λl =
aEρE
3

2l +1
1+ kl

, (6.9)

where Λl are also the eigenvalues of the field of surface mass densities. Rummel and van
Gelderen [1995] elaborate this idea and also depict the eigenvalues for different functionals
of the gravity field. The remarkable character of the eigenvalues is that their spatial transfer
functions are all isotropic due to the dependency only on the spherical harmonic degree. For
this reason they are called isotropic transfer functions. Now, this offers us an opportunity to
study the properties of the dimensionless coefficients (∆Klm) and also along with a particular
eigenvalue (Λl ).

Power-law models of degree variances

Due to the heavy noise in the higher harmonic degrees (cf. Figure 1.2), the spherical harmonic
coefficients ∆Klm cannot be used directly for computing the autocovariance functions. Sasgen
et al. [2006] established that the temporal variations of the gravity field also follow power-law,
and therefore suggested using power-law models to approximate the degree variances. This is
mathematically expressed as

σ2
l = 10a lb , (6.10a)

taking logarithm on both sides, we get

2 logσl = a+ b log l , (6.10b)

where a and b are the intercept and slope of the power-law, which are estimated via a
least-squares fit to the less noisy degrees (3 ≤ l ≤ 25) of ∆Klm (e.g., the straight lines in
Figure 6.1). It must be noted that the terms intercept and slope make sense only in the
log-log domain.

Cyclo-stationary autocovariance of the mass anomalies

The mass anomalies depict a strong annual behaviour as shown by the seasonal mean in
Figure 6.3. This implies that the degree variances also must indicate a strong annual behaviour,
and that the autocovariance function cannot be considered stationary in time. To this end we
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look into the degree variances if their values change every month and also repeat after every
year. Since the  data is provided as monthly snapshots coinciding with the calendar
months, this comparison is made easier.

10-22

10-21

10-20

10-19

10-18

D
eg

re
e 

v
ar

ia
n

ce
s 

[]

1 10 100

Degrees []

Jan

Jul

Feb

Aug

Mar

Sep

Apr

Oct

May

Nov

Jun

Dec

Figure .: Degree variances of the  spherical harmonic spectrum segregated according to the
calendar months. The light gray lines indicate the complete set of degree variances and
the dark lines are the segregated monthly degree variances. The dashed lines indicate the
mean of the degree variances and the solid straight lines the power-law fits to the dashed
lines. The power-law fits to the signal degree variances clearly depict a cyclo-stationary
behaviour, with the peaks occurring in April and October and the troughs in January
and July. These double peaks and troughs indicate the anti-symmetry of the northern and
southern hemispheres.
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Figure .: Intercept and slope of the power-law fits to each of the mean of the degree variances
for each calendar month. Here, we clearly see the double peak as in Figure 6.1.
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In Figure 6.1 we have segregated the degree variances of each calendar month, and it
is amply clear that the annual behaviour of the mass anomalies is reflected in their degree
variances as well. The degree variances shift from the lower powers to the higher ones as
we go from January to April, and again they decrease in amplitude as we move from April
to June. This patterns repeats itself as we move from July to December. Further, the spread
of the degree variances is much more, especially in the less noisy harmonics, for the months
(January, June, July and December) when the amplitude is lower than for the months (April,
May, September and October) when the amplitude is higher.

Instead of fitting a power-law model for the average of the all degree variances, we fit
one for the average degree variance of each calendar month. These power-law models show
the change in slope from January to June and again from July to December. This is also
depicted by the intercept and slope values shown in Figure 6.2. It is noteworthy that we
see a double peak in the degree variances. Comparing this behaviour with the mean of the
mass anomalies for each calendar month (cf. Figure 6.3), we see that the anomalies change
signs with a period of six months across the equator. Since we are dealing with quadratic
quantities, the change of signs show themselves as double peaks.

The magnitude of the mass anomalies are low in January and July and high in April and
October (Figure 6.3). This should be interpreted as low mass redistribution in the months of
January and July and high in April and October. This activity coincides with the onset of the
four seasons: Winter – January, Spring – April, Summer – July and Autumn – October. It
can be construed that most of the mass redistribution occurs between solstices of winter and
summer, with peak redistribution around the vernal and the autumnal equinoxes. Although
we took the aid of the mass anomaly maps to elucidate this, the information was already
present in the autocovariance function (cf. Figure 6.2).

Impact of filtering on the autocovariance functions

Filtering affects the amplitude of the field being filtered, and therefore, it affects the degree
variances as well. The high levels of noise in the spherical harmonic coefficients of the
mass anomalies ∆Klm damps the signal to a large extent that they diverge significantly from
the modelled power-law (cf. Figure 6.4). The extent of smoothing is glaringly obvious in
the spatial transfer of the autocovariance. In addition, it is also easy to see how much
underestimation and overestimation would occur if the mean of all degree variances is used
for the power-law model.

The main culprit behind the oversmoothing of the  data is the noise in the dataset.
This can be illustrated clearly with the aid of the regularization filter. Following Klees et al.
[200], we first rewrite the regularization filter as a Wiener filter.

B =
Q−1

γS−1 +Q−1
(3.11j)

=
γS

γS+Q
, (6.11)

where B is the spectral filter matrix, S is the signal covariance and Q is the noise covariance.
The general behaviour of the covariances is described by the degree variances. Therefore,
by taking the signal and noise degree variances for S and Q we can study the impact of
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Figure .: Seasonal mean of the filtered surface mass changes observed by . The filter radius
of Gauss only filtered solutions was taken as ψ0 = 5◦ and for the destriped and Gauss
filtered solutions was taken as 3◦. For the regularized solutions γ = 3 was chosen.
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filtering on each individual harmonic degree.

Bl =
γSl

γSl +Ql
. (6.12)

Now, for a spherical harmonic degree of l = 60, Sl ≈ 10−21 (Figure 6.1)and Ql ≈ 10−19 (Figure
1.2). Here, we see that the noise is two orders of magnitude higher than the signal. Thus,
Bl becomes

B60 ≈
10010−21

10010−21 +10−19
= 10−2 = 0.01 .

Using this value to filter ∆Klm, we get

∆K̄lm = Bl∆Klm

≈ 10−210−10 = 10−12 .

Taking the sum of the square of (2l +1) values of ∆K̄lm we can see that the filtered degree
variance of l = 60 will have a value of 10−22 which is one order of magnitude less than
the a priori signal covariance. Thus, the noise in the  data inadvertently allows for
oversmoothing.

Filtering, apart from affecting the amplitude, also affects the shape of the spatial transfer
of the autocovariance function. The spatial transfer becomes narrower for the months of April
and October, and also for these months the negative covariances at a spherical distance of
60 ◦ change into positive covariances after filtering (Figure 6.4). Similarly, in the months of
January and July the spatial transfer of the filtered degree variances is slightly wider than
the power-law model, although, there is no change in sign of the covariances.

Introducing the eigenvalues of the mass anomalies into the autocovariance functions we
see some interesting behaviour, especially of the power-law models (Figure 6.5). The power-
law models that were only following a pink spectrum (decreasing power towards the higher
harmonic degrees), now also show blue spectra (increasing power towards the higher harmonic
degrees) for the months of January, February, March, May, June, July and December. Due
to this change in the degree variances, the spatial transfer function also displays a sea of
change.

The biggest change between the spatial transfer functions of the dimensionless degree
variances and their mass anomaly counterparts is the width of the spatial transfer. While the
dimensionless autocovariance had significant covariances as far a spherical distance as 60 ◦,
the autocovariance of the mass anomaly drops down to zero at around 3 ◦ for most of the
months. Another aspect of these spatial transfer functions is that as opposed to the high
energy levels of the fields in April and October, the highest energy levels are displayed by
the fields in January and July.

The filtered degree variances of the mass anomalies immediately lose their characteristic
blueness, and become red as their dimensionless counterparts (Figure 6.5). Due to this dramatic
change brought by filtering, the spatial transfer functions also show such dramatic changes.
The magnitude of the filtered autocovariance functions is more than an order of magnitude
smaller than the unfiltered ones, reducing from 30,000mm2 to 2,400mm2. At the same time
their width has widened more than five times, from a mere 3 ◦ to around 15 ◦.
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Figure .: Comparison of filtered degree variances with the monthly power-law fits (top panel) and
the corresponding homogeneous isotropic covariance functions (bottom panel).The dark
black lines indicate the cyclo-stationary power-law fits as in Figure 6.1, the light gray line
is the power-law fit of the complete set of degree variances, the blue lines are the mean
of the Gauss filtered degree variances, purple lines are those of the destriped and Gauss
filtered, and the green lines are that of regularized solutions.
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Figure .: Comparison of filtered degree variances with the monthly power-law fits of the surface
mass changes (top panel), and also of the corresponding homogeneous isotropic covariance
functions (middle panel). Since the difference between the filtered covariance function and
the covariance function of the power-law is substantial, the former are plotted separately
(bottom panel). Notice the changes in the range of x- and y-axis between the middle and
the bottom panels.
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Comparing the dimensionless with the dimensioned spatial transfer, also clarifies the
difference in the filter abilities. In the case of the dimensionless spatial transfer, the
regularization even after having salvaged a large part of the signal from noise in the higher
harmonic degrees, it did retain energy levels on par with Gaussian filter and the cascade
filter. With the introduction of the eigenvalues, the scenario has been reversed (bottom panel
of Figure 6.5). Now we see that the spatial transfer from regularized solutions retain more
energy than the other two filtered solutions.

Implications for the regularization filter

In section 3.5, we discussed the design of the regularization filter, one of whose main
ingredients is the signal covariance matrix. There we indicated that we use a power-law
model of the dimensionless coefficients ∆Klm as the signal covariance matrix. In this work we
use only the cyclo-stationary signal covariance model. In the case of  mass anomalies,
the noise is highly prohibitive, which does not allow us to benefit from the cyclo-stationary
signal covariance models (cf. Figure 6.5). It is also the reason, we depicted the performance
metrics of three different months—April, May and July—depict the filter performance at peak,
moderate and low signal energy, respectively. Further, here we have used the cyclo-stationary
covariance models only for the post-processing of  data, but it might be worthwhile to
use them at the  level-1b data processing.

As the regularization filter uses a cyclo-stationary signal covariance and monthly noise
covariances the filter becomes time-dependent. This implies that the performance metrics
need to computed for every single month to evaluate their performance, which was amply
demonstrated in Figure 5.14. This in addition to inhomogeneity and anisotropy of the filter
adds to complexity of filter performance evaluation.

§.        

The polar spectrum of a field provides a different view to analyse the properties of the
field. It was established in section 2.4 that apart from isotropic filters and special types of
latitude-dependent anisotropic filters, all the other filters change the phase of filtered field.
Kaula [1967] indicates that the phase of a harmonic spectrum must be random, because of
the orthogonal properties of the harmonic base functions. With this in mind we will look at
the phase of the filtered and unfiltered spherical harmonic coefficients of the mass anomalies
shown in Figure 6.6.

The phase of the unfiltered mass anomaly spectrum reveals the correlation between the
even and odd degrees of a particular order (Figure 6.6). It also reveals the order from which
the correlation between the degrees begins. In line with Kaula [1967], the phase of the
spectrum until order m = 15 remains random, but beyond that the correlation between the
degrees of an order show patterns. It must be noted here that the order m = 15 and its
multiples are the resonance orders of  [Seo et al., 200]. As demonstrated in (2.36),
the homogeneous isotropic Gaussian filter does not change the phase of the filtered spectrum.

The destriping filter that is specifically designed to remove the correlations, changes the
phase of the filtered field. However, it cannot be said that the resultant phase is completely
random as there is an apparent wave-like pattern across the orders. Changing the commencing
order for the destriping filter either retains the correlations for the orders that are less than the
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Figure .: Changes in amplitude and phase of the unfiltered and filtered spherical harmonic coefficients
of the  gravity field (April 200), for the three different filters used in this chapter.

commencing order (Figure 6.7). This is the case of the destriping filter with the commencing
order m = 20, where the correlations between the degrees of orders m < 20 are all retained.
Commencing the destriping at order m = 2 or 8 does not bring any drastic changes to the
phase of the filtered field. This implies that the destriping filter does not have an adverse
effect on orders in which the degrees are not correlated.
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Figure .: Same as Figure 6.6 for the different parameters of the destriping and Gaussian cascade
filter.

The regularization filter as is expected changes the phase of the filtered spectrum, and here
the phase is completely random with no obvious patterns (Figure 6.). Interestingly, changing
the regularization parameter does not bring any visible changes to the phase. However, there
are considerable differences between the different months. While the phase of the spectrum
of May 200 shows certain patterns, the phase of the spectrum of July 200 is completely
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Figure .: Same as Figure 6.6 for the different parameters of the regularization. Here the amplitude
and phase spectrum of different monthly fields are also shown.

The amplitude plots indicate the manner of the filtering performed by the filter to suppress
noise. The amplitude plot of the unfiltered field shows that the higher harmonics and also the
sectorial and near sectorial elements are ridden with noise. The Gaussian filters only damp
the amplitude only along the degrees, which indicates how the power increases towards the
sectorial elements. The cascade of destriping and Gaussian are able to suppress that to a large
extent but we still see the large power in some of the sectorial coefficients. The regularization
filter does an even better job of damping the noisy sectorial harmonics and also the higher
harmonics, and we also see that overall the amplitude decreases with increasing degree.



  

T  was borne out of the need to choose the appropriate filter for smoothing (noisy)
data on the sphere given a wide variety of filters. In order to fulfil this need we set

out to understand the mechanics of filtering and also the spatial and spectral structures of
the filters. In addition we wanted to put forth some metrics to evaluate the efficacy of filters
in a data agnostic (objective) manner. In the following we summarise the findings of this
study, after which we will discuss the questions that remain open.

  

i. Data smoothing can be performed by taking weighted averages over the sphere with
the use of weighting functions w(θ,λ,θ′ ,λ′). We distinguish the normalised form of
the weighting function as the smoothing operator b(θ,λ,θ′ ,λ′).

ii. The smoothing operator is always a two-point function, because the weights are relative
between the calculation (θ,λ) and data (θ′ ,λ′) points.

iii. Filtering with a general two-point function (inhomogeneous and anisotropic) is still
convolution, although with a spatially variable kernel. This spatial operation also leads
to convolution in the spectral domain. While the convolution in the spatial domain is
continuous, that in the spectral is discrete.

iv. The key to understanding the smoothing operator is its representation in the local polar
coordinate system (θ′ ,λ′ −→ ψ,A). This change facilitates in understanding the idea of
isotropy. Isotropy allows us to describe the spatial structure of the smoothing operator
with respect to the data points.

v. A related idea to isotropy that allows the spatial structure description with respect to
the calculation points is homogeneity. The properties, homogeneity and isotropy, together
make us understand a wide-variety of smoothing operators, and give us an idea of their
respective spectra (cf. Table 2.2). This is crucial for the design of filters and also for
designing algorithms for fast numerical computations.

vi. The homogeneous isotropic filters remain the simplest form of all the filters, both in
the spatial and spectral domains, enabling a wide-variety of filter designs. However,
latitude-dependent anisotropic filters are innate to filtering satellite gravimetry based
spherical harmonic spectra, mainly due to equispaced sampling along the latitude circles.
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vii. The latitude-dependent anisotropic filters have some intriguing aspects. Firstly, their
spectrum has a order-leading block-diagonal structure, which is due to the equispaced
sampling along the latitude circles. Secondly, because of the sampling and convergence
of the longitudes at the poles their spatial structure becomes isotropic.

viii. By representing the spectra of the field and the smoothing operator in terms of their
polar form, we found out that isotropic filters retain the phase of the field after filtering,
while anisotropic filters change it. In the filtering of  data with anisotropic filters,
the phase of the pre- and post-filtered spectra clearly indicated the decorrelating effect
of the filters used.

ix. Irrespective of the type or design of the smoothing operator the level of smoothing that
can be achieved by it is restricted by a qualitative bound. The bound is defined by the
global average f̄Ω(·) and the unsmoothed value f̄δ(·) (= f (·)). This bound is naturally
linked to the uncertainty principle in signal processing.

x. Designing smoothing operators can be done both spatially and spectrally. The weight
functions can be designed as purely deterministic functions, or derived from data-driven
and variational calculus methods.

xi. A number of filters that were analysed in this study have been designed in a deterministic
manner, and nearly all of them have a homogeneous isotropic structure. The reason lies
in the simplicity of their spectral structure, which makes them fairly straight-forward to
design.

xii. Based on the energy functional and the anatomy of the smoothing operator, metrics for
assessing its performance have been developed. Spatial resolution, spatial variance and
spatial leakage have all been treated in a novel way.

xiii. Spatial resolution of a smoothing operator, as we have demonstrated, can only be
described in an ideal manner, and hence the use of the term ideal resolution. It was
generally accepted that the resolution of the smoothing operator is its -6 dB isoline
(1/2 b(θ,λ,0,0)), but we have demonstrated otherwise. In addition, we have extended and
complemented the concept of spatial resolution with the modulation transfer function,
whose slope gives an indication of the smoothness of the filtered field.

xiv. So far, spatial variance has been treated as a uni-dimensional quantity even for anisotropic
filters [e.g., Kusche et al., 2009]. Here we derive the spatial variance as a three-
dimensional quantity following ideas from spherical statistics.

xv. In the  community, spatial leakage is treated in a subjective manner, for example,
signal exchange between two catchments or signal exchange between ocean and the
landmass due to filtering. In this study we define spatial leakage, in an objective way,
as the energy that the filter retains beyond the ideal resolution isoline as it directly
affects the spatial variance, i.e. the localisation properties of the filter.

xvi. Inter-comparison of the performance metrics of homogeneous isotropic filters was fairly
straightforward compared to the inhomogeneous (and) anisotropic filters. Although the
cascade of destriping filter and Gaussian filter was compared with the regularization
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filter, it could not be done as comprehensively as in the case of the homogeneous
isotropic filters. A clear example is the difficulty in matching the filters according to
their spatial, which, in both the cases, is latitude-dependent.

xvii. There is no single homogeneous isotropic filter that performs best in all the given
metrics. For example, while the Gaussian filter has the best processing gain, it is the
worst when it comes to processing loss.

xviii. The performance metrics, especially performance loss and spatial variance, reveal alter-
natives to the Gaussian filter, which has been the mainstay of  data processing.
Diffusion and spectral cosine filters are good alternatives to the Gaussian filter.

xix. Using filters to smooth band-limited signals, whose spatial resolution is far greater than
the smoothing radii of the filter, is not desirable. The properties of the filter in its
design form will not hold for the truncated filter, requiring individual evaluation of the
truncated filter performance.

   

Based on the findings of this study it can be said with assurance that good inroads have
been made in the filter choice problem. While a clear choice can be made from among the
plethora of homogeneous isotropic filters, the same cannot be said for the anisotropic filters.
In this study we have only dealt with latitude-dependent anisotropic filters, which has given a
fair idea of the challenges that have to be dealt with in evaluating completely inhomogeneous
and anisotropic filters. Despite the difficulty in choosing inhomogeneous anisotropic filters,
inroads have also been made in understanding the mechanics of such filters. It remains to be
seen how this understanding can be translated to inter-comparability and thereby solve the
inhomogeneous and anisotropic filter choice problem.

The subtext to the primary aim of solving the filter choice problem was the idea of data
agnostic filter performance metrics. With the performance metrics that have been developed
here, it can be said with confidence that we have been successful in that attempt. Except
for processing gain and processing loss, all the other metrics are data agnostic. Also in the
case of processing gain and processing loss, a data agnostic variant was devised, but it is
valid only for homogeneous isotropic filters. In a similar vein, for some of the performance
metrics data-dependent variants have also been devised. Nevertheless, it should be noted that
much of the performance metrics analyse the spatial characteristics of the filter. This must be
complemented in the future with performance metrics that evaluate the spectral characteristics
of the filter.

The performance metrics devised here need not only be used for evaluating filter per-
formance, but it is also hoped that it will trigger new ways of filter design. For example,
filter designs that optimise processing loss and processing gain, or those that optimise the
trade-off between spatial resolution and spatial variance. With the knowledge of the spatial
structure and spectral form, as expounded here, it should naturally be the next step. Such
designs would pre-define the role of the filter there-by making filter choice far more easier.
Moreover, such filter designs are the need of the hour for  data processing as there is
still room for improvement as demonstrated by the enormous differences between the filtered
and unfiltered autocovariance functions.
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In this study, the polar form of the spherical harmonics is used as an analysis tool for
studying the spectral characteristics of the filters. In the case of  data processing, it
turned out to be a vital tool in evaluating the decorrelating capabilities of filters. Further,
the polar form made it clear that anisotropic filters will change the phase spectrum to an
arbitrary value between −π and π, while isotropic filters will retain the phase spectrum or
will shift it by π radians. This is a crucial piece of information for users comparing 
data with geophysical model output after filtering both the datasets with the same anisotropic
filter. It is worthy to note here that we only know that the phase spectrum changes, but it
is yet to be proven whether such a change is critical or not.
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This chapter is intended as a quick formula look-up sheet. All the formulae have been
adapted from Varshalovich et al. [19, chap. 5], and adaptations have been mainly on the
normalisation conventions. Some use also have been made of the reports of Sneeuw [1991];
Ilk [193].

§A.   

Definition

Ylm(θ,λ) =


P̄lm(cosθ) eimλ , m ≥ 0

(−1)m Y ∗l,−m(θ,λ) , m < 0
(A.1a)

Y ∗lm(θ,λ) = P̄lm(cosθ) e
−imλ (A.1b)

Zonal Tesseral Sectorial

Yl0, (l ≥ 0 , m = 0)
Ylm,

(l > 0 and l > m, l ,m)
Yll , (l > 0 , l =m)

Figure A.: Spherical harmonic coefficients arranged in
matrix form according to their degree and
order. The locations of the different struc-
tural forms of the spherical harmonics are
indicated.
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Orthogonality

1
4π

∫
Ω

Ylm(θ,λ) Y
∗
l′m′ (θ,λ) dΩ = δll′ δmm′ (A.2)

Addition theorem

Pl(cosψ) =
1

2l +1

l∑
m=−l

Ylm(θ,λ) Y
∗
lm(θ

′ ,λ′) (A.3a)

cosψ = cosθ cosθ′ + sinθ sinθ′ cos∆λ (A.3b)

Completeness

∑
l,m

Ylm(θ,λ)Ylm(θ
′ ,λ′) =

∑
l

(2l +1) Pl(cosψ) = δ(ψ) (A.4)

1
4π

∫
Ω′

δ(ψ)dΩ′ =

1 , ψ = 0 ⇒ (θ,λ) = (θ′ ,λ′)

0 , elsewhere
(3.3b)

Integral

1
4π

∫
Ω

Ylm(θ,λ) dΩ =
1
4π

∫
Ω

Ylm(θ,λ) Y00(θ,λ) dΩ = δl0δm0 (A.5)

Integral of triple product

1
4π

∫
Ω

Ylm(θ,λ)Yl′m′ (θ,λ)Y
∗
l′′m′′ (θ,λ) dΩ =

√
(2l +1)(2l′ +1)

2l′′ +1
Cl
′′0
l0l′0C

l′′m′′
lml′m′ (A.6)

§A.   

Explicit expression

Plm(x) =
1
2l l!

(1− x2)
m
2

dl+m

dxl+m
(
x2 − 1

)l
(A.7a)

P̄lm(x) = (−1)m
√
(2l +1)

(l −m)!
(l +m)!

Plm(x) = Nlm Plm(x) (A.7b)
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Orthogonality

1
2

1∫
−1

Plm(x)Pnk(x)δmk dx =
1

2l +1
(l +m)!
(l −m)!

δln = N−2lm δln (A.)

Symmetries

Plm(−x) = (−1)l+m Plm(x) (A.9a)

Pl,−m(x) = (−1)m (l −m)!
(l +m)!

Plm(x) (A.9b)

Special cases

Plm(1) = δm0 (A.10a)

Plm(0) =


(−1)
2l

l−m
2 (l +m)!(

l−m
2

)
!
(
l+m
2

)
!
, for l −m even,

0 , otherwise.

(A.10b)

§A.    

Ylm(θ
′ ,λ′) =

∑
k

Dlmk(α,β,γ) Ylk(θ,λ) (A.11a)

Y ∗lm(θ
′ ,λ′) =

∑
m

D∗lmk(α,β,γ) Y
∗
lk(θ,λ) (A.11b)

Ylk(θ,λ) =
∑
m

D∗lkm(α,β,γ) Ylm(θ
′ ,λ′) (A.11c)

Dlmk(α,β,γ) = e−imγ dlmk(β) e
−ikα (2.13a)

D∗lmk(α,β,γ) = eimγ dlmk(β) e
ikα (2.13b)

dlmk(β) = (−1)k−m
√

(l − k)!
(l −m)!

(l + k)!
(l +m)!

t2∑
t=t1

(
l +m
t

)(
l −m
l − k − t

)
(−1)t c2l−p sp (2.13c)

with c = cos
β

2
(2.13d)

s = sin
β

2
(2.13e)

p = k −m+2t (2.13f)

t1 = max(0,m− k) (2.13g)

t2 = min(l − k, l +m) (2.13h)

α = [0,2π) , rotation about the initial x-axis

β = [0,π] , rotation about the new y-axis
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γ = [0,2π) , rotation about the final z-axis

Orthogonality

1
8π2

2π∫
0

π∫
0

2π∫
0

Dlmk(α,β,γ)D
∗
l′m′k′ (α,β,γ) dα sinβdβdγ =

1
2l +1

δll ′ δmm′ δkk′ , (A.12a)

which leads to the following orthogonality property for the Wigner-d symbols,

1
2

π∫
0

dlmk(β) dl′m′k′ (β) δkk′ δmm′ sinβdβ =
1

2l +1
δll ′ . (A.12b)

Product

Dlmk(α,β,γ) Dl′m′k′ (α,β,γ) =
l+l′∑

l′′=|l−l′ |

l′′∑
m′′=−l′′

l′′∑
k′′=−l′′

Cl
′′m′′
lml′m′ C

l′′k′′
lkl′k′ Dl′′m′′k′′ (α,β,γ) , (A.13a)

and when (α = γ = 0) a result for Wigner-d symbols can be deduced.

dlmk(β) dl′m′k′ (β) =
l+l′∑

l′′=|l−l′ |

l′′∑
m′′=−l′′

l′′∑
k′′=−l′′

Cl
′′m′′
lml′m′ C

l′′k′′
lkl′k′ dl′′m′′k′′ (β) . (A.13b)

Symmetries

D∗lmk(α,β,γ) = Dlkm(−γ,−β,−α) , (A.14a)

D∗lmk(α,β,γ) = (−1)k−mDl,−m,−k(α,β,γ) . (A.14b)

dlmk(β) = dlkm(−β) , (A.15a)

dlmk(β) = (−1)k−mdlmk(−β) , (A.15b)

dlmk(β) = (−1)k−mdlkm(β) , (A.15c)

dlmk(β) = dl,−k,−m(β) , (A.15d)

dlmk(β) = (−1)k−mdl,−m,−k(β) . (A.15e)

Special cases

Dlm0(α,β,γ) =
(−1)m
√
2l +1

Y ∗lm(β,γ) , (A.16a)

dlm0(β) =
(−1)m
√
2l +1

P̄lm(cosβ) , (A.16b)

Dl00(α,β,γ) = dl00(β) = Pl0(cosβ) = Pl(cosβ) , (A.16c)
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Dlmk(0,0,0) = δmk , (A.16d)

dlmk(0) = δmk , (A.16e)

dlmk(π) = (−1)l+m δ−m,k = (−1)l−k δm,−k , (A.16f)

dlmk(π − β) = (−1)l+k dl,−m,k(β) = (−1)l−mdl,m,−k(β) , (A.16g)

dlmk(π+ β) = (−1)l+mdl,−m,k(β) = (−1)l−k dl,m,−k(β) . (A.16h)

§A.   

Series expansion

f (θ,λ) =
∞∑
l=0

l∑
m=−l

Flm P̄lm(cosθ) eimλ =
∑
l,m

FlmYlm(θ,λ) (A.17a)

Flm =
1
4π

2π∫
0

π∫
0

f (θ,λ) P̄lm(cosθ) e−imλ sinθ dθ dλ (A.17b)

=
1
4π

∫
Ω

f (θ,λ)Y ∗lm(θ,λ) dΩ (A.17c)

Parseval’s theorem

1
4π

∫
Ω

f 2(θ,λ) dΩ =
∑
l,m

F2lm (A.1)

Mean value of the field

1
4π

∫
Ω

f (θ,λ) dΩ =
1
4π

∫
Ω

∑
l,m

FlmYlm(θ,λ) dΩ (A.19a)

= F00 (A.19b)

Polar form of the spherical harmonic spectrum

Flm = Alm eiϕlm (2.34a)

Alm = |Flm| =
√
Re(Flm)

2 + Im(Flm)
2 (2.34b)

ϕlm = arg(Flm) = arctan
(
Im(Flm)
Re(Flm)

)
(2.34c)

∴ f (θ,λ) =
∑
l,m

Alm P̄lm(cosθ) e
i(mλ+ϕlm) (2.34d)
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Power spectral quantities

σ2
l =

l∑
m=−l

|Flm|2 =
l∑

m=−l
A2
lm Degree variance, (A.20a)

l =
σl√
2l +1

Degree , (A.20b)

l =
l∑
j=0

j∑
m=−j

A2
jm Cumulative degree variance. (A.20c)
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In this chapter we will compute the integral of the product of two Wigner-d functions.

I l
′m′k′
lmk =

1
2

π∫
0

dlmk(β)dl′m′k′ (β) sinβdβ , (B.1a)

where we substitute the product of the Wigner-d symbols with (A.13b),

=
1
2

π∫
0

l+l′∑
l′′=|l−l′ |

l′′∑
m′′=−l′′

l′′∑
k′′=−l′′

Cl
′′m′′
lml′m′ C

l′′k′′
lkl ′k′ dl′′m′′k′′ (β) sinβdβ . (B.1b)

Here we substitute dl′′m′′k′′ with its explicit expression using (2.13c – 2.13h).

I l
′m′k′
lmk =

l+l′∑
l′′=|l−l′ |

l ′′∑
m′′=−l′′

l′′∑
k′′=−l′′

Cl
′′m′′
lml ′m′ C

l′′k′′
lkl ′k′ ×

(−1)k
′′−m′′

√
(l′′ − k′′)!
(l′′ −m′′)!

(l′′ + k′′)!
(l′′ +m′′)!

t′′2∑
t′′=t′′1

(
l′′ +m′′

t′′

)(
l′′ −m′′

l′′ − k′′ − t′′

)
(−1)t

′′
×

π∫
0

(
cos

β

2

)2l′′−p′′+1 (
sin

β

2

)p′′+1
dβ , (B.1c)

where we have used the ind entity sinβ = 2 sin β
2 cos β2 . The only thing that remains to be

done is to solve for the special trigonometric integral, for which we require the following
identities.

∫ (
sin

β

2

)u (
cos

β

2

)v
dβ =

−2
u + v

(
sin

β

2

)u−1 (
cos

β

2

)v+1
+

u − 1
u + v

∫ (
sin

β

2

)u−2 (
cos

β

2

)v
dβ , (B.2a)

=
2

u + v

(
sin

β

2

)u+1 (
cos

β

2

)v−1
+
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v − 1
u + v

∫ (
sin

β

2

)u (
cos

β

2

)v−2
dβ , (B.2b)

Notice that we have two solutions for the integral, but the choice of either solution depends
on two conditions: if u and/or v are even or odd; and if u ≥ v or vice versa. In our case,
either both u and v are simultaneously even or odd, since this only depends on p′′ (cf.
(B.1c)), and therefore, we can expect to have four cases and their corresponding solutions.

π∫
0

(
sin

β

2

)u (
cos

β

2

)v
dβ =



π
2u+v

u! v!(u + v
2

)
!
(u
2

)
!
(v
2

)
!
, u & v are even,

(u − 1
2

)
!
(v − 1

2

)
!(u + v

2

)
!

, u & v are odd.

(B.3)

Although we expected to have four solutions, we ended only with two as the results (B.3)
indicate that the size u relative to v is immaterial. For the final solution, we substitute (B.3)
in (B.1c), and taking u = p′′ +1, v = 2l′′ − p′′ +1 and u ,v ≥ 0, we get

I l
′m′k′
lmk =

l+l′∑
l′′=|l−l′ |

l ′′∑
m′′=−l′′

l′′∑
k′′=−l′′

Cl
′′m′′
lml′m′ C

l′′k′′
lkl′k′ ×

(−1)k
′′−m′′

√
(l′′ − k′′)!
(l′′ −m′′)!

(l′′ + k′′)!
(l′′ +m′′)!

t′′2∑
t′′=t′′1

(
l′′ +m′′

t′′

)(
l′′ −m′′

l′′ − k′′ − t′′

)
(−1)t

′′
×



π

22(l′′+1)
(p′′ +1)! (2l′′ − p′′ +1)!

(l′′ +1)!
(
p′′ +1

2

)
!
(
2l′′ − p′′ +1

2

)
!
, p′′ is odd,

1
(l′′ +1)!

(
p′′

2

)
!
(
2l′′ − p′′

2

)
! , p′′ is even.

(B.4)

The orthogonality of dlmk(β) given by (A.12b) can be viewed as a special case of I l
′m′k′
lmk ,

because

I l
′mk
lmk =

1
2

π∫
0

dlmk(β) dl′mk(β) sinβ dβ =
1

2l +1
δll ′ . (B.5)
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We recall that any field f (θ,λ) given on an unit sphere can be represented in terms of a
spherical harmonic series expansion.

f (θ,λ) =
∑
l,m

FlmYlm(θ,λ) (2.1a)

and since Flm is a complex number it can be rewritten in its polar form as follows:

Flm = Alm eiϕlm (2.34a)

inserting (2.34a) into (2.1a), the spherical harmonic synthesis can be expressed in terms of
amplitude and phase.

f (θ,λ) =
∑
l,m

Alm eiϕlm Ylm(θ,λ)

=
∑
l,m

Alm eiϕlm P̄lm(cosθ) e
imλ

=
∑
l,m

Alm P̄lm(cosθ) e
i(mλ+ϕlm) (2.34d)

=
∑
l,m

Alm P̄lm(cosθ) e
im(λ+ϕlm

m ) (C.1a)

taking λ1 = λ+
ϕlm
m

,

=
∑
l,m

Alm P̄lm(cosθ) e
imλ1 (C.1b)

=
∑
l,m

Alm Ylm(θ,λ1) (C.1c)

In the above set of equations (C.1), the main ingredient that will help us interpret the polar
representation, particularly the phase of the spectrum, is λ1. The addition of the phase to the
longitude of the surface spherical harmonic rotates it by ϕlm

m (cf. Figure C.1), and therefore
(C.1c) can be interpreted as the weighted sum of rotated surface spherical harmonics with the
amplitude Alm as the weights. Another important point that we have to note here is that as
we move towards higher spherical harmonic orders the rotation becomes infinitesimal.

For any given spherical harmonic coefficient of degree l and order m, the amplitude is
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Ylm(θ,λ) Ylm(θ,λ) eiϕlm

Re(·)

Im(·)

Figure C.: Surface spherical harmonics with (right) and without (left) phase shift. Here we have
depicted the phase shift for the spherical harmonics of degree l = 2, order m = 1 and a
phase shift of ϕlm = π/3.

a root-mean-squared positive value. This means that innumerable combinations of real and
imaginary parts of a complex number will produce the same amplitude, which renders the
amplitude spectrum non-unique. Similarly, the phase is also unique only up to the ratio of
the real and imaginary parts. Thus, for a given amplitude there can be innumerable number
of phase values, and vice versa.
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Coordinates

θ,λ Spherical coordinates of the unit sphere: co-latitude, longitude

ψ,A Spherical coordinates in the local frame: spherical distance,
azimuth

x,y,z Cartesian coordinates

u,v,h Cartesian coordinates in the local frame

x, u Position vector in the global and local frame

t Temporal coordinate

α,β,γ Euler rotation angles

Ω, Ω′ Domain of the unit sphere

ΩM Area under the main-lobe region

Functions

f (θ,λ), g(θ,λ) Scalar functions defined on the sphere

w(θ,λ,θ′ ,λ′),
w(θ,λ,ψ,A), w(·, ·)

Two-point scalar weight function defined on the unit sphere

b(θ,λ,θ′ ,λ′),
b(θ,λ,ψ,A), b(·, ·)

Smoothing operator defined on the unit sphere, and also the
normalized weight function

ϵ(θ,λ), ϵ(·) Noise associated with the estimate of f (·)

E(θ,λ), P (θ,λ) Energy and power functions

δ(θ,λ,θ′ ,λ′), δ(ψ) Dirac’s delta function defined on the sphere

Ylm(θ,λ) Surface spherical harmonic function (complex, normalized)

Plm(cosθ), P̄lm(cosθ) Unnormalized and normalized associated Legendre function

Pl(cosψ), P̄l(cosψ) Unnormalized and normalized Legendre polynomials

dlmk(β), Dlmk(α,β,γ) Wigner-d and Wigner-D functions. Also known as
representation coefficients of the SO(3) group.

∆N (θ,λ)[t] Temporal geoid anomalies

∆ρA(θ,λ)[t] Temporal surface mass changes
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C(θ,λ,θ′ ,λ′), C(ψ) Covariance and autocovariance functions

Coefficients

Flm Spherical harmonic coefficients of f (·)

Alm, ϕlm Amplitude and phase of Flm

W nk
lm , Wlm, Wl Spherical harmonic coefficients of the different forms of the

weight function w(·, ·)

Bnklm, Blm, Bl Spherical harmonic coefficients of the different forms of the
smoothing operator b(·, ·)

Cl
′m′
lmnk Clebsch-Gordon coefficients

Φnk
lm Phase of Bnklm

∆Klm[t] Dimensionless spherical harmonic coefficients of the temporal
geoid anomalies

kl Load Love numbers

σ2
l Degree variance

Λl Eigenvalues of the gravity functionals, also known as the
isotropic transfer coefficients

Mathematical notation

C Set of all complex numbers

N, N∗ Set of all whole numbers and natural numbers (excludes 0)

R, R>1 Set of all real numbers and real numbers greater than 1

Z Set of all integers

Mathetical operators

E{·}, D{·} Expectation and dispersion operators

arg(·) Argument of a complex number, also called the phase of the
complex number

sgn(·) Sign operator
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CHAMP CHAllenging Minisatellite Payload

GRACE Gravity Recovery and Climate Experiment

GOCE Gravity field and steady state Ocean Circulation Explorer

GGOS Global Geodetic Observing System

GPS Global Positioning System

SLR Satellite Laser Ranging

MTF Modulation Transfer Function

SNR Signal to noise ratio
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