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Summary

The integral method and least-squares collocation (LSC), which work together with the remove-
compute-restore technique, are state-of-the-art methods for computing accurate high-resolution re-
gional gravity field models. However, both methods have some limitations. The integral method
requires gridded gravity data as input for fast computations, which can introduce interpolation errors
in the solution, and it is also not well suited for handling different types of input gravity field data.
On the contrary, LSC can be applied for an optimal combination of heterogeneous observations, but
a linear equation system must be solved, with the number of unknown parameters being equal to the
number of observations. This prohibits it from being widely used in (real) cases with a large number
of observations. Although the development of computer performance can partly solve the numerical
problem of LSC, it is still of interest to seek for a method, which behaves as a compromise between
the aforementioned two methods.

In this thesis, a parameterization method using radial basis functions (RBFs) is studied for regional
gravity field modeling. On the one hand, this method is capable of dealing with different input data
sets in comparison to the integral method. On the other hand, a linear equation system with a smaller
number of unknown parameters is to be solved than for the case of LSC. The corresponding regional
solution can be regarded as complementary to the integral method and LSC. The method mainly
contains: (1) the design of the RBFs, including the choice of the spatial bandwidths of the RBFs and
the horizontal positions of the RBFs; (2) the parameter determination.
In the first task, due to the space localization of the RBFs, the spatial bandwidths of the RBFs play

the most important role for achieving a good approximation of the regional gravity field. An RBF’s
spatial bandwidth depends on its type, spectral bandwidth, and radial distance (i.e., depth below the
reference sphere). The spectral bandwidth is defined by the minimum and maximum degree used in
the series expansion of the RBF, resulting in a full RBF using all terms and a reduced RBF using only
terms from a specified minimum degree to a maximum degree. In the context of this thesis, the type
of the RBFs is chosen to be the point mass kernel (i.e., point mass RBFs). The spatial bandwidths
of the RBFs then rely on the spectral bandwidths and depths. In this case, the design of the RBFs is
equivalent to determine the RBF positions (i.e., horizontal positions and radial distances) and their
spectral bandwidths. In practical applications, the positions of the RBFs are usually determined
first. Then, the spectral bandwidths are properly selected, which further modifies the corresponding
spatial bandwidths. For determining the RBF positions, two cases are studied: a fixed case and a
free case. In the fixed case, all RBFs are located at the nodes of one or more grids. Obviously, the
construction of the grids plays a crucial role, including the choice of the grid extent, grid spacing, grid
depth, and grid formation. In contrary to the fixed case, the number and positions of the RBFs are
unknown in the free case. A search process is developed to automatically select a number of point
mass RBFs at reasonable positions by means of solving a series of small-scale nonlinear problems with
bound constraints on the unknown parameters using an appropriate iteration algorithm to minimize
the root-mean-square (RMS) of the differences between the predictions and observations.
The goal of the second task is to provide a stable estimate of the magnitudes of all searched

point mass RBFs with known positions in the least-squares adjustment. Two solution schemes are
proposed for estimating the magnitudes. In the first solution scheme, the full or reduced RBFs are
used for assembling a linear equation system. Then, the magnitudes are estimated in a least-squares
adjustment. In the second solution scheme, only the full RBFs are used for constructing the linear
equation system. Additional constraints are taken into account in the least-squares adjustment.
These constraints are derived from the relationship between the spherical harmonics and the point
mass RBFs. To deal with the case of ill-posedness, Tikhonov regularization is applied, and the proper
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regularization parameter is determined by either an empirical or a heuristic approach.
Several numerical tests using synthetic and real gravity data are carried out to test the developed

point mass method. The “optimal” strategy for choosing appropriate model factors for the point
mass method is derived from various numerical comparisons, so that a good gravity field solution in
terms of RMS (or standard deviation) errors can be guaranteed. The solutions are validated against
independent gravity field data or compared to the results computed by other methods. The numerical
results show that the proposed point mass method is able to provide a good solution that is compa-
rable to the solution of LSC if the model factors are chosen properly.

Keywords. Regional gravity field, radial basis functions, point mass method, least-squares, regular-
ization
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Zusammenfassung

Das Integralverfahren und die Kleinste-Quadrate-Kollokation (LSC) sind moderne und im Rah-
men der Remove-Compute-Restore Technik aktuell genutzte Methoden zur Bestimmung genauer
hochaufgelöster regionaler Schwerefeldmodelle. Aber beide Methoden haben ihre Einschränkungen.
Das Integralverfahren benötigt als Eingangsdaten die Schwerewerte auf einem Gitter, so dass mögliche
Interpolationsfehler die finale Lösung beeinflussen können. Außerdem ist die Methode für die Kombi-
nation unterschiedlicher Schwerefelddaten nicht sonderlich gut geeignet. Im Gegensatz dazu können
die Daten mit LSC optimal kombiniert werden, da die Eingangsdaten ohne jegliche Interpolation
verwendet werden. Ein wesentlicher Nachteil ist aber der hohe numerische Aufwand, denn es ist ein
lineares Gleichungssystem mit genauso vielen Unbekannten wie Beobachtungen zu lösen. Da in realen
Anwendungsfällen meist eine große Anzahl von Beobachtungen vorliegt, ist der LSC-Ansatz nicht sehr
weit verbreitet, obwohl die heutige Rechenkapazität und Computertechnologie die numerischen An-
forderungen zum Großteil erfüllen können.

In dieser Arbeit wird ein Ansatz zur regionalen Schwerefeldbestimmung mit Hilfe radialer Basis-
funktionen (engl. radial basis functions, RBFs) vorgestellt. Auf der einen Seite ist dieses Verfahren,
im Vergleich zum Integralverfahren, in der Lage, unterschiedliche Eingangsdatensätze zu verarbeiten,
auf der anderen Seite weist das lineare System, das zu lösen ist, deutlich geringere Dimensionen
auf. Die Methode der regionalen Lösung kann daher als Ergänzung zum Integralverfahren und zur
LSC eingeordnet werden. Die Kernpunkte der Methode umfassen: (1) den Entwurf der RBFs, ein-
schließlich der Wahl der räumlichen Bandbreiten und der horizontalen Positionen der RBFs sowie (2)
die Parameterschätzung.

Die erste Aufgabe umfasst die Lokalisierung der RBFs. Dabei spielt die Bestimmung der räum-
lichen Bandbreiten die wichtigste Rolle, um eine gute Annäherung an das regionale Schwerefeld zu
erreichen. Die räumliche Bandbreite einer RBF hängt im Wesentlichen von der Art, der spektralen
Bandbreite sowie der radialen Entfernung der Basisfunktionen ab. Die spektrale Bandbreite wird über
den minimalen and maximalen Grad in der Reihenentwicklung der Basisfunktion definiert. Dies führt
einerseits zu vollen RBFs unter Nutzung aller Terme und anderseits zu reduzierten RBFs, bei denen
nur ausgewählte Terme von einem minimalen Grad bis zu einem maximalen Grad genutzt werden. Als
Typ werden im Rahmen dieser Arbeit RBFs mit Punktmassen-Kernen (Punktmassen-RBFs) gewählt.
Somit hängen die räumlichen Bandbreiten der RBFs von der Wahl der spektralen Bandbreite und
der radialen Entfernung ab. In diesem Fall ist das Entwerfen der RBFs äquivalent zur Bestimmung
der RBF-Positionen (horizontale Positionen und radiale Abstände) und der spektralen Bandbreiten.
In praktischen Anwendungen werden beide Faktoren nacheinander bestimmt. Meist werden die Po-
sitionen der RBFs unter Nutzung der vollen RBFs zuerst bestimmt. Dann werden die spektralen
Bandbreiten geeignet ausgewählt, um die räumlichen Bandbreiten weiter verändern zu können. Für
die RBF-Positionen werden zwei Fälle untersucht: ein fixierter Fall und ein freier Fall. Im fixierten
Fall werden alle RBFs an den Knotenpunkten von einem oder mehreren Gittern fixiert. Offensichtlich
spielt der Aufbau der Netze dabei eine entscheidende Rolle; dieser umfasst die Wahl der Gittergröße,
des Gitterabstandes, der Gittertiefe und der Gitteranordnung. Im Gegensatz zum fixierten Fall sind
Anzahl und Position der RBFs im freien Fall unbekannt. Es wurde ein automatisierter Suchprozess en-
twickelt, der die Anzahl der Punktmassen-RBFs auswählt und deren Positionen bestimmt. Dabei wird
eine Reihe klein-skaliger nichtlinearer Probleme mit Randbedingungen für die Tiefen (d.h. radialen
Abstände) oder die horizontalen Positionen gelöst. Dies geschieht unter Anwendung eines geeigneten
Iterationsalgorithmus zur Minimierung der mittleren quadratischen Abweichung (root-mean-square,
RMS) der Differenzen zwischen Vorhersagen und Beobachtungen.
Die zweite Aufgabe verfolgt das Ziel einer stabilen Schätzung der Amplitude aller gesuchten Punkt-
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massen-RBFs mit bekannten Positionen unter Zuhilfenahme der Methode der kleinsten Quadrate. Es
werden zwei Lösungsschemata zur Schätzung der Amplitude vorgeschlagen. Im ersten Lösungsschema
werden volle oder reduzierte RBFs zum Aufbau des linearen Gleichungssystems genutzt. Die Amplitu-
den der RBFs werden dann in einer Kleinste-Quadrate-Ausgleichung geschätzt. Das zweite Lösungs-
schema sieht vor, lediglich die vollen RBFs zum Aufbau des linearen Gleichungssystems zu verwenden.
Zusätzliche Bedingungen werden im Zuge der Kleinste-Quadrate-Ausgleichung berücksichtigt. Die Be-
dingungen werden aus dem Verhältnis zwischen Kugelfunktionen und Punktmasse-RBFs abgeleitet.
Im Falle schlecht gestellter Probleme wird die Tikhonov Regularisierung angewendet und der geeignete
Regularisierungsparameter über einen deterministischen oder einen empirischen Ansatz bestimmt.
Unter Verwendung synthetischer und realer Schweredaten wird mittels mehrerer numerischer Tests

die entwickelte Punktmassen-Methode getestet. Die "optimale" Strategie für die Auswahl geeigneter
Modellfaktoren für die Punktmassen-Methode wird schließlich aus verschiedenen Zahlenvergleichen
abgeleitet, so dass eine gute Schwerefeldlösung in Bezug auf RMS (oder Standardabweichung) gewähr-
leistet werden kann. Die Lösungen werden entweder gegen unabhängige Schwerefelddaten validiert
oder mit Ergebnissen anderer regionaler Methoden verglichen. Die Ergebnisse zeigen, dass die Punkt-
massen-Methode in der Lage ist, regionale Lösungen zu bestimmen, die mit LSC-Lösungen vergleich-
bar sind, sofern die Modellfaktoren geeignet gewählt werden.

Schlagwörter. Regionale Schwerefelder, Radiale Basisfunktionen, Punktmassen-Methode, Kleinste-
Quadrate-Ausgleichung, Regularisierung
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Abbreviations

BGI Bureau Gravimétrique International
CA/NM Central Alps/New Mexico
CHAMP CHAllenging Minisatellite Payload

DTM Digital Terrain Model
EU/SA Europe/South America
FIX-S Solution of PM-FIX associated with a Single-grid Formation
FIX-T Solution of PM-FIX associated with a Two-grid Formation
FRE-A Solution of PM-FRE using Point Mass Search Model SMA
FRE-B Solution of PM-FRE using Point Mass Search Model SMB

GBVP/GBVPs Geodetic Boundary Value Problem/Geodetic Boundary Value Problems
GCV Generalized Cross Validation
GN Gauss-Newton Method

GNSS Global Navigation Satellite System
GPS Global Positioning System

GOCE Gravity and steady-state Ocean Circulation Explorer
GRACE Gravity Recovery And Climate Experiment

IAG International Association of Geodesy
IGN Institut Géographique National

L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method
L-BFGS-B Bound-constrained Limited-memory BFGS Method

LM Levenberg-Marquardt Method
LSC Least-Squares Collocation

NLCG Nonlinear Conjugate Gradient Method
PM-FIX Point Mass Method with Fixed Positions
PM-FRE Point Mass Method with Free Positions

RBF/RBFs Radial Basis Function/Radial Basis Functions
RCR Remove-Compute-Restore
RMS Root-Mean-Square
RTM Residual Terrain Model
SH Spherical Harmonics

SHA Spherical Harmonic Analysis
SHS Spherical Harmonic Synthesis
SMA Point Mass Search Model with only One Layer
SMB Point Mass Search Model with more than One Layers

SRTM Shuttle Radar Topography Mission
STD Standard Deviation
STE Stochastic Trace Estimation
SVD Singular Value Decomposition

S1/S2 Solution of PM-FRE using Full/Reduced RBFs
TSVD Truncated Singular Value Decomposition
VCE Variance Component Estimation

2P/4P Solution of PM-FRE using Radial-/All-direction Optimization
3D Three-Dimensional
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1 Introduction

1.1 Background

In geodesy, one of the major tasks is the determination of the Earth’s gravity field, which provides
a fundamental contribution to geodetic, oceanographic, and geophysical applications. The highest
accuracy and resolution demands in the field of geodesy are coming from Global Navigation Satellite
System (GNSS) positioning and the determination of gravity field related heights. In this context,
the geoid and quasigeoid are of major interest, as they serve as a height reference surface for the
orthometric and normal heights, respectively, such that ellipsoidal heights measured by GNSS can
be directly transformed into gravity field related heights. Furthermore, a geoid or quasigeoid model
with sufficient accuracy is also necessary for the realization of a global height reference as well as for
the derivation of the ocean circulation based on accurate sea surface heights measured by altimeter
satellites. In addition, the knowledge of the gravity field also gives insight into the Earth’s interior,
such as crustal density variations, Moho undulations, rift basins, and lithospheric structure.

With the advent of dedicated gravity satellite missions, e.g., CHAllenging Minisatellite Payload
(CHAMP), Gravity Recovery And Climate Experiment (GRACE) as well as Gravity field and steady-
state Ocean Circulation Explorer (GOCE), the accuracy of the global gravity field is highly improved,
in particular at long and medium wavelengths. For the GOCE mission (Drinkwater et al., 2003), the
target accuracy is 1 − 2 cm for the geoid and 1mGal for gravity anomalies, at a resolution of about
100 km. Due to the global support of spherical harmonics, which are conventionally applied for repre-
senting the global gravity field, and due to the fact that the real gravity field exhibits strong signal
variations in selected regions, in particular in the higher frequency part of the gravity field spectrum,
the regional features can not sufficiently be taken into account by a global solution. Alternatively,
regional gravity field modeling is applied to extract more information from the satellite data in the
region of interest (e.g., Eicker et al., 2014). In addition to satellite data, dense (near) surface gravity
observations (e.g., terrestrial, marine, airborne, and altimeter data) are also available in some regions,
and hence the regional gravity field modeling aims at merging the satellite and (near) surface data in
an optimal way (e.g., Denker, 2013).

To benefit from the dramatic improvements of the long-wavelength global gravity field components,
the remove-compute-restore (RCR) technique (Forsberg, 1984) is frequently used in regional gravity
field modeling. A global field is subtracted from the observations before gravity field modeling to
remove the long-wavelength signal and reduce edge effects, and finally is restored to the computed
residual field. A number of different methods exist to approximate the anomalous gravity potential.
A review of the properties of various methods can be found, e.g., in Tscherning (1981). In addition
to the traditional integral formulae (e.g., Stokes’s integral) and least-squares collocation (LSC) (e.g.,
Heiskanen and Moritz, 1967; Moritz, 1980), radial basis functions (RBFs) have been used extensively
for the regional parameterization of the gravity field in recent years. Some examples are the point
mass kernel (e.g., Dampney, 1969; Needham, 1970; Heikkinen, 1981; Barthelmes, 1986; Cordell, 1992;
Vermeer, 1995; Antunes et al., 2003), radial multipoles (e.g., Marchenko, 1998; Marchenko et al.,
2001), spherical wavelets (Schmidt et al., 2007; Bentel et al., 2013; Naeimi, 2013), spherical spline
functions (e.g., Eicker, 2008; Eicker et al., 2014), and Poisson wavelets (e.g., Klees and Wittwer, 2007;
Klees et al., 2008; Tenzer and Klees, 2008; Wittwer, 2009; Panet et al., 2010). As the radial basis
functions are space localizing, it is expected that a proper model setup within the parameterization
will play a crucial role for a good representation of the regional gravity field.
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1.2 Research objectives

The goal of the research presented in this thesis is to develop a parameterization method for the
approximation of regional gravity field using RBFs. This method works in the framework of the RCR
technique, and the calculated regional gravity field solutions are considered as independent solutions
in comparison to the ones computed from the integral method and LSC.
The method mainly includes: (1) the design of the RBFs (i.e., model setup) based on data distri-

bution and signal content. It comprises the choice of the spatial bandwidths and horizontal positions
of the RBFs. The spatial bandwidth of an RBF is defined as the spherical angle where the basis func-
tion is half its maximum (Wittwer, 2009), describing the approximation characteristics of the RBF. It
depends on the RBF’s type, spectral bandwidth, and radial distance (i.e., depth below the reference
sphere); (2) the estimation of the unknown RBF coefficients. The type of the RBFs is pre-selected
in the context of this thesis, i.e., point mass RBFs are taken. And therefore, the main emphasis is
on the choice of the spectral bandwidths of the RBFs, the radial distances of the RBFs as well as
their horizontal positions. An RBF’s spectral bandwidth is defined by the minimum and maximum
degree used in the series expansion of the basis function, leading to a non-bandlimited (i.e., full) or
a bandlimited (i.e., reduced) RBF (Section 2.7.3). When the spectral bandwidths are also fixed, the
spatial bandwidths of the RBFs are then determined by their radial distances. In this case (the type
and spectral bandwidths of the RBFs are fixed), the design of the RBFs is equivalent to determine
the three-dimensional (3D) positions of the RBFs.
For the determination of the 3D positions of the RBFs, two cases are studied. In the first case, the

RBFs are defined to be at the grid points, and hence the design of the grids is very important. Several
model factors related to the grid have to be carefully chosen for achieving a good approximation. They
are the grid extent, grid spacing, grid depth, and grid formation. The effect caused by these factors
on the regional solution will be discussed. In contrary to the first case, the RBFs are considered as
free in the second case. This means that the number and positions of the RBFs to be used for the
modeling are unknown. In this case, we aim at developing a search process to find a set of RBFs at
reasonable positions.

After fixing the RBFs (i.e., the type, spectral bandwidths, number, and positions), a linear equation
system is generated and to be solved in the least-squares sense for estimating the coefficients of the
RBFs. A stable parameterization process considering Tikhonov regularization is to be developed,
which is capable of handling the ill-posedness.

In addition, the issue of data combination is also to be considered in the pursued method due to
the availability of more than one data sets in some regions of interest.

1.3 Thesis outline

The content of this thesis is divided into five chapters. Besides the current chapter with the intro-
duction, the remaining parts are organized as follows.

In Chapter 2 several methods for regional gravity field modeling are reviewed. The fundamental
concepts of potential theory are summarized at first. Then the geodetic boundary value problem
is outlined, and the corresponding approaches for solving the boundary value problem are briefly
described. Furthermore, the spectral combination approach is introduced. In addition to integral
method, LSC and parameterization method using RBFs are the other two commonly used approaches
for the approximation of the regional gravity field. This chapter ends with the description of the RCR
technique and the topography reduction; both are frequently applied for practical computations.

The principle of the point mass method and the computation procedures are described in detail in
Chapter 3. The relation between the point masses and the disturbing potential is explained at first.
Functional and stochastic models to be used in the regional gravity field analysis are then presented,
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resulting in the observation equations to be used for the approximation process. Afterwards, the
least-squares solution of the observation equations in both linear and nonlinear cases, as well as
the regularization process for obtaining a stable solution, are introduced. According to the way of
determining the positions of the point mass RBFs, two point mass approaches with fixed and free
positions are described; both are to be tested for the regional computations in Chapter 4. The latter
approach represents the main contribution of this thesis.

Chapter 4 addresses the numerical tests. Five tests using synthetic and real data are conducted
to test the proposed point mass approaches. The aim of the first three numerical tests is to find the
“optimal” strategies for the two regional approaches to obtain a good representation of the gravity
field through the investigations on the effect caused by different model setups and the comparisons
with traditional approaches. The inter-comparisons between the two point mass approaches are also
carried out. The best performing point mass approach considering the derived “optimal” strategy is
then applied to the remaining two numerical tests to verify its applicability.

Finally, the contributions of this thesis are summarized, and recommendations concerning challenges
that still need to be investigated as well as future research topics are given in Chapter 5.
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2 Approximation of the regional gravity field

In this chapter, the tools that are necessary for the approximation of the regional gravity field are
reviewed. First of all, the fundamental concepts of potential theory are summarized as they present
the basic setting for the modeling. In Section 2.2, the geodetic boundary value problem (GBVP) is
outlined, and the corresponding approaches for solving the GBVP, i.e., the Stokes’s approach and
the Molodesky’s approach, are briefly described in Section 2.3 and 2.4, respectively. Furthermore,
the spectral combination method, which is able to combine different data sets by spectral weights,
is introduced in Section 2.5. The introduction of LSC in Section 2.6 provides a different view for
regional gravity field modeling. In addition to the integral method and LSC, the parameterization
method using RBFs is discussed in detail in Section 2.7. The spherical harmonics (SH), which are
suitable for representing the global gravity field, are also included for the purpose of comparison.
Finally, the RCR technique and the topography reduction are shortly reviewed in Section 2.8; they
are frequently used in the practical regional gravity field computations.

2.1 Fundamentals

2.1.1 The Earth’s gravity field

A particle with the mass m rotating with the Earth is affected by two forces, the gravitational force
Fb caused by the attraction from the Earth and the centrifugal force Fc caused by the Earth’s
rotation. According to the definition in Heiskanen and Moritz (1967), Fg = Fb + Fc is called the
force of gravity of the particle. The force of gravity Fg and the gravity acceleration g is connected by
the particle mass m, satisfying Newton’s second law of motion: Fg = mg. Accordingly, the gravity
acceleration (or gravity) vector g is also the resultant of the gravitational acceleration b and the
centrifugal acceleration c:

g = b + c. (2.1)

The direction of g is the same as the one of the plumb line (or vertical) and its magnitude g = ‖g‖
is often called gravity.
According to Newton’s law of gravitation, the gravitational acceleration b at an arbitrary point i

with position vector ri is a function of mass densities and mass distribution inside the Earth and is
given by

bi = b (ri) = G

∫∫∫
Ω

ρ(r)
‖r− ri‖3

(r− ri)dΩ, (2.2)

in which G is the gravitational constant with the value of (6.67384± 0.00080) × 10−11 m3kg−1s−2

(recommended by CODATA 2010; Mohr et al., 2012), ρ(r) is the density of the Earth as a function
of the position vector r, and dΩ is the volume element of the Earth Ω. In the Earth-fixed rectangular
coordinate system (e.g., Cartesian x-, y-, z-system) the position vector r, ri, and the Euclidean
distance ‖r− ri‖ are expressed as

r = (x, y, z)T and ri = (xi, yi, zi)T

‖r− ri‖ =
√

(x− xi)2 + (y − yi)2 + (z − zi)2
, (2.3)
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and the expression of the centrifugal acceleration ci is given by (Torge and Müller, 2012)

ci = c (pi) = ω2pi with pi = (xi, yi, 0)T and pi = ‖pi‖ =
√
x2
i + y2

i , (2.4)

where ω is the angular velocity of the Earth’s rotation, pi is the distance vector from the rotation
axis and has the same direction as ci.

As the gravity is a conservative force field, it can be derived as the gradient of a scalar potential
(i.e., gravity potential Wi) according to

gi = gradWi. (2.5)

The gravity potential Wi of the Earth can be determined by

Wi = Vi + Ci = G

∫∫∫
Ω

ρ(r)
‖r− ri‖

dΩ + 1
2ω

2p2
i , (2.6)

where Vi is the gravitational potential that vanishes at infinity, Ci is the centrifugal potential, which
is an analytical function. Obviously, the variations of Wi are mainly dependent on Vi. Applying
the Laplace operator ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , a differential operator that represents the sum of the
second partial derivatives with respect to the three Cartesian coordinates, to Wi in Eq. (2.6), yields
(Heiskanen and Moritz, 1967)

∆Wi = ∆Vi + ∆Ci =

−4πGρ+ 2ω2 for point i inside Ω (Poisson)

0 + 2ω2 for point i outside Ω (Laplace)
. (2.7)

Any continuous functions, having continuous first and second derivatives and fulfilling Laplace’s
equation, are called harmonic functions (Torge and Müller, 2012). Thus, the gravitational potential
outside of the Earth masses is a harmonic function, whereas inside of those masses it is not harmonic,
but satisfies Poisson’s equation. The centrifugal potential is not harmonic. The solution of ∆Vi = 0
in the spherical polar coordinate system, i.e., r = (ϑ, λ, r), can be expressed by spherical harmonic
expansions in the following way (Heiskanen and Moritz, 1967)

Vi = V (ϑi, λi, ri) = GM

a

∞∑
n=0

(
a

ri

)n+1 n∑
m=0

(
C̄nm cosmλi + S̄nm sinmλi

)
P̄nm (cosϑi) , (2.8)

where ϑi, λi, and ri are the colatitude, longitude, and radial distance of the computation point i, GM
is the product of the gravitational constant G and the total mass M of the Earth, a is typically set to
be the semi-major axis of a reference ellipsoid, n and m are integers denoted as the degree and order
of the expansion, P̄nm are the fully normalized associated Legendre functions of the first kind, and
C̄nm, S̄nm are the normalized spherical harmonic coefficients. For more details about the spherical
harmonic expansions, one can refer to the textbooks, e.g., Heiskanen and Moritz (1967), Torge and
Müller (2012). In the remaining of this thesis, only the harmonic case will be of further interest.

2.1.2 The normal gravity field

For the determination of the external gravity field W , the normal gravity field U is introduced as
a reference system, which represents the normal figure of the Earth. On the one hand, the normal
gravity field should provide a reasonably good agreement with the real field. On the other hand, it
should possess a simple formation (Torge and Müller, 2012). Based on these considerations, the normal
gravity field may be referred to the rotational ellipsoid by considering it to be a level ellipsoid (Torge
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and Müller, 2012). If the given parameters of the level ellipsoid (i.e., semi-major axis aN , flattening fN ,
total mass MN of the ellipsoid, and rotational angular velocity ωN ) are those values that correspond
to the real Earth, then this yields the optimal approximation to the geometry of the geoid and to
the external gravity field. The latest two frequently used level ellipsoids in geodetic community are
GRS80 (Moritz, 2000) and WGS84 (NIMA, 1997). Furthermore, with the availability of very accurate
satellite gravity field models from the recent satellite missions (e.g., CHAMP, GRACE, and GOCE),
it is also worth to employ a global geopotential model up to a certain degree as a normal gravity field.

Corresponding to the real gravity potential Wi in Eq. (2.6), the normal gravity potential Ui is
composed of the normal gravitational potential V N

i and the centrifugal potential CNi :

Ui = V N
i + CNi . (2.9)

Analogue to Eq. (2.5), the associated normal gravity vector is given by

γi = gradUi. (2.10)

The direction of γ is the same as the one of the normal plumb line. Its magnitude γ = ‖γ‖ is the
normal gravity.

The normal gravitational potential of the level ellipsoid can be formulated by the ellipsoidal har-
monics, or in terms of spherical harmonics (Heiskanen and Moritz, 1967). Considering a complete
spherical harmonic expansion of the normal gravitational potential as well as the centrifugal potential
expressed in spherical polar coordinates according to Eqs (2.6), (2.8), and (2.9), yields

Ui = U (ϑi, λi, ri) = V N (ϑi, λi, ri) + CN (ϑi, λi, ri)

= GMN

aN

∞∑
n=0

(
aN

ri

)n+1 n∑
m=0

(
C̄Nnm cosmλi + S̄Nnm sinmλi

)
P̄nm (cosϑi) + 1

2
(
ωNri sinϑi

)2
.
(2.11)

Because of the symmetry of the level ellipsoid with respect to the rotational axis, there will be only
zonal terms (i.e., m = 0), and because of the symmetry with respect to the equatorial plane, there
will be only even zonal harmonics (i.e., n = even and m = 0) in the gravitational part of Eq. (2.11)
(Heiskanen and Moritz, 1967). An expansion up to degree n = 10 is usually sufficient for practical
computations (Denker, 2013).

2.1.3 Anomalous gravity field

The small difference between the actual gravity potential W and the normal gravity potential U is
called the anomalous potential, or disturbing potential T . For an arbitrary point i outside of the
Earth’s surface, the disturbing potential is obtained according to

Ti = Wi − Ui. (2.12)

Assuming that the centrifugal parts in both Wi and Ui are identical, see e.g., Eqs (2.6) and (2.11),
the disturbing potential Ti is then expressed as the difference between the actual Vi and the normal
gravitational potential V N

i :
Ti = Vi − V N

i , (2.13)
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and hence Ti is a harmonic function too, satisfying ∆Ti = 0. With regard to Eqs (2.8) and (2.11),
the disturbing potential can be expanded in spherical harmonics:

Ti = T (ϑi, λi, ri) = GM

a

∞∑
n=0

(
a

ri

)n+1 n∑
m=0

(
∆C̄nm cosmλi + ∆S̄nm sinmλi

)
P̄nm (cosϑi) (2.14)

with the Stokes coefficients ∆C̄nm = C̄nm−
(
GMN

GM

) (
aN

a

)n
C̄Nnm, ∆S̄nm = S̄nm−

(
GMN

GM

) (
aN

a

)n
S̄Nnm =

S̄nm for S̄Nnm = 0. The different values of GM , a in V and GMN , aN in V N lead to a rescaling of the
coefficients of the normal potential. The summation of Eq. (2.14) starts at degree n = 0 to account
for possible differences in the quantities of GM and GMN (Denker, 2013).
The gravity disturbance vector is defined as the difference between the actual gravity and the normal

gravity vectors, which are evaluated at the same point. It is consequently a one-point function related
to the same point in space. Corresponding to the disturbing potential Ti, the gravity disturbance
vector δgi is given by

δgi = gi − γi = gradWi − gradUi = gradTi, (2.15)

while the scalar gravity disturbance is written as

δgi = gi − γi. (2.16)

The vector of gravity anomaly is defined as the difference between the actual gravity on the Earth’s
surface and the normal gravity on the telluroid:

∆gi = gi − γi′ = δgi + (γi − γi′) = gradTi + (gradUi − gradUi′) , (2.17)

where the point i is located on the Earth’s surface, and the point i′ is the projected point on the
telluroid through the normal gravity vector γ. Thus, the gravity anomalies are two-point functions,
i.e., related to the points on the Earth’s surface and the telluroid. On the basis of Eq. (2.17), the
scalar equations of the gravity anomaly vector ∆gi can be expressed as

∆gi = gi − γi′ , (2.18a)

ξi = Φi − φi′ , (2.18b)

ηi = (Λi − λi′) cosφi′ , (2.18c)

where ∆gi represents the magnitude of the gravity anomaly vector, ξi and ηi denote the north-south
and east-west components of the deflection of the vertical, (Φi,Λi) are the astronomical latitude and
longitude, and (φi′ , λi′) are the geodetic latitude and longitude.

The distance between the point i on the geoid and the projected point i′ on the ellipsoid is called
geoid undulation or geoid height N . It can be computed by the Bruns formula (Heiskanen and Moritz,
1967)

Ni =
Ti(geoid)
γi′(ellipsoid)

, (2.19)

and similarly, for the height anomaly

ζi =
Ti(surface)
γi′(telluroid)

, (2.20)

where Ti(geoid) and Ti(surface) are the disturbing potentials on the geoid and the Earth’s surface,
γi′(ellipsoid) and γi′(telluroid) are the normal gravity on the ellipsoid and the telluroid, respectively. For
more details about these definitions, one can refer to, e.g., Heiskanen and Moritz (1967), Torge and
Müller (2012), and Denker (2013).
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Finally, on the basis of Eqs (2.15)−(2.20), the relationships between the disturbing potential T and
the above-mentioned gravity field quantities in spherical approximations are summarized as follows
(Heiskanen and Moritz, 1967):

δg = −∂T
∂r
, (2.21a)

∆g = −∂T
∂r
− 2T

r
, (2.21b)

ξ = − 1
γr

∂T

∂φ
, (2.21c)

η = − 1
γr cosφ

∂T

∂λ
, (2.21d)

N = T

γ
, or ζ = T

γ
. (2.21e)

Eq. (2.21b) is called the fundamental equation of physical geodesy; however, it might by replaced
by Eq. (2.21a) in the future because of the development of the Global Navigation Satellite System
(GNSS) technique (Hofmann and Moritz, 2005). It is also worth to emphasize that the spherical
approximations in Eq. (2.21) do not imply that the boundary is replaced by a sphere. Here, ellipsoid
terms have just been omitted.

2.2 Geodetic boundary value problem

The geodetic boundary value problem (GBVP) comprises the determination of the Earth’s physical
surface or the geoid, as well as the exterior gravity potential W from the observations on or close to
the Earth’s surface (Torge and Müller, 2012). Because of the insufficient knowledge of the Earth’s
density structures, the direct determination of W is not possible, and it can only be computed
indirectly from the boundary data by solving a GBVP. The given boundary data usually are linear
or nonlinear functionals of the gravity potential, leading to the gravimetric GBVP. An example of a
linear functional is the gravity potential itself, e.g., the potential (differences), while an example of a
nonlinear functional is the gravity disturbance that is defined as the magnitude of the gradient of the
gravity potential.

Depending on the geometry of the boundary surface, it is appropriate to divide the gravimetric
GBVP into fixed and free formulations (Heck, 1997). The boundary surface is assumed to be known
(e.g., fixed by the coordinate vectors from GNSS technique) for the fixed gravimetric GBVP, and
therefore the only remaining unknown is the potential function W . Contrary to the fixed case, the
information on the geometry of the boundary surface is either incomplete or missing entirely for the
free gravimetric GBVP, resulting in Molodensky’s boundary value problem (Molodenskii et al., 1962),
i.e., the classical free gravimetric GBVP. It can further be subdivided into the vectorial free GBVP,
where the position of the boundary is completely unknown, leading to four unknowns (i.e., potential
W and three-dimensional coordinates), and the scalar free GBVP, where the horizontal positions are
known, resulting in only two unknowns (i.e., vertical coordinate and potential) (Heck, 1997). The
well-known Stokes’s and Molodensky’s GBVPs can both be considered as scalar free problems as
the horizontal coordinates of gravity data were traditionally based on the geodetic network, mostly
allowing a transformation to the Earth-fixed system with sufficient accuracy. The main difference
between the two problems is that the gravity data for Stokes’s problem are located at the geoid while
the data for Molodensky’s problem are at the Earth’s surface (Denker, 2013). The employment of the
normal gravity potential U for approximating the gravity potential W leads to the linearized GBVP,



10 2 Approximation of the regional gravity field

in which the primary unknown to be solved is the disturbing potential T . Accordingly, the scalar
free gravimetric GBVP is transformed into the fixed GBVP with ellipsoid and telluroid serving as
the boundary surfaces for Stokes’s and Molodensky’s problem, respectively (Moritz, 1980; Denker,
2013). Once T is known, all relevant gravity field quantities can be calculated according to Eqs
(2.21a)−(2.21e).

2.3 Stokes’s approach of the GBVP

The Stokes’s classical GBVP aims at the determination of the geoid from gravity anomalies on the
geoid. This corresponds to a boundary value problem of the third kind (Robin problem) of potential
theory (Jekeli, 2009). After linearization of Stokes’s GBVP by approximating the geoid by an ellipsoid,
the Stokes’s approach to this GBVP is based on the partial differential equation ∆T (ϑ, λ, r) = 0 with
the spherically approximated boundary condition

∆g (ϑ, λ, rg) = −∂T (ϑ, λ, r)
∂r

∣∣∣∣
r=rg
− 2T (ϑ, λ, rg)

r
, (2.22)

in which ∆g (ϑ, λ, rg) means the gravity anomaly on the geoid. After spherical and constant radius
approximation, the solution of Stokes’s GBVP is then given by the Stokes formula (or Stokes integrals)
(Heiskanen and Moritz, 1967)

T (ϑ, λ, rg) = R

4π

∫∫
σ

∆g
(
ϑ′, λ′, rg

′)S (ψ) dσ (2.23)

with the mean radius R of the Earth and the Stokes function (or Stokes kernel)

S (ψ) =
∞∑
n=2

2n+ 1
n− 1 Pn (cosψ)

= 1
sin (ψ/2) − 6 sin ψ2 + 1− 5 cosψ − 3 cosψ ln

(
sin ψ2 + sin2 ψ

2

)
,

(2.24)

where ψ is the spherical distance and Pn are the Legendre polynomials.
The existence of topography and atmosphere violates the boundary condition. Therefore, it is

necessary to remove the masses above the geoid to fulfill this condition. The calculation of the geoid
within the framework of Stokes’s GBVP has two important consequences (Denker, 2013): (1) the
gravity values must refer to the geoid; (2) there must be no masses outside the geoid.
In order to obtain the gravity anomalies at the geoid, the masses outside the geoid can either be

removed completely or moved inside the geoid. This changes the shape of the level surface and the
geoid, leading to the cogeoid. Furthermore, it is also advantageous to preserve the total mass of
the Earth. Therefore, Helmert’s second condensation method is usually applied, in which the masses
outside the geoid are condensed onto a layer on the geoid. It is an extreme case of an isostatic reduction
according to the Pratt-Hayford system as the depth of compensation D goes to zero (Heiskanen and
Moritz, 1967). The removal and condensation of the topographic masses require the knowledge of the
mass densities between the geoid and the Earth’s surface. Due to the lack of the density information
for the whole topography, a constant density (e.g., 2.67 g/cm3) is usually assumed to be the real
one, introducing an error into the corresponding solutions. An investigation on the topographic mass
density variation effect on the geoid for the Stokes’s problem can be found in, e.g., Huang et al. (2001)
and Huang (2002). In general, the entire procedure for the computation of the geoid using Helmert’s
second condensation method can be described as follows (Heiskanen and Moritz, 1967; Denker, 2013):
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1 The masses above the geoid are removed by subtracting the attraction effect AP from the gravity
value at the surface point P .

2 The gravity station is lowered from the point P to the corresponding point P ′ on the geoid
using the free-air correction F or harmonic downward continuation.

3 The topographic masses are condensed on the geoid, and the attraction effect AcP ′ at P ′ is
restored.

4 The indirect effect δT ind
P ′ on the potential due to the shifting of the topographic masses is

computed at P ′.

5 The indirect effect δgind
P ′ on gravity, which reduces gravity from the geoid to the cogeoid, is taken

into account at P ′, yielding the gravity anomaly on the cogeoid as ∆gcP ′ = gP −AP +F +AcP ′+
δgind
P ′ − γQ. The point Q is the projected point on the reference ellipsoid with respect to the

point P ′ on the geoid.

6 The disturbing potential T cP ′ for the cogeoid is computed by applying the Stokes’s operator to
∆gcP ′ .

7 The disturbing potential TP ′ for the geoid is computed by adding the indirect affect δT ind
P ′ to

T cP ′ , yielding TP ′ = T cP ′ + δT ind
P ′ .

8 Finally, the geoid height is obtained from the Bruns formula: NP ′ = TP ′
γQ

.

In the case of δA = AcP ′ − AP ≈ c and δgind
P ′ ≈ 0, the gravity anomaly at the cogeoid becomes

∆gcP ′ ≈ gP +F + c− γQ ≈ ∆gP + c = ∆gFaye (i.e., Faye anomalies) (Forsberg and Tscherning, 1997),
where c is the classical terrain correction. For further discussion on this matter one can refer to, e.g.,
Sideris (1994) and Forsberg and Tscherning (1997). Recently, some practical examples of national
geoid or quasigeoid computations are the models for Canada (Huang and Veronneau, 2013), China
(Li, 2012), and USA (Wang et al., 2012).

2.4 Molodensky’s approach of the GBVP

In order to avoid the removal and condensation of the topographic masses, which are necessary for
Stokes’s GBVP, Molodensky’s GBVP is based on gravity observations on the Earth’s surface. Within
the linearization process, the scalar free GBVP is transformed into the fixed one by approximating
the Earth’s surface by means of the telluroid, serving as the boundary surface, to which the boundary
conditions as well as the boundary data refer. The solution of Molodensky’s GBVP can be obtained
by making use of the following boundary condition in spherical approximation

∆g (ϑ, λ, rt) = −∂T (ϑ, λ, r)
∂r

∣∣∣∣
r=rt
− 2T (ϑ, λ, rt)

r
, (2.25)

in which ∆g (ϑ, λ, rt) is the gravity anomaly on the Earth’s surface. An efficient solution is provided
by the method of analytical continuation (Moritz, 1980; Sideris, 1987; Hofmann and Moritz, 2005), in
which the gravity anomalies ∆g, given on the Earth’s surface, are analytically continued to a normal
level surface passing through the given computation point P (so-called “point level”), leading to the
analytical continued gravity anomalies

∆g′ =
∞∑
n=0

gn, (2.26)
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where gn are analytical continuation terms. As ∆g′ refer to the normal surface passing through point
P , the Stokes formula can be applied to determine the disturbing potential T at P , yielding

T (ϑ, λ, rt) = R

4π

∫∫
σ

∆g
(
ϑ′, λ′, rt

′)S (ψ) dσ +
∞∑
n=1

R

4π

∫∫
σ

gnS (ψ) dσ. (2.27)

According to Eq. (2.27), the main contribution to the Molodensky’s solution is from the Stokes
term while the further analytical continuation terms consider that the data are not given on a level
surface. Since gn terms depend on the computation point P , a new set of gn values have to be com-
puted for every new computation point. It is rather impractical. Therefore, a two-step procedure
is suggested (Sideris, 1987; Forsberg and Tscherning, 1997), in which the surface gravity anomalies
are first analytically continued to the geoid as ∆g0, then the Stokes formula is used to compute the
harmonically continued disturbing potential T 0, and finally T 0 is analytically continued back to the
telluroid.
Furthermore, the first order solution of Eq. (2.27) is known as the gradient solution (Moritz, 1980),

which can be formulated by

T ≈ R

4π

∫∫
σ

(∆g + g1)S (ψ) dσ ≈ R

4π

∫∫
σ

(∆g + c)S (ψ) dσ = R

4π

∫∫
σ

∆gFayeS (ψ) dσ. (2.28)

It only holds in the linear approximation for gravity anomaly ∆g that is linearly dependent on the
elevation. It is also worth mentioning that the Faye anomalies play an important role in the first order
solution of Molodensky’s problem as well as in the solution of Stokes’s problem (see also Section 2.3).
For more details about Molodensky’s GBVP, see e.g., Moritz (1980) and Heck (1997).

2.5 Spectral combination method

The spectral combination method is based on the Laplace surface harmonics derived from different
data sets, which are then combined by employing different spectral weights. This method was initially
developed to combine a global geopotential model and terrestrial gravity data in an optimal way for
the purpose of geoid/quasigeoid computations. It was promoted mainly by Sjöberg (1980, 1981, 2003)
and Wenzel (1981, 1982), while the basic idea already being outlined in Moritz (1976).
In the light of Eq. (2.14), the disturbing potential T can be expressed as

T (ϑ, λ, r) =
∞∑
n=0

Tn (ϑ, λ, r) (2.29)

with the Laplace surface harmonics of the disturbing potential

Tn (ϑ, λ, r) =
n∑

m=0

(
GM

a

)(
a

r

)n+1 (
∆C̄nm cosmλ+ ∆S̄nm sinmλ

)
P̄nm (cosϑ) (2.30)

referring to the radius r. Similar to Eq. (2.29), the gravity anomaly ∆g (ϑ, λ, r) can also be given as a
summation of a series of gravity anomaly surface harmonics ∆gn (ϑ, λ, r). According to Eq. (2.21b),
the relation between Tn (ϑ, λ, r) and ∆gn (ϑ, λ, r) is given as (Heiskanen and Moritz, 1967)

Tn (ϑ, λ, r) = r

n− 1∆gn (ϑ, λ, r) = r

4π
2n+ 1
n− 1

∫∫
σ

∆g
(
ϑ′, λ′, r′

)
Pn (cosψ) dσ. (2.31)



2.5 Spectral combination method 13

In the following derivations, the spherical and constant radius approximation is applied, assuming
that the observations are given on the sphere with a radius r = R. Only two data sets are considered,
one for the global geopotential model and the other for the terrestrial gravity anomaly. The combined
disturbing potential surface spherical harmonics are computed as a weighted mean in the form of

T̂n (ϑ, λ,R) = wMn T
M
n (ϑ, λ,R) + wGn T

G
n (ϑ, λ,R) , (2.32)

where TMn and TGn are the surface spherical harmonics from a global geopotential model and the
terrestrial gravity data, wMn and wGn are the spectral weights corresponding to TMn and TGn , which
can either be determined empirically, e.g., as filter coefficients (Haagmans et al., 2003), or within
the framework of least-squares adjustment or least-squares collocation solution (Kern, 2004). In the
least-squares approach, the solution takes into account the error estimates of TMn and TGn , and gives
the following spectral weights to the gravity components (Denker, 2013)

wGn = σ2
n (εTM , R)

σ2
n (εTM , R) + σ2

n (εTG , R) (2.33)

with the error degree variances

σ2
n (εTM , R) =

(
GM

a

)2 ( a
R

)2n+2 n∑
m=0

(
δS̄2

nm + δC̄2
nm

)
(2.34)

for the global geopotential model, and

σ2
n (εTG , R) =

(
R

n− 1

)2
σ2
n

(
ε∆gG , R

)
=
(

R

n− 1

)2 2n+ 1
2

∫ π

0
Cov

(
ε∆gG , ε

′
∆gG , ψ,R

)
Pn (cosψ) sinψdψ

(2.35)

for the terrestrial gravity data. δC̄nm and δS̄nm are the standard deviations of the Stokes coefficients
∆C̄nm and ∆S̄nm, and σ2

n

(
ε∆gG , R

)
are the error degree variances of terrestrial gravity anomalies,

which are derived from the error covariance function Cov
(
ε∆gG , ε

′
∆gG , ψ,R

)
. The weights wMn can

be obtained from the following relation

sn = wMn + wGn , (2.36)

in which sn is usually set to be 1.0 (Denker, 2013). Inserting Eq. (2.36) in the form wMn = 1.0− wGn
into Eq. (2.32) yields the following combined disturbing potential surface harmonics:

T̂n (ϑ, λ,R) =
(
1.0− wGn

)
TMn (ϑ, λ,R) + wGn T

G
n (ϑ, λ,R)

= TMn (ϑ, λ,R) + wGn

[
TGn (ϑ, λ,R)− TMn (ϑ, λ,R)

]
.

(2.37)

On the right-hand side of Eq. (2.37), the first term is a component from a global geopotential model,
and the second term corresponds to the differences between the terrestrial gravity anomalies and the
global model values. Inserting Eq. (2.37) into Eq. (2.29) and summing up from degree 2 to ∞, the
final disturbing potential is computed according to
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T (ϑ, λ,R) =
∞∑
n=2

T̂n (ϑ, λ,R)

=
∞∑
n=2

TMn (ϑ, λ,R) +
∞∑
n=2

wGn

[
TGn (ϑ, λ,R)− TMn (ϑ, λ,R)

]
= TM (ϑ, λ,R) + TG (ϑ, λ,R)

(2.38)

with TM and TG being the contributions from the global geopotential model and the terrestrial
gravity data, respectively. According to Eq. (2.31) with r = R, TG can be formulated as

TG (ϑ, λ,R) = R

4π

∫∫
σ

[
∆g

(
ϑ′, λ′, R

)
−∆gM

(
ϑ′, λ′, R

)]
W (ψ,R) dσ (2.39)

with the (modified Stokes) kernel

W (ψ,R) =
∞∑
n=2

wGn
2n+ 1
n− 1 Pn (cosψ) . (2.40)

In Eq. (2.39), ∆g are the terrestrial gravity anomalies and ∆gM are the model anomalies. Regarding
Eqs (2.38)−(2.40), the spectral combination method results in a remove-compute-restore procedure, in
which the residual gravity anomalies are used to compute the residual disturbing potentials, and finally
the disturbing potentials from the global model are added. The difference between the combination
method and Stokes formula is dependent on the choice of wGn . In the case of wGn = 1.0 for degree
n ∈ [2,∞), the method is equivalent to Stokes formula with W (ψ,R) = S (ψ), i.e., see Eqs (2.24)
and (2.40). All contributions are from the terrestrial gravity data. If wGn = 0 for degree 2 ≤ n ≤ nmax
and wGn = 1.0 for degree n > nmax, the long-wavelength contributions (2 ≤ n ≤ nmax) are from
the global geopotential model, while the short-wavelength contributions (n > nmax) are provided by
the terrestrial gravity data. Therefore, the spectral weights allow to control which degrees are taken
from the geopotential model and which from the terrestrial gravity data, resulting in an optimal
spectral combination of two data sets. Some examples for European quasigeoid modelings by using
the spectral combination method can be found in Denker (1998), Denker et al. (2009), and Denker
(2013).

2.6 Least-squares collocation

In physical geodesy, the least-squares collocation (LSC) can be considered as a combination of least-
squares adjustment and least-squares prediction (Moritz, 1978), providing an optimal combination
of geodetic observations of different kinds, such as classical angle and distance measurements, astro-
nomical observations, gravity measurements, and satellite data, to obtain the geometry of the Earth’s
surface and the exterior gravitational potential. For the derivation of LSC, there are two fundamen-
tally different viewpoints with correspondingly different mathematical/physical concepts and ideas.
The first one is the deterministic approach, and the second one is called the stochastic-probabilistic
approach. Both approaches as well as a compromise of the two approaches (called spatio-statistical
approach) are discussed and compared in detail in Kotsakis and Sideris (1999) and Kotsakis (2000).
For further information about the mathematical foundations of LSC, one can refer to Moritz (1980).

Suppose for an unknown function f in a reproducing kernel Hilbert space, its approximation f̂ can
be determined from the observations, which are linear functionals of f . For gravity field modeling,
the unknown function is disturbing potential T , and the observations are, e.g., gravity anomalies ∆g,
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gravity disturbances δg, etc. Considering n observations li with random and systematic errors, the
basic observation equation for LSC is given as

li = Li (T ) +AiX + ei, (2.41)

or, in matrix notation
l = L (T ) + AX + e = t + AX + e. (2.42)

The vectors l and e comprise n measurements and corresponding random errors, respectively. L is the
vector of linear operators with respect to the disturbing potential, resulting in the signal vector L (T )
or t. The vector X comprises m systematic parameters, and A is known as an n×m matrix with
m < n. In general, AX may, for example, express the effect of a datum-shift or a bias and tilt in the
observations (Tscherning, 2013). According to the minimum principle for least-squares collocation
(Moritz, 1980):

eTCee
−1e + sTCss

−1s = minimum (2.43)

with Css the auto-covariance matrix of the signal vector s and Cee the error covariance matrix of the
vector e of the measuring error, the best linear estimates of X̂ and ŝ are given as

X̂ =
(
ATCll

−1A
)−1

ATCll
−1l, (2.44a)

ŝ = CstCll
−1
(
l−AX̂

)
, with Cll = Ctt + Cee, (2.44b)

where Ctt and Cst are the auto- and cross-covariance matrices related to the signals t at the obser-
vation points and s at the prediction points. In most cases of practical applications, the systematic
part is not taken into account, leaving only the random part in the observations. As a consequence,
Eq. (2.44a) is no longer required, and Eq. (2.44b) becomes

ŝ = CstCll
−1l with Cll = Ctt + Cee. (2.45)

Furthermore, in the case that the observations are assumed to be error-free, the corresponding LSC
solution is

ŝ = CstCll
−1l with Cll = Ctt. (2.46)

Accordingly, the three LSC models depending on the errors in the observations are summarized as
follows:

1 LSC with random and systematic errors. The observation equation is given in Eq. (2.42),
and the corresponding solution is given in Eq. (2.44).

2 LSC with only random errors. The observation equation is given in Eq. (2.42) but with
A = 0, and the corresponding solution is given in Eq. (2.45).

3 LSC without errors. The observation equation is given in Eq. (2.42) but with both A = 0
and e = 0, and the corresponding solution is given in Eq. (2.46).

In the context of this thesis, only the latter two models are used for the gravity field computations.
Model 2 is usually utilized in the practical applications as the gravity measurements always contain
measurement errors. Model 3 is only employed in the test cases with synthetic data. The LSC
solution given in Eq. (2.45) (called the standard LSC solution in the following) can be considered as
being equivalent to Tikhonov regularization with signal constraints, where the regularization param-
eter equals 1 (Bouman, 1998), i.e., see the second term of the left-hand side of Eq. (2.43). Often, the
standard LSC can provide stable solutions for ill-posed problems. However, the amount of smoothing
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provided by the noise covariance matrix Cee is not enough in some cases, then an additional regu-
larization parameter α has to be introduced into Eq. (2.45), leading to the regularized LSC solution
(Marchenko et al., 2001):

ŝ = CstCll
−1l with Cll = Ctt + αCee (2.47)

in accordance with the minimum principle (Marchenko et al., 2001)

eTCee
−1e + α sTCss

−1s = minimum. (2.48)

If α = 1, Eq. (2.48) equals to Eq. (2.43), and Eq. (2.47) is the same as Eq. (2.45). The regulariza-
tion parameter α is determined based on the following formula solved from the so-called misclosure
principle (Ameti, 2006):

α = 1 +
√

1 + trace (CttCee)
trace (CeeCee)

. (2.49)

Suppose that (1) only one data type is used; (2) the noise covariance matrix can be represented as
Cee = σ2

eI, where σ2
e is the variance of the noise, and I is the identity matrix; (3) the auto-covariance

matrix can be approximately written as Ctt = σ2
t I, where σ2

t is the variance of the signals, then Eq.
(2.49) can be approximated as (Marchenko and Tartachynska, 2003)

α = 1 +
√

1 + σ2
t

σ2
e

. (2.50)

It should be noted that Eq. (2.50) only provides a possible upper limit of α. More approaches for
the determination of the regularization parameter α in LSC are described in Ameti (2006).

The application of LSC requires the determinations of Cst and Ctt, see e.g., Eq. (2.47). In this
context, the covariance function of the disturbing potential CTT (P,Q) is typically chosen as the
basic covariance function from which all other required covariance functions are derived by the law of
covariance propagation, considering the harmonicity of T and the analytical relations between T and
its functionals. For two gravity functions f and g, which are related to T by the linear operators LPf
and LQg for points P and Q, the required covariance function is obtained by the following equation

Cfg (P,Q) = LPf L
Q
g CTT (P,Q) . (2.51)

The (spatial) homogeneous and isotropic covariance function of the disturbing potential is defined as

CTT (P,Q) = CTT (ψPQ) = M {TP , TQ} , (2.52)

where M {·} is the averaging operator, and hence M {TP , TQ} can be interpreted as averaging first
over a circle with a radius ψPQ, keeping point P fixed and letting point Q move along the circle,
then varying P over the whole sphere. Following the derivations in Heiskanen and Moritz (1967), the
covariance function of the disturbing potential can be expanded into a series of spherical harmonics
as

CTT (P,Q) =
∞∑
n=2

cn (T, T )
(
R2
E

rP rQ

)n+1

Pn (cosψPQ) , (2.53)

in which RE is the mean radius of the Earth, cn (T, T ) is the degree variance of the disturbing
potential, which is related to the Stokes coefficients ∆C̄nm and ∆S̄nm of T by (Heiskanen and Moritz,
1967)



2.6 Least-squares collocation 17

cn (T, T ) =
n∑

m=0

(
∆C̄2

nm + ∆S̄2
nm

)
. (2.54)

In practice, the covariance function can not be precisely determined, as the knowledge of the
disturbing potential function is limited. For instance, the degree variances cn (T, T ) are often not
available for n > N with N being the maximum degree of the current global geopotential models,
e.g., N = 2190 for EGM2008 model (Pavlis et al., 2012). An analytical model is usually employed
to fill the missing part. The degree variance model of Tscherning and Rapp (1974), which results in
closed formulas for all covariance functions, is widely used. Its expression in terms of the disturbing
potential is given as

cTRn (T, T ) = A

(n− 1) (n− 2) (n+B) , (2.55)

where A is a constant in units of (m/s)4, B is an integer that is typically set to be a small value (e.g.,
B = 4) if a gravity model has been subtracted from the input data. As result, a complete covariance
function in terms of the disturbing potential for practical applications is given as

CTT (P,Q) =
N∑
n=2

cn (T, T )
(
R2
E

rP rQ

)n+1

Pn (cosψPQ) +
∞∑

n=N+1
cTRn (T, T )

(
R2
B

rP rQ

)n+1

Pn (cosψPQ) ,

(2.56)
where RB is the radius of the Bjerhammar sphere. For the residual disturbing potential, Eq. (2.56)
can be replaced by

CTT (P,Q) = a
N∑
n=2

σ2
n (T, T )

(
R2
E

rP rQ

)n+1

Pn (cosψPQ) +
∞∑

n=N+1
cTRn (T, T )

(
R2
B

rP rQ

)n+1

Pn (cosψPQ)

(2.57)
with a being a scaling factor, σ2

n (T, T ) being the error degree variance of the disturbing potential,
see also Eq. (2.34).
For regional gravity field modeling, a covariance function is determined by the available gravity

functionals within the area of interest. In the case where the input data are gravity anomalies, the
auto- and cross-covariance functions C∆g∆g and CT∆g is obtained on the basis of Eq. (2.51), yielding

C∆g∆g (P,Q) =
∞∑
n=2

cn (∆g,∆g)
(
R2
E

rP rQ

)n+1

Pn (cosψPQ) (2.58a)

CT∆g (P,Q) =
∞∑
n=2

cn (T,∆g)
(
R2
E

rP rQ

)n+1

Pn (cosψPQ) (2.58b)

with

cn (∆g,∆g) = (n− 1)2

rP rQ
cn (T, T ) , (2.58c)

cn (T,∆g) = (n− 1)
rQ

cn (T, T ) . (2.58d)

It should be noted that Eqs (2.58a)−(2.58d) are based on CTT given in Eq. (2.53). In practice, CTT
should be used in the form of Eq. (2.56) or (2.57), and similar expressions for C∆g∆g and CT∆g can
be obtained by certain derivations. The parameters a, A, and RB are estimated iteratively when
fitting the covariance function (e.g., C∆g∆g) to the empirically derived model (Knudsen, 1987). For
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more details about the computation of the empirical covariance function, see also Goad et al. (1984).
Compared to the integral method for regional gravity field modeling (see Sections 2.3−2.5), LSC

can handle all gravity functionals of the disturbing potential as input or output data, including the
associated error estimates (Moritz, 1980). The data can be located at arbitrary points with different
heights, and hence no gridding is required. However, a system of linear equations with the number
of unknowns being the same as the number of observations has to be solved in LSC. For the case
with tens thousands of observations or even more, the high computational burden might become a
significant problem. In addition, numerical instabilities may be caused by identical points or points
at a short distance, making Cll singular. Consequently, duplicate points should be excluded from the
input data before the computations.

2.7 Spherical harmonics and radial basis functions

In the following, spherical harmonics (SH), which are frequently used for representing the global
gravity field, are introduced; they are the eigenfunctions of the Laplace operator ∆ and represent
a set of basis functions with global support. Most of the existing global geopotential models are
formulated in terms of spherical harmonic coefficients, such as EGM2008, GOCO03s (Mayer-Gürr
et al., 2012), etc. However, their applicability to the approximation of the regional gravity field is
regarded as less appropriate (e.g., Schmidt et al., 2007; Eicker, 2008). Alternatively, the concept of
radial basis functions (RBFs) that have space localizing characteristics is introduced as they act as
an essential tool for regional gravity field modeling. In Section 2.7.1, the mathematical descriptions
of both SH and RBFs for the representation of gravity field are given. A brief comparison between
SH and RBFs, as well as their relationship, are then presented in Section 2.7.2. In Section 2.7.3, the
spectral and spatial characteristics of two selected RBFs are investigated as examples. Finally, some
remarks on the regional gravity field modeling using RBFs are summarized.

2.7.1 Mathematical description

Let ΩR be a sphere with the radius R, the position vector r is defined as

r = (φ, λ, r)T with ‖r‖ = r ≥ R, (2.59)

where φ, λ are the geocentric latitude and longitude, r is the radial distance from the origin.
The space of all square integrable functions f on the sphere ΩR is called L2 (ΩR), which is a Hilbert

space satisfying the inner product (Schmidt et al., 2007; Eicker, 2008; Naeimi, 2013)

〈f, g〉L2(ΩR) = 1
4πR2

∫∫
ΩR

f (φ, λ,R) g (φ, λ,R) dΩR (2.60)

with f, g ∈ L2 (ΩR),
∫∫

ΩR
=
∫ φ=π
φ=0

∫ λ=2π
λ=0 , and dΩR = R2cosφdφdλ. Defining the L2 norm by ‖f‖ =√

〈f, f〉L2(ΩR), the space L2 (ΩR) consists of all functions such that ‖f‖ <∞.
For any function f ∈ L2 (ΩR), it can be expanded into a series of spherical harmonics as (Schmidt

et al., 2007)

f (φ, λ,R) =
∞∑
n=0

n∑
m=−n

c̄nmȲnm (φ, λ) , (2.61)

where c̄nm are the spherical harmonic coefficients. The basis functions Ȳnm are called surface spherical
harmonics of degree n and order m, forming a complete orthogonal basis of L2 (ΩR).
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According to the orthogonality property of Ȳnm on the sphere ΩR:
1

4πR2
∫∫

ΩR
Ȳnm (φ, λ) Ȳn′m′ (φ, λ) dΩR = 0 if n 6= n′ or m 6= m′

1
4πR2

∫∫
ΩR

Ȳnm (φ, λ) Ȳn′m′ (φ, λ) dΩR = 1 if n = n′ and m = m′
, (2.62)

the coefficients c̄nm can consequently be determined by

c̄nm = 1
4πR2

∫∫
ΩR

f (φ, λ,R) Ȳnm (φ, λ) dΩR. (2.63)

Eqs (2.61) and (2.63) are known as the spherical harmonic synthesis (SHS) and spherical harmonic
analysis (SHA), respectively. SHS can be considered as a forward process as the coefficients c̄nm are
known. SHA is an inverse process, where the coefficients are usually estimated by using the numerical
integrals or the least-squares adjustment based on the functions on the sphere. More computational
details about the SHA can be found in Colombo (1981). The expansion of a function in spherical
harmonics in Eq. (2.61) can also be interpreted as the Fourier expression on the sphere, with each
degree and order associated with a certain frequency. Accordingly, the power spectrum of the function
f is defined by the whole set of degree variances cn =

∑n
m=−n c̄

2
nm, see also Eq. (2.54). According to

Parseval’s theorem, the norm of the function f in the L2 sense is given as

∥∥∥f∥∥∥2
= 1

4πR2

∫∫
ΩR

f (φ, λ,R)2 dΩR =
∞∑
n=0

n∑
m=−n

c̄2
nm =

∞∑
n=0

cn, (2.64)

indicating that the set of spherical harmonic basis functions Ȳnm (φ, λ) constitutes a complete orthogo-
nal set on the sphere ΩR.

The above specifications of spherical harmonics have been performed on the sphere ΩR. In the
following, the spherical harmonic expansion will be adapted to describe the disturbing potential of
the Earth in the exterior of ΩR with R being the mean radius of the Earth. According to Eq. (2.61),
the disturbing potential outside of this sphere can be expressed as

T (φ, λ, r) = GM

R

∞∑
n=2

n∑
m=−n

(
R

r

)n+1
c̄nmȲnm (φ, λ) (2.65a)

with

c̄nm =

∆C̄nm for m ≥ 0

∆S̄n|m| for m < 0
, (2.65b)

Ȳnm (φ, λ) =

P̄nm (sinφ) cos (mλ) for m ≥ 0

P̄n|m| (sinφ) sin (|m|λ) for m < 0
. (2.65c)

Analogue to Eq. (2.63), the Stokes coefficients c̄nm can be determined by

c̄nm = 1
4πR2

R

GM

∫∫
ΩR

T (φ, λ, r)
(
r

R

)n+1
Ȳnm (φ, λ) dΩR. (2.66)



20 2 Approximation of the regional gravity field

For the disturbing potential, the norm of a function as introduced in Eq. (2.64) can be approximated
by an empirical model known as Kaula’s rule of thumb (Kaula, 1966):

∥∥∥T∥∥∥2
=
∞∑
n=0

cn ≈
∞∑
n=0

(2n+ 1) 10−10

n4 (2.67)

or the Tscherning-Rapp model as shown in Eq. (2.55). Kaula’s rule of thumb is considered as a priori
information of the Stokes coefficients c̄nm and is widely used for the regularization of global gravity
field modeling using spherical harmonics. The Tscherning-Rapp model is usually employed for the
computation of the covariance function of the disturbing potential in LSC, see also Section 2.6.
Inserting Eq. (2.66) into (2.65a), yields

T (φi, λi, ri) = 1
4πR2

∫∫
ΩR

T (φk, λk, rk)
∞∑
n=0

n∑
m=−n

(
rk
ri

)n+1
Ȳnm (φk, λk) Ȳnm (φi, λi) dΩR

= 1
4πR2

∫∫
ΩR

T (φk, λk, rk)
∞∑
n=0

(
rk
ri

)n+1
(2n+ 1)Pn (cosψik) dΩR

(2.68)

in accordance with the addition theorem given by (Heiskanen and Moritz, 1967)

Pn (cosψik) = 1
2n+ 1

n∑
m=−n

Ȳnm (φk, λk) Ȳnm (φi, λi) . (2.69)

Here ψik is the spherical distance between points i and k and is calculated by

cosψik = sinφi sinφk + cosφi cosφk cos (λi − λk) . (2.70)

Now, let

H (ri, rk) = 1
4πR2

∞∑
n=0

(
rk
ri

)n+1
(2n+ 1)Pn (cosψik) , (2.71)

then Eq. (2.68) becomes
T (ri) = 〈T (rk) , H (ri, rk)〉L2(ΩR) , (2.72)

showing the reproducing kernel property of H (ri, rk). In Schmidt et al. (2007), a “two-point” function
B (ri, rk), which allows the computation of the function T (ri) mainly from the signal values around
ri, was preferred for local or regional gravity modeling. Therefore, the inner product in Eq. (2.72) is
replaced by a series expansion of radial basis functions for representing T (ri), resulting in

T (ri) =
∞∑
k=1

βkB (ri, rk) . (2.73)

Here ri and rk are the position vectors of the i-th computation point and the center of the k-th radial
basis function, respectively, βk is the scaling coefficient. The radial basis function B (ri, rk) is defined
by the Legendre series (Schmidt et al., 2007; Klees et al., 2008):

B (ri, rk) = 1
4πR2

∞∑
n=0

(
rk
ri

)n+1
(2n+ 1) bnPn (cosψik) . (2.74)

The shape coefficients (or Legendre coefficients) bn define the type of the function; in the case where
bn = 1, B (ri, rk) is equivalent to H (ri, rk). Some examples of the RBFs with different shape coeffi-
cients will be addressed in Section 2.7.3. Combining Eqs (2.73) and (2.74), yields



2.7 Spherical harmonics and radial basis functions 21

T (φi, λi, ri) = 1
4πR2

∞∑
k=1

βk

∞∑
n=0

(
rk
ri

)n+1
(2n+ 1) bnPn (cosψik) , (2.75)

which is analogue to Eq. (2.65). As the term 1/4πR2 in the above equation is a constant, it can be
incorporated into the scaling coefficients, leading to (Eicker, 2008; Naeimi, 2013)

T (φi, λi, ri) =
∞∑
k=1

βk

∞∑
n=0

(
rk
ri

)n+1
(2n+ 1) bnPn (cosψik) (2.76)

2.7.2 Comparison between SH and RBFs and their relationship

In Section 2.7.1, the mathematical models of both spherical harmonics and radial basis functions for
representing the disturbing potential have been introduced. A brief comparison between them will
now be given to show why RBFs are more suitable for regional gravity field modeling.
A gravity function can be localized in the space as well as in the frequency domain. Spherical

harmonics are ideal frequency localizing basis functions, as every degree n and order m can be
associated with one single frequency. Consequently, it is easy to allow the spectral analysis of the
global gravity field based on the geopotential models, which are represented in terms of SH. However,
they do not have any localizing features in the space domain at all. Since SH are globally supported
basis functions, each spherical harmonic is significantly different from zero almost over the whole
sphere. Thus, the represented gravity field values on the complete sphere will be affected by the
changes in one coefficient. The changes in the represented field of one specific area will also affect
the whole set of spherical harmonic coefficients. Therefore, the calculation of the gravity field value
at one single point needs all coefficients of the global model while global and homogeneous data are
required for the determination of each coefficient. In most of the regional cases, only the data in the
area of interest are available, and the given data are always inhomogeneous. Furthermore, SH are
only capable of representing bandlimited signals in practice. Therefore, SH are not well suited for
computing a regional gravity field model with high accuracy and high resolution.
In contrast to SH, the Dirac functions are ideal space localizing functions and exhibit no localizing

in the frequency domain. They are zero everywhere except at only one single point in the space
domain, but contain every frequency with equal weight. As a consequence, infinite Dirac functions
are needed to model a continuous signal. This is impossible in practice. The radial basis functions
provide a good compromise between space and frequency localization. According to Eq. (2.76), the
RBFs are the functions that only depend on the spherical distances between the evaluation points and
the points at which the RBFs are located; they decrease rapidly with the distances from their origins,
meaning that the corresponding scaling coefficients mainly benefit from the data around them. Hence,
the RBFs can be regarded as quasi space localizing functions. In regional gravity field modeling with
irregular input data, it is also possible to adapt the RBFs to the input data to represent the signals as
much as possible but only with a small number of RBFs (e.g., Barthelmes, 1986; Klees et al., 2008).
The RBFs can be distinguished into non-bandlimited and bandlimited functions; the former functions
contain full frequencies, while only the frequencies between the degree Nmin and Nmax are nonzero
for the latter functions. Some related examples will be presented in Section 2.7.3.
Because of the perfect frequency localization of SH, if an RBF solution can be transformed into an

equivalent set of spherical harmonic coefficients, the corresponding spectrum can be easily analyzed.
In the following, the relationship between SH and RBFs will be investigated.
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Regarding Eqs (2.65), (2.69), and (2.76) and rearranging the order of summation, yields

T (φi, λi, ri) =
∞∑
n=2

n∑
m=−n

GM

R

(
R

ri

)n+1
c̄nmȲnm (φi, λi) , (2.77a)

T (φi, λi, ri) =
∞∑
n=0

n∑
m=−n

∞∑
k=1

βk

(
rk
ri

)n+1
bnȲnm (φk, λk) Ȳnm (φi, λi) . (2.77b)

Comparing Eq. (2.77a) to (2.77b), the Stokes coefficients c̄nm can be obtained by

c̄nm = R

GM

∞∑
k=1

(
rk
R

)n+1
βkbnȲnm (φk, λk) . (2.78)

Eq. (2.78) shows that c̄nm can be directly computed from the estimated scaling coefficients βk and
the given shape coefficients bn. In an ideal case, an infinite number of RBFs that are homogeneously
distributed over the whole sphere of the Earth are required. However, the number of RBFs is always
finite in practical regional applications. Therefore, the transformed Stokes coefficients are only suited
for the spectral analysis of the regional solutions computed by using the RBFs.

2.7.3 Spectral and spatial characteristics of RBFs: some examples

The spectral characteristics of RBFs is determined by the chosen shape coefficients bn, which act as
the degree-dependent weighting for the Legendre polynomials Pn, resulting in different basis function
kernels (i.e., different types of RBFs). In recent years, various RBFs with different kernels have been
employed and compared for regional gravity field modeling (e.g., Schmidt et al., 2007; Eicker, 2008;
Klees et al., 2008; Tenzer and Klees, 2008; Wittwer, 2009; Bentel et al., 2013; Naeimi, 2013; Eicker
et al., 2014). The behavior of RBFs in the space domain is more complicated. Besides the basis
function kernels, it is also affected by the radial distances of the RBFs. In addition, both spectral and
spatial characteristics depend on the spectral bandwidths of the RBFs (i.e., the range of degrees for
nonzero shape coefficients). In this section, two simple RBFs are selected for the investigations. The
first one is the RBF with the point mass kernel and the second one is associated with the Poisson
kernel (Klees et al., 2008; Wittwer, 2009). Both RBFs can be expressed in analytical form, indicating
that they are well suited for constructing a regional model with high accuracy and high resolution.
For more details about other RBFs, see the above given references.
Eq. (2.76) describes a general form of the disturbing potential in the formation of RBFs. One can

rewrite it for practical applications as follows:

T (φi, λi, ri) =
K∑
k=1

βkB (ri, rk) , (2.79a)

where

B (ri, rk) =
∞∑
n=0

(
rk
ri

)n+1
(2n+ 1) bnPn (cosψik) , (2.79b)

and bn 6= 0 for Nmin ≤ n ≤ Nmax

bn = 0 otherwise
. (2.79c)

Here K is the number of RBFs, Nmin and Nmax are the minimum and maximum degrees between
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which the shape coefficients are nonzero. If Nmin = 0 and Nmax =∞, B (ri, rk) are non-bandlimited.
Otherwise, the bandlimited RBFs are provided. Accordingly, the mathematical models for the RBFs
with the point mass kernel and the Poisson kernel are described as follows.

RBFs with the point mass kernel

The analytical expression of the RBFs with the point mass kernel is given as (e.g., Heiskanen and
Moritz, 1967; Klees et al., 2008; Tenzer and Klees, 2008; Wittwer, 2009)

BPM (ri, rk) = 1
`ik

= 1√
r2
i + r2

k − 2rirk cosψik
=
∞∑
n=0

1
rk

(
rk
ri

)n+1
Pn (cosψik) , (2.80)

which is the reciprocal distance between the computation point i and the center of the k-th RBF.
Comparing Eq. (2.80) to Eqs (2.79b) and (2.79c), yieldsb

PM
n = 1

rk(2n+1) for Nmin ≤ n ≤ Nmax

bPM
n = 0 otherwise

, (2.81)

leading to

BPM (ri, rk) = Eq. (2.80) for Nmin = 0 and Nmax =∞ (Case 1)

BPM (ri, rk) =
∑Nmax

0
1
rk

(
rk
ri

)n+1
Pn (cosψik) for Nmin = 0 and Nmax 6=∞ (Case 2)

BPM (ri, rk) =
∑∞
Nmin

1
rk

(
rk
ri

)n+1
Pn (cosψik) for Nmin > 0 and Nmax =∞ (Case 3)

BPM (ri, rk) =
∑Nmax
Nmin

1
rk

(
rk
ri

)n+1
Pn (cosψik) for Nmin > 0 and Nmax 6=∞ (Case 4)

. (2.82)

RBFs with the Poisson kernel

The analytical RBFs with the Poisson kernel is expressed as (e.g., Heiskanen and Moritz, 1967; Klees
et al., 2008; Tenzer and Klees, 2008; Wittwer, 2009)

BPK (ri, rk) = rk
(
r2
i − r2

k

)
`3ik

=
∞∑
n=0

(2n+ 1)
(
rk
ri

)n+1
Pn (cosψik) . (2.83)

Comparing Eq. (2.83) to Eqs (2.79b) and (2.79c), yieldsb
Pk
n = 1 for Nmin ≤ n ≤ Nmax

bPk
n = 0 otherwise

, (2.84)

leading to

BPK (ri, rk) = Eq. (2.83) for Nmin = 0 and Nmax =∞ (Case 1)

BPK (ri, rk) =
∑Nmax

0 (2n+ 1)
(
rk
ri

)n+1
Pn (cosψik) for Nmin = 0 and Nmax 6=∞ (Case 2)

BPK (ri, rk) =
∑∞
Nmin (2n+ 1)

(
rk
ri

)n+1
Pn (cosψik) for Nmin > 0 and Nmax =∞ (Case 3)

BPK (ri, rk) =
∑Nmax
Nmin

(2n+ 1)
(
rk
ri

)n+1
Pn (cosψik) for Nmin > 0 and Nmax 6=∞ (Case 4)

.

(2.85)
As can be seen from Eqs (2.81) and (2.84), the shape coefficient bPM

n for the point mass kernel is
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a function of degree n. High-frequency contents are damped with increasing degrees. However, all
frequencies have the same weight for the shape coefficient bPK

n , which is independent on the degree.
Four cases of RBFs are given in both Eqs (2.82) and (2.85) with different choices of Nmin and Nmax. In
Case 1, full frequencies are contained in RBFs, resulting in non-bandlimited functions. The RBFs are
bandlimited in the other three cases as only parts of the frequencies are considered. The frequencies
above Nmax are neglected in Case 2, acting as a low-pass filtering. In Case 3, the frequencies below
Nmin are removed, and hence it can be regarded as a high-pass filtering. Analogue to the band-pass
filtering, only the frequencies between Nmin and Nmax are kept in the RBFs for Case 4. Assuming
that an evaluation point is located on a sphere with R = 6371 km and the RBFs are located at the
depth of 50 km with respect to the sphere, several examples of the behavior of the two RBFs in both
frequency and space domain are illustrated in Fig. 2.1.
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Figure 2.1: Normalized spectral and spatial characteristics of BPM and BPK. For each row, the left one is in
the space domain and the right one is in the frequency domain. Red lines: for BPM; blue lines: for
BPK. Row 1 : Nmin = 0 and Nmax = ∞; row 2 : Nmin = 0 and Nmax = 360; row 3 : Nmin = 120
and Nmax =∞; row 4 : Nmin = 120 and Nmax = 360.
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From Fig. 2.1, it is easy to see that the RBF with the Poisson kernel has a stronger space localizing
than the RBFs with the point mass kernel. The reason is due to the shape coefficients of different
kinds. The removal of high frequencies from the kernels can make the shape of the RBFs wider (see
row 2), resulting in less strong space localizing; the corresponding RBFs are suited for gravity field
modeling using satellite data only. The shape of the RBFs becomes much narrower when neglecting
the low frequencies (see row 3). Such RBFs can be employed in the case where residual terrestrial
gravity data without the long-wavelength components are used as input. For the residual terrestrial
data with the removal of both the long- and short-wavelength components, the RBFs as shown in row
4 may be a good choice.
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Figure 2.2: Normalized BPM and BPK at a depth of 10 km (solid lines), 50 km (dashed lines), and 100 km
(dotted lines); a) for BPM with Nmin = 0 and Nmax = ∞; b) for BPM with Nmin = 120 and
Nmax = ∞; c) for BPK with Nmin = 0 and Nmax = ∞; d) for BPK with Nmin = 120 and
Nmax =∞.

Another factor that can affect the shape of the basis function is the radial distance of the function,
or equivalently, the depth with respect to the reference sphere. If the depths of RBFs with different
kernels are chosen properly, similar shape of RBFs can be obtained, leading to similar solutions
(Tenzer and Klees, 2008). In the following, several examples about the effect of the depths on the
shape of the RBFs are shown in Fig. 2.2. Three depths referred to R = 6371 km are used for the two
selected RBFs. Moreover, non-bandlimited and bandlimited cases are also included.
As can be seen from Fig. 2.2, the deeper the basis functions are, the less strong space localizing the

functions become. As a consequence, the RBFs should be located at shallow depths for representing
short-wavelength gravity signals, and the long-wavelength signals are mainly recovered by deep RBFs.
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When the low frequencies are removed from the functions, the shape of the functions becomes much
narrower in the cases of the depths of 50 km and 100 km, whereas the shape remains nearly the same
in the case of the depth of 10 km. This indicates that the RBFs at shallow depths are dominated
by short-wavelength contributions, while the ones at deep depths are dominated by long-wavelength
contributions. As the basis function with the Poisson kernel has a stronger space localizing than the
one with the point mass kernel, the former function is expected to be located at a deeper depth such
that it can provide a similar shape to the one of the latter function.

2.7.4 Remarks on RBFs

As shown in Section 2.7.3, the spectral and spatial characteristics of a single RBF are dependent on
the choices of the shape coefficients, spectral bandwidths, and radial distances. Often, more than one
RBFs are used for representing the regional gravity field, and hence the proper choice of the horizontal
positions of the RBFs is also of importance. Accordingly, four factors have to be determined in regional
gravity field modeling using RBFs. They are: (1) the shape coefficients; (2) the spectral bandwidths
of the RBFs; (3) the radial distances of the RBFs; and (4) the horizontal positions of the RBFs. In
the following, the four factors are classified into two categories; both are discussed in detail.

1) The choice of the spatial bandwidths of the RBFs

According to Wittwer (2009), the spatial bandwidth of one RBF is considered as the function’s half-
width ψ0.5, which is defined as the spherical distance where the function attains half of its maximum
value. The larger the spatial bandwidth is, the less strong space localizing the RBF has and vice
versa. In the light of Eqs (2.79b) and (2.79c), the spatial bandwidth is determined by three factors:
(1) the shape coefficients bn (i.e., the type of RBF); (2) the spectral bandwidth of the RBF, depending
on the minimum degree Nmin and the maximum degree Nmax for nonzero shape coefficients; and (3)
the radial distance rk of the RBF, or the depth dk = R− rk below the reference sphere with a radius
of R. The effect of the above three factors on the spatial bandwidths of the RBFs has been discussed
in Section 2.7.3.
The proper choice of the spatial bandwidth is of biggest importance. Otherwise, RBFs will not

have the optimal approximation characteristics. A spatial bandwidth, which is too small, might lead
to a good fit of the data to the model and a well-conditioned normal equation system, but to a poor
fit at independent control points. Too large spatial bandwidth will result in numerical instabilities as
the significant support of neighboring RBFs at one observation point overlaps too much, which leads
to similar columns in the design matrix. Such a spatial bandwidth can provide a smooth solution;
however, possible leakage will occur as the RBFs are not able to represent the high-frequency signal
content contained in the observations.
As concluded in Tenzer and Klees (2008), similar regional gravity field solutions can be computed

when using different kinds of RBFs with proper spatial bandwidths. Thus, the RBF type is usually
determined before the computations. Bentel et al. (2013) compared different RBFs and their per-
formance using simulated regional gravity data. They showed that the kernel’s spatial behavior is
much more important for a good regional modeling than the kernel’s spectral behavior. Accordingly,
the spectral bandwidths of the RBFs are also fixed before the computations. If the input data are
residuals with the removal of the long-wavelength contributions, which are derived from a geopoten-
tial model up to degree n = nmax, the RBFs with Nmin ≥ 0 and Nmax = ∞ are usually used. In
this case, Klees et al. (2008) suggested setting Nmin = nmax + 1, assuming that there are not enough
signals below degree nmax + 1 contained in the residuals, or that the input data are represented by
a spherical harmonic expansion up to degree nmax and a finite number of RBFs. However, they also
pointed out thatNmin = 0 works fine through numerous numerical experiments with terrestrial gravity
data. An explanation was given that the shallow RBFs make the contribution of low-degree Legendre
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coefficients negligible. Regarding the non-perfect spectral localizing property of the RBFs and the
existence of long-wavelength errors in the residuals, we prefer to choose 0 ≤ Nmin ≤ nmax + 1 while
the value of Nmin being dependent on the particular applications. After fixing the type and spectral
bandwidths of the RBFs, the choice of optimal spatial bandwidths of the RBFs for regional gravity
field modeling is equivalent to the determination of optimal depths of the RBFs. Often, the RBFs are
located at gridded or scattered points at a constant depth, which is selected by “trial-and-error” or
based on empirically found relations with the data spacing or the gravity anomaly covariance function
(e.g., Dampney, 1969; Hardy and Göpfert, 1975; Heikkinen, 1981; Sünkel, 1981; Vermeer, 1995); all
RBFs have the same spatial bandwidths in this case. Sometimes, several grids at various depths
are used (e.g., Reilly and Herbrechtsmeier, 1978; Heikkinen, 1981; Vermeer, 1983, 1984; Ihde et al.,
1998; Chen, 2006), and sometimes, each RBF is placed below one data point at a depth, which is
proportional to the distance to the nearest neighboring data point (e.g., Cordell, 1992). Additionally,
some advanced strategies involve the generalized cross validation (GCV) technique (e.g., Klees et al.,
2008), the adaptation of the RBFs’ depths to the local signal covariance function (e.g., Marchenko
et al., 2001), and the direct determination of the depths as well as the scaling coefficients by solving
a nonlinear problem (e.g., Barthelmes, 1986; Lehmann, 1993; Claessens et al., 2001).

2) The choice of the horizontal positions of the RBFs

The choice of the horizontal positions of the RBFs addresses the issue of how many RBFs are to be
used for the modeling. This is important as the number of used RBFs defines the resolution of the
gravity field solution. In addition, the chosen horizontal positions should be adapted to the input data
to achieve a reasonable solution. There are three possible cases for choosing the horizontal positions:

1 RBFs are placed on one or more grids.

2 RBFs are placed on scattered points.

3 RBFs are placed on both gridded and scattered points.

In the first case, the RBFs are to be distributed as homogeneously as possible on the surface of a
sphere inside the Earth. Therefore, a grid is designed, and the RBFs are placed on the nodes of the
grid. Four factors are needed for designing a grid: (1) the grid type; (2) the grid extent; (3) the grid
spacing; and (4) the grid depth. The horizontal positions of the RBFs are determined by the first
three factors, and the last one is related to the spatial bandwidth. Several kinds of grids on the sphere,
such as geographical grid, Driscoll-Healy grid, Reuter grid, triangle center grid, triangle vertex grid,
and recursive quasi random grid are summarized and compared in Eicker (2008), suggesting that the
Reuter grid and the triangle vertex grid are very well suited as nodal point patterns for RBFs. In
this context, only the geographical grid will be used due to its simplicity, and due to the fact that the
selected research areas for numerical tests are at medium latitudes. For the areas at high latitudes,
the geographical grid should be avoided. The grid extent is usually set to be as large as the data area.
If the model area is smaller than the data area, such a choice is satisfactory. However, if the model
area is the same as the data area, a larger extent may be preferred such that the edge effect caused
by the lack of data outside the model area could be reduced. It should be pointed out that the larger
the grid extent than the data area is, the serious the numerical instabilities become. A study about
the choice of the grid extent is given in Naeimi (2013). The grid spacing should be carefully chosen
to avoid under- and over-parameterization. It also has a high correlation with the grid depth (i.e.,
spatial bandwidth). Fig. 2.3 shows two examples of three neighboring non-bandlimited RBFs BPM

with a grid spacing of 2◦ at different depths. It can be found that if the grid depth is too deep (see
Fig. 2.3b), the neighboring RBFs overlap too much in comparison with the case of a shallow grid
(see Fig. 2.3a). This will lead to numerical instabilities. To overcome this problem, we can make the
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Figure 2.3: Normalized neighboring non-bandlimited BPM with a grid spacing of 2◦; a) grid at a depth of
10 km; b) grid at a depth of 100 km.

grid depth shallower or make the grid spacing larger such that the overlaps between the functions
become smaller. Often, one of the two factors (i.e., grid spacing and grid depth) is fixed at first,
and then the other one is determined by experimenting with various choices and comparing obtained
solutions. Furthermore, the grid spacing should be related to the signal content of the input data. A
dense grid is required for the area with rough structures, and a coarse grid is sufficient for smooth
signals. However, the signal content is not fully taken into account when employing only one grid
for the modeling as all RBFs have the same spatial bandwidths. A hierarchical arrangement of the
RBFs by placing them on two or more grids seems to be more reasonable. The deep grid always has
a large spacing and extent and is used for modeling the low-frequency signals. The high-frequency
signals shall be represented by the grid situated at a shallow depth, of which the spacing and extent
is smaller. When the grids are chosen, the number of RBFs is known too. It is also worth mentioning
that the effect of data distribution on the choice of the grid spacing is significant. In principle, the
grids are well suited for the case with regular data. For the case with irregular data, a relatively
coarser grid is advisable to reduce the danger of over-parameterization.
In the second case, the RBF center locations are selected based on the signal content of the input

data. Least-squares collocation can be considered as an approach, in which there is one RBF under
each observation at an optimal depth, resulting in the high numerical complexity. In practice, it is
not necessary to place the RBFs below every data point. The efficient way is to construct a set of
RBFs iteratively by adding one RBF at each time. Cordell (1992) designed an algorithm for using
the point masses. At each time, one point mass is chosen under the data point with the largest
absolute (residual) value at a depth derived from the distance to the nearest neighboring data point,
and then the magnitude of the point mass is computed individually. Barthelmes (1986) proposed a
similar point mass approach; however, it requires solving a nonlinear problem with four unknowns per
point mass, i.e., the 3D position and the magnitude of the point mass. Marchenko et al. (2001) also
developed an approach with the use of radial multipoles. The sequential multipole analysis is applied
to determine the horizontal position, the order, and the depth of the multipole at each time. The
latter two parameters are fixed by using the covariance function of the observations in the vicinity
of the data point corresponding to the multipole. Comparing to the approaches using the RBFs
on grids, the approaches using scattered RBFs are more flexible and require fewer RBFs for a good
approximation; however, they are also more complicated.
An approach that is a compromise between the first and second case is proposed by Klees and

Wittwer (2007) and Klees et al. (2008). A coarse grid of RBFs at a depth, which is determined by
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the GCV technique, is used to model the smooth signals over the research area. If the approximation
quality is not satisfactory, the local refinement is carried out by placing one RBF below the data point
with the largest absolute residual value iteratively. A joint least-squares solution is finally computed
when all RBFs are fixed. A good approximation can be obtained by this approach with a relatively
small number of RBFs.

2.8 The remove-compute-restore technique and topographic effect

In practice, the approximation of regional gravity field is usually based on discrete observations over
the area of interest and its surroundings. This always leads to two problems (Denker, 2013): (1) the
long-wavelength gravity signals (i.e., longer than the extent of the research area) can not be properly
represented by available observations due to the limited data coverage; (2) the representation of very-
short-wavelength gravity information is not proper because of the discrete data points, leading to
aliasing effects. The employment of a global geopotential model can remedy the first problem well,
and the second problem can be counteracted by using a digital terrain model (DTM) to obtain the
very-high-frequency gravity signals. As a consequence, the long- and short-wavelength gravity signals
are provided by a global geopotential model and a DTM, while the medium-wavelength signals are
derived from the discrete residual gravity observations. This computation procedure is called the
remove-compute-restore (RCR) technique. It usually can be implemented in three steps:

1 The short- and long-wavelength information is first removed from the observations, which are
described as linear functionals L of the disturbing potential T , resulting in the residual obser-
vations:

Lobs
(
TRes

)
= Lobs (T )− Lobs

(
TM

)
− Lobs

(
T T
)
, (2.86)

where Lobs (T ) and Lobs
(
TRes

)
are the original and residual observations, Lobs

(
TM

)
and

Lobs
(
T T
)
are the contributions from a global geopotential model and a DTM.

2 The residual observations are then transformed into other gravity field quantities by applying a
proper gravity field modeling technique, e.g., integral method, LSC, or parameterization method
using RBFs, yielding

Lobs
(
TRes

) Modeling Technique−−−−−−−−−−−−→ Lpre
(
T̂Res

)
. (2.87)

3 Finally, the contributions of the global geopotential model and the topography are restored
again, leading to the final predictions:

Lpre
(
T̂
)

= Lpre
(
T̂Res

)
+ Lpre

(
T̂M

)
+ Lpre

(
T̂ T
)
. (2.88)

The removal of the short- and long-wavelength gravity information in Step 1 can be regarded as a
band-pass filtering, resulting in the residual observations with smaller values and smoother structures
than the original observations; such residuals can facilitate the field transformation in Step 2 . The
RCR technique is now a standard procedure for the computation of regional gravity field models; some
recent examples can be found in numerous literature, e.g., Denker et al. (2009), Forsberg (2010), Li
(2012), Wang et al. (2012), Denker (2013), and Huang and Veronneau (2013).
When using the RCR technique for practical applications, the most suitable global geopotential

model for the research area is often chosen to be the one with which the resulting residuals exhibit the
smoothest structures. The high-degree geopotential models are preferred as they can provide gravity
information as much as possible, and hence make the residuals as smooth as possible. The ultra-high-
degree EGM2008 model, which includes coefficients up to degree nmax = 2190, corresponding to a
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resolution of 5′ or about 9 km, is a good choice for the reduction of original gravity data. Regarding
the areas with high-quality data included in EGM2008, only the short-wavelength gravity signals are
necessary to be added by means of terrestrial gravity and terrain data. However, in areas where only
poor data were available for EGM2008, the situation may be quite different. In this case, large errors
might be introduced into the residuals as the contributions from the EGM2008 model are inaccurate.
Therefore, further investigations are needed for the optimal use of EGM2008 in regional gravity field
modeling (Forsberg, 2010). Often, the maximum degree of the global geopotential model for data
reduction is chosen to be 360, corresponding to a resolution of 30′ or about 55 km.

After subtracting the contribution of a global geopotential model from the original observations, the
terrain reduction is required to remove the very-short-wavelength gravity information. In Forsberg and
Tscherning (1981, 1997) and Forsberg (1984), different terrain reduction schemes and the associated
advantages and disadvantages are discussed in detail. As the subtracted contribution of a global model
also contains the global topographic effect, the residual terrain model (RTM) reduction (Forsberg,
1984) is widely used. It is based on a reference topography surface, which is usually obtained by
applying a moving average or other filtering (e.g., a Gaussian filtering) to the given high resolution
DTM, and then only the differences between the actual and the reference topography are utilized
in the reduction process. If the reference surface is a sufficiently long-wavelength surface, the RTM
reduction may be approximated by a Bouguer reduction to the reference level (Forsberg, 1984).
Apparently, the resolution Rrt of the reference topography should be chosen appropriately. If Rrt is
too large, one more part of the effect of the topography, which is also included in the geopotential
model, is subtracted from the observations again, leading to the so-called “double accounting” of
the topography. Some very-short-wavelength signals caused by the topography still remain in the
residuals if Rrt is too small. Although the numerical studies in Forsberg (2010) showed that the
“double accounting” of the topography does not matter in practice, the selection of Rrt is based on
the maximum degree nmax of the reference global geopotential model in this thesis, resulting in

Rrt = 180
nmax

× 60 (2.89)

in units of arc-minutes, or
Rrt ≈

20000
nmax

(2.90)

in units of km. Assuming that the contribution from a global geopotential model up to degree
nmax = 360 is removed, the corresponding resolution of the reference topography is chosen to be 30′
or about 55 km. If nmax = 200, then Rrt = 54′ or Rrt ≈ 100 km. For more details about the RTM
reduction, see the references mentioned above.
In principle, the RCR technique can be applied in combination with all methods for gravity field

modeling described in this chapter, such as the integral method, LSC, and parameterization method
using RBFs. In the context of this thesis, all numerical computations are carried out with the use of
the RCR technique, in which the RTM reduction is applied.
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3 Regional gravity field modeling with the point
mass method

In the previous chapter, we have introduced several methods for regional gravity field modeling, e.g.,
integral method, LSC, and parameterization method using RBFs. The point mass method, which is
equivalent to the method using the RBFs with the point mass kernel, will be applied for computation
of the regional gravity field in this thesis. Correspondingly, the principle of the point mass method
and the computation procedures will be described in detail in this chapter. In Section 3.1, the relation
between the point masses and the disturbing potential is discussed. A set of standard formulas of
the point mass method for representing different gravity field quantities are presented in Section 3.2.
These formulas are the basis for constructing the observation equations. Since only the least-squares
case is considered in this thesis, the computation procedures for solving a linear or nonlinear equation
system, as well as the regularization process that aims at stabilizing the solution, are then introduced
in Section 3.3. In the next two sections, the details of the point mass methods with fixed and free
positions are described. Both approaches will be applied for the numerical computations in Chapter
4.

3.1 Point masses and disturbing potential

According to Newton’s law of gravitation, the disturbing potential T can be obtained according to

T = G

∫
M

dM

`
, (3.1)

where dM is the mass element, ` is the distance between the mass element and the computation
point. If an anomalous mass distribution is known, the disturbing potential T at any point on and
outside of the Earth’s surface can be fully described by Eq. (3.1). However, a complete knowledge
of the anomalous mass distribution is not possible in practice. A practicable way is to determine
the anomalous masses based on the observed gravity field quantities first, and then to represent the
disturbing potential by using estimated anomalous masses. The first process can be considered as a
gravimetric inverse problem, and the second process is called forward modeling. A given disturbing
potential can be generated by different anomalous mass distributions, the non-uniqueness of the
inverse problem is inevitable. In geodetic applications, the only quantity of interest is often the gravity
field itself, and not the internal density structure of the Earth. Accordingly, an anomalous mass model
(including the mass magnitudes and mass distribution) that agrees well with the parameters of the
gravity field can always be chosen in these applications. Then, all gravity field quantities that are
uniquely determined by the gravity field can be computed by this model. Now, there arises an issue
of how to construct such an anomalous mass model. In the context of this thesis, we work within the
framework of the Runge-Krarup theorem (Krarup, 1969; Moritz, 1980):

Any harmonic function Φ, regular outside the Earth’s surface, may be uniformly approximated
by the harmonic functions φ, regular outside an arbitrary given sphere S inside the Earth, in
the sense that for any given ε > 0, the relation |Φ− φ| < ε holds everywhere outside and on
any closed surface completely surrounding the Earth’s surface.

The number ε may be arbitrarily small, and the surrounding surface may be arbitrarily close to the
Earth’s surface. As a consequence, the task of finding an anomalous mass model that will generate
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the true disturbance potential T is simplified to find a set of anomalous masses, which will represent
the disturbing potential T ′ in the space outside of a given surface S that encloses all of the anomalous
masses to assure that T ′ can be taken as an approximation of T at points on and outside of the Earth’s
surface. It follows that the anomalous mass positions as well as their masses are the key factors for
a good approximation of the gravity field. Imagining that there are infinitely many small spheres
(intersect or not) inside the surface S, each of which has a certain positive or negative anomalous
density, the use of all spheres for gravity field modeling can be replaced by using their center points
with the same masses as the spheres, as the gravity potential caused by a spherically symmetric body
at the point outside of this body is the same as if all masses were concentrated in the center. This
leads to the point mass method for gravity field modeling in the geodetic literature, e.g., Needham
(1970), Heikkinen (1981), Barthelmes (1986), Vermeer (1995), and Antunes et al. (2003), or to the
equivalent source method in geophysics for the interpolation of gravity anomalies, e.g., Dampney
(1969) and Cordell (1992). Herein, the approximation problem is reduced to the determination of
a set of point masses at proper positions. In practical applications, the number of point masses is
always finite. Assuming K point masses enclosed by a given spherical surface S inside the topographic
masses, the disturbing potential T at point i exterior to the Earth’s surface is given as

T (φi, λi, ri) = G
K∑
k=1

mk

`ik
=

K∑
k=1

βk
`ik

=
K∑
k=1

βkB
PM (ri, rk) (3.2)

in accordance with Eqs (2.79) and (2.80). In the above equation, mk is the mass for the k-th point
mass, βk = Gmk is called the magnitude of the k-th point mass in this thesis, and 1/`ik represents
the reciprocal distance between the computation point and the point mass, being equivalent to the
non-bandlimited RBFs with the point mass kernel BPM (ri, rk), see Case 1 in Eq. (2.82). Obviously,
the point mass method given in Eq. (3.2) only represents one of the four cases of the parameterization
method using BPM (ri, rk). No matter which BPM (ri, rk) is used, the corresponding method is always
called the point mass method in the remaining of this thesis. Spherical approximation is applied for
practical computations using the point mass method, where the mean Earth radius R = 6371 km is
used for the reference sphere (Moritz, 1980).

3.2 Standard formulas for the point mass method

Eq. (3.2) is regarded as the fundamental observation equation for the point mass method. Unfor-
tunately, the disturbing potential is always not available from the terrestrial gravity measurements.
Instead, the commonly available observations are the linear functionals of the disturbing potential.
Some examples of them are the gravity anomalies ∆g from terrestrial or shipborne gravimetry, the
gravity disturbances δg from airborne gravimetry, the deviations between the sea surface and the
reference ellipsoid (here we consider them roughly as the geoid heights N) from satellite altimetry,
and the height anomalies ζ, which are obtained as the differences between GPS (Global Positioning
System) ellipsoidal heights and leveled normal heights. Using the relationships in spherical approxi-
mation, which are given in Eqs (2.21a), (2.21b), and (2.21e), the functional models between the point
masses and related gravity field quantities are given as follows:

∆g (φi, λi, ri) =
K∑
k=1

βkD∆gB
PM (ri, rk) , (3.3a)

δg (φi, λi, ri) =
K∑
k=1

βkDδgB
PM (ri, rk) , (3.3b)
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N/ζ (φi, λi, ri) =
K∑
k=1

βkDN/ζB
PM (ri, rk) , (3.3c)

with the RBFs in the form of

D∆gB
PM (ri, rk) =

(
ri−rk cosψik

`3
ik

− 2
`ikri

)
=
∑∞
n=0

n−1
rkri

(
rk
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)n+1
Pn (cosψik) ,

DδgB
PM (ri, rk) =

(
ri−rk cosψik

`3
ik

)
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n=0

n+1
rkri

(
rk
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)n+1
Pn (cosψik) ,

DN/ζB
PM (ri, rk) = 1

γi′

(
1
`ik

)
=
∑∞
n=0

1
γi′rk

(
rk
ri

)n+1
Pn (cosψik) .

(3.3d)

In the above equations, D∆g, Dδg, andDN/ζ are the gravity anomaly operator, the gravity disturbance
operator, and the geoid height/height anomaly operator, respectively.
In Section 2.8, we mentioned that all numerical computations are carried out in the framework of

the RCR technique in the context of this thesis. This means that the residual observations, which are
obtained after the contributions of a global geopotential model complete to degree nmax and of the
topography computed from a DTM have been subtracted, are used as input. The resulting residuals
are almost bandlimited, and hence it is reasonable to modify the non-bandlimited RBFs given in Eq.
(3.3d) to make the spectral bandwidths of the input data and the RBFs compatible. Considering Eq.
(2.81), the functional models in Eq. (3.3) are rewritten as

∆g (φi, λi, ri) =
K∑
k=1

βk

Nmax∑
n=Nmin

n− 1
rkri

(
rk
ri

)n+1
Pn (cosψik) , (3.4a)

δg (φi, λi, ri) =
K∑
k=1

βk

Nmax∑
n=Nmin

n+ 1
rkri

(
rk
ri

)n+1
Pn (cosψik) , (3.4b)

N/ζ (φi, λi, ri) =
K∑
k=1

βk

Nmax∑
n=Nmin

1
γi′rk

(
rk
ri

)n+1
Pn (cosψik) . (3.4c)

In principle, Nmax should be chosen based on the resolution of the used DTM as there are no very high
frequencies in the residuals. In this case, the RBFs are computed by summing a series expansion up to
a rather high degree. Regarding the computational complexity, Nmax is often set to be∞ in practice,
so that we can make use of the analytical expressions of the RBFs as given in Eq. (3.3d). However, the
above treatment of Nmax may introduce additional errors into the solution. According to numerous
experiments, the spatial bandwidths of the RBFs with the point mass kernel for Nmax ≥ 2160 look
close to the case of Nmax =∞. In practical applications, the resolution of the DTM is usually higher
than 1′, which is equivalent to the degree 10800. Therefore, the additional errors caused by using
Nmax =∞ can often be neglected and will not be discussed in this thesis. In the light of the discussion
in Section 2.7.4, 0 ≤ Nmin ≤ nmax + 1 is selected. Combing Eq. (3.3d) and Eqs (3.4a)−(3.4c), yields

∆g (φi, λi, ri) =
K∑
k=1

βk

[(
ri − rk cosψik

`3ik
− 2
`ikri

)
−
Nmin−1∑
n=0

n− 1
rkri

(
rk
ri

)n+1
Pn (cosψik)

]
︸ ︷︷ ︸

D∆gBPM(ri,rk)

, (3.5a)

δg (φi, λi, ri) =
K∑
k=1

βk

[(
ri − rk cosψik

`3ik

)
−
Nmin−1∑
n=0

n+ 1
rkri

(
rk
ri

)n+1
Pn (cosψik)

]
︸ ︷︷ ︸

DδgBPM(ri,rk)

, (3.5b)
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N/ζ (φi, λi, ri) =
K∑
k=1

βk

[
1
γi′

( 1
`ik

)
−
Nmin−1∑
n=0

1
γi′rk

(
rk
ri

)n+1
Pn (cosψik)

]
︸ ︷︷ ︸

DN/ζB
PM(ri,rk)

. (3.5c)

Accordingly, a general formula for the point mass representation of any linear functional li = LiT is
given as

l (φi, λi, ri) =
K∑
k=1

βk

{
Li

( 1
`ik

)
−
Nmin−1∑
n=0

Li

[
1
rk

(
rk
ri

)n+1
Pn (cosψik)

]}
︸ ︷︷ ︸

DlBPM(ri,rk)

. (3.6)

In the following, the term DlB
PM (ri, rk) in Eq. (3.6) will be named as the full point mass RBF

with respect to the observation l in the case of Nmin = 0. When Nmin > 0, it is called the reduced
point mass RBF. In comparison to the full point mass RBFs, the larger the truncation degree Nmin−1
is, the more computation time is needed for the reduced RBFs. It should be noted that the choice of
the truncation degree may also depend on the types of the input and output data, in particular the
latter one. Fig. 3.1 shows the full and reduced point mass RBFs D∆gB

PM with respect to the gravity
anomalies at different depths using Eq. (3.5a). The other parameters for this example are the same
as the ones for Fig. 2.2. Comparing Figs 3.1a and 3.1b to Figs 2.2a and 2.2b, it can be seen that
the RBFs D∆gB

PM have much stronger space localizing characteristics than the BPM with respect
to the disturbing potential at each depth. The spatial bandwidths of D∆gB

PM are less dependent on
the depths of the RBFs as well as on the removal of low frequencies from the RBFs. Consequently, it
can be expected that, if the input is the residual gravity anomaly and the output is the geoid height
or height anomaly, the use of the reduced point mass RBFs seems to be necessary. If the input and
the output are interchanged, the full point mass RBFs may also work fine. This issue will be further
investigated by the numerical tests in Chapter 4.

Concerning Eqs (2.78) and (2.81) in the case when K point mass RBFs are used for regional
gravity field modeling, it is easy to transform the estimated point mass RBFs into the equivalent
Stokes coefficients according to

c̄enm =
∑K
k=1

( rk
R

)n βk
(2n+1)GM Ȳnm (φk, λk) for Nmin ≤ n ≤ Nmax

c̄enm = 0 otherwise
. (3.7)
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Figure 3.1: Normalized D∆gB
PM at a depth of 10 km (solid lines), 50 km (dashed lines), and 100 km (dotted

lines); a) the full RBFs with Nmin = 0; b) the reduced RBFs with Nmin = 120.
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Figure 3.2: Normalized degree variances ce
n (∆g,∆g) derived from a single full point mass RBF (left, Nmin = 0)

and a single reduced RBF (left, Nmin = 100) at different depths.

On the basis of Eqs (2.65b), (2.54), (2.58c), and (2.69), the degree variances for the gravity anomaly
derived from the equivalent Stokes coefficients are given by
cen (∆g,∆g) = (n−1)2

(2n+1)(GM)2rP rQ

∑K
k=1

∑K
j=1

( rk
R

)n ( rj
R

)n
βkβjPn (cosψkj) for Nmin ≤ n ≤ Nmax

cen (∆g,∆g) = 0 otherwise
,

(3.8)
in which rP and rQ are the radial distances of the observation points P and Q, respectively. For the
full point mass RBFs, i.e., Nmin = 0 in Eqs (3.5) and (3.6), the equivalent Stokes coefficients c̄enm and
the degree variances cen (∆g,∆g) are nonzero for all degrees. For the reduced RBFs (i.e., Nmin > 0),
c̄enm and cen (∆g,∆g) are equal to 0 for n < Nmin.
Suppose that only a single point mass RBF k is at a depth of d km below a sphere with a radius of

R = 6371 km on which all observations are located, Eq. (3.8) is then simplified as
cen (∆g,∆g) = (n−1)2

(2n+1)(GMR)2
( rk
R

)2n
βk

2 for Nmin ≤ n ≤ Nmax

cen (∆g,∆g) = 0 otherwise
(3.9)

with rk = R−d. From Eq. (3.9) it follows that the spectrum of a single point mass RBF also depends
on its depth. As an example, a single full point mass RBF and a single reduced RBF with Nmin = 100
at the depths of d = 10, 50, and 100 km are studied. The corresponding normalized degree variances
cen (∆g,∆g) are illustrated in Fig. 3.2. The spectrum of a point mass RBF at a shallow depth (e.g.,
at a depth of 10 km) covers a wide range of frequencies. Its power is mainly concentrated in the high-
frequency part. The spectrum derived from the point mass RBF at a deep depth (e.g., at a depth
of 50 or 100 km) has a narrow shape, only concentrating in the low-frequency part. Accordingly, a
deep point mass RBF mainly contributes to the low-frequency signals, while the RBF at a shallow
depth is capable of representing the high-frequency signals. Comparing to the smooth edges of the
spectrum associated with the full point mass RBFs (Fig. 3.2, left panel), there are sharp edges in the
spectrum obtained from the reduced RBFs (Fig. 3.2, right panel), and the signals below the degree
n = 100 are not recovered for all three cases with different depths. The reduced RBF at a deep depth
only has a minor contribution to the gravity anomaly solution as most power of its spectrum is cut.
The contribution from the RBF at a shallow depth is significant. Such properties of the reduced
point mass RBFs are quite suitable for regional gravity field computations with the use of the RCR
technique, as one assumes that the low-frequency signals are mainly provided by a global geopotential



36 3 Regional gravity field modeling with the point mass method

model.
Previously, we have proposed a scheme to deal with the case of residual input by truncating the full

point mass RBFs (i.e., reduced RBFs). The resulting RBFs will be used to construct an observation
equation system. Alternatively, another scheme will be introduced by adding constraints to the obser-
vation equation system, which is constructed by the full point mass RBFs.
At first, we consider that the input gravity data contain full frequencies. In this case, it is reasonable

to use the full point mass RBFs for the modeling. As a result, the equivalent Stokes coefficients c̄enm
are nonzero for all degrees, see Eq. (3.7). There are no Stokes coefficients c̄nm for n = 0, 1 in the
spherical harmonic expansions of the input gravity field quantities, see the example of the disturbing
potential given in Eq. (2.65a). Therefore, it appears to be necessary to set the relevant equivalent
Stokes coefficients to be 0, leading to

∆C̄e00 =
∑K
k=1

βk
GM = 0

∆C̄e10 =
∑K
k=1

( rk
R

) βk
3GM sinφk = 0

∆C̄e11 =
∑K
k=1

( rk
R

) βk
3GM cosφk cosλk = 0

∆S̄e11 =
∑K
k=1

( rk
R

) βk
3GM cosφk sinλk = 0

. (3.10)

The above four formulas will be used as constraints when estimating the magnitudes of the full point
mass RBFs in the least-squares sense. Similarly, if the input gravity data are the residuals with the
removal of the long-wavelength components derived from a global geopotential model up to degree
n = nmax, a set of constraints is given as

∆C̄enm =
∑K
k=1

( rk
R

)n βk
(2n+1)GM P̄nm (sinφk) cos (mλk) = 0 for 0 ≤ n ≤ n′ and 0 ≤ m ≤ n

∆S̄enm =
∑K
k=1

( rk
R

)n βk
(2n+1)GM P̄nm (sinφk) sin (mλk) = 0 for 0 < n ≤ n′ and 0 < m ≤ n

,

(3.11)
resulting in (n′ + 1)2 additional equations. Assuming that the residual input data do not contain
enough long-wavelength signals below degree nmax, n′ can be equal to or smaller than nmax. On the
one hand, the chosen n′ should be capable of providing a good solution. On the other hand, n′ is
preferred to be as small as possible so that high computational burden can be avoided.
As discussed in Section 2.7.4, the spatial bandwidths and the horizontal positions of the RBFs serve

as two important aspects for obtaining a good regional gravity field solution. Thus, it is necessary
to choose them appropriately. For a good choice of each aspect, several factors need to be defined
properly. Fig. 3.3 shows the structure of the RBFs. We can see that the simultaneous determination
of both spatial bandwidths and horizontal positions of the RBFs for optimal regional gravity field
modeling is not possible as too many factors need to be determined (see the green boxes in Fig. 3.3).
A practicable way is to fix some of them to reduce the degree of complexity of the model while keeping
the other factors free. The extreme case is to fix both spatial bandwidths and horizontal positions
of the RBFs before parameter estimation. Since the point mass method is used for the modeling
in this thesis, the shape coefficients of the RBFs are always fixed. The spectral bandwidths of the
point mass RBFs are usually defined based on the spectrum of the input data. As a consequence, the
remaining free factors are the radial distances of the point mass RBFs and their horizontal positions,
or equivalently, are their 3D positions. According to the strategy for determining the RBF positions,
the point mass method can simply be divided into two groups:

• Point mass method with fixed positions (PM-FIX),

• Point mass method with free positions (PM-FRE).
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Figure 3.3: Structural diagram of the RBFs.

Both methods will be discussed in this thesis, where the latter one is the main contribution. Before
introducing the two methods, we prefer to review the estimation principle first, which will be applied
for estimating the unknown parameters in the two methods.

3.3 Least-squares estimation and regularization

3.3.1 Inverse problems and ill-posedness

Most inverse problems describe the continuous physical world and take the form of Fredholm integral
equations of the first kind. Theses problems arise in many disciplines such as geophysics, medical
physics, image and signal processing, astrophysics, and geodesy. The general form of this integral
equation is given by ∫

Ω
K (si, t)x (t) dt = l (si) , (3.12)

where K (si, t) is a smoothing kernel, describing the process, l (si) is the measured data as a function
of the time or position si, and Ω is the domain of integration. The purpose of the inverse problem is to
find the model x (t) at the time or position t based on the given l. Given the model x, to compute the
data l is consequently called the forward modeling. In practical computations, the continuous system
given by Eq. (3.12) needs to be discretized. There are two approaches: (1) the continuous system is
discretized with a number of model parameters K that is smaller than the number of observations
I, leading to an overdetermined system; (2) the system is discretized with K > I, resulting in an
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underdetermined system. In gravity field modeling, the first approach is considered. When the kernel
K (si, t) is linear with respect to the model x (t), the integral equation in Eq. (3.12) can be rewritten
in matrix-vector notation after discretization:

Ax = l, (3.13)

where A: X → L is a linear operator mapping the unknown vector space X to the observation vector
space L with x ∈ X and l ∈ L. Comparing Eq. (3.13) to Eq. (3.12), the matrix A is constructed from
the kernel K (si, t), the vectors x and l are related to the model x (t) and the data l (si), respectively.

According to the definitions in Hadamard (1923), the inverse problem is regarded as “well-posed”
only in the case that it satisfies the following three requirements:

• A is surjective so that Eq. (3.13) is solvable for all l ∈ L (existence).

• A is injective so that Eq. (3.13) has only one solution x ∈ X (uniqueness).

• A−1 exists but also is continuous with respect to the data so that a small change in the data
also leads to a small change in the model (stability).

As soon as any one of the above requirements is violated, the problem is then said to be “ill-posed”
or “improperly posed”. In the field of geodesy, since the model parameters are often not subject to
direct observations, one frequently has to deal with the inverse problem. Inverse problem is usually
ill-posed as very often at least one of the conditions mentioned above is not satisfied. A typical inverse
problem for the non-uniqueness is the determination of the mass distribution in the interior of the
Earth from the exterior gravity field observations, as infinitely many mass distributions can produce
the same exterior gravity field. In gravity field modeling using spherical harmonics or radial basis
functions, the issue of existence and uniqueness can properly be resolved by introducing additional
requirements to the solutions. For example, the solution x̂ computed by minimizing ||l−Ax||2 in the
least-squares sense can be considered as the best approximation to the exact solution x if minimal
variance of the data misfit is desired. In the context of this thesis, further investigation on the ill-
posedness is due to the lack of stability; such an ill-posed problem can be solved by employing a
so-called regularization, which will be discussed later. In regional gravity field modeling using the
point mass RBFs, the missing stability might be caused by the following factors:

• In the case of using airborne gravity data for the calculation of gravity field functionals on the
Earth’s surface, the downward continuation causes an ill-posed problem, as the data errors and
unmodeled signals are strongly amplified especially in the high-frequency part of the spectrum.

• Irregular data distribution or data gaps, which often occur in the case when using terrestrial
gravity data for the modeling, lead to numerical instabilities.

• Very-deep or closely located point mass RBFs, which result in similar columns in the design
matrix, cause numerical instabilities.

3.3.2 Characteristics of inverse problems

Most inverse problems have common characteristics. A powerful tool to identify the instability of an
inverse problem expressed by Eq. (3.13) is to examine the spectral behavior of the linear operator
(or the design matrix) A ∈ RI×K by the Singular Value Decomposition (SVD) (e.g., Golub and van
Loan, 1996; Hansen, 1997), yielding

A = UΣVT =
K∑
i=1

uiσivT
i with Σ =

ΣK

0

 , (3.14)
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where U = (u1, ...,uI) ∈ RI×I is an orthogonal matrix that spans the data space, satisfying UTU =
UUT = I, V = (v1, ...,vK) ∈ RK×K is an orthogonal matrix that spans the model space, satisfying
VTV = VVT = I. The orthogonal vectors ui and vi are the corresponding left and right singular
vectors, satisfying the following relations

uT
i ui = vT

i vi = 1

Avi = σiui

ATui = σivi

. (3.15)

The matrix Σ ∈ RI×K contains a diagonal matrix ΣK = diag (σ1, ..., σK) with the singular values σi,
which are arranged in decreasing order such that

σ1 ≥ σ2 ≥ ... ≥ σK > 0. (3.16)

The condition number for the design matrix A is equal to the ratio σ1/σK (e.g., Hansen, 2008). If
the singular values of A descend too fast, the linear system in the form of Eq. (3.13) is considered as
ill-posed, resulting in a large condition number. The matrix A is then said to be “ill-conditioned”. In
the extreme case such that one or more singular values equal zero, the matrix A does not have full
column rank and is said to be “rank deficient”.
The singular values σi of the design matrix A can be connected to the eigenvalues λi of the normal

matrix by the relation N = ATA = VΣ2VT = VΛVT with Λ = diag (λ1, ..., λK) = diag
(
σ2

1, ..., σ
2
K

)
.

The condition number of N is consequently equal to the ratio σ2
1/σ

2
K . Although it is very difficult to

prove in general, the large singular values are associated with smooth singular vectors, and the small
singular values are associated with oscillatory vectors (Hansen, 2008). It can also be interpreted in
such a way that smooth singular vectors are associated with low frequencies and oscillatory singular
vectors correspond to high frequencies. Considering Eq. (3.14), the mapping Ax of a vector x can
be described by

Ax =
K∑
i=1

σi
(
vT
i x
)

ui = l. (3.17)

Here the high-frequency components of x are more damped during the mapping process due to the
multiplication with small singular values σi. Therefore, the smoothness of the mapping is guaranteed
by the smoothing property of the matrix A. On the other hand, when solving for x from the equation
system in Eq. (3.17), the solution is given by

x̂ =
K∑
i=1

uT
i l
σi

vi. (3.18)

It becomes obvious that the high frequencies of the observations l are amplified by large factor 1/σi
with increasing i, requiring that the observations must not be arbitrarily rough as the terms uT

i l
have to decay faster than the singular values σi to achieve the convergence of the solution x̂. This
requirement is described as the discrete Picard condition in Hansen (2008). However, if errors exist
in the observations the Picard condition might be violated. For example, the white noise is of equal
magnitude for all frequencies, and its effect on the solution becomes more severe when i increases. In
this case, the inverse problem is unstable.
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3.3.3 Linear least-squares solution

In the following, the process for estimating the unknown gravity field parameters from a linear equa-
tion system will be described. It represents a standard Gauss-Markov model, which is based on the
assumptions that the observation errors have an expectation of zero, and that the covariance matrix
of the observations is known a priori. The functional model and stochastic model then read (Koch,
1999):

l− e = Ax with E (e) = 0 and D (e) = D (l) = σ2
eP−1

e . (3.19)

Here l is the I × 1 vector containing observed gravity field quantities, e is the I × 1 vector of random
observation errors, D (e) = D (l) = σ2

eP−1
e represents the I × I covariance matrix of e with Pe the

weight matrix of the observations and σ2
e the corresponding positive variance factor, and x is theK×1

vector of unknown gravity field parameters, such as the Stokes coefficients for spherical harmonics
or the magnitudes for the point mass method. The I ×K design matrix A describes the functional
relation between x and l. For the sake of simplicity, D (e) is denoted as De in the following.
The objective function, which needs to be minimized in the least-squares adjustment, is given as

the weighted square sum of the residuals

Φ (x) = 1
σ2
e

(l−Ax)T Pe (l−Ax) = ‖(l−Ax)‖2D−1
e
. (3.20)

The minimum of Φ (x) can be achieved by differentiating with respect to x and forcing it to zero, i.e.,
∂Φ (x)/∂x = 0. This results in a system of normal equations

Nx = y, (3.21)

in which N = ATPeA and y = ATPel. The estimation of the unknown gravity field parameters
by means of least-squares adjustment is consequently the solution of the normal equation system,
yielding

x̂ = N−1y =
(
ATPeA

)−1 (
ATPel

)
. (3.22)

More details about the least-squares method can be found in textbooks, e.g., Koch (1999). In order to
assess the quality of estimated parameters x̂, the covariance matrix D (x̂) can be derived by applying
the law of variance propagation to Eq. (3.22) under consideration of Eq. (3.19), yielding

D (x̂) = σ̂2
eN−1 (3.23a)

with

σ̂2
e = 1

I −K
(l−Ax̂)T Pe (l−Ax̂) . (3.23b)

Besides the internal validation by calculating the covariance matrix D (x̂), the external validation
is frequently used in regional gravity field computations. Assuming q is an N×1 vector that contains
independent gravity field quantities, the predictions q̂ can be connected to the estimated parameters
x̂ via the N ×K design matrix B according to

q̂ = Bx̂, (3.24)
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and the vector of residuals is then given as

ε̂ = q − q̂. (3.25)

The relevant statistical values can then be obtained according to ε̂, such as

Mean (ε̂) = 1
N

∑N
n=1 ε̂n

RMS (ε̂) =
√

1
N

∑N
n=1 ε̂

2
n

STD (ε̂) =
√

1
N−1

∑N
n=1 [ε̂n −Mean (ε̂)]2

, (3.26)

in which Mean (ε̂), RMS (ε̂), and STD (ε̂) are the mean, root-mean-square, and standard deviation
of the residuals, respectively. In the context of this thesis, the external validation is the main tool
for assessing the quality of the regional gravity field solutions. Often, a good gravity field solution is
defined as the one with a small RMS when comparing the predictions to independent observations,
assuming that those control data are accurate enough. In some cases with significant systematic
errors, which can be removed by the post-processing approach (e.g., in the case of geoid/quasigeoid
modeling), the solution with a small STD is considered as good.

3.3.4 Regularization

In Section 3.3.2, we have analyzed the spectral characteristics of the inverse problem by using SVD.
The singular vectors, corresponding to very small singular values, are found to be the causes for ill-
posedness. From this point of view, the direct way to stabilize the problem is to discard some small
singular values as well as their corresponding singular vectors by adding a filter to the standard SVD
solution as shown in Eq. (3.18), yielding

x̂ =
K∑
i=1

fi
uT
i l
σi

vi (3.27a)

with

fi =

1 for i ≤ K ′

0 for i > K ′
. (3.27b)

The process using Eq. (3.27) is called the Truncated Singular Value Decomposition (TSVD) (e.g.,
Hansen, 1987; Xu, 1998; Hansen, 2008). The solution is obtained from the firstK ′ ≤ K singular values
and related singular vectors, and the rest are ignored. Alternatives to TSVD for solving the ill-posed
problem are, e.g., Tikhonov regularization (Tikhonov, 1963) and iterative regularization methods
(e.g., Bouman, 1998; Hansen, 2008), etc. An overview on a variety of regularization methods can be
found in, e.g., Hansen (1997), Bouman (1998), and Hansen (2008). In this thesis, only the Tikhonov
regularization will be applied as it has been widely used in regional gravity field modeling using RBFs
(e.g., Eicker, 2008; Klees et al., 2008; Alberts, 2009; Wittwer, 2009; Naeimi, 2013). And hence, it will
now be described in more detail.

Tikhonov regularization

Comparing to TSVD, no decomposition of the design matrix or the normal matrix is required for
Tikhonov regularization. The fundamental idea of this procedure is to minimize the objective function
in Eq. (3.20) considering a priori assumption about the size and smoothness of the desired solution.
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This assumption can be described by adding a penalty term ‖µ‖2D−1
µ

that describes the norm of a priori
information µ given as linear functionals Lx of the unknown parameters x to the objective function.
From the Bayesian point of view, it is equivalent to adding an additional observation equation system
in the form of

µ− eµ = Lx with E (eµ) = 0 and Dµ = σ2
µP−1

µ (3.28)

to the main observation equation system given in Eq. (3.19) (e.g., Koch and Kusche, 2002; Eicker,
2008). Here σ2

µ is the unknown variance factor of µ, and Pµ is the corresponding weight matrix.
Concerning E (µ) = 0, the objective function for the Tikhonov regularization based on the Bayesian
approach is equivalent to (Eicker, 2008)

Φα (x) =

l

0

−
A

L

x

T

D̄−1
l

0

−
A

L

x

 (3.29a)

with the inverse of the extended covariance function

D̄−1 = 1
σ2
e

Pe 0

0 σ2
e
σ2
µ
Pµ

 . (3.29b)

Let ∂Φα (x)/∂x = 0, the regularized normal equation system then reads:(
ATPeA + αLTPµL

)
x = ATPel, (3.30)

where α = σ2
e/σ

2
µ is the regularization parameter, which can be interpreted as a noise-to-signal ratio

if µ represents the signals. Thus, it is expected that a large α is needed for the data with large noise
in the same study case. An important alternative of the objective function in Eq. (3.29) is given as

Φα (x) = (l−Ax)T Pe (l−Ax) + αxTLTPµLx = ‖l−Ax‖2Pe + α ‖Lx‖2Pµ . (3.31)

It represents the general form of the objective function for the Tikhonov regularization in the Bayesian
sense. L is a linear operator that is used for the determination of certain solutions to be constrained.
It should be defined depending on the particular applications. In the case of L = I, the smoothness
constraints are only applied for the unknown parameter vector x itself not for its functionals. Pµ is
often set to be the identity matrix in regional gravity field modeling. A more familiar formulation of
Eq. (3.31) for geodesists is formulated as

Φα (x) = (l−Ax)T Pe (l−Ax) + αxTRx = ‖l−Ax‖2Pe + α ‖x‖2R , (3.32)

in which R = LTPµL is known as the regularization matrix with the dimension of K ×K. From Eq.
(3.32) it is clear that both the choices of the regularization matrix and the regularization parameter
play an important role in obtaining an optimal solution. Related studies about the choice of R for
spherical harmonic solutions can be found in, e.g., Kusche and Klees (2002) and Ditmar et al. (2003),
and for solutions of RBFs in, e.g., Eicker (2008), Alberts (2009), and Eicker et al. (2014). Often, R
is simply chosen as the identity matrix I. Then, Tikhonov regularization is known as ordinary ridge
regression in statistics and is also called the standard Tikhonov regularization. The objective function
in Eq. (3.32) is then rewritten according to

Φα (x) = (l−Ax)T Pe (l−Ax) + αxTx
= ‖l−Ax‖2Pe + α ‖x‖2I = Φd + αΦm,

(3.33)
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resulting in the regularized solution

x̂α =
(
ATPeA + αI

)−1
ATPel. (3.34)

If the identity matrix I is replaced by the matrix R, Eq. (3.34) becomes the solution for the objective
function in Eq. (3.32). From Eq. (3.33), the objective function Φα (x) is divided into two parts, i.e.,
the data misfit function Φd and the model function Φm. The choice of the regularization parameter
α becomes a crucial task as it determines how well the solution should fit the data. When α is large,
the solution fits less well to the data. In this case, much information contained in the data is lost. If
α is very small, the solution starts to fit noise. An optimal α should be chosen in such a way that
the solution fits the data as well as possible while the data noise should be damped as strongly as
necessary. This issue will be discussed in Section 3.3.5 in more detail.

Analysis of the Tikhonov regularization

In order to understand the basic properties of the standard Tikhonov regularization, the SVD is
employed again for the analysis in the following. The normal equation corresponding to the solution
in Eq. (3.34) is given as (

ATPeA + αI
)

x = ATPel. (3.35)

Inserting Eq. (3.14) into the above equation under consideration of Pe = I, yields(
ATA + αI

)
x =

(
VΣ2VT + αVVT

)
x = V

(
Σ2 + αI

)
VTx = VΣUTl. (3.36)

Multiplying both sides with VT gives(
Σ2 + αI

)
VTx = ΣUTl, (3.37)

and the solution is computed according to

x̂α = V
(
Σ2 + αI

)−1
ΣUTl = VΣ−1

(
Σ2 + αI

)−1
Σ2UTl. (3.38)

Let
(
Σ2 + αI

)−1
Σ2 = F, Eq. (3.38) can be reformulated as

x̂α = VΣ−1FUTl =
K∑
i=1

fi
uT
i l
σi

vi (3.39a)

with the Tikhonov filter function

fi = σ2
i

σ2
i + α

. (3.39b)

The left panel of Fig. 3.4 shows the Tikhonov filter functions for three regularization parameters
α. It follows that the filter function penalizes the singular vectors, which are associated with the
singular values σ2

i � α. As a result, the singular vectors associated with small singular values have
nearly no contribution to the regularized solution, leading to a stable solution. Comparing the TSVD
to the standard Tikhonov regularization, i.e., see Eqs (3.27) and (3.39), the main difference between
them is the filter function. The right panel of Fig. 3.4 shows one example of the TSVD filter function
and the Tikhonov filter function. It demonstrates that the TSVD filter function acts as an exact
low-pass filter and the Tikhonov filter function can be considered as a quasi low-pass filter with a
smooth transition zone.
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Figure 3.4: Examples for the TSVD and Tikhonov filter functions. Left: the Tikhonov filter functions for
three regularization parameters α = 10−8, 10−5, 10−2; right: one TSVD filter function truncated
at σ2 = 10−5 and one Tikhonov filter function for α = 10−5.

Relationship between the Tikhonov regularization and the least-squares collocation

In the following the relationship between the Tikhonov regularization and the least-squares collocation
(see also Section 2.6) will be briefly discussed. Eq. (2.45) for the prediction of a signal vector s based
on a set of noisy observations l is reformulated with tiny changes:

ŝ = Cst (Ctt + Cee)−1 l with Cee = σ2
eP−1

e = σ2
eI. (3.40)

According to the following relations:

Ax = t, (3.41a)

Bx = s, (3.41b)

the auto-covariance matrix Ctt and the cross-covariance matrix Cst can be obtained as

Ctt = ACxxAT, (3.42a)

Cst = BCxxAT, (3.42b)

in which Cxx is the covariance matrix of the unknown parameters x. Inserting Eq. (3.42) into Eq.
(3.40), yields (Rummel et al., 1979; Bouman, 1998)

ŝ = BCxxAT
(
ACxxAT + σ2

eI
)−1

l = B
(
ATσ−2

e A + C−1
xx

)−1
ATσ−2

e l

= B
(
ATA + σ2

eC−1
xx

)−1
ATl.

(3.43)

The same predictions as given in Eq. (3.43) can be computed by the least-squares adjustment con-
sidering the Tikhonov regularization:

ŝ = Bx̂ = B
(
ATA + αR

)−1
ATl. (3.44)

Comparing Eq. (3.43) to (3.44), LSC can be regarded as a special case of the Tikhonov regularization
approach with the use of a regularization matrix R = σ2

eC−1
xx while taking the regularization parameter

α = 1. For the regularized LSC given by Eq. (2.47), a general form of Eq. (3.43) is given as (Rummel
et al., 1979)
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ŝ = B
(
ATA + ασ2

eC−1
xx

)−1
ATl. (3.45)

For standard Tikhonov regularization, the use of an identity matrix I instead of R seems to be a less
appropriate choice than the use of σ2

eC−1
xx in LSC.

3.3.5 The choice of the regularization parameter

The crucial task for obtaining a stable solution when using the standard Tikhonov regularization is
how to choose a proper regularization parameter α, as it controls the trade-off between the degree
of the data fit and the degree of the smoothness of the solution. In practice, several criteria are
used to choose a proper α, each of them may be suited better for specific problems. An overview
of some approaches for the choice of the regularization parameter is given in Hansen (1997) and
Bouman (1998). In this thesis, the regularization parameter is determined by one of the following
three approaches:

• Minimizing the RMS of the differences between predicted and observed values at a set of control
points, assuming that the observed values are accurate enough, see e.g., Tenzer and Klees (2008).

• Generalized cross validation (GCV), see e.g., Golub et al. (1979), Hansen (1997), Bouman
(1998), Kusche and Klees (2002), Ditmar et al. (2003), and Hansen (2008).

• Variance component estimation (VCE), see e.g., Koch and Kusche (2002).

The first approach is empirical, and the latter two are the heuristic approaches, which do not depend
on the additional control values, but only on the input data.

Empirical approach

The empirical approach aims at choosing a regularization parameter α with which a minimal RMS
of the differences between the predictions and the observations at the given control points can be
achieved. Often, a set of n candidates αi, which are arranged in the order such that α1 > α2 > ... >

αn ≥ 0 have to be pre-selected. Starting from α1, this approach can be described mathematically as

RMS (αi) =
√

1
N
‖Bx̂αi − q‖2 with i = 1, 2, ..., n, (3.46)

where N is the number of control points, q is an N × 1 vector containing the observed control values,
B is the N ×K design matrix, and x̂αi is the K × 1 estimated parameter vector computed by Eq.
(3.34) with α = αi. This approach is easy to implement, and the solution is reliable in the case when
the control points are accurate enough and homogeneously distributed. If control points are absent
or are distributed inhomogeneously, the related solution might be less reliable.

Generalized cross validation

The generalized cross validation for finding a proper regularization parameter was first proposed by
Golub et al. (1979). It is based on the leave-one-out idea:

The solution vector x̂(k)
αi , which depends on the given regularization parameter αi, is computed

by Eq. (3.34) without the observation lk. It is then used to predict the “missing” observation
l̂k =

(
Ax̂(k)

αi

)
k
. A well-selected regularization parameter is expected to result in a small differ-

ence between the predicted l̂k and the observed value lk. Repeating this procedure step by step
until all observations have been tested, a proper choice of the regularization parameter should
lead to a small mean square error of all possible differences lk − l̂k.
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This idea is quite similar to the empirical approach but without requiring external control values.
Assuming uncorrelated observations of equal weight (i.e., Pe = I), the ordinary cross validation
function CV (αi) is given by

CV (αi) = 1
I

I∑
k=1

[(
Ax̂(k)

αi

)
k
− lk

]2
= 1
I

I∑
k=1

[
(Ax̂αi)k − lk

]2(
1−Qαikk

)2 , (3.47)

where Qαikk are the main diagonal elements of the influence matrix Qαi , which is defined by

Ax̂αi = Qαil. (3.48)

For the derivation of the second expression in Eq. (3.47), see Golub and van Loan (1996). The
generalized cross validation function GCV (αi) is generated when the weights

(
1−Qαikk

)
are replaced

by their average value tr (I−Qαi) /I:

GCV (αi) =
I∑

k=1

I
[
(Ax̂αi)k − lk

]2
[tr (I−Qαi)]2

= I ‖Ax̂αi − l‖2

[I − tr (Qαi)]2
. (3.49)

For a non-identity noise covariance matrix De = σ2
eP−1

e , the GCV function reads:

GCV (αi) =
I ‖Ax̂αi − l‖2Pe
[I − tr (Qαi)]2

(3.50a)

with

Qαi = A
(
ATPeA + αiR

)−1
ATPe. (3.50b)

The optimal regularization parameter is the one corresponding to the minimum of the GCV func-
tion. Thus, our goal is to find the minimal GCV (αi) by testing n candidates arranged in decreasing
order. It should be mentioned that the selection of the candidates plays an important role in both
the empirical approach and the GCV approach. If the computational burden is acceptable, a reliable
way is to select them based on the Tikhonov filter function given in Eq. (3.39b). In practical ap-
plications, the computation of tr (Qαi) is quite time-consuming in the case of a large-scale problem,
as it requires the inverse of a large regularized normal matrix. Alternatively, the stochastic trace
estimation proposed by Koch and Kusche (2002) is widely used, which will be described in detail in
the following.

Variance component estimation

In Section 3.3.4, we mentioned that the Tikhonov regularization can be interpreted as considering
a priori information in the Bayesian sense and that the regularization parameter is obtained as the
ratio between two variance factors, see Eqs (3.28)−(3.31). In the same context, if different kinds of
observations are used as input, the determination of proper relative weights of the observations is
essential to achieve an accurate result. For both tasks, the variance component estimation (e.g., Koch
and Kusche, 2002) can be applied. Assuming there are p observation groups, the functional model
and the stochastic model for each group are given as

li − ei = Aix with E (ei) = 0 and D (ei) = D (li) = σ2
iP−1

i (3.51)

with σ2
i for i ∈ {1, 2, ..., p} being the variance component (or variance factor) of the observation

group i. If the observations are combined with a priori information µ as given in Eq. (3.28) under
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consideration of both L = I and E (µ) = 0, the least-squares solution x̂ can be obtained by solving a
combined normal equation

Nx = y (3.52a)

with

N = 1
σ2

1
AT

1 P1A1 + ...+ 1
σ2
p

AT
p PpAp + 1

σ2
µ

Pµ, (3.52b)

y = 1
σ2

1
AT

1 P1l1 + ...+ 1
σ2
p

AT
p Pplp. (3.52c)

Multiplying both sides of Eq. (3.52a) with σ2
1 and taking ωi = σ2

1/σ
2
i and α = σ2

1/σ
2
µ, a new form of

the normal equation is given as(
AT

1 P1A1 + ...+ ωpAT
p PpAp + αPµ

)
x = AT

1 P1l1 + ...+ ωpAT
p Pplp, (3.53)

where the ratio ωi stands for the relative weight of the observation group i with respect to group 1.
The unknown variance components σ2

i and σ2
µ are estimated iteratively according to

σ̂2
i = êT

i Piêi
ri

= (Aix̂− li)T Pi (Aix̂− li)
ri

, (3.54a)

σ̂2
µ =

êT
µPµêµ
rµ

= x̂TPµx̂
rµ

, (3.54b)

where ri and rµ are the partial redundancies, i.e., the contributions of the observation group i and
the a priori information µ to the overall redundancy I. The partial redundancies are computed by
(Koch and Kusche, 2002)

ri = Ii − tr
(

1
σ2
i

AT
i PiAiN−1

)
, (3.55a)

rµ = K − tr
(

1
σ2
µ

PµN−1
)
, (3.55b)

where Ii denotes the number of observations in group i, satisfying
∑p
i=1 Ii = I. Concerning Pi =

GiGT
i and Pµ = GµGT

µ , where Gi and Gµ are the regular lower triangular matrices, and using the
relation tr (AB) = tr (BA), Eq. (3.55) can be transformed into

ri = Ii −
1
σ2
i

tr
(
GT
i AiN−1AT

i Gi

)
︸ ︷︷ ︸

Ti

, (3.56a)

rµ = K − 1
σ2
µ

tr
(
GT
µN−1Gµ

)
︸ ︷︷ ︸

Tµ

. (3.56b)

The computation of the traces Ti and Tµ to obtain the partial redundancies in Eq. (3.56) requires the
inverse of the combined normal matrix N, which may be too time-consuming for the case of a large
number of unknown parameters. The stochastic trace estimation (STE) (Hutchinson, 1990; Koch and
Kusche, 2002) is introduced to improve the numerical efficiency. We use the theorem by Hutchinson
(1990): E

(
uTBu

)
= tr (B), where B is a symmetric matrix and u is a random vector with E (u) = 0
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and D (u) = I. If the vector u contains independent samples of the values +1 and −1 with equal
probability, then uTBu is an unbiased estimator of tr (B) with minimum variance. Accordingly, the
calculation of an unbiased estimate of the trace Ti in Eq. (3.56a) is equivalent to

Ti = uTGT
i AiN−1AT

i Giu. (3.57)

The computation procedure of Ti by STE can be setup as follows:

1 Generate a random vector u.

2 Solve the linear equation system Nβi = AT
i Giu, yielding βi = N−1AT

i Giu.

3 Compute Ti = uTGT
i Aiβi.

Often, the trace should be the mean of several results obtained by using different vectors u of inde-
pendent samples. Golub and von Matt (1997) recommended just one sample vector u to compute
the trace. Their recommendation was successfully applied for geopotential determination from satel-
lite data in Koch and Kusche (2002). And therefore, this recommendation is also followed here. In
the STE procedure for calculating the trace, the direct inverse of the normal matrix is replaced by
solving a linear equation system; this can significantly improve the numerical efficiency, especially for
large-scale problems.
The STE procedure can also be used to compute the traces in Eq. (3.56b) and Eq. (3.50). If there

is only one kind of observations, Eq. (3.56) can be simplified as

r1 = I −K + 1
σ2
µ

tr
(
GT
µN−1Gµ

)
, (3.58a)

rµ = K − 1
σ2
µ

tr
(
GT
µN−1Gµ

)
. (3.58b)

In comparison to Eq. (3.56), only the trace Tµ needs to be computed in this case. Concerning Eqs
(3.56) and (3.58), a new form of the GCV function suited for practical computations is obtained
according to (see also Eq. (3.50); Koch and Kusche, 2002)

GCV (αi) = I (Ax̂αi − l)T Pe (Ax̂αi − l)[
I −K + αi · tr

(
GT
µ N̄−1Gµ

)]2 (3.59a)

with

N̄ = ATPeA + αiR, R = GµGT
µ . (3.59b)

Finally, the computation procedure of VCE is summarized as follows:

1 Fix the weight matrix Pi for i ∈ {1, 2, ..., p} and Pµ; they are usually set to be I. Then, give
initial values of the variance components (i.e., σ2

i and σ2
µ).

2 Construct the normal equation system by calculating the combined normal matrix N and the
right-hand side y based on the given variance components, see Eq. (3.52).

3 Solve the normal equation system constructed at 2 , see Eq. (3.52) or Eq. (3.53), resulting in
the solution x̂.

4 Compute the variance components by using STE, see Eqs (3.54)−(3.58).
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5 Compare the newly estimated variance components to the old ones. If the criterion for conver-
gence is satisfied, go to 6 . Otherwise, replace the old variance components with the new ones,
and then go to 2 .

6 Stop the whole procedure. The estimated parameters x̂ based on the current variance compo-
nents are considered as the final solution. The resulting variance components can be interpreted
as a posteriori information of the observation groups.

3.3.6 Nonlinear least-squares solution

Previously, we have reviewed the least-squares solution of a linear equation system and the regular-
ization process for obtaining a stable estimate of the gravity field parameters. In some cases, the
functional model that describes the relation between the observations and unknown parameters is
not linear, leading to a nonlinear equation system. As an example of the point mass method, besides
the magnitudes, if the 3D positions (i.e., horizontal positions and radial distances) or only the radial
distances of the point mass RBFs are also unknown, the problem is nonlinear. In the following, the
least-squares solution of a nonlinear equation system will be described.

Similar to the linear case, a nonlinear equation system can be simply described as

l− e = F (m) , (3.60)

where F represents the forward modeling operator and m is the M × 1 model parameter vector. The
definitions of the other variables in the above equation are as in Eq. (3.19). The relation between the
number of model parameters M and the number of observations I satisfies M ≤ I.

The least-squares solution of the nonlinear equation system is obtained by minimizing an objective
function under consideration of Tikhonov regularization, defined by

Φα (m) = [l− F (m)]T Pe [l− F (m)] + αmTRm
= ‖l− F (m)‖2Pe + α ‖m‖2R

(3.61)

with given α, Pe, and R. To minimize the objective function Φα, it is common to apply linearization
and iteration. Four nonlinear iteration algorithms are considered for minimizing Φα with respect to
m in the context of this thesis: the Levenberg-Marquardt method, the nonlinear conjugate gradient
method, the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, and the bound-
constrained limited-memory BFGS method. They are labeled as LM, NLCG, L-BFGS, and L-BFGS-
B, respectively. The first three algorithms are unconstrained optimization algorithms, and the last
one is capable of handling the simple bound constraints on the model parameters. Each algorithm
generates a sequence of models m0, m1, ..., m` and aims at reaching Φα (m`) → min

m
Φα (m) as

`→∞.
Before introducing the above four algorithms, a set of notations will be explained first. The gradient

and the Hessian of the objective function are the M × 1 vector g and M ×M symmetric matrix H,
defined by

gj (m) = ∂Φα (m)
∂mj

and (3.62a)

Hjk (m) = ∂2Φα (m)
∂mj∂mk

with j, k = 1, ...,M, (3.62b)

where mj is the j-th element in m, gj (m) is the j-th element in g, and Hjk (m) is an element of H
corresponding to row j and column k.
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Let J denote the I ×M Jacobian matrix of the residual vector l− F (m), yielding

J ik (m) = ∂
[
li − F i (m)

]
∂mk

= −∂F
i (m)
∂mk

with i = 1, ..., I and k = 1, ...,M. (3.63)

According to Eqs (3.61) and (3.62), yields

g (m) = 2J (m)T Pe [l− F (m)] + 2αRm, (3.64a)

H (m) = 2J (m)T PeJ (m) + 2αR + 2∂J (m)T

∂m Pe [l− F (m)]

= 2J (m)T PeJ (m) + 2αR − 2
M∑
i

qiBi (m) ,
(3.64b)

in which q = Pe [l− F (m)] and Bi is the Hessian of F i.

An approximate objective function is defined based on the linearization of the forward function F .
For linearization about a reference model mref , yields

F̃ (m,mref ) = F (mref )− J (mref ) (m−mref ) , (3.65a)

Φ̃α (m,mref ) =
[
l− F̃ (m,mref )

]T
Pe

[
l− F̃ (m,mref )

]
+ αmTRm. (3.65b)

The gradient and Hessian of Φ̃α are obtained according to

g̃ (m,mref ) = 2J (mref )T Pe

[
l− F̃ (m,mref )

]
+ 2αRm, (3.66a)

H̃ (mref ) = 2J (mref )T PeJ (mref ) + 2αR. (3.66b)

In this case, Φ̃α is quadratic in m, g̃ is linear in m, and H̃ is independent of m. Accordingly, we
generate the following important relations:

Φ̃α (m,mref ) = Φα (mref ) + g̃ (mref )T (m−mref ) + 1
2 (m−mref )T H̃ (mref ) (m−mref ) ,

(3.67a)

g̃ (m,mref ) = g (mref ) + H̃ (mref ) (m−mref ) . (3.67b)

Thus, F̃ (mref ) = F (mref ), Φ̃ (mref ) = Φ (mref ), and g̃ (mref ) = g (mref ), but H̃ (mref ) is only an
approximation to H (mref ) obtained by neglecting the last term in Eq. (3.64b).

Gauss-Newton and Levenberg-Marquardt

Given an initial model m0, one can describe the Gauss-Newton (GN) method as recursive minimiza-
tion of Φ̃α given in Eq. (3.67a), leading to the following model sequence:

Φ̃α (m`+1,m`) = min
m

Φ̃α (m,m`) with ` = 0, 1, 2, .... (3.68)

A consequence of Eq. (3.68) is that the gradient vector g̃ (m`+1,m`) in Eq. (3.67b) is equal to zero,
resulting in the following relation:

− g` = H̃` (m`+1 −m`) (3.69)
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with the abbreviations

g (m`) ≡ g`, H̃ (m`) ≡ H̃`.

Suppose that H̃` is nonsingular, the solution of the GN method iterates as

m`+1 = m`−H̃−1
` g`︸ ︷︷ ︸

p`

, (3.70)

where p` is the search direction. In order to deal with the case where H̃` is poorly conditioned,
Levenberg (1944) and Marquardt (1963) proposed a modification of the GN method in which the
model increment at each iteration is damped to prevent unproductive movements through the solution
space. This makes the new method compromise between the GN method and the gradient descent
method (i.e., p` = −g`). Instead of Eq. (3.70), the solution of the Levenberg-Marquardt (LM)
method is in the form of

m`+1 = m`−
(
H̃` + λ`DT

` D`

)−1
g`︸ ︷︷ ︸

p`

, (3.71)

where λ` is a positive damping factor and D` is a diagonal matrix consisting of positive diagonal
entries, which takes into account the scaling of the problem. Sometimes, the DT

` D` is chosen as the
diagonal of H̃` (e.g., Nocedal and Wright, 2006).
Since no stabilizing term of the objective function in Eq. (3.61) is considered for all computations in

the context of this thesis, the subproblem of the LM method for iteration ` is equivalent to minimize
the objective function Ψ along the search direction p`:

Ψ (p`) = ‖r` − J`p`‖2Pe considering ‖D`p`‖2 ≤ ∆`, (3.72)

where r` = l − F (m`) is the residual vector, J` ≡ J (m`) is the Jacobian matrix, and ∆` > 0 is
the trust region radius. In this case, the LM method can easily be implemented by the robust and
efficient software package MINPACK (Moré et al., 1980). For the `-th iteration of the LM method
in MINPACK, it works as follows (Moré, 1978):

1 Given ∆` > 0, find λ` ≥ 0 such that if(
H̃` + λ`DT

` D`

)
p` = −g`,

then either λ` = 0 and ‖D`p`‖2 ≤ ∆`, or λ` > 0 and ‖D`p`‖2 = ∆`.

2 If ‖Φα (m` + p`)‖2 < ‖Φα (m`)‖2, set m`+1 = m`+p` and evaluate J`+1; otherwise, set m`+1 =
m` and J`+1 = J`.

3 Choose ∆`+1 and D`+1.

It has to be mentioned that both GN and LM methods require the storing and manipulating of the
dense Hessian at each iteration. It is prohibitive when the number of model parameters is very large.
For more details about the LM method see, e.g., Moré (1978) and Nocedal and Wright (2006).

Nonlinear conjugate gradient

In contrary to the GN and LM methods, which work in the framework of linearized inversion, the
nonlinear conjugate gradient (NLCG) method directly solves the objective function Φα. The corre-
sponding model sequence is determined by a sequence of line searches along the computed search
directions until it reaches the minimum of the objective function Φα:
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m0 = given,

Φα (m` + λ`p`) = min
λ

Φα (m` + λp`) ,

m`+1 = m` + λ`p` with ` = 0, 1, 2, ...,

(3.73)

in which λ` is the step length obtained by means of a one-dimensional search. A positive λ` will be
accepted if it satisfies the Wolfe conditions (e.g., Nocedal and Wright, 2006):

Φα (m` + λ`p`) ≤ Φα (m`) + σ1λ`g (m`)T p`, (3.74a)

g (m` + λ`p`)T p` ≥ σ2g (m`)T p`, (3.74b)

where 0 < σ1 < σ2 < 1. Eq. (3.74a) ensures that the objective function is reduced sufficiently, and
Eq. (3.74b) prevents the steps from being too small. The search direction iterates as

p` =

−g` for ` = 0

−g` + β`p`−1 for ` > 0
, (3.75)

in which β` is a scalar. It is chosen such that the method reduces to the linear conjugate gradient
method in the case when the objective function is quadratic and λ` is the exact one-dimensional
minimizer (Gilbert and Nocedal, 1992). The well-known formulas for β` are called the Fletcher-Reeves
(FR), Polak-Ribière (PR), and Hestenes-Stiefel (HS) formulas, and are given by (e.g., Nocedal and
Wright, 2006)

βFR
` = gT

` g`
gT
`−1g`−1

, (3.76a)

βPR
` = gT

` (g` − g`−1)
gT
`−1g`−1

, (3.76b)

βHS
` = gT

` (g` − g`−1)
(g` − g`−1)T p`−1

. (3.76c)

In the light of Eqs (3.73)−(3.76), the `-th iteration of the NLCG method works as follows:

1 Calculate the gradient g` based on estimated m`, then compute β` according to one of the
formulas given in Eq. (3.76).

2 Update the search direction p` according to Eq. (3.75).

3 Perform a line search iteration to find the λ`, which results in the minimum of the objective
function Φα (m` + λp`), see also the second formula in Eq. (3.73).

4 Update the model parameters m`+1 by using the third formula in Eq. (3.73).

In this thesis, the NLCG method is implemented using the software package CG+, and the PR
formula is employed for the computation. For more theoretical details about this method see, e.g.,
Gilbert and Nocedal (1992), Nocedal (1992), and Nocedal and Wright (2006).
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L-BFGS and L-BFGS-B

The quasi-Newton (QN) methods require only the gradient of the objective function at each iteration.
By measuring the changes in gradients, they construct a model of the objective function that is good
enough to produce superlinear convergence. The most popular QN method is the BFGS method,
named after its discoverers Broyden, Fletcher, Goldfarb, and Shanno. In this method, the solution
to the problem is updated as follows (e.g., Nocedal and Wright, 2006):

m`+1 = m` + λ`p` with p` = −B`g`, (3.77)

where λ` is chosen to satisfy the Wolfe conditions given by Eq. (3.74), and B` is the approximation
of the inverse Hessian, which is updated at each iteration through the formula

B`+1 = VT
` B`V` + ρ`s`sT

` , (3.78a)

where

s` = m`+1 −m`, y` = g`+1 − g`, ρ` = 1
yT
` s`

, V` = I− ρ`y`sT
` . (3.78b)

The approximate inverse Hessian B` is dense with the dimension of M × M . In the case of a
large-scale problem, the storage and manipulation of B` are prohibitive. Nocedal (1980) proposed a
technique that partially solves the storage problem caused by the BFGS update. Instead of using Eq.
(3.78), B`+1 is updated implicitly by the vector pairs {si,yi} from the previous k iterations (usually,
3 ≤ k ≤ 7). This implies that when the number of iterations is smaller than k, we have a usual
BFGS update, and when it is larger than k, we have a limited-memory BFGS (L-BFGS) update. The
updated matrix B`+1 is obtained by the following formulas:

For `+ 1 ≤ k, we have a BFGS update:

B`+1 =VT
` VT

`−1 · · ·VT
0 B0

`+1V0 · · ·V`−1V`

+ VT
` · · ·VT

1 ρ0s0sT
0 V1 · · ·V`

...
+ VT

` ρ`−1s`−1sT
`−1V`

+ ρ`s`sT
` ,

(3.79a)

and for `+ 1 > k, we have an L-BFGS update:

B`+1 =VT
` VT

`−1 · · ·VT
`−k+1B0

`+1V`−k+1 · · ·V`−1V`

+ VT
` · · ·VT

`−k+2ρ`−k+1s`−k+1sT
`−k+1V`−k+2 · · ·V`

...
+ VT

` ρ`−1s`−1sT
`−1V`

+ ρ`s`sT
` .

(3.79b)

On the basis of Eq. (3.79), a two-loop recursion scheme is applied to compute the product B`+1g`+1
efficiently (Nocedal, 1980; Nocedal and Wright, 2006). Furthermore, this recursion allows the initial
matrix B0

`+1 to be chosen freely and to vary between iterations. Nocedal and Wright (2006) proposed
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an effective and practical method for choosing B0
`+1 at iteration `+ 1:

B0
`+1 = γ`+1B0 with γ`+1 = yT

` s`
yT
` y`

. (3.80)

According to the above descriptions, the solver of the L-BFGS method works as follows:

1 Choose k, m0, σ1, σ2, and a symmetric and positive definite initial matrix B0 (usually B0 = I).
Set ` = 0.

2 Compute p` and m`+1 based on Eq. (3.77) where the step length λ` meets the Wolfe conditions
given in Eq. (3.74).

3 Define a symmetric and positive definite matrix B0
`+1 based on Eq. (3.80).

4 Calculate B`+1 for iteration `+ 1 according to estimated B0
`+1. If `+ 1 ≤ k, update B0

`+1 `+ 1
times using the vector pairs {si,yi} for i = 0, 1, ..., ` based on Eq. (3.79a). Otherwise, update
B0
`+1 k times using the vector pairs {si,yi} for i = `−k+1, `−k+2, ..., ` based on Eq. (3.79b).

5 Set ` = `+ 1 and go to 2 until the convergence is reached.

For σ1 and σ2, we set σ1 = 10−4 and σ2 = 0.9 as proposed by Liu and Nocedal (1989). More
details about the L-BFGS method can be found in, e.g., Nocedal (1980), Liu and Nocedal (1989),
and Nocedal and Wright (2006).
The L-BFGS-B method is an extension of the L-BFGS method capable of handling simple bounds on

the model parameters. It is to minimize the objective function Φα considering the bound constraints

mmin ≤m ≤mmax, (3.81)

where mmin and mmax are the vectors consisting of the lower and upper bounds on the model param-
eters m. The L-BFGS-B method is described in detail in Byrd et al. (1995) and is briefly introduced
as follows (Zhu et al., 1997). At iteration `, a limited-memory BFGS approximation to the inverse
Hessian B` is updated. The limited-memory matrix is used to define a quadratic model of the ob-
jective function. By means of the line search method, the search direction is then computed using
a two-stage approach: first, the gradient projection method is used to identify a set of active model
parameters, i.e., the parameters that will be held at their bounds; then the quadratic model is ap-
proximately minimized with respect to the free model parameters. The search direction is defined to
be the vector leading the current iteration to this approximate minimizer. Finally, a line search is
performed along the search direction using the subroutine described in Moré and Thuente (1994).
In this thesis, the L-BFGS and L-BFGS-B methods are implemented based on the software packages

L-BFGS and L-BFGS-B (Zhu et al., 1997). Several successful applications of the two algorithms in
geophysics and hydraulic engineering can be found in Guitton and Symes (2003), Ding et al. (2004),
Brossier et al. (2009), and Asnaashari et al. (2013).

Comparisons of the algorithms: a synthetic example

In the following, a synthetic example for gravity inversion as given in Pujol (2007) is used to analyze
the performance of the four nonlinear iteration algorithms, i.e., LM, NLCG, L-BFGS, and L-BFGS-B.
The inversion problem is described as follows.
Consider a buried homogeneous sphere of a radius R with the center at (xo, yo, zo). The vertical

component of the gravitational attraction at a point (xi, yi, zi) caused by the sphere is given by
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g (xi, yi, zi) = 4π
3

GρR3 (zo − zi)[
(xi − xo)2 + (yi − yo)2 + (zi − zo)2

]3/2 (3.82)

with G the gravitational constant, ρ the density contrast, which is the difference between the densities
of the sphere and the surrounding medium. For the distance in km, density in g/cm3, and gravity in
mGal, the numerical value of G is chosen as 6.672 in the computations.

The goal of this inverse problem is to find out the values of zo and R of the sphere with which
the resulting gravity best fits n given gravity values Gi at point (xi, yi, zi). It will be assumed that
ρ, xo, and yo are known, and hence this is a nonlinear inverse problem with the unknown model
parameters m = (zo, R)T. The synthetic data is generated using Eq. (3.82) with the following values:
xo = yo = 0 km, zo = 7 km, xi = 0 km, y1 = −10 km, yi+1 − yi = 1 km for i = 1, ..., 20, zi = 0 km,
R = 5 km, and ρ = 0.25 g/cm3. The mean of the square sum of the residuals, given by

σ2 (zo, R) = 1
n

n∑
i=1

[Gi − g (xi, yi, zi)]2 , (3.83)

plays the role of the objective function to be minimized and is also used for measuring of the data
misfits σ. From a physical point of view, R cannot be larger than zo, but for the analysis that follows,
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Figure 3.5: Contour lines of the data misfits σ and the paths followed by the estimated model points
(
z`

o, R
`
)

at iteration ` for the algorithm: a) LM; b) NLCG; c) L-BFGS; d) L-BFGS-B. The points labeled
as A, B, C, and D are the initial model points with the values of (2, 10), (10, 10), (2, 2), and
(10, 2) for the inversion. The large cross is centered at the true model point (7, 5), which is at the
minimum of the data misfit with the value of 0 mGal.
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we will only be concerned with the mathematical aspects of the problem. For the sake of simplicity,
the model parameters are assumed to be known in the range of 2 ≤ zo ≤ 12 and 2 ≤ R ≤ 10. In
order to investigate the behavior of the algorithms depending on the chosen initial model points, four
points in the form of

(
z0
o , R

0) are used: A (2, 10), B (10, 10), C (2, 2), and D (10, 2).
Fig. 3.5 shows the contour lines of the data misfits σ (zo, R) and the paths followed by the estimated

model points
(
z`o, R

`
)
at iteration ` for each algorithm. The fact that, solving the inverse problem is

equivalent to find a path in the (zo, R) plane that connects an initial model point
(
z0
o , R

0) and the
target point

(
zTo , R

T
)
with the minimum of σ, must be kept in mind. In this example,

(
zTo , R

T
)

=
(7, 5), and σ = 0 at the target point. From this figure, it can be seen that the target model point can
be found successfully by all algorithms starting from four different initial points. This indicates the
effectiveness of the used algorithms. However, their paths are quite different. This is mainly caused
by different approaches for finding the search direction in each algorithm. Since the L-BFGS and
L-BFGS-B methods use the same approach (i.e., the limited-memory BFGS update of the inverse
Hessian and the line search algorithm proposed by Moré and Thuente (1994)), as well as the inverse
problem is unconstrained, the resulting paths are the same (see Figs 3.5c and 3.5d).
In addition, the data misfits in terms of the number of iterations for the four different initial model

points are shown in Fig. 3.6. The curves for the L-BFGS method coincide with the ones for the
L-BFGS-B method exactly. Besides the case of using the initial model point D, the LM method
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Figure 3.6: Data misfits in terms of the number of iterations for the initial model point: a) A (2, 10); b) B
(10, 10); c) C (2, 2); d) D (10, 2).
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converges rapidly within the smallest number of iterations, and then the NLCG method follows. The
main reason can be attributed to the large descents of the objective function at the first several
iterations for the LM method, in particular the first iteration in which the Hessian is computed
based on Eq. (3.66b) with the given Jacobian matrix, while the Hessians for NLCG, L-BFGS, and
L-BFGS-B are the identity matrices. The different behavior of the first iteration between NLCG
and L-BFGS/L-BFGS-B is due to the differently implemented line search algorithms in the chosen
software. For the case of using the initial point D, the required number of iterations is larger for
the LM method than the other three methods. This may be due to the singularity of the Hessian
computed by Eq. (3.66b). Pujol (2007) showed that the Gauss-Newton method fails to find the target
point in this case. Instead, the trust region based LM method solves this problem by employing a
regularization parameter and a regularization matrix, see Eqs (3.71) and (3.72), resulting in smaller
search directions in the iterations, especially in the first iteration (see Figs 3.5 and 3.6).

The above discussion is only based on the simple example. At least, we can say that the performance
of the four algorithms is quite similar when solving an unconstrained nonlinear problem. Often, the
LM method can provide a faster convergence than the other three methods (see the cases of the
model points A, B, and C); however, a slower convergence can be observed in the case of the model
point D, indicating the higher dependence of the LM method on the chosen initial model point.
If the nonlinear problem is bound constrained, of course, the dedicated L-BFGS-B method should
outperform the other three methods. A related numerical comparison between the four algorithms
for regional gravity field modeling will be carried out in the next chapter.

3.4 Point mass method with fixed positions

3.4.1 Mathematical model

In this method, the point mass RBFs are located on the nodes of one or more predefined grids. This
means that the 3D positions of all point mass RBFs are known. Thus, only the magnitudes have
to be estimated. Assuming that there are I observed linear functionals li = LiT and K point mass
RBFs, the system of the observation equations is given as

l (φ1, λ1, r1)− e1 =
∑K
k=1 βkDlB

PM (r1, r′k)

l (φ2, λ2, r2)− e2 =
∑K
k=1 βkDlB

PM (r2, r′k)
...
l (φI , λI , rI)− eI =

∑K
k=1 βkDlB

PM (rI , r′k) with I ≥ K ≥ 1

(3.84)

in accordance with Eq. (3.6). Due to the known position vectors ri for the observations and r′k for
the RBFs, the observations li are linear functionals of the unknown magnitudes βk, thus Eq. (3.84)
can be expressed as a matrix-vector product

l− e = Ax, (3.85a)

where l = (l1, l2, ..., lI)T is the I×1 vector of observations, e = (e1, e2, ..., eI)T is the vector containing
the random observation errors, and x = (β1, β2, ..., βK)T is the K × 1 vector of unknown magnitudes.
The I ×K design matrix A consists of the point mass RBFs evaluated at the observation points ri
for i ∈ {1, 2, ..., I}, resulting in
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A =



DlB
PM (r1, r′1) DlB

PM (r1, r′2) · · · DlB
PM (r1, r′K)

DlB
PM (r2, r′1) DlB

PM (r2, r′2) · · · DlB
PM (r2, r′K)

...
... . . . ...

DlB
PM (rI , r′1) DlB

PM (rI , r′2) · · · DlB
PM (rI , r′K)


. (3.85b)

In the framework of the Gauss-Markov model, the unknown magnitude vector x can be estimated by
the linear least-squares procedures described in Section 3.3.3.
In addition to the observation equation system given by Eqs (3.84) and (3.85), (n′ + 1)2 additional

equations, which play the role of constraints (see also Eq. (3.11)), are sometimes taken into account
for estimating the magnitudes, especially in the case when the full point mass RBFs are used, but
the input data are bandlimited. In this case, a combined observation equation system is obtained
according to l

0

−
e

e′

 =

A

C

x, (3.86)

where C is the (n′ + 1)2 ×K design matrix and Cx = 0 is the matrix-vector product of Eq. (3.11).
Similar to the process of Tikhonov regularization described in Section 3.3.4, the least-squares solution
of Eq. (3.86) can be obtained by solving the following normal equationATPeA︸ ︷︷ ︸

N1

+λCTPe′C︸ ︷︷ ︸
N2

x = ATPel︸ ︷︷ ︸
y

, (3.87)

where λ is a scaling factor, which is determined empirically in this thesis: let m1 and m2 be the mean
value of the diagonal elements of N1 and N2, respectively. The scaling factor is then defined as the
ratio between m1 and m2, yielding λ = m1/m2. Defining N̄ = N1 +λN2, Eq. (3.87) can be rewritten
as

N̄x = y. (3.88)

If N̄ is singular, the standard Tikhonov regularization will be applied to solve the above normal
equation, resulting in

x̂α =
(
N̄ + αI

)−1
y. (3.89)

In the following, we call the solution considering the constraints the constrained solution, and the
one obtained without using the constraints the unconstrained solution. In addition, the point mass
method with fixed positions is abbreviated as PM-FIX in the remaining of this thesis.

3.4.2 Grid setup

Besides the estimation step of this method, another vital step is to design the grids by choosing proper
grid factors (see Fig. 3.3 or Section 2.7.4 for a more detailed discussion). In this context, only the
geographic grid is used, and the grid extent, grid spacing, as well as grid depth will be determined
sequentially. The total number of grid points (i.e., total number of point mass RBFs) must not exceed
the number of observations. It is dependent on the selected grid extent and grid spacing. Klees et al.
(2008) and Wittwer (2009) found empirically that choosing a grid with an amount of RBFs equals
to 1/4− 1/3 of the number of observations is advisable. However, in the case of oversampling of the
observations, such a grid may be too dense. Often, to avoid possible over-parameterization, the grid
spacing is preferred to be chosen in such a way that all signals in the areas with smooth features
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can be modeled. Then, further steps can be carried out for representing rough features, such as the
local refinement used in Klees and Wittwer (2007), Klees et al. (2008), and Wittwer (2009) or adding
more grids. No explicit strategy to define the optimal grid spacing can be given as it is affected
by the data distribution, signal variation, as well as spatial bandwidths of the RBFs. In practice, a
proper grid spacing is usually chosen by experimenting with various candidates and comparing the
obtained solutions. After defining the grid factors associated with the horizontal positions of the
point mass RBFs, the grid depth is to be fixed. Because of the high correlation between the grid
depth and the grid spacing, some attempts have been made to give the relationship between them.
For example, Needham (1970) suggested that the depth-spacing ratio should be at least 0.8; however,
Vermeer (1995) proposed a ratio of 2, and furthermore, the ratios of about 1 were used for the geoid
computations in Ihde et al. (1998) and Tenzer et al. (2009).
In this thesis, we use an empirical and a heuristic approach for the grid depth determination.

The principle of this empirical approach is the same as the one for finding the proper regularization
parameter as described in Section 3.3.5. The only change is that the variable of the function becomes
the grid depth d below the reference sphere. Given n depth candidates, our goal is to find the one
with which the value of the function RMS (d) in the form

RMS (d) =
√

1
N
‖Bx̂d − q‖2 (3.90)

is minimal. For the notations of the other variables in the above equation, see Eq. (3.46). It should be
noted that the linear problem for estimating x̂d may be ill-posed. In this case, Tikhonov regularization
should be applied, even though this will make the computation procedure more complicated. The
successful application of this approach for finding a proper grid depth in local gravity field modeling
can be found in Tenzer and Klees (2008).
The second approach is based on the GCV technique, which is frequently used for finding the proper

regularization parameter (see also Section 3.3.5). Considering Eq. (3.50), the GCV function to be
minimized in this case is given by

GCV (d) =
I ‖Adx̂d − l‖2Pe
[I − tr (Qd)]2

(3.91a)

with

Qd = Ad

(
AT
d PeAd

)−1
AT
d Pe (3.91b)

for the case that the linear problem for estimating x̂d is well-posed, or

Qd = Ad

(
AT
d PeAd + αdRd

)−1
AT
d Pe (3.91c)

for the case of ill-posedness. Ad, αd, and Rd in Eq. (3.91) are the design matrix, the regularization
parameter, and the regularization matrix associated with the grid depth d, respectively.

3.4.3 Grid formation

In this section, the issue of grid formation for PM-FIX will be discussed. It can be subdivided into
two groups: (1) a single-grid formation and (2) a multi-grid formation. Fig. 3.7 shows two examples
of the point mass RBF locations for the cases of a single-grid formation and a two-grid formation.
In the first case, only one grid at the chosen depth is used for the modeling (see Fig. 3.7a). Such a
formation is simple and quite suitable for regularly distributed observations. One main drawback of
this formation is that it is not data-adaptive due to the same spatial bandwidths for all point mass
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Figure 3.7: Illustration of the point mass RBF locations in the case of a) a single-grid formation; b) a two-grid
formation.

RBFs. This makes it less suitable for the case of irregularly distributed data as RBFs with the same
density are in the areas with dense and sparse data. A possible way to circumvent the drawback of
the single-grid formation is to set up two or more grids at different depths. In this case, the point
mass RBFs at different depths seems to be suitable for approximating different signal frequencies.
This can also be interpreted from a geophysical point of view. The anomalous features with small
scales but high frequencies are usually caused by anomalous masses near the Earth’s surface, such as
coal and metal deposits or oil and gas reservoirs, whereas large-scale and low-frequency features are
mainly caused by anomalous masses in the deep Earth, such as the Moho undulations and mantle
convection. Often, the deep grid should have a larger grid extent and grid spacing, and the shallower
one has a smaller extent and spacing. Regarding the issue of numerical instabilities, it is possible
to choose the extents of the grids at different depths as being similar to the data area in practical
applications. If the result obtained by using only one grid is sufficiently satisfactory, no more grids are
needed. Otherwise, two schemes can be utilized to set up the grid formation. In the first scheme, all
grids with different grid factors are defined at one time. In the second scheme, the grids are arranged
sequentially from the deepest to the shallowest. In this thesis, we employ the second scheme for the
numerical tests in Chapter 4, as the approaches described above for finding a proper grid depth can
be easily implemented in this case.
In the light of the above discussion, the general procedures of PM-FIX with the use of a single-grid

and a multi-grid formation are described as follows:

Single-grid formation

1 Define the grid extent according to the extents of data area and model area. If the data area
is larger than the model area, set the grid extent to be similar to the data area. If the model
area is the same as the data area, the grid extent is usually preferred to be larger than the data
area; however, the larger the grid extent is, the more severe the numerical instabilities become.

2 Give a set of grid spacings as candidates. For each candidate, solve a linear equation system,
which is constructed by the point mass RBFs on the grid at a proper depth derived from the
empirical or the GCV approach.

3 Assess the quality of the solutions by comparing the predicted values to the observed values on
a set of control points. The solution with the smallest RMS (or STD) error is regarded as the
final solution.

To reduce the computation complexity, only one grid spacing is usually used in 2 .



3.5 Point mass method with free positions 61

Multi-grid formation

1 For Grid 1. Define Grid 1 with a given grid extent and grid spacing. Determine the grid depth
by the empirical or the GCV approach, and then solve the linear equation system constructed
by the point mass RBFs on the nodes of Grid 1 and the initial input data. Subtract the
contributions of the estimated point mass RBFs from the initial input data, resulting in the
residuals that will be used as input for Grid 2.

2 For Grid i (i ≥ 2). If the given input residuals are sufficiently small by satisfying a predefined
criterion, go to 4 . Otherwise, define Grid i with a smaller grid spacing than Grid i− 1. Note
that the extent of Grid i can either be the same or smaller than Grid i − 1. Determine the
grid depth by the empirical or the GCV approach, but with the constraint that Grid i must
be shallower than Grid i − 1. Solve the linear equation system constructed by the point mass
RBFs on the nodes of Grid i and the input residuals, and then subtract the contributions of
the estimated point mass RBFs from the input, resulting in new residuals that will be used as
input for the next grid.

3 Let i = i+ 1 and go to 2 .

4 Solve the new linear equation system constructed by all point mass RBFs located on the chosen
grids and the initial input data, yielding the final solution.

Each new grid is added manually. Often, two or three grids are sufficient for practical applications.

3.5 Point mass method with free positions

3.5.1 Mathematical model

Contrary to the point mass method with fixed positions introduced in Section 3.4, “free positions”
means that the 3D positions of the point mass RBFs are completely or incompletely unknown within
the computation process. As a consequence, the positions of the point mass RBFs have to be de-
termined along with the magnitudes. Thus, the nonlinear problem with more than one unknown
parameters for each point mass RBF needs to be solved. In the following description, the point mass
method with free positions is abbreviated as PM-FRE.

Suppose again that I linear functionals li = LiT are observed, and K point mass RBFs are used
to fit the observations. The system of the observation equations is the same as Eq. (3.84), leading to
a matrix-vector notation

l− e = F (m) . (3.92)

The notations of vectors l and e can be seen in Eq. (3.85a), m is the model parameter vector with the
length ofM , containing unknown magnitudes and positions, and F is the forward modeling operator.
The expression of F (m) in the point mass method can be simply taken from the right-hand side of
Eq. (3.6) for any linear functional of the disturbing potential. If the positions of the point mass RBFs
are known, then F (m) is equivalent to the term Ax in Eq. (3.85a).

The nonlinear equation system given by Eq. (3.92) is solved iteratively based on an initial guess of
the model parameter vector. For more details about solving a nonlinear system, we refer to Section
3.3.6. According to the descriptions of the iteration algorithms in Section 3.3.6, the computation of
the Jacobian matrix of the residual vector in iteration ` for updating m`+1 is necessary. Defining the
residual vector R (m`) = l− F (m`), the corresponding Jacobian matrix J (m`) can be expressed by
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the following equations on the basis of Eq. (3.63):

J (m`) =



J`11 J`12 · · · J`1K
J`21 J`22 · · · J`2K
...

... . . . ...

J`I1 J`I2 · · · J`IK


(3.93a)

with

J`ik =
(
∂Ri(m)
∂βk

∣∣∣
m=m`

∂Ri(m)
∂rk

∣∣∣
m=m`

∂Ri(m)
∂φk

∣∣∣
m=m`

∂Ri(m)
∂λk

∣∣∣
m=m`

)
, (3.93b)

m` =
(
β`1, r

`
1, φ

`
1, λ

`
1, ..., β

`
K , r

`
K , φ

`
K , λ

`
K

)T
, (3.93c)

for the case where the magnitude, radial distance, latitude, and longitude for each point mass RBF
are to be estimated, and the Jacobian matrix J (m`) has a dimension of I ×M with M = 4×K. Or,
with

J`ik =
(
∂Ri(m)
∂βk

∣∣∣
m=m`

∂Ri(m)
∂rk

∣∣∣
m=m`

)
, (3.93d)

m` =
(
β`1, r

`
1, ..., β

`
K , r

`
K

)T
, (3.93e)

for the case where only the magnitude and radial distance for each point mass RBF are to be estimated,
and the Jacobian matrix J (m`) has a dimension of I ×M with M = 2×K. The subscripts i and k
satisfy i = 1, ..., I and k = 1, ...,K. Herein, only the case with I ≥M is considered. We call the first
case the all-direction optimization and the second case the radial-direction optimization. In the light
of Eq. (3.6), the four elements in Eq. (3.93b) are formulated as follows:

∂Ri (m)
∂βk

=
∂
[
li −

∑K
k′=1 βk′DlB

PM (ri, rk′)
]

∂βk
= −DlB

PM (ri, rk) , (3.94a)

∂Ri (m)
∂rk
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∂
[
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∑K
k′=1 βk′DlB

PM (ri, rk′)
]

∂rk
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∂
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DlB

PM (ri, rk) , (3.94b)

∂Ri (m)
∂φk

=
∂
[
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∑K
k′=1 βk′DlB

PM (ri, rk′)
]

∂φk
= −βk

∂

∂φk
DlB

PM (ri, rk) , (3.94c)

∂Ri (m)
∂λk

=
∂
[
li −

∑K
k′=1 βk′DlB

PM (ri, rk′)
]

∂λk
= −βk

∂

∂λk
DlB

PM (ri, rk) . (3.94d)

When using gravity anomalies for the modeling, i.e., DlB
PM (ri, rk)→ D∆gB

PM (ri, rk), see also Eq.
(3.5a), Eqs (3.94a)−(3.94d) are then reformulated as

∂Ri (m)
∂βk

= A1 +
Nmin−1∑
n=0

n− 1
rkri

(
rk
ri

)n+1
Pn (cosψik) (3.95a)
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with

A1 = 2
`ikri

− ri − rk cosψik
`3ik

,
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with
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with
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{
3
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r3
k − rir2

k cosψik
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`5ik
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with

A4 = βk

{
3
(
r3
k − rir2

k cosψik
)

`5ik
[cosφi cosφk sin (λi − λk)]

}
.

From the above equations, it can be seen that the computation of the elements in the Jacobian matrix
is fast in the case of Nmin = 0, as only the analytical terms (i.e., A1−A4) are taken into account. If
Nmin is much larger than 0, the computation will become much slower as time-consuming summations
of the series expansions are required. For other observed gravity field quantities, such as the gravity
disturbance and the geoid height/height anomaly, the expressions of the elements in the corresponding
Jacobian matrix can be derived in a similar way with the help of the following auxiliary formulas:

∂ cosψik
∂φk

= sinφi cosφk − cosφi sinφk cos (λi − λk) , (3.96a)

∂ cosψik
∂λk

= cosφi cosφk sin (λi − λk) , (3.96b)

∂
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( 1
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= rirk

`3ik

∂ cosψik
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, (3.96c)

∂

∂λk

( 1
`ik

)
= rirk

`3ik

∂ cosψik
∂λk

. (3.96d)
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3.5.2 Two-step point mass method and relevant model factors

In practice, there are usually two strategies to determine the magnitudes and positions of the point
mass RBFs. The first is that a set of point mass RBFs with an initial guess of their magnitudes and
positions are given; then these parameters are updated iteratively. In this case, the crucial issue is
how to choose the number of used point mass RBFs and their initial positions properly. This is a hard
task, and no explicit rules can be given. Although, the larger the number of used point mass RBFs
is, the better fit of the data can be obtained, it nevertheless raises the risk of over-parameterization
as well as numerical instabilities. Therefore, this strategy will not be considered in this thesis. In the
second strategy, the point mass RBFs are searched for one by one with a simultaneous determination
of the magnitude and position for each RBF within an iterative nonlinear approach (e.g., Barthelmes,
1986; Lehmann, 1993; Claessens et al., 2001). Compared to the first strategy, the advantages of the
second strategy are that: (1) the number, magnitudes, and positions of the RBFs can be determined
automatically based on the data distribution and accuracy as well as signal variations, making the
resulting point mass model adaptive to the data; (2) the solution of a medium- or large-scale nonlinear
equation system is avoided (e.g., thousands or ten thousands of model parameters), and instead, a
series of small-scale nonlinear equation systems has to be solved (e.g., tens or hundreds of model
parameters). The issue of computational complexity and numerical instabilities for a small-scale non-
linear equation system is insignificant, and hence the regularization term in the objective function
given by Eq. (3.61) is not taken into consideration in the numerical computations in this thesis. How-
ever, the cost of the automatic selection of the point mass RBFs for the modeling is that several model
factors should be defined properly by the user, which will be discussed later. Often, when the search
and optimization of the point mass RBFs are finished, the resulting magnitudes and positions for all
searched RBFs can be regarded as the final solution. To improve the solution, we propose to do a
further adjustment of the magnitudes for all selected point mass RBFs, while keeping the obtained
positions fixed. This leads to the two-step point mass method.

In the following, PM-FRE is implemented based on the two-step concept. It can be briefly described
as follows: In the first step, a search process, originating from the idea in Barthelmes (1986), is
developed to search for and optimize the point mass RBFs one by one by a chosen iteration algorithm.
After stopping the search process, a number of point mass RBFs with estimated magnitudes and
positions are obtained. These point mass RBFs are considered as being located at reasonable positions.
Then the point mass RBF positions are held fixed and their magnitudes are readjusted by solving a
linear equation system in the least-squares sense, where Tikhonov regularization may be applied to
solve the ill-posedness caused by large point mass RBF depths, RBFs located in close proximity, or
data gaps. From another perspective, the two-step method can be regarded as a modification of PM-
FIX, in which the first step aims at determining the number and positions of the point mass RBFs,
and their final magnitudes are estimated in the second step. Similar to PM-FIX, in the second step
of PM-FRE, the magnitudes of the point mass RBFs can be estimated by using only the full/reduced
point mass RBFs (i.e., unconstrained solution) in the least-squares adjustment or by using the full
RBFs while considering the constraints (i.e., constrained solution) in the least-squares adjustment.

Fig. 3.8 shows the detailed computation procedure of the two-step method for practical applications.
The total number K of point mass RBFs depends on the chosen stop criterion for the search process.
This issue will be discussed in detail later. The theoretical explanation about why we place the newly
searched point mass RBF below the observation point with the maximum absolute residual value can
be found in, e.g., Barthelmes (1986), p. 48− 49 and Claessens et al. (2001), p. 6− 7.

As can be seen from Fig. 3.8, in order to reach a good solution with small errors, several model
factors need to be chosen appropriately before starting the first step of the two-step method. In the
context of this thesis, the model factors that will be discussed are:



3.5 Point mass method with free positions 65

Defined model factors

Choose the initial position of the first point mass radial basis 
function (RBF) by placing it below the observation point 
with maximum absolute value at a proper depth
Refine the model parameters of the first point mass RBF by 
the chosen iteration algorithm

if (i < K) then

i = i+1

RBF 1

RBF i
(i ≥ 2)

First step (search process)

Residual gravity data

K point mass RBFs with known magnitudes and positions that
can be used to predict other gravity field quantities

Readjust the magnitudes of K searched point mass RBFs by 
solving a linear equation system wi th  known pos i t ions 
obtained from the first step
For the case of the ill-conditioned linear problem, Tikhonov 
regularization is applied and the regularization parameter is 
chosen by one of the three approaches: (1) Empirical RMS 
minimization, (2) GCV, and (3) VCE

Choose the i-th RBF by placing it below the point with 
maximum absolute residual value at a proper depth
Refine the model parameters of the new point mass RBF by 
the chosen iteration algorithm
Select     nearest point mass RBFs around the new point 
mass RBF from already searched point mass RBFs
Refine the model parameters of the new point mass RBF as 
well as its nearest RBFs by using the chosen iteration
algorithm

if (i = K)

Nε

Nε

Second step (readjustment)

Figure 3.8: Computation procedure of the two-step method. The mentioned “maximum absolute residual
value” is described as max

∣∣√Pe [l− F (m′)]
∣∣ with m′ the model parameters for all previously

selected point mass RBFs and Pe the diagonal weight matrix for the input data.

• The initial depths and depth limits for the point mass RBFs: The depths of the point mass RBFs
are directly related to their spatial bandwidths, playing a crucial role on the performance of the
point mass RBFs in regional gravity field modeling. On the one hand, the point mass RBFs
should not be located too deep (i.e., too large spatial bandwidths), as the input data for regional
gravity field modeling are residuals with the removal of the long-wavelength components derived
from a global geopotential model. The deeper the point mass RBFs are, the less orthogonal the
basis functions become (e.g., Claessens et al., 2001). In addition, these deep point mass RBFs
will also cause serious numerical instabilities, and represent only smooth signals. On the other
hand, since the very-short-wavelength components computed by a DTM are also subtracted
from the original input data, the point mass RBFs should not be too shallow either (i.e., too
small spatial bandwidths). Otherwise, the fit of the data to the model can be achieved in terms
of small RMS errors, but the fit of independent control values may become worse. Accordingly,
it is necessary to limit the chosen RBFs in a layer with upper and lower bounds to guarantee
the quality of the approximation. This means that we should introduce appropriate depth
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constraints to the nonlinear problems to be solved for finding the point mass RBFs in the first
step. In the context of this thesis, we employ simple bound constraints on the depths, and
the L-BFGS-B algorithm is consequently a suitable choice. However, the other three iteration
algorithms (i.e., LM, NLCG, and L-BFGS) introduced in Section 3.3.6 are also implemented
in the first step. A numerical comparison between the four algorithms will be carried out in
Chapter 4. Before choosing the depth limits, the initial depth for each newly found point mass
RBF should be fixed first. It may be chosen based on the data spacing or the correlation length
of the empirical covariance function derived from the observations. When the initial depth is
fixed, the upper depth limit should be shallower than it, while the lower depth limit should be
deeper. More numerical comparisons about the depth limits can be found in Chapter 4.

• The total number K of point mass RBFs: The required number of point mass RBFs for a good
representation of regional gravity field depends on the data variability, data distribution, and
targeted level for data misfit. More point mass RBFs are needed in an area with rough gravity
field features while fewer RBFs are sufficient for representing smooth features. The addition of
each new point mass RBF may decrease the data misfit, but it also reduces the redundancy. In
the two-step point mass method, the total number of point mass RBFs is determined by one of
the following three stop criteria for the search process: (1) a predefined data misfit; (2) the trend
of the reduction of the data misfit in terms of the number of RBFs; and (3) a predefined number
of point mass RBFs. Often, we prefer the first one, and then the second one follows. The target
data misfit is usually determined based on the accuracy of the input data. If the accuracy of
the input data is unknown, the target data misfit should be chosen carefully. If it is too small,
we may also fit the errors in the data. Sometimes, the decreasing of the data misfit becomes
very slow when the number of searched point mass RBFs is larger than a specific number N . In
this case, the search process can stop at reaching N point mass RBFs according to the second
criterion. Compared to the first two criteria, the last one is more empirical. No direct relation
between the number of observations and the number of RBFs can be found. Klees et al. (2008)
gave the empirical criterion that the number of RBFs is usually less than 25% of the number of
data points. However, this ratio may change in different research areas.

• The spectral bandwidths of the point mass RBFs (i.e., the choice of Nmin): In the framework of
the RCR technique, when using the full point mass RBFs (i.e., Nmin = 0), the errors caused by
different spectral bandwidths of the input residuals and the RBFs are significant in the solutions
of the gravity field quantities that are in the long-wavelength domain (e.g., height anomalies,
geoid heights, disturbing potentials). In this case, the use of reduced point mass RBFs (i.e.,
Nmin > 0) will reduce the errors and provide better solutions. Related numerical comparisons
will be carried out in Chapter 4. However, for the solutions of the gravity field quantities that
are in the short-wavelength domain (e.g., gravity anomalies, gravity disturbances), the spectral
bandwidths of the RBFs have minor effects on them. Related numerical investigations will also
be given in Chapter 4. It has to be noted that, too much computation time is needed when
using the reduced point mass RBFs in the first step of PM-FRE without obtaining significantly
improved results, the full RBFs are employed for finding the point mass RBFs in the search
process. The choice of the spectral bandwidths of the point mass RBFs is only considered in
the second step for the readjustment of the magnitudes of all selected RBFs. In this case, the
use of reduced point mass RBFs can be regarded as a modification of the spatial bandwidths of
the RBFs obtained from the first step. In addition, the solution scheme of using the full RBFs
and considering the constraints in the least-squares adjustment in the second step of PM-FRE
(i.e., constrained solution, see also Section 3.4.1) will also be investigated.

• The optimization direction: Besides the magnitude of each new point mass RBF, the position
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can be optimized in all directions or only in a radial direction (i.e., depth). Regarding the
optimization in all directions in the test case using real gravity data, usually some point mass
RBFs tend to move into the gaps to minimize the data misfit, and if the upper depth limit
is too shallow, the estimated magnitudes for these RBFs may become too large and lead to
unreasonable small-scale local features. In addition, the all-direction optimization may relocate
the point mass RBFs near the edge of the data area far away from the initial locations, resulting
in serious numerical instabilities. Hence, additional horizontal constraints must be added. Such
circumstances can be avoided by using the radial-direction optimization, which is more simple
and stable. Related numerical tests will be given in Chapter 4.

• The iteration limit Nit for each new point mass RBF: The magnitude and position for each new
point mass RBF are estimated iteratively in the first step. The required number of iterations
for finding the local minimum for each RBF is different. For the sake of simplicity, an iteration
limit Nit is usually defined for all searched point mass RBFs. Sometimes, we divide the point
mass RBFs to be sought into several groups. For each group, there is an iteration limit. Often,
the larger the Nit is, the longer the computation time is. A numerical test by using different
Nit will be carried out in Chapter 4.

• The number Nε of the nearest point mass RBFs: Ideally, for each new point mass RBF, the
magnitudes and positions of this and all other searched point mass RBFs should be recomputed.
However, this is a very time-consuming process. Barthelmes (1986) showed that it was sufficient
to recompute only a certain number Nε of the nearest point mass RBFs together with the new
one when the RBFs are nearly orthogonal. The value of Nε was increased when the RBFs were
not sufficiently orthogonal. For the sake of simplicity, the same Nε is often used for each new
point mass RBF. A related numerical comparison will also be given in Chapter 4.

3.5.3 Point mass search model

According to the descriptions and discussion in the previous section, the first step of PM-FRE is of
most importance as it provides the positions of the point mass RBFs for a further readjustment of
their magnitudes in the second step. To avoid an over-parameterization and extremely local gravity
field features caused by too shallow point mass RBFs and to represent useful local features as much as
possible, the depth of each point mass RBF should have an upper and a lower limit. As a consequence,
the depth limits of the point mass RBFs are considered in the first step for finding the basis functions.
In this thesis, some assumptions are made to simplify the point mass search model in the first step,
resulting in two slightly different models labeled as SMA and SMB. They are briefly described as
follows, with corresponding illustrations shown in Fig. 3.9:

• SMA: In this point mass search model, we assume that all point mass RBFs to be selected have
the same upper and lower depth limits, as well as the same initial depths. It means that all
searched point mass RBFs are located in a layer with a defined upper and lower bound. The
initial depth for the RBFs is chosen between the two bounds (see Fig. 3.9a). Obviously, the key
point is how to choose the bounds and the initial depth. An empirical rule for dealing with this
issue will be derived from the numerical tests in Chapter 4. In this model, the same iteration
limit Nit and the same number Nε of the nearest point mass RBFs are used for each new point
mass RBF.

• SMB: In this model, the single layer used in SMA is replaced by several layers. The lower bound
of the deepest layer is the same as the lower bound of the single layer in SMA, while the upper
bound of the shallowest layer corresponds to the upper bound of the single layer in SMA. The
point mass RBFs are found in the deepest layer first. After reaching a specified number of point
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mass RBFs, the RBFs are found in the second deepest layer. Similar procedures are repeated
until the search of the RBFs is finished. Often, the deepest layer only contains a small number
of point mass RBFs, while most of the RBFs are located in the shallowest layer. Furthermore,
the values of Nit and Nε for the point mass RBFs in different layers can be different. Usually,
larger Nit and Nε are preferred for the RBFs in deep layers. Fig. 3.9b shows an example of the
two-layer model.

In general, SMB can be considered as the extension of SMA, but is more complicated. In the following
numerical tests in Chapter 4, SMA is used as the default point mass search model in PM-FRE.
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Figure 3.9: Illustration of the point mass search models: a) SMA and b) SMB with two layers.
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4 Numerical results

In this chapter, we aim at testing the point mass method presented in Chapter 3 for regional gravity
field modeling using synthetic and real data. Five numerical tests are carried out in different areas
using different kinds of gravity field data. The goal of the first three tests is to find the “optimal”
strategy for the proposed point mass method by investigating the effect on the solutions caused
by various choices of relevant model factors, such as the design of the grid for PM-FIX and the
determination of the depth limits for PM-FRE. In this context, “optimal” means that the selected
strategy should provide the best result in terms of RMS error in the case where no systematic errors
occur, or of STD error when systematic errors exist. This can be easily assessed by using synthetic
data, as the predicted gravity field quantities can be compared to the true values. When using real
data, the values at the control points are not error-free; they are known with low accuracy sometimes,
or known with inhomogeneous distribution. In these cases, a good comparison can usually not be
achieved. Alternatively, the solutions can be compared to the results computed by other regional
approaches, such as the integral method and LSC. The remaining two numerical tests aim at verifying
the applicability of the derived “optimal” strategy for the modeling. Often, real data are preferred
in the relevant test cases as the final goal is for practical applications. However, test cases using
synthetic data have the aforementioned advantages.

This chapter is composed of five sections. In each section, one or more test cases will be conducted.
Various comparisons of the solutions, obtained by using different model setups, are carried out in
Section 4.1. A synthetic data set with error-free gravity anomalies in the Central Alps area and a
set of real gravity anomaly measurements in the New Mexico area are used as input. The results
are validated at the given control points in each test area and also compared to the LSC results. In
order to check the applicability of the point mass method for regional modeling based on other kinds
of input data, the recovery of gravity anomalies in the North Atlantic region using a set of synthetic
geoid heights is presented in Section 4.2. In addition, the performance of three approaches for finding
the proper regularization parameter is compared. In Section 4.3, the region of interest is the same
as in Section 4.2, but using two groups of synthetic geoid heights with different accuracies. To deal
with such a case, an iterative procedure based on VCE is proposed and applied. In Section 4.4, the
point mass method, followed by the derived “optimal” strategy, is applied to the tests with a set of
synthetic terrestrial and airborne gravity disturbances provided by the Joint Study Group (JGS0.3)
of International Association of Geodesy (IAG). Finally, a case study using a large number of real
gravity anomaly measurements in the Auvergne area is addressed. In addition, the combination of
gravity and GPS/leveling data is also discussed.

4.1 Tests with a small set of synthetic and real gravity data

In this section, various comparisons of the gravity solutions computed by PM-FIX and PM-FRE are
presented. For PM-FIX, the focus is on the choices of the grid extent, grid spacing, grid depth, grid
formation, and spectral bandwidths of the point mass RBFs (i.e., the value of Nmin). For PM-FRE,
the choices of the nonlinear iteration algorithm, initial depth and depth limits, total number K of
point mass RBFs, spectral bandwidths of the RBFs, optimization direction, iteration limit Nit for each
new RBF as well as number Nε of the nearest RBFs are taken into consideration. Also the solutions
obtained by using two search models (i.e., SMA and SMB, see Section 3.5.3) are compared. For both
PM-FIX and PM-FRE, the solutions obtained with and without considering the constraints in the
least-squares adjustment (see Section 3.4.1) are analyzed. Two data sets in two different research
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areas are used for all investigations.

4.1.1 Description of the data sets

The first data set contains 4753 regular gravity anomalies simulated from the EGM2008 model from
degree 361 up to 2160. The research area is chosen to be the Central Alps (CA) with the extension
of 7◦E to 15◦E and 45◦N to 49◦N. The height for each observation is derived from the DTM2006.0
terrain model (Pavlis et al., 2007), and all observations are error-free. The statistics of this data set is:
mean = −0.486 mGal; RMS = 16.809 mGal; min = −99.128 mGal; max = +62.917 mGal. In addition,
4608 independent control points with true values, located at half-way between the observations, are
used to assess the quality of the modeled gravity and height anomalies. The location of all points
and the topography of the research area are illustrated in Fig. 4.1. For the sake of simplicity, this
test case is specified as the CA test case in the following.

7˚ 8˚ 9˚ 10˚ 11˚ 12˚ 13˚ 14˚ 15˚

45˚

46˚

47˚

48˚

49˚

−1000 −500 0 500 1000 1500 2000 2500 3000 3500

Topography [m]

Figure 4.1: Location of observations (∆g, black dots) and control points (∆g and ζ, white dots) for the CA
test case; the background shows the topography of the research area taken from the DTM2006.0
terrain model.

The second data set consists of 2767 real gravity anomaly measurements in the area of New Mexico
(NM), USA, with the extent of −107.85◦E to −105.15◦E and 31.65◦N to 34.85◦N. The accuracy of the
observations is expected to be about 2 mGal (Kearsley et al., 1985). Using the RCR technique, the
residual gravity anomalies, which are obtained by removing the long-wavelength contributions com-
puted from the EGM2008 model complete to degree and order (d/o) 360 and the short-wavelength
signals by the RTM approach from the original input data, are used for the modeling. The statis-
tics of the residuals is: mean = −0.453 mGal; RMS = 12.808 mGal; min = −40.724 mGal; max
= +42.622 mGal. Moreover, 153 independent gravity anomaly measurements and 20 geometric height
anomalies derived from the GPS/leveling data are used as control points. Fig. 4.2 shows the location
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of all points. For the sake of simplicity, this test case is specified as the NM test case in the following.

−108˚ −107˚ −106˚ −105˚

32˚

33˚

34˚

35˚

500 1000 1500 2000 2500 3000

Topography [m]

Figure 4.2: Location of 2767 ∆g measurements (black dots), 153 ∆g control points (white circles), and 20
GPS/leveling stations (white triangles) for the NM test case; the background shows the topography
of the research area.

4.1.2 Analysis of the results computed by PM-FIX

4.1.2.1 Effect of the grid extent, grid spacing, grid depth, and spectral bandwidths of the point
mass RBFs

The CA test case

To investigate the effect of the grid extent, the other three model factors (i.e., grid spacing, grid depth,
and spectral bandwidths of the point mass RBFs) are fixed, while varying the grid extent. The basic
grid is chosen to be the one, of which the boundary coincides with the data area (i.e., 7◦E to 15◦E,
45◦N to 49◦N). Suppose that the extent of the basic grid is defined by (λ1, λ2, φ1, φ2) with λ1, λ2,
φ1, φ2 being the minimal and maximal longitudes as well as the minimal and maximal latitudes, a
new grid with the extent of (λ1 − ∆λ, λ2 + ∆λ, φ1 − ∆φ, φ2 + ∆φ) can be obtained by specifying
the area extensions along the longitude ∆λ and the latitude ∆φ. In our test cases, we assume that
∆λ = ∆φ = ∆. Following this way, six additional grids are selected for comparison. A positive ∆
means that the obtained grid has a larger extent than the basic grid, and the grid associated with



72 4 Numerical results

∆ < 0 is smaller than the basic grid. Furthermore, two grid depths and the RBFs with two values of
Nmin are considered to study the effect of the grid extent in different scenarios. The model setup for
this test case is described in Table 4.1.

Table 4.1: Model setup for investigating the effect of different area extensions ∆ on the regional solution in
the CA and the NM test case.

Model factors CA test case NM test case

Area extension ∆ −30′, −20′, −10′, −0.5◦, −0.4◦, −0.3◦, −0.2◦, −0.1◦,
0′, 10′, 20′, 30′ 0.0◦, 0.1◦, 0.2◦, 0.3◦, 0.4◦, 0.5◦

Grid spacing 10′ × 10′ 6′ × 6′

Grid depth [km] 1 20 1 10
2 40 2 20

Spectral bandwidths of the RBFs 1 Full, Nmin = 0 1 Full, Nmin = 0
2 Reduced, Nmin = 301 2 Reduced, Nmin = 201

Fig. 4.3 shows the condition number of the normal matrix as a function of the area extension ∆.
The values of the condition numbers are similar for ∆ ≤ 0, but become larger in the case of ∆ > 0.
Due to the very large condition numbers for ∆ = 20 and 30, Tikhonov regularization is employed
for obtaining stable solutions, in which the regularization parameters are determined empirically by
comparing to 4608 true gravity anomalies at the control points.
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Figure 4.3: Condition number as a function of the area extension ∆ for the CA test case: a) grid depth of
20 km; b) grid depth of 40 km.

The RMS errors of the model gravity and height anomalies at the control points are given in
Tables 4.2 and 4.3. From each table, it can be seen that the gravity anomaly error decreases with
increasing grid extent. This can be attributed to the increasing number of point mass RBFs for
regional modeling. The RMS error for the height anomaly solution does not behave like the gravity
anomaly error. It appears to be very sensitive to the chosen grid extent, especially for the case of
∆ > 0. For example, the height anomaly solutions are unacceptable when ∆ = 20′ and 30′. The
best height anomaly solution in terms of the smallest RMS error is obtained when using the basic
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Table 4.2: RMS gravity anomaly (∆g) [mGal] errors and height anomaly (ζ) errors [m] for different ∆ in units
of arc-minutes. The chosen grid is located at the depth of 20 km with a spacing of 10′ × 10′. The
solutions in the first four lines correspond to the full point mass RBFs and the ones in the second
four lines for the reduced RBFs. The symbol × means the RMS error of ζ is larger than 1m. The
values marked by ∗ correspond to the control points in the inner area of 7.5◦E to 14.5◦E, 45.5◦E
to 48.5◦N.

∆ −30′ −20′ −10′ 0′ 10′ 20′ 30′

∆g 8.325 7.021 5.946 5.543 5.456 4.639 4.008
∆g∗ 6.668 6.331 6.233 6.207 6.193 4.867 2.875
ζ 0.134 0.089 0.053 0.063 0.255 × ×
ζ∗ 0.109 0.074 0.046 0.049 0.197 × ×

∆g 7.891 6.850 5.879 5.539 5.444 5.420 5.434
∆g∗ 6.646 6.363 6.229 6.203 6.179 6.171 6.169
ζ 0.064 0.050 0.031 0.026 0.049 0.741 0.149
ζ∗ 0.038 0.034 0.029 0.028 0.028 0.060 0.035

Table 4.3: The same as in Table 4.2, but for the case that the chosen grid is located at the depth of 40 km.

∆ −30′ −20′ −10′ 0′ 10′ 20′ 30′

∆g 7.620 6.536 5.762 5.408 5.216 4.211 2.491
∆g∗ 6.702 6.376 6.146 6.041 5.956 3.526 1.955
ζ 0.089 0.059 0.134 0.228 × × ×
ζ∗ 0.063 0.040 0.118 0.198 × × ×

∆g 7.266 6.404 5.698 5.389 5.221 5.203 5.199
∆g∗ 6.589 6.332 6.113 6.029 5.973 5.968 5.968
ζ 0.055 0.039 0.029 0.028 0.070 0.500 0.589
ζ∗ 0.035 0.031 0.028 0.028 0.027 0.042 0.047

grid (i.e., ∆ = 0′). By means of using different spectral bandwidths of the point mass RBFs, we
also find that much better height anomaly solutions are obtained when using the reduced RBFs (i.e.,
Nmin = 301). When not considering the used spectral bandwidths of the RBFs and the selected grid
depth, the basic grid proves to be the best choice among the seven candidates in this test case.
In the following, the grid extent is fixed to be the same as the data area (i.e., the above-mentioned

basic grid). Various choices of grid spacing, grid depth, and spectral bandwidths of the point mass
RBFs are compared numerically. The model setup is described in Table 4.4. Four grids with different
spacings will be used. In each case, the shallowest grid depth is chosen to be close to or smaller than
the grid spacing, and the deepest depth is about 3 − 4 times of the grid spacing. For the sake of
simplicity, no Tikhonov regularization is taken into consideration, even though the condition numbers
are very large in some cases of deep grids. Fig. 4.4 shows the RMS errors of the solutions at the
control points as a function of (1) the grid depth and (2) the spectral bandwidths of the point mass
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Table 4.4: Model setup for investigating the effect of grid spacing, grid depth, and spectral bandwidths of the
point mass RBFs. The step of varying the grid depth is 5 km for the CA test case; for the NM test
case, it is 10 km for Cases 1 − 3 , and 20 km for Case 4 .

Model factors CA test case NM test case

Grid extent 7.0◦E to 15.0◦E −107.90◦E to −105.10◦E
45.0◦N to 49.0◦N 31.65◦N to 34.85◦N

Grid spacing 1 6′ × 6′ & 5− 50 1 5.25′ × 6′ & 10− 50

& 2 10′ × 10′ & 5− 80 2 6′ × 6′ & 10− 50

Grid depth [km] 3 15′ × 15′ & 5− 100 3 12′ × 12′ & 10− 80
4 20′ × 20′ & 5− 120 4 24′ × 24′ & 20− 140

Spectral bandwidths of the RBFs Nmin = 0, 51, 101, 151, 201, 251, 301, 351

RBFs for different grid spacings. Since the number of point mass RBFs is directly related to the grid
spacing, the effect of grid spacing can be regarded as being equivalent to the effect of the number of
point mass RBFs. In this test, the RMS error of the solution for the grid spacing of 6′ × 6′ is much
smaller than the ones for the other three grid spacings, resulting in a gravity anomaly solution with
an error of about 1.5− 1.6 mGal and a height anomaly solution with an error less than 0.02 m if the
grid depth and Nmin are chosen properly (see Figs 4.4a and 4.4e). However, the resulting number of
point mass RBFs (3321 points) is also much larger, increasing the computational burden and the risk
of over-parameterization. Thus, it may arise the question how dense a grid should be. This depends
on the data distribution, the signal variation, and so on. Usually, we may choose the grid spacing
based on the error of the input data if it is available. If the chosen grid spacing yields a data misfit
being smaller or close to the data error, it can be regarded as the one we want. When the data error
is unknown or using synthetic error-free data, we may define a target data misfit instead, although
this process seems to be more empirical.
Comparing the solutions for different grid spacings shows that the RMS gravity anomaly error

decreases from about 11 − 12 mGal for the 20′ × 20′ grid to about 1 − 2 mGal for the 6′ × 6′ grid,
and the RMS height anomaly error decreases from about 0.08− 0.10 m to less than 0.02 m. It shows
that the gravity anomaly solution is more sensitive to the number of used point mass RBFs than the
height anomaly solution. As an example, the 6′ × 6′ and 10′ × 10′ grids are capable of providing a
height anomaly solution with an accuracy of about 0.03 m, but the accuracy of the gravity anomaly
solution is about 1−2 mGal for the former grid and 5−6 mGal for the latter grid (see Figs 4.4a−4.4b
and 4.4e−4.4f). Therefore, more point mass RBFs (i.e., a smaller grid spacing) are needed for the
good representations of both gravity and height anomalies than for a good height anomaly solution
only.
Besides grid spacing, the grid depth and the spectral bandwidths of the point mass RBFs also play

important roles for obtaining a good solution. For a further investigation, several profiles extracted
from Figs 4.4b and 4.4f (i.e., the 10′ × 10′ grid) are illustrated in Figs 4.5 and 4.6.
From Fig. 4.5a it is clear that the RMS error of gravity anomaly solution decreases with increasing

grid depth at first (about 10 to 20 km), and then become quite stable (about 20 to 70 km), and finally
increase dramatically (larger than 70 km) for the first three values of Nmin. For Nmin = 351, the
gravity anomaly solution is still acceptable even if the grid depth is deeper than 70 km, indicating
that the larger the Nmin is, the deeper the grid is allowed to be. Fig. 4.6a shows that the RMS
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Figure 4.4: RMS errors of ∆g at 4608 control points for the CA test case as a function of (1) grid depth and
(2) spectral bandwidths of the point mass RBFs associated with different grid spacings: a) 6′×6′;
b) 10′ × 10′; c) 15′ × 15′; d) 20′ × 20′; e), f), g), and h) are the same as a), b), c), and d), but
for the RMS errors of ζ at 4608 control points.

gravity anomaly error is about 5.4 − 5.5 mGal for Nmin ∈ [251, 351] in the case of the grid depth of
80 km; however, the error becomes much larger for smaller values of Nmin (see the cyan line) due to
too large spatial bandwidths of the RBFs. From both Figs 4.5a and 4.6a, one can conclude that the
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gravity anomaly solutions are nearly independent on the chosen spectral bandwidths of the RBFs if
the grid depth is selected properly, leading to similar solutions.
The RMS height anomaly errors shown in Figs 4.5b and 4.6b exhibit differently in comparison to

the gravity anomaly errors. For each grid depth in Fig. 4.6b, the larger the Nmin is, the less the
error becomes. Comparing the error lines in the same figure, it also shows that the shallower the
grid depth is, the less dependent on Nmin the solution is. The use of reduced point mass RBFs is
beneficial for improving the height anomaly solution, but the grid depth must also be chosen carefully
(see Fig. 4.5b). The range of the grid depth for a stable height anomaly solution is about 20− 60 km
for Nmin = 351, but it becomes narrower when Nmin is smaller (e.g., about 15−35 km for Nmin = 201
in Fig. 4.5b). It shows that the choice of a large Nmin can also make the height anomaly solution be
less sensitive to the grid depth.
Considering the grid spacing (10′× 10′) as well as the depth range for a stable gravity (20− 70 km)

and height anomaly solution (20− 60 km), it appears that the grid depth, which is about 1− 3 times
of the grid spacing (about 20−60 km) is an appropriate choice. This empirical relation is also suitable
for the grid spacings of 15′ × 15′ (about 25 − 75 km) and 20′ × 20′ (about 40 − 120 km), but not for
the 6′ × 6′ grid (see Fig. 4.4).
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Figure 4.5: RMS errors of a) ∆g and b) ζ as a function of grid depth associated with different spectral
bandwidths of the point mass RBFs in the case of 10′ × 10′ grid spacing. Orange: Nmin = 0; red:
Nmin = 101; blue: Nmin = 201; green: Nmin = 351.
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Figure 4.6: RMS errors of a) ∆g and b) ζ as a function of Nmin − 1 associated with different grid depths in
the case of 10′ × 10′ grid spacing. Orange: 10 km; red: 20 km; blue: 40 km; green: 60 km; cyan:
80 km.

The NM test case
Similar procedures as used in the CA test case are applied in this test case. Because of the scattered
data points, the basic grid is chosen such that its extent is close to the data area as much as possible,
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Figure 4.7: The same as in Fig. 4.3, but for the NM test case: a) grid depth of 10 km; b) grid depth of 20 km.

resulting in the extent of −107.90◦E to −105.10◦E, 31.65◦N to 34.85◦N. The related model setup for
investigating the effect of the grid extent in this test case can also be found in Table 4.1.
The condition number of the normal matrix for various values of ∆ is illustrated in Fig. 4.7. It

shows an increasing ill-conditionedness for large positive values of ∆ again. Combining the results
from the CA test case, more effort must be taken to deal with the numerical instabilities in the case
that the chosen grid is much larger than the data area.

Table 4.5: RMS errors of ∆g [mGal] and STD errors of ζ [m] for different ∆ in units of arc-degrees. The
chosen grid is located at the depth of 10 km with a spacing of 6′× 6′. The solutions in the first two
lines correspond to the full point mass RBFs and the ones in the second two lines for the reduced
RBFs.

∆ −0.5◦ −0.4◦ −0.3◦ −0.2◦ −0.1◦ 0.0◦ 0.1◦ 0.2◦ 0.3◦ 0.4◦ 0.5◦

∆g 6.289 5.521 4.075 4.060 3.710 3.726 3.726 3.726 3.726 3.726 3.726

ζ 0.069 0.059 0.055 0.045 0.040 0.043 0.045 0.047 0.048 0.048 0.049

∆g 6.507 5.424 4.583 4.271 3.800 3.774 3.754 3.751 3.750 3.749 3.747

ζ 0.086 0.078 0.063 0.036 0.028 0.027 0.030 0.030 0.030 0.030 0.030

Table 4.6: The same as in Table 4.5, but for the case that the chosen grid is located at the depth of 20 km.

∆ −0.5◦ −0.4◦ −0.3◦ −0.2◦ −0.1◦ 0.0◦ 0.1◦ 0.2◦ 0.3◦ 0.4◦ 0.5◦

∆g 6.517 5.020 4.644 4.096 3.905 3.957 3.953 3.951 3.951 3.951 3.950

ζ 0.060 0.058 0.054 0.047 0.044 0.101 0.145 0.240 0.363 0.490 0.602

∆g 6.122 5.099 4.755 4.131 3.914 3.950 3.950 3.952 3.952 3.952 3.952

ζ 0.257 0.254 0.041 0.027 0.030 0.030 0.045 0.048 0.044 0.041 0.041
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Figure 4.8: RMS errors of ∆g at 153 control points for the NM test case as a function of (1) grid depth
and (2) spectral bandwidths of the point mass RBFs associated with different grid spacings: a)
5.25′ × 6′; b) 6′ × 6′; c) 12′ × 12′; d) 24′ × 24′; e), f), g), and h) are the same as a), b), c), and
d), but for the STD errors of ζ at 20 GPS/leveling points.

Tikhonov regularization is employed for all computations in this test case. The statistics of the
differences between the predicted and observed values at the control points are given in Tables 4.5 and
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4.6. Due to the systematic inconsistency between the modeled and the GPS/leveling-derived height
anomalies, a good height anomaly solution is interpreted as the one with a small STD error. Both
tables show similar information as given by the CA test case. However, some differences can still be
found. The gravity anomaly error decreases with increasing ∆, but it does not become smaller for
∆ > 0.1◦. The height anomaly solution becomes less sensitive to the grid extent in this text case.
The resulting STD height anomaly errors remain at a similar level when the grid being larger than
the data area, especially in the case that the reduced RBFs are used. The different performance of
the height anomaly solutions in the CA and NM test cases may be due to the fact that there are lots
of control points near the border of the data area in the CA test case, whereas only few control points
can be found close to the border area in the NM test case (see Figs 4.1 and 4.2). In order to further
investigate this issue, the comparison is repeated at the control points within the area of 7.5◦E to
14.5◦E, 45.5◦N to 48.5◦N in the CA test case. The results are also presented in Tables 4.2 and 4.3,
from which it can be seen that without the control points near the borders, the errors appear to be
less affected by the chosen grid, in particular in the case of using reduced RBFs. It indicates that the
use of a grid larger than the data area has a negative effect on the prediction points near the edge of
data area. Therefore, if the model area is similar to the data area, the selected grid should be close
to the data area. If the model area is smaller than the data area, it is proper to choose a grid being
either close to or larger than the data area. In the following, the grid extent is preferred to be close
to the data area when using PM-FIX.

The test for investigating the effect of the other three model factors is based on the model setup
given in Table 4.4. The related results are shown in Fig. 4.8. The information contained in Fig. 4.8
is similar to the one as given by Fig. 4.4. The empirical relation between the range of appropriate
grid depth and the grid spacing is still satisfying. For the 5′ × 5′ and 6′ × 6′ grids, the estimated
depth range is about 10 − 30 km, while the result observed from Figs 4.8a−4.8b and 4.8e−4.8f is
about 10− 20 km. In a similar way, the estimated and observed grid depth ranges for the other two
grid spacings are given as follows: about 20 − 60 km and 30 − 60 km for the 12′ × 12′ grid; about
40− 120 km and 60− 120 km for the 24′× 24′ grid. For the choice of Nmin, there is a small difference.
In the CA test case, we find that Nmin = 351, which is close to the maximum degree nmax = 360 of
the reference field, is the best choice. The best value is smaller (about 150−250) in this test case, the
main reason is the existence of long-wavelength errors in the input residuals.

4.1.2.2 Determination of the grid depth

In this test, our goal is to investigate the performance of the empirical and the GCV approach for
finding the “optimal” grid depth. The result derived from the empirical approach is considered as the
reference. Two grid spacings are selected in each test area for comparison. According to the findings
from Section 4.1.2.1, the grid depth candidates are in the range between 1 and 3 times of the grid
spacing. The details of the model setup are given in Table 4.7.

Table 4.7: Model setup for investigating the performance of the empirical and the GCV approach for finding
the “optimal” grid depth. The search step of 2 km for grid depth is used for both test cases. The
used grid extents are the same as the ones in Table 4.4, and the full point mass RBFs are used for
related computations.

Model factors CA test case NM test case

Grid spacing & 1 6′ × 6′ & 10− 30 1 6′ × 6′ & 10− 30
Grid depth candidates [km] 2 10′ × 10′ & 18− 54 2 12′ × 12′ & 20− 60
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Figs 4.9 and 4.10 show the results computed by the two approaches for both test areas. As follows
from the comparison of the empirical and the GCV approach, both provide similar results. In the
CA test case, the “optimal” depths derived from the two approaches are about 30 km for the 6′ × 6′
grid, and about 40 km for the 10′ × 10′ grid. In the NM test case, the results computed from the two
approaches are different when using the 6′ × 6′ grid, resulting in the “optimal” depth of about 10 km
for the empirical approach and 24 km for the GCV approach. The reason for the two different results
is not clear. It might be caused by the different regularization parameters determined by the two
approaches for each grid depth candidate (see also Section 3.4.2). When the grid spacing becomes
larger (i.e., 12′ × 12′), the resulting “optimal” depths are the same again, with the values of about
55 km.
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Figure 4.9: The choice of the “optimal” grid depth for the CA test case: a) the empirical approach for the
6′ × 6′ grid; b) the same as in a), but for the GCV approach; c) the empirical approach for the
10′ × 10′ grid; d) the same as in c), but for the GCV approach.
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Figure 4.10: The choice of the “optimal” grid depth for the NM test case: a) the empirical approach for the
6′ × 6′ grid; b) the same as in a), but for the GCV approach; c) the empirical approach for the
12′ × 12′ grid; d) the same as in c), but for the GCV approach.

Through the above comparisons, the performance of the GCV approach is verified by the empirical
approach. Nearly the same “optimal” depths can be obtained when large grid spacings are used (i.e.,
10′ × 10′ and 12′ × 12′ for the CA and the NM test case respectively). Although the results may
deviate from each other when using a small grid spacing (i.e., 6′× 6′ for the NM test case), the GCV
technique can still be considered as a suitable tool for finding the “optimal” grid depth for regional
gravity field modeling.

4.1.2.3 Comparison of unconstrained and constrained solutions

With the use of PM-FIX, the magnitudes of the point mass RBFs are to be estimated by solving a
linear equation system in the least-squares sense after fixing the grid. As discussed in Section 3.2,
two schemes are proposed to improve the solutions in the case where the input data are residuals.
The first scheme is based on the modification of the point mass RBFs, resulting in the reduced RBFs
(i.e., Nmin > 0). It proved to be capable of providing significantly improved height anomaly solutions
in the previous numerical tests while keeping the quality of gravity anomaly solutions nearly the
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same as before. In the following, the performance of the second scheme, in which the full RBFs are
used for constructing the linear equation system and additional constraints are taken into account in
the least-squares adjustment, will be studied by comparing the solutions (constrained) to the ones
(unconstrained) obtained without considering the constraints in the adjustment. Only the full RBFs
are used for computing the constrained solutions while either the full or the reduced RBFs are allowed
for calculating the unconstrained solutions. The model setup for this study is given in Table 4.8.

Table 4.8: Model setup for comparing the unconstrained and constrained solutions for the CA and NM test
cases. The used grid extents are the same as the ones in Table 4.4.

Model factors CA test case NM test case

Grid spacing 10′ × 10′ 6′ × 6′

Grid depth [km] 40 20

Spectral bandwidths of the RBFs 1 Nmin = 0 1 Nmin = 0
for unconstrained solution 2 Nmin = 301 2 Nmin = 201

Vaules of n′ for constrained 1, 50, 100, 150, 1, 50, 100,
solution (see Eq. (3.11)) 200, 250, 300 150, 200

Table 4.9: RMS errors of ∆g [mGal] and ζ [m] associated with the unconstrained and constrained solutions
for the CA test case.

Unconstrained solution Constrained solution

Nmin = 0 Nmin = 301 n′ = 1 50 100 150 200 250 300

∆g 5.408 5.389 5.410 5.418 5.427 5.430 5.432 5.433 5.435

ζ 0.228 0.028 0.106 0.057 0.042 0.040 0.038 0.038 0.037

Table 4.10: RMS errors of ∆g [mGal] and STD errors of ζ [m] associated with the unconstrained and con-
strained solutions for the NM test case.

Unconstrained solution Constrained solution

Nmin = 0 Nmin = 201 n′ = 1 50 100 150 200

∆g 3.957 3.950 3.955 3.946 3.938 3.945 3.946
ζ 0.101 0.030 0.068 0.035 0.029 0.028 0.027
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The statistics of gravity and height anomaly errors associated with different solutions are summa-
rized in Tables 4.9 and 4.10. It follows that adding constraints in the adjustment has minor effect on
the gravity anomaly solutions, resulting in similar RMS errors with a value of about 5.40 mGal for
the CA test case and about 3.95 mGal for the NM test case. The height anomaly solutions benefit
from the consideration of constraints, resulting in much smaller RMS errors in comparison to the
unconstrained solutions with Nmin = 0. In both test cases, the RMS errors of the constrained height
anomaly solutions decrease with increasing values of n′, but do not become smaller when n′ > 150
for the CA test case and n′ ≥ 100 for the NM test case. Regarding the maximum degree nmax = 360
of the reference field used in both test cases, the choice of n′ with a value being about half of nmax or
even smaller can provide a solution with a small error.
For a further investigation, the square roots of the degree variances based on the equivalent Stokes

coefficients, which are transformed from the estimated point mass RBFs (see Eqs (3.7) and (3.8)),
are shown in Figs 4.11 and 4.12. In the case of using full point mass RBFs, the long-wavelength
components of the constrained solutions (the lines except the black and brown ones) are suppressed
in comparison to the unconstrained solutions (the brown lines), in particular for the height anomaly
solutions. This should be the reason for the significant enhancement of the height anomaly solutions
as the height anomalies are in the long-wavelength domain. Due to the short-wavelength domain of
gravity anomalies, all gravity anomaly solutions are at nearly the same level as shown in Tables 4.9
and 4.10. The use of reduced point mass RBFs acts as a high-pass filter in the frequency domain,
and the value of Nmin − 1 defines the cut-off frequency. As a consequence, improved height anomaly
solutions are guaranteed. Note that there are significant deviations between the degree variances for
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the unconstrained solutions using reduced RBFs (the black lines) and for the constrained solutions.
It should be the reason for the solutions with different accuracies as presented in Tables 4.9 and 4.10.

4.1.2.4 Conclusions

According to the above numerical comparisons, it appears that the “optimal” solution can only
be obtained when all model factors are chosen properly, but it is hard to be achieved in practice.
Alternatively, we propose to implement PM-FIX based on the following procedure, in which the
model factors are determined one by one:

1 The grid extent is recommended to be similar to the data area.

2 The grid spacing is chosen as follows: if the grid at a depth, which is about 2 times of the grid
spacing, can yield a data misfit smaller than a predefined value, this grid spacing will be used
for the modeling. In practice, some changes can be made accordingly.

3 The “optimal” grid depth will be determined by the empirical or the GCV approach (see Section
3.4.2), in which the search interval of the grid depth candidates is between 1 and 3 times of the
chosen grid spacing such that the resulting grid depth is neither too shallow nor too deep.

4 After fixing the grid, there are two schemes to estimate the magnitudes of the point mass RBFs.
In the first case, the reduced point mass RBFs are usually recommended, and their magnitudes
are estimated in least-squares adjustment. In the second case, the full RBFs are employed, and
their magnitudes are computed by solving a linear equation system in the least-squares sense
with the constraints.

The first three steps in the above computation procedure aim at determining the grid, in which the
full point mass RBFs are used for all related computations. The above procedure is not only suitable
for the case of single-grid formation, but also for the case of multi-grid formation (see Section 3.4.3).

4.1.3 Analysis of the results computed by PM-FRE

In this section, a series of numerical comparisons will be carried out by using PM-FRE based on
the above two gravity data sets. In order to facilitate the discussion on the results in the following,
the solutions computed by the full and reduced point mass RBFs are labeled as S1 and S2 and
the solutions corresponding to the all- and radial-direction optimization are labeled as 4P and 2P.
Consequently, the notation S1+2P indicates that the solution is computed by using the full RBFs
and the radial-direction optimization. It is worth mentioning that, in all numerical computations in
Section 4.1 with the use of PM-FRE, no regularization is used in the second step for the CA test case,
but Tikhonov regularization is applied for the NM test case, where the regularization parameter is
determined by an empirical approach by minimizing the RMS of the differences between the predicted
and observed gravity anomalies at 153 control points.

4.1.3.1 Comparison of LM, NLCG, L-BFGS, and L-BFGS-B

The aim of the numerical tests in this section is to compare the performance of four iteration algo-
rithms (i.e., LM, NLCG, L-BFGS, and L-BFGS-B, see also Section 3.3.6) for regional gravity field
modeling. All of them are implemented in the first step of PM-FRE for searching for the point mass
RBFs. In each test area, the solutions based on different choices of Nmin and the optimization direc-
tion are briefly discussed. Furthermore, the results are also compared to the LSC solutions, which
are considered as the references.
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As discussed in Section 3.5, the point mass RBFs are limited in a layer with upper and lower bounds.
Thus, the nonlinear problem to be solved in the first step of PM-FRE is bound-constrained. Besides
the L-BFGS-B algorithm, the other three are unconstrained algorithms. It arises the problem how to
implement these unconstrained algorithms to solve the bound-constrained problem. To circumvent
this problem, a simple approach is utilized:

Assuming that the model parameter vector m` is obtained at iteration `. If any parameter
mi ∈m` is out of the bounds (e.g., depth limits or horizontal limits), then let m` = m`−1 and
terminate the iteration process.

Accordingly, the results associated with different iteration algorithms are illustrated in Figs 4.13 and
4.14, and the related model setup for the modeling is given in Table 4.11. The empirical and analytical
covariance functions derived from the input residuals are shown in Fig. 4.15. The latter ones are
used for the modeling within LSC, which is implemented by the GRAVSOFT package (Tscherning
et al., 1992). The discussion on the results is given as follows.
In the CA test case (see Fig. 4.13), the solutions associated with L-BFGS-B algorithm are the

best among all solutions and close to the LSC solution (see the black dashed lines in Fig. 4.13). The
performance of L-BFGS and NLCG is similar, while LM delivers the worst solution. This might be
due to the fact that LM usually generates larger search directions than NLCG and L-BFGS at the
first several iterations (see also the numerical comparisons in Section 3.3.6), and hence it is of a high
risk that the model parameters estimated by LM exceed the defined limits of model parameters (e.g.,
depth limits) within a few iterations, resulting in a worse fit of the data to the model than NLCG
and L-BFGS. Since the input data are error-free, and the control values are true in this test case, the

Table 4.11: Model setup for the numerical tests in Section 4.1.3.1.

Model factors CA test case NM test case

Spectral bandwidths of the RBFs 1 Full, Nmin = 0 (S1) 1 Full, Nmin = 0 (S1)
2 Reduced, Nmin = 201 (S2) 2 Reduced, Nmin = 101 (S2)

Optimization direction 1 Radial-direction (2P)
2 All-direction (4P)

Initial depth [km] 15 13

Depth limits [km] 13− 20 11− 20

Horizontal limits for 4P 7.0◦E to 15.0◦E −107.85◦E to −105.15◦E
45.0◦N to 49.0◦N 31.65◦N to 34.85◦N

Number Nε of the 10nearest point mass RBFs

Total number K of point 1500 1000mass RBFs

Iteration limit Nit for each 20new point mass RBF
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smallest RMS, STD, and RANGE of the results associated with L-BFGS-B indicate that L-BFGS-B
is a better choice than the other three algorithms.

L−BFGS−B L−BFGS NLCG LM
0

1

2

3

4

5

∆
g
 [
m

G
a
l]

a)

 

 

S1+2P

S2+2P

S1+4P

S2+4P

L−BFGS−B L−BFGS NLCG LM
0

1

2

3

4

5
b)

 

 

L−BFGS−B L−BFGS NLCG LM
0

10

20

30

40

50

c)

 

 

L−BFGS−B L−BFGS NLCG LM
0

4

8

12

16

20
d)

Algorithms

ζ
 [

c
m

]

L−BFGS−B L−BFGS NLCG LM
0

4

8

12

16

20
e)

Algorithms

L−BFGS−B L−BFGS NLCG LM
0

50

100

150
f)

Algorithms

Figure 4.13: CA test case: a) RMS, b) STD, and c) RANGE of the differences between predicted and
observed (true) values for ∆g at control points associated with different iteration algorithms;
d), e), and f) the same for ζ. The least-squares collocation results are shown as dashed lines.
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Figure 4.14: The same as in Fig. 4.13, but for the NM test case.
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In the NM test case (see Fig. 4.14), the differences between the solutions derived from the four
algorithms are not as evident as those in the CA test case. The gravity anomaly solutions associated
with L-BFGS-B and L-BFGS look very similar. They are better than the ones associated with NLCG
and LM in the case of using radial-direction optimization (i.e., 2P) and are slightly worse in the case
of using all-direction optimization (i.e., 4P). In general, the 2P gravity anomaly solutions are better
than the 4P solutions and close to the LSC solution in this test case. Similar height anomaly solutions
are obtained by all algorithms. When using reduced point mass RBFs (i.e., S2), the height anomaly
solutions are close to the LSC solution. More discussion on the issue about the optimization direction
and the spectral bandwidths of the point mass RBFs will be given in the numerical tests in Section
4.1.3.2.
Although many other similar numerical tests with the use of different data sets in different test

areas can be conducted to further test the four algorithms, we believe that our two numerical tests are
sufficient to provide us some useful information. Accordingly, the better performance of L-BFGS-B
than the other three algorithms enable us to implement it in PM-FRE for all remaining tests in this
thesis.

4.1.3.2 Investigation on the effect of four important model factors

In the numerical tests presented in Section 4.1.3.1, we have compared the performance of four iteration
algorithms for regional gravity field modeling. In this section, we will mainly focus on the effect on
the solutions caused by the following four important model factors: (1) the initial depths and depth
limits, (2) the total number K of point mass RBFs, (3) the spectral bandwidths of the point mass
RBFs, and (4) the optimization direction. Related studies can also be found in Lin et al. (2014).
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Figure 4.15: Empirical and analytical covariance functions of the observations for a) the CA and b) the NM
test case. The corresponding correlation lengths of the empirical covariance functions are 0.108◦
and 0.101◦, respectively.

Several scenarios are considered to study the sensitivity of the gravity field solutions with respect
to the four model factors (see also Section 3.5.2). As shown in Hauck and Lelgemann (1985), the
Krarup reproducing kernel defines the potential of one point mass RBF located below the observation
point at a depth given by the Kelvin transformation at the Bjerhammar sphere, and if the number
of point mass RBFs equals the number of observations, the point mass method can be considered
as being equivalent to least-squares collocation with a covariance function defined by the Krarup
kernel (Barthelmes, 1989). In regional gravity field modeling by collocation, the covariance function
is always chosen to fit the empirical covariance function of the observations. Therefore, it seems to
be quite reasonable to choose the initial depth of the point mass RBFs with the help of the empirical
covariance function. The idea is to set the initial depth equal to the depth of the point mass RBF
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Table 4.12: Model setup used for the numerical test cases in Section 4.1.3.2. The other model factors are the
same as the ones in Table 4.11.

Model factors CA test case NM test case

Depth limits [km]

1 5− 20 1 3− 20
2 9− 20 2 6− 20
3 13− 20 3 11− 20
4 13− 50 4 11− 30

Total number K of point 1 1100 1 700
mass RBFs 2 1500 2 1000

for which the corresponding half-width ξ0.5 (i.e., spatial bandwidth of the RBF, see the definition in
Section 2.7.4) and the correlation length ξe of the empirical covariance function match. Once ξe is
known, it is easy to derive the initial depth iteratively.
According to Fig. 4.15, the correlation lengths of the empirical covariance functions are 0.108◦ and

0.101◦ for the CA and NM data sets. As a result, the estimates of the initial depths are about 15 and
13 km, respectively. Furthermore, the effect of four different sets of depth limits will be studied for
each test area. The lower depth limits for the first three cases (see Table 4.12) are based on a simple
formula D = R/ (n− 1) given in Bowin (1983), where D means the depth, R denotes the mean Earth
radius, and n stands for the spherical harmonic degree. Based on the maximum degree of the chosen
reference field (nmax = 360), this results in a lower depth limit of about 20 km. In addition to this,
also a deeper limit is chosen for each test area to study the corresponding impact on the results (see
Case 4 in Table 4.12). Regarding the upper depth limit, practical investigations showed that this
value is not expected to be smaller than the average data spacing as otherwise strong local unrealistic
(erratic) features will show up. Based on these considerations, the upper depth limits are chosen to
be equal to or larger than the average data spacing. Nevertheless, a shallower upper depth limit is
also selected for each test area for comparison purposes (see Case 1 in Table 4.12). In each test
area, the point mass RBFs with two different Nmin are used for the modeling. The model setup is
summarized in Table 4.12.
In each test case, the search process is terminated by finding a certain number of point mass RBFs.

The main results based on two different total numbers K of point mass RBFs are shown in Figs
4.16 and 4.17 for the CA test case while corresponding results for the NM test case are displayed in
Figs 4.18 and 4.19. These figures show the statistics (RMS, STD, and RANGE) of the differences
between predicted and observed (or true) values at the control points for the different model setups
listed in Table 4.12. Figs 4.20 and 4.21 show the RMS of the differences between the predictions and
observations (data misfit) as well as the RMS of the differences between the predicted and observed
(or true) values at the gravity anomaly control points (RMS difference) as a function of the number
of point mass RBFs; both figures are based on the reduced point mass RBFs, and similar results are
obtained when using the full RBFs (not shown here).
In addition, Table 4.13 gives the detailed statistics of the differences between the predicted values

computed from PM-FRE as well as LSC and the true values at the control points for the CA test
case, while Table 4.14 presents the statistics of the differences with respect to the observed values at
the control points for the NM test case. The main findings are summarized as follows.
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Figure 4.16: CA test case: a) RMS, b) STD, and c) RANGE of the differences between predicted and
observed (true) values for ∆g at control points associated with different model setups; d), e),
and f) the same for ζ. 1100 point mass RBFs are selected for the modeling, and the related
least-squares collocation results are shown as dashed lines.
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Figure 4.17: The same as in Fig. 4.16, but for 1500 point mass RBFs selected for the modeling.
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Figure 4.18: The same as in Fig. 4.16, but for the NM test case. 700 point mass RBFs are selected for the
modeling.
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Figure 4.19: The same as in Fig. 4.18, but for 1000 point mass RBFs selected for the modeling.
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The effect of the depth limits on the solutions

From Figs 4.16−4.19 (see the bar charts for different depth limits) it is obvious that a proper choice
of depth limits is crucial to guarantee a high-quality solution with small errors in comparison to the
control point values. Comparing the solutions with the same lower depth limits but different upper
depth limits (i.e., the first three cases of the depth limits in Table 4.12), it can be seen that the
gravity anomaly solutions are quite worse for a too shallow upper depth limit (i.e., 5 and 3 km for
the CA and NM test cases), resulting in large RMS, STD, and RANGE of the differences. This can
be attributed to the point mass RBFs located at or close to the upper depth limit, which produce
some artificial high-frequency signals in the voids between the RBFs, as the spatial bandwidths of
these point mass RBFs are too small. When the upper depth limit is deeper (i.e., 9 and 13 km for
the CA test case; 6 and 11 km for the NM test case), the gravity anomaly solutions become much
better with smaller errors when comparing to the values at the control points. No evident differences
can be found between the height anomaly solutions for three different upper depth limits. Since
the height anomalies are in the long-wavelength domain, the change of the upper depth limit has
only minor effect on them. Now, for constant upper depth limits but different lower depth limits
(Cases 3 and 4 for depth limits in Table 4.12), contrary to the previous investigation, the gravity
anomaly solutions are nearly unaffected by using different lower depth limits, but the predicted height
anomalies are distorted by some deep point mass RBFs. In the case of the depth limits of 13− 50 km
for the CA test case, the full RBFs located at deep depths, resulting in too large spatial bandwidths,
lead to large RMS, STD, and RANGE of the height anomaly differences (see Figs 4.16 and 4.17).
According to the above comparisons, the quality of gravity anomaly solutions is sensitive to the chosen
upper depth limit, while the height anomaly solutions are mostly affected by the lower depth limit.
Therefore, the depth limits must be chosen carefully based on the observations to be fitted. Shallower
point mass RBFs are required for fitting high-frequency gravity signals and deeper RBFs for fitting
long-wavelength height anomalies.
The solutions related to the upper depth limit of 13 km for the CA test case and 11 km for the

NM test case are quite good and close to the corresponding LSC results. As a result, an upper depth
limit of about 85% of the initial depth, which is derived from the approach based on the correlation
length of the empirical covariance function, is a proper choice. The lower depth limits obtained from
a simple formula given in Bowin (1983) prove to be appropriate (e.g., 20 km) in our test cases, but
deeper limits are also suitable (e.g., 50 and 30 km). No explicit rules can be given for the optimal
choice of depth limits. Usually, the selected upper depth limit is not expected to be smaller than the
average data spacing (i.e., 9 and 6 km for the CA and NM test cases, respectively), while the lower
depth limit is preferred to be smaller than the highest resolution of the chosen reference field (i.e.,
about 55 km for nmax = 360 in both test cases).

The effect of the total number K of point mass RBFs on the solutions

Comparing Fig. 4.16 to 4.17 (i.e., 1100 and 1500 point mass RBFs for the CA test case) as well as
Fig. 4.18 to 4.19 (i.e., 700 and 1000 point mass RBFs for the NM test case), the gravity anomaly
solutions are obviously improved when more point mass RBFs are used, but improvements of the
height anomalies are not evident. From Figs 4.20 and 4.21, the data misfit and RMS differences
decrease rapidly in the beginning, but very slowly when more and more point mass RBFs are included.
If the number of point mass RBFs is about 30% − 35% of the number of observations (i.e., 1500 vs.
4753 for the CA test case, 1000 vs. 2767 for the NM test case), the obtained solutions are close to the
LSC results. The required number of point mass RBFs for a good approximation may also depend
on the signal variation. However, it is not evident in the selected two test cases. In general, the use
of a large number of point mass RBFs can represent high-frequency signals well, but also increase the
numerical complexity and may cause an over-parameterization in the area with smooth features.
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Figure 4.20: CA test case: a) data misfit and b) RMS difference at 4608 ∆g control points with respect
to different numbers of selected point mass RBFs associated with different depth limits and
optimization directions. All results are computed by using reduced RBFs.
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Figure 4.21: The same as in Fig. 4.20, but for the NM test case and 153 ∆g control points in b).

The effect of the spectral bandwidths of the point mass RBFs on the solutions

Significant differences between the S1 (i.e., full point mass RBFs) and S2 (i.e., reduced RBFs) gravity
anomaly solutions are not seen in Figs 4.16−4.19 and Tables 4.13−4.14. For the height anomaly
solutions, the situation is completely different, as the S2 solutions are significantly improved compared
to the S1 solutions. Since the observations are residual gravity anomalies in our test cases, the errors
caused by different spectral bandwidths between the full point mass RBFs and the input residuals are
evident in the height anomaly solutions, resulting in large biases. Therefore, the reduced RBFs are
recommended for quasigeoid modeling when only gravity anomalies are used as input data. However,
also the S2 height anomaly solutions are slightly worse than the corresponding LSC solutions in our
test cases. This may be due to edge effects caused by the limited data coverage. Usually, a simple
way to reduce edge effects is to make the data area larger than the model area.

The effect of the optimization direction on the solutions

In the CA test case (see Figs 4.16, 4.17, 4.20, as well as Table 4.13), in which the grid data are used
as input, the 4P solutions (i.e., all-direction optimization) perform better than the corresponding 2P
solutions (i.e., radial-direction optimization) in approximating the gravity anomalies (except for the
case with depth limits of 5− 20 km). These improvements may be attributed to the optimization in
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Table 4.13: Statistics of the differences between predicted values from PM-FRE as well as least-squares col-
location and the true (simulated) values at the control points for the CA test case, i.e., 4608 ∆g
[mGal] and 4608 ζ [m] control points, respectively. The depth limits are 13−50 km, and the num-
ber of point mass RBFs is 1500 for the respective solutions.

∆g ζ

Mean STD RMS Min Max Mean STD RMS Min Max

LSC −0.049 1.129 1.130 −8.830 5.078 0.0 0.006 0.006 −0.053 0.077
S1+2P −0.027 1.244 1.244 −7.243 4.827 0.403 0.187 0.444 −0.166 1.435
S2+2P −0.011 1.274 1.274 −6.944 5.212 0.0 0.015 0.015 −0.120 0.122
S1+4P −0.008 1.130 1.130 −4.903 8.519 0.142 0.107 0.178 −0.312 0.363
S2+4P −0.002 1.149 1.149 −5.054 8.560 0.0 0.013 0.013 −0.077 0.095

Table 4.14: The same as in Table 4.13, but for the NM test case with 153 ∆g [mGal] and 20 ζ [m]
(GPS/leveling) control points (observed). The depth limits are 11 − 20 km, and the number
of point mass RBFs is 1000 for the respective solutions.

∆g ζ

Mean STD RMS Min Max Mean STD RMS Min Max

LSC 0.025 3.161 3.151 −8.444 11.926 0.213 0.030 0.215 0.155 0.276
S1+2P 0.039 3.351 3.340 −9.826 13.174 0.279 0.040 0.282 0.184 0.368
S2+2P 0.013 3.351 3.340 −9.909 13.131 0.218 0.031 0.221 0.141 0.271
S1+4P 0.050 3.833 3.821 −10.546 15.415 0.250 0.043 0.253 0.158 0.348
S2+4P 0.030 3.830 3.818 −10.505 15.384 0.216 0.033 0.219 0.141 0.278

the horizontal direction, leading to a more reasonable horizontal distribution of the point mass RBFs.
For the height anomaly approximation both approaches in connection with the reduced RBFs give
very similar results. Only the reduced point mass RBFs are utilized here as the negative effects caused
by using the full RBFs on the height anomaly solutions are significant (see the discussion in the last
paragraph). Furthermore, the results also indicate that the all-direction optimization (4P) is more
sensitive to the chosen upper depth limit than the radial-direction optimization (2P). For the case of
the depth limits of 5− 20 km, the 4P gravity anomaly solutions are worse than the 2P solutions.
Similar comparisons are conducted in the NM test case (see Figs 4.18, 4.19, 4.21, as well as Table

4.14). Regarding again the 4P and 2P cases, the height anomaly solutions perform similarly, but
larger discrepancies can be seen in the 4P gravity anomaly solutions. It is caused by the gaps of the
input data. The optimization in horizontal direction moves some point mass RBFs into the gaps for
a good fit of the data, resulting in shallow RBFs with large magnitudes that can produce unrealistic
high-frequency signals. Consequently, the existence of data gaps is a critical issue for the all-direction
optimization (4P), while good results can be obtained with the radial-direction optimization (2P) for
both test areas with regular and irregular input data.
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4.1.3.3 Comparison of different iteration limits Nit and different numbers Nε of the nearest
point mass RBFs

In this section, the effect on the solutions caused by another two model factors used in the first step
of PM-FRE, i.e., (1) the iteration limit Nit for each new point mass RBF and (2) the number Nε

of the nearest RBFs, are numerically investigated. The used model factors are given in Table 4.15.
When varying the iteration limit Nit, the number Nε is fixed to be 10 for both test cases. Similarly,
Nit = 20 is chosen when analyzing the effect of different choices of Nε. The corresponding numerical
results are presented in Tables 4.16 and 4.17.
Table 4.16 shows the errors for different iteration limits Nit while fixing Nε to be 10. In the CA

test case, as expected, the gravity anomaly solutions are slightly improved with increasing values of
Nit. The RMS errors of the height anomaly solutions are close to each other. In the NM test case,
an increase of Nit does not lead to a decrease of the RMS errors of the gravity anomaly solutions.
The choice of Nit = 5 provides a smaller RMS error of the gravity anomaly solution than the cases
of Nit = 10, 20, and 30. A possible reason is due to the over-fitting of the model to the data and the
irregular data distribution. This can also explain why the gravity anomaly RMS error for Nit = 50 is
smaller than the case of Nit = 100. However, the differences between the RMS errors of the gravity
anomaly solutions are small, ranging from about 3.25 mGal to 3.42 mGal. The STD errors of the
height anomaly solutions are in the range of 0.034 m to 0.037 m, meaning that they are not sensitive
to the choice of Nit.
Table 4.17 gives the errors for different Nε with fixed Nit = 20. Similar to the case of varying

Nit and fixed Nε, the larger the Nε is, the smaller the RMS error for the gravity anomaly solution
is in the CA test case. In the NM test case, the RMS errors of the gravity anomalies decrease with
increasing Nε at first, but remain nearly the same when Nε ≥ 20 with values between 3.26 mGal and
3.36 mGal. In both test cases, the height anomaly solutions show the insensitivity to Nε.
According to the above studies, we find that the choice of Nit = 20 and Nε = 10 for the search

process in the first step is usually satisfactory for providing a set of point mass RBFs at proper
positions. This choice is used as default in the following computations when using PM-FRE.

Table 4.15: Model setup used for the numerical tests in Section 4.1.3.3.

Model factor CA test case NM test case

Spectral bandwidths of the RBFs Reduced, Nmin = 201 Reduced, Nmin = 101

Optimization direction Radial-direction

Initial depth [km] 15 13

Depth limits [km] 13− 50 11− 30

Number Nε of the 5, 10, 20, 30, 40, 50nearest point mass RBFs

Total number K of point 1500 1000mass RBFs

Iteration limit Nit for each 5, 10, 20, 30 50, 100new point mass RBF
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Table 4.16: First two lines: RMS errors of ∆g [mGal] and ζ [m] associated with different values of Nit for
the CA test case. Second two lines: RMS ∆g errors and STD ζ errors for the NM test case. Note
that Nε = 10 in this test.

Nit 5 10 20 30 50 100

∆g 1.381 1.313 1.274 1.266 1.245 1.237
ζ 0.015 0.015 0.015 0.015 0.016 0.016

∆g 3.303 3.419 3.419 3.397 3.246 3.276
ζ 0.034 0.035 0.035 0.036 0.037 0.037

Table 4.17: First two lines: RMS errors of ∆g [mGal] and ζ [m] associated with different values of Nε for the
CA test case. Second two lines: RMS ∆g errors and STD ζ errors for the NM test case. Note
that Nit = 20 in this test.

Nε 5 10 20 30 40 50

∆g 1.383 1.274 1.256 1.241 1.229 1.220
ζ 0.015 0.015 0.015 0.015 0.018 0.016

∆g 3.547 3.419 3.278 3.362 3.317 3.257
ζ 0.031 0.035 0.031 0.033 0.033 0.032

4.1.3.4 Comparison of unconstrained and constrained solutions

In Section 4.1.2.3, we showed that using additional constraints for solving the linear equation system
constructed by full point mass RBFs provides similar solutions as the unconstrained solutions com-
puted by using reduced RBFs in PM-FIX. Here, similar procedures are applied in the second step
of PM-FRE with the known positions of the RBFs derived from the first step. Most of the used
model factors are given in Table 4.15 while letting Nit = 20 and Nε = 10. Five constrained solutions
using different values of n′ are computed. Tables 4.18 and 4.19 present the RMS (or STD) errors of
the solutions. Comparing the constrained solutions to the unconstrained solutions with the use of
reduced RBFs (i.e., Nmin > 0) in each test case, a good agreement between the constrained solution
with n′ ∈ [Nmin/2, Nmin] (e.g., n′ ∈ [100, 200] for the CA test case and n′ ∈ [50, 100] for the NM test
case) and the unconstrained solution is obtained, whereas the latter is slightly better than the former.
Figs 4.22 and 4.23 show the related square roots of the degree variances in terms of gravity and

height anomaly for the CA and the NM test case, respectively. It can be seen that the degree vari-
ances for the unconstrained and constrained solutions coincide quite well. Considering the significant
deviations between the degree variances (unconstrained solutions with reduced RBFs vs. constrained
solutions) in the case of PM-FIX (see Section 4.1.2.3), the similar degree variances shown here may
be attributed to the fact that the positions of the point mass RBFs obtained from the first step of
PM-FRE are more reasonable than the grid points used in PM-FIX.
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Table 4.18: RMS errors of ∆g [mGal] and ζ [m] associated with the unconstrained and constrained solutions
for the CA test case.

Unconstrained solution Constrained solution

Nmin = 0 Nmin = 201 n′ = 1 50 100 150 200

∆g 1.244 1.274 1.256 1.282 1.314 1.328 1.338
ζ 0.444 0.015 0.061 0.035 0.023 0.019 0.018

Table 4.19: RMS errors of ∆g [mGal] and STD errors of ζ [m] associated with the unconstrained and con-
strained solutions for the NM test case.

Unconstrained solution Constrained solution

Nmin = 0 Nmin = 101 n′ = 1 50 100 150 200

∆g 3.418 3.419 3.415 3.419 3.424 3.432 3.440
ζ 0.052 0.035 0.048 0.033 0.033 0.032 0.029

4.1.3.5 Conclusions

The effect of several model factors on regional gravity field modeling using PM-FRE is studied nu-
merically in two different test areas with synthetic and real data. The L-BFGS-B algorithm is demon-
strated to be a suitable tool for solving the bound-constrained nonlinear least-squares problem in the
first step of the entire procedure. However, the quality of the final solutions is highly dependent on
the choice of various model factors, and although an improper choice may still lead to a satisfactory
data misfit, large errors can result in the final solutions when comparing them with independent data.
The numerical results lead to the following conclusions:

• The determination of the initial depth and depth limits is of highest importance. They must
be chosen very carefully to avoid unreliable solutions. Testing of different initial depths and
related depth limits leads to the following empirical rule: the initial depth is derived from the
empirical covariance function of the observations, and the upper depth limit is preferred to be
about 0.8− 0.9 times of this value, while being larger than the average data spacing. The lower
depth can be selected by a simple formula given in Bowin (1983) or being deeper, but it should
be less than the highest resolution of the chosen reference gravity field.

• To get a good fit of the data in the selected two test cases, the data distribution has an impact
on the necessary number of point mass RBFs, but the data variability plays only a minor role.
An efficient way for choosing the number of point mass RBFs is to terminate the search process
in the first step by satisfying a defined data misfit. However, in many cases, the number of
point mass RBFs is chosen by the user through numerical comparisons.

• Reduced point mass RBFs are recommended for geoid/quasigeoid modeling when using gravity
anomalies as input. The value of Nmin for the reduced RBFs can be equal to or less than the
maximum degree nmax of the chosen reference gravity field. When only using the full RBFs,
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the consideration of additional constraints with a proper value of n′ < nmax in the least-squares
adjustment can also provide accurate gravity and height anomaly solutions.

• If the depth limits are appropriate, the all-direction optimization performs slightly better than
the radial-direction optimization in the CA test case with error-free data at the grid points.
However, the all-direction option is very sensitive to the upper depth limit as well as to the data
distribution, and large errors occur in corresponding solutions for the NM test case with data
gaps. The radial-direction option is more reliable and simple.

• The large values of the iteration limit Nit and the number Nε of the nearest RBFs are usually
not necessary for PM-FRE. Often, the choice of Nit = 20 and Nε = 10 is sufficient for regional
modeling within PM-FRE.
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Figure 4.22: Square roots of the degree variances in terms of ∆g (left) and ζ (right) associated with the
unconstrained and constrained solutions for the CA test case. Black: Nmin = 201; brown:
Nmin = 0; red: n′ = 1; orange: n′ = 50; pink: n′ = 100; green: n′ = 150; gray: n′ = 200.
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Figure 4.23: The same as in Fig. 4.22, but for the NM test case. Black: Nmin = 101; brown: Nmin = 0; red:
n′ = 1; orange: n′ = 50; pink: n′ = 100; green: n′ = 150; gray: n′ = 200.

4.1.4 A comparison between PM-FIX and PM-FRE

In this section, the performance of PM-FIX and PM-FRE for regional gravity field modeling using
the above two data sets is compared. PM-FIX is based on the computation procedure described in
Section 4.1.2.4, and the solutions associated with a single-grid formation and a two-grid formation are
labeled as FIX-S and FIX-T. Similarly, FRE-A and FRE-B denote the solutions, which are computed
by using PM-FRE with the point mass search model SMA and SMB (see Section 3.5.3). For each
test case, the target data misfit is defined to determine the grid in PM-FIX, as well as the number
of point mass RBFs in PM-FRE. For PM-FIX, all grids have the same extents as the ones in Table
4.4. The reduced point mass RBFs with Nmin = 301 and 201 are used for the final adjustment of
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Table 4.20: Statistics of ∆g [mGal] and ζ [m] errors at the control points associated with different solutions
for the CA test case. The value in the parentheses means the number of used point mass RBFs.

∆g ζ

Solutions Mean STD RMS Min Max Mean STD RMS Min Max

FIX-S (3321) -0.008 1.598 1.598 -10.249 7.249 0.000 0.011 0.011 -0.106 0.088
FIX-T (3226) -0.016 0.954 0.954 -7.465 5.575 0.001 0.027 0.027 -0.336 0.370
FRE-A (1498) -0.036 1.317 1.317 -7.464 4.629 0.000 0.011 0.011 -0.077 0.095
FRE-B (1996) -0.012 1.131 1.131 -6.486 4.846 0.000 0.012 0.012 -0.189 0.129

Table 4.21: The same as in Table 4.20, but for the NM test case.

∆g ζ

Solutions Mean STD RMS Min Max Mean STD RMS Min Max

FIX-S (1189) 0.029 3.888 3.875 -9.743 14.551 0.241 0.028 0.243 0.195 0.298
FIX-T (1344) 0.119 3.953 3.942 -9.033 14.077 0.241 0.026 0.242 0.193 0.289
FRE-A (713) -0.046 3.746 3.734 -9.516 14.023 0.243 0.026 0.244 0.199 0.287
FRE-B (876) 0.211 3.703 3.697 -11.542 14.929 0.241 0.027 0.242 0.194 0.286

the magnitudes for the CA and the NM test case, respectively. The details of the comparisons are
discussed in the following.

Model setup for the CA test case

Since the input gravity data are error-free in this test case, no information can be referred to set the
target data misfit. Considering the RMS of the input residuals (about 16.9mGal), the target data
misfit is defined as 1mGal. For FIX-S, a 6′×6′ grid (here, the first 6′ means the grid spacing along the
parallel and the second 6′ means the grid spacing along the meridian) is selected for the computation.
Although the resulting data misfit associated with the grid depth of 20 km (about 2 times of the
grid spacing) is about 1.557 mGal, being larger than the target value of 1 mGal (see Step 2 of the
computation procedure in Section 4.1.2.4), a smaller grid spacing is not preferred. Otherwise, the
number of point mass RBFs will be too large. The “optimal” depth is then chosen to be 30 km by
using the GCV technique (see also Fig. 4.9b). For FIX-T, a coarse 15′× 15′ grid at the GCV derived
“optimal” depth of 33 km is used to represent the smooth features of the research area. The resulting
residuals will then be used for choosing a dense grid. Similar to the procedures for the single-grid
formation, a dense 7.5′ × 6′ grid at the “optimal” depth of 30 km is used. In this case, Tikhonov
regularization is applied due to the numerical instabilities caused by the two grids at different depths.
No regularization is applied for the other three solutions. FRE-A is mainly based on the model setup
in Table 4.15 with Nit = 20 and Nε = 10. The first step is terminated by satisfying a data misfit
smaller than 1 mGal, resulting in 1498 point mass RBFs. For FRE-B, two layers are defined for the
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modeling. The depth limits of Layer 1 are 30− 50 km, in which the initial depth for each new point
mass RBF is 33 km. Only 100 RBFs are allowed to be in this layer. The other model factors for Layer
1 are Nit = 50 and Nε = 20. For Layer 2, the corresponding model factors are 13 − 30 km (depth
limits), 15 km (initial depth), Nit = 20, and Nε = 10. In this layer, the point mass RBFs are searched
for until the target data misfit is reached. A total number of 1996 RBFs are selected for FRE-B.

Model setup for the NM test case

In this test case, the target data misfit is set to be 2mGal based on the input data error mentioned
in Section 4.1.1. For FIX-S, a 6′× 4.8′ grid is selected for the computation. The resulting data misfit
associated with the grid depth of 20 km (about 2 times of the grid spacing) is about 2.079 mGal and
the “optimal” depth derived from the GCV technique is 18 km. For FIX-T, a coarse 12′ × 12′ grid
at the “optimal” depth of 55 km and a dense 5.25′ × 6′ grid at the depth of 20 km are used for the
modeling. Again, FRE-A is computed by using the model factors in Table 4.15 with Nit = 20 and
Nε = 10. For FRE-B, also two layers are used. The model factors for Layer 1 are 20− 30 km (depth
limits), 23 km (initial depth), Nit = 50, Nε = 20, and only 100 RBFs are allowed to be in this layer.
Similarly, the model factors for Layer 2 are 11− 20 km, 13 km, Nit = 20, and Nε = 10.

Results and discussion

Four solutions are computed based on the previously described model setup in each test area. The
statistics of the gravity and height anomaly errors at the control points are given in Tables 4.20 and
4.21. They show that the solutions of PM-FRE (i.e., FRE-A and FRE-B) are better than the solutions
of PM-FIX (i.e., FIX-S and FIX-T). In addition, the used number of point mass RBFs in PM-FRE is
also much smaller. Comparing FIX-T to FIX-S, the use of two grids does not provide a better solution,
i.e., with a smaller RMS (or STD) error, in our two test cases, but also raises the computational
complexity. The best gravity anomaly solution of FIX-T in the CA test case benefits from the use of
a large number of point mass RBFs as well as the gridded input data. However, too many deep RBFs
(561 RBFs at the depth of 33 km) weaken the height anomaly solution. Although the number of used
point mass RBFs is the largest for FIX-T in the NM test case, the corresponding gravity anomaly
solution is the poorest. As the data points are irregularly distributed, over-parameterization can be
caused when using too many point mass RBFs. Thus, a multi-grid formation should be carefully
used. The two solutions of PM-FRE are quite similar. The used number of RBFs for FRE-B is larger
than the number for FRE-A. It is due to the different point mass search models. Comparing to SMA,
the point mass RBFs are searched for and restricted to the deepest layer first within SMB, then to
the shallower layers. This leads to a slower decreasing of the data misfit with respect to the number
of RBFs. Therefore, a larger number of point mass RBFs are needed to achieve the same target data
misfit. As a result, the gravity anomaly solution for FRE-B is slightly better than for FRE-A, but the
height anomaly solutions are similar. It also can be expected that with the use of the same number of
point mass RBFs, the gravity anomaly solution for FRE-B should be a little worse than for FRE-A,
whereas the height anomaly solutions are still similar.

4.1.5 Summary and conclusions

The developed point mass methods (i.e., PM-FIX and PM-FRE) can provide accurate results when
applied to a synthetic and a real data set. A set of model factors for both methods must be defined
properly. From the numerical studies in this section, it was obvious that PM-FRE outperforms PM-
FIX for regional gravity field computations (see Section 4.1.4). Hence, only PM-FRE will be applied
for the numerical tests in the following. Based on various comparisons, several conclusions can be
drawn, and choices of model factors can be made. This leads to the “optimal” strategy for PM-FRE:
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• For the point mass search model in PM-FRE, either SMA or SMB can be applied for the regional
modeling. Without notification, SMA is used as the default search model. Numerous tests show
that SMA performs slightly better than SMB, and the former is also much simpler. No matter
which search model is used, the initial depth and depth limits are determined based on the
empirical rule described in Section 4.1.3.5.

• For the optimization direction, the radial-direction optimization is applied as it is much more
stable and reliable than the all-direction optimization, in particular in the case of using real data.
However, if the chosen depth limits are improper, unrealistic predictions also exist, especially in
the data gaps. The L-BFGS-B algorithm is used for solving the nonlinear least-squares problem
with bound constraints on the depths (or radial distances) of the point mass RBFs.

• The above two items are relevant for finding the point mass RBFs in the first step of PM-FRE,
in which the full RBFs are used for all computations. In the second step, we usually recommend
using the reduced RBFs for the readjustment of the magnitudes of all selected RBFs. The use of
reduced RBFs can also be explained as a further modification of the spatial bandwidths of the
RBFs, which are originated from the first step. An alternative scheme is to use the full RBFs
while considering the constraints in the adjustment.

• The empirical approach works well for finding the proper regularization parameter α in the
second step of PM-FRE for the NM test case; however, it is not well suited for the case with
a large number of unknowns or the case with no or inhomogeneous control values. Therefore,
some heuristic approaches for choosing a proper α need to be incorporated in PM-FRE.

Part of the “optimal” strategy will be further completed by the following numerical tests.

4.2 Tests with a set of synthetic geoid heights with the same accuracy

In Section 4.1, we demonstrated the applicability of the developed point mass methods, in particular
PM-FRE, for regional gravity field modeling using observed gravity anomalies. It arises the question
whether the method can also deal with other kinds of input gravity field quantities. In the following,
three numerical test cases using synthetic geoid heights with different noise levels are considered in
one test area to test PM-FRE by comparing the results to corresponding LSC solutions (Lin et al.,
2015). Another goal of these test cases is to compare the performance of three approaches as described
in Section 3.3.5 for choosing the proper regularization parameter.
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Figure 4.24: Simulated residual geoid heights over the test area: a) error-free data; b) noisy data, where
white noise with a standard deviation of 0.02 m is added; c) noisy data, where white noise with
a standard deviation of 0.05 m is added.
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4.2.1 Description of the data sets

The test area is situated in the North Atlantic Ocean with an extent from −30◦E to −18◦E and 40◦N
to 48◦N. The data set (a) consists of 14065 residual geoid heights (error-free), which are computed
by the EGM2008 model up to d/o 2160 with the removal of the long-wavelength contributions from
the GOCO03S model (Mayer-Gürr et al., 2012) up to d/o 250. The input residuals are located at
grid points with a resolution of 5′ and the height for each point is 0 m. Data sets (b) and (c) are
obtained by adding white noise with an STD of 0.02 m and 0.05 m to data set (a). All three data sets
are illustrated in Fig. 4.24. In addition, 11305 residual gravity anomalies located at grid points with
true values are used as control points to assess the modeled gravity anomalies in each test case. The
grids for the control points coincide with the ones for the observations but have a smaller extent. As
the test area is in the ocean area, the test cases can be considered as analogue to gravity anomaly
recovery from the altimeter data.

4.2.2 Model setup

Before the computation using PM-FRE, several model factors (e.g., initial depth, depth limits, etc.)
have to be chosen properly. The empirical rule derived from the numerical tests in Section 4.1.3.5
for choosing the initial depth and depth limits is applied here. Accordingly, the upper depth limit
should be larger than the average data spacing (e.g., about 9 km in our test cases), and the lower
depth limit should be smaller than the highest resolution of the reference gravity field (e.g., about
80 km in our test cases). Fig. 4.25 shows the empirical covariance function and the fitted analytical
Tscherning-Rapp covariance function model (e.g., Tscherning and Rapp, 1974) for data set (a), the
latter one being used in LSC. The covariance functions for the other two data sets are not shown here
as they look similar to the ones for data set (a). As a result, the correlation lengths are about 0.240◦,
0.238◦, and 0.227◦ for the three data sets, resulting in an initial depth of about 15.5 km for all test
cases. The chosen upper depth limit is about 0.9 times of the initial depth, and the lower depth limit
is computed from Bowin’s formula using R = 6371 km and n = 250, resulting in a point mass layer
with the upper depth of 14 km and the lower depth of 25 km. Fig. 4.26 shows the histograms of the
depths for the searched point mass RBFs in each test case. Most of the point mass RBFs are located
around the depth limits (about 80% − 90%). The point mass RBFs around the lower depth limit
contribute to the long-wavelength signals while the short-wavelength signals are mostly represented
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Figure 4.25: Empirical covariance function and the fitted analytical Tscherning-Rapp covariance function
model for data set (a). The value of 0.240◦ means the correlation length of the empirical cova-
riance function.
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Figure 4.26: Histogram of the depths for the searched point mass RBFs in the test case a) with data set (a);
b) with data set (b); c) with data set (c).

Table 4.22: Model setup used in the numerical tests in Section 4.2.

Spectral bandwidths of the RBFs 1 Full, Nmin = 0
2 Reduced, Nmin = 101

Optimization direction Radial-direction

Initial depth [km] 15.5

Depth limits [km] 14− 25

Number Nε of the 10nearest point mass RBFs

Total number K of point 3000mass RBFs

Iteration limit Nit for each 20new point mass RBF

by the RBFs close to the upper depth limit. To investigate the effect of the spectral bandwidths of
the point mass RBFs when using the geoid heights as input, the full RBFs and the reduced RBFs
with Nmin = 101 are compared. Most model factors used for the following computations are given in
Table 4.22.

4.2.3 Determination of the regularization parameter

No regularization is applied in the second step of PM-FRE for the test case with data set (a) while
Tikhonov regularization with an identity regularization matrix is applied in the other two test cases.
The regularization parameters determined by the three approaches (i.e., empirical approach, GCV,
and VCE) are given in Table 4.23. Obviously, the chosen parameters are nearly the same with the
use of the full and reduced point mass RBFs for each approach in each test case. When the input
data contain larger errors (e.g., test case (c)), a larger regularization parameter is chosen to reduce
the effect of errors in the solutions. In addition, the regularization parameters α of the regularized
LSC (see also Section 2.6) for test cases (b) and (c) are determined by Eq. (2.50), resulting in the
values of 6.25 and 4.0, respectively.
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Table 4.23: Regularization parameters obtained by three approaches associated with the full and reduced
point mass RBFs for test cases (b) and (c).

Test case (b) Test case (c)

Method Full Reduced Full Reduced

Empirical 3.981× 10−13 3.981× 10−13 2.512× 10−12 2.512× 10−12

GCV 1.000× 10−14 1.000× 10−14 1.000× 10−13 1.000× 10−13

VCE 2.261× 10−13 2.267× 10−13 1.311× 10−12 1.307× 10−12

4.2.4 Results and discussion

The solutions computed by PM-FRE, as well as the LSC solutions are validated by a set of control
points with true values for each test case. The statistics of the modeled gravity anomaly errors are
listed in Tables 4.24−4.26. It can be seen that, when the input data are error-free (see Table 4.24),
the solutions of PM-FRE without regularization are close to the standard LSC solutions with an
accuracy of about 1 mGal. When the input data are noisy (see Tables 4.25 and 4.26), the application
of Tikhonov regularization in PM-FRE improves the solutions marginally in test case (b), i.e., with an
accuracy from about 2.7 mGal to 2.5 mGal, but significant improvements can be achieved in test case
(c), i.e., with an accuracy from about 5.8 mGal to 3.9 mGal. The standard LSC solutions are severely
affected by the data noise (see Tables 4.25 and 4.26), indicating that the amount of smoothing defined
by the noise covariance matrix Cee is not enough (see Eq. (2.45)). Better results can be obtained by
introducing a regularization parameter α > 1 (i.e., 6.25 and 4.0) into the regularized LSC (see Eq.
(2.47)).
The performance of the three approaches for choosing a proper regularization parameter in PM-

FRE is different. The regularization parameters determined by the empirical approach are the most
proper among the three approaches according to the numerical results, and the ones associated with
the other two approaches are smaller, meaning that the effect caused by the data noise in the solutions
are larger. Furthermore, the VCE determined regularization parameters are much closer to the ones
determined by the empirical approach than the GCV determined regularization parameters, resulting
in better solutions (see Tables 4.23, 4.25, and 4.26). The square roots of the variance components of
data sets (b) and (c) estimated by VCE are about 0.0197 and 0.0490 m, which are slightly smaller
than the known data noise (i.e., 0.02 and 0.05 m), indicating that the noise in both data sets is slightly
underestimated. This is the reason why the VCE determined regularization parameters are smaller
than the ones derived from the empirical approach.
The use of full and reduced point mass RBFs gives similar gravity anomaly solutions in the three

test cases. Comparing to the results in Section 4.1, the reason is that the modeled gravity field
quantities are gravity anomalies, which are in the short-wavelength domain. The main contributions
to these gravity field quantities are from the observations in the near zone. With the increase of the
distance to the prediction points, the contributions of the observations decrease rapidly. Although
the full point mass RBFs are always nonzero, the far zone contributions to the gravity anomalies are
still negligible. Therefore, the choice of the spectral bandwidths of the point mass RBFs for regional
gravity field modeling also depends on the kind of modeled gravity field quantities. If the gravity field
quantities to be modeled are in the short-wavelength domain, the full point mass RBFs also work
fine.
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Table 4.24: Statistics of the modeled ∆g errors [mGal] at 11305 control points for test case (a). The first
and second lines of the solutions computed by PM-FRE correspond to the full and reduced point
mass RBFs, respectively.

Method Mean STD RMS Min Max

No regularization −0.051 1.154 1.155 −5.396 5.472
0.004 1.164 1.164 −5.382 5.525

Standard LSC −0.498 0.869 1.019 −4.352 2.917

Table 4.25: The same as in Table 4.24, but for test case (b).

Method Mean STD RMS Min Max

No regularization −0.025 2.738 2.738 −18.649 12.760
0.006 2.740 2.740 −19.070 12.738

Empirical −0.027 2.481 2.481 −13.921 11.826
0.009 2.480 2.480 −13.948 11.591

GCV −0.039 2.675 2.675 −13.759 11.874
0.006 2.674 2.674 −13.587 11.780

VCE −0.031 2.492 2.492 −13.325 12.101
0.008 2.491 2.491 −13.350 11.820

Standard LSC −0.197 5.074 5.078 −22.375 19.196
Regularized LSC −0.055 2.420 2.421 −10.343 9.936

Table 4.26: The same as in Table 4.24, but for test case (c).

Method Mean STD RMS Min Max

No regularization −0.028 5.839 5.839 −34.933 32.801
0.012 5.840 5.840 −34.955 32.949

Empirical −0.012 3.909 3.908 −16.886 22.329
0.019 3.911 3.911 −16.721 22.393

GCV −0.033 5.022 5.022 −21.940 24.289
0.013 5.024 5.024 −21.974 24.247

VCE −0.017 3.986 3.986 −16.395 19.138
0.017 3.989 3.989 −16.205 19.238

Standard LSC −0.047 5.568 5.568 −21.451 22.113
Regularized LSC −0.005 3.596 3.596 −16.902 18.750
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4.2.5 Conclusions

The performance of PM-FRE using the RCR technique has been demonstrated by three numerical
test cases for gravity anomaly recovery from simulated geoid heights with different noise levels. If the
model setup for PM-FRE is proper and the input data are error-free, the solutions can be achieved
close to the LSC solutions. The implementation of Tikhonov regularization in the second step of PM-
FRE guarantees stable solutions if ill-posedness exists. By comparing three approaches for choosing
a proper regularization parameter in our test cases, the empirical approach proves to be the best, and
then VCE follows. However, the empirical approach is hard to be applied in practical applications
with a large amount of unknowns or in the absence of control points. Then VCE is an alternative
approach. Furthermore, it also provides the variance components of the input data, which can be
interpreted as a posteriori information of the data. As a consequence, VCE is preferred to find the
proper regularization parameter in the following numerical tests using PM-FRE.
Although GCV gives the worst regularization parameters in our test cases, it does not mean it could

not provide better regularization parameters in other applications. The solutions of the standard LSC
are found to suffer from the data noise. Therefore, a regularization parameter α > 1 is required to
further reduce the effect of the data noise in the solutions, resulting in the best results for test cases
(b) and (c). The regularized LSC could be a complement to the standard LSC; however, it will not
be further discussed as it is out of the scope of this thesis.

4.3 Tests with a set of synthetic geoid heights with different accuracies

This numerical test is a continuation of the test cases presented in Section 4.2. The main goal now
is to investigate the performance of PM-FRE for dealing with the case of two data groups with the
same data type but different accuracies. The main focus is on the first step of PM-FRE for searching
for the point mass RBFs. In the case of a single data type with the same accuracy, each new point
mass RBF is searched for by placing it below the observation point with max

∣∣√Pe [l− F (m′)]
∣∣, in

which Pe = I (see also Fig. 3.8). However, Pe should be a non-identity diagonal matrix in the case of
a single data type with different accuracies. Two issues will be discussed. One is that, if the accuracy
of two input data sets is known, whether the use of a related diagonal weight matrix Pe for finding
the point mass RBFs in the first step can help to improve the solution. If the answer is positive,
what to do if the data accuracy is unknown. In this case, the key question is how to properly get the
weight matrix Pe. To solve this problem, an iterative procedure is proposed based on VCE as it can
provide a posteriori information on the input data sets. This procedure is outlined as follows:

1 Iteration 1: The weight matrix Pe = I is used for the computations in the first step of PM-FRE.
After obtaining the positions of all selected point mass RBFs, the second step of PM-FRE is
implemented by using VCE, with which the variance component for each data group can be
obtained.

2 Iteration i (i ≥ 2): A new non-identity diagonal weight matrix Pe, which is derived from the
variance components provided in Iteration i− 1, is used for the modeling, resulting in a new set
of variance components. If the new variance components are close to the old ones, then stop
the whole procedure, and the current solution is regarded as the final solution. Otherwise, let
i = i+ 1 and repeat 2 .

With the use of a non-identity diagonal weight matrix in the search process, more point mass RBFs
are to be located below the data points with higher accuracy. In the following, simple tests using two
groups of synthetic geoid heights will be conducted to discuss the above two issues.
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Figure 4.27: Distribution of 9801 data points (blue) for group (1) and 4264 points (red) for group (2).

4.3.1 Data description

The original synthetic data set is based on the data set (a) used in Section 4.2. The only difference
is that the total 14065 data points are divided into two groups: (1) a group with 9801 data points,
contaminated by white noise with an STD of 0.02 m and (2) a group of 4264 data points with an
accuracy of 0.05 m. Fig. 4.27 shows the point distribution of the two data groups. As can be seen,
each data group has a homogeneous distribution. For the other information about the input data, we
refer to the description in Section 4.2.1.

4.3.2 Solutions of PM-FRE

The model factors used in this numerical test are almost the same as the ones in Table 4.22 except
that only the full point mass RBFs are used. To compare the solution of using an identity weight
matrix for finding the point mass RBFs in the first step and to assess the proposed iterative procedure
in assuming that the accuracy of the two data sets is unknown, the solution computed by using the
diagonal weight matrix derived from the exact accuracy of the two data sets is taken as reference.
The statistics of the modeled gravity anomaly errors for the reference solution and the solutions
within the first three iterations are given in Table 4.27. It should be noted that the identity weight
matrix is employed in the solution of the first iteration. The results show that: (1) the use of exact

Table 4.27: Statistics of the modeled ∆g errors [mGal] at 11305 control points associated with different
solutions.

Solution Mean STD RMS Min Max

Reference -0.030 2.728 2.728 -12.830 14.021
Iteration 1 -0.024 2.994 2.994 -14.747 18.332
Iteration 2 -0.021 2.751 2.751 -12.020 14.580
Iteration 3 -0.024 2.726 2.726 -12.732 13.136
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Figure 4.28: Errors of the modeled ∆g at 11305 control points associated with different solutions; a) Refer-
ence; b) Iteration 1; c) Iteration 2; d) Iteration 3.

Table 4.28: Square roots of estimated variance components [m] for the two data groups associated with
different solutions.

True Reference Iteration 1 Iteration 2 Iteration 3

group (1) 0.0200 0.0199 0.0219 0.0202 0.0200
group (2) 0.0500 0.0493 0.0472 0.0487 0.0491

data weights in the search process improves the gravity anomaly solutions. A reduction of the RMS
error of about 0.3 mGal in comparison to the case of using an identity weight matrix is observed (see
‘Reference’ and ‘Iteration 1’ in Table 4.27); (2) the solution similar to the one using the exact weight
matrix can be obtained within three iterations, the resulting RMS error is about 2.73 mGal. Fig. 4.28
shows the gravity anomaly errors at the control points for different solutions. The residuals become
slightly smoother from the solutions of Iteration 1 to Iteration 3 (see Figs 4.28b−4.28d), and similar
error patterns can be observed between the solution of Iteration 3 (see Fig. 4.28d) and the reference
solution (see Fig. 4.28a). From another aspect, the feasibility of the proposed iterative procedure
for dealing with a single data type with different accuracies can also be demonstrated by the square
roots of estimated variance components, which are presented in Table 4.28. The estimated variance
components of the two data groups related to the reference solution and the solution of Iteration 3
are very close to the true values.

4.3.3 Conclusions

A simple iterative procedure is proposed and demonstrated to be capable of providing reasonable
solutions in the case when two (or more) data groups with the same data type but different accura-
cies are used as input. It mainly benefits from the VCE technique, which can deliver the variance
component of each data group to help for the modification of the search process in the first step of
PM-FRE. In this test, the iterative solution obtained within three iterations seems to be sufficient.
However, more iterations could also be carried out but requiring more computation time.
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4.4 Tests with synthetic terrestrial and airborne gravity disturbances

4.4.1 Data description

Recently, a set of synthetic gravity field observations representing data from terrestrial, airborne,
and satellite sensors are provided by the Joint Study Group (JSG0.3) of IAG for the compari-
son of current methodologies in regional gravity field modeling in two test regions. One is in Eu-
rope (EU) and the other is in South America (SA). This benchmark data set is publicly available
(http://jsg03.dgfi.badw.de) and free for all interested researchers to test and validate their modeling
approaches. In this section, terrestrial gravity disturbances with a fine 5′×5′ grid and airborne gravity
disturbances are used for testing the point mass method PM-FRE. Both data sets are simulated from
the EGM2008 model up to d/o 2190 by adding white noise with a standard deviation of 0.01 mGal
to the error-free terrestrial data and a standard deviation of 1 mGal to the airborne data. All results
are compared with validation data sets (i.e., disturbing potentials T synthesized from the EGM2008
model up to d/o 2190) on geographic grids on the surface of the topography. The validation data grids
have the same grid spacing as the terrestrial observation grids, but are shifted for half the spacing.
Two flight campaigns are available in the EU test area, we only choose the one over the Adriatic Sea
(i.e., flight_A) as it mostly overlaps the test region. The location of the data points is shown in Fig.
4.29. For more details about the data sets, we refer to the information given on the above-mentioned
website.
With the RCR technique, the residuals obtained by removing the long-wavelength components

computed from the EGM2008 model up to d/o 250 are used as input for the modeling. No topography
reduction is applied due to the synthetic data. The statistics of the global model-derived and residual
gravity disturbances δg in the two test areas are summarized in Table 4.29. As can be seen, rough
residual gravity field features are presented in both test areas.

4.4.2 Solution of PM-FRE using terrestrial data only

The initial depth of the point mass RBFs are chosen to be 19.0 km for the EU test case and 14.0 km
for the SA test case on the basis of the empirical covariance functions of the observations. According
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Figure 4.29: Distribution of the input terrestrial (red, 8833 points for both EU and SA), airborne (blue, 1484
points for EU and 2626 points for SA) gravity disturbances (δg), and of the terrestrial disturbing
potentials (T ) (green, 8712 points for EU and 8640 points for SA) for the validation in the study
areas of Europe (left) and South America (right).
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Table 4.29: Statistics of global model-derived terrestrial δgM
ter, airborne gravity disturbances δgM

air, and resid-
ual terrestrial δgR

ter, airborne gravity disturbances δgR
air [mGal].

Area Obs Mean STD RMS Min Max

EU

δgMter -25.130 41.661 48.652 -148.592 102.796
δgRter 0.498 25.186 25.189 -133.343 102.485
δgMair -11.611 36.767 38.545 -99.767 67.928
δgRair 0.002 20.065 20.059 -83.103 64.464

SA

δgMter -7.005 62.379 62.773 -183.091 137.120
δgRter 1.332 34.621 34.645 -188.716 217.019
δgMair -5.662 54.138 54.423 -176.741 123.109
δgRair -0.297 24.269 24.266 -143.996 130.880

to the empirical rule described in Section 4.1.3.5, the upper depth limit is not shallower than 9 km
and the lower depth limit is not deeper than 80 km for both test cases. Here, the upper depth limit
is chosen to be about 0.8 times of the initial depth and the lower depth limit is about 2 times of the
initial depth. The resulting upper and lower depth limits are 15.0 km and 35.0 km for the EU test
case, and 11.0 km and 30.0 km for the SA test case.

4.4.2.1 Number of point mass RBFs

Principally, we could determine the number of RBFs by achieving the target data misfit of 0.01 mGal
that is derived from the accuracy of the terrestrial data. In practice, this target misfit can not be
achieved even if the number of selected RBFs is the same as the number of data points. Alternatively,

Table 4.30: RMS of the fit to observed δg [mGal] and true T [m2/s2] for different numbers of point mass
RBFs.

EU SA

Number δg T δg T

500 9.820 0.879 12.057 1.555
1000 6.616 0.548 7.080 0.835
1500 4.888 0.432 4.727 0.504
2000 3.656 0.371 3.332 0.332
2500 2.917 0.336 2.621 0.280
3000 2.381 0.318 2.228 0.260
3500 1.948 0.303 1.965 0.251
4000 1.639 0.292 1.840 0.245
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Table 4.31: RMS of the fit to observed δg [mGal] and true T [m2/s2] for different values of Nmin.

EU SA

Nmin δg T δg T

0 2.273 4.788 1.872 1.447
51 2.288 0.900 1.875 0.942
101 2.297 0.552 1.907 0.443
151 2.347 0.361 1.928 0.296
201 2.381 0.318 1.965 0.251
251 2.579 0.292 2.198 0.282
261 3.160 0.488 2.910 0.488

the search process is terminated by finding a predefined number of RBFs. For all comparisons,
Nmin = 201 is used and VCE is applied for choosing proper regularization parameter. The RMS of
the fit to the observations (i.e., terrestrial gravity disturbances δg) and validation points (i.e., ground
true disturbing potentials T ) for different numbers of point mass RBFs are given in Table 4.30. When
increasing the number of used point mass RBFs, the fit to both the observed gravity disturbances
and true disturbing potentials becomes better. The best fit to the disturbing potentials is found with
the use of 4000 RBFs, leading to the RMS error of 0.292 m2/s2 for the EU test area and 0.245 m2/s2

for the SA test area. Furthermore, we also find that the decrease of the RMS errors becomes quite
slow when the number of RBFs reaches 3000. As a result, 3000 point mass RBFs will be used in the
EU test case and 3500 RBFs in the SA test case.

4.4.2.2 Spectral bandwidths of the point mass RBFs

In Section 4.4.2.1, the number of point mass RBFs in the modeling has been fixed through numerical
comparisons. In the following, we are going to select a proper Nmin with which a good fit to the
disturbing potentials at validation points can be achieved. Seven candidates have been tested, and
the related RMS of the fit is presented in Table 4.31. As expected, the use of Nmin = 0 provides the
worst fit to the disturbing potentials due to the long-wavelength domain of the disturbing potential.
With increasing of Nmin, the fit to the disturbing potentials becomes better; however, the fit to the
terrestrial gravity disturbances becomes poorer. The best fit of the disturbing potentials is obtained
when Nmin = 251 for the EU test case and Nmin = 201 for the SA test case. Therefore, the optimal
Nmin is chosen as 251 for the EU test case and 201 for the SA test case.

4.4.2.3 Comparison of PM-FRE and LSC

The goal of this section is to compare PM-FRE and LSC for the modeling of disturbing potential
using terrestrial gravity disturbances. According to the findings in Sections 4.4.2.1 and 4.4.2.2, the
model factors for PM-FRE is summarized in Table 4.32. The LSC approach is implemented by the
GRAVSOFT package (Tscherning et al., 1992).
The statistics of the differences between the modeled and true disturbing potentials T at the control

points are presented in Table 4.33. The disturbing potential errors at the control points are also illu-
strated in Fig. 4.30. In both test cases, both methods provide comparable results in terms of RMS
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Table 4.32: Model setup used for the numerical tests in Section 4.4.2.3.

Model factors EU test case SA test case

Spectral bandwidths of the RBFs Nmin = 251 Nmin = 201

Optimization direction Radial-direction

Initial depth [km] 19.0 14.0

Depth limits [km] 15.0− 35.0 11.0− 30.0

Number Nε of the 10nearest point mass RBFs

Total number K of point 3000 3500mass RBFs

Iteration limit Nit for each 20new point mass RBF

Table 4.33: Statistics of the residual disturbing potentials T [m2/s2] at the control points computed from two
methods for the two test cases.

EU SA

Method Mean STD RMS Min Max Mean STD RMS Min Max

PM-FRE -0.010 0.292 0.292 -3.068 2.664 0.003 0.251 0.251 -2.763 2.235
LSC -0.002 0.367 0.367 -3.027 4.335 -0.017 0.253 0.254 -3.510 1.767

errors of the disturbing potentials at ground. PM-FRE allows a better approximation than LSC. In
the EU test case, the main differences between PM-FRE and LSC are in the edge of the research area
(Figs 4.30a and 4.30b), and larger errors can be found for the latter. In the SA test case, the main
differences appear in the coastal area and inland (Figs 4.30c and 4.30d).

4.4.3 Solution of PM-FRE using both terrestrial and airborne data

In Section 4.4.2, we have discussed the results computed by PM-FRE using terrestrial data only and
also compared the results to LSC. A better performance of PM-FRE can be found. Therefore, only
this approach is applied to the modeling using both terrestrial and airborne data in this section.
In each test case, three solutions are computed based on different schemes for finding the point

mass RBFs in the first step. The three solutions are specified as follows:

• EU-I: In this solution, only the terrestrial δg are used for finding the point mass RBFs in the
first step; however, both terrestrial and airborne δg are used for the readjustment in the second
step.
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• EU-II: Both terrestrial and airborne δg are used for the modeling. The point mass RBFs are
searched for with the use of exact data weights.

• EU-III: The same as EU-II, but using the iterative procedure to generate the data weights for
finding the point mass RBFs in the first step. The solution after three iterations is presented.

• SA-I, SA-II, and SA-III are the same as EU-I, EU-II, and EU-III, but for the South America
test case.

For all solutions, VCE is applied to determine the proper regularization parameter as well as the
weights for the two data sets in the second step of PM-FRE. For the solutions in the EU test case,
the number of point mass RBFs is specified as 3000, which is the same as the case in Section 4.4.2.
Similarly, 3500 point mass RBFs are to be selected for the modeling in the SA test case. Since both
terrestrial and airborne data are used for finding the point mass RBFs in EU/SA-II and EU/SA-III,
the initial depths derived from the empirical covariance functions of both data sets are a little different
from the ones in Section 4.4.2, yielding the value of 20.0 km for the EU test case and 14.5 km for the
SA test case. Accordingly, we choose the depth limits of 15.0 − 40.0 km for the EU test case and
11.0− 40.0 km for the SA test case. Comparing to the depth limits in Section 4.4.2, the upper depth
limit remains the same but with a deeper lower depth limit in each test case. The reason is that we
believe that the short-wavelength signals can be fully provided by the terrestrial data, and hence the
upper depth limits are the same as the ones used in Section 4.4.2, which proved to be able to provide
good solutions. The choice of deeper lower depth limits is that we expect that the adding of airborne
data can provide more regional information, which can be well represented by deeper RBFs.
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Figure 4.30: Errors of the modeled disturbing potentials associated with two regional methods at 8712 control
points for the EU test case: a) PM-FRE; b) LSC; and at 8640 control points for the SA test
case: c) PM-FRE; d) LSC.
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Table 4.34: RMS of the fit to observed terrestrial δgT and airborne δgA [mGal], as well as to true T [m2/s2]
for different solutions.

EU SA

Solution δgT δgA T δgT δgA T

I 2.584 6.304 0.288 1.970 8.060 0.241
II 2.838 4.907 0.307 2.297 4.705 0.210
III 2.819 1.389 0.292 2.367 1.026 0.199

Table 4.34 gives the RMS of the fit to the observations and the validation values for different
solutions. Comparing to the solutions in Table 4.33 (see PM-FRE), almost no improvements of the
combined solutions can be found in the EU test case while slightly better solutions are obtained in
the SA test case. The main reason can be attributed to the fact that the terrestrial data points are
homogeneously distributed over the test region and the airborne data area overlaps the terrestrial
data area very much (see Fig. 4.29). In the EU test case, the use of two data sets in the search process
(EU-II and EU-III) provides a slightly poorer fit to the disturbing potentials than using terrestrial
data only (EU-I). In the SA test case, SA-II and SA-III have better fit to the disturbing potentials
than SA-I. From the RMS of the fit to the observations we may get some useful information to explain
why the combined solutions behave differently. For the first solution, the chosen point mass model fits
to the terrestrial data quite well, but much poorer to the airborne data. It is because all point mass
RBFs are selected based on the terrestrial data. The combined solutions are mostly dominated by
the terrestrial data, yielding the RMS fit to the disturbing potentials close to the ones in Table 4.33.
Because of the use of both data sets in the search process for the second and third solutions, the fit to
the airborne data is much better than the first solution, but worse to the terrestrial data. The best
fit to the airborne data is provided by the third solution using the iterative procedure. The reason is
that the accuracy of both data sets is assumed to the same in Iteration 1 and the airborne data are
smoother than the terrestrial data. As a consequence, a better fit to the airborne data is achieved
by using VCE, resulting in a smaller variance component for the airborne data. And hence, a larger
weight is assigned to the airborne data in the following iterations. Finally, a good fit to the airborne
data is achieved. In general, the combined disturbing potential solution with an RMS error of about
0.3 m2/s2 can be calculated using PM-FRE for the EU test case and about 0.2 m2/s2 for the SA test
case. The disturbing potential errors at the control points are illustrated in Fig. 4.31. In each test
case, the error patterns for the three solutions look quite similar. Comparing to the error patterns in
Figs 4.30a and 4.30c, the adding of airborne data does not help to improve the disturbing potential
solution in the EU test case as also shown in Table 4.34. The errors in the edge area are slightly
reduced in the SA test case, especially in the northeast corner (Fig. 4.30c vs. Figs 4.31d−4.31f). It
is because some point mass RBFs are selected around this corner due to the availability of airborne
data points (see also Fig. 4.29).

4.4.4 Conclusions

In this section, the point mass method PM-FRE has been applied to model the disturbing potential
at ground using synthetic terrestrial and airborne gravity disturbances in two test areas, Europe and
South America, both with rough gravity field features. The method PM-FRE is implemented based
on the “optimal” strategy given in Section 4.1.5, in which VCE is used for choosing the proper reg-
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Figure 4.31: Errors of the modeled disturbing potentials at 8712 control points for the EU test case and 8640
control points for the SA test case; a) EU-I; b) EU-II; c) EU-III; d) SA-I; e) SA-II; f) SA-III.

ularization parameter and combining different data sets in the second step. When using terrestrial
data only as input, a comparison between PM-FRE and LSC is carried out. The numerical results
show the better performance of PM-FRE than LSC. The RMS error of the modeled disturbing po-
tential at ground is about 0.3 m2/s2 for the EU test case, and about 0.25 m2/s2 for the SA test case.
Furthermore, an iterative procedure based on VCE is applied for finding the point mass RBFs using
both terrestrial and airborne gravity disturbances. Three solutions, which use different schemes for
finding the point mass RBFs in the first step, are computed and analyzed in each test case. A good
agreement between them can be obtained, with the RMS error of about 0.3 m2/s2 for the EU test
case and about 0.2 m2/s2 for the SA test case.
In the case of several data groups with the same data type but different accuracies (assuming each

data group corresponds to one accuracy), two cases will be encountered: (1) the number of the data
points for one group is much larger than the total number of the other groups and (2) each group
has a similar number of data points. In the first case, we recommend using only the group with
the largest number of data points for searching for the point mass RBFs in the first step, then all
data groups are used for the combination in the second step with the help of VCE. In the second
case, it is necessary to use all data points for the regional modeling (in both first and second step of
PM-FRE). The iterative procedure based on VCE can be applied, with which the point mass RBFs
can be selected based on data accuracy. It is also worth mentioning that, when using several data
groups with different data types and one group possesses most of the data points, the same process
as in the above-mentioned Case (1) can be applied. For quasigeoid modeling by using gravity and
GPS/leveling data, the input data are always dominated by the gravity anomalies. Therefore, in most
cases, only the gravity anomalies are used for finding the point mass RBFs in the first step. Then,
the two different kinds of gravity field quantities are combined in the second step.
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4.5 Tests with a large-scale real data set in the Auvergne area

Finally, we apply PM-FRE to a large-scale real gravity data set over the Auvergne area. The modeled
gravity and height anomalies are compared with independently observed values with high accuracy.
The combination of gravity and GPS/leveling data is also discussed.

4.5.1 Data and preprocessing

The Auvergne data set was provided in 2008 by the Institut Géographique National (IGN), France.
The gravity data are used as a “ground truth” example for testing geoid computation methods
(Duquenne, 2007). There are about 244000 gravity data (∆g) points from the Bureau Gravimétrique
International (BGI), covering an area with the extent of −1◦E to 7◦E and 43◦N to 49◦N; a DTM
based on 3′′ Shuttle Radar Topography Mission (SRTM) height data (version 3) covering a somewhat
larger area (−2◦E to 8◦E, 42◦N to 50◦N); and a set of 75 GPS/leveling points.

Figure 4.32: Location of 242809 ∆g observations (black dots), 1145 ∆g control points (white circles), and 75
GPS/leveling points (white triangles) in the Auvergne area, France. The background shows the
topography of the test area.
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The distribution of the gravity data is quite homogeneous, except in the most mountainous areas
and in a few isolated regions (south of Auvergne, see Fig. 4.32). Although the gravity data are checked
by BGI, some points obviously are still wrong. After deleting these erroneous points, 243954 points
are used for the modeling in this numerical test, in which 242809 points are selected as input, and the
remaining 1145 points are taken as control points to assess the modeled gravity anomalies (see Fig.
4.32). The accuracy of the gravity anomalies is evaluated as 0.25−0.75 mGal. But in the case of using
residual anomalies it can be worse, up to 1 or 2 mGal (Duquenne, 2007). Considering the accuracy
of about 2 cm for the precise leveling measurements and about 2 − 3 cm for the ellipsoidal heights
(Duquenne, 2007), an accuracy of about 2.8 − 3.6 cm for the GPS/leveling-derived height anomalies
can be attained through error propagation with the assumption that the errors are uncorrelated. For
a more detailed description of the Auvergne data set, we refer to Duquenne (2007).
In practical computations, the long-wavelength contributions of the gravity field, which are modeled

by the EGM2008 model up to d/o 360, and the topographic corrections, which are integrated up to a
radius of 10 km for the dense 3′′×3′′ DTM and 200 km for the coarse 30′′×30′′ DTM with respect to the
reference 30′×30′ DTM, are removed from the original input data. The residuals are used to compute
(1) the predictions at the control points and (2) a 1′ × 1′ grid (0◦E to 6◦E, 44◦N to 48◦N) of gravity
anomalies and height anomalies (i.e., a gravity anomaly model and a quasigeoid model). Table 4.35
summarizes the statistics of the gravity anomalies (∆g: free-air, ∆gEGM08: from EGM2008, ∆gRTM :
from RTM, ∆gres1: ∆g − ∆gEGM08, ∆gres2: ∆gres1 − ∆gRTM ) and height anomalies (ζ: original,
ζEGM08: from EGM2008, ζRTM : from RTM, ζres1: ζ − ζEGM08, ζres2: ζres1 − ζRTM ).

4.5.2 Gravimetric solutions

The computation procedure is the same as in the previous numerical tests. The employed point mass
search model is SMA. First, the initial depth of the point mass RBFs is derived from the empirical
covariance function of the input gravity residuals, resulting in the value of 16 km. Second, the depth
limits are determined based on the empirical rule described in Section 4.1.3.5. Accordingly, the
shallowest upper depth limit is limited to 2 km, and the deepest lower depth limit is set to 55 km.
Here, the upper and lower depth limits are chosen to be about 0.875 and 3 times of the initial depth,

Table 4.35: Statistics of the gravity anomalies [mGal] and height anomalies [m].

Mean STD RMS Min Max

∆g 3.066 20.697 20.922 -127.459 177.841
∆gEGM08 7.788 18.686 20.244 -45.761 125.033
∆gres1 -4.722 16.276 16.947 -206.735 91.440
∆gRTM -6.115 15.327 16.502 -179.018 90.691
∆gres2 1.394 9.544 9.645 -49.426 72.054

ζ 49.550 1.473 49.571 46.774 52.147
ζEGM08 49.659 1.466 49.680 47.049 52.455
ζres1 -0.109 0.172 0.203 -0.537 0.272
ζRTM 0.083 0.197 0.212 -0.247 0.562
ζres2 -0.192 0.185 0.266 -0.605 0.108
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Table 4.36: Model setup used for the numerical tests in the Auvergne area.

Spectral bandwidths of the RBFs 1 Nmin = 51 (unconstrained solution)
2 Nmin = 0 and n′ = 40 (constrained solution)

Optimization direction Radial-direction

Initial depth [km] 16

Depth limits [km] 14− 50

Number Nε of the 10nearest point mass RBFs

Total number K of point 10000mass RBFs

Iteration limit Nit for each 20new point mass RBF

resulting in the values of 14 km and 50 km, respectively. Third, the spectral bandwidths of the RBFs
are chosen. For the unconstrained solutions, Nmin = 51 is selected after various tests. For the cons-
trained solutions, the full point mass RBFs are employed while n′ is chosen to be 40 (see Eq. (3.11)).
Fourth, as the accuracy of the input gravity residuals is assumed to be about 1−2 mGal, the searching
for the point mass RBFs is set to be terminated after reaching the target data misfit of 1mGal. If the
target data misfit can not be achieved with a maximum number of 10000 point mass RBFs, then the
search process is stopped. The reason why the number of RBFs is limited to 10000 is that the data fit
to the input data is very close to the target data misfit. In this case, the data misfit is 1.136 mGal for
10000 RBFs and 1.044 mGal for 20000 RBFs. Obviously, the former choice is better when considering
the numerical complexity. Tikhonov regularization is applied for all computations in the second step
of PM-FRE, and the regularization parameter is determined by VCE. The detailed model setup is
given in Table 4.36.
On the basis of the above model setup, 10000 point mass RBFs are found and positioned in the

defined single layer. The depth histogram and the horizontal distribution of these point mass RBFs
are shown in Fig. 4.33. Most of the searched RBFs are located around the upper depth limit while
only a small part of them are near the lower depth limit. This is because a large amount of shallow
point mass RBFs are needed to represent the high-frequency gravity field signals, while only a small
number of deep RBFs are required for approximating the long-wavelength signals. The horizontal
distribution of the RBFs shows a high correlation to the topography, or equivalently, to the roughness
of the gravity field. In the areas with rough features (i.e., rough topography), the point mass RBFs
are dense, whereas the RBFs are sparsely distributed in the areas with smooth features (i.e., flat
topography).
With the use of the point mass RBFs with known positions, two solutions are computed in the second

step of PM-FRE, i.e., the unconstrained solution and the constrained solution. Both are validated
by comparing to the observed values at the control points, and the statistics of the differences are
presented in Table 4.37. The RMS of the gravity anomaly errors is about 1.2 mGal for both solutions,
where the unconstrained solution is slightly better than the constrained one. From the gravity anomaly
errors illustrated in Fig. 4.34, a good agreement between the two solutions can be seen except for the
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Figure 4.33: Depth histogram (left) and horizontal distribution (right) for 10000 searched point mass RBFs.

points located near the center of (3◦E, 45◦N), where only a small number of gravity observations are
available (see Fig. 4.32). The largest errors for the two solutions are observed at the same points,
which are located in the Alps area around the point of (5.5◦E, 45◦N). The STD of the height anomaly
errors is about 0.035 m for the two solutions, and close to the results presented in Ågren et al. (2009).
A mean difference of −0.182 m for the unconstrained solution and −0.165 m for the constrained
solution are observed, indicating the inconsistency between the gravimetric and GPS/leveling-derived
height anomalies. Due to the biases, the height anomaly errors at the GPS/leveling points with the
removal of the mean errors are shown in Fig. 4.35 so that some useful information is visible. It clearly
shows that most height anomaly errors are in the range between −0.1 m and 0.1 m if the biases are

Table 4.37: Statistics of the differences between the predicted and observed values at the control points, i.e.,
1145 observed gravity anomalies [mGal] and 75 GPS/leveling-derived height anomalies [m], for
unconstrained (first two lines) and constrained solutions (second two lines).

Mean STD RMS Min Max

∆g 0.048 1.190 1.191 -6.625 17.412
ζ -0.182 0.034 0.185 -0.255 -0.069

∆g 0.078 1.239 1.241 -6.802 17.589
ζ -0.165 0.035 0.169 -0.247 -0.070
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Figure 4.34: Gravity anomaly errors at 1145 control points associated with a) the unconstrained solution and
b) the constrained solution.
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Figure 4.35: Height anomaly errors at 75 GPS/leveling points associated with a) the unconstrained solution
with the removal of the mean of −0.182 m and b) the constrained solution with the removal of
the mean of −0.165 m.

removed. The largest errors for both solutions are at the same points, located in the southeast of
the region covered by the GPS/leveling points. Comparing the error distribution for both gravity
and height anomalies (Figs 4.34 and 4.35) to the input data locations in Fig. 4.32, large errors can
be seen in the area with sparse observations, indicating the importance of using homogeneous input
data to compute high-quality regional gravity field models.
Based on the estimated point mass RBFs, a 1′ × 1′ grid of gravity anomalies and height anomalies

on the Earth’s surface associated with the two solutions are computed and shown in Fig. 4.36, so
are the differences between them. The differences between the two gravity anomaly models are very
small with values in the range between −2 mGal and 2 mGal in most areas. Differences with values
larger than 8 mGal can be observed in two places due to the lack of gravity observations (see also
Fig. 4.32). It is obvious that one of the two solutions provides worse predictions in the gaps of the
input data points. According to the comparisons at the control points, the gravity anomaly model
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Figure 4.36: Gravimetric gravity anomaly models with a resolution of 1′×1′ for a) the unconstrained solution;
b) the constrained solution; c) the differences between a) and b); d), e), and f) the same, but
for the gravimetric quasigeoid models.

associated with the unconstrained solution is regarded as the better one (Fig. 4.36a). As expected,
significant height anomaly differences are found in the same two places in Fig. 4.36f. Besides the two
small-scale height anomaly differences with large values, large-scale differences reaching up to ±30 cm
are observed in the border area from Fig. 4.36f. It might be caused by the different computation
schemes, i.e., the reduced RBFs without constraints and the full RBFs with constraints.

4.5.3 Combined solutions

According to the results of Section 4.5.2, the unconstrained solutions perform slightly better than
the constrained solutions. Therefore, only the former will be considered in the following. In Section
4.5.2, we observed systematic differences in the order of more than one decimeter when comparing
the gravimetric height anomalies to the geometric values derived from the GPS/leveling data. Many
approaches have been developed so far for the combination of gravity and GPS/leveling data. The
commonly applied approach is the corrector-surface approach (e.g., Milbert, 1995; Denker et al.,
2000; Nahavandchi and Soltanpour, 2006; Soltanpour et al., 2006), in which the gravimetric quasi-
geoid model is fitted to the GPS/leveling quasigeoid heights by adding a “corrector surface” that
is modeled based on the differences between gravimetric and geometric height anomalies. Another
popular technique to approximate the differences is LSC (e.g., Denker et al., 2000; Darbeheshti and
Featherstone, 2010). Alternatively, the combination can also be realized by the integrated processing
of all available data using least-squares techniques (e.g., Ihde et al., 1998; Denker et al., 2000) or LSC.
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In addition, the data combination is written as the solution of a Cauchy boundary value problem for
the Laplace equation, which allows to remove the non-uniqueness of the problem of local gravity
field modeling using terrestrial gravity data only (Prutkin and Klees, 2008). This approach is further
modified for the combination of a gravimetric quasigeoid with GPS/leveling data in the presence of
noise with correlations and/or spatially varying noise variances (Klees and Prutkin, 2010). Although
many approaches are available for the combination of GPS/leveling and gravity data, we will not pay
too much attention to this issue in this thesis, only the corrector-surface approach and the integrated
processing of the GPS/leveling and gravity data will be discussed in this section.

4.5.3.1 Method I

In this method, an empirical corrector surface, which incorporates systematic errors from ellipsoidal,
leveling, and geoidal sources, is constructed to relate the gravimetric quasigeoid model to the model
derived from the GPS/leveling data. Modeling of such a corrector surface begins by forming residuals
in the form of (Denker et al., 2000)

ζGPS − ζmodel =
(
hGPS −HN

)
− ζmodel = l = t+ s+ n, (4.1)

where ζGPS is the geometric height anomaly, computed as the difference between the ellipsoidal height
hGPS and the leveled normal height HN , ζmodel is the gravimetric height anomaly, and l are the raw
residuals, which are considered as a trend t, signal s, and noise n component in a least-squares
collocation model.
The trend component t is modeled in the form of

t = cosφ cosλ∆X + cosφ sinλ∆Y + sinφ∆Z (4.2)

with the geodetic latitude φ and longitude λ, and the 3-parameter datum shift ∆X, ∆Y , and ∆Z.
After computing the trend parameters, an empirical covariance function of the detrended residuals

(i.e., l−t) is computed and modeled by a simple mathematical function. Here, a second-order Markov
covariance model is employed, which has the form

Cov(d) = C0

(
1 + d

α

)
e−

d
α , (4.3)

in which d is the distance, C0 is the signal variance, and α is a parameter that describes the charac-
teristic length of the covariance function. When the signal and error covariance models are fixed, the
signal component at an arbitrary point P can be predicted by the formula

ŝ = cT
P (C + D)−1 (l− t) , (4.4)

where ŝ is the predicted signal in point P , C is a matrix containing the signal covariances between the
observations, D is the noise covariance matrix, and cP is the vector consisting of the signal covariances
between the predicted signal and the observations.
Finally, the corrected quasigeoid model is obtained by adding the predicted signal and the trend

component to the gravimetric quasigeoid model, yielding

ζcmodel = ζmodel + t+ ŝ︸ ︷︷ ︸
corrector surface

. (4.5)

With the use of the available 75 GPS/leveling points, the empirical corrector surface is computed
by the collocation approach. In order to discuss the benefit from each model component, the statis-
tics of the discrepancies between the observed and three modeled quasigeoid undulations at the 75
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Table 4.38: Statistics of the differences between the observed and three modeled height anomalies [m] at 75
GPS/leveling points for Method I.

Mean STD RMS Min Max

ζGPS − ζmodel -0.182 0.034 0.185 -0.255 -0.069
ζGPS − (ζmodel + t) 0.000 0.032 0.031 -0.067 0.106
ζGPS − (ζmodel + t+ s) 0.000 0.013 0.013 -0.026 0.043
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Figure 4.37: Height anomaly errors at 75 GPS/leveling points for a) ζGP S − (ζmodel + t); b) ζGP S −
(ζmodel + t+ s); c) the directly combined solution using the full point mass RBFs.

GPS/leveling points are presented in Table 4.38. The residuals ζGPS − ζmodel show a mean value
of −0.182 m and an RMS of 0.185 m (see also Table 4.37), exhibiting a constant bias at the level of
18.2 cm. The residuals ζGPS − (ζmodel + t) and ζGPS − (ζmodel + t+ s) have zero means with RMS
values of 0.031 m and 0.013 m, respectively. Obviously, the quasigeoid after trend and signal correc-
tions shows a big improvement in accuracy. This proves the efficiency of the procedure. Figs 4.37a
and 4.37b show the error distribution for ζGPS − (ζmodel + t) and ζGPS − (ζmodel + t+ s), from which
it can be seen that the errors are much smaller for the latter one than the former one. The largest
errors for both models are located in the southeast corner of the area covered by the GPS/leveling
points, in which only a small number of gravity observations are available. The other errors are all
in the range from −0.10 m to 0.10 m.

4.5.3.2 Method II

In this method, the gravity and GPS/leveling data are directly combined in the estimation process by
using PM-FRE. Since the number of GPS/leveling points is much smaller than the number of gravity
anomaly observations (75 vs. 242809), it is sufficient to use only the gravity anomalies for finding the
point mass RBFs in the first step of PM-FRE. Therefore, the first step of PM-FRE is the same as
the one used in Section 4.5.2 (i.e., the same number of point mass RBFs at the same positions). In
the second step, the gravity anomalies and GPS/leveling-derived height anomalies are introduced as
inputs for the final adjustment of the magnitudes, where VCE is applied for the proper weighting of the
two data groups as well as for the proper determination of the regularization parameter. As the two
data sets are different kinds of gravity field quantities, the choice of Nmin = 51 that works fine in the
case of using gravity anomalies as inputs does not hold in this case. Therefore, two choices of Nmin = 0
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Table 4.39: Statistics of the differences between the predicted and observed values at the control points, i.e.,
1145 gravity anomalies [mGal] and 75 GPS/leveling-derived height anomalies [m], for two choices
of Nmin.

Nmin Solution Mean STD RMS Min Max

0 ∆g 0.047 1.191 1.191 -6.601 17.373
ζ 0.000 0.031 0.031 -0.066 0.096

51 ∆g 0.051 1.190 1.190 -6.620 17.413
ζ -0.175 0.034 0.179 -0.246 -0.058

and 51 are compared. The statistics of the differences at the control points for the two solutions is
given in Table 4.39. From this table, we find that adding of GPS/leveling data has no contribution to
the gravity anomaly solutions, leading to a similar RMS fit as in Table 4.37. For the height anomaly
solutions, only the case of using Nmin = 0 is affected by considering additional GPS/leveling data.
The corresponding mean difference reduces to zero, and a smaller STD of 0.031 m is obtained. The
case of Nmin = 51 provides a combined height anomaly solution similar to the gravimetric solution,
meaning that the GPS/leveling data have almost no contribution to the combined height anomaly
solution. It could be expected that the reduced point mass RBFs (i.e., Nmin = 51) are less sensitive to
long-wavelength signals and the GPS/leveling quasigeoid heights are in the long-wavelength domain
in comparison to the short-wavelength domain of the ground gravity data. Alternatively, the use of
full point mass RBFs (i.e., Nmin = 0) can take the GPS/leveling data into account as they are more
sensitive to the long-wavelength signals than the reduced RBFs. The square roots of the variance
components for the gravity data estimated by VCE are 0.829 mGal for the two choices of Nmin due
to the large amount of gravity anomaly observations. The square roots for the GPS/leveling data are
0.033 m and 0.179 m corresponding to Nmin = 0 and 51, respectively. According to the definition of
the weight in Koch and Kusche (2002), the larger the variance component is, the smaller the weight
is and the smaller is the contribution of the related data set to the solution. The use of full RBFs
attains a smaller variance component for the GPS/leveling data, leading to a better fit. The height
anomaly error distribution associated with Nmin = 0 is illustrated in Fig. 4.37c.
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Figure 4.38: Location of 36 GPS/leveling points for the development of the combined solutions (black circles)
and 39 points for the external validation (white triangles).
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4.5.3.3 Comparison and discussion

Previously, the combined height anomaly solutions are validated by the GPS/leveling data, which is
also used for the modeling. A good quality test of the used combination procedures is to compare
the combined height anomaly solutions with an independent GPS/leveling data set. Therefore, the
available 75 GPS/leveling points are divided into two groups: (1) 36 points for the development of
the combined solutions and (2) 39 points for the external validation. The location of the two data
groups is shown in Fig. 4.38.

According to previous analysis, the spectral bandwidth of Nmin = 51 is employed for the combined
modeling when using Method I, and Nmin = 0 for Method II. For the sake of simplicity, the combined
height anomaly solutions computed by Method I considering 75 GPS/leveling points are denoted as
I75, and I36 means that only 36 GPS/leveling points are used for the modeling. Similarly, II75 and
II36 have the same meaning but for Method II.
The statistics of the differences at the GPS/leveling points for all combined solutions are sum-

marized in Table 4.40. This table shows an evident increase of RMS difference at the independent
validation points (i.e., 39 GPS/leveling points) for I36 (i.e., from 1.2 cm to 3.5 cm) and a slight increase
for II36 (i.e., from 3.1 cm to 3.2 cm), but all results are still very satisfactory, leading to RMS errors
of 0.035 m and 0.032 m, respectively. The spatial distribution of the differences is shown in Fig. 4.39.
All differences are in the range between −0.10 m and 0.10 m except for one point with the largest
error in the southeast corner of the area covered by GPS/leveling data.

Table 4.40: Statistics of the differences [m] at GPS/leveling points for different combined solutions.

Solution Mean STD RMS Min Max

I75 (75) 0.000 0.013 0.013 -0.026 0.043
II75 (75) 0.000 0.031 0.031 -0.066 0.096

I36
(36) 0.000 0.012 0.012 -0.024 0.025
(39) -0.001 0.036 0.035 -0.077 0.103

II36
(36) 0.001 0.032 0.031 -0.067 0.064
(39) -0.001 0.033 0.032 -0.062 0.111
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Figure 4.39: Height anomaly errors at 39 independent GPS/leveling points associated with a) I36 and b) II36.
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The quasigeoid models with a resolution of 1′ × 1′ for the above four combined solutions, as well
as the internal comparison between them, are shown in Fig. 4.40. The use of different combination
methods causes small undulations in the area covered by the GPS/leveling points, but yields large
differences in the four corners of the research area (see Figs 4.40a−4.40c and 4.40d−4.40f). The
differences between the models computed by using different numbers of GPS/leveling points (i.e., 75
vs. 36 points) show a trend increasing from northwest to southeast in the case of Method II (see Figs
4.40b, 4.40e, and 4.40h). In addition to the trend, some signal differences caused by adding more
GPS/leveling points can be observed in the case of Method I (see Figs 4.40a, 4.40d, and 4.40g). This
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Figure 4.40: Combined 1′ × 1′ quasigeoid models for a) I75; b) II75; c) I75 − II75; d) I36; e) II36; f) I36 −
II36; g) I75 − I36; h) II75 − II36.



4.5 Tests with a large-scale real data set in the Auvergne area 125

indicates that the combined models computed by Method I are more dependent on the amount of
GPS/leveling points used for the combination than the ones computed from Method II.

Finally, the differences between the four combined quasigeoid models and the previously determined
gravimetric model (see Fig. 4.36d) are illustrated in Fig. 4.41 (the difference associated with Method
I is also called the corrector surface). For the models computed by Method I, the use of different
numbers of GPS/leveling points for the modeling can lead to different corrector surfaces (see Figs
4.41a and 4.41b). The models computed by Method II again are less dependent on the number of
used GPS/leveling points, leading to similar differences (see Figs 4.41c and 4.41d).

4.5.4 Conclusions

In this section, the proposed point mass method PM-FRE based on the RCR technique was success-
fully applied for a real case in the Auvergne area with moderate topography. When only using gravity
anomalies as input, two solutions are computed and compared at given control points. The RMS of
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Figure 4.41: Differences between the gravimetric quasigeoid model (Fig. 4.36d) and the combined quasigeoid
models associated with a) I75; b) I36; c) II75; d) II36.
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gravity anomaly differences is about 1.2 mGal for both solutions. The STD of the height anomaly
differences is about 0.035 m for the two solutions. The results are comparable to the ones computed
by various methods published by Duquenne (2007), Ågren et al. (2009), Forsberg (2010), Valty et al.
(2012), and Yildiz et al. (2012). The mean difference of −0.182 m and −0.165 m is obtained in the
unconstrained solution and constrained solution respectively, indicating the inconsistency between the
gravimetric and GPS/leveling-derived height anomalies. To overcome this problem, two approaches
based on entirely different concepts are used to combine the gravity and GPS/leveling data. In the
first approach, an empirical corrector surface is developed based on the height anomaly residuals at
the GPS/leveling points, and then added to the gravimetric quasigeoid model, yielding a corrected
model. In the second approach, the two data sets are directly combined in the weighted least-squares
adjustment, in which the weight for each data set is determined by VCE. The combined gravity
anomaly solution is nearly the same as the one computed by using only gravity anomaly observations,
resulting in an RMS error of 1.19 mGal. For the two combined height anomaly solutions, the average
RMS error at 39 independent GPS/leveling points is about 0.034 m. Comparing to the RMS error of
0.185 m of the gravimetric (unconstrained) solution, the improvements of the combined solutions are
significant. But one has to note that, in the integrated processing of the gravity and GPS/leveling
data, the use of reduced point mass RBFs (i.e., Nmin = 51) fails to combine the GPS/leveling data
by using VCE. The reason is due to the insensitivity of the reduced RBFs to the GPS/leveling data
that are in the long-wavelength domain. Instead, the full RBFs (i.e., Nmin = 0) with larger spatial
bandwidths work fine. Furthermore, by inter-comparisons of the combined quasigeoid solutions as
well as of the differences between the combined and gravimetric models we found that the combined
model computed by Method II is less dependent on the number of GPS/leveling points used for the
modeling than the combined model computed by Method I. Therefore, if only a small number of
GPS/leveling points are available for the combination, Method II is preferred.
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5 Summary and outlook

5.1 Summary

In this thesis, a parameterization method using radial basis functions was developed for regional
gravity field modeling. It comprises (1) the design of the RBFs, including the choice of the spatial
bandwidths and horizontal positions of the RBFs, and (2) the parameter determination. Moreover,
the spatial bandwidths of the RBFs are determined by the type, spectral bandwidths, and radial
distances of the RBFs.

Due to the availability of analytical expressions, the point mass RBFs were selected for representing
the regional gravity field by fitting to different kinds of gravity data, leading to the so-called point
mass method, which was applied together with the RCR technique. As a result, the input data were
residuals with the low and very-high frequencies removed. To avoid errors caused by the mismatch
of the spectral bandwidths between the RBFs and the input data, the point mass RBFs neglecting
the low and very-high degree terms in the series expansions were preferred. Since the removal of the
very-high degree terms had nearly no effect on the spatial bandwidths of the RBFs, only the terms
from degree 0 to degree Nmin− 1 were set to be zero (see Eq. (3.6)), yielding the reduced point mass
RBFs. Accordingly, the point mass RBFs containing all degree terms were called the full RBFs. Both
RBFs were tested numerically.
For the determination of the positions of the point mass RBFs (i.e., radial distances and horizontal

positions), two cases were examined. In the first case, the point mass RBFs were located at the grid
points. This point mass method was named PM-FIX. The employed grid type was the geographic
grid. Afterwards, several model factors for designing the grid had to be considered. They were the
grid extent, grid spacing, and grid depth. Furthermore, the grid formation was also of importance for
achieving a good approximation of the gravity field. All these factors were investigated numerically.
In the second case, the related point mass method was called PM-FRE, in which the number and

the positions of the RBFs were completely or partly unknown. A search process was developed for
finding the RBFs, in which the magnitudes and positions of the RBFs were estimated simultaneously
by solving a series of small-scale nonlinear problems. This search process aimed at minimizing the
residuals between the predicted and observed gravity values (i.e., data misfit). Before starting it,
several model factors (e.g., initial depth and depth limits, optimization direction, etc.) had to be
defined properly so that a good approximation can be guaranteed. They were all numerically investi-
gated and discussed. Due to the depth limits on the selected point mass RBFs, the nonlinear problem
to be solved in the search process was bound-constrained. Consequently, the choice of a suitable
optimization algorithm was necessary. Among the four tested iteration algorithms (i.e., LM, NLCG,
L-BFGS, and L-BFGS-B), the L-BFGS-B algorithm proved to be the most proper one. The search
process was usually terminated by satisfying a defined data misfit, or by satisfying a given number of
point mass RBFs, which is defined based on the number of observations or by testing different choices.
Sometimes, the criterion for stopping the search process was realized by considering the data misfit
as a function of the number of RBFs. In this case, if the data misfit decreased very slowly, the search
can be stopped accordingly. After the search process, a set of point mass RBFs with known positions
and magnitudes are obtained. Because the point mass RBFs were selected and estimated individually,
a readjustment of the magnitudes of all found RBFs based on the whole input data was carried out
while keeping the positions of the RBFs fixed. This led to the two-step approach of PM-FRE, which
is one of the major innovations of this thesis.
No matter whether PM-FIX or PM-FRE was used, the final magnitudes of the point mass RBFs
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were obtained by solving a linear equation system in the least-squares sense. In the case of ill-
posedness, Tikhonov regularization was applied. Three approaches were compared for choosing the
proper regularization parameter. Although the empirical approach provided the best solutions with
the smallest errors when comparing to the independent data, the VCE technique proved to be more
elegant. Besides its capability for the determination of the regularization parameter, it was also well
suited for the data combination.
The applicability of this regional approach was demonstrated by analyzing the results of five nu-

merical tests with synthetic and real data. The first numerical test aimed at investigating the effect of
different choices of model factors on the solutions. As a result, a computation procedure of PM-FIX
was proposed for practical applications. Regarding PM-FRE, an empirical rule was developed for
choosing the initial depth and depth limits and the radial-direction optimization was preferred in
the search process. In the second step, the reduced RBFs are highly recommended for the readjust-
ment of the magnitudes, leading to an unconstrained solution. Alternatively, the use of full RBFs
for constructing the linear equation system and the adding of the constraints in the adjustment are
also able to provide good solutions, resulting in a constrained solution. The unconstrained solution
performed slightly better than the constrained one, and also was easier to calculate. Therefore, the
former was preferred. By means of numerical comparisons between PM-FIX and PM-FRE, the lat-
ter outperformed the former. Therefore, only PM-FRE was used in the remaining numerical tests.
Through the second and the third tests, it was shown that PM-FRE can recover the gravity anoma-
lies from the observed geoid heights, providing better solutions than LSC. We also found that the
use of full RBFs works fine for computing the unconstrained solution, indicating that the choice of
spectral bandwidths of the RBFs depends on the type of modeled gravity field quantities. If they
were in the short-wavelength domain, the use of reduced RBFs is not necessary. In addition, an
iterative procedure based on VCE was developed for dealing with the case of several data groups
with the same data type but different accuracies. The numerical results confirmed the advantage of
the iterative procedure. On the basis of the three numerical tests, the “optimal” strategy for PM-
FRE was obtained. In the fourth numerical test, a set of synthetic terrestrial and airborne gravity
disturbances were used for the regional modeling. When using terrestrial data only, the solution of
PM-FRE was compared to the LSC solution, showing a smaller RMS error of the modeled disturbing
potential at ground. When considering both terrestrial and airborne data, the solutions obtained by
using different schemes for finding the point mass RBFs were compared and validated, exhibiting a
good agreement between each other. In the last numerical test in the Auvergne area using a large
number of real gravity observations, both gravity and height anomaly solutions were calculated with
small RMS (or STD) errors by PM-FRE. Two combination approaches were successfully applied to
eliminate the discrepancies between the gravimetric and GPS/leveling-derived height anomalies.
In general, it can be concluded that, a good representation of the gravity field over a particular

research area can be achieved by using PM-FRE as was demonstrated by five numerical tests. In
comparison to the traditional integral method, PM-FRE is expected to predict all gravity field quan-
tities with the use of resulting point mass RBFs. In all numerical tests carried out in this thesis,
PM-FRE provides good gravity and height anomaly solutions. Comparing to PM-FIX or a related
parameterization method, in which the RBFs are at the nodes of defined grids, PM-FRE is able to
adapt the spatial distribution of the RBFs to the given gravity field characteristics. As can be seen
from the Auvergne test case, more point mass RBFs are selected in the regions with rough gravity field
features and fewer RBFs in areas with smooth structures. The advantage of PM-FRE with respect
to LSC is that a smaller number of unknowns has to be estimated either in the nonlinear problems in
the first step or in the linear problem in the second step. As a consequence, PM-FRE can be applied
to some large-scale test cases (e.g., Auvergne test case) with the use of personal computer, whereas
LSC can not. However, some effort is required for finding the point mass RBFs in the first step of
PM-FRE, as a series of small-scale nonlinear problems has to be solved. Regarding the linear problem
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in the second step, the computational complexity of the entire process of PM-FRE is quite high.

5.2 Outlook

Despite the satisfactory results already obtained by PM-FRE in this thesis, more numerical tests
using real data sets are recommended for further testing of this method. There is still potential for
further improvements of the method. In the current version, the Tikhonov regularization matrix
used in the second step is simply taken as the identity matrix. The solution accuracy of PM-FRE
might be improved if the identity regularization matrix is replaced by a diagonal matrix, of which
the diagonal elements are appropriately tailored according to the signal content in the areas around
the point mass RBFs. The respective information can be obtained from the available digital terrain
models or a priori gravity field solutions. Similar studies have been carried out by Eicker (2008) and
Eicker et al. (2014).

In this thesis, the point mass RBFs to be selected in a layer have the same initial depths and depth
limits when using either the point mass search model SMA or SMB. A more reasonable case would
be that each point mass RBF has its own initial depth and depth limits, which could be determined
based on the density of the data points or the signal content in the area around the RBF. Further
investigations are necessary.
So far, we have tested the performance of PM-FRE for regional modeling in the case of using a

single data type with the same accuracy or different accuracies. Here arises the question how to deal
with the case of several data groups with different data types. If the number of data points for one
data group is much larger than the others, the point mass RBFs can be searched for based on only
this data group; such a case has been verified in the Auvergne test case for the combination of gravity
and GPS/leveling data. Otherwise, the search process becomes more complicated. A possible scheme
is that the search process is carried out individually based on each data group. Suppose that there
are a set of marine gravity data and a set of altimetry data, the first set of point mass RBFs can be
obtained based on only the marine gravity data, then similar procedures are repeated for generating
the second set of point mass RBFs based on the altimetry data. Afterwards, all searched point mass
RBFs are readjusted with the input of the two data sets in the weighted least-squares. The weight
for each data group can be determined by VCE or manually fixed by the user based on available a
priori information. This is subject to further work.
Although Tenzer and Klees (2008) demonstrated that similar gravity solutions can be obtained

when using different types of RBFs (i.e., different shape coefficients) if the spatial bandwidths of the
RBFs are chosen properly, it is also of interest to apply the concept of PM-FRE to other types of
RBFs. The approach offers various possibilities for further applications due to its flexible and modular
structure.
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