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Abstract i 

 

Abstract 

 

In the last decade Precise Point Positioning (PPP) has become a powerful and widely used technique for 
positioning by means of Global Navigation Satellite System (GNSS) in geodetic/scientific and civil/daily 
applications. Meanwhile, the equivalence principle of GNSS data processing has been developed and can 
now be easily explained and accepted since it was firstly algebraically pointed out in 2002. The objective 
of this thesis is to explore high-performance PPP algorithms and to develop GNSS algorithms with 
application of the equivalence principle. The core research and contributions of this thesis are summarized 
as follows. 

In this thesis it is the first time that the specific equivalence of un-differenced and time differencing PPP 
algorithms is proved theoretically on the basis of the equivalence principle and the equivalence property of 
un-differenced and differencing algorithms. Meanwhile, as a supplement to the equivalence property of the 
triple differences, an alternative method is proposed and derived to prove the equivalence between triple 
differences and zero-difference which up to now was missing. 

As a consequence of above conducted theoretical study, a time differencing PPP algorithm based on the 
equivalence principle is derived and can be used to obtain the coordinates difference and average velocity 
between two adjacent epochs. Such a time differencing PPP algorithm is able to provide both position and 
velocity results from the phase and code observations and is expected to be beneficial for applications, 
such as airborne gravimetry or earthquake monitoring, and could also be an efficient method to detect 
cycle slips in data processing. 

The influence of tropospheric delay on PPP, especially in the context of observations in the polar region 
or with low elevation cut-off angles, where the position results of the observations are more significantly 
affected by tropospheric delay, is analyzed and a methodology for minimizing its effect is proposed. Actual 
meteorological data are used and proved to be beneficial for improving PPP precision in the Antarctic 
region. The effect of tropospheric horizontal gradient correction on PPP is also analyzed and verified to 
remarkably improve PPP precision under lower elevation cut-off angles and higher humidity conditions. 

A priori constrained PPP algorithms are proposed and derived in this thesis to improve the efficiency 
and precision of PPP. The a priori information concerning the geometric and physical properties of 
observations, which is known with a certain a priori precision, is applied in the PPP algorithms. The 
contribution of different a priori information constraints on different parameters to PPP solution is 
analyzed and validated. The a priori constraints as employed in the PPP are specified according to 
coordinates-, receiver clock offset-, tropospheric delay- and ambiguities-constraints, respectively. The 
validation of the derived PPP algorithms shows a significant improvement concerning convergence time 
and positioning accuracy. Moreover, the applications of different constraints under specific conditions are 
discussed and validated. 

A multi-constellation combined PPP algorithm based on the equivalence principle is proposed and 
derived in this thesis. With such an algorithm, the exponentially increased computational load of the 
traditional multi-GNSS PPP algorithm can be reduced to the single linear increase when more GNSS 
satellites are available and used for combined computation. In case of GPS/BDS combination, a method 
which can speed up the determination of the ambiguities parameters of BDS through applying the 
contribution of GPS observations is proposed to significantly reduce the convergence time in BDS PPP. 
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The GPS/BDS combined PPP algorithm with inter-system bias (ISB) parameter is also derived. Using the 
estimated ISB as a priori constraint in the GPS/BDS combined PPP is proposed. The result demonstrates 
that the a priori constraint of ISB shows superiority in the convergence time of PPP processing and can 
mainly improve the positioning accuracy in E component. 

In traditional combined PPP it is difficult to adaptively adjust the contribution of each single system to 
the combination through constructing total calculation, and it will lead to the deterioration in the 
combination accuracy. In this context, the adaptively combined PPP algorithms based on the equivalence 
principle are proposed and derived, which can easily achieve an adaptive adjustment of weight ratio of 
each system in the multi-GNSS combination. By using the posteriori covariance matrix of the shared 
parameters of each single system and the Helmert variance components to adaptively adjust the weight 
ratio of each system, the derived algorithms can improve the accuracy of combination significantly, 
compared to combined PPP with identical weight ratio. 

The developed algorithms are net applicable and can be used for cloud computation for internet GNSS 
service which is considered relevant for possible commercial applications. 

 

Keywords: GNSS; Precise Point Positioning; Sequential Least Squares; Equivalence Principle; 
Equivalently Eliminated Equation; Time Differencing PPP; Triple Differences; Tropospheric Delay; 
Meteorological Data; Horizontal Gradient; A Priori Constraint; Coordinates Constraint; Receiver Clock 
Offset Constraint; Tropospheric Delay Constraint; Ambiguities Constraint; Multi-GNSS Combined PPP; 
Fast BDS Ambiguity Determination; Inter-system Bias; Adaptively Combined PPP; Posteriori Covariance; 
Variance Component Estimation 
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Zusammenfassung 

 

In den letzten zehn Jahren entwickelte sich das Verfahren des Precise Point Positioning (PPP) zu einer 
leistungsstarken und weit verbreiteten Technik in der Positionsbestimmung mittels des Global Navigation 
Satellite System (GNSS) in geodätischen/wissenschaftlichen und zivilen/täglichen Anwendungen. Ein 
wichtiges Grundprinzip der GNSS-Datenverarbeitung ist das Äquivalenzprinzip der 
GNSS-Datenverarbeitung, das 2002 erstmals beschrieben wurde. Das Ziel dieser Arbeit ist die 
Untersuchung von Hochleistungs-PPP-Algorithmen und die Entwicklung von GNSS-Algorithmen unter 
Anwendung des Äquivalenzprinzips. Der Kern der Untersuchungen und die Beiträge dieser Arbeit lassen 
sich wie folgt zusammengefassen. 

Aufbauend auf dem Äquivalenzprinzip und den Äquivalenz-Eigenschaften von nicht-differenzierenden 
und differenzierenden GNSS-Algorithmen wird in dieser Arbeit zum ersten Mal die spezifische 
Gleichwertigkeit von nicht-differenzierenden und zeitdifferenzierenden PPP-Algorithmen theoretisch 
bewiesen. In diesem Zusammenhang beschreiben wir – als Ergänzung zu den Äquivalenz-Eigenschaften 
der Tripel-Differenzen - eine bis jetzt noch nicht existierende alternative Methode zum Beweis der 
Äquivalenz von Tripel-Differenzen und undifferenzierten Beobachtungen. 

Aufbauend auf der oben erwähnten theoretischen Untersuchung wurde ein zeitlich differenzierender 
PPP-Algorithmus abgeleitet, der auf dem Äquivalenzprinzip beruht und der dazu benutzt werden kann, die 
Koordinatendifferenz und die mittlere Geschwindigkeit zwischen benachbarten Beobachtungszeitpunkten 
zu bestimmen. Ein solcher zeitlich differenzierender PPP-Algorithmus ist in der Lage, sowohl Position als 
auch Geschwindigkeit aus Phasen- und Code-Beobachtungen zu liefern. Dieser Algorithmus sollte für 
Anwendungen wie Fluggravimetrie oder Erdbeben-Überwachung nützlich sein und stellt eine effiziente 
Methode zur Erkennung von Cycle-Slips dar.   

Diese Arbeit umfasst auch Analysen des Einflusses der Troposphärischen Signalverzögerung auf das 
PPP, vor allem im Blick mit Beobachtungen in den Polarregionen oder im Fall niedriger 
Höhengrenzwinkel (sog. Cut-off-Winkel), wo die Positionsbestimmung sehr stark von der 
Troposphärischen Signalverzögerung beeinflusst ist. In diesem Zusammenhang wird eine Methodologie 
zur Minimierung des Troposphäreneinflusses vorgeschlagen. Es werden reale meteorologische Daten 
verwendet und es wird gezeigt, dass dies zur Verbesserung der Präzision des PPP in antarktischen 
Regionen von Vorteil ist. Außerdem wird der Effekt der troposphärischen Horizontalgradienten-Korrektur 
analysiert und es wurde bewiesen, dass diese Methode zu einer deutlichen Verbesserung des PPP im Fall 
niedriger Cut-off-Winkel und hoher Luftfeuchtigkeit führt. 

In dieser Arbeit werden PPP-Algorithmen mit A-priori-Nebenbedingungen (sog. Constraint) 
vorgeschlagen und abgeleitet, um die Effizienz und Präzision des PPP zu verbessern. Die in den 
PPP-Algorithmen angewandten A-priori-Informationen betreffen die geometrischen und physikalischen 
Eigenschaften von Beobachtungen, von denen vorab eine bestimmte Genauigkeit bekannt ist. Der Einfluss 
von verschiedenen A-priori-Nebenbedingungen auf verschiedene Parameter innerhalb der PPP-Lösung 
wird analysiert und validiert. Diese in den PPP-Algorithmen angewandten A-priori-Bedingungen sind aus 
Nebenbedingungen für Koordinaten, Empängeruhren-Offsets, Troposphären-Verzögerung und Ambiguities 
abgeleitet. Die Validierung dieser Algorithmen zeigt eine deutliche Verbesserung bezüglich der 
Konvergenzzeit und der Genauigkeit in der Positionsbestimmung. Ferner wird die Anwendung 
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verschiedener Constraints unter spezifischen Bedingungen diskutiert unf validiert. 

In dieser Arbeit wurde ein kombinierter PPP-Algorithmus für Multi-Satellitensysteme vorgeschlagen 
und abgeleitet, der auf dem genannten Äquivalenzprinzip beruht. Mit einem solchen Algorithmus kann die 
exponentiell ansteigende Computerlast des traditionellen Multi-GNSS-PPP dahingehend reduziert werden, 
dass es nur einen einfachen linearen Anstieg gibt, wenn mehr GNSS-Satelliten einbezogen werden. Für 
den Fall der Kombination von GPS mit dem chinesischen Beidou-System (BDS) wird eine Methode 
vorgeschlagen, die die Berechnung der Ambiguity-Parameter für das BDS-System durch Beitrag von 
GPS-Beobachtungen schneller beschleunigt. Diese Methode reduziert die Konvergenzzeit im BDS-PPP 
deutlich. Außerdem wird im Fall der Kombination von GPS und BDS ein Inter-System-Bias (ISB) 
abgeleitet. Es wird vorgeschlagen, diesen ISB als A-priori-Nebenbedingung in das PPP bei der 
Kombination von GPS und BDS einzuführen. Dadurch ergeben sich überlegene Resultate für die 
Konvergenzzeit in der PPP-Prozessierung und die Positionsgenauigkeit in der Ost-Komponente kann 
verbessert werden. 

Im traditionellen kombinierten PPP-Verfahren ist es schwierig, den Beitrag jedes einzelnen Systems zur 
Kombination durch Konstruktion einer Gesamtlösung adaptiv anzugleichen, was zur Verschlechterung in 
der Kombinationsgenauigkeit führt. In diesem Zusammenhang wurde ein adaptiv kombinierter 
PPP-Algorithmus vorgeschlagen und entwickelt, der auf dem Äquivalenzprinzip beruht. Dieser 
Algorithmus ermöglicht eine einfache adaptive Ausgleichung der relativen Wichtungen für jedes 
Satelliten-System in der Multi-GNSS-Kombination. Durch Nutzung der a-posteriori Kovarianz-Matrix, die 
für alle gemeinsamen Parameter der einzelnen Satelliten-Systeme aufgestellt wurde und durch die 
Anwendung der Helmertschen Varianzkomponenten-Schätzung zur adaptiven Ausgleichung der relativen 
Wichtungen der einzelnen Systeme kann die Genauigkeit der Kombination im Vergleich zum PPP mit 
identischen Relativgewichten deutlich gesteigert werden. 

Die entwickelten Algorithmen sind über das Internet anwendbar und könnten für Cloud-Berechnungen 
im Rahmen eines Internet-GNSS-Dienstes verwendet werden, was für mögliche kommerzielle 
Anwendungen von Bedeutung sein könnte. 

 

Stichworte: GNSS; Precise Point Positioning; Sequenzielle Kleinste Quadrate; Äquivalenzprinzip; 
Äquivalent eliminierte Gleichung; Zeitlich differenzierendes PPP; Trip-Differenzen; Troposphärische 
Verzögerung; Meteorogische Daten; Horizontaler Gradient; A-priori-Nebenbedingung; 
Koordinaten-Nebenbedingung; Empfängeruhren-Offset-Nebenbedingung; 
Troposphären-Verzögerungs-Nebenbedingung; Ambiguity-Nebenbedingung; Kombiniertes 
Multi-GNSS-PPP; Schnelle BDS-Ambiguity-Bestimmung; Intersystem-Bias; Adaptiv kombiniertes PPP; 
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1 Introduction 

 

1.1 Research Background and Motivation 
Global Navigation Satellite System (GNSS) refers to a constellation of satellites providing signals from 
space transmitting positioning and timing data. It is playing a significant role in offering high-precision 
navigation, positioning and timing service for global users (Hoffmann-Wellenhof et al., 2008; Someswar et 
al., 2013). Positioning by means of GNSS is one of the most widely used techniques in geodetic and 
geodynamics applications (Gandolfi et al., 2015). In the last decade Precise Point Positioning (PPP) has 
become a powerful technique for determining a point’s coordinates using GNSS (Kouba and Héroux, 2001; 
Zumberge et al., 1997) and it also has become increasingly significant in high-precision positioning 
applications. With PPP technique, observations produced by a single receiver without the requirement of a 
nearby reference station are used to determine its three coordinate components, along with other 
parameters such as the receiver clock error and the tropospheric delay of observations (Leandro et al., 
2010). Currently it is being strongly considered as a solution wherever precise positioning and navigation 
are required in isolated locations or wide areas, where reference station infrastructure is not available 
(Bisnath and Gao, 2009). During recent years PPP has been widely applied in many spots, such as precise 
orbit determination of Low Earth Orbiters (Bisnath and Langley, 2002), marine applications (Bisnath et al., 
2003; Geng et al., 2010), airborne mapping (Gao et al., 2005), atmosphere remote sensing (Gao et al., 
2004), land surveying (Dixon, 2006), precise time-transfer (Defraigne et al., 2007; Defraigne et al., 2008), 
ionospheric (Leandro et al., 2007) and tropospheric characterization (Kjørsvik et al., 2006), biases 
calibration (Leandro et al., 2010), etc. During the past few years, PPP has achieved performance levels 
comparable to those obtainable through differencing approach (Bisnath and Gao, 2009; Griffiths and Ray, 
2009), especially for GNSS permanent stations. By using the precise orbit and clock products generated by 
the International GNSS Service (IGS) through a dense global network and several contributing analysis 
centers (Dow et al., 2009), static absolute positioning can achieve an accuracy of mm-cm in post 
processing and a cm-dm precision level can be attained in kinematic applications (Hesselbarth, 2011; 
Kouba and Héroux, 2001; Wang, 2014). For real-time application, with the availability of the IGS 
real-time service (RTS), it becomes possible for the users to obtain precise satellite orbit and satellite clock 
corrections via RTCM streams in real-time. Recent research has shown that the availability of GPS IGS 
RTS products is at least 95%, which makes it possible to perform real-time PPP with high accuracy 
(Caissy et al., 2012; Elsobeiey and Al-Harbi, 2015). Furthermore, with the rapid development of PPP 
technique (Bertiger et al., 2010; Grinter and Roberts, 2011; Grinter and Roberts, 2013), several PPP 
software packages are developed and online PPP processing services are released (Moreno Monge et al., 
2013). Such online PPP services are open to users and are available 24 hours per day. Besides precise 
coordinates and quality information of user stations in the International Terrestrial Reference Frame (ITRF) 
the results also include ionospheric delays, tropospheric delays, and receiver clock corrections (Guo, 
2014). 

Although for many applications the PPP approach presents definite advantages regarding operational 
flexibility and cost-effectiveness, it requires a relatively long initialization time as phase ambiguities 
converge to constant values and the solution reaches its optimal precision. The convergence time of PPP 
will vary because it is affected by a number of factors, such as the number and geometry of visible 
satellites, observation quality and sampling rate, user tracking conditions, and environment (Bisnath and 



2 Introduction 

Gao, 2009). Furthermore, due to the influence of pseudorange noise and tropospheric delay (etc.), the 
accuracy and reliability of PPP are still limited (Li, 2013). The unknown tropospheric delay parameter is 
usually estimated along with the position and ambiguity parameters. Ingestion of precise tropospheric 
models could reduce the total number of unknown parameters that need to be estimated from the 
observation model, potentially remove the need for noise propagating linear combinations of observables, 
and potentially improve positioning performance (Dodd et al., 2006). In this case, the influence of 
tropospheric delay on PPP is studied in this thesis. Especially in the context of polar region or with low 
elevation cut-off angles, where the position results of the observations are more significantly affected by 
tropospheric delay (Ren et al., 2011; She et al., 2011; Xu et al., 2014), the actual meteorological data are 
used and proved to be beneficial for improving PPP precision. The effect of the tropospheric horizontal 
gradient correction on PPP is also analyzed and verified to have remarkable improvement on PPP under 
lower elevation cut-off angles and higher humidity conditions. Moreover, a priori constrained PPP 
algorithms are proposed and derived to improve the efficiency and precision of PPP. The a priori 
information concerning the geometric and physical properties of observations, which is known with a 
certain a priori precision, is applied in the PPP algorithms. In this thesis the a priori constraints as 
employed in PPP are specified according to coordinates-, receiver clock offset-, tropospheric delay- and 
ambiguities-constraints, respectively, and are validated to be superior both in convergence time and 
positioning accuracy of PPP. 

During the past decades of GPS research, advantages and disadvantages of differencing and 
un-differenced, combined and uncombined GPS algorithms have been discussed in detail in many 
publications. However, the equivalence principle can now be easily explained and accepted, since the 
differencing and un-differenced GPS algorithms were algebraically proved to be equivalent in Xu (2002) 
and the equivalence of combined and uncombined algorithms were also proved in Xu (2007). As the 
information, including the used GPS data and model and adjustment method, are the same, the results 
should also be equivalent. The equivalence properties are summarized in a theorem in Xu (2007) and Xu et 
al. (2010) as follows. First, for any GNSS survey with definitive space-time configuration, the results 
obtained by using any GNSS data processing algorithms or any mixture of the algorithms are identical. 
Second, the diagonal elements of the covariance matrix and the precision of the solutions are identical. 
And third, suitable algorithms or mixtures of the algorithms will be specifically beneficial for special kinds 
of data dealings. The theorem indicates that if the data used are the same and the model is parameterized 
identically and regularly, then the results must be identical and the precision should be equivalent. On the 
basis of the equivalence principle and the equivalence property of un-differenced and differencing 
algorithms pointed out in Xu (2007) and Xu et al. (2010), the specific equivalence of un-differenced and 
time differencing PPP algorithms is proved theoretically in this thesis for the first time. Meanwhile, an 
alternative method to prove the equivalence between triple differences and zero-difference is proposed and 
derived in this thesis as a supplement to the equivalence property of the triple differences stated in Xu 
(2007) and Xu et al. (2010). Then as a consequence of this theoretical study, a time differencing PPP 
algorithm based on the equivalence principle is also derived. 

As summarized in Xu et al. (2010), one of the most important inference of the equivalence principle is 
the diagonalization algorithm (Xu, 2003). Based on the parameter equivalent reduction principle, the 
equivalently eliminated normal equation can be constructed and thus the normal equation can be 
diagonalised. This has a great significance for sequential adjustment and Kalman filter used in real-time 
data processing, since the nuisance parameter from the past can be eliminated and given up to keep the 
updated problem as small as possible. Generally, the observation equation can be separated into two 
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diagonal parts, respectively. Each part uses the original observation vector and the original weight matrix, 
while the equation owns only a part of the unknown parameters. The normal equation of the original 
observation equation can also be separated into two parts. Only the interested unknown part is needed to be 
accumulated into the present normal equation to solve the problem. Therefore the nuisance parameters are 
eliminated during sequential data processing so that the data processing problem remains as small as 
possible. Applying this method, it is realistic to make an exact and effective real-time data sequential 
processing (Shen et al., 2008; Shen and Xu, 2007; Xu et al., 2010). 

With the rapid development of multiple GNSS systems, PPP technique is also advancing forward from 
mainly using GPS measurements towards using multi-GNSS combinations. With newly available precise 
orbit and clock data for GLONASS and BDS satellites, additional GLONASS and BDS observations can 
be applied to augment GPS for improved positioning accuracy, reliability, and availability using PPP. 
Many studies on multi-GNSS combination have been conducted during recent years (Cai and Gao, 2013; 
Dach et al., 2007; Jokinen et al., 2011). Nevertheless, these studies focus mainly on validation of precision 
and reliability superiority of multi-GNSS combination, while the combined algorithm itself and the weight 
ratio of each single system in the combination are seldom involved. The traditional combined PPP 
algorithm directly constructs observation equations using all GNSS observables to obtain the solution. 
However, with the advance of other available systems and satellites, as well as the wide utilization of 
high-frequency (1-50 Hz) recording receivers, the computational load of the traditional algorithm increases 
exponentially, while the efficiency of the algorithm decreases significantly at the same time (Huang et al., 
2013). This is highly undesirable in high performance systems. Therefore, on the basis of the equivalence 
principle and its inference described above, a multi-GNSS combined PPP algorithm is derived in this thesis 
to improve the computation efficiency by decreasing the exponentially increased computation load to 
single linear increase. In case of GPS/BDS combination, a method which can speed up the determination 
of the ambiguities parameters of BDS through applying the contribution of GPS observations is proposed 
and analyzed. The GPS/BDS combined PPP algorithm with inter-system bias parameter is also derived. 
Furthermore, the usage of estimated ISB as a priori constraint in the GPS/BDS combined PPP is proposed 
to improve the convergence time and positioning accuracy. In addition, in the traditional combined PPP it 
is difficult to adaptively adjust the contribution of each single system to the combination through 
constructing total calculation, which will lead to the deterioration in the combination accuracy. In this 
context, the adaptively combined PPP based on the equivalence principle, which can easily achieve an 
adaptive adjustment of the weight ratio of each system in the multi-GNSS combination is proposed and 
derived. Compared to combined PPP with identical weight ratio the derived algorithms can significantly 
improve the accuracy of combination. 

1.2 The Main Research Contents and Overview of the Dissertation 
This thesis mainly explores high-performance PPP algorithms and develops GNSS algorithms with 
application of the equivalence principle, it includes the following chapters: 

First, Chapter 1 presents the background and the motivation of this thesis and specifies the contributions 
of this research. 

In Chapter 2 commonly used adjustment and filtering algorithms in PPP are outlined. Then the 
equivalence principle is described and developed. The specific equivalence of un-differenced and time 
differencing PPP algorithms is proved theoretically. An alternative method to prove the equivalence 
between triple differenced and zero-difference is proposed and derived. An algorithm of time differencing 
PPP based on the equivalence principle is derived and a numerical example is given. 
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Chapter 3 explores the influence of tropospheric delay on PPP. The effects of using actual 
meteorological data on positioning, especially in the context of observations in the polar region or with 
low elevation cut-off angles, are highlighted. The influence and improvement by applying horizontal 
gradient correction on PPP is also studied in this chapter. Several practical and enlightening conclusions 
are given. 

In Chapter 4 a priori constrained PPP algorithms are researched and derived. A priori information 
concerning geometric and physical properties of observations, which is known with a certain a priori 
precision, is applied in the PPP algorithms. The contribution of different a priori information constraints on 
different parameters to PPP solution is studied and validated. The a priori constrained PPP algorithms are 
specified according to coordinates-, receiver clock offset-, tropospheric delay- and ambiguities-constraints, 
respectively, and are validated to have great superiority in convergence time and positioning accuracy. 
Moreover, the applications of different constraints under specific conditions are also discussed. 

Chapter 5 proposes and derives a multi-constellation combined PPP algorithm based on the equivalence 
principle. The advantages of the algorithm, the computation efficiency and accuracy of the algorithm are 
validated through several numerical examples. Then a method which can speed up the determination of the 
ambiguities parameters of BDS through applying the contribution of GPS observations is proposed and 
analyzed in case of GPS/BDS combination. The GPS/BDS combined PPP algorithm with inter-system bias 
parameter is also derived. Furthermore, the usage of estimated ISB as a priori constraint in the GPS/BDS 
combined PPP is proposed to improve the convergence time and positioning accuracy. 

In Chapter 6 the principle, developments and application of the adaptively robust filter, are summarized 
and introduced. Then the adaptively robust PPP of a single system based on the equivalence principle is 
derived. Moreover, due to the defect of the multi-GNSS combination with equal weight ratio, two kinds of 
adaptively multi-GNSS combined PPP algorithms based on the equivalence principle are derived, which 
can easily achieve an adaptive adjustment of the weight ratio of each system in the multi-GNSS 
combination. The posteriori covariance matrix of the shared parameters of each single system and the 
Helmert variance components are used to adaptively adjust the weight ratio of each system in the 
multi-GNSS combination, respectively. Numerical examples are conducted to validate the derived 
algorithms. 

Finally, Chapter 7 summarizes the main results as obtained in the previous chapters, presents the final 
conclusions and suggests recommendations for future work. 

1.3 The Main Contributions of the Dissertation 
The main contributions of this thesis can be summarized as follows. 

1. In this thesis it is the first time that the specific equivalence of un-differenced and time differencing 
PPP algorithms is proved theoretically on the basis of the equivalence principle and the equivalence 
property of un-differenced and differencing algorithms. Meanwhile, as a supplement to the 
equivalence property of the triple differences, an alternative method is proposed and derived to prove 
the equivalence between triple differences and zero-difference, which up to now was missing. 

2. As a consequence of above conducted theoretical study, a time differencing PPP algorithm based on 
the equivalence principle is derived and can be used to obtain the coordinates difference and average 
velocity between two adjacent epochs. Such a time differencing PPP algorithm is able to provide both 
position and velocity results from the phase and code observations and is expected to be beneficial for 
different types of applications, such as airborne gravimetry, earthquake monitoring, and could also be 
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an efficient method to detect cycle slips in data processing. 

3. The influence of tropospheric delay on PPP, especially in the context of observations in the polar 
region or with low elevation cut-off angles, where the position results of observations are more 
significantly affected by tropospheric delay, is analyzed and a methodology for minimizing its effect is 
proposed. Due to the specificity of Antarctic positioning, the actual meteorological data are used and 
proved to be beneficial for improving PPP precision in the Antarctic region. The effect of tropospheric 
horizontal gradient correction on PPP is also analyzed and verified to remarkably improve PPP 
precision under lower elevation cut-off angles and higher humidity conditions.  

4. A priori constrained PPP algorithms are proposed and derived in this thesis to improve the efficiency 
and precision of PPP. The a priori information concerning the geometric and physical properties of 
observations, which is known with a certain a priori precision, is applied in the PPP algorithms. The 
contribution of different a priori information constraints on different parameters to PPP solution is 
analyzed and validated. The a priori constrained PPP algorithms are specified according to 
coordinates-, receiver clock offset-, tropospheric delay- and ambiguities-constraints, respectively, and 
not only the efficiency and accuracy improvement by applying constraints but also their applications 
under specific conditions are discussed and validated. 

5. A multi-GNSS combined PPP algorithm based on the equivalence principle is proposed and derived in 
this thesis. With such an algorithm, the exponentially increased computational load of the traditional 
multi-GNSS PPP algorithm can be reduced to the single linear increase when more GNSS satellites are 
available and used for combined computation. In case of GPS/BDS combination, a method which can 
speed up the determination of the ambiguities parameters of BDS through applying the contribution of 
GPS observations is proposed to significantly reduce the convergence time in BDS PPP. The GPS/BDS 
combined PPP algorithm with inter-system bias parameter is also derived. Using the estimated ISB as 
a priori constraint in the GPS/BDS combined PPP is proposed. The result demonstrates that the a priori 
constraint of ISB shows superiority in the convergence time of PPP processing and can mainly 
improve the positioning accuracy in E component. 

6. In traditional combined PPP it is difficult to adaptively adjust the contribution of each single system to 
the combination through constructing total calculation, and it will lead to the deterioration in the 
combination accuracy. In this context, the adaptively combined PPP algorithms based on the 
equivalence principle are proposed and derived, which can easily achieve an adaptive adjustment of 
weight ratio of each system in multi-GNSS combination. By using the posteriori covariance matrix of 
the shared parameters of each single system and the Helmert variance components to adaptively adjust 
the weight ratio of each system, the derived algorithms can improve the accuracy of combination 
significantly, compared to combined PPP with identical weight ratio. 
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2 Equivalence Principle of Precise Point Positioning 

 

2.1 Introduction 
Commonly used adjustment and filtering algorithms in Precise Point Positioning (PPP) are outlined in this 
chapter. Adjustment algorithms discussed here include the least squares adjustment and the sequential least 
squares adjustment. The filtering algorithm discussed here is the classic Kalman filter. The equivalence 
principle is described and developed. On the basis of the equivalence principle and the equivalence 
property of un-differenced and differencing algorithms, the specific equivalence of un-differenced and time 
differencing PPP algorithms is proved theoretically. Meanwhile, as a supplement to the equivalence 
property of the triple differences, an alternative method is proposed and derived to prove the equivalence 
between triple differences and zero-difference which up to now was missing. As a consequence of the 
conducted theoretical study, an algorithm of time differencing PPP based on the equivalence principle is 
derived and a numerical example is given. Such a time differencing PPP algorithm is able to provide both 
position and velocity results from the phase and code observations. 

2.2 Commonly Used Adjustment and Filtering Algorithms in PPP 
In PPP, precise ephemeris and precise satellite clock errors are usually immediately substituted into the 
observation equation to fix the satellite orbits and remove the satellite clock errors. Furthermore, the 
first-order effects of ionospheric delay is eliminated via dual-frequency observations. Therefore the 
calculation model of PPP can be written as (Ye et al., 2008; Zumberge et al., 1997) 

 v c t Nρ δ λ λ εΦ Φ= + ⋅∆ + + ⋅ − ⋅Φ +   (2.1) 

where ρ  is the geometric distance between the satellite at the emission time and the receiver antenna at 
the reception time; c denotes the speed of light; t∆  denotes the receiver clock error; δ  denotes the 
tropospheric delay; λ  denotes the wavelength; Φ  is the ionosphere-free combined observation; N 

denotes its ambiguity; εΦ  denotes the not modeled remaining errors like multipath and observation noise; 

and vΦ  is the corresponding observation error. 

To solve the unknowns, like coordinates, clock error, and tropospheric delay parameters the commonly 
used adjustment and filtering algorithms in PPP are outlined in the next sections. 

2.2.1 Least Squares Adjustment 

The principle of least squares adjustment can be summarized as follows (Leick et al., 2015; Xu, 2007). 

The system of the linearized error equation of Eq. (2.1) can be represented as 

 ,V AX L P= −   (2.2) 
where L is the observational vector of dimension n; A is the coefficient matrix of dimension n m× ; X is 
the unknown parameter vector of dimension m; V is the residual vector of dimension n; m is the number of 
unknown parameters; n is the number of observations; P is the symmetric and definite weight matrix of 
dimension n n× . 

The least squares principle for solving the error equation is well-known as 
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 minTV PV =   (2.3) 
where TV  is the transpose of vector V. 

Solving the minimum value of TV PV  with respect to X and take Eq. (2.2) into account, one has 

 0TA PV =   (2.4) 
where TA  is the transpose matrix of A. 

Substituting Eq. (2.2) into Eq. (2.4), one has 

 0T TA PAX A PL− =   (2.5) 
Therefore, the least squares solution of Eq. (2.2) is 

 1( )T TX A PA A PL−=   (2.6) 

where superscript -1 is an inverse operator. Denoting TM A PA= , 1( )T
XQ A PA −= , where M is usually 

called normal matrix and XQ  is the cofactor matrix. 

The covariance matrix X∑  of the estimated parameter X is 

 2
0X XQ σ∑ =   (2.7) 

where 0σ  is the standard deviation, which can be computed by 

 0 ( )
TV PV n m

n m
σ = >

−
  (2.8) 

2.2.2 Sequential Least Squares Adjustment 

Suppose iL  is an observational vector of dimension in  at epoch i, and the corresponding weight matrix 

is iP . At epoch i-1, the estimation value of the unknown parameters and its weight matrix are obtained and 

denoted as 1iX −  and 
1iXP
−

. The error equation at epoch i can be represented as 

 ,i i i i iV A X L P= −   (2.9) 

where subscript i denotes epoch i; iA  is the coefficient matrix of dimension in m× ; iV  is the residual 

vector of dimension in ; m is the number of unknown parameters; in  is the number of observations at 

epoch i. Since the unknown parameter iX  has the a priori expectation and variance, the least squares 

principle of the parameter estimation is (Yang, 2006) 
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11 1( ) ( ) min

i

T T
i i i i i X i iV PV X X P X X

−− −+ − − =   (2.10) 

Solving the minimum value of Eq. (2.10) with respect to iX  and taking Eq. (2.9) into account, one has 

 
1 1( ) 0

i

T
i i i X i iA PV P X X

− −+ − =   (2.11) 

Substituting Eq. (2.9) into Eq. (2.11), one has 

 
1 1 1( ) ( ) 0

i i

T T
i i i X i i i i X iA P A P X A PL P X

− − −+ − + =   (2.12) 

Therefore, the sequential least squares solution of Eq. (2.9) is 

 
1 1

1
1( ) ( )

i i

T T
i i i i X i i i X iX A P A P A PL P X

− −

−
−= + +   (2.13) 

Denoting 

 
1i i

T
X i i i XP A P A P

−
= +   (2.14) 

one has 

 
1

1
1( )

i i

T
i X i i i X iX P A PL P X

−

−
−= +   (2.15) 

 
1

1 1( )
i i i

T
X X i i i XQ P A P A P

−

− −= = +   (2.16) 

Eq. (2.15) is the recurrence formula of the sequential least squares solution, that 

 

1

2 1

1

1
1 1 1

1
2 2 2 2 1

1
1

( )

( )
i i

T
X

T
X X

T
i X i i i X i

X P A L

X P A P L P X

X P A PL P X
−

−

−

−
−

 =


= +


 = +


  (2.17) 

 

1

2 1

1

1 1 1

2 2 2

i i

T
X

T
X X

T
X X i i i

P A P A

P P A P A

P P A P A
−

 =


= +


 = +


  (2.18) 

The posteriori covariance matrix 
iX∑  of iX  is 

 2 1 2
0 0i i i i iX X XQ Pσ σ−∑ = =   (2.19) 

where 0i
σ  is the standard deviation, which can be computed by (Yang, 2006) 

 11 1
0

( ) ( )
i

i

T T
i i i i i X i i

i

V PV X X P X X
n

σ −− −+ − −
=   (2.20) 

where in  is the number of observations at epoch i. 
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2.2.3 Kalman Filter 

The Kalman filter is known to estimate the state vector based on a sequence of observations and its state 
equation. The principle of the classic Kalman filter is outlined as follows (Brown and Hwang, 1992; Gelb, 
1986; Koch and Yang, 1998; Schwarz et al., 1989; Xu, 2007; Yang, 2006). 

The observation equation and the state equation can be expressed as 

 ,i i i i iV A X L P= −   (2.21) 

 , 1 1i i i i iX X W− −= Φ +   (2.22) 

where subscript i and i-1 denote epoch time; 1iX −  and iX  are the simplified state vectors of dimension 

m at epoch i-1 and epoch i, respectively; , 1i i−Φ  is the state transition matrix of dimension m m× ; iW  is 

the residual vector of the system state model of dimension m with zero expectation and covariance matrix 

iW∑ ; iL  is the observational vector of dimension in ; iA  is the coefficient matrix of dimension in m× ; 

iV  is the residual vector of observational vector of dimension in ; m is the number of unknown parameters; 

in  is the number of observations at epoch i; iP  is the weight matrix of observational vector of dimension 

i in n× . 

According to Eq. (2.22), the predicted value of the state vector iX  at epoch i can be obtained through 

the estimated state vector 1iX −  and the transition matrix as 

 , 1 1i i i iX X− −= Φ   (2.23) 

The covariance matrix 
iX∑  of the predicted state vector iX  can be obtained by using the covariance 

propagation law as 

 
1, 1 , 1i ii

T
i i X i i WX −− −∑ = Φ ∑ Φ + ∑   (2.24) 

The residual vector 
iXV  of the predicted state vector iX  is 

 
i i iXV X X= −   (2.25) 

Therefore a least squares principle of the parameter estimation is formed as 

 min
i i i

T T
i i i X X XV PV V P V+ =   (2.26) 

where 1
i iP −= ∑  is the weight matrix of iL  and 1

i iX XP −= ∑  is the weight matrix of iX . 
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Making the partial differentiation of Eq. (2.26) with respect to iX  equals zero, one has 

 0
i i

T
i i i X XA PV P V+ =   (2.27) 

Substituting Eq. (2.21) and (2.25) into Eq. (2.27), one has 

 ( ) ( ) 0
i i

T T
i i i i i i i iX XA P A P X A PL P X+ − + =   (2.28) 

Therefore, the least squares solution of state vector iX  is 

 1( ) ( )
i i

T T
i i i i i i i iX XX A P A P A PL P X−= + +   (2.29) 

The covariance matrix of iX  is 

 1 2
0( )

i i

T
X i i i XA P A P σ−∑ = +   (2.30) 

Denoting 

 
i i

T
X i i i XP A P A P= +   (2.31) 

one has 

 1 2
0i iX XP σ−∑ =   (2.32) 

According to the principle of the matrix identity transformation (Yang et al., 2001), that 

 ( )i i i i i iX X K L A X= + −   (2.33) 

where iK  is called the gain matrix of the Kalman filter and is formed as 

 1( )
i i

T T
i i i i iX XK A A A −= ∑ ∑ + ∑   (2.34) 

or in accordance with the matrix identity equation 

 1( )
i

T T
i i i i i iXK A P A P A P−= +   (2.35) 

The covariance matrix of iX  can be obtained by using the covariance propagation law to Eq. (2.33) as 

 1( )
i i i i i

T T
X i i i i iX X X XA A A A−∑ = ∑ −∑ ∑ + ∑ ∑   (2.36) 

or 

 ( )
i iX i i XI K A∑ = − ∑   (2.37) 

where I is the identity matrix. 

  The main difference between Kalman Filter and Sequential Least Squares Adjustment is that Kalman 
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filter is applied in kinematic case, taking into account the state equation, the velocity and acceleration 
information of the carriers; while sequential least squares adjustment is usually applied in static processing. 
Kalman filter is a general form of sequential least squares adjustment, and the sequential least squares 
adjustment is a special case of Kalman filter. Kalman filter estimation uses the predicted values computed 
by the state equation at current epoch, while sequential least squares adjustment uses the estimated values 
of last epoch. 

As introduced Kalman filter assumes a state equation, which is formed by a system transition matrix 
and a cofactor. Therefore, the estimated values in Kalman filter process are dependent on the transition 
matrix and cofactor. The transition matrix should be based on strengthened physical models, and the 
cofactor should be well-known or reasonably given. If the system description is accurate enough, of course 
Kalman filter will lead to a more precise result. However, if the system is not sufficiently well-known, the 
result of Kalman filter will sometimes not converge to the true values (divergence). Furthermore, a 
kinematic process is generally difficult to be precisely represented by theoretical system equations. 
Another problem of Kalman filter is the strong dependency of the given initial values. 

2.3 Equivalence Principle and Equivalently Eliminated Observation Equation 
The equivalence properties are summarized in a theorem in Xu (2007) and Xu et al. (2010) as follows. 
First, for any GNSS survey with definitive space-time configuration, the results obtained by using any 
GNSS data processing algorithms or any mixture of the algorithms are identical. Second, the diagonal 
elements of the covariance matrix and the precision of the solutions are identical. And third, suitable 
algorithms or mixtures of the algorithms will be specifically beneficial for special kinds of data dealings. 
The theorem indicates that if the data used are the same and the model is parameterized identically and 
regularly, then the results must be identical and the precision should be equivalent. As we know that the 
observation equations of the differencing methods or combined algorithms can be obtained by carrying out 
a related linear transformation to the original equations. All methods are theoretically equivalent, since the 
weight matrix is similarly transformed according to the law of covariance propagation. Any combinations 
of the solutions must be equivalent to each other and to the original observation equation, none of the 
combinations will lead to better solutions or better precision of the solutions. However, suitable algorithms 
or combination of the algorithms will lead to convenience in the computation and software realization and 
may decrease the risk for wrong computation as well. Nevertheless, theoretically the final result should be 
equivalent even if the efficiency or the error tolerance capacity of computation will be improved. From this 
rigorous theoretical aspect, such as the traditional wide-lane ambiguity fixing technique (Petrovello, 2006; 
Teunissen, 2003; Teunissen, 2005; Teunissen et al., 1997) may lead to a more effective search, but not a 
better solution and precision of the ambiguity. The equivalent observation equation approach based on the 
derivation of Zhou (1985) can be used to unify the differencing and un-differenced methods as well as 
uncombined and combined algorithms. 

As summarized in Xu et al. (2010), one of the most important inference of the equivalence principle is 
the diagonalization algorithm (Xu, 2003). Based on the parameter equivalent reduction principle, the 
equivalently eliminated normal equation can be constructed and thus the normal equation can be 
diagonalised. This has a great significance for sequential adjustment and Kalman filter used in real-time 
data processing, since the nuisance parameter from the past can be eliminated and given up to keep the 
updated problem as small as possible. Generally, the observation equation can be separated into two 
diagonal parts, respectively. Each part uses the original observation vector and the original weight matrix, 
while the equation owns only a part of the unknown parameters, where the nuisance parameters have been 
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eliminated during the sequential data processing. Therefore in least squares adjustment, the unknown 
parameters are divided into two groups: interested unknowns and uninterested unknowns in practice. It is 
better to eliminate the group of uninterested unknowns because of its size. In this case, through using the 
equivalently eliminated observation equation, the uninterested unknown parameters can be eliminated 
directly from the observation equations instead of from the normal equations. 

The linearized observation equation can be represented as 

 ( ) 1

2

,
X

V A B L P
X

 
= − 

 
  (2.38) 

where L is the observational vector of dimension n; A and B are the coefficient matrices of dimension 

( - )n m r×  and n r× ; 1X  and 2X  are the unknown vectors of dimension m-r and r; V is the residual 

vector of dimension n; m is the number of total unknowns; n is the number of observations; P is the 
symmetric and definite weight matrix of dimension n n× . 

Then the normal equation of the least squares can be formed as 

 11 12 1 1

21 22 2 2

M M X B
M M X B
    

=    
    

  (2.39) 

where 

 11 12

21 22

T T

T T

M M A PA A PB
M M B PA B PB

  
=   

   
  (2.40) 

 1
TB A PL= ,  2

TB B PL=   (2.41) 

The elimination matrix is formed as 

 
0I

Z I
 
 − 

  (2.42) 

where I is the identity matrix; 0 is a zero matrix; 1
21 11Z M M −= , 1

11M −  is the inversion of 11M . 

Multiplying the normal Eq. (2.39) by the elimination matrix Eq. (2.42) one has 

11 12 1 1

21 22 2 2

0 0M M X BI I
M M X BZ I Z I
       

=       − −       
 

or 

 11 12 1 1

2 2 20
M M X B

M X R
    

=    
    

  (2.43) 

where 
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1 1

2 21 11 12 22 11
1

11( )

T T T

T T

M M M M M B PB B PAM A PB
B P I AM A P B

− −

−

= − + = −

= −
  (2.44) 

 1 1
2 2 21 11 1 11( )T TR B M M B B P I AM A P L− −= − = −   (2.45) 

If only the unknown vector 2X  is of interest, then only the second equation of Eq. (2.43) needs to be 

solved. The solution is identical to that of solving the whole Eq. (2.43). 

Denoting 

 1
11

TJ AM A P−=   (2.46) 

and it has properties of 

2 1 1 1 1 1
11 11 11 11 11( )( )T T T T TJ AM A P AM A P AM A PAM A P AM A P J− − − − −= = = =  

2 2( )( ) 2 2I J I J I IJ J I J J I J− − = − + = − + = −  

1 1
11 11[ ( )] ( ) ( ) ( )T T T T TP I J I J P P AM A P P P PAM A P P I J− −− = − = − = − = −  

Matrices J and (I-J) are idempotent and ( )TI J P− is symmetric, that is 

 2J J= , 2( ) ( )I J I J− = − ,  ( ) ( )TI J P P I J− = −   (2.47) 

Using the above derived properties, 2M  in Eq. (2.44) and 2R  in Eq. (2.45) can be rewritten as 

 2 ( ) ( )( ) ( ) ( )T T T TM B P I J B B P I J I J B B P I J P I J B= − = − − = − −   (2.48) 

 2 ( ) ( )T T TR B P I J L B I J PL= − = −   (2.49) 

Denoting 

 2 ( )D I J B= −   (2.50) 

then the eliminated normal equation (the second equation of Eq. (2.43)) can be rewritten as 

 2( ) ( ) ( )T T T TB I J P I J BX B I J PL− − = −   (2.51) 

or 

 2 2 2 2
T TD PD X D PL=   (2.52) 

which is the least squares normal equation of the following linear observation equation 

 2 2 2 ,U D X L P= −   (2.53) 
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or 

 2 2( ) ,U I J BX L P= − −   (2.54) 

where L and P are the original observational vector and the weight matrix, 2U  is the residual vector, 

which has the same property as V in Eq. (2.37). 

The advantage of using Eq. (2.54) is that the unknown vector 1X  has been eliminated. However, L 

vector and P matrix remain the same as in the originals. In this case, the correlation problems can be 
avoided. 

2.4 Equivalence of Un-differenced and Time Differencing PPP Algorithms 
In this section, the equivalent equations are formed to eliminate the ambiguities from the original 
un-differenced equations, then the equivalence of the time differencing and original un-differenced 
equations is proved theoretically. 

The linearized PPP observation equation can be expressed as 

 ( ) 1

2

,
X

V A B L P
X

 
= − 

 
  (2.55) 

Suppose at one station n common satellites ( )1 2, , , nk k k  are observed at time t1 and t2, thus the 

original observation equation can be written as 

 1 1 11

2 2 22

,t t t

t t t

V I B LX
V I B LX
      

= −      
      

2

01
0
I

P
Iσ

 
=  

 
  (2.56) 

where if no cycle slip exists, 1X  denotes the ambiguity and 2X  represents other unknown parameters. 

For simplicity, ambiguity is scaled by the ionosphere-free combined wavelength λ  and directly used as 

unknown. Thus the coefficient matrix of 1X  is an identity matrix I.  

Comparing Eq. (2.55) with Eq. (2.56), one has (cf. Sect. 2.3) 

,
I

A
I

 
=  
 

    1

2

,t

t

B
B

B
 

=  
 

     1

2

,t

t

L
L

L
 

=  
 

     1

2

t

t

V
V

V
 

=  
 

 

( )11 2 2

01 2
0

T I I
M A PA I I I

I Iσ σ
  

= = =  
  

 

( )
2

1
11 2

01 1
02 2

T I I I I
J AM A P I I I

I I I I
σ

σ
−      

= = =     
     
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2 2
1
2n n

I I
I J

I I×

− 
− =  − 

 

( ) 1 2
2 2

2 1

1
2

t t
n n

t t

B B
I J B

B B×

− 
− =  − 

 

Therefore the equivalently eliminated equation of Eq. (2.56) is 

 1 1 2 1
2 2

2 2 1 2

01 1,
02

t t t t

t t t t

U B B L I
X P

U B B L Iσ
−       

= − =       −       
  (2.57) 

where the ambiguity parameter 1X  has been eliminated, and the observable vector and weight matrix 

remain unchanged. Denoting 2 1TD t tB B B= − , the least squares normal equation of Eq. (2.57) can be 

formed as 

( ) ( ) 1
2

2

1
2

tTDT T T T
TD TD TD TD

tTD

LB
B B P X B B P

LB
−   

− = −   
   

 

or 

 ( )2 2 1
T T
TD TD TD t tB B X B L L= −   (2.58) 

Alternatively, a time differencing equation can be obtained by multiplying Eq. (2.56) with a 

transformation matrix ( )TDC I I= −  or directly by subtracting the common observables of time t1 from 

that of time t2, which can be formed as 

1 1 11

2 2 22

t t t
TD TD TD

t t t

V I B LX
C C C

V I B LX
      

= −      
      

 

or 

 ( ) ( )2 1 2 1 2 2 1t t t t t tV V B B X L L− = − − −   (2.59) 

Therefore the covariance TD∑  and weight matrix TDP  of time differencing observational equation can 

be represented as 

 2 20
2

0
T

TD TD TD

I
C C I

I
σ σ

 
∑ = = 

 
  (2.60) 

and 

 1
2

1
2TD TDP I
σ

−= ∑ =   (2.61) 

Supposing Eq. (2.59) is solvable, its least squares normal equation is then 
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 ( ) ( ) ( ) ( )2 1 2 1 2 2 1 2 1
T T

t t t t t t t tB B B B X B B L L− − = − −   (2.62) 

It is obvious that Eq. (2.62) and Eq. (2.58) are identical. Therefore in case of two epochs, the time 
differencing Eq. (2.59) is equivalent to the equivalently eliminated Eq. (2.57) and consequently equivalent 
to the original zero-difference equation. In practice, it should be noted that the precondition of the 
equivalence of time differencing and zero-difference is that the sample rate of the observations used in the 
computation should be high enough, then the common error between two epochs can be expected to be the 
same or similar enough and the result of the time differencing obtained is considered as precise and 
reliable enough and should be equivalent to that of zero-difference. 

2.5 Equivalence of Un-differenced and Triple Differences Algorithms 
It is known that data differentiations are methods of combining GNSS observations of different stations 
(Xu, 2007). As we know, single difference can be formed by observations between two stations, two 
satellites or two epochs. Here we take the case that single difference is the difference formed by data 
observed at two stations on the same satellite as 

 1, 2 2 1SD ( )k k k
i i i iO O O= −   (2.63) 

where O is the original observable, i1 and i2 are two id numbers of the two stations. 

Double differences are formed between two single differences related to two observed satellites as 

 
1, 2 2 1
1, 2 1, 2 1, 2

2 2 1 1
2 1 2 1

DD ( ) SD ( ) SD ( )

( ) ( )

k k k k
i i i i i i

k k k k
i i i i

O O O

O O O O

= −

= − − −
  (2.64) 

where k1 and k2 are two id numbers of the satellites. 

Triple differences are formed between two double differences related to the same stations and satellites 
at the two adjacent epochs as 

 

1, 2 1, 2 1, 2
1, 2 1, 2 1, 2

2 2 1 1
2 1 2 1

2 2 1 1
2 1 2 1

TD ( ( 1, 2)) DD ( ( 2)) DD ( ( 1))

( 2) ( 2) ( 2) ( 2)

( 1) ( 1) ( 1) ( 1)

k k k k k k
i i i i i i

k k k k
i i i i

k k k k
i i i i

O t t O t O t

O t O t O t O t

O t O t O t O t

= −

= − − +

− + + −

  (2.65) 

where t1 and t2 are two adjacent epochs. 

In order to prove the equivalence of triple differences and zero-difference, the eight terms of triple 
differences in Eq. (2.65) should be rearranged to the new order as 

 

{ }
{ }

1, 2 2 2 2 2
1, 2 2 2 1 1

1 1 1 1
2 2 1 1

2 2 1 1
2 1 2 1

TD ( ( 1, 2)) ( 2) ( 1) ( 2) ( 1)

( 2) ( 1) ( 2) ( 1)

( ) ( )

k k k k k k
i i i i i i

k k k k
i i i i

t k t k t k t k
i i i i

O t t O t O t O t O t

O t O t O t O t

D O D O D O D O

   = − − −   

   − − − −   

= ⋅ − ⋅ − ⋅ − ⋅

  (2.66) 

where tD  represents the time difference observables between time t1 and t2. 

From Eq. (2.66) triple differences can be regarded as to make time differencing of the same satellite 
between two adjacent epochs at the station firstly, then to be formed by double differences between two 
single differences related to two observed satellites. The time differenced observable between two adjacent 
epochs has the same property as the original one, which is still uncorrelated (cf. Eq. (2.56) and Eq. 
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(2.60)-(2.61)). And it is generally accepted that the single difference as well as double differences equation 
are equivalent to the zero-difference equation, which has been explained and proved in Xu (2007). 
Moreover, with consideration of the equivalence of un-differenced and time differencing proved in Sect. 
2.4, it can be concluded that the triple differences equation is equivalent to the zero-difference equation. 

2.6 Time Differencing PPP Based on the Equivalence Principle 
As a result of the theoretical study, a time differencing PPP based on the equivalence principle is derived. 

Referring to Sect. 2.3, one has 

 ( ) 1

2

,
X

V A B L P
X

 
= − 

 
  (2.67) 

where 1X  denotes the receiver clock error parameter; 2X  denotes the coordinates, tropospheric delay 

and ambiguity parameters. Therefore the equivalently eliminated observation equation of the receiver 
clock error parameter can be formed as 

 2 2 2 ,U D X L P= −   (2.68) 

where the characters in Eq.(2.68) have the same meaning as in Eq. (2.53). 

If no cycle slip exists, the ambiguities can be eliminated through the difference of two adjacent epochs. 
The tropospheric delay can also be eliminated between epochs. Generally the tropospheric delay can be 
deemed as fixed and unchanged during a certain period, typically as two hours. However, when the 
weather at the observed station changes drastically and constanly, or there are high variations in the 
atomosphere humidity, then the unchanged duration should be considered much less. Therefore the time 
differencing of Eq. (2.68) at epoch i and i-1 can be formed as 

 ( ), 1 1 1
2 2 2 2 2 1 ,i i i i i i

i iU D X D X L L P− − −
−= − − −   (2.69) 

Denoting 

 1
2 2 2
i i idX X X −= −   (2.70) 

thus Eq. (2.69) can be expressed as 

 ( ), 1 1
2 2 2 2 2 1 ,i i i i i i

i iU D dX dD X L L P− −
−= ⋅ + ⋅ − −   (2.71) 

where 1
2 2 2
i i idD D D −= −  and can be ignored (Chen and Wang, 2007; Li et al., 2010). It means when the 

high-rate recording observations are used, then the coefficients of the linearized observation equations at 
two epochs are highly similar or nearly the same, thus the difference between them can be small enough to 
be ignored. In this case Eq. (2.71) can be simplified to 

 ( ), 1
2 2 2 1 ,i i i i

i iU D dX L L P−
−= ⋅ − −   (2.72) 

where 2
idX  denotes the coordinates difference between two epochs. 

Thus the coordinates difference can be estimated through solving Eq. (2.72). The average velocity of the 
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station can also be obtained in accordance with the sample interval of the observations. 

To validate the derived time differencing PPP algorithm, the GPS observations of IGS station GMSD 
(30.56º N, 131.02 º E, located in Japan) on GPS day 334 with sample intervals of 1 s and 30 s were used, 
respectively. In principle, the position coordinates difference between epochs is zero for the static 
observations. Thus the coordinates difference between epochs obtained in the static time differencing PPP 
can be regarded as the computational error and reflect the precision of the computation method. The 
coordinates difference between epochs of interval 1 s and 30 s are shown in Fig. 2.1 and Fig. 2.2, 
respectively. The mean value and the standard deviation of the coordinates difference are given in Table 
2.1. 

From Fig. 2.1-2.2 and Table 2.1 it can be found that the precisions of the coordinates difference are 
different with different sample intervals of the observations. The coordinates differences between epochs 
of observations with a 1 s interval are within 1 cm in most instances while that of observations with a 30 s 
interval are within 2 cm. The coordinates difference between epochs of observations with a 1 s interval has 
higher precision than that of a 30 s interval. That is because the smaller the interval is, the more similar the 
common error between two epochs will be. Therefore the error elimination in the time differencing is 
much better. In case of a 1 s interval, the coordinates difference between epochs is just the velocity of the 
station between epochs. The obtained coordinates difference as well as velocity, which can be obtained by 
making differential of the coordinate difference with respect to the interval, can keep stable from the 
beginning of computation. This approach is superior to making position difference of PPP which always 
needs some convergence time. Thus the results can be useful in applications, such as airborne gravimetry, 
which needs reliable velocity and acceleration solutions. It is known that in airborne gravimetry, the 
external information related to the acceleration of the platform which carries the sensors (a classical air 
gravimeter or a strapdown system), is needed to allow the correct discrimination of accelerations that are 
not due to the Earth gravity field. The coordinate difference can also be useful for earthquake monitoring. 
It makes the integration for the obtained coordinate difference to compute the final position at each epoch. 
In case of a 30 s interval (cf. Fig. 2.2) it is noted that there is a big jump (red circle) where the coordinates 
difference in X, Y and Z components reached 2 m, 5 m and 1 m, respectively. This is caused by an existing 
cycle slip in the phase measurement from one of the satellites during the observations. In this case the 
ambiguity of the satellite changed between these two adjacent epochs, which would not be eliminated 
through differencing, and caused the big error in coordinates difference computation. Therefore the 
coordinates difference between epochs could be an efficient method to detect cycle slips. 

Table 2.1 Mean and STD of the coordinates difference (units: cm) 

Interval 
1 s 30 s 

detX detY detZ detX detY detZ 

Mean (cm) -0.02 0.03 -0.01 0.02 -0.13 -0.06 

STD (cm) 0.38 0.34 0.28 0.70 0.83 0.62 
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Fig. 2.1. Coordinates difference between epochs (1 s interval) 

 

Fig. 2.2. Coordinates difference between epochs (30 s interval) 

2.7 Conclusions 

In this chapter, the basic algorithms used in the thesis were described. The commonly used adjustment and 
filtering algorithms in PPP including least squares adjustment, sequential least squares adjustment and 
Kalman filter were introduced. Then the equivalence principle and the equivalently eliminated observation 
equation approach were described. It has a great significance in eliminating the nuisance unknown 
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parameters directly through the observation equations, which can reduce the size problem in the 
computation. On the basis of the equivalence principle and the equivalence property of un-differenced and 
differencing algorithms, the specific equivalence of un-differenced and time differencing PPP algorithms is 
proved theoretically for the first time. Moreover, through regarding triple differences as to make time 
differencing of the same satellite between two adjacent epochs at one station first and then to be formed by 
double differences, the equivalence of zero-difference and triple differences is proved. Finally, as a 
consequence of the conducted theoretical study, a time differencing PPP algorithm based on the 
equivalence principle was derived and a numerical example was given. Through such a time differencing 
PPP algorithm the coordinates difference and average velocity between epochs can be obtained. The 
obtained coordinates difference can keep stable from the beginning of computation, which is superior to 
making position difference of PPP because that always needs a certain convergence time. Thus the results 
could be useful in the applications, such as airborne gravimetry, as well as earthquake monitoring. Results 
also show that the time differencing PPP could be an efficient method to detect cycle slips. 
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3 Influence of Tropospheric Delay on Precise Point Positioning 

 

3.1 Introduction 
As known, due to the influence of pseudorange noise, tropospheric delay and other error sources, the 
accuracy and reliability of PPP are still limited (Li, 2013). Tropospheric delay is one of the key factors 
which affect the precision of GPS positioning (Dai et al., 2011). The unknown tropospheric delay 
parameter is usually estimated along with the position and ambiguity parameters. Ingestion of precise 
tropospheric models can reduce the total number of unknown parameters that need to be estimated from 
the observation model, potentially remove the need for noise propagating linear combinations of 
observables, and potentially improve positioning performance (Dodd et al., 2006). In this case, the 
influence of tropospheric delay on PPP is studied in this chapter. 

The tropospheric delay in satellite navigation positioning usually refers to the signal delay generated 
when the electromagnetic waves get through the non-ionized neutral atmosphere below 80 km. The 
tropospheric delay could be about 2 m in the zenith direction and a few tens of meters in the case of a 
lower satellite elevation (Xu, 2007). There are two methods for dealing with the tropospheric delay in 
single point positioning. One is using a tropospheric model to calculate and correct the delay immediately. 
The other one is to treat the delay as an unknown parameter which will be estimated in the adjustment (Ge 
and Liu, 1996). However, in high-precision GPS positioning it is difficult to obtain optimal positioning 
results by only using the first method. That is because of the existence of model errors and measurement 
errors of the meteorological parameters along the signal transmission path. It is better to regard the 
computed value of the tropospheric model as an approximation, and then to estimate the exact tropospheric 
delay by a stricter adjustment procedure. 

The effects of using a tropospheric model on GPS PPP was researched by Kouba (2009b). In that study 
the global pressure and temperature model GPT (Boehm et al., 2007) was used to compute a priori zenith 
hydrostatic delay and demonstrated to perform well for low and mid latitude stations. However, in the 
polar region or with low elevation angles, the GPS height solution errors can sometimes reach more than 
10 mm. Nevertheless, it should be noted that the station height time series based on simple GPT model 
have a better repeatability than those based on more realistic tropospheric a priori delay derived from 
surface pressure if atmosphere loading correction is not included, since the a priori hydrostatic part of the 
zenith delay derived from the empirical pressure can partially compensate for the atmospheric loading 
displacement (Kouba, 2009b; Wanninger, 2012). According to Xu et al. (2014), there are more visible 
satellites with lower elevation angles in the Antarctic region comparing with the low-latitude observatories. 
And researches show that the observations with lower elevation angles are more significantly influenced 
by the tropospheric delay (Ren et al., 2011; She et al., 2011). Thus the residual errors of the tropospheric 
model can greatly affect the precision of the positioning there. Both zenith delay model and mapping 
function play an important role. In recent years, there are some most commonly used models. An improved 
global pressure and temperature empirical model GPT2 (Lagler et al., 2013) was proposed in 2013. In this 
chapter, the impact of the tropospheric delay on the Antarctic positioning, especially the effect of the 
meteorological data derived from GPT2 model and actual meteorological data on global positioning are 
analyzed and compared. The existing tropospheric models are proposed usually based on the assumption 
that the atmosphere is homogeneous in all directions (Xu and Wu, 2009). However, the tropospheric delay 
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is anisotropic in the horizontal direction (Cao et al., 2014; Miyazaki et al., 2003). Thus the influence of 
horizontal gradient correction on PPP is studied in this chapter. 

3.2 Tropospheric Delay Model 
The tropospheric delay can be represented as the product of the tropospheric refraction in zenith direction 
and a mapping function related to the elevation angle. It is separated into hydrostatic (about 90%, caused 
by dry gas in the atmosphere) and wet (about 10%, caused by water vapor) parts, which can be defined 
according to Hoffmann-Wellenhof et al. (2001), Leick (2004) as 

 h w h h w wZ MF Z MFδ δ δ= + = × + ×   (3.1) 

where δ  denotes the tropospheric delay; the subscript h and w denote hydrostatic and wet; hZ  and wZ  

denote the tropospheric zenith hydrostatic delay and zenith wet delay; hMF  and wMF  are mapping 

functions related to the hydrostatic and wet components. The residual influence of the wet component of 
the tropospheric delay still exists while more than 90% of the hydrostatic component can be corrected 
immediately by using a tropospheric model (Brunner and Welsch, 1993; Collins and Langley, 1997; Tsujii 
et al., 2000). 

3.2.1 Zenith Tropospheric Delay 

The hydrostatic zenith delay hZ  can be accurately modeled based on the surface pressure as 

(Saastamoinen, 1972) 

 3

0.0022768
1 0.00266cos(2 ) 0.00028 10h

PZ
B H−=

− − ×
  (3.2) 

where hZ  is the zenith hydrostatic delay (in units of meters); P is the atmospheric pressure (in units of 

millibars); B is geodetic latitude at the station (in units of radians) and H is the geodetic height at the 
station (in units of meters). 

  On the other hand, the zenith wet delay component is more difficult to model accurately due to its 
temporally unpredictable changes and is therefore estimated as an unknown along with other unknowns in 
the adjustment in precise point positioning. The zenith wet delay could also be computed by Saastamoinen 
formula with a loss of precision: 

 3

12550.0022768 0.05

1 0.00266cos(2 ) 0.00028 10w

e
TZ

B H−

 × + × 
 =

− − ×
  (3.3) 

where wZ  is the zenith wet delay (in units of meters); T is the temperature at the station (in units of 

Kelvin); e is the partial pressure of water vapor (in units of millibars). 

With the approximate position and the meteorological data, the hydrostatic and wet zenith delay could 
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be easily computed by Eqs. (3.2) and (3.3). According to Eq. (3.2), 1 mbar pressure change at sea level can 
cause a change of about 2.3 mm in a priori zenith hydrostatic delay, it is essential to use as accurate 
meteorological data as possible (Tregoning and Herring, 2006).  

Generally, the meteorological data needed by Eqs. (3.2) and (3.3) can be obtained from actual 
observations, or derived from using a standard atmospheric value at sea level and the height of the station 
(Berg, 1948). Meteorological data can also be determined by empirical models called GPT (Boehm et al., 
2007) or the later GPT2 model (Lagler et al., 2013). In this chapter, the meteorological data derived from 
GPT2 models and the actual meteorological observations were used. 

3.2.2 Mapping Functions 

To obtain the slant tropospheric delay, a mapping function which describes the variation of the slant 
tropospheric delay with respect to satellite elevation angle is needed. Many mapping functions were 
proposed in the past, such as NMF (Niell Mapping Function, (Niell, 1996)), VMF1 (Vienna Mapping 
Function 1, (Boehm et al., 2006b)), GMF (Global Mapping Function, (Boehm et al., 2006a)), which were 
commonly researched in the recent years. By comparison, a general form of the hydrostatic and wet 
mapping functions can be outlined as (Herring, 1992) 
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where MF is the mapping function; ε  is the elevation angle; a, b and c are empirical coefficients with 

different values in various mapping functions. ( , , )h h ha b c  and ( , , )w w wa b c  are used for the hydrostatic 

and wet components, respectively. 

The accuracy of the mapping function would definitely affect the precision of the slant delay, thus 
affecting the positioning precision. And when the elevation cut-off angle is lower, the impact is more 
significant. Applying a rule of thumb (Boehm et al., 2006b; MacMillan and Ma, 1994), an error in the wet 
mapping function of 0.01 or in the hydrostatic mapping function of 0.001 would cause an error of 4 mm in 
the station height under 5° elevation cut-off angle at 2000 mm ZHD and 200 mm ZWD, respectively. In 
this study, the GMF mapping function was applied to make the analysis. 

3.3 Comparison of Tropospheric Delays Based on GPT2 and Actual Meteorological 
Observations 

3.3.1 Data Preparation 

The data of a globally distributed set of 9 IGS (International GNSS Service, www.igs.org) stations during 
2013 were used to make the analysis. This set of 9 IGS stations (DAV1, OHI2, OUS2, HRAO, NURK, 
MANA, FUNC, YAKT and SCOR) would represent high-latitude, mid-latitude, and low-latitude areas in 
both southern and northern hemispheres. The distribution of these stations is shown in Fig. 3.1. 
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Fig. 3.1. Distribution of the selected IGS stations used for analysis 

3.3.2 Comparison of Zenith Hydrostatic Delays 

A priori zenith hydrostatic delay (ZHD) derived from a tropospheric model, which is proportional to the 
surface pressure at the station, will greatly affect the precision of positioning. Furthermore, the higher 
percentage of low-elevation observations at high latitude stations amplifies the effect of an a priori ZHD 
error (Tregoning and Herring, 2006). Thus a comparison of pressures and ZHD derived from GPT2 and the 
actual meteorological data for Antarctic stations is presented here. 

The surface atmosphere pressure (denoted as M, once-daily) and pressure time series derived from 
GPT2 model for stations in Antarctic region (e.g. DAV1 and OHI2) in 2013 are given in Fig. 3.2. 

 

Fig. 3.2. Comparison of surface pressure and pressure derived from GPT2 for stations DAV1 (a) and OHI2 
(b) 

Fig. 3.2 shows that the pressure time series derived from GPT2 model is a smooth scatter diagram while 
the actual surface pressure time series is more discrete, which could better reflect the temporal variation of 
the pressure. 
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Fig. 3.3 shows the zenith hydrostatic delay derived from GPT2, actual meteorological observations and 
VMF1, which are plotted in blue scatters, olive scatters and red ones, respectively. The statistics of their 
differences are given in Table 3.1. The interval of the ZHD derived from GPT2 and actual meteorological 
data are set as 6 hours, in accordance with the interval of VMF1 ZHD. 

 

Fig. 3.3. Comparison of zenith hydrostatic delays for stations DAV1 (a) and OHI2 (b) 

Table 3.1 Statistics of zenith hydrostatic delay difference (units: mm) 

Stations 
GPT2-VMF1 M-VMF1 

Mean RMS Mean RMS 

DAV1 4.0 22.2 -0.7 3.7 
OHI2 4.9 29.4 2.9 5.6 

From Fig. 3.3 and Table 3.1 it can be found that, the ZHD derived from actual meteorological 
observations agrees well with the one derived from VMF1 model, which is considered as the true value 
here. The difference of ZHD at these two stations has an average of -0.7 mm and 2.9 mm, and their RMS 
(Root Mean Square) are 3.7 mm and 5.6 mm (cf. Table 3.1), which is much more less than the difference 
between GPT2 and VMF1. Moreover, the ZHD series derived from GPT2 model is a nearly slippy scatter 
diagram, it is known that ZHD is in proportion to the pressure at one station, thus the pressures derived 
from GPT2 model can hardly reflect the temporal variation, especially in case of dramatic changes in 
weather. Therefore a priori ZHD derived from actual meteorological observation is recommended if it is 
available in the position processing. 

3.4 Effect of Meteorological Data on Precise Point Positioning 

3.4.1 Tropospheric Delay Estimation 

As mentioned before, the residual influence of the wet component of the tropospheric delay still exists 
while more than 90% of the hydrostatic component can be corrected immediately by using the tropospheric 
model. Therefore, the tropospheric delay is regarded as an unknown parameter and will be estimated by 
the adjustment in precise point positioning. The value calculated by the tropospheric model is regarded as 
an initial approximation in the estimation. 

   As mentioned in Sect. 3.3.1, the same 9 stations are selected in this part. Combined with GMF 
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mapping function, GPT2-derived meteorological data and the actual meteorological observations (denoted 
as M in Table 3.3 and Fig. 3.4) were used to calculate the tropospheric delay, respectively, which were 
treated as a priori values. Then the tropospheric delay was estimated as an unknown parameter along with 
position coordinates, receiver clock offsets and carrier phase ambiguities in the precise point positioning. 
Finally the position results both in horizontal and vertical directions were obtained. The details in the PPP 
processing are listed in Table 3.2. 

Table 3.2 Observation models and data processing strategies for PPP 

Item Models and Strategies 

Observations Undifferenced ionosphere-free code and phase combination 

Observation weight Elevation dependent weight 
Elevation angle cutoff 5°/10° 
Sampling rate 30s 
Precise orbit Fixed, IGS final precise ephemeris 

Precise clock biases Fixed, IGS precise clock 

Tropospheric delay 
Saastamoinen model (real meteorological data/GPT2) & random 
walk process 

Mapping function Global Mapping Function (GMF)  
Ionospheric delay First order effect eliminated by ionosphere-free linear combination 
Phase-windup effect Corrected 
Earth rotation parameter Fixed, IGS ERP product 

PCO & PCV Satellite antenna and receiver antenna Applied 

Relativistic effects IERS Convention 2010 
Tidal displacement Solid Earth tides, pole tides, ocean tides (IERS Convention 2010) 
Receiver clock biases Estimated as white noise for each epoch 
Phase ambiguity Estimated as constant for each ambiguity arc 
Time system GPS Time 
Terrestrial frame ITRF2008 

3.4.2 Data Analysis and Results 

To make a comparison, the position coordinates published by IGS were regarded as standard values to 
compute the RMS of the position results with following formula. 
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where i denotes the epoch, n is the number of epochs; _( , , )i N E UX  represents the computed position result 

of N, E or U directions at epoch i respectively; standard _( , , )N E UX  represents the IGS published position 

coordinates in corresponding direction. 

  The RMS with respect to IGS published results are given in Table 3.3. The RMS results in U direction 
are shown in Fig. 3.4. 
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Table 3.3 RMS with respect to IGS results during 2013 (units: mm) 

Stations 

5° 10° 

GPT2/GMF-IGS M/GMF-IGS GPT2/GMF-IGS M/GMF-IGS 

N E U N E U N E U N E U 

DAV1 2.4 4.2 12.5 2.3 4.2 9.3 1.8 3.6 5.3 1.8 3.6 4.1 
OHI2 6.2 7.6 22.4 6.2 7.6 19.6 6.3 5.8 11.6 6.3 5.8 11.1 
OUS2 5.3 4.8 6.6 5.3 4.8 6.8 4.5 4.3 7.0 4.5 4.3 7.1 
HRAO 4.0 8.7 17.9 4.0 8.7 17.9 4.3 8.3 13.9 4.3 8.3 13.9 
NURK 5.7 9.4 22.0 5.7 9.4 22.5 6.5 6.1 14.0 6.5 6.1 14.2 
MANA 2.4 6.7 17.6 2.4 6.7 17.7 2.1 6.9 15.2 2.1 6.9 15.2 
FUNC 4.3 4.3 5.7 4.3 4.2 5.3 4.1 3.9 3.9 4.1 3.9 3.6 
YAKT 3.8 6.9 5.5 3.8 6.9 6.0 3.3 7.2 4.6 3.3 7.2 4.8 
SCOR 2.2 3.6 8.9 2.2 3.6 8.4 2.1 3.8 5.9 2.1 3.8 5.8 

 

Fig. 3.4. RMS in U direction under 5° elevation cut-off angle (a) and 10° elevation cut-off angle (b) during 
2013 

   In order to analyze the results intuitively, the visible satellite trajectories connected to the elevation 
angles for Antarctic stations (e.g. DAV1 and OHI2) are shown in Fig. 3.5. 

 

Fig. 3.5. Skyplots of the observations for Antarctic stations DAV1 and OHI2 
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From Table 3.3 and Fig. 3.4 - Fig. 3.5 it can be found that: (1) There is a high variability in U direction 
under different elevation cut-off angles in Table 3.3. That is because when the elevation cut-off angle was 
set from 10° to 5°, the tropospheric errors of the observations which increase significantly, are included 
and used in the computation. Due to the specificity of Antarctic region, there are more observations with 
lower elevation angles. And the lower the elevation angles are, the larger the height solution errors will be, 
since observations with lower elevation angles are more significantly influenced by the tropospheric delay. 
Thus the residual errors of the tropospheric model can greatly affect the precision of positioning there. (2) 
Using GPT2-derived meteorological data and actual meteorological observations the same positioning 
precision can be achieved in most areas of the world except for the Antarctic region (e.g. DAV1 and OHI2). 
Thus in most instances GPT2 model is meaningful and useful in case of a priori tropospheric delay is 
required but the actual measured meteorological data is not available. (3) The improvement of the actual 
meteorological observations on the positioning result is significant in the Antarctic region (e.g. DAV1 and 
OHI2) compared to using GPT2-derived meteorological data. That is because in the Antarctic positioning 
more visible satellites are in lower elevation angles (cf. Fig. 3.5; (Xu et al., 2012)), which has a significant 
influence on the tropospheric delay. Therefore, the improvement of the more accurate tropospheric model 
with actual measured meteorological data on the positioning precision is certainly more obvious. (4) When 
the elevation cut-off angle was set to 5°, the precision in U direction of DAV1 and OHI2 improved by 25% 
and 13%, respectively. While under 10° elevation cut-off angle, the precision in U direction improved by 
23% and 5%, respectively. Therefore when the cut-off angle is lower, the effect of the actual 
meteorological observations on the positioning precision is also more significant in Antarctic due to the 
retention of low elevation angle observations. (5) For high-precision positioning in the Antarctic region, 
actual meteorological data is suggested to be measured and used. 

In order to have a better understanding of the result, the standard deviations STD and average difference 
µ  with respect to IGS results were additionally computed by Eq. (3.6). The symbols have the same 
meanings as that of Eq. (3.5). 
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It is found that the standard deviations of using GPT2/GMF with respect to IGS are the same as that of 
using M/GMF on the whole. However, the values of µ  are different when using different models, which 
have the same tendency as the RMS results given in Table 3.3. Therefore it is inferred that the difference 
between GPT2/GMF and M/GMF can influence the tropospheric delay, thus affect the values of µ , which 
also reflect in the values of RMS. When using M/GMF, smaller µ  can be obtained comparing to that of 
GPT2/GMF, which means the average difference of the computed coordinates and IGS coordinates is 
reduced. 
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3.5 Effects of A Tropospheric Horizontal Gradient Model 

3.5.1 Tropospheric Horizontal Gradient Model 

The tropospheric model of Eq. (3.1) was proposed usually based on the assumption that the atmosphere is 
homogeneous in all directions. However, the tropospheric delay is anisotropic in the horizontal direction. 
Thus a tropospheric delay model which has added a horizontal gradient correction was proposed by 
various researchers (Chen and Herring, 1997; MacMillan, 1995; Miyazaki et al., 2003; Teke et al., 2011) as 

 ( cos sin )h h w w N E gZ MF Z MF G G MFδ φ φ= × + × + + ×   (3.7) 

where φ  is the azimuth angle from north; NG  and EG  are the gradient vectors in north-south and 

east-west directions, respectively. gMF  denotes the gradient mapping function, which can be set as 

cotwMF ε due to the anisotropic water vapor distributions (Li et al., 2011); ε  denotes the elevation angle. 

3.5.2 Data Analysis and Results 

The same IGS stations mentioned in Sect. 3.3.1 were selected to test the effects of horizontal gradients 
under different weather conditions and different elevation cut-off angles. The data of January and July 
2013 were used to make the analysis. The elevation cut-off angles were set to 5° and 10°, respectively. The 
mean and RMS of difference between position results with and without horizontal gradients under different 
elevation cut-off angles are given in Table 3.4-3.5. Similarly with Sect. 3.4.2, the position results with and 
without horizontal gradients were compared with the standard values from IGS. The RMS with respect to 
IGS published results under different elevation cut-off angles are given in Table 3.6-3.7. For an intuitive 
analysis, the RMS under 5° elevation cut-off angle in January and July were plotted and are shown in Fig. 
3.6-3.7.  

Table 3.4 Mean and RMS of difference between position results with and without horizontal gradients in 
January 2013 (units: mm) 

Stations 

5° 10° 

Mean RMS Mean RMS 

N E U N E U N E U N E U 

DAV1 3.6 1.6 -1.1 3.6 1.6 1.1 2.7 0.7 -1.2 2.7 0.7 1.3 
OHI2 3.0 0.2 -2.3 3.1 0.5 2.6 2.1 -0.6 -0.5 2.1 0.6 0.7 
OUS2 4.1 -0.6 -2.8 4.1 0.7 2.8 2.9 -1.2 -0.1 2.9 1.2 0.3 
HRAO -2.3 -1.3 -5.5 2.4 1.5 5.7 -2.2 -1.4 -3.9 2.2 1.6 4.2 
NURK -1.9 -0.8 -1.4 1.9 1.0 1.5 -0.8 -0.7 -1.3 0.8 0.9 1.3 
MANA -3.6 -0.1 -8.7 3.7 1.4 8.8 -4.3 0.8 -4.3 4.3 1.3 4.4 
FUNC 1.8 0.1 -1.1 1.8 0.3 1.3 1.6 0.3 -0.1 1.6 0.3 0.3 
YAKT 2.8 -2.1 0.3 2.9 2.2 0.4 2.0 -0.9 -0.6 2.1 1.0 0.6 
SCOR -1.1 0.8 0.9 1.1 0.9 0.9 -0.6 0.4 -0.1 0.6 0.5 0.1 
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Table 3.5 Mean and RMS of difference between position results with and without horizontal gradients in 
July 2013 (units: mm) 

Stations 

5° 10° 

Mean RMS Mean RMS 

N E U N E U N E U N E U 

DAV1 4.3 -1.6 -4.9 4.3 1.7 4.9 2.6 -0.8 -2.1 2.6 0.8 2.1 
OHI2 1.7 -0.4 -2.4 1.8 0.5 2.5 1.0 -0.5 -0.8 1.0 0.5 0.8 
OUS2 2.0 0.3 -0.1 2.0 0.3 0.2 0.4 -0.1 0.3 0.4 0.23 0.3 
HRAO -0.3 -0.1 -0.1 0.3 0.1 0.1 -0.2 -0.1 -0.2 0.2 0.2 0.2 
NURK 3.3 -0.1 -6.5 3.3 0.5 6.5 2.1 0.6 -0.1 2.1 0.7 0.4 
MANA -0.6 1.7 -3.4 0.6 1.8 3.5 -1.0 1.2 -2.8 1.0 1.4 2.8 
FUNC 1.8 -0.6 -3.3 1.8 0.7 3.4 1.5 -0.5 -2.1 1.6 0.6 2.1 
YAKT -1.2 2.1 0.9 1.0 1.8 0.8 -1.0 0.8 0.6 0.8 0.8 0.5 
SCOR -0.4 -1.9 0.4 0.5 2.0 0.5 -0.4 -1.0 -0.1 0.4 1.0 0.1 

Table 3.6 RMS with respect to IGS results in January 2013 (units: mm) 

Stations 

5° 10° 

NoGrad-IGS Grad-IGS NoGrad-IGS Grad-IGS 

N E U N E U N E U N E U 

DAV1 3.3 4.2 5.9 0.4 2.7 4.8 2.7 4.2 3.1 0.3 3.5 4.3 
OHI2 3.7 12.2 15.2 0.6 12.0 12.8 3.5 6.5 8.0 1.4 6.0 7.5 
OUS2 10.2 4.9 5.0 6.1 4.3 2.3 8.6 4.8 5.1 5.8 3.7 5.1 
HRAO 8.0 7.1 13.1 5.7 5.9 10.0 8.1 7.1 19.6 5.9 5.9 15.7 
NURK 2.3 13.9 7.3 0.5 13.1 5.9 1.5 11.7 4.4 0.7 10.9 3.1 
MANA 1.9 13.0 12.0 1.9 13.2 7.2 2.8 14.2 10.7 1.7 13.4 6.5 
FUNC 2.6 9.3 7.0 0.8 9.3 6.0 2.5 9.1 5.5 0.9 8.9 5.5 
YAKT 11.0 7.9 2.4 9.5 5.7 2.1 10.1 6.2 2.4 9.1 5.2 1.9 
SCOR 2.0 2.7 2.8 0.9 1.8 2.7 1.6 2.3 4.9 1.1 1.9 4.7 

Table 3.7 RMS with respect to IGS results in July 2013 (units: mm) 

Stations 

5° 10° 

NoGrad-IGS Grad-IGS NoGrad-IGS Grad-IGS 

N E U N E U N E U N E U 

DAV1 2.5 5.8 17.5 1.8 4.1 15.2 1.8 3.5 9.1 0.9 2.8 7.0 
OHI2 2.2 2.1 14.4 0.6 2.4 11.9 2.2 1.8 0.8 1.2 2.2 0.6 
OUS2 5.2 4.3 7.3 3.2 4.6 7.2 4.4 3.7 6.5 4.0 3.6 6.8 
HRAO 2.7 6.8 15.9 2.4 6.8 15.8 2.9 6.3 12.9 2.7 6.2 12.7 
NURK 7.6 5.0 6.6 4.3 5.1 1.1 7.1 5.5 2.5 5.0 5.1 2.6 
MANA 1.7 5.4 5.3 2.0 4.0 2.0 2.2 4.8 8.4 1.3 3.9 5.7 
FUNC 6.8 2.2 5.7 5.0 2.8 2.5 6.2 1.3 1.9 4.7 1.3 0.7 
YAKT 5.3 5.9 1.0 4.1 3.9 0.7 4.6 6.7 4.7 3.7 5.9 4.1 
SCOR 0.9 3.6 9.1 0.5 1.8 8.7 0.7 3.6 5.1 0.4 2.7 5.1 
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Fig. 3.6. RMS with respect to IGS results under 5° elevation cut-off angle in July 2013 

 
Fig. 3.7. RMS with respect to IGS results under 5° elevation cut-off angle in January 2013 

Results in Table 3.4-3.5 show the difference between position results with and without horizontal 
gradients under 5° elevation cut-off angle is more significant than that under 10° elevation cut-off angle. 
Moreover, the impact of adding gradient estimation in horizontal direction is generally bigger than in 
vertical direction. 

  From Table 3.6-3.7 and Fig. 3.6-3.7 it can be found that: (1) Generally the precision of precise point 
positioning can be improved when the tropospheric horizontal gradient correction is added in the 
calculation. (2) Comparing the results under different elevation cut-off angles, it shows when the elevation 
cut-off angle was set to 5°, that the positioning precision can be improved more significantly by adding 
tropospheric horizontal gradient correction than for elevation cut-off angle of 10°. (3) Comparing the 
results between July and January (cf. Fig. 3.6-3.7), the positioning precision of the stations located in 
southern hemisphere especially in the mid-latitudes area (e.g. OUS2, HRAO) has bigger improvement in 
January than in July. An opposite situation can be found to the northern hemisphere stations (e.g. MANA, 
FUNC). That is because the weather conditions of the mid-latitudes area in southern hemisphere in January 
are much more variable than in July, so does the condition in northern hemisphere in July. It might cause 



34 Influence of Tropospheric Delay on Precise Point Positioning 

remarkable azimuth dependency of water vapor distribution. Thus, adding the horizontal gradient 
correction can have a more significant effect on the positioning. (4) Comparing the results of all these 
stations, when adding tropospheric horizontal gradient corrections, the average improvement of N, E and U 
directions can reach up to 51%, 15% and 30%, respectively. The positioning precision of low-latitudes 
stations had the larger improvement than the high-latitudes stations. This may be because of the different 
humidity conditions in different latitudes. The effect of horizontal gradients is generally larger at 
low-latitudes sites because of higher humidity. And due to the lesser amount of humidity at higher latitudes, 
the effect decreases with increasing northern and southern latitudes. 

3.6 Conclusions 
In most instances and areas worldwide, GPT2 model is meaningful and useful in case of a priori 
tropospheric delay is required but the actual measured meteorological data is not available. However, in 
the Antarctic region the improvement of the actual meteorological observations on the positioning result is 
significant compared to using GPT2-derived meteorological data. Furthermore, when the elevation cut-off 
angle is lower, the effect of the actual meteorological observations on the positioning precision is more 
significant in Antarctic due to the retention of low elevation angle observations. Thus for high-precision 
positioning in the Antarctic region, actual meteorological data is suggested to be measured and used. 

   The effect of the tropospheric horizontal gradient correction on the precise point positioning was also 
analyzed. Results show that adding horizontal gradient corrections can generally improve the positioning 
precision. Under the lower elevation cut-off angles and higher humidity conditions, especially in summer 
time and low-latitudes area, the improvement of horizontal gradient correction on PPP is remarkable. The 
average improvement of N, E and U directions could reach up to 51%, 15% and 30%, respectively. 
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4 A Priori Constrained Precise Point Positioning Algorithms 

 

4.1 Introduction 
Although for many applications the PPP approach presents definite advantages regarding operational 
flexibility and cost-effectiveness, it requires a relatively long initialization time as phase ambiguities 
converge to constant values and the solution reaches its optimal precision. The convergence time of PPP 
will vary because it is affected by a number of factors, such as the number and geometry of visible 
satellites, observation quality and sampling rate, user tracking conditions, and environment (Bisnath and 
Gao, 2009). Furthermore, due to the influence of pseudorange noise and atmospheric delay (etc.), the 
accuracy and reliability of PPP are still limited (Li, 2013). As scientists gain increasingly deeper and more 
complete understanding of the geometric and physical properties of observations, a multitude of a priori 
information can be obtained and utilized in the data processing (Chen, 2010; Xie, 2014). A priori 
information, which is known with a certain a priori precision, could be expected to improve the efficiency 
and precision of PPP. In PPP, generally the a prior constraints are mainly focus on the error models 
corrections on the domain of observation equation. In this chapter the a priori information constraints 
concerning the different estimated parameters on the domain of normal equation rather than the error 
models on the domain of observation equation are emphasized on. The contribution of different a priori 
information constraints concerning different parameters to PPP solution is studied and validated. The a 
priori constraints employed are comprehensively specified according to coordinates-, receiver clock offset-, 
tropospheric delay- and ambiguities-constraints. Furthermore, not only the efficiency and accuracy 
improvement by applying constraints but also their applications under specific conditions are discussed. 
Numerical examples were also conducted. 

4.2 Analytic Contribution of Different Constraints on Parameters to PPP Solution 

4.2.1 A Priori Constrained PPP Algorithms 

As we know, after applying precise orbit and clock corrections, ionosphere-free code and phase 
observations for GNSS satellites in traditional PPP can be written as 
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where IFP  is the ionosphere-free code observation; IFF  is the ionosphere-free phase observation; 1f  

and 2f  are the different frequencies of the dual-frequency observations; ρ  is the geometric distance 

between the satellite and the receiver; dt  denotes the receiver clock offset; tropd  denotes the 

tropospheric delay; IFdm  and IFmδ  denote a series of error corrections including relativistic effect, earth 



36 A Priori Constrained Precise Point Positioning Algorithms 

tide, ocean tide and hardware delay; IFλ  denotes the wavelength; IFN  denotes its ambiguity; 
IFPε  and 

IF
εF  denote the not modeled remaining errors like multipath and observation noise of code and phase. 

  Thus the linearized error equation of PPP can be expressed as 

 ,V AX L P= −   (4.3) 
where the terms in Eq. (4.5) have the same meaning as Eq. (2.2) in Sect. 2.2. 

In PPP, generally the unknown parameter vector X in Eq. (4.3) can be separately divided into four 

groups, ( )1 2 3 4
TX X X X X= , where 1X  denotes the coordinates; 2X  denotes the receiver clock 

offset; 3X  denotes the tropospheric delay and 4X  denotes the ambiguities in PPP. And similarly we can 

set ( )1 2 3 4A A A A A= . Thus the linearized error equation can be rewritten as 

 ( )

1

2
1 2 3 4

3

4

,

X
X

V A A A A L P
X
X

 
 
 = −
 
 
 

  (4.4) 

 As we know, the satellite orbits can be fixed and satellite clock errors can be removed by using precise 
ephemeris and precise satellite clock offset products. And the first-order effect of ionospheric delay can be 
eliminated by using dual-frequency ionosphere-free combined observations. Furthermore, these four 
groups of parameters have different properties. The coordinate parameter is a constant in the static 
positioning, while in the kinematic case it changes every epoch. And the coordinate parameter is 
independent of a satellite. The parameter of troposphere delay is a piece-wise constant, we normally 
estimate it every 2 hours. The station clock is a random error, which should be estimated every epoch. The 
ambiguity parameter is dependent on a specific satellite, it is a constant if there is no cycle slip of this 
satellite during the observing period. 

The least squares normal equation can be formed as 
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    

    

  (4.5) 

where 
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       

  (4.6) 
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  (4.7) 

According to Xu (2007), it is known that the a priori constraints may be interpreted as additional 
observations or fictitious observations and will cause two additional terms in both sides of the normal Eq. 
(4.5). The difference between the common normal equation and the normal equation of the a priori 
constraint is that the a priori terms will be added to the corresponding elements of the normal equation 
coefficient matrices N and B, which can be expressed as 

 0 , ( 1,2,3,4)i iCX W P i= − =   (4.8) 

 ( )
T

ii constrain ii iN N C PC= +   (4.9) 

 ( )
T

i constrain ii iB B C PW= +   (4.10) 

where Eq. (4.8) is the representation of the a priori constrain to parameter iX ; C is the coefficient matrix; 

W is the constant vector; iP  is the a priori weight matrix; ( )ii constrainN  and (co )i nstrainB  are the newly 

updated normal equation coefficients with respect to parameter iX . 

Substituting Eq. (4.9) and Eq. (4.10) into Eq. (4.5), the new normal equation matrix with a priori 
constrain to the corresponding parameter is obtained. Thus the a priori constrained PPP can be applied. 

4.2.2 Contribution Analysis of the Constraints to PPP 

On the basis of the equivalence principle, an equivalently eliminated normal equation can be formed as 
(refer to Sect. 2.3, the second equation of Eq. (2.43)) 

 2 2 2M X R=   (4.11) 

Thus a priori constraint to the parameter 2X  in Eq. (4.11) can be represented as 

 2 20 ,CX W P= −   (4.12) 

 2 2 2
TM M C P C′ = +   (4.13) 

 2 2 2
TR R C PW′ = +   (4.14) 

where 2M ′  and 2R ′  are the new normal equation coefficients with respect to parameter 2X  in Eq. 

(4.11). 

According to Eq. (4.11), the PPP solution can be expressed as 
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 1
2 2 2( )X M R−=   (4.15) 

 
2

1
2( )XQ M −=   (4.16) 

where 2X  includes the coordinates, tropospheric delay and ambiguities parameters, 
2XQ  denotes the 

coefficient matrix of 2X . 

In accordance with Eq. (4.13) and Eq. (4.14), the new PPP solution by applying constraints can be 
expressed as 

 ( ) ( )1

2 2 2 2 2
T TX M C P C R C PW

−′ = + +   (4.17) 

 ( )
2

1

2 2
T

XQ M C P C
−′ = +   (4.18) 

Therefore, the analytic contribution of the constraints to PPP solution can be expressed as 

 ( ) ( )1 1
2 2 2 2 2 2 2 2 2( )T TdX X X M C P C R C PW M R

− −′= − = + + −   (4.19) 

To assess the precision, the covariance matrix 
2X∑  of the parameter can be formed as 

 
2 2

2
X XQ σ∑ =   (4.20) 

 
2 2

2
X XQ σ′ ′∑ =   (4.21) 

where σ  denotes the standard deviation and can be computed by 

 
TV PV

n m
σ =

−
  (4.22) 

where n is the number of observations; m is the number of estimated parameters. 

Therefore, the contribution of the constraints to the estimation precision of PPP can be expressed as 

 
2 2 2X X X

′∆∑ = ∑ −∑   (4.23) 

4.3 Applications of Different Constraints under Specific Conditions 

4.3.1 Application of A Priori Constrain to Coordinates 

In practice, the a priori constrain to coordinates in PPP solutions can reduce the convergence time and 

avoid divergent positioning results. The a priori constraint of the coordinates 1X  of Eq. (4.8) can be 

known and formed in many cases. 

1. A priori three-dimensional coordinates constraint 

In applications for atmosphere research and long distance network RTK, the precise coordinates of the 
reference station are known in advance. In this case, the coefficient matrix C and constant vector W in Eq. 
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(4.8) turn to be 

 ( )0 0 0, TC I W x y z= =   (4.24) 

where I is an three-dimensional identity matrix; ( )0 0 0x y z  are the precisely known three-dimensional 

coordinates. 

1P  in Eq. (4.8) can be given by variance matrix W∑  and 

 
0

0

0

2

1 2
1

2

,
x

W W y

z

P

σ

σ

σ

−

 
 

= =  
  
 

∑ ∑   (4.25) 

Therefore, large weight indicates strong constraint and small weight indicates loose constraint. The 
strongest constraint is to keep the datum fixed. In this case, the three-dimensional coordinates are fixed in 

the estimation. 1P  can be set to a really large value such as 
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 
 

= =  
 
 

∑   (4.26) 

This a priori constrain to the coordinates can be used to resolve float ambiguities, since the coordinate 
parameters and ambiguity parameters are highly correlated and it is difficult to fix the ambiguities 
correctly (Li and Shen, 2009). 

On the other hand, in the real-time slow-motion kinematic positioning, the precise a priori coordinates 
of the slow-motion carrier can be considered as stationary during a certain time period. Thus the 
coordinates estimated at epoch i-1 can be inherited directly at epoch i. In this case, the coefficient matrix 

iC  and constant vector iW  at epoch i in Eq. (4.8) turn to be 

 ( )1 1 1 1
1 0 0 0,

Ti i i i i iC I W X x y z− − − −= = =   (4.27) 

where 1
1
iX −  is the estimated coordinates at epoch i-1, and 

 1
1

1 i
i

X
P P −=   (4.28) 

where 1
1
iX

P −  is the posteriori weight matrix of 1
1
iX −  at epoch i-1 (cf. Sect. 2.2, Eq. (2.18)). 

The a priori constrain to coordinates is particularly beneficial to real-time disasters monitoring, such as 
landslide, urban land subsidence, and structural monitoring (Zang et al., 2014). In these cases, the 
slow-motion carriers have in common that the monitoring stations are continuously and long-term tracked 
with precise a priori information on coordinates. In addition, the deformation during or preceding 
geological disasters is generally continuous and in slow-motion, thus the monitoring station can be 
considered as stationary and the coordinates between epochs can be considered like static positioning 
during a certain period. The coordinates will be constrained to fluctuate only in a definitive range, which 
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can remove the influence of other noises and improve the precision. However, it should be noted that the a 
priori constraints applied should be well-formulated mathematically and well-reasoned physically, in other 
words, the a priori information is considered as exactly known. And the information is known with certain 
a priori precision. Otherwise it will lead to the wrong or unreasonable results. 

2. A priori horizontal coordinates constraint 

In some deformation monitoring applications, such as bridge deformation, solar radiation and vehicles 
are major factors in causing the height variation while the horizontal coordinates remain unchanged. 
Therefore constraits can be applied to the horizontal coordinates. In this case, the coefficient matrix C and 
constant vector W in Eq. (4.8) turn to be 

 ( )0 0 0 0 0
0 0

0 0

sin cos sin sin cos
,

sin cos 0
TB L B L B

C W x y
L L

− − 
= = − 

  (4.29) 

where 0B  and 0L  denote geodetic latitude and longitude of the monitoring station, ( )0 0x y  are the 

precisely known horizontal coordinates. And 
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 
= =   

 
∑ ∑   (4.30) 

3. A priori height constraint 

In horizontal displacement monitoring, such as high building and dam monitoring, the height would 
remain unchanged. In this case, the coefficient matrix C and constant vector W in Eq. (4.8) turn to be 

 ( )0 0 0 0 0 0cos cos cos sin sin ,C B L B L B W h= =   (4.31) 

where 0B  and 0L  denote the geodetic latitude and longitude of the monitoring station, 0h  is the 

precisely known height. And 

 ( )0

1 2
1 ,W W hP σ−= =∑ ∑   (4.32) 

4.3.2 A Priori Constrain to Receiver Clock Offset 

In many cases the International GNSS Service (IGS) can provide receiver clock offset product. The 
physical properties of the receiver clocks at the permanent tracking stations for time service can be known 
previously (Cerretto et al., 2010; Li, 2012). Therefore, the physical model of the clock offset can be used 
as an a priori constraint. In this case, the coefficient matrix C and constant vector W in Eq. (4.8) turn to be 

 0 0 1, ( )ocC I W dt a a T T= = = + −   (4.33) 

where I is identity matrix; 0dt  denotes the receiver clock error calculated by known physical model of the 

clock; 0a  and 1a  denote clock error and clock speed; ocT  is the reference epoch; T is the current epoch. 

Such constraint can be applied in the stations which have external atomic clocks since the physical model 
of atomic clock can be well known in advance and used as a priori constraint. 
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2P  in Eq. (4.8) can be given by variance matrix W∑  and 

 ( )0

1 2
2 ,W W dtP σ−= =∑ ∑   (4.34) 

It is known that the receiver clock sequence obtained by the conventional single-day PPP is 
discontinuous at the junction of day and day, which is the so-called day-boundary (Defraigne and Bruyninx, 
2007). The day-boundary problem appears because the observation, orbit and satellite clock products are 
generally provided by one day, however, the initial conditions and error influences (e.g. tropospheric delay, 
multipath) between days are usually different, which is absorbed by the receiver clock offset in the 
single-day estimation. Thus there is a system error between the receiver clock offsets of different days. The 
day-boundary problem can significantly affect the application of PPP technology on precise timing and 
time transfer service (Huang, 2012). In this case, with the a priori constrain to the receiver clock offset, the 
day-boundary problem can be suppressed and the receiver clock sequence will become continuous between 
different days by applying clock offset constraint in the continuous PPP solution. In practice, the receiver 
clock offset constraint is normally combined with the coordinates constraint, which improves the speed of 
convergence and suppresses clock slip effectively. The receiver clock offset obtained has better continuity 
and higher stability. 

4.3.3 A Priori Constrain to Tropospheric Delay 

IGS has been producing the total troposphere zenith path delay (ZPD) product (Byun and Bar-Sever, 2009). 
The ZPD product can be selected as the precise external troposphere corrections to calibrate the 
troposphere zenith delay and as the a priori constraint in PPP. In this case, the coefficient matrix C and 
constant vector W in Eq. (4.8) turn to be 

 0, tropC I W d ZPD= = =   (4.35) 

where I is identity matrix; 0tropd  denotes the precise troposphere zenith path delay correction provided by 

IGS. In case of non-IGS stations, the previously estimated values can be used as the constraint, since the 
tropospheric delay can be considered as a constant during a certain period under normal weather condition. 

3P  in Eq. (4.8) can be given by variance matrix W∑  and 

 ( )0

1 2
3 ,

tropW W dP σ−= =∑ ∑   (4.36) 

Due to the high precision of the external tropospheric correction, the tropospheric delay can therefore be 

strongly constrained with a very small initial standard deviation (cf. 
0

2
tropdσ  in Eq. (4.36)) in the estimation 

(Shi and Gao, 2014). It is known that the tropospheric delay will degrade other unknown parameters, 
especially the height coordinate in PPP (Hadas et al., 2015). Through using the a priori tropospheric delay 
constraint, the effect of the tropospheric delay on the PPP height solution can be removed because of the 
reduced correlation between troposphere and height parameters. Consequently, it can be expected that the 
PPP precision should be improved. 
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4.3.4 A Priori Constrain to Ambiguities 

In practice, when the stations are long-term tracked, the ambiguities of the same visible satellites estimated 
in the former days can be adopted directly and used as the a priori value for the next days. And as long as 
there is no cycle slip, this kind of ambiguity constraint based on the values from previous days is reliable. 
Since the most or at least parts of the ambiguities are known through the a priori constraint, it can be 
expected that the convergence time of results should be greatly reduced. In this case, the coefficient matrix 

iC  and constant vector iW  at epoch i in Eq. (4.8) turn to be 

 1,i i iC I W N −= =   (4.37) 

where 1iN −  is the estimated ambiguities of the same visible satellites at epoch i-1. And 

 1
4

4 i
i

X
P P −=   (4.38) 

where 1
1
iX

P −  is the posteriori weight matrix of 1
4
iX −  at epoch i-1 (cf. Sect. 2.2, Eq. (2.18)). 

4.4 Examples and Analysis 

4.4.1 PPP with Coordinates Constraint 

As described in Sect. 4.3.1, the a priori constrain to coordinates in PPP solutions is expected to reduce the 
convergence time and improve positioning accuracy in many circumstances. In case of real-time 
slow-motion kinematic positioning, such as landslide, urban land subsidence, and structural monitoring, 
the slow-motion carriers have in common that the monitoring stations are continuously and long-term 
tracked with precise a priori information on coordinates. In addition, the deformation during or preceding 
geological disasters is generally continuous and in slow-motion, thus the monitoring station can be 
considered as stationary and the coordinates between epochs can be inherited like static positioning during 
a certain period. The PPP algorithm with coordinates constraint has taken full account of characteristics of 
the monitoring station. On this basis four schemes were conducted to make comparison and analysis 
possible. 

Scheme 1: Kinematic PPP positioning. 

Scheme 2: PPP with a priori coordinates accuracy (cf. Sect. 4.3.1, 
0xσ ,

0yσ and
0zσ were set as 5 cm 

here). 

Scheme 3: PPP with time period constraint. In this case, the monitoring station is considered as 
stationary and the coordinates between epochs are inherited like static positioning during a certain period 
(set as 1 hour here). 

Scheme 4: PPP with time period constraint and a priori coordinates accuracy. In this case, the 
monitoring station is considered as stationary and the coordinates between epochs are inherited like static 
positioning during a certain period (set as 1 hour here), and a priori coordinates accuracy (set as 5 cm here) 
is constrained at the first epoch of every time period set. 

The GPS/BDS observations of MGEX station GMSD on GPS day 303 in 2014 were used to validate the 
algorithms. The sample interval of the data is 30 s. The observation models and details of PPP processing 
are listed in Table 4.1. 
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Table 4.1 Observation models and data processing strategies for PPP 

Item Models and Strategies 

Observations Un-differenced ionosphere-free code and phase combination 

Observation weight Elevation dependent weight 
Elevation angle cutoff 7° 

Precise orbit 
Fixed, IGS precise ephemeris product and MGEX precise ephemeris 
from GFZ 15min 

Precise clock biases 
Fixed, IGS precise clock product and MGEX combined precise 
clock from GFZ 5min 

Tropospheric delay Saastamoinen model & parameter estimation 
Ionospheric delay First order effect eliminated by ionosphere-free linear combination 
Phase-windup effect Corrected 
Earth rotation parameter Fixed, IGS ERP product 

PCO & PCV 
Satellite antenna and receiver antenna correction applied for GPS, 
not applied for BDS 

Relativistic effects IERS Convention 2010 
Tidal displacement Solid Earth tides, pole tides, ocean tides (IERS Convention 2010) 
Phase ambiguity Estimated as constant for each ambiguity arc 
Time system GPS Time 
Terrestrial frame ITRF2008 

GPS and BDS observations were used in the computation, respectively. To make a comparison, the 
position coordinates published by IGS were treated as standard values to compute the bias and RMS of the 
position results of the four schemes in N, E and U components. The bias of four schemes of GPS and BDS 
solutions with respect to IGS published results are shown in Fig. 4.1 and Fig. 4.2. The RMS results of GPS 
and BDS solutions are given in Table 4.2. The convergence time of all four schemes are given in Table 4.3. 
Due to the different positioning precision of GPS and BDS solutions, the convergence criterion was 
defined as the bias of the first moment and its following 20 epochs in N, E and U components were always 
less than 0.05 m for GPS solutions and 0.1 m for BDS solutions in this case. 

Table 4.2 RMS of GPS and BDS solutions with respect to IGS results (units: m) 

RMS 
 

Scheme1 Scheme2 Scheme3 Scheme4 

GPS 
N 0.014 0.011 0.010 0.006 
E 0.015 0.012 0.014 0.008 
U 0.050 0.030 0.042 0.016 

BDS 
N 0.026 0.018 0.019 0.015 
E 0.034 0.018 0.022 0.013 
U 0.235 0.101 0.180 0.068 

Table 4.3 Convergence time of all four schemes 

Convergence 
Time 

Scheme1 Scheme2 Scheme3 Scheme4 

GPS (<5cm) 1h9min 16min 17min 16min 

BDS (<10cm) 4h25min 59min 1h12min 57min 



44 A Priori Constrained Precise Point Positioning Algorithms 

 

Fig. 4.1. Bias of GPS solutions with respect to IGS published results 

 

Fig. 4.2. Bias of BDS solutions with respect to IGS published results 

From Fig. 4.1-4.2 and Table 4.2-4.3 it can be found that: (1) Compared to Scheme 1, Schemes 2-4 can 
reduce the convergence time and improve positioning accuracy significantly, especially in U component. 
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By using Scheme 2, 3, and 4 the accuracy of GPS solutions in U component can be improved by 40%, 
16%, and 68%. The accuracy of BDS solutions in U component can be improved by 57%, 23%, and 71%, 
respectively. That is because the characteristics of the slow-motion carriers described above are taken full 
account of by PPP with coordinates constraint (Schemes 2-4). The results are constrained to fluctuate only 
in a definitive range, which can remove the influence of other noises and improve the positioning accuracy. 
By using Scheme 4, the convergence time of GPS and BDS solutions are decreased by 76% and 78%, 
respectively. (2) Comparing GPS solutions with BDS solutions, the accuracy and convergence time 
improvements both illustrate that in this case the effects of coordinates constraint on BDS solutions is 
more significant than on GPS. (3) The results of PPP with time period constraint and a priori coordinates 
accuracy (Scheme 4) show that they are superior both in convergence time and positioning accuracy, which 
is particularly beneficial to such real-time slow-motion monitoring applications. 

4.4.2 PPP with Receiver Clock Offset Constraint 

The GPS observations of IGS station GMSD during GPS week 1813 were used to validate the algorithms 
derived in Sect. 4.3.2. The sample interval of the data is 30 s. The precise orbit and satellite clock products 
from IGS were used. Two computation schemes were conducted to make comparison and analysis 
possible. 

Scheme 1: The observation data of seven days was processed through PPP day by day, thus the precise 
receiver clock offset of every single day could be obtained. 

Scheme 2: The observation data of seven days was processed continuously through PPP with a priori 
receiver clock offset constraint. The coordinates and receiver clock offset published by IGS were used as 
the a priori information when computing the data of the first day, other days used the estimated results of 
the day before as the a priori information. Thus the continuous precise receiver clock offset could be 
obtained. 

The comparison results of Scheme 1 and Scheme 2 are shown in Fig. 4.3. The differences between 
Scheme 1 and Scheme 2 were computed and are shown in Fig. 4.4. 

 

Fig. 4.3. Comparison of Scheme 1 and Scheme 2 
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Fig. 4.4. Differences between Scheme 1 and Scheme 2 

From Fig. 4.3 and Fig. 4.4 it can be found that: (1) From the comparison of the results of the first day it 
can be deduced that the result can achieve convergence more quickly with the coordinates and receiver 
clock offset constraints (Scheme 2) than with the single day solution (Scheme 1). (2) The continuity and 
stability of the receiver clock offset time series obtained by Scheme 2 is superior to that of Scheme 1. 
From the discrepancy of Scheme 1 and Scheme 2 (cf. Fig. 4.4), it is obvious that there are day-boundary 
discontinuities in Scheme 1, which can reach up to a magnitude of ns and is un-neglectable in precise 
timing and time transfer service. Thus PPP with the receiver clock offset constraint combined with 
coordinates constraint (Scheme 2) can suppress the day-boundary problem effectively. 

4.4.3 PPP with Tropospheric Delay Constraint 

The GPS observations of IGS station GMSD during GPS days 278-282 in 2014 were used to validate the 
algorithms derived in Sect. 4.3.3. The sample interval of the data is 30 s. The ZPD product from IGS was 
collected and used in this case. Two computation schemes were conducted to make comparison and 
analysis possible. 

Scheme 1: Conventional PPP positioning. The empirical model was applied to calculate the a priori 
tropospheric delay and the residual tropospheric delay was estimated every hour. The tropospheric delay 
was considered as constant during one hour. 

Scheme 2: Tropospheric delay constrained PPP. ZPD product from IGS was applied and used as an a 
priori constraint. The ZPD value and the accuracy were constrained at the first epoch of every hour in this 
case. 

To be able to make a comparison, the position coordinates published by IGS were treated as standard 
values to compute the bias and RMS of the position results of the two schemes in N, E and U components. 
As an example, the bias of both schemes with respect to IGS published results on GPS day 282 are shown 
in Fig. 4.5. The RMS with respect to IGS results of both schemes are given in Table 4.4. 
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Fig. 4.5. Bias with respect to IGS published results on day 282 

Table 4.4 RMS with respect to IGS results (units: mm) 

RMS 
 

278 279 280 281 282 

Scheme1 
N 5.4 5.3 8.2 6.4 6.1 
E 17.3 9.4 12.8 2.7 4.7 
U 29.1 30.4 24.3 22.7 16.2 

Scheme2 
N 5.4 5.0 7.9 6.2 6.3 
E 17.6 9.2 13.2 3.0 5.1 
U 26.5 28.0 21.9 21.0 12.1 

From Fig. 4.5 and Table 4.4 it can be found that: (1) Compared to the conventional method (Scheme 1) 
PPP with tropospheric delay constraint (Scheme 2) can mainly reduce the convergence time of the 
positioning in U component. (2) The position precision in N and E components are nearly identical by 
using two schemes. However, the positioning accuracy in U components of these five days is improved by 
9%, 8%, 10%, 7%, and 25%, respectively. It is obvious, that the tropospheric delay constraint is the most 
superior in height solution. Owing to the usage of the tropospheric delay constraint, the correlation 
between troposphere and height coordinate can be solved and the effect of the tropospheric delay on PPP 
height solution can be removed to some extent, thus the positioning accuracy of the height component is 
improved most significantly. 

4.4.4 PPP with Ambiguities Constraint 

The GPS observations of IGS station GMSD during GPS days 302-304 in 2014 were used to validate the 
algorithms derived in Sect. 4.3.4. The sample interval of the data is 30 s. Two computation schemes were 
conducted as a basis for comparison and analysis. 
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Scheme 1: The observation data of three days was processed through conventional PPP day by day. 

Scheme 2: The observation data of three days were processed through PPP with an a priori ambiguities 
constraint. The ambiguities estimated at the day before were used as the a priori value for the next days. In 
this case, the ambiguities estimated on GPS day 302 were used as the a priori value for day 303; the 
ambiguities estimated on GPS day 303 were used as the a priori value for day 304. 

For comparison, the position coordinates published by IGS were treated as standard values to compute 
the bias of the position results of the two schemes in N, E and U components. The bias of two schemes 
with respect to IGS published results on day 303 and 304 are shown in Fig. 4.6 and Fig. 4.7. 

From Fig. 4.6 and Fig. 4.7 it can be found that with the ambiguities constraint (Scheme 2), the result can 
achieve convergence much more quickly than by using Scheme 1. The reason for this is that in 
conventional PPP, a period of time is needed to solve the ambiguities parameters. However, Scheme 2 uses 
the ambiguities estimated at the day before as a priori values at the beginning of the computation. In this 
case, the ambiguities of the same visible satellites will not need to be solved any more, which significantly 
reduces convergence time. 

 

 
Fig. 4.6. Bias with respect to IGS published results on day 303 
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Fig. 4.7. Bias with respect to IGS published results on day 304 

4.5 Conclusions 
In this chapter, a priori constrained PPP algorithms, which the a priori constraints employed can be 
comprehensively specified according to coordinates-, receiver clock offset-, tropospheric delay- and 
ambiguities-constraint, were derived. Numerical examples were conducted to validate that with a priori 
constraints convergence time of PPP can be reduced and positioning accuracy can be improved. PPP with a 
priori coordinates accuracy and time period constraints is particularly beneficial to the convergence time 
and accuracy of the real-time slow-motion carriers positioning, such as landslide, urban land subsidence, 
and structural monitoring. That is because it fully accounts for characteristics of slow-motion carriers. As 
deformation during geological disasters is generally continuous and in slow-motion, the monitoring station 
can be considered as stationary and the coordinates between epochs can be inherited like static positioning 
during a certain period. The coordinates are constrained to fluctuate only in a definitive range, which can 
remove the influence of other noises and improve the precision. Results of the example show that with 
such coordinates constraints, accuracy of GPS and BDS solutions improves and can reach 68% and 71%, 
while the convergence time is decreased by 76% and 78%, respectively. PPP with receiver clock offset 
constraint helps to solve the day-boundary discontinuities which are un-neglectable in precise timing and 
time transfer service. With coordinates and clock offset constraint, the results achieve convergence more 
quickly and more stable and continuous clock offset series can be obtained. PPP with tropospheric delay 
constraint removes the effect of the tropospheric delay on PPP height solution to improve the positioning 
accuracy in height component, which can reach up to 25% in the example. PPP with ambiguities constraint 
is greatly superior in reducing the convergence time of positioning.
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5 Multi-Constellation Combined Precise Point Positioning Based on 

the Equivalence Principle 

 

5.1 Introduction 
The Global Navigation Satellite System (GNSS) has been developed rapidly in recent years and is in 
constant use nowadays. The Global Positioning System (GPS) is playing an important role now and has 
made remarkable contributions in both surveying and navigation in the past decades. Since October 2011 
Russia’s GLONASS system is functional again and is now operating at full capability with 24 satellites in 
orbits, enabling full global coverage (IAC, 2015). At the moment Europe’s Galileo is in its Full 
Operational Capibility (FOC) phase by following In-Orbit Validation (IOV) and has 12 satellites in orbits 
(ESA, 2015; ESA, 2016). The Chinese BeiDou navigation satellite system is steadily advancing forward 
towards being an operational global navigation satellite system, which is planned to be completed by 2020. 
The first phase of the establishment, consisting of 5 GEO (Geostationary Earth Orbit) satellites, 5 IGSO 
(Inclined Geo-Synchronous Orbit) satellites and 4 MEO (Medium Earth Orbit) satellites, has been 
completed at the end of 2012, which provides positioning and navigation service in the Asia-Pacific area 
(CNAGA, 2014; Yang, 2010; Yang et al., 2014). 

Over the past decades, with the rapid development of multiple GNSS systems, the developing features 
of GNSS precise positioning are being changed from GPS-only to combined multi-GNSS systems 
positioning. The combination of multi-GNSS systems can be considered as a major milestone in GNSS 
precise positioning, because it improves the reliability and productivity of GNSS positioning (Wang et al., 
2001). The combination of multiple GNSS can significantly increase the number of simultaneous observed 
satellites, optimize spatial geometry, and therefore better dilution of precision, improve convergence time, 
accuracy, continuity and reliability of precise positioning, especially in constrained environments such as 
urban canyons, vegetation areas or deep open-cut mines (Li et al., 2015). Due to its rapidity and flexibility, 
Precise Point Positioning (PPP) can be one of the most promising application technologies in the 
combination of multiple GNSS systems. Many studies on multi-GNSS combination, particularly with 
focus on GPS and GLONASS combination have been conducted in the last decade (Cai and Gao, 2013; 
Dach et al., 2007; Jokinen et al., 2011). Nevertheless, these studies focus mainly on validation of precision 
and reliability superiority of multi-GNSS combination, while the combined algorithm itself is seldom 
involved. The traditional combined PPP algorithm directly constructs observation equations using all 
GNSS observables to obtain the solution. However, with the advance of other available systems and 
satellites, as well as the wide utilization of high-frequency (1-50 Hz) recording receivers, the 
computational load of the traditional algorithm increases exponentially while at the same time, the 
efficiency of the algorithm decreases significantly (Huang et al., 2013). This is highly undesirable in high 
performance systems. Therefore, on the basis of the equivalence principle and its inference discussed 
formerly in this thesis, a multi-GNSS combined PPP algorithm is derived to improve the computation 
efficiency as presented in this chapter. In case of GPS/BDS combination, a method which can speed up the 
ambiguities determination of satellites from BDS through applying the contribution of GPS observations is 
proposed and analyzed. The GPS/BDS combined PPP algorithm with inter-system bias parameter is also 
derived. Furthermore, the usage of estimated ISB as a priori constraint in the GPS/BDS combined PPP is 
proposed to improve the convergence time and positioning accuracy. 
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5.2 The Conventional Multi-Constellation Combined PPP Algorithm 
The observation equations of the traditional PPP have been introduced in Sect. 4.2.1 (refer to Eqs. 
(4.1)-(4.3)). The linearized observation Eq. (4.3) can be solved by using the sequential least squares 
adjustment (cf. Sect. 2.2.2) and the Kalman filter (cf. Sect. 2.2.3). In case of static positioning the 
sequential least squares adjustment is usually applied while the Kalman filter is utilized in the kinematic 
positioning. Taking sequential least squares PPP as an example, the corresponding solutions can be formed 
as 

 1 1

1

1 1 1
1

1 1

( ) ( )

( )
i i

i i

T T
i i i i X i i i X i

T
X i i i X

X A P A Q A PL Q X
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− −

−

− − −
−

− −

 = + +


= +
  (5.1) 

where 1iX − , iX  and 
1iXQ
−

, 
iXQ  are the estimation value of the unknown parameters and its cofactor 

matrix at epoch i-1 and i, respectively. 

In case of multiple GNSS systems, the ionosphere-free code and phase observations of GPS, GLONASS, 
Galileo and BeiDou combination can be expressed as 

 
IF

G G G G G G
IF trop IF PP c dt d dmr ε= + ⋅ + + +   (5.2) 

 
IF

G G G G G G G G
IF trop IF IF IFc dt d N mr λ d εFF = + ⋅ + + ⋅ + +   (5.3) 

 
IF

R R R R R R
IF trop IF PP c dt d dmr ε= + ⋅ + + +   (5.4) 

 
IF

R R R R R R R R
IF trop IF IF IFc dt d N mr λ d εFF = + ⋅ + + ⋅ + +   (5.5) 

 
IF

E E E E E E
IF trop IF PP c dt d dmr ε= + ⋅ + + +   (5.6) 

 
IF

E E E E E E E E
IF trop IF IF IFc dt d N mr λ d εFF = + ⋅ + + ⋅ + +   (5.7) 

 
IF

C C C C C C
IF trop IF PP c dt d dmr ε= + ⋅ + + +   (5.8) 

 
IF

C C C C C C C C
IF trop IF IF IFc dt d N mr λ d εFF = + ⋅ + + ⋅ + +   (5.9) 

where indices G, R, E and C represent GPS, GLONASS, Galileo and BeiDou satellites, respectively.  

Similar as Eq. (4.3), the linearized error equation of multi-GNSS combined positioning for Eqs. (5.2) to 
(5.9) can be formed as 

 

0 0 0
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R R R R

E E E E

C C C C

V A L P
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X
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       
       
       = −
       
       
              

  (5.10) 

where indices G, R, E and C represent GPS, GLONASS, Galileo and BeiDou satellites, respectively. The 
unknown parameter vector X  to be estimated includes shared parameters as coordinates and tropospheric 
delay, the self-owned parameters of each system as receiver clock offset and ambiguities. To solve Eq. 
(5.10), the form of the sequential least squares solution as Eq. (5.1) can also be applied in the conventional 
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way. 

However, for the solution and calculation of Eq. (5.10), the traditional method of direct accumulation 
can hardly meet the demand of rapidly solving an ocean of real-time and high-rate data. Especially, when 
considering the preprocessing and iteration calculation in the positioning as well. With a constant increase 
of the number of available satellites, the exponentially increased computational load has to be taken into 
the conventional positioning algorithm. To solve this problem, an algorithm based on the equivalence 
principle which can improve the calculating efficiency, is proposed and derived in the following section. 
Firstly, the formulas of the parameter solution and its covariance matrix can be rewritten to the form of the 
accumulation of the coefficient matrix of the normal equation. The coefficient matrix of the normal 
equation is transferred between epochs by accumulation, so that it can be written as 
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1
1
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T
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−

−
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  (5.11) 

where subscript i denotes the epoch; iN  and iW  are the coefficient matrices of normal equation at epoch 

i. Compared to Eq. (5.1), the traditional accumulation form of the parameter vector iX  and its covariance 

matrix 
iXQ  are changed to the accumulation form of the coefficient matrices iN  and  iW  of the 

normal equation. iN  and  iW  have the same dimension as 
iXQ  and iX , thus the computational load 

of Eq. (5.11) and Eq. (5.1) are identical in real-time processing. While in post processing, the inversion of 

iXQ  and iX  at each epoch can be omitted by using Eq. (5.11), the accumulation of the coefficient 

matrices only need to be solved at the last epoch, which shows significant superiority in computing 
efficiency compared to using Eq. (5.1). In accordance with Eq. (5.11) and the equivalence principle, the 
multi-GNSS combined PPP algorithm will be derived in the following section. 

5.3 Multi-Constellation Combined PPP Algorithm Based on the Equivalence 
Principle 

5.3.1 Multi-Constellation Combined PPP Algorithm 

Based on the equivalence principle, the unknown parameters can be divided into two groups. One group 
can be eliminated directly through constructing the equivalently eliminated observation equation (cf. Sect. 
2.3).  

Similar to the form of Eq. (2.38), the unknown parameter vector X in Eq. (4.3) can be divided into 1X  

and 2X , thus one has 

 ( ) 1

2

,
X

V A B L P
X

 
= − 

 
  (5.12) 
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where 1X  denotes the parameter varying with time, which is changeable between epochs and refers to the 

receiver clock offset in PPP. 2X  denotes the fixed parameters that do not change over time and can be 

maintained between epochs, which refer to coordinates, tropospheric delay and ambiguities in static PPP. 
In practical processing, the tropospheric delay parameter is considered as a constant during a certain time 
period (e.g. 2 hours) under normal weather condition and should be reinitialized every certain period 
during the estimation. It should be also pointed out that in case of kinematic PPP, coordinates vary over 
time and can not be inherited directly for the next instant computation. 

The normal equation of Eq. (5.12) can be formed as 

 11 12 1 1

21 22 2 2

M M X B
M M X B
    

=    
    

  (5.13) 

where 11
TM A PA= , 12

TM A PB= , 21
TM B PA= , 22

TM B PB= , 1
TB A PL= , 2

TB B PL= . 

Appling the equivalence algorithm (Xu, 2002; Xu, 2007; Zhou, 1985) (cf. Sect. 2.3), the equivalently 
eliminated equation of Eq. (5.13) can be formed as 

 11 12 1 1

2 2 20
M M X B

M X R
    

=    
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  (5.14) 

where 1
2 22 21 11 12M M M M M−= − , 1

2 2 21 11 1R B M M B−= − . 

Therefore the unknown parameter 2X  can be solved directly through the second equation of Eq. (5.14), 

that can be expressed as 

 2 2 2M X R=   (5.15) 

The parameter 1X  can be solved through applying 2X  to the first equation of Eq. (5.14), that 

 11 1 12 2 1M X M X B+ =   (5.16) 

Referring to the accumulation form of the normal equation as Eq. (5.11), the recursion formulas of the 
PPP solution at epoch i can be formed as 
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  (5.17) 

Thus, the PPP algorithm of a single system based on the equivalence principle is derived. 
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For multi-Constellation combined PPP, the fixed unknown parameter 2X  should further be divided 

into two groups, that 

 1
2

2

Y
X

Y
 

=  
 

  (5.18) 

where 1Y  denotes the shared parameters between GNSS systems as coordinates and tropospheric delay; 

2Y  denotes the unshared parameter as ambiguities of different GNSS systems. 

Thus 2M  and 2R  in Eq. (5.15) should be rewritten as 
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, 1
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    (5.19) 

Then Eq. (5.15) can be rewritten as 
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  (5.20) 

Similarly, the equivalently eliminated equation of Eq. (5.20) can be obtained as 

 1 1 1

21 22 2 2

0N Y S
N N Y D
     

=     
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  (5.21) 

where 1
1 11 12 22 21N N N N N−= − , 1

1 1 12 22 2S D N N D−= − . 

Therefore 

 1 1 1N Y S=   (5.22) 

For GPS, GLONASS, Galileo and BeiDou systems, the normal equation of the shared unknown 

parameter 1Y  of each system can be expressed as 

 1 1 1
G GN Y S= , 1 1 1

R RN Y S= , 1 1 1
E EN Y S= , 1 1 1

C CN Y S=   (5.23) 

where indices G, R, E and C represent GPS, GLONASS, Galileo and BeiDou satellites, respectively. 

Therefore, the normal equation of the multi-GNSS combined PPP can be obtained as 

 1 1 1
1 1

m m
k k

k k
N Y S

= =

=∑ ∑   (5.24) 

where m denotes the number of GNSS systems. 

After solving the shared parameter 1Y  by Eq. (5.24), 2Y  can be solved by the second equation of Eq. 
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(5.21), thus 2X  can be obtained and so is 1X . In this way, the complete solution of multi-GNSS 

combined PPP can be obtained. Similar to Eq. (5.17), the recursion formulas of the combined PPP solution 
at epoch i can be formed as 
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where 1
1,

m
k

k k s
N

= ≠
∑  and 1

1,

m
k

k k s
S

= ≠
∑  denote the accumulation of the normal equations of other GNSS systems 

except the self-owned system in combined PPP. 

5.3.2 Specific Analysis under Static and Kinematic Conditions 

Eqs. (5.12) to (5.25) are the complete solution of multi-GNSS combined PPP based on the equivalence 

principle. In static combined PPP, 1X  denotes the receiver clock offset parameter, which is changeable 

between epochs; 2X  denotes the coordinates, zenith tropospheric delay and ambiguities, which are fixed 

parameters and can be inherited between epochs; 1Y  denotes the coordinates and zenith tropospheric delay, 

which are the shared parameters between different GNSS systems; 2Y  denotes the unshared parameters, 

such as ambiguities of different GNSS satellites from different systems. In case of kinematic combined 

PPP, 1X  denotes the receiver clock offset parameter and coordinates; 2X  denotes the zenith 

tropospheric delay and ambiguities; 1Y  denotes the zenith tropospheric delay; 2Y  denotes the ambiguities 

of different GNSS satellites from different systems. 

On the other hand, if the state equation of the motion carrier is known formerly in kinematic combined 
PPP, the coordinates parameter should be predictable by the state equation in Kalman filter. In this case, 

1X  denotes the receiver clock offset parameter; 2X  denotes the coordinates, tropospheric delay and 

ambiguities; 1Y  denotes the coordinates and tropospheric delay; 2Y  denotes the ambiguities of different 
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GNSS satellites from different systems. Based on the state equation, the predicted value of the parameter 

2
iX  at epoch i can be obtained as 

 1
2 , 1 2
i i

i iX X −
−= Φ   (5.26) 

where 1
2
iX −  is the estimated value at epoch i-1, and , 1i i−Φ  is the state transition matrix. 

Similar to the form of Eq. (5.17), the recursion formulas at epoch i for the equivalently eliminated 
normal Eq. (5.15) and Eq. (5.16) can be formed as 

 

( )
2

1

1 1 1
2 2 2 2 . 1 2 , 1

1 1
2 2 2 2 . 1 2

1
2 2 2

1
1 11 1 12 2

1
2

11 1
11 12 22 21 22 2 21 11 12

, ( ) ( )
, ( )

( )
( ) ( )
( )

( ) , ( )

i

i

i i i i T i
i i i i

i i i i T i
i i

i i i

i i i i i

i
X

i i i i i i i i i
X

M M M M M
R R R R R
X M R
X M B M X
Q M

Q M M M M M M M M M

− − −
− −

− −
−

−

−

−

−− −

 = + = Φ Φ
 = + = Φ
 =
 = −


=

 = − = +

 

 

 



  

  (5.27) 

where the predicted normal matrices 2
iM  and 2

iR  can be derived through using the error propagation law. 

The following solution for kinematic combined PPP has the same form as Eq. (5.25). 

5.3.3 Efficiency Comparison of the Multi-GNSS Combined PPP Algorithms 

To validate the computational efficiency of the combined PPP algorithm based on the equivalence 
principle, a simulation example was conducted in this section. The observations of GPS, GLONASS, 
Galileo and BDS were simulated, which contained 2000 epochs. The simulated observations were 
generated according to the precise ephemeris and a given station coordinates. Firstly the distance between 
satellites and the station can be derived and then we artificially added all kinds of errors to the distance to 
obtain the simulated observations. The sample rate of the simulated observations can be set as an arbitrary 
value, since it would not affect the efficiency of the computation. The number of visible satellites of each 
system at each epoch was all set as 10 and there was no satellite change during the observation period. Two 
processing schemes were conducted to make comparison and analysis possible. 

Scheme 1: The conventional multi-constellation combined PPP (cf. Sect. 5.2). 

Scheme 2: The multi-constellation combined PPP based on the equivalence principle (cf. Sect. 5.3.1). 

In the computation of both schemes the numbers of GNSS systems were set as 1, 2, 3 and 4, respectively. 
The processing was conducted with a high performance configuration computer. The computation time of 
the different number of GNSS systems needed for the processing of both schemes is indicated in Fig. 5.1. 

From Fig. 5.1 it can be found that, with the advance of the GNSS systems and satellites, the operation 
time of the conventional combined PPP (Scheme 1) increases exponentially. By using the combined PPP 
based on the equivalence principle derived in this chapter (Scheme 2), the computation time increases 
linearly with more available GNSS systems and satellites, which leads to a greatly superior computation 
efficiency. 
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Fig. 5.1. Comparison of the operation time needed in the processing 

5.3.4 Examples and Analysis 

1. Static combined PPP 

To validate the combined PPP algorithm based on the equivalence principle, a set of 6 IGS stations 
(CAS1, GMSD, POHN, REUN, TUVA and XMIS) from MGEX (Multi-GNSS Experiment) network were 
used to make the analysis. The GPS, GLONASS and BDS observations of these selected stations were 
during GPS weeks 1821 and 1822 with a sample interval of 30 s. The observation models and details of 
static PPP processing are listed in Table 5.1. 

Table 5.1 Observation models and data processing strategies for PPP 

Item Models and Strategies 

Observations Un-differenced ionosphere-free code and phase combination 

Observation weight Elevation dependent weight 
Elevation angle cutoff 7° 
Precise orbit Fixed, MGEX precise ephemeris from GFZ 15min 

Precise clock biases Fixed, MGEX combined precise clock from GFZ 5min 

Tropospheric delay Saastamoinen model & parameter estimation 
Ionospheric delay First order effect eliminated by ionosphere-free linear combination 
Phase-windup effect Corrected 
Earth rotation parameter Fixed, IGS ERP product 

PCO & PCV 
Satellite antenna and receiver antenna correction applied for GPS 
and GLONASS, not applied for BDS 

Relativistic effects IERS Convention 2010 
Tidal displacement Solid Earth tides, pole tides, ocean tides (IERS Convention 2010) 
Phase ambiguity Estimated as constant for each ambiguity arc 
Time system GPS Time 
Terrestrial frame ITRF2008 
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Four schemes were conducted to make comparison and analysis possible. 

Scheme 1: GPS single system static PPP positioning (denoted as GPS in Fig. 5.2 - Fig. 5.7 and Table 
5.2). 

Scheme 2: GLONASS single system static PPP positioning (denoted as GLONASS in Fig. 5.2 - Fig. 5.7 
and Table 5.2). 

Scheme 3: BDS single system static PPP positioning (denoted as BDS in Fig. 5.2 - Fig. 5.7 and Table 
5.2). 

Scheme 4: GPS/GLONASS/BDS static combined PPP algorithm based on the equivalence principle 
(denoted as G+R+C in Fig. 5.2 - Fig. 5.7 and Table 5.2). 

To make a comparison, the position coordinates published by IGS were treated as standard values to 
compute the bias and RMS of the position results of the four schemes in N, E and U components. As 
examples, the bias of four schemes with respect to IGS published results in N, E and U components of the 
6 stations for 9 days during the test period are shown in Fig. 5.2 - Fig. 5.7. The RMS results of GPS day 
337 are given as an example in Table 5.2. 

 
Fig. 5.2. Bias of four schemes with respect to IGS published results for station CAS1 
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Fig. 5.3. Bias of four schemes with respect to IGS published results for station GMSD 

 
Fig. 5.4. Bias of four schemes with respect to IGS published results for station POHN 
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Fig. 5.5. Bias of four schemes with respect to IGS published results for station REUN 

 
Fig. 5.6. Bias of four schemes with respect to IGS published results for station TUVA 
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Fig. 5.7. Bias of four schemes with respect to IGS published results for station XMIS 

Table 5.2 RMS with respect to IGS results (units: m) 

Stations 
 

GPS GLONASS BDS G+R+C 

CAS1 
N 0.003 0.039 0.077 0.021 
E 0.006 0.046 0.054 0.018 
U 0.145 0.389 0.198 0.257 

GMSD 
N 0.006 0.054 0.009 0.022 
E 0.007 0.060 0.040 0.022 
U 0.008 0.151 0.187 0.111 

POHN 
N 0.005 0.058 0.050 0.014 
E 0.029 0.109 0.088 0.067 
U 0.041 0.169 0.356 0.103 

REUN 
N 0.002 0.027 0.028 0.004 
E 0.017 0.034 0.031 0.027 
U 0.022 0.270 0.047 0.066 

TUVA 
N 0.004 0.046 0.045 0.013 
E 0.019 0.117 0.183 0.019 
U 0.024 0.150 0.190 0.079 

XMIS 
N 0.003 0.037 0.019 0.002 
E 0.014 0.090 0.036 0.023 
U 0.059 0.169 0.116 0.052 

From Fig. 5.2 - Fig. 5.7 and Table 5.2 it can be found that: (1) For single system positioning, the 
precision of GPS solutions is superior to GLONASS and BDS solutions. Generally said, single GPS PPP 
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can achieve an accuracy of mm in horizontal component and cm in vertical component, which indicates 
that PPP nowadays has high-precision. (2) It is noted that because of the location and the high latitude of 
station CAS1 (-66.28°), the RMS in U component reached up to 14.5 cm while in this case in N and E 
components they were 3 mm and 6 mm. This did not meet the normal accuracy relation regularity between 
horizontal and vertical components any more, which means that the vertical component of the RMS is 
generally the double of the horizontal component. That is because the station CAS1 is located in the 
Antarctic and due to the specificity of Antarctic positioning mentioned in Chapter 3, there are more 
observations with lower elevation angles in this region, and observations with lower elevation angles are 
more significantly influenced by the tropospheric delay. Thus the error effects of the tropospheric delay 
contained in the observations increase greatly and are used in the computation and lead to a degrading of 
the precision in U component. (3) Compared to single GLONASS or single BDS PPP, the positioning 
precision is improved significantly by GPS/GLONASS/BDS combination. However, the single GPS PPP 
solutions are still superior to combined PPP. That is because the combination of GPS, GLONASS and BDS 
systems are based on the equal weight ratio in this case. The contribution of each system to the 
combination is deemed to be identical, thus the precision of the combination results are influenced and 
degraded by GLONASS and BDS, which is inferior to single GPS but better than single GLONASS or 
BDS. (4) Based on the analysis, in combined PPP it is necessary to take into account a specific weight ratio 
rather than an identical one of each system, which could make the contribution of each system to the 
combined result more reasonable and improve the precision of combination. The related work has been 
done and will be described in Sect. 6.4 and Sect. 6.5. 

2. Kinematic combined PPP 

In case of kinematic combined PPP, the high-rate GPS/GLONASS/BDS observations of MGEX station 
GMSD on GPS day 334 in 2014 were used to validate the algorithm and make the analysis. The sample 
interval of the data is 1 s and the observed period is 8 hours. The difference between static and kinematic 
combined PPP is that the coordinate parameters can not be directly inherited between epochs but should be 
reinitialized at each epoch. The observation models and details of kinematic PPP processing are similar to 
the static case which is referred to in Table 5.1. 

Like in the static case, four schemes were conducted to make comparison and analysis possible. 

Scheme 1: GPS single system kinematic PPP positioning (denoted as GPS in Fig. 5.8 and Table 5.3). 

Scheme 2: GLONASS single system kinematic PPP positioning (denoted as GLONASS in Fig. 5.8 and 
Table 5.3). 

Scheme 3: BDS single system kinematic PPP positioning (denoted as BDS in Fig. 5.8 and Table 5.3). 

Scheme 4: GPS/GLONASS/BDS kinematic combined PPP algorithm based on the equivalence principle 
(denoted as G+R+C in Fig. 5.8 and Table 5.3). 

To make a comparison, the position coordinates published by IGS were treated as standard values to 
compute the bias and RMS of the position results of the four schemes in N, E and U components. The bias 
of all four schemes with respect to IGS published results in N, E and U components is shown in Fig. 5.8. 
The RMS results are given in Table 5.3. 
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Fig. 5.8. Bias of four schemes with respect to IGS published results 

Table 5.3 RMS with respect to IGS results (units: m) 

RMS GPS GLONASS BDS G+R+C 

N 0.042 0.150 0.102 0.041 
E 0.059 0.206 0.103 0.041 
U 0.112 0.615 0.229 0.157 

From Fig. 5.8 and Table 5.3 it can be found that: (1) Similar to the static positioning, the precision of 
single GPS solutions is also superior to single GLONASS and single BDS solutions. (2) Compared to the 
single system positioning, the horizontal precision of kinematic PPP is improved by GPS/GLONASS/BDS 
combination, which is superior to any single system PPP. However, the height precision of combined PPP 
is still inferior to single GPS kinematic PPP. It is inferred to be influenced and degraded by GLONASS 
and BDS, especially GLONASS solutions with obvious fluctuation in this case. The results indicate that 
combined multi-systems PPP has the dominant advantage of improving the horizontal precision of 
kinematic positioning. (3) From Table 5.2 and Table 5.3, it can be found that generally in Asia-Pacific area 
the positioning accuracy of a single BDS system is in between single GPS and single GLONASS, which is 
worse than single GPS but better than single GLONASS. 

5.4 Fast BDS Ambiguity Determination Based on the Contribution of GPS 
Observations 

5.4.1 Introduction 

As mentioned in Sect. 5.1, with the rapid development of GNSS, PPP technique is advancing forward from 
mainly using GPS measurements towards multi-GNSS combinations, with newly available precise orbit 
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and clock data for GNSS satellites. The Chinese BeiDou navigation satellite system (BDS) is steadily 
advancing forward towards being an operational global navigation satellite system, which is planned to be 
completed by 2020. And at present, the Multi-GNSS Experiment (MGEX) network which tracks 
multi-GNSS constellations and conducts tracking data analysis has basically achieved global distribution. 
However, since BDS system is under construction, four or more satellites are still not available at the same 
time in a plurality of regions (He et al., 2013; Zhang et al., 2015). In this case, the additional GPS 
observations can be applied to augment BDS for reducing the convergence time and improving positioning 
accuracy, reliability and availability compared to single BDS PPP. On this basis, similar to BDS/GPS 
combined PPP, a method which can speed up the determination of the ambiguities parameters of BDS 
through applying the contribution of GPS observations is proposed and analyzed in this section. In this 
method, the coordinates computed formerly by GPS observations are used as a priori information in the 
computation of BDS PPP, which improves the convergent speed eventually. 

5.4.2 Methodology 

The complete solution of the PPP algorithm based on the equivalence principle is derived and described in 

Sect. 5.3, where 1X  denotes the receiver clock offset parameter and 2X  denotes the coordinates, 

tropospheric delay and ambiguities parameters in Eq. (5.17). On this basis, the coordinates computed 
formerly by GPS observations are used as a priori information in the BDS PPP computation. Referring to 
the a priori constrained PPP algorithm derived in Sect. 4.2.1, the a priori constraint from GPS observations 
can be represented as 

 2 20 ,CX W P= −   (5.28) 

where C is the coefficient matrix; 2X  has the same meaning as in Eq. (5.17);  W is the constant vector; 

2P  is the a priori weight matrix. 

Thus the new normal equation coefficients with respect to parameter 2X  for Eq. (5.17) can be formed 

as 

 2 2 2
TM M C P C′ = +   (5.29) 

 2 2 2
TR R C PW′ = +   (5.30) 

Substituting Eq. (5.29) and Eq. (5.30) into Eq. (5.17), the new PPP solution with a priori constrain is 
obtained. In case of applying the coordinates result from GPS observations, the coefficient matrix C and 
constant vector W in Eq. (5.28) can be referred to Eq. (4.24) and Eq. (4.25) in Sect. 4.3.1, that C=I is a 

three-dimensional identity matrix, ( )0 0 0
TW x y z=  is the known three-dimensional coordinates with 
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 obtained from the processing of GPS observations. 

Therefore the contribution of GPS observations to the BDS PPP solution can be analyzed as follows. 
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According to Eq. (5.17), the PPP solution except receiver clock offset of a single BDS system can be 
expressed as 

 1
2 2 2( )X M R−=     (5.31) 

 
2

1
2( )XQ M −=    (5.32) 

where 2X  includes the coordinates, tropospheric delay, and ambiguities parameters; 
2XQ  denotes the 

coefficient matrix of 2X . 

In accordance with Eq. (5.29) and Eq. (5.30), the new BDS PPP solution based on the GPS observations 
can be expressed as 

 ( ) ( )1

2 2 2 2 2
T TX M C P C R C PW

−′ = + +    (5.33) 

 ( )
2

1

2 2
T

XQ M C P C
−′ = +   (5.34) 

Therefore, contribution of the GPS observations to the coordinates, tropospheric delay and ambiguities 
parameters in BDS computation can be expressed as 

 ( ) ( )1 1
2 2 2 2 2 2 2 2 2( )T TdX X X M C P C R C PW M R

− −′= − = + + −      (5.35) 

To assess the precision of the estimated parameter, the covariance matrix of the parameter can be formed 
as 

 
2 2

2
X XQ σ∑ =   (5.36) 

 
2 2

2
X XQ σ′ ′∑ =   (5.37) 

where σ  denotes the standard deviation and can be computed by 

 
TV PV

n m
σ =

−
  (5.38) 

where n is the number of BDS observations, m is the number of coordinates, tropospheric delay and 
ambiguity parameters of BDS. 

Therefore, contribution of the GPS observations to the estimation precision of coordinates, tropospheric 
delay and ambiguities parameters in BDS PPP computation can be expressed as 

 
2 2 2X X X

′∆∑ = ∑ −∑   (5.39) 

Thus, through using the coordinates computed formerly by GPS observations as a priori information in 
the BDS PPP, it can be expected that convergent speed and positioning precision will be improved. The 
convergence time of BDS computation is reduced if there is a priori information provided by GPS or other 
sensors and can be applied in the beginning of the computation. In practical, such algorithm is especially 
useful in applications of tracking particular vehicles and carriers under severe environment. For instance, 
in the canyon where there are less or lack of visible GPS satellites, while BDS satellites are observed due 
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to its special constellation constitution (e.g. GEO satellites), in this case such as for weaponry launching, 
the GPS observations before launching (in static condition) can be used to speed up the convergence time 
in the beginning, then the equipment can rely on itself by using BDS observations after launching and 
break away from its base platform. 

5.4.3 Example and Analysis 

The GPS/BDS observations of IGS station GMSD on GPS day 281 in 2014 were used to validate the 
method derived in Sect. 5.4.2. The sample interval of the data is 30 s. The observation models and details 
of PPP processing are indicated in Table 5.1. Two computation schemes were conducted to make 
comparison and analysis possible. 

Scheme 1: BDS single system kinematic PPP. 

Scheme 2: BDS fast positioning based on GPS observations (cf. Sect. 5.4.2). 

To compare convergence conditions in the two schemes, the ionosphere-free ambiguities of satellites 
C04, C09 and C11 are shown in Fig. 5.9 - Fig. 5.11, respectively, where C04 is GEO satellite, C09 is IGSO 
satellite, C11 is MEO satellite of BDS system. Furthermore, to make a comparison, the position 
coordinates published by IGS were treated as standard values to compute the bias of the position results of 
the two schemes in N, E and U components. The bias and RMS of two schemes with respect to IGS 
published results are shown in Fig. 5.12 and Table 5.4. 

From Fig. 5.9 - Fig. 5.12 and Table 5.4 it can be found that, ionosphere-free ambiguities of BDS 
satellites can be determined and converged to stable more quickly because of the contribution of GPS 
observations; the convergence time of Scheme 2 is greatly reduced compared to Scheme 1. Based on GPS 
observation, coordinates parameters can be obtained in advance and used as a priori information for the 
computation of BDS observation. Thus it shows significant superiority in convergent speed of computation. 
The positioning accuracy in N, E and U components are improved by 14%, 10% and 50%, respectively. It 
is useful for BDS computation if there is a priori information provided by GPS or other sensors and can be 
applied in the beginning of the computation. 

 

Fig. 5.9. Ionosphere-free ambiguity of satellite C04 
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Fig. 5.10. Ionosphere-free ambiguity of satellite C09 

 
Fig. 5.11. Ionosphere-free ambiguity of satellite C11 
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Fig. 5.12. Bias with respect to IGS published results 

Table 5.4 RMS comparison of two schemes (units: cm) 

RMS N E U 

Scheme 1 2.1 2.1 25.9 

Scheme 2 1.8 1.9 12.8 

5.5 GPS/BDS Combined PPP Algorithm with Inter-system Bias Parameter 

5.5.1 Methodology 

The Chinese BeiDou navigation satellite system (BDS) is providing coverage of the Asia-Pacific area 
positioning and navigation service since December 2012. With the combination of BDS, the GNSS PPP 
can improve its positioning precision, availability, and reliability. However, in order to achieve the best 
positioning solutions, the inter-system bias (ISB) between GPS and BDS should be resolved as precisely as 
possible (Jiang et al., 2016). In this section, a GPS/BDS combined PPP algorithm with inter-system bias 
parameter is derived. 

Similar as described in Sect. 4.2, the ionosphere-free code and phase observation equations for GPS and 
BDS combination can be expressed as 

 
IF

G G G G G G
IF trop IF PP c dt d dmr ε= + ⋅ + + +   (5.40) 

 
IF

G G G G G G G G
IF trop IF IF IFc dt d N mr λ d εFF = + ⋅ + + ⋅ + +   (5.41) 

 
IF

C C C C C C
IF trop IF PP c dt d dmr ε= + ⋅ + + +   (5.42) 
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IF

C C C C C C C C
IF trop IF IF IFc dt d N mr λ d εFF = + ⋅ + + ⋅ + +   (5.43) 

where indices G and C represent GPS and BeiDou satellites, respectively. The meanings of the terms are 
the same as in Eq. (4.1) and Eq. (4.2). Due to the different time systems used by GPS and BDS, the 
receiver clock offset of GPS Gdt  and BDS Cdt  should be estimated separately. Alternatively, it is 
possible to treat the receiver clock offset of GPS as a reference, thus the receiver clock offset of BDS can 
be expressed as a form of receiver clock offset of GPS as follows 

 C G gc
sysdt dt t= +   (5.44) 

where gc
syst  is the time system bias between GPS and BDS, which is the so-called ISB. Thus the unknown 

parameters to be estimated in GPS/BDS combined PPP include three-dimensional coordinates ( , , )x y z , 

the receiver clock offset of GPS Gdt , the ISB parameter between GPS and BDS gc
syst , the tropospheric 

delay tropd , the ambiguities parameters of GPS satellites G
IFN , and the ambiguities parameters of BDS 

satellites C
IFN . 

To express the linearized error equation of the observation as 

 V AX L= −   (5.45) 
Therefore the parameter vector X to be estimated can be expressed as 

 1 1, , , , , , , , , , ,
TG gc G Gn C Cm

sys trop IF IF IF IFX x y z dt t d N N N N =      (5.46) 

where n is the number of GPS satellites, m is the number of BDS satellites. 

Therefore, GPS/BDS combined PPP with ISB parameter can be realized through solving Eq. (5.45). 

The estimation of the ISB parameter gc
syst  can be performed in three different ways: as epoch-wise 

variable, piece-wise constant, or daily constant. For rigorous data analysis, ISB should be estimated on an 
epoch-wise basis. However this approach will introduce too many unknown parameters and reduce the 
efficiency of the solution. Through a detailed analysis of ISB estimation by making double-differences 
using measurements from various receivers, Paziewski and Wielgosz (2015) have shown that the ISB 
values estimated as a constant parameter for “longer pieces” show better repeatability than estimating an 
epoch-varying parameter. Considering current PPP accuracy limits and computing speed, the piece-wise 
constant ISB model is chosen here as the optimal approach. 

Furthermore, the GPS/BDS combined PPP with the ISB constraints is proposed in this section. The ISB 
value estimated at the day before is used as an a priori constraint for the processing of the next day. The 
superiority of the a priori ISB constraint in the GPS/BDS combined PPP is validated in the following 
example. 

5.5.2 Example and Analysis 

A set of 3 IGS stations (NNOR, REUN and XMIS) from MGEX network during GPS week 1811 were 
used to validate the GPS/BDS combined PPP with the ISB inter-system bias parameter. The sample 
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interval of the data is 30 s. The observation models and details of PPP processing are referred to in Table 
5.1. The ISB parameter is estimated as an hourly piece-wise constant. Two computation schemes were 
conducted to make comparison and analysis possible. 

Scheme 1: The observation data of GPS week 1811 was processed through GPS/BDS combined PPP 
with a day by day ISB. 

Scheme 2: The observation data of three days was processed through PPP with a priori ISB constraint. 
The ISB estimated on the day before was used as the a priori value for the next day. In this case, the ISB 
estimated on GPS day 264 was used as the a priori value for day 265; the ISB estimated on GPS day 265 
was used as the a priori value for day 266.  

To make a comparison, the position coordinates published by IGS were considered as standard values to 
compute the bias and RMS of the position results of the two schemes in N, E and U components. The RMS 
of both schemes with respect to IGS published results on day 265 and 266 are given in Table 5.5. The 
comparison of the convergence time in N, E and U components using both schemes on day 265 and 266 
are analyzed and shown in Fig. 5.13 and Fig. 5.14, respectively. The convergence criterion is defined as the 
bias of the first moment and its following 20 epochs in N, E and U components are less than 0.1 m. 

Table 5.5 RMS comparison of two schemes (units: cm) 

Day of 
Year 

Station 
Without ISB constraint With ISB constraint 

N E U N E U 

265 
NNOR 0.4 1.1 2.6 0.4 1.2 2.5 
REUN 0.5 2.0 0.6 0.6 1.2 0.6 
XMIS 0.3 1.2 3.3 0.3 1.1 3.0 

266 
NNOR 0.4 1.3 2.1 0.3 1.2 2.1 
REUN 0.7 1.7 1.2 0.7 1.1 1.1 
XMIS 0.3 1.4 2.5 0.3 1.4 2.4 

MEAN 0.43 1.45 2.05 0.43 1.20 1.95 

 
Fig. 5.13. Comparison of the convergence time of two schemes on day 265 
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Fig. 5.14. Comparison of the convergence time of two schemes on day 266 

From Table 5.5 and Fig. 5.13 - Fig. 5.14 it can be found that: (1) The mean RMS of of PPP processing 
without a priori ISB constraint are 0.43, 1.45 and 2.05 cm in N, E and U components, respectively. By 
using the a priori ISB constraint, the mean RMS are 0.43, 1.20 and 1.95 cm in three components, 
respectively. The average positioning accuracy has an improvement of 17% in E component and 5% in U 
component while in N component stays nearly the same. (2) The average convergence time of PPP 
processing without a priori ISB constraint are 14.8, 28.7 and 24.5 minutes in N, E and U components, 
respectively. When using ISB as an a priori constraint, mean convergence time in the three components are 
13.4, 21.5 and 18.6 minutes, respectively. The convergence speed in N, E and U components are improved 
by 9%, 25% and 24%, respectively. Thus it can be concluded, that the a priori constraint of ISB is superior 
in convergence time of PPP processing and can mainly improve the positioning accuracy in E component. 

5.6 Conclusions 
A multi-constellation combined PPP algorithm based on the equivalence principle was derived in this 
chapter. Being different from traditional multi-constellation combined PPP, the new algorithm firstly 
decomposes the entire combined computation into independent computing of each single system. Then the 
normal equations of the shared parameters of different GNSS systems, which are equivalently eliminated 
through the normal equation of single system, were directly and simply accumulated to obtain the 
combined solutions. Numerical examples were conducted to validate the efficiency and accuracy of the 
algorithm. By using this derived algorithm, the exponentially increased computational load of traditional 
multi-GNSS PPP algorithm can be reduced to the single linear increase when more GNSS satellites are 
available and used for combined computation. Results show that the GPS/GLONASS/BDS combination 
with the identical weight ratio in Sect. 5.3 can improve positioning accuracy compared to single 
GLONASS and single BDS. However, positioning accuracy in this case is inferior to single GPS. That is 
because the precision of the combined results is degraded by GLONASS and BDS due to the identical 
weight ratio of each system. Therefore it was found that it is necessary to consider a specific weight ratio 
to make the contribution of each system to combined results more reasonable and improve the accuracy of 
combination. The related work can be referred to in Sect. 6.4 and Sect. 6.5. 

A method to speed up the determination of ambiguities parameters of BDS through applying the 
contribution of GPS observations was proposed and analyzed. The coordinates computed formerly by GPS 
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observations were used as a priori information in the computation of BDS PPP. Thus it was found that the 
ionosphere-free ambiguities of BDS satellites could be determined and converged to stable more quickly. 
In addition, the convergence time could be greatly reduced. It can be said that the method is useful for 
BDS computation if there is a priori information provided by GPS or other sensors and can be applied in 
the beginning of the computation. 

The GPS/BDS combined PPP algorithm with inter-system bias parameter was also derived in this 
chapter. Furthermore, using the estimated ISB as a priori constraint in the GPS/BDS combined PPP was 
proposed. Results of the example demonstrate that the a priori constraint of ISB is superior in convergence 
time of PPP processing and can mainly improve the positioning accuracy in E component. 
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6 Adaptively Multi-Constellation Combined Precise Point 

Positioning Based on the Equivalence Principle 

 

6.1 Introduction 
A new adaptively robust filter with application in kinematic navigation and positioning has been 
systematically established and developed in recent years (Yang et al., 2013). The adaptively robust filter 
applies a robust estimation principle to resist the effects of measurement outliers and introduces an 
adaptive factor to control the influence of dynamic model disturbances. It can balance the contribution of 
the dynamic model information and the measurements in accordance with the magnitudes of their 
discrepancy (Yang et al., 2001). In this chapter, the principle of the adaptively robust filter, its 
developments and applications are firstly summarized and introduced. Then the adaptively robust PPP of a 
single system is derived. Due to the defect of the multi-GNSS combination with equal weight ratio (cf. 
Sect. 5.3), two kinds of adaptively multi-GNSS combined PPP based on the equivalence principle are 
derived. With these an adaptive adjustment of the weight ratio of each system in the multi-GNSS 
combination can easily be achieved. The posteriori covariance matrix of the shared parameters of each 
single system and the Helmert variance components are used to adaptively adjust the weight ratio of each 
system in the multi-GNSS combination, respectively. Numerical examples are conducted to validate the 
derived algorithms. 

6.2 Main Progress of the Adaptively Robust Theory in Satellite Navigation and 
Positioning 

6.2.1 Principle of the Adaptively Robust Filter 

Supposing the linear dynamic model and observation model are 

 , 1 1i i i i iX X W− −= Φ +   (6.1) 

 i i i iL A X e= +   (6.2) 

where subscript i and i-1 denote epoch time; 1iX −  and iX  are the state vectors of dimension m at epoch 

i-1 and epoch i, respectively; , 1i i−Φ  is the state transition matrix of dimension m m× ; iW  is the residual 

vector of dimension m of the system state model with zero expectation and covariance matrix 
iW∑ ; iL  is 

the observational vector of dimension in ; iA  is the coefficient matrix of dimension in m× ; ie  is the 

error vector of observations with zero expectation and covariance matrix i∑ , here 2 1
0i iPσ −∑ = ; iP  

denotes the weight matrix of iL ; 2
0σ  is the variance of the unit weight; m is the number of unknown 

parameters; in  is the number of observations at epoch i. iW  and ie  are mutually uncorrelated. It is 



76 Adaptively Multi-Constellation Combined Precise Point Positioning Based on the Equivalence Principle 

further assumed that iV  is the residual vector of the observation of dimension in , iX  is the predicted 

state vector, thus the observation error equation and the state predicted equation are 

 ˆ
i i i iV A X L= −   (6.3) 

 , 1 1
ˆ

i i i iX X− −= Φ   (6.4) 

where ˆ
iX  and 1

ˆ
iX −  denote the estimated state vectors at epoch i and i-1, respectively. The covariance 

matrix 
iX∑  of the predicted state vector iX  can be obtained by using the covariance propagation law as 

 
1

ˆ, 1 , 1 ii i

T
i i i i WX X −
− −∑ = Φ ∑ Φ + ∑   (6.5) 

The principle of the adaptively robust filter can be expressed as (Yang, 2006) 

 ( ) ( )ˆ ˆ min
i

TT
i i i i i i i iXV PV X X P X Xα+ − − =   (6.6) 

where 1
i iP −= ∑  is the robust equivalent weight matrix of iL ; (0 1)i iα α≤ ≤  is the adaptive factor; 

1
i iX XP −= ∑  is the weight matrix of the predicted state vector iX . 

By solving Eq. (6.6) , the estimator of the adaptively robust filter can be obtained as 

 1ˆ ( ) ( )
i i

T T
i i i i i i i i i iX XX A P A P A PL P Xα α−= + +   (6.7) 

  An alternative expression to Eq. (6.7) is 

 ˆ ( )i i i i i iX X K L A X= + −   (6.8) 

where iK  is the gain matrix based on the equivalent weight matrix of observations, that 

 11 1( )
i i

T T
i i i i iX X

i i

K A A A
α α

−= ∑ ∑ + ∑   (6.9) 

The posteriori covariance matrix of the state vector ˆ
iX  is 

 ˆ ( ) /
ii i i iXX I K A α∑ = − ∑   (6.10) 

6.2.2 Determination of the Robust Equivalent Weight Matrix and the Adaptive Factor 

The equivalent weight matrix iP  in Eq. (6.7) can be calculated commonly by the Huber weight function 

(Huber, 1981) or the IGG (Institute of Geodesy and Geophysics) series functions (Yang, 1994; Yang, 1999; 

Yang et al., 2002; Zhou, 1989). In case of independent observations, iP  is a diagonal matrix with 
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elements ( )1,2,...,
ki ip k n= . According to the IGG Ⅲ function (Yang et al., 2002), 

ki
p  can be defined 

as 
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  (6.11) 

where kV  is the residual of the observation 
ki

L ; kV  is the standard residual corresponding to kV ; 0k  

and 1k  are two constants which are usually chosen as 0 1.0 ~ 1.5k =  and 1 2.5 ~ 8.0k = . 
ki

p  is a 

descending function with respect to the standard residual kV , therefore the outlier in observation 
ki

L  can 

be controlled. Other equivalent weight functions can be chosen or constructed according to particular 
situations. The dependent equivalent weight matrix was also researched by Yang (1994) in case of 
dependent observations. 

An appropriate adaptive factor should be sensitive to disturbances of predicted parameters or dynamic 
model errors. Several statistics of error judgement, i.e. the discrepancy between the predicted and 
estimated state vector (Yang et al., 2001), the predicted residual (Xu and Yang, 2000; Yang and Gao, 
2006b), the ratio of the Helmert variance components of the predicted state vector and observations (Yang 
and Xu, 2003), and the discrepancy between predicted and estimated velocities of the dynamic model (Cui 
and Yang, 2006) can be used to construct the adaptive factor. For instance, based on the statistics of 
discrepancy between predicted and estimated state vector, a three-segment function, similar to the IGG Ⅲ 
function, is presented for adaptation as defined below. 
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  (6.12) 

where 0c  and 1c  are two constants, which are usually chosen as 0 1.0 ~ 1.5c =  and 1 2.5 ~ 8.0c = ; 

iX∆   is the discrepancy between predicted and estimated state vector, expressed as 

 
( )tr

i

i i
i

X

X X
X

−
∆ =

∑


   (6.13) 

where iX  is the estimated state vector, iX  is the predicted state vector. 
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6.2.3 Special Estimators 

Eq. (6.7) is the general estimator of an adaptively robust filter. With differing adaptive factors iα  and 

differing equivalent weight matrices iP , several kinds of estimators can be formed. 

Case 1. If 0iα =  and i iP P= , than 

 1ˆ ( )T T
i i i i i i iX A P A A PL−=   (6.14) 

Eq. (6.14) is an LS estimator using only the new observations at epoch i. The estimator is suitable when 

observations are not contaminated by outliers, the updated parameters are biased so much that the iX∆   in 

Eq. (6.12) is larger than 1c , and the information of the updated parameters is completely ignored. 

Case 2. If 1iα =  and i iP P= , than 

 1ˆ ( ) ( )
i i

T T
i i i i i i i iX XX A P A P A PL P X−= + +   (6.15) 

Eq. (6.15) is a general estimator of the classic Kalman filter. 

  Case 3. If iα  varies between 0 and 1, which is determined by Eq. (6.12) and i iP P= , than 

 1ˆ ( ) ( )
i i

T T
i i i i i i i i i iX XX A P A P A PL P Xα α−= + +   (6.16) 

Eq. (6.16) is an adaptive LS estimator of the Kalman filter. It balances the contributions of the updated 
parameters and the observations. 

  Case 4. If 0iα = , than 

 1ˆ ( )T T
i i i i i i iX A P A A PL−=   (6.17) 

Eq. (6.17) is a robust estimator using only the new observations at epoch i (Yang, 1994; Yang et al., 2002). 

  Case 5. If 1iα = , than 

 1ˆ ( ) ( )
i i

T T
i i i i i i i iX XX A P A P A PL P X−= + +   (6.18) 

Eq. (6.18) is an M-LS filter estimator (Yang, 1997). 

Case 6. If the covariance matrices of the observations iL  and the predicted state vector iX  are 

calculated based on the Sage windowing method (Deng, 2003; Yang and Xu, 2003), which are presented as 

ˆ
i∑  and ˆ

iX∑ , given by 
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where m is the window width; iV  is the predicted residual; iX∆  denotes the discrepancy between the 

predicted and estimated state vector, then 

 i i i iV A X L= −   (6.21) 

 ˆ
i i iX X X∆ = −   (6.22) 

In this case the adaptively robust filter turns out to be an adaptive Sage filter. 

6.2.4 Development of the Adaptively Robust Filter and Its Applications 

After the adaptive filter was developed, the construction of a suitable adaptive factor for balancing the 
contribution of the measurements and the predicted dynamic model information has been a key problem. 
Two optimal adaptive factors are established, which satisfy the conditions that the theoretical uncertainty 
of the predicted state outputted from adaptive filtering equals or nearly equals to its actual estimated 
uncertainty, or the theoretical uncertainty of the predicted residual vector equals or nearly equals its actual 
estimated uncertainty (Yang and Gao, 2006a). Furthermore, an adaptively robust filter with classified 
adaptive factors (Cui and Yang, 2006) is developed, which is more effective in tracking disturbances of 
vehicle movements. An adaptively robust filter with multi-adaptive factors (Yang and Cui, 2008) is also set 
up, which is more general in theory and contains adaptively robust filters with a single adaptive factor and 
classified adaptive factors. 

  To control influences of measurement outliers and disturbances of the dynamic model, an adaptively 
robust filter based on the current statistical model (Gao et al., 2006b) is developed. In addition, an 
adaptively robust filter based on neural network (Gao et al., 2007a; Gao et al., 2007b) is studied to solve 
the construction of the dynamic model. An adaptively robust filter can also be integrated with error 
detection, identification and adaptation (DIA). To control the nonlinear disturbances of the dynamic model, 
an adaptive UKF (unscented Kalman Filter) algorithm for improving the generalization of neural network 
(Gao et al., 2008) and an adaptively robust filter based on the Bancroft algorithm (Zhang et al., 2007) are 
derived. 

In terms of application, the adaptively robust filter has been successfully applied to the satellite orbit 
determination (Yang and Wen, 2004) and data processing of repeated observations of geodetic networks 
(Sui et al., 2007). Moreover, an adaptively robust filter with constraints has also been studied for 
navigation applications (Yang et al., 2011). In the integrated navigation application an adaptive Kalman 
filtering algorithm for the IMU/GPS integrated navigation system (Gao et al., 2006a) and a two-step 
adaptively robust Kalman filtering algorithm for GPS/INS integrated navigation system (Wu and Yang, 
2010) are developed. The comparison of several adaptive filtering algorithms in controlling the influence 
of colored noises is analyzed in order to simultaneously control the influence of colored noises and 
dynamic model disturbances (Cui et al., 2006). In research of the estimation and prediction of the satellite 
clock offset an adaptively robust sequential adjustment with opening window classified adaptive factors 
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(Huang et al., 2011) and an adaptively robust Kalman filter with classified adaptive factors for real-time 
estimation of satellite clock offset (Huang and Zhang, 2012) are derived. Adaptive filtering is also applied 
to make progress on the estimation of the crustal deformation parameter by using geophysical models and 
geometrical measurements (Yang and Zeng, 2009). 

6.3 Adaptively Robust PPP of A Single System Based on the Equivalence Principle 
The PPP of a single system based on the parameter equivalent elimination principle can be briefly 
summarized as follows (cf. Sect. 5.3). 

The linearized error equation can be formed as 

 ( ) 1

2

ˆ
,

ˆ
X

V A B L P
X

 
= −  

 
  (6.23) 

where the meanings of the characters can be referred to in Sect.5.3.1. 

The normal equation can be formed as 

 11 12 1 1

21 22 22

ˆ

ˆ
M M X B
M M BX

    
=         

  (6.24) 

where 11
TM A PA= , 12

TM A PB= , 21
TM B PA= , 22

TM B PB= , 1
TB A PL= , 2

TB B PL= . 

Then the equivalently eliminated equation of Eq. (6.24) can be formed as 

 11 12 1 1

2 22

ˆ

ˆ0
M M X B

M RX

    
=         

  (6.25) 

where 1
2 22 21 11 12M M M M M−= − , 1

2 2 21 11 1R B M M B−= − . 

Thus one has 

 2 2 2
ˆM X R=   (6.26) 

 11 1 12 2 1
ˆ ˆM X M X B+ =   (6.27) 

The recursion formulas of PPP at epoch i can be formed as 
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  (6.28) 

Through Eq. (6.28) the sequential solution of a single system PPP based on the parameter equivalent 
elimination principle can be obtained. For the sake of resisting the effects of observation outliers and 
controlling the anomalous disturbances of the a priori information, the adaptively robust PPP can be 



Adaptively Multi-Constellation Combined PPP Based on the Equivalence Principle 81 

 

derived as follows. 

Referring to the principle of the adaptively robust filter in Sect. 6.2.1, we make 11
TM A PA= , 

12
TM A PB= , 21

TM B PA= , 22
TM B PB= , 1

TB A PL= , 2
TB B PL= , where P  denotes the robust 

equivalent weight which can be determined by Eq. (6.11), then one has 1
2 22 21 11 12M M M M M−= − , 

1
2 2 21 11 1R B M M B−= − . An adaptive factor (0 1)i iα α≤ ≤  which can be determined by Eq. (6.12) is 

introduced to balance the contribution of the a priori information. Therefore the adaptively robust PPP 
based on the parameter equivalent elimination principle can be formed as 

 

( )
2

1

1
2 2 2

1
2 2 2

1
2 2 2

1
1 11 1 12 2

1
2

11 1
11 12 22 21 22 2 21 11 12

ˆ ( )
ˆ ˆ( ) ( )

( )

( ) , ( )

i

i

i i i
i

i i i
i

i i i

i i i i i

i
X

i i i i i i i i i
X

M M M
R R R

X M R

X M B M X
Q M

Q M M M M M M M M M

α
α

−

−

−

−

−

−− −

 = +
 = +
 =
 = −

=

 = − = +

 

 

 



  

  (6.29) 

where 
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where 0c  and 1c  are two constants, which are usually chosen as 0 1.0 ~ 1.5c =  and 1 2.5 ~ 8.0c = ; 

iX∆   can be computed through Eq. (6.31); iX  is the estimated vector based on observations at epoch i; 

1
ˆ

iX −  and 
1

ˆ
iX −

∑  are the sequential estimation solution and its covariance matrix at epoch i-1, respectively. 

6.4 Adaptively Multi-Constellation Combined PPP Based on the Equivalence 
Principle 

6.4.1 Methodology 

In multi-constellation combined PPP with identical weight ratio (cf. Sect. 5.3), the results can sometimes 
be degraded and inferior to results of a single system. Thus it is necessary to consider and construct a more 
reasonable and specific weight ratio to improve the performance of the combination. In this case, the 
shared parameters (coordinates and tropospheric delay) and their precision information obtained by every 
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single system can become highly valuable a priori information for combined data processing. Such 
information can be utilized as a judgement to determine the contribution and weight ratio of each single 

system to the final combined data processing. Therefore, an extra adaptive factor kα  between different 

GNSS systems is introduced. It provides the possibility to realize adaptively combined PPP of multi-GNSS 
systems. On basis of applying the equivalence principle, it is easier and more convenient to achieve such 
an adaptively combined PPP algorithm, compared to the traditional combined algorithm through 
constructing total calculation. 

The normal equation of the shared parameters in multi-constellation combined PPP is derived and 
presented as Eq. (5.24). By introducing an adaptive factor for each GNSS system, the normal equation of 
adaptively combined PPP of multi-GNSS systems can be formed as 

 1 1 1
1 1

m m
k k

k k
k k

N Y Sα α
= =

=∑ ∑   (6.32) 

where kα  denotes the adaptive factor of system k. kα  can be determined as an unique adaptive factor or 

multi adaptive factors in accordance with different parameters (Huang et al., 2011; Huang and Zhang, 2012; 
Yang and Cui, 2008). For example, an unique adaptive factor can be determined directly by the posteriori 

covariance matrix ˆ
kX∑  of the shared parameters obtained by a single system, that 
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  (6.33) 

The determination of the adaptive factor of each system as the form of Eq. (6.33) will be used in the 

examples given in Sect. 6.4.2. Another method to determine the adaptive factor kα  by variance 

components will be derived in Sect. 6.5.1. 

Based on Eq. (6.32) and the multi-GNSS combined PPP solution (cf. Eq. (5.25)), the adaptively 
combined PPP of multi-GNSS systems based on the parameter equivalent elimination principle can be 
formed as 
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where 2
iM  and 2

iR  are computed by Eq. (5.17). 

  By using Eqs. (6.32) - (6.34), the contribution of each system to the combined PPP solution can be 
adjusted adaptively according to the internal precision of each system in itself. In this way the accuracy of 
the combined PPP solution will not be affected seriously when there are outliers in any single system, 
therefore the stability and precision of multi-GNSS combined PPP can be improved. 

6.4.2 Example and Analysis 

To validate the algorithm derived above (cf. Sect. 6.4.1), the GPS/GLONASS/BDS observations of MGEX 
stations (CAS1, GMSD, POHN, REUN, TUVA and XMIS) on GPS day 337 in 2014 and high-rate 
GPS/GLONASS/BDS observations of MGEX station GMSD (with an interval of 1 s) on GPS day 334 in 
2014 were used for the case of static and kinematic combined PPP, respectively. The observation models 
and details of data processing can be referred to in Table 5.1 given in Sect. 5.3.4.  

Two schemes were conducted to make comparison and analysis possible. 

Scheme 1: GPS/GLONASS/BDS combined PPP with identical weight ratio of each system (cf. Sect. 
5.3.4). 

Scheme 2: Adaptively GPS/GLONASS/BDS combined PPP with adaptive factor determined by the 
posteriori covariance of shared parameters of each single system (cf. Eq. (6.33)).  

To make a comparison, the position coordinates published by IGS were treated as standard values to 
compute the bias and RMS of the position results of both schemes in N, E and U components. The RMS 
results in the static case are given in Table 6.1. The bias and RMS results of station GMSD in the 
kinematic case are shown in Fig. 6.1 and given in Table 6.2. 

Table 6.1 RMS with respect to IGS results (units: m) 

Stations 
 

CAS1 GMSD POHN REUN TUVA XMIS 

Scheme1 
N 0.021 0.022 0.014 0.004 0.013 0.002 
E 0.018 0.022 0.067 0.027 0.019 0.023 
U 0.257 0.111 0.103 0.066 0.079 0.052 

Scheme2 
N 0.008 0.006 0.007 0.002 0.005 0.003 
E 0.007 0.010 0.039 0.020 0.019 0.013 
U 0.184 0.035 0.029 0.006 0.029 0.058 

Table 6.2 RMS with respect to IGS results (units: m) 

Station 
 

Scheme1 Scheme2 

GMSD 
N 0.041 0.039 
E 0.041 0.041 
U 0.157 0.114 
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Fig. 6.1. Bias of two schemes with respect to IGS published results 

From Fig. 6.1 and Table 6.1-6.2 it can be found that, compared to Scheme 1, Scheme 2 improves the 
precision in N, E and U components significantly. In the given example, by applying the adaptive factor 
determined by the posteriori covariance of the shared parameters of each system in the combined PPP, the 
precision in U component for stations CAS1, GMSD, POHN, REUN and TUVA in the static case 
improved by 28%, 68%, 72%, 91% and 63%, respectively; while in the kinematic case the precision in U 
component for station GMSD improved by 27% in this example. It can be concluded that the adaptive 
factor determined by covariance of each system (cf. Eq. (6.33)) is superior regarding the accuracy of the 
multi-constellation combined PPP, compared to using equal weight ratio combination directly (Scheme 1, 
cf. Sect. 5.3.4). 

6.5 Adaptively Combined PPP Based on the Variance Component Estimation 

6.5.1 Methodology 

As described in Sect. 5.3.4, it is necessary to give a specific and reasonable weight ratio for the 
observations of each system in multi-GNSS combined PPP. The unreasonable weight ratio will cause the 
least squares solution losing the property of minimum variance and degrade the accuracy of combined 
positioning. It is known that the values of weight ratio depend on the random noise of the observations, 
thus to process combined positioning with an a priori constant or an identical weight ratio is obviously 
irrational. The Helmert variance components estimation (Koch, 2000; Koch and Kusche, 2002) is a widely 
applied posteriori variance component estimation method, which can adaptively determine the weight ratio 
of different observations through iteration computation. Therefore, in this section the Helmert variance 
component estimation is applied to adjust the weight ratio of mixed observations reasonably and to 
improve the accuracy and reliability of the positioning. 

Assuming 1L  and 2L  are two types of independent observations, 1P  and 2P  are their weight 
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matrices, thus the error equations can be formed as 
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  (6.35) 

The initial weights 1P  and 2P  determined by a priori variance may not be appropriate, thus its 

corresponding unit weight variance 2
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The normal equation of Eq. (6.35) can be formed as 

 ˆNX W=   (6.37) 

where 1 2 1 1 1 2 2 2
T TN N N A P A A P A= + = + , 1 2 1 1 1 2 2 2

T TW W W A PL A P L= + = + . According to the quadratic 

expectation formula, the Helmert variance components estimation can be derived as 
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Eqs. (6.38) - (6.40) are the Helmert variance components estimation formulas for two types of 
observations. In case of expanding to m types of observations, the coefficient matrix S of variance 
estimation can be formed as 
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  (6.41) 

 2 2 2
01 02 0 1 1 1 2 2 2

ˆ ,
T TT T T

m m m mW V PV V PV V P Vθθ σ σ σ   = =       (6.42) 

By using Eq. (6.38), Eq. (6.41) and Eq. (6.42), the variance components for m types of observations can 
be estimated. The procedures of Helmert variance components estimation can be summarized as follows: 

1. Determining the corresponding initial weights ( 1,2,..., )iP i m=  of various types of independent 

observations; 

2. Computing the respect ( 1,2,..., )T
i i iV PV i m=  of various kinds of observations after the first 

adjustment; 
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3. Estimating the variance components 2 ( 1,2,..., )i i mσ =  of various kinds of observations by Eq. (6.38), 

then resetting the weight by ( 1) ( )
2 ( 1,2,..., )

ˆ
k k

i i
i

cP P i m
σ

+ = = , where c is a constant, which is usually set 

as one value of 2 ( 1,2,..., )i i mσ = ; 

4. Repeating procedures 2 and 3 until 2 2 2
1 2ˆ ˆ ˆ ( 1,2,..., )i i mσ σ σ= = = = . 

In the adaptively combined PPP of multi-GNSS systems, the adaptive factor kα  of system k can be 

determined by variance components. The Helmert variance components of each system can be computed 
and used to adaptively adjust the contribution of the observations of each system to the combined PPP. 

  Considering four kinds of observational vectors from four GNSS systems respectively, their simplified 
Helmert variance components can be approximately computed by 
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where 2
0ˆ Gσ , 2

0ˆ Rσ , 2
0ˆ Eσ  and 2

0ˆ Cσ  are the variance components of GNSS observations; the subscripts G, 

R, E and C represent GPS, GLONASS, Galileo and BeiDou systems, respectively; n denotes the number of 
observations of each GNSS system; V and P denotes the residual vector and the weight matrix of each 
GNSS system. 

Therefore, the adaptive factor ( , , )k R E Cα α α α  of each system can be formed as 
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where Rα , Eα  and Cα  denote the adaptive factors for GLONASS, Galileo and Beidou systems, 

respectively. Substituting the adaptive factors into Eq. (6.32) and (6.34), the adaptively combined PPP 
based on the variance components estimation can be realized. 
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6.5.2 Example and Analysis 

The same high-rate GPS/GLONASS/BDS observations of MGEX station GMSD (with an interval of 1 s) 
on GPS day 334 in 2014 were used to validate the algorithm derived above (cf. Sect.6.5.1). The 
observation models and details of data processing can be referred to in Table 5.1 given in Sect. 5.3.4.  

The kinematic PPP of each single system was processed. In addition, two schemes of kinematic 
combined PPP were conducted to make comparison and analysis possible. Therefore the computational 
schemes can be summarized as follows. 

Scheme 1: GPS single system kinematic PPP (denoted as GPS in Table 6.3 and Fig. 6.2). 

Scheme 2: GLONASS single system kinematic PPP. 

Scheme3: BDS single system kinematic PPP. 

Scheme 4: GPS/GLONASS/BDS kinematic combined PPP with identical weight ratio of each system 
(denoted as G+R+C in Table 6.3 and Fig. 6.2, cf. Sect. 5.3.4). 

Scheme 5: GPS/GLONASS/BDS kinematic combined PPP with adaptive factors based on the variance 
component estimation (denoted as G+R+C_adaptively in Table 6.3 and Fig. 6.2, cf. Sect. 6.5.1). 

As before, the position coordinates published by IGS were considered as standard values to compute the 
bias and RMS of the position results in N, E and U components. The RMS results of kinematic PPP of 
each single system and two schemes of kinematic combined PPP are given in Table 6.3. The bias of GPS 
single system kinematic PPP and two schemes of kinematic combined PPP are shown in Fig. 6.2. 

From Table 6.3 and Fig. 6.2 it can be found that: (1) The kinematic combined PPP with adaptive factors 
based on the variance component estimation (Scheme 5) is significantly superior to other computational 
schemes and especially improves the precision of U component. In this case, the precision in U component 
can be improved by 33% compared to using equal weight ratio combination directly (Scheme 4). (2) The 
precision of the combined PPP based on the equal weight ratio (Scheme 4) is influenced and degraded by 
GLONASS and BDS, which is inferior to single GPS but better than single GLONASS or BDS. However, 
the adaptive factors based on the variance component estimation can adjust the weight ratio of combined 
observations more reasonable to determine the contribution of each system to the combined results. It 
enlarges the weight ratio of single GPS solution in the combination due to the highest accuracy of GPS, 
which makes the combination results very close to single GPS solution. Thus in combined PPP the weight 
ratio of each system should be considered carefully to make the contribution of each system to the 
combined result more reasonable and improve the precision of combination. 

Table 6.3 RMS with respect to IGS results (units: m) 

RMS GPS GLONASS BDS G+R+C 
G+R+C 

_adaptively 
N 0.042 0.150 0.102 0.041 0.040 
E 0.059 0.206 0.103 0.041 0.058 
U 0.112 0.615 0.229 0.157 0.104 
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Fig. 6.2. Bias of two schemes with respect to IGS published results 

6.6 Conclusions 
In this chapter, the principle of the adaptively robust filter, its developing progress and applications were 
summarized and introduced. Based on the equivalence principle, an adaptively robust PPP algorithm of a 
single system was derived. Due to the defect of the multi-GNSS combination with identical weight ratio, 
which leads to results that can sometimes be degraded and inferior to a single system, a more reasonable 
and specific weight ratio determined by the posteriori covariance matrix of the shared parameters of each 
single system adaptively was derived to improve the performance of combination. It shows that such an 
adaptive algorithm can be constructed and realized easily through applying the equivalence principle. 
Results show that through using such adaptive factors in combination, the precision in U component can 
be improved by an average of 58% compared to using the identical weight ratio combination directly. In 
addition, an adaptively combined PPP based on the variance component estimation, was derived. It was 
shown that it allows an accuracy improvement of 33% in U component compared to using the equal 
weight combination. Therefore it is concluded that the derived adaptively combined PPP algorithms, which 
can adjust the weight ratio of each system adaptively, and more reasonably, are significantly superior in the 
precision of combination. 
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7 Summary and Future Work 

 

7.1 Summary 
To achieve the objective of this thesis, which was to explore high-performance PPP algorithms and to 
develop GNSS algorithms with application of the equivalence principle, specific research has been done 
and the main achievements can be summarized as follows. 

On the basis of the equivalence principle and the equivalence property of un-differenced and 
differencing algorithms, the specific equivalence of un-differenced and time differencing PPP algorithms is 
proved theoretically in this thesis for the first time. Meanwhile, as a supplement to the equivalence 
property of the triple differences, an alternative method is proposed and derived to prove the equivalence 
between triple differences and zero-difference which up to now was missing. The main idea of such a 
method is to regard triple differences as to firstly make time differencing of the same satellite between two 
adjacent epochs at one station and then to be formed by double differences. 

As a consequence of above conducted theoretical study, a time differencing PPP algorithm based on the 
equivalence principle was derived and can be used to obtain the coordinates difference and average 
velocity between two adjacent epochs. Such a time differencing PPP algorithm is able to provide both 
position and velocity results from the phase and code observations. The obtained coordinates difference 
and velocity can keep stable from the beginning of computation, which is superior to making position 
difference of PPP because that always needs convergence time. Thus the results can be useful in different 
types of applications, such as airborne gravimetry, earthquake monitoring. Such a time differencing PPP 
algorithm could also be an efficient method to detect cycle slips in data processing. 

The influence of tropospheric delay on PPP, especially in the context of observations in the polar region 
or with low elevation cut-off angles, where the position results of the observations are more significantly 
affected by tropospheric delay, was analyzed and a methodology for minimizing its effect is proposed. Due 
to the specificity of Antarctic positioning, the actual meteorological data were used and proved to be 
beneficial for improving PPP precision in the Antarctic region. When the elevation cut-off angle is lower, 
the effect of the actual meteorological observations on the positioning precision is more significant in 
Antarctic due to the retention of low elevation angle observations. The effect of the tropospheric horizontal 
gradient correction on PPP was also analyzed and verified to remarkably improve PPP precision under 
lower elevation cut-off angles and higher humidity conditions. 

A priori constrained PPP algorithms were proposed and derived in this thesis to improve the efficiency 
and precision of PPP. The a priori information concerning the geometric and physical properties of 
observations, which is known with a certain a priori precision, was applied in the PPP algorithms. The 
contribution of different a priori information constraints on different parameters to PPP solution was 
analyzed and validated. The a priori constraints as employed in the PPP were specified according to 
coordinates-, receiver clock offset-, tropospheric delay- and ambiguities-constraints, respectively. The 
validation of the derived PPP algorithms shows a significant improvement concerning convergence time 
and positioning accuracy. And moreover, the applications of different constraints under specific conditions 
were also discussed and validated. PPP with a priori coordinates accuracy and time period constraint is 
particularly beneficial to the convergence time and accuracy of the real-time slow-motion carriers 
positioning, such as landslide, urban land subsidence and structural monitoring. That is because it fully 
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accounts for characteristics of slow-motion carriers. As deformation during geological disasters is 
generally continuous and in slow-motion, the monitoring station can be considered as stationary and the 
coordinates between epochs can be inherited like static positioning during a certain period. PPP with 
receiver clock offset constraint helps to solve the day-boundary discontinuities which are un-neglectable in 
precise timing and time transfer service. With coordinates and clock offset constraint, the results achieve 
convergent more quickly and more stable and continuous clock offset series can be obtained. PPP with 
tropospheric delay constraint removes the effect of the tropospheric delay on PPP height solution to 
improve the positioning accuracy in height component. PPP with ambiguities constraint is greatly superior 
in reducing the convergence time of positioning. 

A multi-constellation combined PPP algorithm based on the equivalence principle was proposed and 
derived in this thesis. Being different from traditional multi-GNSS combined PPP, the new algorithm 
firstly decomposes the entire combined computation into independent computing of each single system. 
Then the normal equations of the shared parameters of different GNSS systems, which are equivalently 
eliminated through the normal equation of single system, are directly and simply accumulated to obtain the 
combined solutions. With such an algorithm, the exponentially increased computational load of traditional 
multi-GNSS PPP algorithm can be reduced to the single linear increase when more GNSS satellites are 
available and used for combined computation. 

A method to speed up the determination of the ambiguities parameters of BDS through applying the 
contribution of GPS observations was proposed. The coordinates computed formerly by GPS observations 
were used as a priori information in the computation of BDS PPP. Thus it was found that the 
ionosphere-free ambiguities of BDS satellites can be determined and converged to stable more quickly. In 
addition, the convergence time is greatly reduced. It can be said the method is useful for BDS computation 
if there is a priori information provided by GPS or other sensors and can be applied in the beginning of the 
computation. 

The GPS/BDS combined PPP algorithm with inter-system bias parameter was derived. Furthermore, 
using the estimated ISB as a priori constraint in the GPS/BDS combined PPP was proposed. Results 
demonstrate that the a priori constraint of ISB is superior in convergence time of PPP processing and can 
mainly improve the positioning accuracy in E component. 

In traditional multi-constellation combined PPP, it is difficult to adaptively adjust the contribution of 
each single system to the combination through constructing total calculation, which will lead to the 
deterioration in the combination accuracy. In this context, the adaptively combined PPP algorithms based 
on the equivalence principle were proposed and derived, which can easily achieve an adaptive adjustment 
of the weight ratio of each system in multi-GNSS combination. By using the posteriori covariance matrix 
of the shared parameters of each single system and the Helmert variance components to adaptively adjust 
the weight ratio of each system, the derived algorithms can improve the accuracy of combination 
significantly, compared to combined PPP with identical weight ratio. 

The developed algorithms are net applicable and can be used for cloud computation for internet GNSS 
service which is considered significant for commercial applications. 

7.2 Future Work 
In accordance with the research progress and achievements of this thesis, several main points and ideas for 
subsequent studies are considered and proposed as recommendations, which can be summarized as 
follows. 
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Due to the characteristics of Antarctic positioning, where there are much more lower elevation angle 
observations compared to mid-low latitude regions, a more accurate and reliable tropospheric model for 
the Antarctic area is essential to be explored and conducted in the future. An alternative idea is to make full 
use of a mass of real meteorological data to modelling or to apply such meteorological observations as a 
prior constraint in data processing. 

The a priori constrained PPP algorithms derived in this thesis are specified according to coordinates-, 
receiver clock offset-, tropospheric delay- and ambiguities-constraint. The cases of other constraints, such 
as ionospheric delay-, baseline length-, as well as the combination of several constraints should be studied 
further. 

With the rapid development of multiple GNSS systems, the developing features of GNSS precise 
positioning have changed from single GPS-only positioning over the past decades to multi-GNSS systems 
combined positioning nowadays. The study on PPP ambiguity resolution of multi-GNSS combination 
needs to be researched further. Moreover, the analysis, especially in case of BDS PPP will also have great 
significance in the future.
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