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Summary

The integral method and least-squares collocation (LSC), which work together with the remove-
compute-restore technique, are state-of-the-art methods for computing accurate high-resolution re-
gional gravity field models. However, both methods have some limitations. The integral method
requires gridded gravity data as input for fast computations, which can introduce interpolation errors
in the solution, and it is also not well suited for handling different types of input gravity field data.
On the contrary, LSC can be applied for an optimal combination of heterogeneous observations, but
a linear equation system must be solved, with the number of unknown parameters being equal to the
number of observations. This prohibits it from being widely used in (real) cases with a large number
of observations. Although the development of computer performance can partly solve the numerical
problem of LSC, it is still of interest to seek for a method, which behaves as a compromise between
the aforementioned two methods.

In this thesis, a parameterization method using radial basis functions (RBFs) is studied for regional
gravity field modeling. On the one hand, this method is capable of dealing with different input data
sets in comparison to the integral method. On the other hand, a linear equation system with a smaller
number of unknown parameters is to be solved than for the case of LSC. The corresponding regional
solution can be regarded as complementary to the integral method and LSC. The method mainly
contains: (1) the design of the RBFs, including the choice of the spatial bandwidths of the RBFs and
the horizontal positions of the RBFs; (2) the parameter determination.

In the first task, due to the space localization of the RBFs, the spatial bandwidths of the RBFs play
the most important role for achieving a good approximation of the regional gravity field. An RBF’s
spatial bandwidth depends on its type, spectral bandwidth, and radial distance (i.e., depth below the
reference sphere). The spectral bandwidth is defined by the minimum and maximum degree used in
the series expansion of the RBF, resulting in a full RBF using all terms and a reduced RBF using only
terms from a specified minimum degree to a maximum degree. In the context of this thesis, the type
of the RBFs is chosen to be the point mass kernel (i.e., point mass RBFs). The spatial bandwidths
of the RBFs then rely on the spectral bandwidths and depths. In this case, the design of the RBFs is
equivalent to determine the RBF positions (i.e., horizontal positions and radial distances) and their
spectral bandwidths. In practical applications, the positions of the RBFs are usually determined
first. Then, the spectral bandwidths are properly selected, which further modifies the corresponding
spatial bandwidths. For determining the RBF positions, two cases are studied: a fixed case and a
free case. In the fixed case, all RBFs are located at the nodes of one or more grids. Obviously, the
construction of the grids plays a crucial role, including the choice of the grid extent, grid spacing, grid
depth, and grid formation. In contrary to the fixed case, the number and positions of the RBFs are
unknown in the free case. A search process is developed to automatically select a number of point
mass RBFs at reasonable positions by means of solving a series of small-scale nonlinear problems with
bound constraints on the unknown parameters using an appropriate iteration algorithm to minimize
the root-mean-square (RMS) of the differences between the predictions and observations.

The goal of the second task is to provide a stable estimate of the magnitudes of all searched
point mass RBFs with known positions in the least-squares adjustment. Two solution schemes are
proposed for estimating the magnitudes. In the first solution scheme, the full or reduced RBFs are
used for assembling a linear equation system. Then, the magnitudes are estimated in a least-squares
adjustment. In the second solution scheme, only the full RBFs are used for constructing the linear
equation system. Additional constraints are taken into account in the least-squares adjustment.
These constraints are derived from the relationship between the spherical harmonics and the point
mass RBFs. To deal with the case of ill-posedness, Tikhonov regularization is applied, and the proper
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regularization parameter is determined by either an empirical or a heuristic approach.

Several numerical tests using synthetic and real gravity data are carried out to test the developed
point mass method. The “optimal” strategy for choosing appropriate model factors for the point
mass method is derived from various numerical comparisons, so that a good gravity field solution in
terms of RMS (or standard deviation) errors can be guaranteed. The solutions are validated against
independent gravity field data or compared to the results computed by other methods. The numerical
results show that the proposed point mass method is able to provide a good solution that is compa-
rable to the solution of LSC if the model factors are chosen properly.

Keywords. Regional gravity field, radial basis functions, point mass method, least-squares, regular-
ization



Zusammenfassung

Das Integralverfahren und die Kleinste-Quadrate-Kollokation (LSC) sind moderne und im Rah-
men der Remove-Compute-Restore Technik aktuell genutzte Methoden zur Bestimmung genauer
hochaufgeldster regionaler Schwerefeldmodelle. Aber beide Methoden haben ihre Einschréankungen.
Das Integralverfahren bendtigt als Eingangsdaten die Schwerewerte auf einem Gitter, so dass mogliche
Interpolationsfehler die finale Losung beeinflussen kénnen. Auflerdem ist die Methode fiir die Kombi-
nation unterschiedlicher Schwerefelddaten nicht sonderlich gut geeignet. Im Gegensatz dazu kénnen
die Daten mit LSC optimal kombiniert werden, da die Eingangsdaten ohne jegliche Interpolation
verwendet werden. Ein wesentlicher Nachteil ist aber der hohe numerische Aufwand, denn es ist ein
lineares Gleichungssystem mit genauso vielen Unbekannten wie Beobachtungen zu 16sen. Da in realen
Anwendungsfallen meist eine grofle Anzahl von Beobachtungen vorliegt, ist der LSC-Ansatz nicht sehr
weit verbreitet, obwohl die heutige Rechenkapazitdt und Computertechnologie die numerischen An-
forderungen zum Grofteil erfiillen kénnen.

In dieser Arbeit wird ein Ansatz zur regionalen Schwerefeldbestimmung mit Hilfe radialer Basis-
funktionen (engl. radial basis functions, RBFs) vorgestellt. Auf der einen Seite ist dieses Verfahren,
im Vergleich zum Integralverfahren, in der Lage, unterschiedliche Eingangsdatenséitze zu verarbeiten,
auf der anderen Seite weist das lineare System, das zu losen ist, deutlich geringere Dimensionen
auf. Die Methode der regionalen Lésung kann daher als Ergdnzung zum Integralverfahren und zur
LSC eingeordnet werden. Die Kernpunkte der Methode umfassen: (1) den Entwurf der RBFs, ein-
schliefllich der Wahl der rdumlichen Bandbreiten und der horizontalen Positionen der RBFs sowie (2)
die Parameterschétzung.

Die erste Aufgabe umfasst die Lokalisierung der RBFs. Dabei spielt die Bestimmung der rdum-
lichen Bandbreiten die wichtigste Rolle, um eine gute Annéherung an das regionale Schwerefeld zu
erreichen. Die rdumliche Bandbreite einer RBF héngt im Wesentlichen von der Art, der spektralen
Bandbreite sowie der radialen Entfernung der Basisfunktionen ab. Die spektrale Bandbreite wird tiber
den minimalen and maximalen Grad in der Reihenentwicklung der Basisfunktion definiert. Dies fiihrt
einerseits zu vollen RBFs unter Nutzung aller Terme und anderseits zu reduzierten RBFs, bei denen
nur ausgewahlte Terme von einem minimalen Grad bis zu einem maximalen Grad genutzt werden. Als
Typ werden im Rahmen dieser Arbeit RBFs mit Punktmassen-Kernen (Punktmassen-RBFs) gewé&hlt.
Somit héngen die rdumlichen Bandbreiten der RBFs von der Wahl der spektralen Bandbreite und
der radialen Entfernung ab. In diesem Fall ist das Entwerfen der RBFs dquivalent zur Bestimmung
der RBF-Positionen (horizontale Positionen und radiale Absténde) und der spektralen Bandbreiten.
In praktischen Anwendungen werden beide Faktoren nacheinander bestimmt. Meist werden die Po-
sitionen der RBFs unter Nutzung der vollen RBFs zuerst bestimmt. Dann werden die spektralen
Bandbreiten geeignet ausgewédhlt, um die rdumlichen Bandbreiten weiter verdndern zu konnen. Fiir
die RBF-Positionen werden zwei Félle untersucht: ein fixierter Fall und ein freier Fall. Im fixierten
Fall werden alle RBFs an den Knotenpunkten von einem oder mehreren Gittern fixiert. Offensichtlich
spielt der Aufbau der Netze dabei eine entscheidende Rolle; dieser umfasst die Wahl der Gittergrofe,
des Gitterabstandes, der Gittertiefe und der Gitteranordnung. Im Gegensatz zum fixierten Fall sind
Anzahl und Position der RBFs im freien Fall unbekannt. Es wurde ein automatisierter Suchprozess en-
twickelt, der die Anzahl der Punktmassen-RBFs auswéhlt und deren Positionen bestimmt. Dabei wird
eine Reihe klein-skaliger nichtlinearer Probleme mit Randbedingungen fir die Tiefen (d.h. radialen
Absténde) oder die horizontalen Positionen gelost. Dies geschieht unter Anwendung eines geeigneten
Iterationsalgorithmus zur Minimierung der mittleren quadratischen Abweichung (root-mean-square,
RMS) der Differenzen zwischen Vorhersagen und Beobachtungen.

Die zweite Aufgabe verfolgt das Ziel einer stabilen Schétzung der Amplitude aller gesuchten Punkt-
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massen-RBFs mit bekannten Positionen unter Zuhilfenahme der Methode der kleinsten Quadrate. Es
werden zwei Losungsschemata zur Schiatzung der Amplitude vorgeschlagen. Im ersten Lésungsschema
werden volle oder reduzierte RBFs zum Aufbau des linearen Gleichungssystems genutzt. Die Amplitu-
den der RBFs werden dann in einer Kleinste-Quadrate-Ausgleichung geschatzt. Das zweite Losungs-
schema sieht vor, lediglich die vollen RBFs zum Aufbau des linearen Gleichungssystems zu verwenden.
Zusétzliche Bedingungen werden im Zuge der Kleinste-Quadrate- Ausgleichung beriicksichtigt. Die Be-
dingungen werden aus dem Verhéltnis zwischen Kugelfunktionen und Punktmasse-RBFs abgeleitet.
Im Falle schlecht gestellter Probleme wird die Tikhonov Regularisierung angewendet und der geeignete
Regularisierungsparameter iiber einen deterministischen oder einen empirischen Ansatz bestimmt.

Unter Verwendung synthetischer und realer Schweredaten wird mittels mehrerer numerischer Tests
die entwickelte Punktmassen-Methode getestet. Die "optimale" Strategie fiir die Auswahl geeigneter
Modellfaktoren fiir die Punktmassen-Methode wird schliefilich aus verschiedenen Zahlenvergleichen
abgeleitet, so dass eine gute Schwerefeldlosung in Bezug auf RMS (oder Standardabweichung) gewéhr-
leistet werden kann. Die Loésungen werden entweder gegen unabhéngige Schwerefelddaten validiert
oder mit Ergebnissen anderer regionaler Methoden verglichen. Die Ergebnisse zeigen, dass die Punkt-
massen-Methode in der Lage ist, regionale Losungen zu bestimmen, die mit LSC-Losungen vergleich-
bar sind, sofern die Modellfaktoren geeignet gewéhlt werden.

Schlagworter. Regionale Schwerefelder, Radiale Basisfunktionen, Punktmassen-Methode, Kleinste-
Quadrate-Ausgleichung, Regularisierung
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1 Introduction

1.1 Background

In geodesy, one of the major tasks is the determination of the Earth’s gravity field, which provides
a fundamental contribution to geodetic, oceanographic, and geophysical applications. The highest
accuracy and resolution demands in the field of geodesy are coming from Global Navigation Satellite
System (GNSS) positioning and the determination of gravity field related heights. In this context,
the geoid and quasigeoid are of major interest, as they serve as a height reference surface for the
orthometric and normal heights, respectively, such that ellipsoidal heights measured by GNSS can
be directly transformed into gravity field related heights. Furthermore, a geoid or quasigeoid model
with sufficient accuracy is also necessary for the realization of a global height reference as well as for
the derivation of the ocean circulation based on accurate sea surface heights measured by altimeter
satellites. In addition, the knowledge of the gravity field also gives insight into the Earth’s interior,
such as crustal density variations, Moho undulations, rift basins, and lithospheric structure.

With the advent of dedicated gravity satellite missions, e.g., CHAllenging Minisatellite Payload
(CHAMP), Gravity Recovery And Climate Experiment (GRACE) as well as Gravity field and steady-
state Ocean Circulation Explorer (GOCE), the accuracy of the global gravity field is highly improved,
in particular at long and medium wavelengths. For the GOCE mission (Drinkwater et al., 2003), the
target accuracy is 1 — 2cm for the geoid and 1 mGal for gravity anomalies, at a resolution of about
100 km. Due to the global support of spherical harmonics, which are conventionally applied for repre-
senting the global gravity field, and due to the fact that the real gravity field exhibits strong signal
variations in selected regions, in particular in the higher frequency part of the gravity field spectrum,
the regional features can not sufficiently be taken into account by a global solution. Alternatively,
regional gravity field modeling is applied to extract more information from the satellite data in the
region of interest (e.g., Eicker et al., 2014). In addition to satellite data, dense (near) surface gravity
observations (e.g., terrestrial, marine, airborne, and altimeter data) are also available in some regions,
and hence the regional gravity field modeling aims at merging the satellite and (near) surface data in
an optimal way (e.g., Denker, 2013).

To benefit from the dramatic improvements of the long-wavelength global gravity field components,
the remove-compute-restore (RCR) technique (Forsberg, 1984) is frequently used in regional gravity
field modeling. A global field is subtracted from the observations before gravity field modeling to
remove the long-wavelength signal and reduce edge effects, and finally is restored to the computed
residual field. A number of different methods exist to approximate the anomalous gravity potential.
A review of the properties of various methods can be found, e.g., in Tscherning (1981). In addition
to the traditional integral formulae (e.g., Stokes’s integral) and least-squares collocation (LSC) (e.g.,
Heiskanen and Moritz, 1967; Moritz, 1980), radial basis functions (RBFs) have been used extensively
for the regional parameterization of the gravity field in recent years. Some examples are the point
mass kernel (e.g., Dampney, 1969; Needham, 1970; Heikkinen, 1981; Barthelmes, 1986; Cordell, 1992;
Vermeer, 1995; Antunes et al., 2003), radial multipoles (e.g., Marchenko, 1998; Marchenko et al.,
2001), spherical wavelets (Schmidt et al., 2007; Bentel et al., 2013; Naeimi, 2013), spherical spline
functions (e.g., Eicker, 2008; Eicker et al., 2014), and Poisson wavelets (e.g., Klees and Wittwer, 2007;
Klees et al., 2008; Tenzer and Klees, 2008; Wittwer, 2009; Panet et al., 2010). As the radial basis
functions are space localizing, it is expected that a proper model setup within the parameterization
will play a crucial role for a good representation of the regional gravity field.
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1.2 Research objectives

The goal of the research presented in this thesis is to develop a parameterization method for the
approximation of regional gravity field using RBFs. This method works in the framework of the RCR
technique, and the calculated regional gravity field solutions are considered as independent solutions
in comparison to the ones computed from the integral method and LSC.

The method mainly includes: (1) the design of the RBFs (i.e., model setup) based on data distri-
bution and signal content. It comprises the choice of the spatial bandwidths and horizontal positions
of the RBFs. The spatial bandwidth of an RBF is defined as the spherical angle where the basis func-
tion is half its maximum (Wittwer, 2009), describing the approximation characteristics of the RBF. It
depends on the RBF’s type, spectral bandwidth, and radial distance (i.e., depth below the reference
sphere); (2) the estimation of the unknown RBF coefficients. The type of the RBFs is pre-selected
in the context of this thesis, i.e., point mass RBFs are taken. And therefore, the main emphasis is
on the choice of the spectral bandwidths of the RBFs, the radial distances of the RBFs as well as
their horizontal positions. An RBF’s spectral bandwidth is defined by the minimum and maximum
degree used in the series expansion of the basis function, leading to a non-bandlimited (i.e., full) or
a bandlimited (i.e., reduced) RBF (Section 2.7.3). When the spectral bandwidths are also fixed, the
spatial bandwidths of the RBFs are then determined by their radial distances. In this case (the type
and spectral bandwidths of the RBFs are fixed), the design of the RBFs is equivalent to determine
the three-dimensional (3D) positions of the RBFs.

For the determination of the 3D positions of the RBFs, two cases are studied. In the first case, the
RBFs are defined to be at the grid points, and hence the design of the grids is very important. Several
model factors related to the grid have to be carefully chosen for achieving a good approximation. They
are the grid extent, grid spacing, grid depth, and grid formation. The effect caused by these factors
on the regional solution will be discussed. In contrary to the first case, the RBFs are considered as
free in the second case. This means that the number and positions of the RBFs to be used for the
modeling are unknown. In this case, we aim at developing a search process to find a set of RBFs at
reasonable positions.

After fixing the RBFs (i.e., the type, spectral bandwidths, number, and positions), a linear equation
system is generated and to be solved in the least-squares sense for estimating the coefficients of the
RBFs. A stable parameterization process considering Tikhonov regularization is to be developed,
which is capable of handling the ill-posedness.

In addition, the issue of data combination is also to be considered in the pursued method due to
the availability of more than one data sets in some regions of interest.

1.3 Thesis outline

The content of this thesis is divided into five chapters. Besides the current chapter with the intro-
duction, the remaining parts are organized as follows.

In Chapter 2 several methods for regional gravity field modeling are reviewed. The fundamental
concepts of potential theory are summarized at first. Then the geodetic boundary value problem
is outlined, and the corresponding approaches for solving the boundary value problem are briefly
described. Furthermore, the spectral combination approach is introduced. In addition to integral
method, LSC and parameterization method using RBFs are the other two commonly used approaches
for the approximation of the regional gravity field. This chapter ends with the description of the RCR
technique and the topography reduction; both are frequently applied for practical computations.

The principle of the point mass method and the computation procedures are described in detail in
Chapter 3. The relation between the point masses and the disturbing potential is explained at first.
Functional and stochastic models to be used in the regional gravity field analysis are then presented,
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resulting in the observation equations to be used for the approximation process. Afterwards, the
least-squares solution of the observation equations in both linear and nonlinear cases, as well as
the regularization process for obtaining a stable solution, are introduced. According to the way of
determining the positions of the point mass RBFs, two point mass approaches with fixed and free
positions are described; both are to be tested for the regional computations in Chapter 4. The latter
approach represents the main contribution of this thesis.

Chapter 4 addresses the numerical tests. Five tests using synthetic and real data are conducted
to test the proposed point mass approaches. The aim of the first three numerical tests is to find the
“optimal” strategies for the two regional approaches to obtain a good representation of the gravity
field through the investigations on the effect caused by different model setups and the comparisons
with traditional approaches. The inter-comparisons between the two point mass approaches are also
carried out. The best performing point mass approach considering the derived “optimal” strategy is
then applied to the remaining two numerical tests to verify its applicability.

Finally, the contributions of this thesis are summarized, and recommendations concerning challenges
that still need to be investigated as well as future research topics are given in Chapter 5.






2 Approximation of the regional gravity field

In this chapter, the tools that are necessary for the approximation of the regional gravity field are
reviewed. First of all, the fundamental concepts of potential theory are summarized as they present
the basic setting for the modeling. In Section 2.2, the geodetic boundary value problem (GBVP) is
outlined, and the corresponding approaches for solving the GBVP, i.e., the Stokes’s approach and
the Molodesky’s approach, are briefly described in Section 2.3 and 2.4, respectively. Furthermore,
the spectral combination method, which is able to combine different data sets by spectral weights,
is introduced in Section 2.5. The introduction of LSC in Section 2.6 provides a different view for
regional gravity field modeling. In addition to the integral method and LSC, the parameterization
method using RBFs is discussed in detail in Section 2.7. The spherical harmonics (SH), which are
suitable for representing the global gravity field, are also included for the purpose of comparison.
Finally, the RCR technique and the topography reduction are shortly reviewed in Section 2.8; they
are frequently used in the practical regional gravity field computations.

2.1 Fundamentals

2.1.1 The Earth’s gravity field

A particle with the mass m rotating with the Earth is affected by two forces, the gravitational force
Fy caused by the attraction from the Earth and the centrifugal force F. caused by the Earth’s
rotation. According to the definition in Heiskanen and Moritz (1967), Fg = F, + F. is called the
force of gravity of the particle. The force of gravity Fg and the gravity acceleration g is connected by
the particle mass m, satisfying Newton’s second law of motion: Fg = mg. Accordingly, the gravity
acceleration (or gravity) vector g is also the resultant of the gravitational acceleration b and the
centrifugal acceleration c:

g=b+ec. (2.1)

The direction of g is the same as the one of the plumb line (or vertical) and its magnitude g = ||g]|
is often called gravity.

According to Newton’s law of gravitation, the gravitational acceleration b at an arbitrary point ¢
with position vector r; is a function of mass densities and mass distribution inside the Earth and is
given by

by = b (r;) = G/// m)(r r)d9, (2.2)
Q

in which G is the gravitational constant with the value of (6.67384 + 0.00080) x 10~ m3kg =152
(recommended by CODATA 2010; Mohr et al., 2012), p(r) is the density of the Earth as a function
of the position vector r, and df? is the volume element of the Earth . In the Earth-fixed rectangular
coordinate system (e.g., Cartesian x-, y-, z-system) the position vector r, r;, and the Euclidean
distance ||r — r;|| are expressed as

r=(z,9,2)" and r; = (i, i, 2)"

, (2.3)
e —ril = /(@ — 20)® + (g — 90)° + (2 — 2)°
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and the expression of the centrifugal acceleration c; is given by (Torge and Miiller, 2012)

ci =c(pi) =w’p; with p; = (zi,4;,0)" and p, = |pil| = Vot yg (2.4)

where w is the angular velocity of the Earth’s rotation, p; is the distance vector from the rotation
axis and has the same direction as c;.

As the gravity is a conservative force field, it can be derived as the gradient of a scalar potential
(i.e., gravity potential ;) according to

g; = gradW;. (2.5)

The gravity potential W; of the Earth can be determined by
1
Wi:Vi—kC,-:G///p(r) 40+ ~w?p?, (2.6)
J el ™72

where V; is the gravitational potential that vanishes at infinity, C; is the centrifugal potential, which
is an analytical function. Obviously, the variations of W; are mainly dependent on V;. Applying
82
ay?
second partial derivatives with respect to the three Cartesian coordinates, to W; in Eq. (2.6), yields
(Heiskanen and Moritz, 1967)

the Laplace operator A = 88—;2 + + g—;, a differential operator that represents the sum of the

—47Gp +2w?  for point i inside Q@ (Poisson)
0 + 2w? for point i outside Q  (Laplace)

Any continuous functions, having continuous first and second derivatives and fulfilling Laplace’s
equation, are called harmonic functions (Torge and Miiller, 2012). Thus, the gravitational potential
outside of the Earth masses is a harmonic function, whereas inside of those masses it is not harmonic,
but satisfies Poisson’s equation. The centrifugal potential is not harmonic. The solution of AV; =0
in the spherical polar coordinate system, i.e., r = (J, A\, r), can be expressed by spherical harmonic
expansions in the following way (Heiskanen and Moritz, 1967)

n

a n+1 _ _ _
() Z (C’nm cosmA; + Spm sin m)\i) Py (cos ;) , (2.8)

i

M o0
Vi=V (¥i,Aiyri) = oM

n=0 m=0

where 9;, \;, and r; are the colatitude, longitude, and radial distance of the computation point ¢, GM
is the product of the gravitational constant G and the total mass M of the Earth, a is typically set to
be the semi-major axis of a reference ellipsoid, n and m are integers denoted as the degree and order
of the expansion, P,,, are the fully normalized associated Legendre functions of the first kind, and
C_'nm, S,m are the normalized spherical harmonic coefficients. For more details about the spherical
harmonic expansions, one can refer to the textbooks, e.g., Heiskanen and Moritz (1967), Torge and

Miiller (2012). In the remaining of this thesis, only the harmonic case will be of further interest.

2.1.2 The normal gravity field

For the determination of the external gravity field W, the normal gravity field U is introduced as
a reference system, which represents the normal figure of the Earth. On the one hand, the normal
gravity field should provide a reasonably good agreement with the real field. On the other hand, it
should possess a simple formation (Torge and Miiller, 2012). Based on these considerations, the normal
gravity field may be referred to the rotational ellipsoid by considering it to be a level ellipsoid (Torge
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and Miiller, 2012). If the given parameters of the level ellipsoid (i.e., semi-major axis a”V, flattening f*,
total mass MY of the ellipsoid, and rotational angular velocity w’) are those values that correspond
to the real Earth, then this yields the optimal approximation to the geometry of the geoid and to
the external gravity field. The latest two frequently used level ellipsoids in geodetic community are
GRS80 (Moritz, 2000) and WGS84 (NIMA, 1997). Furthermore, with the availability of very accurate
satellite gravity field models from the recent satellite missions (e.g., CHAMP, GRACE, and GOCE),
it is also worth to employ a global geopotential model up to a certain degree as a normal gravity field.

Corresponding to the real gravity potential W; in Eq. (2.6), the normal gravity potential U; is

composed of the normal gravitational potential V. and the centrifugal potential C¥:

U =VN +CN. (2.9)

Analogue to Eq. (2.5), the associated normal gravity vector is given by

v; = gradU;. (2.10)

The direction of v is the same as the one of the normal plumb line. Its magnitude v = ||| is the
normal gravity.

The normal gravitational potential of the level ellipsoid can be formulated by the ellipsoidal har-
monics, or in terms of spherical harmonics (Heiskanen and Moritz, 1967). Considering a complete
spherical harmonic expansion of the normal gravitational potential as well as the centrifugal potential
expressed in spherical polar coordinates according to Eqgs (2.6), (2.8), and (2.9), yields

Ui = U(’lgi,)\i,’l“i) = VN (192, )\ia""i) + CN (19@)\1,7‘,’)

N e _ _ 2.11
= GC]L\]{[ > <C:a> > (Cflvm cosmA; + SN, sin m)\i) P (cos ;) + % ( Ny sin 191»)2 ) (211)
n=0 v m=0

Because of the symmetry of the level ellipsoid with respect to the rotational axis, there will be only
zonal terms (i.e., m = 0), and because of the symmetry with respect to the equatorial plane, there
will be only even zonal harmonics (i.e., n = even and m = 0) in the gravitational part of Eq. (2.11)
(Heiskanen and Moritz, 1967). An expansion up to degree n = 10 is usually sufficient for practical
computations (Denker, 2013).

2.1.3 Anomalous gravity field

The small difference between the actual gravity potential W and the normal gravity potential U is
called the anomalous potential, or disturbing potential 7. For an arbitrary point ¢ outside of the
Earth’s surface, the disturbing potential is obtained according to

T - Wi, (212)

Assuming that the centrifugal parts in both W; and U; are identical, see e.g., Eqs (2.6) and (2.11),
the disturbing potential T; is then expressed as the difference between the actual V; and the normal
gravitational potential ViN :

Ti:Vi_ViNa (2.13)
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and hence T; is a harmonic function too, satisfying AT; = 0. With regard to Eqgs (2.8) and (2.11),
the disturbing potential can be expanded in spherical harmonics:

GM & a n+l n B B -
T; = T (9, M, i) = 0 Z (7‘) Z (ACnm cos mA; + ASy,y, sin m)\i) Py (cosd;)  (2.14)
n=0 ¢ m=0

with the Stokes coefficients ACpm = Chm — (GGLMN> (%)n C’,]ym, ASpn = Spm — (%) (%)n S%Vm =
Spm for SN = 0. The different values of GM, a in V and GMY, a" in V¥ lead to a rescaling of the
coefficients of the normal potential. The summation of Eq. (2.14) starts at degree n = 0 to account
for possible differences in the quantities of GM and GMY (Denker, 2013).

The gravity disturbance vector is defined as the difference between the actual gravity and the normal
gravity vectors, which are evaluated at the same point. It is consequently a one-point function related
to the same point in space. Corresponding to the disturbing potential T;, the gravity disturbance
vector dg; is given by

0g; = g — v, = gradW; — gradU; = gradT;, (2.15)

while the scalar gravity disturbance is written as
09i = 9i — YVi- (2.16)

The vector of gravity anomaly is defined as the difference between the actual gravity on the Earth’s
surface and the normal gravity on the telluroid:

Agi =g — vy =08 + (v; — i) = grad T; + (grad U; — grad Uy ) , (2.17)

where the point 7 is located on the Earth’s surface, and the point i’ is the projected point on the
telluroid through the normal gravity vector . Thus, the gravity anomalies are two-point functions,
i.e., related to the points on the Earth’s surface and the telluroid. On the basis of Eq. (2.17), the
scalar equations of the gravity anomaly vector Ag; can be expressed as

Agi = gi — it (2.18a)
& = @i — oir, (2.18b)
ni = (Ai — Air) cos ¢y, (2.18c)

where Ag; represents the magnitude of the gravity anomaly vector, & and 7; denote the north-south
and east-west components of the deflection of the vertical, (®;, A;) are the astronomical latitude and
longitude, and (¢, A7) are the geodetic latitude and longitude.

The distance between the point ¢ on the geoid and the projected point ¢/ on the ellipsoid is called
geoid undulation or geoid height N. It can be computed by the Bruns formula (Heiskanen and Moritz,
1967)

N; = Ti(geoid) : (2'19)
Vi’ (ellipsoid)

and similarly, for the height anomaly

G = ,Ti(surface) (2 20)
' i/ (telluroid) ’

where Tjgeoid) and Tj(surace) are the disturbing potentials on the geoid and the Earth’s surface,
Vit (ellipsoid) a1 Vit (telluroid) are the normal gravity on the ellipsoid and the telluroid, respectively. For
more details about these definitions, one can refer to, e.g., Heiskanen and Moritz (1967), Torge and
Miiller (2012), and Denker (2013).
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Finally, on the basis of Egs (2.15)—(2.20), the relationships between the disturbing potential 7" and
the above-mentioned gravity field quantities in spherical approximations are summarized as follows
(Heiskanen and Moritz, 1967):

g = _%f’ (2.21a)

Ag = 7%3: - ? (2.21b)

- —717";2, (2.21¢)

)= _@gﬁ’ (2.21d)

N = I, or (= Z (2.21e)
gl gl

Eq. (2.21b) is called the fundamental equation of physical geodesy; however, it might by replaced
by Eq. (2.21a) in the future because of the development of the Global Navigation Satellite System
(GNSS) technique (Hofmann and Moritz, 2005). It is also worth to emphasize that the spherical
approximations in Eq. (2.21) do not imply that the boundary is replaced by a sphere. Here, ellipsoid
terms have just been omitted.

2.2 Geodetic boundary value problem

The geodetic boundary value problem (GBVP) comprises the determination of the Earth’s physical
surface or the geoid, as well as the exterior gravity potential W from the observations on or close to
the Earth’s surface (Torge and Miiller, 2012). Because of the insufficient knowledge of the Earth’s
density structures, the direct determination of W is not possible, and it can only be computed
indirectly from the boundary data by solving a GBVP. The given boundary data usually are linear
or nonlinear functionals of the gravity potential, leading to the gravimetric GBVP. An example of a
linear functional is the gravity potential itself, e.g., the potential (differences), while an example of a
nonlinear functional is the gravity disturbance that is defined as the magnitude of the gradient of the
gravity potential.

Depending on the geometry of the boundary surface, it is appropriate to divide the gravimetric
GBVP into fixed and free formulations (Heck, 1997). The boundary surface is assumed to be known
(e.g., fixed by the coordinate vectors from GNSS technique) for the fixed gravimetric GBVP, and
therefore the only remaining unknown is the potential function W. Contrary to the fixed case, the
information on the geometry of the boundary surface is either incomplete or missing entirely for the
free gravimetric GBVP, resulting in Molodensky’s boundary value problem (Molodenskii et al., 1962),
i.e., the classical free gravimetric GBVP. It can further be subdivided into the vectorial free GBVP,
where the position of the boundary is completely unknown, leading to four unknowns (i.e., potential
W and three-dimensional coordinates), and the scalar free GBVP, where the horizontal positions are
known, resulting in only two unknowns (i.e., vertical coordinate and potential) (Heck, 1997). The
well-known Stokes’s and Molodensky’s GBVPs can both be considered as scalar free problems as
the horizontal coordinates of gravity data were traditionally based on the geodetic network, mostly
allowing a transformation to the Earth-fixed system with sufficient accuracy. The main difference
between the two problems is that the gravity data for Stokes’s problem are located at the geoid while
the data for Molodensky’s problem are at the Earth’s surface (Denker, 2013). The employment of the
normal gravity potential U for approximating the gravity potential W leads to the linearized GBVP,
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in which the primary unknown to be solved is the disturbing potential 7. Accordingly, the scalar
free gravimetric GBVP is transformed into the fixed GBVP with ellipsoid and telluroid serving as
the boundary surfaces for Stokes’s and Molodensky’s problem, respectively (Moritz, 1980; Denker,
2013). Once T is known, all relevant gravity field quantities can be calculated according to Eqs
(2.21a)—(2.21e).

2.3 Stokes’s approach of the GBVP

The Stokes’s classical GBVP aims at the determination of the geoid from gravity anomalies on the
geoid. This corresponds to a boundary value problem of the third kind (Robin problem) of potential
theory (Jekeli, 2009). After linearization of Stokes’s GBVP by approximating the geoid by an ellipsoid,
the Stokes’s approach to this GBVP is based on the partial differential equation AT (9, A, r) = 0 with
the spherically approximated boundary condition

B oT (9, \,r)
or

_2T(19,)\,rg) (2.22)

Ag (9, 1g) = .

r=rg

in which Ag (9, A\, rg) means the gravity anomaly on the geoid. After spherical and constant radius
approximation, the solution of Stokes’s GBVP is then given by the Stokes formula (or Stokes integrals)
(Heiskanen and Moritz, 1967)

T (9, A1) = % / / Ag (0, N,r,) S () do (2.23)

with the mean radius R of the Earth and the Stokes function (or Stokes kernel)

o0

2 1
SW) = Z :j—l P, (cos )
- (2.24)
= Sln(1w/2) —Gsin% 4+1—5cos® — 3cosyln (Sinqg + sin? 15) ,

where 9 is the spherical distance and P,, are the Legendre polynomials.

The existence of topography and atmosphere violates the boundary condition. Therefore, it is
necessary to remove the masses above the geoid to fulfill this condition. The calculation of the geoid
within the framework of Stokes’s GBVP has two important consequences (Denker, 2013): (1) the
gravity values must refer to the geoid; (2) there must be no masses outside the geoid.

In order to obtain the gravity anomalies at the geoid, the masses outside the geoid can either be
removed completely or moved inside the geoid. This changes the shape of the level surface and the
geoid, leading to the cogeoid. Furthermore, it is also advantageous to preserve the total mass of
the Earth. Therefore, Helmert’s second condensation method is usually applied, in which the masses
outside the geoid are condensed onto a layer on the geoid. It is an extreme case of an isostatic reduction
according to the Pratt-Hayford system as the depth of compensation D goes to zero (Heiskanen and
Moritz, 1967). The removal and condensation of the topographic masses require the knowledge of the
mass densities between the geoid and the Earth’s surface. Due to the lack of the density information
for the whole topography, a constant density (e.g., 2.67g/cm?) is usually assumed to be the real
one, introducing an error into the corresponding solutions. An investigation on the topographic mass
density variation effect on the geoid for the Stokes’s problem can be found in, e.g., Huang et al. (2001)
and Huang (2002). In general, the entire procedure for the computation of the geoid using Helmert’s
second condensation method can be described as follows (Heiskanen and Moritz, 1967; Denker, 2013):
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(D The masses above the geoid are removed by subtracting the attraction effect Ap from the gravity
value at the surface point P.

(@ The gravity station is lowered from the point P to the corresponding point P’ on the geoid
using the free-air correction F' or harmonic downward continuation.

The topographic masses are condensed on the geoid, and the attraction effect A%, at P’ is
©) pograp geoid, %
restored.

(@ The indirect effect 5T}3n,d on the potential due to the shifting of the topographic masses is
computed at P’

e indirect effect ¢33 on gravity, which reduces gravity from the geoid to the cogeoid, is taken

Th'd'tffté}?d ty, which red ty fi th d to th d, is tak
il’lt'O account at P’, yielding the gravity anomaly on the cogeoid as Ag%, = gp — Ap+ F + A% +
5g}£‘,d —7q- The point @ is the projected point on the reference ellipsoid with respect to the
point P’ on the geoid.

® The disturbing potential T, for the cogeoid is computed by applying the Stokes’s operator to
Agh.

(@ The disturbing potential Tp/. for the geoid is computed by adding the indirect affect 5T113H,d to
TI%/’ yleldlng TP/ = TI%/ + 5T1Pnld

Finally, the geoid height is obtained from the Bruns formula: Np: = ?{; -
In the case of 04 = A% — Ap = c and 5g§§,d ~ 0, the gravity anomaly at the cogeoid becomes

Agp = gp + F +c—v9 =~ Agp + ¢ = Agraye (ie., Faye anomalies) (Forsberg and Tscherning, 1997),
where c is the classical terrain correction. For further discussion on this matter one can refer to, e.g.,
Sideris (1994) and Forsberg and Tscherning (1997). Recently, some practical examples of national
geoid or quasigeoid computations are the models for Canada (Huang and Veronneau, 2013), China
(Li, 2012), and USA (Wang et al., 2012).

2.4 Molodensky’s approach of the GBVP

In order to avoid the removal and condensation of the topographic masses, which are necessary for
Stokes’s GBVP, Molodensky’s GBVP is based on gravity observations on the Earth’s surface. Within
the linearization process, the scalar free GBVP is transformed into the fixed one by approximating
the Earth’s surface by means of the telluroid, serving as the boundary surface, to which the boundary
conditions as well as the boundary data refer. The solution of Molodensky’s GBVP can be obtained
by making use of the following boundary condition in spherical approximation

_or (9, A1) B 2T (9, A, 1)

Y
or — r

Ag (9, A\ 1) = (2.25)
in which Ag (9, A\, r¢) is the gravity anomaly on the Earth’s surface. An efficient solution is provided
by the method of analytical continuation (Moritz, 1980; Sideris, 1987; Hofmann and Moritz, 2005), in
which the gravity anomalies Ag, given on the Earth’s surface, are analytically continued to a normal
level surface passing through the given computation point P (so-called “point level”), leading to the
analytical continued gravity anomalies

Ag =" gn, (2.26)
n=0
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where g, are analytical continuation terms. As Ag’ refer to the normal surface passing through point
P, the Stokes formula can be applied to determine the disturbing potential T at P, yielding

R R
T (?9, )\, Tt) = E/ Ag (19/, )\/, T‘t,) S (7,/}) do + E E // gnS (w) do. (227)
o n=1 o

According to Eq. (2.27), the main contribution to the Molodensky’s solution is from the Stokes
term while the further analytical continuation terms consider that the data are not given on a level
surface. Since g, terms depend on the computation point P, a new set of g, values have to be com-
puted for every new computation point. It is rather impractical. Therefore, a two-step procedure
is suggested (Sideris, 1987; Forsberg and Tscherning, 1997), in which the surface gravity anomalies
are first analytically continued to the geoid as Ag", then the Stokes formula is used to compute the
harmonically continued disturbing potential T, and finally 7° is analytically continued back to the
telluroid.

Furthermore, the first order solution of Eq. (2.27) is known as the gradient solution (Moritz, 1980),
which can be formulated by

~ Eﬂ- / (Ag + gl) S (w) do ~ ﬁ/ (Ag + C) S (1/)) do = g /AgFayeS (¢) do. (2.28)

It only holds in the linear approximation for gravity anomaly Ag that is linearly dependent on the
elevation. It is also worth mentioning that the Faye anomalies play an important role in the first order
solution of Molodensky’s problem as well as in the solution of Stokes’s problem (see also Section 2.3).
For more details about Molodensky’s GBVP, see e.g., Moritz (1980) and Heck (1997).

2.5 Spectral combination method

The spectral combination method is based on the Laplace surface harmonics derived from different
data sets, which are then combined by employing different spectral weights. This method was initially
developed to combine a global geopotential model and terrestrial gravity data in an optimal way for
the purpose of geoid/quasigeoid computations. It was promoted mainly by Sjoberg (1980, 1981, 2003)
and Wenzel (1981, 1982), while the basic idea already being outlined in Moritz (1976).

In the light of Eq. (2.14), the disturbing potential 7' can be expressed as

T(9,\7) ZT (0, \,7) (2.29)

with the Laplace surface harmonics of the disturbing potential

a r

n M n+1
Tn (9, N, 1) = Z <G> (a) (AC’nm cosmA + AS,,, sin m)\> m (cos ) (2.30)

m=0

referring to the radius r. Similar to Eq. (2.29), the gravity anomaly Ag (¢, A\, ) can also be given as a
summation of a series of gravity anomaly surface harmonics Ag, (9, A,r). According to Eq. (2.21b),
the relation between T}, (¢, A\, ) and Ag,, (¢, \,r) is given as (Heiskanen and Moritz, 1967)

2 1
T (9,0 7) = ——Aga (9, 0,7) = - nt /A (', X, 1') Py (cos ) do (2.31)
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In the following derivations, the spherical and constant radius approximation is applied, assuming
that the observations are given on the sphere with a radius » = R. Only two data sets are considered,
one for the global geopotential model and the other for the terrestrial gravity anomaly. The combined
disturbing potential surface spherical harmonics are computed as a weighted mean in the form of

T, (9,0 R) = wh!'TM (9, ), R) + wiTS (9, \, R), (2.32)

where TM and TS are the surface spherical harmonics from a global geopotential model and the
terrestrial gravity data, w) and wg are the spectral weights corresponding to T and T, ,? , which
can either be determined empirically, e.g., as filter coefficients (Haagmans et al., 2003), or within
the framework of least-squares adjustment or least-squares collocation solution (Kern, 2004). In the
least-squares approach, the solution takes into account the error estimates of Tflw and Tf , and gives
the following spectral weights to the gravity components (Denker, 2013)

2
G On (5TM7 R)
_ 2.33
Yn = 52 (e, R) + 02 (e76, R) (2.33)
with the error degree variances
GM 2 a 2n+2 n B _
2 _ a 2 2
o2 (epar, R) = ( : ) ( R) > (682, +5C2,,) (2.34)
for the global geopotential model, and
R 2
o2 (epe, R) = ( — 1) ol (EAgG,R)
" (2.35)

R \?2n+1 (7 .
= (n—l) 5 /0 Cov(sAgG,E'Agg,w,R) P, (cos ) sin dyp
for the terrestrial gravity data. 8C,m and 85, are the standard deviations of the Stokes coefficients
ACpm, and AS,,,, and o2 <5 AgC R) are the error degree variances of terrestrial gravity anomalies,

which are derived from the error covariance function Cov (sAgc,g’AgG,w, R). The weights wﬁ/l can
be obtained from the following relation

$n = wM +w, (2.36)
in which s,, is usually set to be 1.0 (Denker, 2013). Inserting Eq. (2.36) in the form w) = 1.0 — w¢
into Eq. (2.32) yields the following combined disturbing potential surface harmonics:

T (9,0, R) = (1.0 = w) T (9,0, R) + TS (9, ), R)
_ M G [rG M (2.37)
=T (9,0, R) +w§ [TF (9,0, R) = T (9,), R)].

On the right-hand side of Eq. (2.37), the first term is a component from a global geopotential model,
and the second term corresponds to the differences between the terrestrial gravity anomalies and the
global model values. Inserting Eq. (2.37) into Eq. (2.29) and summing up from degree 2 to oo, the
final disturbing potential is computed according to
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T(W,\R)=> T,(9,\R)

n=2

—ZTMﬁ/\R—l—Zw[ (9, \, R) — 7{”(19,)\,}%)} (2.38)
= TM (0, \,R) + T (9, \, R)

with 7™ and TC being the contributions from the global geopotential model and the terrestrial
gravity data, respectively. According to Eq. (2.31) with 7 = R, T¢ can be formulated as

TG (9, \, R) // (', N\ R) — Ag™ (9 N, R)| W (4, R) do (2.39)

with the (modified Stokes) kernel

[e.o]

2 1
= Z w nt P, (cos)) . (2.40)
oy n—1

In Eq. (2.39), Ag are the terrestrial gravity anomalies and Ag are the model anomalies. Regarding
Eqs (2.38)—(2.40), the spectral combination method results in a remove-compute-restore procedure, in
which the residual gravity anomalies are used to compute the residual disturbing potentials, and finally
the disturbing potentials from the global model are added. The difference between the combination
method and Stokes formula is dependent on the choice of w&. In the case of w$ = 1.0 for degree

€ [2,00), the method is equivalent to Stokes formula with W (¢, R) = S (¢), i.e., see Eqs (2.24)
and (2.40). All contributions are from the terrestrial gravity data. If wrcf = 0 for degree 2 < n < Npmax
and wS = 1.0 for degree n > npax, the long-wavelength contributions (2 < n < npmay) are from
the global geopotential model, while the short-wavelength contributions (n > npax) are provided by
the terrestrial gravity data. Therefore, the spectral weights allow to control which degrees are taken
from the geopotential model and which from the terrestrial gravity data, resulting in an optimal
spectral combination of two data sets. Some examples for European quasigeoid modelings by using
the spectral combination method can be found in Denker (1998), Denker et al. (2009), and Denker
(2013).

2.6 Least-squares collocation

In physical geodesy, the least-squares collocation (LSC) can be considered as a combination of least-
squares adjustment and least-squares prediction (Moritz, 1978), providing an optimal combination
of geodetic observations of different kinds, such as classical angle and distance measurements, astro-
nomical observations, gravity measurements, and satellite data, to obtain the geometry of the Earth’s
surface and the exterior gravitational potential. For the derivation of LSC, there are two fundamen-
tally different viewpoints with correspondingly different mathematical/physical concepts and ideas.
The first one is the deterministic approach, and the second one is called the stochastic-probabilistic
approach. Both approaches as well as a compromise of the two approaches (called spatio-statistical
approach) are discussed and compared in detail in Kotsakis and Sideris (1999) and Kotsakis (2000).
For further information about the mathematical foundations of LSC, one can refer to Moritz (1980).

Suppose for an unknown function f in a reproducing kernel Hilbert space, its approximation f can
be determined from the observations, which are linear functionals of f. For gravity field modeling,
the unknown function is disturbing potential 7', and the observations are, e.g., gravity anomalies Ag,
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gravity disturbances dg, etc. Considering n observations [; with random and systematic errors, the
basic observation equation for LSC is given as

or, in matrix notation

1=L(T)+AX t+te=t+AX +e. (2.42)

The vectors 1 and e comprise n measurements and corresponding random errors, respectively. L is the
vector of linear operators with respect to the disturbing potential, resulting in the signal vector L (7')
or t. The vector X comprises m systematic parameters, and A is known as an n X m matrix with
m < n. In general, AX may, for example, express the effect of a datum-shift or a bias and tilt in the
observations (Tscherning, 2013). According to the minimum principle for least-squares collocation
(Moritz, 1980):

e'C.. e +sTC,,'s = minimum (2.43)

with Cgs the auto-covariance matrix of the signal vector s and Ce, the error covariance matrix of the
vector e of the measuring error, the best linear estimates of X and § are given as

~ —1
X = (ATcy'A) ATCy T, (2.44a)

§=C,Cy ! (1 - AX) . with Cy = Cyt + Cee, (2.44b)

where Cy and Cg; are the auto- and cross-covariance matrices related to the signals t at the obser-
vation points and s at the prediction points. In most cases of practical applications, the systematic
part is not taken into account, leaving only the random part in the observations. As a consequence,
Eq. (2.44a) is no longer required, and Eq. (2.44b) becomes

§= CStCll_ll with Cj; = Cy + Cee. (2.45)

Furthermore, in the case that the observations are assumed to be error-free, the corresponding LSC
solution is
§ = C4Cy~'1 with C; = Cy. (2.46)

Accordingly, the three LSC models depending on the errors in the observations are summarized as
follows:

(D LSC with random and systematic errors. The observation equation is given in Eq. (2.42),
and the corresponding solution is given in Eq. (2.44).

® LSC with only random errors. The observation equation is given in Eq. (2.42) but with
A =0, and the corresponding solution is given in Eq. (2.45).

® LSC without errors. The observation equation is given in Eq. (2.42) but with both A =0
and e = 0, and the corresponding solution is given in Eq. (2.46).

In the context of this thesis, only the latter two models are used for the gravity field computations.
Model ) is usually utilized in the practical applications as the gravity measurements always contain
measurement errors. Model @) is only employed in the test cases with synthetic data. The LSC
solution given in Eq. (2.45) (called the standard LSC solution in the following) can be considered as
being equivalent to Tikhonov regularization with signal constraints, where the regularization param-
eter equals 1 (Bouman, 1998), i.e., see the second term of the left-hand side of Eq. (2.43). Often, the
standard LSC can provide stable solutions for ill-posed problems. However, the amount of smoothing



16 2 Approximation of the regional gravity field

provided by the noise covariance matrix Cg. is not enough in some cases, then an additional regu-
larization parameter v has to be introduced into Eq. (2.45), leading to the regularized LSC solution
(Marchenko et al., 2001):

§=CyuCy 1 with Cj=Cy +aCe (2.47)

in accordance with the minimum principle (Marchenko et al., 2001)
e'C..le+ asTC, s = minimum. (2.48)

If « =1, Eq. (2.48) equals to Eq. (2.43), and Eq. (2.47) is the same as Eq. (2.45). The regulariza-
tion parameter « is determined based on the following formula solved from the so-called misclosure
principle (Ameti, 2006):

trace (CyCee)
@ +\/ + trace (CeeCee) (2.49)

Suppose that (1) only one data type is used; (2) the noise covariance matrix can be represented as
C.c = 021, where o2 is the variance of the noise, and I is the identity matrix; (3) the auto-covariance
matrix can be approximately written as Cy; = 021, where o7 is the variance of the signals, then Eq.
(2.49) can be approximated as (Marchenko and Tartachynska, 2003)

0.2
a=1+4/1+-5. (2.50)
06

It should be noted that Eq. (2.50) only provides a possible upper limit of «. More approaches for
the determination of the regularization parameter « in LSC are described in Ameti (2006).

The application of LSC requires the determinations of Cg and Cy, see e.g., Eq. (2.47). In this
context, the covariance function of the disturbing potential Cpp (P, Q) is typically chosen as the
basic covariance function from which all other required covariance functions are derived by the law of
covariance propagation, considering the harmonicity of 7" and the analytical relations between T' and
its functionals. For two gravity functions f and g, which are related to T" by the linear operators LJICD
and Lg for points P and @), the required covariance function is obtained by the following equation

The (spatial) homogeneous and isotropic covariance function of the disturbing potential is defined as

Crr (P,Q) = Crr (Ypq) = M {Tp,Tg}, (2.52)

where M {-} is the averaging operator, and hence M {Tp,Ty} can be interpreted as averaging first
over a circle with a radius 1pg, keeping point P fixed and letting point () move along the circle,
then varying P over the whole sphere. Following the derivations in Heiskanen and Moritz (1967), the
covariance function of the disturbing potential can be expanded into a series of spherical harmonics
as

R},

TPTQ

) n+1

CTT (P7 Q) = Z Cn (T’ T) < > Pn (COS wPQ) ) (253)
n=2

in which Rp is the mean radius of the Earth, ¢, (T,T) is the degree variance of the disturbing

potential, which is related to the Stokes coefficients AC,,,, and AS,,,,, of T' by (Heiskanen and Moritz,

1967)
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n
e (T,T) =Y (AC2, +AS2,). (2.54)
m=0

In practice, the covariance function can not be precisely determined, as the knowledge of the
disturbing potential function is limited. For instance, the degree variances ¢, (T,T) are often not
available for n > N with N being the maximum degree of the current global geopotential models,
e.g., N = 2190 for EGM2008 model (Pavlis et al., 2012). An analytical model is usually employed
to fill the missing part. The degree variance model of Tscherning and Rapp (1974), which results in
closed formulas for all covariance functions, is widely used. Its expression in terms of the disturbing

potential is given as

A
(n—1)(n—2)(n+ B)’

BT = (2.55)
where A is a constant in units of (m/s)*, B is an integer that is typically set to be a small value (e.g.,
B =4) if a gravity model has been subtracted from the input data. As result, a complete covariance
function in terms of the disturbing potential for practical applications is given as

B2\ " g2\
Crr (P,Q) = ch T,T) < E) P, (cospg) + Z TT)( B > P, (cospq),

rprQ R N4l rpTQ
(2.56)

where Rp is the radius of the Bjerhammar sphere. For the residual disturbing potential, Eq. (2.56)
can be replaced by

R

’r’pTQ

n+1
) Pn (COS wPQ)

(2.57)
with @ being a scaling factor, o2 (T,T) being the error degree variance of the disturbing potential,
see also Eq. (2.34).

For regional gravity field modeling, a covariance function is determined by the available gravity
functionals within the area of interest. In the case where the input data are gravity anomalies, the
auto- and cross-covariance functions Cagag and Crpg is obtained on the basis of Eq. (2.51), yielding

N R2 n+1
CTT(P,Q):GZO'%(T,T) < E ) (COSprQ + Z TT) (

n=2 TPTQ n=N-+1

[e'e) R2 n+1
Cagag (P, Q) = ;::2 cn (Ag, Ag) (wﬁ;) P, (cospq) (2.584)
[ee) R2 +1
CTAg (P7 Q) = nz::Q Cn (T, Ag) (rPfQ> P, (COS ¢PQ) (2'58b)
with
2
en(0g,Ag) = "=V (1, (2.5580)
TPTQ
en (T, Ag) = "= Yo (1.7). (2.58)
rQ

It should be noted that Eqs (2.58a)—(2.58d) are based on Crr given in Eq. (2.53). In practice, Crr
should be used in the form of Eq. (2.56) or (2.57), and similar expressions for Caga, and Crpag can
be obtained by certain derivations. The parameters a, A, and Rp are estimated iteratively when
fitting the covariance function (e.g., Cagag) to the empirically derived model (Knudsen, 1987). For
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more details about the computation of the empirical covariance function, see also Goad et al. (1984).

Compared to the integral method for regional gravity field modeling (see Sections 2.3—2.5), LSC
can handle all gravity functionals of the disturbing potential as input or output data, including the
associated error estimates (Moritz, 1980). The data can be located at arbitrary points with different
heights, and hence no gridding is required. However, a system of linear equations with the number
of unknowns being the same as the number of observations has to be solved in LSC. For the case
with tens thousands of observations or even more, the high computational burden might become a
significant problem. In addition, numerical instabilities may be caused by identical points or points
at a short distance, making Cj; singular. Consequently, duplicate points should be excluded from the
input data before the computations.

2.7 Spherical harmonics and radial basis functions

In the following, spherical harmonics (SH), which are frequently used for representing the global
gravity field, are introduced; they are the eigenfunctions of the Laplace operator A and represent
a set of basis functions with global support. Most of the existing global geopotential models are
formulated in terms of spherical harmonic coefficients, such as EGM2008, GOCO03s (Mayer-Giirr
et al., 2012), etc. However, their applicability to the approximation of the regional gravity field is
regarded as less appropriate (e.g., Schmidt et al., 2007; Eicker, 2008). Alternatively, the concept of
radial basis functions (RBFs) that have space localizing characteristics is introduced as they act as
an essential tool for regional gravity field modeling. In Section 2.7.1, the mathematical descriptions
of both SH and RBFs for the representation of gravity field are given. A brief comparison between
SH and RBFs, as well as their relationship, are then presented in Section 2.7.2. In Section 2.7.3, the
spectral and spatial characteristics of two selected RBFs are investigated as examples. Finally, some
remarks on the regional gravity field modeling using RBFs are summarized.

2.7.1 Mathematical description

Let Qg be a sphere with the radius R, the position vector r is defined as
r=(¢,\r)"  with |r||=r>R, (2.59)

where ¢, A are the geocentric latitude and longitude, r is the radial distance from the origin.
The space of all square integrable functions f on the sphere Qp is called L? (), which is a Hilbert
space satisfying the inner product (Schmidt et al., 2007; Eicker, 2008; Naeimi, 2013)

1
S.9) 12000 = g [ £ GAR) 9 (60 B) (2.60)
QR

with f,g € L2(Qg), [[ = [{ Jizg"> and dQp = R2cos ¢dgdA. Defining the L? norm by | f| =
Qr

(f,[)12(0p) the space L? (QR) consists of all functions such that || f|| < oo.

For any function f € L? (QR), it can be expanded into a series of spherical harmonics as (Schmidt
et al., 2007)

f(¢,)\,R):§: zn: Crm Yym (0, \) (2.61)

n=0m=—n

where é,,, are the spherical harmonic coefficients. The basis functions Y;,,,, are called surface spherical
harmonics of degree n and order m, forming a complete orthogonal basis of L? ().
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According to the orthogonality property of Y, on the sphere Qp:

47TR2ffYnm 0, ) m (P, N)dQr =0 ifn#n" orm#£m/

, (2.62)
4ﬂR2ffYnm(¢>, N Y (0,0)dQr =1 if n=n' and m = m’
the coefficients ¢, can consequently be determined by
_ 1 =
tn = / £ (@A R) Yo (6, 1) dQ. (2.63)

Egs (2.61) and (2.63) are known as the spherical harmonic synthesis (SHS) and spherical harmonic
analysis (SHA), respectively. SHS can be considered as a forward process as the coefficients ¢, are
known. SHA is an inverse process, where the coefficients are usually estimated by using the numerical
integrals or the least-squares adjustment based on the functions on the sphere. More computational
details about the SHA can be found in Colombo (1981). The expansion of a function in spherical
harmonics in Eq. (2.61) can also be interpreted as the Fourier expression on the sphere, with each
degree and order associated with a certain frequency. Accordingly, the power spectrum of the function

n

f is defined by the whole set of degree variances ¢, = c2, . see also Eq. (2.54). According to

m=—n “nm?
Parseval’s theorem, the norm of the function f in the L? sense is given as

HfH in R2 //f ¢ A R) dQR—Z Z chm (2.64)

n=0m=—n

indicating that the set of spherical harmonic basis functions Y., (¢, A) constitutes a complete orthogo-
nal set on the sphere Qg.

The above specifications of spherical harmonics have been performed on the sphere Q. In the
following, the spherical harmonic expansion will be adapted to describe the disturbing potential of
the Earth in the exterior of Qr with R being the mean radius of the Earth. According to Eq. (2.61),
the disturbing potential outside of this sphere can be expressed as

M 00 n n+1 _
o) = Y (F) Gntan 6. (2.65)
n=2m=-n
with
AC,,, form >0
Eom = 4 (2.65b)
ASy ) for m <0
_ Ppm (sin @) cos (m)) for m >0
wm (9, A) = ¢ _ . . (2.65¢)
Pyjm) (sin @) sin (|m[A)  for m <0

Analogue to Eq. (2.63), the Stokes coefficients ¢, can be determined by

S /T(qﬁ)\ )(T)MY (6, ) dO (2.66)
Cnm—47rR2GMQ s AT R nm \ P, R- .



20 2 Approximation of the regional gravity field

For the disturbing potential, the norm of a function as introduced in Eq. (2.64) can be approximated
by an empirical model known as Kaula’s rule of thumb (Kaula, 1966):

LD SR

10 10

(2.67)

or the Tscherning-Rapp model as shown in Eq. (2.55). Kaula’s rule of thumb is considered as a priori

information of the Stokes coefficients ¢, and is widely used for the regularization of global gravity

field modeling using spherical harmonics. The Tscherning-Rapp model is usually employed for the

computation of the covariance function of the disturbing potential in LSC, see also Section 2.6.
Inserting Eq. (2.66) into (2.65a), yields

T (65, M) = //T o) Y Y (%) e (6000 Vo (602 ) 421

n=0m=—n

e (2.68)
— 72//T(¢k,/\k,rk) Z (’“) (2n + 1) P, (cos ;) Qg
4R —o \Ti
Qpr n=
in accordance with the addition theorem given by (Heiskanen and Moritz, 1967)
P, (cos ) = Z m (1, Ae) Yo (01, i) - (2.69)
Here 1, is the spherical distance between points ¢ and k£ and is calculated by
COS i, = sin ¢; sin @y, + cos ¢; cos ¢y, cos (A; — Ag) - (2.70)
Now, let
H (ri,ry) 47TR2 Z ( > (2n+ 1) P, (cos i) , (2.71)
then Eq. (2.68) becomes
T (ri) = (T (rg) , H (ri,Tk)) 12000 » (2.72)

showing the reproducing kernel property of H (r;,r). In Schmidt et al. (2007), a “two-point” function
B (rj,r)), which allows the computation of the function T (r;) mainly from the signal values around
r;, was preferred for local or regional gravity modeling. Therefore, the inner product in Eq. (2.72) is
replaced by a series expansion of radial basis functions for representing 7' (r;), resulting in

ri) = i BB (ri,rk) . (2.73)
k=1

Here r; and r; are the position vectors of the i-th computation point and the center of the k-th radial
basis function, respectively, f is the scaling coefficient. The radial basis function B (r;,ry) is defined
by the Legendre series (Schmidt et al., 2007; Klees et al., 2008):

B (I'i, rk‘) =

st n+1
i R2 n; (W) (2n +1) by Py (cos i) - (2.74)

The shape coefficients (or Legendre coefficients) b,, define the type of the function; in the case where
b, = 1, B (r;,rg) is equivalent to H (r;,ry). Some examples of the RBFs with different shape coeffi-
cients will be addressed in Section 2.7.3. Combining Eqs (2.73) and (2.74), yields
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L n+1
T (¢s, Mis1i) = e R2 Z Br Z (T ) (2n + 1) b, Py, (cos Yir) (2.75)
n=0
which is analogue to Eq. (2.65). As the term 1/47R? in the above equation is a constant, it can be
incorporated into the scaling coefficients, leading to (Eicker, 2008; Naeimi, 2013)

n+1
T (hiy Niyi) Z Bk Z < ) (2n + 1) by, Py, (cos k) (2.76)

2.7.2 Comparison between SH and RBFs and their relationship

In Section 2.7.1, the mathematical models of both spherical harmonics and radial basis functions for
representing the disturbing potential have been introduced. A brief comparison between them will
now be given to show why RBFs are more suitable for regional gravity field modeling.

A gravity function can be localized in the space as well as in the frequency domain. Spherical
harmonics are ideal frequency localizing basis functions, as every degree n and order m can be
associated with one single frequency. Consequently, it is easy to allow the spectral analysis of the
global gravity field based on the geopotential models, which are represented in terms of SH. However,
they do not have any localizing features in the space domain at all. Since SH are globally supported
basis functions, each spherical harmonic is significantly different from zero almost over the whole
sphere. Thus, the represented gravity field values on the complete sphere will be affected by the
changes in one coefficient. The changes in the represented field of one specific area will also affect
the whole set of spherical harmonic coefficients. Therefore, the calculation of the gravity field value
at one single point needs all coefficients of the global model while global and homogeneous data are
required for the determination of each coefficient. In most of the regional cases, only the data in the
area of interest are available, and the given data are always inhomogeneous. Furthermore, SH are
only capable of representing bandlimited signals in practice. Therefore, SH are not well suited for
computing a regional gravity field model with high accuracy and high resolution.

In contrast to SH, the Dirac functions are ideal space localizing functions and exhibit no localizing
in the frequency domain. They are zero everywhere except at only one single point in the space
domain, but contain every frequency with equal weight. As a consequence, infinite Dirac functions
are needed to model a continuous signal. This is impossible in practice. The radial basis functions
provide a good compromise between space and frequency localization. According to Eq. (2.76), the
RBFs are the functions that only depend on the spherical distances between the evaluation points and
the points at which the RBFs are located; they decrease rapidly with the distances from their origins,
meaning that the corresponding scaling coefficients mainly benefit from the data around them. Hence,
the RBFs can be regarded as quasi space localizing functions. In regional gravity field modeling with
irregular input data, it is also possible to adapt the RBFs to the input data to represent the signals as
much as possible but only with a small number of RBFs (e.g., Barthelmes, 1986; Klees et al., 2008).
The RBFs can be distinguished into non-bandlimited and bandlimited functions; the former functions
contain full frequencies, while only the frequencies between the degree Ny, and Nya.x are nonzero
for the latter functions. Some related examples will be presented in Section 2.7.3.

Because of the perfect frequency localization of SH, if an RBF solution can be transformed into an
equivalent set of spherical harmonic coefficients, the corresponding spectrum can be easily analyzed.
In the following, the relationship between SH and RBFs will be investigated.
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Regarding Eqs (2.65), (2.69), and (2.76) and rearranging the order of summation, yields

o] n n+1
¢17)‘zarz Z Z M (R> " Enm?nm ((bi))\i)a (2.77&)
=2m=—n
r\ _
Trr) =3 3 Zﬁk( ) b Yo (652 M) Voo (662 M) (2.77b)

n=0m=-—n k=1

Comparing Eq. (2.77a) to (2.77b), the Stokes coefficients ¢, can be obtained by

e = oo 3 () T (00 0 (278)
Cnm—GMk:1 R kOn¥Ynm \ Pk, A\k) - .

Eq. (2.78) shows that ¢, can be directly computed from the estimated scaling coefficients [ and
the given shape coefficients b,,. In an ideal case, an infinite number of RBFs that are homogeneously
distributed over the whole sphere of the Earth are required. However, the number of RBFs is always
finite in practical regional applications. Therefore, the transformed Stokes coefficients are only suited
for the spectral analysis of the regional solutions computed by using the RBFs.

2.7.3 Spectral and spatial characteristics of RBFs: some examples

The spectral characteristics of RBFs is determined by the chosen shape coefficients b,,, which act as
the degree-dependent weighting for the Legendre polynomials P, resulting in different basis function
kernels (i.e., different types of RBFs). In recent years, various RBFs with different kernels have been
employed and compared for regional gravity field modeling (e.g., Schmidt et al., 2007; Eicker, 2008;
Klees et al., 2008; Tenzer and Klees, 2008; Wittwer, 2009; Bentel et al., 2013; Naeimi, 2013; Eicker
et al., 2014). The behavior of RBFs in the space domain is more complicated. Besides the basis
function kernels, it is also affected by the radial distances of the RBFs. In addition, both spectral and
spatial characteristics depend on the spectral bandwidths of the RBFs (i.e., the range of degrees for
nonzero shape coefficients). In this section, two simple RBFs are selected for the investigations. The
first one is the RBF with the point mass kernel and the second one is associated with the Poisson
kernel (Klees et al., 2008; Wittwer, 2009). Both RBFs can be expressed in analytical form, indicating
that they are well suited for constructing a regional model with high accuracy and high resolution.
For more details about other RBFs, see the above given references.

Eq. (2.76) describes a general form of the disturbing potential in the formation of RBFs. One can
rewrite it for practical applications as follows:

K
¢z: )\17 Tz Z BkB rz; rk (279&)
where
0 T n+1
B (rj,rg) = Z (r> (2n+ 1) b, P, (cos¢ix) , (2.79Db)
n=0 3
and

bn?éo for Npin £ 1 < Nyax
(2.79¢)

b, =0 otherwise

Here K is the number of RBFs, Ny, and Npyax are the minimum and maximum degrees between
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which the shape coefficients are nonzero. If Ny, = 0 and Npax = 00, B (r;, r)) are non-bandlimited.
Otherwise, the bandlimited RBFs are provided. Accordingly, the mathematical models for the RBFs
with the point mass kernel and the Poisson kernel are described as follows.

RBFs with the point mass kernel
The analytical expression of the RBFs with the point mass kernel is given as (e.g., Heiskanen and

Moritz, 1967; Klees et al., 2008; Tenzer and Klees, 2008; Wittwer, 2009)

1 1
lig,

BPM (I‘i, rk’) =

—Z ( )nHPn(COS%k), (2.80)

\/7"22 + 72 = 2rrpcosi n=0 "

which is the reciprocal distance between the computation point ¢ and the center of the k-th RBF.
Comparing Eq. (2.80) to Egs (2.79b) and (2.79c), yields

PM _ 1
bn = re@ntl) for Nmin <1 < Npax (281)
bPM =0 otherwise
leading to
BM (v, ry,) = Eq. (2.80) for Nmin = 0 and Nyax = 0o (Case 1)
n+1
B™M (r; 1) = éVma" i (:—’“) P, (cost)  for Nyin = 0 and Nyax # 0o (Case 2
' . (2.82)

BPM

(

( )
1 . n+1

(ri,Tr) = XN o (T) P, (costr)  for Npin > 0 and Nyax = 0o (Case 3)

( )

+1
BPM (r;,14) = Nmax 1 (%)n P, (cost)  for Nyin > 0 and Npax # oo (Case 4

Nmin Tk

RBFs with the Poisson kernel

The analytical RBFs with the Poisson kernel is expressed as (e.g., Heiskanen and Moritz, 1967; Klees
et al., 2008; Tenzer and Klees, 2008; Wittwer, 2009)

2.2 ) n+l
BPK (r;,1),) = W Z (2n+1) (r ) ’ P, (cos k) - (2.83)
7 n=0 v

Comparing Eq. (2.83) to Egs (2.79b) and (2.79¢), yields

bgk =1 for Npin <n < Nyax
: (2.84)
bPk =0 otherwise
leading to
BYK (r;,r;) = Eq. (2.83) for Nmin = 0 and Nyax = 0o (Case 1)
n+1
BPK (r;,rp) = S0 (20 + 1) (T—’;) (cos i)  for Nmin = 0 and Npax # 0o (Case 2)
BPK (r;,rp) = >N (2n41) (L’j)n (costhi)  for Npin > 0 and Npyax = oo (Case 3)
BPK (rs 1) = Nmax (2n+1) ( )n (costhr)  for Npyin > 0 and Npax 7# oo (Case 4)
(2.85)
As can be seen from Eqs (2.81) and (2.84), the shape coefficient bE™ for the point mass kernel is
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a function of degree n. High-frequency contents are damped with increasing degrees. However, all
frequencies have the same weight for the shape coefficient bF¥, which is independent on the degree.
Four cases of RBFs are given in both Eqs (2.82) and (2.85) with different choices of Ny and Npax. In
Case 1, full frequencies are contained in RBFs, resulting in non-bandlimited functions. The RBFs are
bandlimited in the other three cases as only parts of the frequencies are considered. The frequencies
above Ny are neglected in Case 2, acting as a low-pass filtering. In Case 3, the frequencies below
Npin are removed, and hence it can be regarded as a high-pass filtering. Analogue to the band-pass
filtering, only the frequencies between Ny, and Npax are kept in the RBFs for Case 4. Assuming
that an evaluation point is located on a sphere with R = 6371 km and the RBFs are located at the
depth of 50 km with respect to the sphere, several examples of the behavior of the two RBFs in both
frequency and space domain are illustrated in Fig. 2.1.
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Figure 2.1: Normalized spectral and spatial characteristics of BPM and BP¥. For each row, the left one is in

the space domain and the right one is in the frequency domain. Red lines: for BPM: blue lines: for
BPX. Row 1: Npin = 0 and Npax = 00; 70w 2: Npin = 0 and Nyax = 360; row 3: Npyin = 120
and Npax = 00; 70w 4: Npin = 120 and Nyax = 360.



2.7 Spherical harmonics and radial basis functions 25

From Fig. 2.1, it is easy to see that the RBF with the Poisson kernel has a stronger space localizing
than the RBFs with the point mass kernel. The reason is due to the shape coefficients of different
kinds. The removal of high frequencies from the kernels can make the shape of the RBFs wider (see
row 2), resulting in less strong space localizing; the corresponding RBFs are suited for gravity field
modeling using satellite data only. The shape of the RBFs becomes much narrower when neglecting
the low frequencies (see row 3). Such RBFs can be employed in the case where residual terrestrial
gravity data without the long-wavelength components are used as input. For the residual terrestrial
data with the removal of both the long- and short-wavelength components, the RBFs as shown in row

4 may be a good choice.
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Figure 2.2: Normalized BP™ and BYX at a depth of 10km (solid lines), 50 km (dashed lines), and 100 km
(dotted lines); a) for BPM with Ny, = 0 and Npax = 00; b) for BPM with Ny, = 120 and
Nmax = 00; ¢) for BPX with Ny = 0 and Nyax = oo; d) for BPX with Ny, = 120 and
Ninax = 00.

Another factor that can affect the shape of the basis function is the radial distance of the function,
or equivalently, the depth with respect to the reference sphere. If the depths of RBFs with different
kernels are chosen properly, similar shape of RBFs can be obtained, leading to similar solutions
(Tenzer and Klees, 2008). In the following, several examples about the effect of the depths on the
shape of the RBFs are shown in Fig. 2.2. Three depths referred to R = 6371 km are used for the two
selected RBFs. Moreover, non-bandlimited and bandlimited cases are also included.

As can be seen from Fig. 2.2, the deeper the basis functions are, the less strong space localizing the
functions become. As a consequence, the RBFs should be located at shallow depths for representing
short-wavelength gravity signals, and the long-wavelength signals are mainly recovered by deep RBFs.
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When the low frequencies are removed from the functions, the shape of the functions becomes much
narrower in the cases of the depths of 50 km and 100 km, whereas the shape remains nearly the same
in the case of the depth of 10km. This indicates that the RBFs at shallow depths are dominated
by short-wavelength contributions, while the ones at deep depths are dominated by long-wavelength
contributions. As the basis function with the Poisson kernel has a stronger space localizing than the
one with the point mass kernel, the former function is expected to be located at a deeper depth such
that it can provide a similar shape to the one of the latter function.

2.7.4 Remarks on RBFs

As shown in Section 2.7.3, the spectral and spatial characteristics of a single RBF are dependent on
the choices of the shape coefficients, spectral bandwidths, and radial distances. Often, more than one
RBFs are used for representing the regional gravity field, and hence the proper choice of the horizontal
positions of the RBFs is also of importance. Accordingly, four factors have to be determined in regional
gravity field modeling using RBFs. They are: (1) the shape coefficients; (2) the spectral bandwidths
of the RBFs; (3) the radial distances of the RBFs; and (4) the horizontal positions of the RBFs. In
the following, the four factors are classified into two categories; both are discussed in detail.

1) The choice of the spatial bandwidths of the RBF's

According to Wittwer (2009), the spatial bandwidth of one RBF is considered as the function’s half-
width g 5, which is defined as the spherical distance where the function attains half of its maximum
value. The larger the spatial bandwidth is, the less strong space localizing the RBF has and vice
versa. In the light of Egs (2.79b) and (2.79c¢), the spatial bandwidth is determined by three factors:
(1) the shape coefficients b, (i.e., the type of RBF); (2) the spectral bandwidth of the RBF, depending
on the minimum degree Ny, and the maximum degree Nyax for nonzero shape coefficients; and (3)
the radial distance r; of the RBF, or the depth dy = R — 3, below the reference sphere with a radius
of R. The effect of the above three factors on the spatial bandwidths of the RBFs has been discussed
in Section 2.7.3.

The proper choice of the spatial bandwidth is of biggest importance. Otherwise, RBFs will not
have the optimal approximation characteristics. A spatial bandwidth, which is too small, might lead
to a good fit of the data to the model and a well-conditioned normal equation system, but to a poor
fit at independent control points. Too large spatial bandwidth will result in numerical instabilities as
the significant support of neighboring RBFs at one observation point overlaps too much, which leads
to similar columns in the design matrix. Such a spatial bandwidth can provide a smooth solution;
however, possible leakage will occur as the RBFs are not able to represent the high-frequency signal
content contained in the observations.

As concluded in Tenzer and Klees (2008), similar regional gravity field solutions can be computed
when using different kinds of RBFs with proper spatial bandwidths. Thus, the RBF type is usually
determined before the computations. Bentel et al. (2013) compared different RBFs and their per-
formance using simulated regional gravity data. They showed that the kernel’s spatial behavior is
much more important for a good regional modeling than the kernel’s spectral behavior. Accordingly,
the spectral bandwidths of the RBFs are also fixed before the computations. If the input data are
residuals with the removal of the long-wavelength contributions, which are derived from a geopoten-
tial model up to degree n = nyax, the RBFs with Ny, > 0 and Npax = oo are usually used. In
this case, Klees et al. (2008) suggested setting Npyin = nmax + 1, assuming that there are not enough
signals below degree npy.x + 1 contained in the residuals, or that the input data are represented by
a spherical harmonic expansion up to degree nm.x and a finite number of RBFs. However, they also
pointed out that Ny, = 0 works fine through numerous numerical experiments with terrestrial gravity
data. An explanation was given that the shallow RBFs make the contribution of low-degree Legendre
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coeflicients negligible. Regarding the non-perfect spectral localizing property of the RBFs and the
existence of long-wavelength errors in the residuals, we prefer to choose 0 < Npin < Nmax + 1 while
the value of Ny, being dependent on the particular applications. After fixing the type and spectral
bandwidths of the RBFs, the choice of optimal spatial bandwidths of the RBFs for regional gravity
field modeling is equivalent to the determination of optimal depths of the RBFs. Often, the RBFs are
located at gridded or scattered points at a constant depth, which is selected by “trial-and-error” or
based on empirically found relations with the data spacing or the gravity anomaly covariance function
(e.g., Dampney, 1969; Hardy and Gopfert, 1975; Heikkinen, 1981; Siinkel, 1981; Vermeer, 1995); all
RBFs have the same spatial bandwidths in this case. Sometimes, several grids at various depths
are used (e.g., Reilly and Herbrechtsmeier, 1978; Heikkinen, 1981; Vermeer, 1983, 1984; Thde et al.,
1998; Chen, 2006), and sometimes, each RBF is placed below one data point at a depth, which is
proportional to the distance to the nearest neighboring data point (e.g., Cordell, 1992). Additionally,
some advanced strategies involve the generalized cross validation (GCV) technique (e.g., Klees et al.,
2008), the adaptation of the RBFs’ depths to the local signal covariance function (e.g., Marchenko
et al., 2001), and the direct determination of the depths as well as the scaling coefficients by solving
a nonlinear problem (e.g., Barthelmes, 1986; Lehmann, 1993; Claessens et al., 2001).

2) The choice of the horizontal positions of the RBFs

The choice of the horizontal positions of the RBFs addresses the issue of how many RBFs are to be
used for the modeling. This is important as the number of used RBFs defines the resolution of the
gravity field solution. In addition, the chosen horizontal positions should be adapted to the input data
to achieve a reasonable solution. There are three possible cases for choosing the horizontal positions:

(D RBFs are placed on one or more grids.
(@ RBFs are placed on scattered points.
(® RBFs are placed on both gridded and scattered points.

In the first case, the RBFs are to be distributed as homogeneously as possible on the surface of a
sphere inside the Earth. Therefore, a grid is designed, and the RBFs are placed on the nodes of the
grid. Four factors are needed for designing a grid: (1) the grid type; (2) the grid extent; (3) the grid
spacing; and (4) the grid depth. The horizontal positions of the RBFs are determined by the first
three factors, and the last one is related to the spatial bandwidth. Several kinds of grids on the sphere,
such as geographical grid, Driscoll-Healy grid, Reuter grid, triangle center grid, triangle vertex grid,
and recursive quasi random grid are summarized and compared in Eicker (2008), suggesting that the
Reuter grid and the triangle vertex grid are very well suited as nodal point patterns for RBFs. In
this context, only the geographical grid will be used due to its simplicity, and due to the fact that the
selected research areas for numerical tests are at medium latitudes. For the areas at high latitudes,
the geographical grid should be avoided. The grid extent is usually set to be as large as the data area.
If the model area is smaller than the data area, such a choice is satisfactory. However, if the model
area is the same as the data area, a larger extent may be preferred such that the edge effect caused
by the lack of data outside the model area could be reduced. It should be pointed out that the larger
the grid extent than the data area is, the serious the numerical instabilities become. A study about
the choice of the grid extent is given in Naeimi (2013). The grid spacing should be carefully chosen
to avoid under- and over-parameterization. It also has a high correlation with the grid depth (i.e.,
spatial bandwidth). Fig. 2.3 shows two examples of three neighboring non-bandlimited RBFs BFM
with a grid spacing of 2° at different depths. It can be found that if the grid depth is too deep (see
Fig. 2.3b), the neighboring RBFs overlap too much in comparison with the case of a shallow grid
(see Fig. 2.3a). This will lead to numerical instabilities. To overcome this problem, we can make the
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Figure 2.3: Normalized neighboring non-bandlimited BP™ with a grid spacing of 2°; a) grid at a depth of

10km; b) grid at a depth of 100 km.

grid depth shallower or make the grid spacing larger such that the overlaps between the functions
become smaller. Often, one of the two factors (i.e., grid spacing and grid depth) is fixed at first,
and then the other one is determined by experimenting with various choices and comparing obtained
solutions. Furthermore, the grid spacing should be related to the signal content of the input data. A
dense grid is required for the area with rough structures, and a coarse grid is sufficient for smooth
signals. However, the signal content is not fully taken into account when employing only one grid
for the modeling as all RBFs have the same spatial bandwidths. A hierarchical arrangement of the
RBFs by placing them on two or more grids seems to be more reasonable. The deep grid always has
a large spacing and extent and is used for modeling the low-frequency signals. The high-frequency
signals shall be represented by the grid situated at a shallow depth, of which the spacing and extent
is smaller. When the grids are chosen, the number of RBFs is known too. It is also worth mentioning
that the effect of data distribution on the choice of the grid spacing is significant. In principle, the
grids are well suited for the case with regular data. For the case with irregular data, a relatively
coarser grid is advisable to reduce the danger of over-parameterization.

In the second case, the RBF center locations are selected based on the signal content of the input
data. Least-squares collocation can be considered as an approach, in which there is one RBF under
each observation at an optimal depth, resulting in the high numerical complexity. In practice, it is
not necessary to place the RBFs below every data point. The efficient way is to construct a set of
RBFs iteratively by adding one RBF at each time. Cordell (1992) designed an algorithm for using
the point masses. At each time, one point mass is chosen under the data point with the largest
absolute (residual) value at a depth derived from the distance to the nearest neighboring data point,
and then the magnitude of the point mass is computed individually. Barthelmes (1986) proposed a
similar point mass approach; however, it requires solving a nonlinear problem with four unknowns per
point mass, i.e., the 3D position and the magnitude of the point mass. Marchenko et al. (2001) also
developed an approach with the use of radial multipoles. The sequential multipole analysis is applied
to determine the horizontal position, the order, and the depth of the multipole at each time. The
latter two parameters are fixed by using the covariance function of the observations in the vicinity
of the data point corresponding to the multipole. Comparing to the approaches using the RBFs
on grids, the approaches using scattered RBFs are more flexible and require fewer RBFs for a good
approximation; however, they are also more complicated.

An approach that is a compromise between the first and second case is proposed by Klees and
Wittwer (2007) and Klees et al. (2008). A coarse grid of RBFs at a depth, which is determined by
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the GCV technique, is used to model the smooth signals over the research area. If the approximation
quality is not satisfactory, the local refinement is carried out by placing one RBF below the data point
with the largest absolute residual value iteratively. A joint least-squares solution is finally computed
when all RBFs are fixed. A good approximation can be obtained by this approach with a relatively
small number of RBFs.

2.8 The remove-compute-restore technique and topographic effect

In practice, the approximation of regional gravity field is usually based on discrete observations over
the area of interest and its surroundings. This always leads to two problems (Denker, 2013): (1) the
long-wavelength gravity signals (i.e., longer than the extent of the research area) can not be properly
represented by available observations due to the limited data coverage; (2) the representation of very-
short-wavelength gravity information is not proper because of the discrete data points, leading to
aliasing effects. The employment of a global geopotential model can remedy the first problem well,
and the second problem can be counteracted by using a digital terrain model (DTM) to obtain the
very-high-frequency gravity signals. As a consequence, the long- and short-wavelength gravity signals
are provided by a global geopotential model and a DTM, while the medium-wavelength signals are
derived from the discrete residual gravity observations. This computation procedure is called the
remove-compute-restore (RCR) technique. It usually can be implemented in three steps:

(D The short- and long-wavelength information is first removed from the observations, which are
described as linear functionals L of the disturbing potential T, resulting in the residual obser-
vations:

Lobs (TR%) = Lobs (T) - Lobs (TM> - Lobs (TT> s (286)
where Loy (T) and Lps (TR65> are the original and residual observations, L (TM ) and
Lops (T T) are the contributions from a global geopotential model and a DTM.

(@ The residual observations are then transformed into other gravity field quantities by applying a

proper gravity field modeling technique, e.g., integral method, LSC, or parameterization method
using RBFs, yielding

Lobse (TR68> Modeling Technique Lpre (TR68> ' (287)

(® Finally, the contributions of the global geopotential model and the topography are restored
again, leading to the final predictions:

Lyre (T) = Lppe (T7°) + Lpre (TM) + Ly (17). (2.88)

The removal of the short- and long-wavelength gravity information in Step (D can be regarded as a
band-pass filtering, resulting in the residual observations with smaller values and smoother structures
than the original observations; such residuals can facilitate the field transformation in Step (2). The
RCR technique is now a standard procedure for the computation of regional gravity field models; some
recent examples can be found in numerous literature, e.g., Denker et al. (2009), Forsberg (2010), Li
(2012), Wang et al. (2012), Denker (2013), and Huang and Veronneau (2013).

When using the RCR technique for practical applications, the most suitable global geopotential
model for the research area is often chosen to be the one with which the resulting residuals exhibit the
smoothest structures. The high-degree geopotential models are preferred as they can provide gravity
information as much as possible, and hence make the residuals as smooth as possible. The ultra-high-
degree EGM2008 model, which includes coefficients up to degree npy.x = 2190, corresponding to a
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resolution of 5 or about 9km, is a good choice for the reduction of original gravity data. Regarding
the areas with high-quality data included in EGM2008, only the short-wavelength gravity signals are
necessary to be added by means of terrestrial gravity and terrain data. However, in areas where only
poor data were available for EGM2008, the situation may be quite different. In this case, large errors
might be introduced into the residuals as the contributions from the EGM2008 model are inaccurate.
Therefore, further investigations are needed for the optimal use of EGM2008 in regional gravity field
modeling (Forsberg, 2010). Often, the maximum degree of the global geopotential model for data
reduction is chosen to be 360, corresponding to a resolution of 30" or about 55km.

After subtracting the contribution of a global geopotential model from the original observations, the
terrain reduction is required to remove the very-short-wavelength gravity information. In Forsberg and
Tscherning (1981, 1997) and Forsberg (1984), different terrain reduction schemes and the associated
advantages and disadvantages are discussed in detail. As the subtracted contribution of a global model
also contains the global topographic effect, the residual terrain model (RTM) reduction (Forsberg,
1984) is widely used. It is based on a reference topography surface, which is usually obtained by
applying a moving average or other filtering (e.g., a Gaussian filtering) to the given high resolution
DTM, and then only the differences between the actual and the reference topography are utilized
in the reduction process. If the reference surface is a sufficiently long-wavelength surface, the RTM
reduction may be approximated by a Bouguer reduction to the reference level (Forsberg, 1984).
Apparently, the resolution R,y of the reference topography should be chosen appropriately. If Ry is
too large, one more part of the effect of the topography, which is also included in the geopotential
model, is subtracted from the observations again, leading to the so-called “double accounting” of
the topography. Some very-short-wavelength signals caused by the topography still remain in the
residuals if Ry is too small. Although the numerical studies in Forsberg (2010) showed that the
“double accounting” of the topography does not matter in practice, the selection of R, is based on
the maximum degree ny.x of the reference global geopotential model in this thesis, resulting in

180
Ry = x 60 (2.89)
Nmax
in units of arc-minutes, or
2
it R 0000 (2.90)
nmax

in units of km. Assuming that the contribution from a global geopotential model up to degree
Nmax = 360 is removed, the corresponding resolution of the reference topography is chosen to be 30’
or about 55km. If npa.x = 200, then Ry = 54’ or Ryt ~ 100km. For more details about the RTM
reduction, see the references mentioned above.

In principle, the RCR technique can be applied in combination with all methods for gravity field
modeling described in this chapter, such as the integral method, LSC, and parameterization method
using RBFs. In the context of this thesis, all numerical computations are carried out with the use of
the RCR technique, in which the RTM reduction is applied.
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3 Regional gravity field modeling with the point
mass method

In the previous chapter, we have introduced several methods for regional gravity field modeling, e.g.,
integral method, LSC, and parameterization method using RBFs. The point mass method, which is
equivalent to the method using the RBFs with the point mass kernel, will be applied for computation
of the regional gravity field in this thesis. Correspondingly, the principle of the point mass method
and the computation procedures will be described in detail in this chapter. In Section 3.1, the relation
between the point masses and the disturbing potential is discussed. A set of standard formulas of
the point mass method for representing different gravity field quantities are presented in Section 3.2.
These formulas are the basis for constructing the observation equations. Since only the least-squares
case is considered in this thesis, the computation procedures for solving a linear or nonlinear equation
system, as well as the regularization process that aims at stabilizing the solution, are then introduced
in Section 3.3. In the next two sections, the details of the point mass methods with fixed and free

positions are described. Both approaches will be applied for the numerical computations in Chapter
4.

3.1 Point masses and disturbing potential

According to Newton’s law of gravitation, the disturbing potential T' can be obtained according to
dM
M

where dM is the mass element, ¢ is the distance between the mass element and the computation
point. If an anomalous mass distribution is known, the disturbing potential T" at any point on and
outside of the Earth’s surface can be fully described by Eq. (3.1). However, a complete knowledge
of the anomalous mass distribution is not possible in practice. A practicable way is to determine
the anomalous masses based on the observed gravity field quantities first, and then to represent the
disturbing potential by using estimated anomalous masses. The first process can be considered as a
gravimetric inverse problem, and the second process is called forward modeling. A given disturbing
potential can be generated by different anomalous mass distributions, the non-uniqueness of the
inverse problem is inevitable. In geodetic applications, the only quantity of interest is often the gravity
field itself, and not the internal density structure of the Earth. Accordingly, an anomalous mass model
(including the mass magnitudes and mass distribution) that agrees well with the parameters of the
gravity field can always be chosen in these applications. Then, all gravity field quantities that are
uniquely determined by the gravity field can be computed by this model. Now, there arises an issue
of how to construct such an anomalous mass model. In the context of this thesis, we work within the
framework of the Runge-Krarup theorem (Krarup, 1969; Moritz, 1980):

Any harmonic function ®, regular outside the Earth’s surface, may be uniformly approximated
by the harmonic functions ¢, regular outside an arbitrary given sphere S inside the Earth, in
the sense that for any given € > 0, the relation |® — ¢| < € holds everywhere outside and on
any closed surface completely surrounding the Earth’s surface.

The number € may be arbitrarily small, and the surrounding surface may be arbitrarily close to the
Earth’s surface. As a consequence, the task of finding an anomalous mass model that will generate
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the true disturbance potential T is simplified to find a set of anomalous masses, which will represent
the disturbing potential 7" in the space outside of a given surface S that encloses all of the anomalous
masses to assure that 7" can be taken as an approximation of T' at points on and outside of the Earth’s
surface. It follows that the anomalous mass positions as well as their masses are the key factors for
a good approximation of the gravity field. Imagining that there are infinitely many small spheres
(intersect or not) inside the surface S, each of which has a certain positive or negative anomalous
density, the use of all spheres for gravity field modeling can be replaced by using their center points
with the same masses as the spheres, as the gravity potential caused by a spherically symmetric body
at the point outside of this body is the same as if all masses were concentrated in the center. This
leads to the point mass method for gravity field modeling in the geodetic literature, e.g., Needham
(1970), Heikkinen (1981), Barthelmes (1986), Vermeer (1995), and Antunes et al. (2003), or to the
equivalent source method in geophysics for the interpolation of gravity anomalies, e.g., Dampney
(1969) and Cordell (1992). Herein, the approximation problem is reduced to the determination of
a set of point masses at proper positions. In practical applications, the number of point masses is
always finite. Assuming K point masses enclosed by a given spherical surface S inside the topographic
masses, the disturbing potential 7" at point ¢ exterior to the Earth’s surface is given as

Kome &g & .
T (¢i, Aiy7i) = ZT ;@:l;ﬁﬂ? (rs,T1) (3:2)

in accordance with Eqgs (2.79) and (2.80). In the above equation, my is the mass for the k-th point
mass, O = Gmy is called the magnitude of the k-th point mass in this thesis, and 1/¢;; represents
the reciprocal distance between the computation point and the point mass, being equivalent to the
non-bandlimited RBFs with the point mass kernel B"™ (r;, 1), see Case 1 in Eq. (2.82). Obviously,
the point mass method given in Eq. (3.2) only represents one of the four cases of the parameterization
method using BPM (r;, r1,). No matter which BP™M (r;, ry,) is used, the corresponding method is always
called the point mass method in the remaining of this thesis. Spherical approximation is applied for
practical computations using the point mass method, where the mean Earth radius R = 6371 km is
used for the reference sphere (Moritz, 1980).

3.2 Standard formulas for the point mass method

Eq. (3.2) is regarded as the fundamental observation equation for the point mass method. Unfor-
tunately, the disturbing potential is always not available from the terrestrial gravity measurements.
Instead, the commonly available observations are the linear functionals of the disturbing potential.
Some examples of them are the gravity anomalies Ag from terrestrial or shipborne gravimetry, the
gravity disturbances dg from airborne gravimetry, the deviations between the sea surface and the
reference ellipsoid (here we consider them roughly as the geoid heights N) from satellite altimetry,
and the height anomalies ¢, which are obtained as the differences between GPS (Global Positioning
System) ellipsoidal heights and leveled normal heights. Using the relationships in spherical approxi-
mation, which are given in Eqs (2.21a), (2.21b), and (2.21e), the functional models between the point
masses and related gravity field quantities are given as follows:

K
Ag (¢, Niyri) = > BrDagB™ (ri i), (3.3a)

k=1

9 (@i, Aiyri) = Z/BchSg M (ri,rg), (3.3b)
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K
N/C (qsia)\’bri) = Z/BkDN/CBPM (I‘i,I’k), (SBC)
k=1

with the RBFs in the form of

PM i— : 2 ~1 il
DAgB (I'l" rk) — <7‘ ’I"]}?E):S Vik _ Elk'rz> = ;?LO:O :‘Lk-ri <%) Pn (COS w’bk) 5
DsyBPM (v, 1),) = Ti=TECOSYik | _ yN00 ntl (7 "+1p (cos i) (3.3d)
og k) — 3 = 2un=0 rpr; \7; n ik) >
PM 1 1 - 1 n+1
DN/(B (ri,rx) = Y (m) = neo YT (%) Py, (cos ig) -

In the above equations, Dag4, Dsg, and Dy are the gravity anomaly operator, the gravity disturbance
operator, and the geoid height /height anomaly operator, respectively.

In Section 2.8, we mentioned that all numerical computations are carried out in the framework of
the RCR technique in the context of this thesis. This means that the residual observations, which are
obtained after the contributions of a global geopotential model complete to degree nya.x and of the
topography computed from a DTM have been subtracted, are used as input. The resulting residuals
are almost bandlimited, and hence it is reasonable to modify the non-bandlimited RBFs given in Eq.
(3.3d) to make the spectral bandwidths of the input data and the RBFs compatible. Considering Eq.
(2.81), the functional models in Eq. (3.3) are rewritten as

K Nrﬂax n — 1 Tk; ’I'L+1
d)u )\la Tz Z Z (> Pn (COS '(/)zk) ’ (34&)
b=l n=Ny, kT \Ti
n+1 /(r\""
g (bis Nisri) = Z Z ‘ (k> P, (cosir), (3.4b)
k=1 Nn=Nmin kT Ti
K Nmax 1 Tl n+1
N/C Gis i Tz Z (> P, (COS Q,Z)Zk) . (3.4C)
b=l n=Ny, JOTk \Ti

In principle, Nyax should be chosen based on the resolution of the used DTM as there are no very high
frequencies in the residuals. In this case, the RBFs are computed by summing a series expansion up to
a rather high degree. Regarding the computational complexity, Nnax is often set to be oo in practice,
so that we can make use of the analytical expressions of the RBFs as given in Eq. (3.3d). However, the
above treatment of Ny, may introduce additional errors into the solution. According to numerous
experiments, the spatial bandwidths of the RBFs with the point mass kernel for Ny.x > 2160 look
close to the case of Ny.x = co. In practical applications, the resolution of the DTM is usually higher
than 1/, which is equivalent to the degree 10800. Therefore, the additional errors caused by using
Nnax = 00 can often be neglected and will not be discussed in this thesis. In the light of the discussion

in Section 2.7.4, 0 < Npin < Nmax + 1 is selected. Combing Eq. (3.3d) and Egs (3.4a)—(3.4c), yields

Nmin—l n—+1
T‘i—TkCOS@Z)Z‘k_ 2 B n—1 (Tk:) + |
( G ) 2 ) Palcosva)|,  (35)

Ligrs = TETi

K

(Z)Z?AZ)TZ Z

DpagBPM(r;,ry)

K Nmin—1
r; — T} COS Y; L e AN
(6 = 36 K’gg ‘”’“) S (=) n <coswik)], (3.5b)
k=1 ik

n—0 TErs T

Dsy BPM(r;,ry)
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i [% ( 1 ) _N!ifl ‘1 (T,é)”*‘l P, (coswik)] ) (3.5¢)

k=1 =0 YVTE \Ti

N/C ¢Z7)\Z7TZ

Dy e BPM(r;,ry)

Accordingly, a general formula for the point mass representation of any linear functional I; = L;T is

e

given as
len 1

Z Ll <n>n+1pn(coswik)”. (3.6)

DyBPM(r;,ry)

In the following, the term D;B*™ (r;,r}) in Eq. (3.6) will be named as the full point mass RBF
with respect to the observation [ in the case of Ny, = 0. When Ny, > 0, it is called the reduced
point mass RBF. In comparison to the full point mass RBFs, the larger the truncation degree Ny, — 1
is, the more computation time is needed for the reduced RBFs. It should be noted that the choice of
the truncation degree may also depend on the types of the input and output data, in particular the

B with respect to the gravity

latter one. Fig. 3.1 shows the full and reduced point mass RBFs Da
anomalies at different depths using Eq. (3.5a). The other parameters for this example are the same
as the ones for Fig. 2.2. Comparing Figs 3.1a and 3.1b to Figs 2.2a and 2.2b, it can be seen that
the RBFs DAgBPM have much stronger space localizing characteristics than the BPM with respect
to the disturbing potential at each depth. The spatial bandwidths of DAgBPM are less dependent on
the depths of the RBFs as well as on the removal of low frequencies from the RBFs. Consequently, it
can be expected that, if the input is the residual gravity anomaly and the output is the geoid height
or height anomaly, the use of the reduced point mass RBFs seems to be necessary. If the input and
the output are interchanged, the full point mass RBFs may also work fine. This issue will be further

investigated by the numerical tests in Chapter 4.

Concerning Eqs (2.78) and (2.81) in the case when K point mass RBFs are used for regional
gravity field modeling, it is easy to transform the estimated point mass RBFs into the equivalent
Stokes coefficients according to

Crim = Z?:l (%)n (anwifnm (¢k7 )\k) for Nmin <1 < Npax

(3.7)
Com =0 otherwise
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Figure 3.1: Normalized Da,B™ at a depth of 10km (solid lines), 50 km (dashed lines), and 100km (dotted
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lines); a) the full RBFs with Ny, = 0; b) the reduced RBFs with Ny, = 120.



3.2 Standard formulas for the point mass method 35

1.1 : 11
T Rt 10 km B Rt 10 km
& - - -50km Ko - - -50km
[ ——100 km S 0.9t ——100 km
Q « Q “
E E osr
~—~ . —~ .
[=)) S D 0.7 S
g \4\4 g \.\l
3 \,“ s/ 0.61 \,\v
DI N ®,F 05 .
° . o .
@ . O 04 .
N . N S
© S T 03 ~
g \‘\ § el
S e 5 02 A
z R z ~eel
b 0.1 4
‘ ! . . . . - o . . . . _
0 200 400 600 800 1000 1200 1400 0 600 800 1000 1200 1400
Degree n Degree n

Figure 3.2: Normalized degree variances ¢, (Ag, Ag) derived from a single full point mass RBF (left, Nyin = 0)
and a single reduced RBF (left, Ny = 100) at different depths.

On the basis of Eqgs (2.65b), (2.54), (2.58c¢), and (2.69), the degree variances for the gravity anomaly
derived from the equivalent Stokes coefficients are given by

—1)2 rL\TL [T\
¢h (Mg, Ag) = et S S ()" ()" B Pa (costiiy)  for Nuw < 1 < N

(2n+1)(GM) rprqg

et (Ag,Ag) =0 otherwise
(3.8)
in which rp and r¢ are the radial distances of the observation points P and @, respectively. For the
full point mass RBFs, i.e., Npin = 0 in Eqgs (3.5) and (3.6), the equivalent Stokes coefficients ¢,,, and
the degree variances ¢, (Ag, Ag) are nonzero for all degrees. For the reduced RBFs (i.e., Npin > 0),
cs,, and ¢ (Ag, Ag) are equal to 0 for n < Npiy.

Suppose that only a single point mass RBF k is at a depth of d km below a sphere with a radius of
R = 6371 km on which all observations are located, Eq. (3.8) is then simplified as

e n—1)>2 r.\2n
c (Ag,Ag) = m (ﬁ) B2 for Nmin <1 < Nmax 39)

¢ (Ag,Ag) =0 otherwise

with 7, = R—d. From Eq. (3.9) it follows that the spectrum of a single point mass RBF also depends
on its depth. As an example, a single full point mass RBF and a single reduced RBF with Ny, = 100
at the depths of d = 10, 50, and 100 km are studied. The corresponding normalized degree variances
¢t (Ag,Ag) are illustrated in Fig. 3.2. The spectrum of a point mass RBF at a shallow depth (e.g.,
at a depth of 10km) covers a wide range of frequencies. Its power is mainly concentrated in the high-
frequency part. The spectrum derived from the point mass RBF at a deep depth (e.g., at a depth
of 50 or 100km) has a narrow shape, only concentrating in the low-frequency part. Accordingly, a
deep point mass RBF mainly contributes to the low-frequency signals, while the RBF at a shallow
depth is capable of representing the high-frequency signals. Comparing to the smooth edges of the
spectrum associated with the full point mass RBFs (Fig. 3.2, left panel), there are sharp edges in the
spectrum obtained from the reduced RBFs (Fig. 3.2, right panel), and the signals below the degree
n = 100 are not recovered for all three cases with different depths. The reduced RBF at a deep depth
only has a minor contribution to the gravity anomaly solution as most power of its spectrum is cut.
The contribution from the RBF at a shallow depth is significant. Such properties of the reduced
point mass RBFs are quite suitable for regional gravity field computations with the use of the RCR
technique, as one assumes that the low-frequency signals are mainly provided by a global geopotential
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model.

Previously, we have proposed a scheme to deal with the case of residual input by truncating the full
point mass RBFs (i.e., reduced RBFs). The resulting RBFs will be used to construct an observation
equation system. Alternatively, another scheme will be introduced by adding constraints to the obser-
vation equation system, which is constructed by the full point mass RBFs.

At first, we consider that the input gravity data contain full frequencies. In this case, it is reasonable
to use the full point mass RBFs for the modeling. As a result, the equivalent Stokes coefficients ¢,
are nonzero for all degrees, see Eq. (3.7). There are no Stokes coefficients ¢, for n = 0,1 in the
spherical harmonic expansions of the input gravity field quantities, see the example of the disturbing
potential given in Eq. (2.65a). Therefore, it appears to be necessary to set the relevant equivalent
Stokes coefficients to be 0, leading to

ACS = Yio G =0

ACT, = Y (%) 3@’3\4 sin ¢, =0 5.10)
Aéfl = EkK:1 (%) 32’}\4 cos ¢ cos A\, =0

AS§ =Y, (%) 3@7\4 cos ¢ sin A\, =

The above four formulas will be used as constraints when estimating the magnitudes of the full point
mass RBFs in the least-squares sense. Similarly, if the input gravity data are the residuals with the
removal of the long-wavelength components derived from a global geopotential model up to degree
N = Nmax, & set of constraints is given as

9

ACE,, =S ()" @rbprnm (sindg) cos(mAg) =0 for0<n<n and0<m<n
-

ASE, = S0 ()" (znprnm (singg)sin(mAg) =0 forO<n<n'and0<m<n

(3.11)

resulting in (n/ + 1)2 additional equations. Assuming that the residual input data do not contain

enough long-wavelength signals below degree nmax, n’ can be equal to or smaller than npyay. On the

one hand, the chosen n’ should be capable of providing a good solution. On the other hand, n’ is
preferred to be as small as possible so that high computational burden can be avoided.

As discussed in Section 2.7.4, the spatial bandwidths and the horizontal positions of the RBFs serve
as two important aspects for obtaining a good regional gravity field solution. Thus, it is necessary
to choose them appropriately. For a good choice of each aspect, several factors need to be defined
properly. Fig. 3.3 shows the structure of the RBFs. We can see that the simultaneous determination
of both spatial bandwidths and horizontal positions of the RBFs for optimal regional gravity field
modeling is not possible as too many factors need to be determined (see the green boxes in Fig. 3.3).
A practicable way is to fix some of them to reduce the degree of complexity of the model while keeping
the other factors free. The extreme case is to fix both spatial bandwidths and horizontal positions
of the RBFs before parameter estimation. Since the point mass method is used for the modeling
in this thesis, the shape coefficients of the RBFs are always fixed. The spectral bandwidths of the
point mass RBFs are usually defined based on the spectrum of the input data. As a consequence, the
remaining free factors are the radial distances of the point mass RBFs and their horizontal positions,
or equivalently, are their 3D positions. According to the strategy for determining the RBF positions,
the point mass method can simply be divided into two groups:

e Point mass method with fixed positions (PM-FIX),

e Point mass method with free positions (PM-FRE).
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Figure 3.3: Structural diagram of the RBFs.

Both methods will be discussed in this thesis, where the latter one is the main contribution. Before
introducing the two methods, we prefer to review the estimation principle first, which will be applied
for estimating the unknown parameters in the two methods.

3.3 Least-squares estimation and regularization

3.3.1 Inverse problems and ill-posedness

Most inverse problems describe the continuous physical world and take the form of Fredholm integral
equations of the first kind. Theses problems arise in many disciplines such as geophysics, medical
physics, image and signal processing, astrophysics, and geodesy. The general form of this integral
equation is given by

/QK(si,t):Jc (#)dt =1 (s1), (3.12)

where K (s;,t) is a smoothing kernel, describing the process, [ (s;) is the measured data as a function
of the time or position s;, and € is the domain of integration. The purpose of the inverse problem is to
find the model x () at the time or position ¢ based on the given [. Given the model z, to compute the
data [ is consequently called the forward modeling. In practical computations, the continuous system
given by Eq. (3.12) needs to be discretized. There are two approaches: (1) the continuous system is
discretized with a number of model parameters K that is smaller than the number of observations
I, leading to an overdetermined system; (2) the system is discretized with K > I, resulting in an
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underdetermined system. In gravity field modeling, the first approach is considered. When the kernel
K (si,t) is linear with respect to the model z (¢), the integral equation in Eq. (3.12) can be rewritten
in matrix-vector notation after discretization:

Ax =1, (3.13)
where A: X — L is a linear operator mapping the unknown vector space X to the observation vector
space L with x € X and 1 € L. Comparing Eq. (3.13) to Eq. (3.12), the matrix A is constructed from
the kernel K (s;,t), the vectors x and 1 are related to the model z (¢) and the data [ (s;), respectively.

According to the definitions in Hadamard (1923), the inverse problem is regarded as “well-posed”
only in the case that it satisfies the following three requirements:

e A is surjective so that Eq. (3.13) is solvable for all 1 € L (existence).
e A is injective so that Eq. (3.13) has only one solution x € X (uniqueness).

o A~! exists but also is continuous with respect to the data so that a small change in the data
also leads to a small change in the model (stability).

As soon as any one of the above requirements is violated, the problem is then said to be “ill-posed”
or “improperly posed”. In the field of geodesy, since the model parameters are often not subject to
direct observations, one frequently has to deal with the inverse problem. Inverse problem is usually
ill-posed as very often at least one of the conditions mentioned above is not satisfied. A typical inverse
problem for the non-uniqueness is the determination of the mass distribution in the interior of the
Earth from the exterior gravity field observations, as infinitely many mass distributions can produce
the same exterior gravity field. In gravity field modeling using spherical harmonics or radial basis
functions, the issue of existence and uniqueness can properly be resolved by introducing additional
requirements to the solutions. For example, the solution %X computed by minimizing ||l — Ax||? in the
least-squares sense can be considered as the best approximation to the exact solution x if minimal
variance of the data misfit is desired. In the context of this thesis, further investigation on the ill-
posedness is due to the lack of stability; such an ill-posed problem can be solved by employing a
so-called regularization, which will be discussed later. In regional gravity field modeling using the
point mass RBFs, the missing stability might be caused by the following factors:

e In the case of using airborne gravity data for the calculation of gravity field functionals on the
Earth’s surface, the downward continuation causes an ill-posed problem, as the data errors and
unmodeled signals are strongly amplified especially in the high-frequency part of the spectrum.

e Irregular data distribution or data gaps, which often occur in the case when using terrestrial
gravity data for the modeling, lead to numerical instabilities.

e Very-deep or closely located point mass RBFs, which result in similar columns in the design
matrix, cause numerical instabilities.

3.3.2 Characteristics of inverse problems

Most inverse problems have common characteristics. A powerful tool to identify the instability of an
inverse problem expressed by Eq. (3.13) is to examine the spectral behavior of the linear operator
(or the design matrix) A € R*X by the Singular Value Decomposition (SVD) (e.g., Golub and van
Loan, 1996; Hansen, 1997), yielding

K ZK
A=USV'=> uov] with I = NE (3.14)
=1
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where U = (uy,...,ur) € R/ is an orthogonal matrix that spans the data space, satisfying UTU =
UUT =1, V = (vq, ..., vg) € REXK ig an orthogonal matrix that spans the model space, satisfying
VTV = VVT = 1. The orthogonal vectors u; and v; are the corresponding left and right singular
vectors, satisfying the following relations

uwfu, =viv, =1
AVZ‘ = o;u; . (315)

T —
A u;, = o;V;

The matrix ¥ € R’*¥ contains a diagonal matrix £ = diag (o1, ..., o) with the singular values o;,
which are arranged in decreasing order such that

o1 >09>...> 0 > 0. (3.16)

The condition number for the design matrix A is equal to the ratio o1/0k (e.g., Hansen, 2008). If
the singular values of A descend too fast, the linear system in the form of Eq. (3.13) is considered as
ill-posed, resulting in a large condition number. The matrix A is then said to be “ill-conditioned”. In
the extreme case such that one or more singular values equal zero, the matrix A does not have full
column rank and is said to be “rank deficient”.

The singular values o; of the design matrix A can be connected to the eigenvalues A; of the normal
matrix by the relation N = ATA = VI2VT = VAVT with A = diag (A1, ..., \) = diag (07, ...,0%).
The condition number of N is consequently equal to the ratio o7 /0% . Although it is very difficult to
prove in general, the large singular values are associated with smooth singular vectors, and the small
singular values are associated with oscillatory vectors (Hansen, 2008). It can also be interpreted in
such a way that smooth singular vectors are associated with low frequencies and oscillatory singular
vectors correspond to high frequencies. Considering Eq. (3.14), the mapping Ax of a vector x can
be described by

K
Ax =) o (V?X) u; =1 (3.17)
i=1
Here the high-frequency components of x are more damped during the mapping process due to the
multiplication with small singular values ;. Therefore, the smoothness of the mapping is guaranteed
by the smoothing property of the matrix A. On the other hand, when solving for x from the equation
system in Eq. (3.17), the solution is given by

=Y Sy, (3.18)

It becomes obvious that the high frequencies of the observations 1 are amplified by large factor 1/0;
with increasing i, requiring that the observations must not be arbitrarily rough as the terms w1
have to decay faster than the singular values o; to achieve the convergence of the solution X. This
requirement is described as the discrete Picard condition in Hansen (2008). However, if errors exist
in the observations the Picard condition might be violated. For example, the white noise is of equal
magnitude for all frequencies, and its effect on the solution becomes more severe when ¢ increases. In
this case, the inverse problem is unstable.
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3.3.3 Linear least-squares solution

In the following, the process for estimating the unknown gravity field parameters from a linear equa-
tion system will be described. It represents a standard Gauss-Markov model, which is based on the
assumptions that the observation errors have an expectation of zero, and that the covariance matrix
of the observations is known a priori. The functional model and stochastic model then read (Koch,
1999):

l-e=Ax with E(e)=0 and D(e)=D(1) =o?P. . (3.19)

Here 1is the I x 1 vector containing observed gravity field quantities, e is the I x 1 vector of random
observation errors, D (e) = D (1) = 0?P_ ! represents the I x I covariance matrix of e with P, the
weight matrix of the observations and o2 the corresponding positive variance factor, and x is the K x 1
vector of unknown gravity field parameters, such as the Stokes coefficients for spherical harmonics
or the magnitudes for the point mass method. The I x K design matrix A describes the functional
relation between x and 1. For the sake of simplicity, D (e) is denoted as D, in the following.

The objective function, which needs to be minimized in the least-squares adjustment, is given as
the weighted square sum of the residuals

1
P (x) = — (1- Ax)' P (1- Ax) = [[(1- Ax)[p1 - (3.20)
€
The minimum of ® (x) can be achieved by differentiating with respect to x and forcing it to zero, i.e.,
0® (x)/0x = 0. This results in a system of normal equations

Nx =y, (3.21)

in which N = ATP_A and y = ATP.l. The estimation of the unknown gravity field parameters
by means of least-squares adjustment is consequently the solution of the normal equation system,
yielding
-1
£ =Nly = (ATPeA) (ATPel) . (3.22)
More details about the least-squares method can be found in textbooks, e.g., Koch (1999). In order to

assess the quality of estimated parameters X, the covariance matrix D (X) can be derived by applying
the law of variance propagation to Eq. (3.22) under consideration of Eq. (3.19), yielding

D (%) =6°N""! (3.23a)

with

1
A2 o\ T .

Besides the internal validation by calculating the covariance matrix D (X), the external validation
is frequently used in regional gravity field computations. Assuming q is an N x 1 vector that contains
independent gravity field quantities, the predictions q can be connected to the estimated parameters
X via the N x K design matrix B according to

q = Bx%, (3.24)
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and the vector of residuals is then given as
€E=q—q. (3.25)
The relevant statistical values can then be obtained according to €, such as

Mean (&) = + SN e

RMS (&) = /&> & : (3.26)

STD (&) = \/ﬁ Zfl\f:l [€n — Mean (é)]2

in which Mean (€), RMS (€), and ST'D (é) are the mean, root-mean-square, and standard deviation
of the residuals, respectively. In the context of this thesis, the external validation is the main tool
for assessing the quality of the regional gravity field solutions. Often, a good gravity field solution is
defined as the one with a small RMS when comparing the predictions to independent observations,
assuming that those control data are accurate enough. In some cases with significant systematic
errors, which can be removed by the post-processing approach (e.g., in the case of geoid/quasigeoid
modeling), the solution with a small STD is considered as good.

3.3.4 Regularization

In Section 3.3.2, we have analyzed the spectral characteristics of the inverse problem by using SVD.
The singular vectors, corresponding to very small singular values, are found to be the causes for ill-
posedness. From this point of view, the direct way to stabilize the problem is to discard some small
singular values as well as their corresponding singular vectors by adding a filter to the standard SVD
solution as shown in Eq. (3.18), yielding

5wl
i=1

0

with

fi= (3.27b)

1 for i< K’

0 for i>K'
The process using Eq. (3.27) is called the Truncated Singular Value Decomposition (TSVD) (e.g.,
Hansen, 1987; Xu, 1998; Hansen, 2008). The solution is obtained from the first K’ < K singular values
and related singular vectors, and the rest are ignored. Alternatives to TSVD for solving the ill-posed
problem are, e.g., Tikhonov regularization (Tikhonov, 1963) and iterative regularization methods
(e.g., Bouman, 1998; Hansen, 2008), etc. An overview on a variety of regularization methods can be
found in, e.g., Hansen (1997), Bouman (1998), and Hansen (2008). In this thesis, only the Tikhonov
regularization will be applied as it has been widely used in regional gravity field modeling using RBFs
(e.g., Eicker, 2008; Klees et al., 2008; Alberts, 2009; Wittwer, 2009; Naeimi, 2013). And hence, it will
now be described in more detail.

Tikhonov regularization

Comparing to TSVD, no decomposition of the design matrix or the normal matrix is required for
Tikhonov regularization. The fundamental idea of this procedure is to minimize the objective function
in Eq. (3.20) considering a priori assumption about the size and smoothness of the desired solution.
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This assumption can be described by adding a penalty term || qu);l that describes the norm of a priori
information p given as linear functionals Lx of the unknown parameters x to the objective function.
From the Bayesian point of view, it is equivalent to adding an additional observation equation system
in the form of

p—e,=Lx with E(e,)=0 and D,=o0.P;' (3.28)

to the main observation equation system given in Eq. (3.19) (e.g., Koch and Kusche, 2002; Eicker,

2008). Here ai is the unknown variance factor of u, and P, is the corresponding weight matrix.

Concerning E (u) = 0, the objective function for the Tikhonov regularization based on the Bayesian
approach is equivalent to (Eicker, 2008)

o [0 -

with the inverse of the extended covariance function

., 1 (P 0O
7\ 0 %P#
©

Let 09, (x)/0x = 0, the regularized normal equation system then reads:

(3.29a)

(ATPEA + aLTPML) x = ATP,l, (3.30)

where o = 02/ ai is the regularization parameter, which can be interpreted as a noise-to-signal ratio
if u represents the signals. Thus, it is expected that a large « is needed for the data with large noise
in the same study case. An important alternative of the objective function in Eq. (3.29) is given as

b (x) = (1— Ax)' P, (1— Ax) + ax"LTP,Lix = |1 - Ax|p_+ o |Lx[fp, - (3.31)

It represents the general form of the objective function for the Tikhonov regularization in the Bayesian
sense. L is a linear operator that is used for the determination of certain solutions to be constrained.
It should be defined depending on the particular applications. In the case of L = I, the smoothness
constraints are only applied for the unknown parameter vector x itself not for its functionals. P, is
often set to be the identity matrix in regional gravity field modeling. A more familiar formulation of
Eq. (3.31) for geodesists is formulated as

D, (x) = (1- Ax)" P, (1 - Ax) + ox"Rx = |[1 - Ax[[p, +a x|k, (3.32)

in which R = LTP#L is known as the regularization matrix with the dimension of K x K. From Eq.
(3.32) it is clear that both the choices of the regularization matrix and the regularization parameter
play an important role in obtaining an optimal solution. Related studies about the choice of R for
spherical harmonic solutions can be found in, e.g., Kusche and Klees (2002) and Ditmar et al. (2003),
and for solutions of RBFs in, e.g., Eicker (2008), Alberts (2009), and Eicker et al. (2014). Often, R
is simply chosen as the identity matrix I. Then, Tikhonov regularization is known as ordinary ridge
regression in statistics and is also called the standard Tikhonov regularization. The objective function
in Eq. (3.32) is then rewritten according to

Dy (x) = (1—Ax)" P, (1 — Ax) + ax"x

(3.33)
= 1- Ax|[p_ + o [x]f = @4+ adp,
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resulting in the regularized solution
. T “LaT
%o = (ATP.A +al) APl (3.34)

If the identity matrix I is replaced by the matrix R, Eq. (3.34) becomes the solution for the objective
function in Eq. (3.32). From Eq. (3.33), the objective function ®, (x) is divided into two parts, i.e.,
the data misfit function ®; and the model function ®,,. The choice of the regularization parameter
a becomes a crucial task as it determines how well the solution should fit the data. When « is large,
the solution fits less well to the data. In this case, much information contained in the data is lost. If
« is very small, the solution starts to fit noise. An optimal « should be chosen in such a way that
the solution fits the data as well as possible while the data noise should be damped as strongly as
necessary. This issue will be discussed in Section 3.3.5 in more detail.

Analysis of the Tikhonov reqularization

In order to understand the basic properties of the standard Tikhonov regularization, the SVD is
employed again for the analysis in the following. The normal equation corresponding to the solution
in Eq. (3.34) is given as

(ATP.A +al)x = ATP.L (3.35)

Inserting Eq. (3.14) into the above equation under consideration of P, = I, yields
(ATA +al)x = (VIVT +aVVT)x = V (22 4 oI ) VIx = VEU'L (3.36)
Multiplying both sides with VT gives
(22 + al) VTx = mUM, (3.37)
and the solution is computed according to
%o =V (224 oéI)_1 Ut =veT! (3?4 aI)_l »2uTlL. (3.38)

-1
Let (22 + aI) »? = F, Eq. (3.38) can be reformulated as

1 T LY |
Xo = VX "FU'1= i ——V; .
% ; f oV (3.39a)
with the Tikhonov filter function
2
O'.
i = —5 . 3.39b
fi= e (3.39b)

The left panel of Fig. 3.4 shows the Tikhonov filter functions for three regularization parameters
a. It follows that the filter function penalizes the singular vectors, which are associated with the
singular values 0? < . As a result, the singular vectors associated with small singular values have
nearly no contribution to the regularized solution, leading to a stable solution. Comparing the TSVD
to the standard Tikhonov regularization, i.e., see Egs (3.27) and (3.39), the main difference between
them is the filter function. The right panel of Fig. 3.4 shows one example of the TSVD filter function
and the Tikhonov filter function. It demonstrates that the TSVD filter function acts as an exact
low-pass filter and the Tikhonov filter function can be considered as a quasi low-pass filter with a
smooth transition zone.
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_____ o =1078] s — Tikhonov filter ||
---q=10"° - - - TSVD filter

—a=107] osl

Figure 3.4: Examples for the TSVD and Tikhonov filter functions. Left: the Tikhonov filter functions for
three regularization parameters o = 1078,1075,1072; right: one TSVD filter function truncated
at 02 = 107° and one Tikhonov filter function for o = 1075.

Relationship between the Tikhonov regularization and the least-squares collocation

In the following the relationship between the Tikhonov regularization and the least-squares collocation
(see also Section 2.6) will be briefly discussed. Eq. (2.45) for the prediction of a signal vector s based
on a set of noisy observations 1 is reformulated with tiny changes:

§ = Cy (Cit+ Ceo) 'l with C, =0?P. =021 (3.40)

e

According to the following relations:

Ax =t, (3.41a)
Bx =s, (3.41Db)

the auto-covariance matrix Cy and the cross-covariance matrix Cg; can be obtained as
Cy = AC,, A", (3.42a)

Cst = BC,,AT, (3.42b)

in which C,, is the covariance matrix of the unknown parameters x. Inserting Eq. (3.42) into Eq.
(3.40), yields (Rummel et al., 1979; Bouman, 1998)

$=BC,, A" (AC,, AT + 031)_1 1=B(ATo %A + C;;)_l AT
~1 (3.43)
=B (ATA+02C;))  ATL

The same predictions as given in Eq. (3.43) can be computed by the least-squares adjustment con-
sidering the Tikhonov regularization:

-1
s=Bx=B(ATA+aR) A"l (3.44)

Comparing Eq. (3.43) to (3.44), LSC can be regarded as a special case of the Tikhonov regularization

approach with the use of a regularization matrix R = ¢2C_,}! while taking the regularization parameter
a = 1. For the regularized LSC given by Eq. (2.47), a general form of Eq. (3.43) is given as (Rummel

et al., 1979)
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-1
s=B(ATA +a02C;l)  ATL (3.45)

For standard Tikhonov regularization, the use of an identity matrix I instead of R seems to be a less
appropriate choice than the use of ¢2C,} in LSC.

3.3.5 The choice of the regularization parameter

The crucial task for obtaining a stable solution when using the standard Tikhonov regularization is
how to choose a proper regularization parameter «, as it controls the trade-off between the degree
of the data fit and the degree of the smoothness of the solution. In practice, several criteria are
used to choose a proper «, each of them may be suited better for specific problems. An overview
of some approaches for the choice of the regularization parameter is given in Hansen (1997) and
Bouman (1998). In this thesis, the regularization parameter is determined by one of the following
three approaches:

e Minimizing the RMS of the differences between predicted and observed values at a set of control
points, assuming that the observed values are accurate enough, see e.g., Tenzer and Klees (2008).

o Generalized cross validation (GCV), see e.g., Golub et al. (1979), Hansen (1997), Bouman
(1998), Kusche and Klees (2002), Ditmar et al. (2003), and Hansen (2008).

e Variance component estimation (VCE), see e.g., Koch and Kusche (2002).

The first approach is empirical, and the latter two are the heuristic approaches, which do not depend
on the additional control values, but only on the input data.

Empirical approach

The empirical approach aims at choosing a regularization parameter a with which a minimal RMS
of the differences between the predictions and the observations at the given control points can be
achieved. Often, a set of n candidates «;, which are arranged in the order such that a; > ag > ... >
ay > 0 have to be pre-selected. Starting from «;, this approach can be described mathematically as

1o 2 . .
i) — T oy T — Ly Ly ey Il .
RMS («;) = \/N |IBXo, —q||® with i=1,2,...,n (3.46)

where N is the number of control points, q is an N X 1 vector containing the observed control values,
B is the N x K design matrix, and X,, is the K x 1 estimated parameter vector computed by Eq.
(3.34) with o = «;. This approach is easy to implement, and the solution is reliable in the case when
the control points are accurate enough and homogeneously distributed. If control points are absent
or are distributed inhomogeneously, the related solution might be less reliable.

Generalized cross validation

The generalized cross validation for finding a proper regularization parameter was first proposed by
Golub et al. (1979). It is based on the leave-one-out idea:

(%)

The solution vector X", which depends on the given regularization parameter «;, is computed
by Eq. (3.34) without the observation l. It is then used to predict the “missing” observation
fk = (A}Acgf))k A well-selected regularization parameter is expected to result in a small differ-
ence between the predicted [, and the observed value Ij. Repeating this procedure step by step

until all observations have been tested, a proper choice of the regularization parameter should
lead to a small mean square error of all possible differences I, — Ij.



46 3 Regional gravity field modeling with the point mass method

This idea is quite similar to the empirical approach but without requiring external control values.
Assuming uncorrelated observations of equal weight (i.e., P, = I), the ordinary cross validation
function CV (o) is given by

. 2 _1- [(A%e), —1J°
CV(ai):I];KAxgj))k_lk} :7; (1_5%2)2’“ , (3.47)

where @} are the main diagonal elements of the influence matrix Q®¢, which is defined by
Ax,, = QYL (3.48)

For the derivation of the second expression in Eq. (3.47), see Golub and van Loan (1996). The
generalized cross validation function GCV («;) is generated when the weights (1 — Qi) are replaced
by their average value tr (I — Q%) /I:

LT [(A%a,), 1,4  I||A%q, — 1\|2

GCV () (3.49)
kz::l [tr(T—Qe)* [T —tr(Q)]*
For a non-identity noise covariance matrix D, = 0P, !, the GCV function reads:
A%, — 13
GCV () = > (3.50a)
[ —tr (Q)]
with
-1
Q% = A (ATPGA 1 aiR) ATP,. (3.50D)

The optimal regularization parameter is the one corresponding to the minimum of the GCV func-
tion. Thus, our goal is to find the minimal GCV («;) by testing n candidates arranged in decreasing
order. It should be mentioned that the selection of the candidates plays an important role in both
the empirical approach and the GCV approach. If the computational burden is acceptable, a reliable
way is to select them based on the Tikhonov filter function given in Eq. (3.39b). In practical ap-
plications, the computation of tr (Q%) is quite time-consuming in the case of a large-scale problem,
as it requires the inverse of a large regularized normal matrix. Alternatively, the stochastic trace
estimation proposed by Koch and Kusche (2002) is widely used, which will be described in detail in
the following.

Variance component estimation

In Section 3.3.4, we mentioned that the Tikhonov regularization can be interpreted as considering
a priori information in the Bayesian sense and that the regularization parameter is obtained as the
ratio between two variance factors, see Eqs (3.28)—(3.31). In the same context, if different kinds of
observations are used as input, the determination of proper relative weights of the observations is
essential to achieve an accurate result. For both tasks, the variance component estimation (e.g., Koch
and Kusche, 2002) can be applied. Assuming there are p observation groups, the functional model
and the stochastic model for each group are given as

l; —e;=A;x with E(e;)=0 and D(e;) =D(1) =o’P;! (3.51)

with o7 for i € {1,2,...,p} being the variance component (or variance factor) of the observation
group 4. If the observations are combined with a priori information p as given in Eq. (3.28) under
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consideration of both L = I and E () = 0, the least-squares solution X can be obtained by solving a
combined normal equation

Nx =y (3.52a)
with
1 1 ¢ 1
N == 72A1 PlAl + + 72AP PpAp + TPH, (352b)
09 0'p U,u
1 T 1 T
y= 5 APIL 4.+ AP, (3.52¢)
1 P

Multiplying both sides of Eq. (3.52a) with of and taking w; = 07/07 and « = 0} /07, a new form of
the normal equation is given as

(ATP1AL + . + W ATPLA, +aP,) x = ATPiL + ... +w, AT P, (3.53)

where the ratio w; stands for the relative weight of the observation group ¢ with respect to group 1.
The unknown variance components o2 and O'i are estimated iteratively according to

eTPe; (Ax—1)TPj(Ax—1)

A2
2 — = 3.54
0; p - ; (3.54a)
ATP N AT ~
52 = Sutnn X BuX (3.54b)
g Tu T

where 7; and r, are the partial redundancies, i.e., the contributions of the observation group 7 and
the a priori information p to the overall redundancy I. The partial redundancies are computed by
(Koch and Kusche, 2002)

1
vy =1I; —tr <2A;FP1~A¢N‘1> , (3.55a)
g;
1
r, =K —tr <2P#N_1> , (3.55b)
I

where I; denotes the number of observations in group i, satisfying >°* | I; = I. Concerning P; =
G;G} and P, = GMGE, where G; and G, are the regular lower triangular matrices, and using the
relation tr (AB) = tr (BA), Eq. (3.55) can be transformed into

1
ri=1I - —tr (GTANTATG), (3.56a)
9
T,
_ 1 Tag—1
ry=K— 2l (GIN'G,). (3.56b)
Tu

The computation of the traces 7; and 7, to obtain the partial redundancies in Eq. (3.56) requires the
inverse of the combined normal matrix N, which may be too time-consuming for the case of a large
number of unknown parameters. The stochastic trace estimation (STE) (Hutchinson, 1990; Koch and
Kusche, 2002) is introduced to improve the numerical efficiency. We use the theorem by Hutchinson

(1990): E (uTBu> = tr (B), where B is a symmetric matrix and u is a random vector with F (u) =0
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and D (u) = I. If the vector u contains independent samples of the values +1 and —1 with equal
probability, then uTBu is an unbiased estimator of ¢r (B) with minimum variance. Accordingly, the
calculation of an unbiased estimate of the trace 7; in Eq. (3.56a) is equivalent to

Ti=u'GIANTATG;u. (3.57)
The computation procedure of 7; by STE can be setup as follows:
(D Gen