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“Die Philosophie steht in diesem großen Buch geschrieben, dem
Universum, das unserem Blick ständig offen liegt. Aber das Buch
ist nicht zu verstehen, wenn man nicht zuvor die Sprache er-
lernt und sich mit den Buchstaben vertraut gemacht hat, in de-
nen es geschrieben ist. Es ist in der Sprache der Mathematik
geschrieben, und deren Buchstaben sind Kreise, Dreiecke und an-
dere geometrische Figuren, ohne die es dem Menschen unmöglich
ist, ein einziges Wort davon zu verstehen; ohne diese irrt man in
einem dunklen Labyrinth herum.”

- Galileo Galilei -
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Abstract

Understanding physical processes within the water cycle is a challenging issue that requires
merging information from various disciplines. The Gravity Recovery And Climate Exper-
iment (GRACE) mission provides a unique opportunity to measure time-variable gravity
fields, which can be converted to global total water storage anomalies (TWSA). These
observations represent a vertical integral of all individual water compartments, which is
difficult to observe by in-situ or other remote-sensing techniques. Knowledge about inter-
actions between hydrological fluxes and terrestrial water storage compartments is reflected
in large-scale hydrological models that nowadays increase in complexity to simulate all
relevant physical processes within the global water cycle. Hydrological models are driven
by climate forcing fields and their parameters are usually calibrated against river discharge
to ensure a realistic water balance on river basin scale. However, errors in climate forcing
fields, model parameters, and model structure limit the reliability of hydrological models.
Therefore, it is necessary to improve model simulations by introducing measurements,
which is known as data assimilation or data-model fusion.

In this thesis, a novel calibration and data assimilation (C/DA) framework is developed
to merge remotely-sensed large scale TWSA with hydrological models. To implement this
framework, the WaterGAP Global Hydrology Model (WGHM) is chosen, which is a so-
phisticated 0.5◦×0.5◦ conceptual model that simulates daily water changes in surface and
sub-surface water compartments (including groundwater), and considers water consump-
tion. In particular, a flexible approach is introduced to assimilate GRACE TWSA as
(sub-)basin or gridded averages into WGHM, while for the first time, implementing the
observation error correlations in the C/DA system. A sensitivity analysis is performed to
identify significant parameters in the largest river basins world-wide. It is also investigated
whether GRACE TWSA can be used to calibrate model parameters. To reduce sampling
errors and to improve the computational efficiency, the classical ensemble Kalman filter
(EnKF) technique is extended to a square root analysis (SQRA) scheme, and the singular
evolutive interpolated Kalman (SEIK) filter. The relationships between these algorithms
are addressed. A simple model and WGHM are used to describe the mathematical details
of the data assimilation techniques.

The observation error model, spatial resolution of observations, choice of filtering algo-
rithm, and model ensemble size are assessed within a realistic synthetic experiment de-
signed for the Mississippi River Basin, USA. Real GRACE products are also integrated
into WGHM over this region. Investigations indicate that introducing GRACE TWSA
constrains the water balance equation and corrects for insufficiently known climate forc-
ing, in particular precipitation. Individual water states and fluxes are also adjusted but
more improvements are expected by assimilating further in-situ and remotely-sensed ob-
servations. The processing choices represent important impacts on the final results. The
C/DA framework is transferred to the Murray-Darling River Basin, Australia, to improve
the simulation of hydrological changes under a long-term drought condition. GRACE
C/DA introduces a negative trend to WGHM simulated TWSA. A validation with in-
situ groundwater measurements indicates that the trend is correctly associated with the
groundwater compartment. Thus, the C/DA helps to identify deficits in model simulations
and improves the understanding of hydrological processes. The promising results provide
a first step towards more complex C/DA applications on global scale and in conjunction
with further terrestrial water storage observations.
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Zusammenfassung

Zum Verständnis der physikalischen Prozesse des Wasserkreislaufes ist das Zusammen-
führen von Kenntnissen verschiedener Disziplinen erforderlich. Die Messungen zeitab-
hängiger Gravitationsfelder der Gravity Recovery And Climate Experiment (GRACE)
Satellitenmission liefern einzigartige Erkenntnisse über globale Gesamtwasserspeicherän-
derungen (GWSA). Diese Größe repräsentiert die Summe aller einzelnen Wasserspe-
icherkomponenten, welche nur unzulänglich durch lokale oder andere satellitengestützte
Verfahren beobachtet werden kann. Großskalige hydrologische Modelle simulieren Inter-
aktionen zwischen terrestrischen Wasserspeicherkomponenten. Ihre Komplexität steigt
heutzutage immer weiter, um alle relevanten physikalischen Prozesse im globalen
Wasserkreislauf abzubilden. Sie werden durch Klimadaten angetrieben und durch Modell-
parameter gesteuert. Zur Gewährleistung einer realistischen Wasserbilanz in Flusseinzugs-
gebieten werden letztere üblicherweise gegen Durchflussmessungen kalibriert. Dennoch
limitieren Unsicherheiten in den Klimadaten, in den Modellparametern und in der Modell-
struktur die Zuverlässigkeit hydrologischer Prädiktionen. Um Simulationen zu verbessern
ist daher die Integration von Beobachtungsdaten notwendig, welches unter dem Begriff
der Datenassimilierung bekannt ist.

In dieser Arbeit wird ein neuer Kalibrierungs- und Datenassimilierungsansatz (K/DA)
zur Kombination von großskalig beobachteten GWSA und hydrologischen Modellen am
Beispiel des WaterGAP Global Hydrology Model (WGHM) entwickelt. WGHM ist ein
konzeptionelles Wasserbilanzmodell, das tägliche Wasseränderungen auf und im Boden
(inklusive Grundwasser) auf einer räumlichen Skala von 0,5◦×0,5◦ berechnet und an-
thropogene Wasserentnahmen berücksichtigt. Insbesondere wird ein flexibler Ansatz zur
Integration gegitterter und räumlich gemittelter GWSA eingeführt, während die Kor-
relationen der Beobachtungsfehler zum ersten Mal in der Assimilierung berücksichtigt
werden. Eine Sensitivitätsanalyse identifiziert maßgebliche Parameter für die weltweit
größten Flusseinzugsgebiete. Es wird außerdem untersucht, ob GRACE-GWSA zur Pa-
rameterkalibrierung herangezogen werden können. Um Stichprobenfehler zu reduzieren
und um die rechnerische Effizienz zu steigern, wird die klassische Ensemble Kalman Fil-
ter (EnKF) Methode um das Square Root Analysis (SQRA) Schema und den Singular
Evolutive Interpolated Kalman (SEIK) Filter erweitert. Die Zusammenhänge dieser Al-
gorithmen werden dargestellt. Die mathematischen Details der Methoden werden anhand
eines einfachen Modells und des WGHM beschrieben.

Das Modell der Beobachtungsfehler, die Auflösung der Beobachtungen, die Auswahl
der Filteralgorithmen und die Größe des Modellensembles werden in einem realistischen
synthetischen Experiment für das Flusseinzugsgebiet des Mississippis (USA) analysiert.
GRACE-GWSA werden ebenfalls für dieser Region in das WGHM integriert. Unter-
suchungen zeigen, dass die Wasserbilanz an die Daten angepasst wird und ungenaue Kli-
madaten, insbesondere Niederschlag, ausgeglichen werden. Wasserspeicherkomponenten
werden ebenfalls angepasst, würden aber durch die Assimilierung weiterer lokaler und
satellitengestützter Daten profitieren. Der K/DA Ansatz hat einen entscheidenden Ein-
fluss auf die Ergebnisse. Der entwickelte Ansatz wird auf das Einzugsgebiet des Murray
und Darling Flusses (Australien) übertragen, um die Simulation hydrologischer Änderun-
gen während einer Trockenperiode zu verbessern. GRACE-K/DA führt einen negativen
Trend in das Modell ein. Die Validierung mit lokalen Grundwasserdaten bestätigt, dass
der Trend korrekt mit dem Grundwasserspeicher assoziiert wird. Die K/DA ermöglicht
somit Defizite in Modellsimulationen zu identifizieren und verbessert das Verständnis hy-
drologischer Prozesse. Die vielversprechenden Ergebnisse bereiten einen ersten Schritt in
Richtung globaler K/DA in Verbindung mit weiteren hydrologischen Beobachtungen.
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1. Introduction

1.1 Background: The Global Water Cycle

The global water cycle describes the re-distribution of water within the Earth system,
including the hydrosphere, biosphere, atmosphere, and oceans (see Fig. 1.1). Water vapor
is stored in the atmosphere and reaches the continents and oceans in form of precipitation.
It might be stored on land in form of snow and ice, as surface water in lakes and wet-
lands or it infiltrates into the ground, where it is stored as soil moisture or groundwater.
The continental storage is reduced by evapotranspiration, i.e. the sum of evaporation and
transpiration from vegetation, or river discharge and groundwater runoff, which trans-
port water, e.g., to seas or oceans. Due to solar radiation, water in seas and oceans also
evaporates and is transported back into the atmosphere (Baumgartner and Liebscher,
1990).

Figure 1.1: Schematic overview of the global water cycle. This figure is
taken from the official website of the United States Geological Survey (USGS;
http://water.usgs.gov/edu/watercycle.html).

The availability of freshwater, as well as the occurrence of natural hazards like droughts
and floods impact human’s life. On the other hand, changes in climate, global warming,
and anthropogenic influences modify the energy and water cycle (Stocker et al., 2013).
Therefore, monitoring the hydrological water cycle is an important task that requires
knowledge about the underlying physical processes, as well as accurate temporally and
spatially high resolved observations of water states and fluxes.
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Due to the complexity of hydrological processes as well as due to their temporal and
spatial variability, a large number of models has been developed to simulate the water
cycle on a small, medium or large (global) scale with the aim to improve the understanding
and quantification of the global water cycle (Sood and Smakhtin, 2015). These models
are typically classified as conceptual (or water balance) models if empirical equations
and parameters are used to represent the water dynamics, or as physics-based, e.g., land
surface models, if the model equations are based on physical principles. Even though the
models aim in an adequate representation of the real world, uncertainties exist due to
insufficient model realism, imperfect climate input data and imperfect empirical model
parameters.

Since 2002, the Gravity Recovery And Climate Experiment (GRACE) satellite mission,
which consists of two satellites following each other in a polar orbit, continuously monitors
the Earth system (Tapley et al., 2004). GRACE is the first geodetic tool that enables a
global observation of the Earth’s time-variable gravity field, which is represented in terms
of potential spherical harmonic coefficients, the so-called GRACE level-2 product. The
gravity field changes can be related to total water storage anomalies (TWSA) that mainly
represents mass changes within the hydrosphere, biosphere, atmosphere, and oceans (Wahr
et al., 1998). The temporal resolution of GRACE TWSA can vary between one month (by
the official providers) to even one day (Kurtenbach et al., 2009) depending on the analysis
technique, and the spatial resolution is of down to a few hundred kilometers (Schmidt
et al., 2008). GRACE TWSA have been used in several hydrological, climatological and
geophysical applications (see Kusche et al., 2012, Famiglietti and Rodell, 2013, Wouters
et al., 2014, Famiglietti et al., 2015, Chen et al., 2016, and references therein). Since
GRACE is not able to distinguish the individual sources of TWSA, e.g., soil water or
groundwater, various approaches have been developed to separate GRACE TWSA into
individual water compartments. Schmeer et al. (2012), Rietbroek (2014) and Forootan
(2014) applied statistical decomposition and inversion techniques to separate TWSA de-
rived by GRACE into storage compartments while using complementary data.

Merging GRACE TWSA and hydrological models calls for the application of data assimi-
lation, which provides a twofold advantage. From the geodetic point of view, model-derived
TWSA simulations that are consistent with time-variable mass estimations derived from
GRACE could be very beneficial for applications that require the reduction of short-term
gravity changes, e.g., de-aliasing of GRACE level-2 products (Forootan et al., 2014a) or
the computation of loading effects in geometrical techniques (e.g., Collilieux et al., 2011,
Fritsche et al., 2012). From the hydrological point of view, adjusting model-derived wa-
ter states to GRACE observations helps improving limited simulation skills of models
caused by uncertainties of input data (in particular climate forcing), errors in the model
structure and uncertainties of model parameters. In this case, GRACE would act as a
constraint that directly improves storage and indirectly flux simulations of hydrological
models. Therefore, besides the traditional calibration of hydrological models against river
discharge measurements (Gupta et al., 1998), multi-criteria calibration against river dis-
charge and GRACE TWSA was performed by adjusting sensitive model parameters of a
global model over large river basins (Werth and Güntner, 2010). Recently, a number of
studies have suggested to assimilate GRACE TWSA into hydrological models (e.g., Za-
itchik et al., 2008, Su et al., 2010, Forman et al., 2012, Houborg et al., 2012, van Dijk et al.,
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2014, Eicker et al., 2014, Tangdamrongsub et al., 2015, Reager et al., 2015, Schumacher
et al., 2016b).

1.2 Motivation to Develop a Calibration/Data Assimi-
lation (C/DA) Framework

Geophysical and hydrological models are not able to perfectly describe processes within
the Earth system. This is due to several assumptions and simplifications associated with
the mathematical equations used in these models. In case of hydrological models, a major
source of uncertainty are input data, in particular climate forcing such as precipitation,
temperature and solar radiation (e.g., Döll et al., 2016). Empirical model parameters are
defined in order to steer the model equations. Often, these parameters can not directly
be measured, and therefore the estimation of their values represents another source of
uncertainty in model simulations. Moreover, errors are introduced due to spatial and
temporal discretization, as well as due to background information such as hydro-geology
maps. Therefore, it is reasonable to merge the model outputs with measured data sets. This
integration should improve the quality of model simulations by producing outputs that
are closer to “reality” that is sampled by direct observations. Furthermore, assimilation of
GRACE into hydrological models provides an alternative approach to separate TWSA into
its individual water compartments and to downscale its relatively coarse spatial resolution.
Relying on physical processes, introduced through model equations, to separate GRACE
TWSA can be considered as a further benefit of data assimilation in contrast to relying
on mathematical modes of storage variability as in the inversion techniques.

1.2.1 Model Parameter Calibration

The selection of appropriate values for hydrological model parameters is crucial in order
to produce a reliable simulation of the water cycle. The term “parameter calibration” is
referred to as adjusting the parameters of models in such a way that the “input-output
behavior of the model approximates, as closely and consistently as possible, the underlying
hydrological system over some historical period of time” (Vrugt, 2004, p. 10). In order
to identify the “best” fit between model simulation and measurements, a so-called cost
function is required. This function describes how similar model and observation values
are based on an evaluation metric, such as the root mean square error (RMSE) between
simulation and measurements or the Nash-Sutcliffe coefficient (NSC; Nash and Sutcliffe,
1970), that show how accurate the model represents the observations. By simulating the
model outputs considering a large range of possible model parameter values, the parameter
value that results in the smallest RMSE or highest NSC, respectively, can be identified as
the optimal calibrated parameter.

Traditionally, hydrological models have been calibrated against river discharge measure-
ments (Gupta et al., 1998). In case of the WaterGAP (Water Global Assessment and Prog-
nosis) Global Hydrology Model (WGHM; Döll et al., 2003), which will be investigated in
more detail in this thesis, the runoff coefficient (a factor that regulates the amount of land
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runoff from soil, see, e.g., Müller Schmied et al., 2014) is calibrated against mean annual
river discharge at 1319 gauge stations worldwide. In Werth (2010), GRACE TWSA prod-
ucts were successfully used to calibrate the six most sensitive parameters of WGHM over
the 33 largest river basins worldwide. As the GRACE calibrated WGHM version provides
improved storage simulations, it is adopted and further developed in this thesis.

1.2.2 Assimilation of GRACE Total Water Storage Anomaly
(TWSA)

The combination of numerical model simulations with observations is called “data-model
fusion” or “data assimilation”. Measurements are introduced into the model in order to
improve the model states that exhibit uncertainties due to imperfect input data, parame-
ters and errors in the model structure. Data assimilation can be defined in different ways,
e.g., as weighted mean between model outputs and observations based on their accuracy,
or active integration of data into the model, i.e. modification of model states, which are
used in the next model forward integration step.

In order to define the “best” combination of model simulations and measurements, a cost
function must be formulated. The function defines how model simulations and observed
values are weighted by their accuracy while averaging within the data assimilation process.
In the case that an observation is very accurate and large uncertainties for the model
simulation exist, the weight for the observation should be high, while the weight for the
model should be small. In contrast, when the model simulation is accurate but large
uncertainties are associated with observations, the model should be weighted higher and
the merged value should be closer to the model value.

Data assimilation is a complex process, whereas the sources of model uncertainties have
to be defined, the observation errors can either be treated as uncorrelated or correlated,
the spatial resolution has to be specified, the assimilation method has to be chosen, just
to name a few options (see, e.g., Liu et al., 2012). Each of the approaches might have
benefits but at the same time deficiencies and difficulties of implementation. An overview
of studies that address the assimilation of GRACE TWSA into hydrological models is
given in Tab. 1.1.

An ensemble Kalman smoother (EnKS; Evensen and van Leeuwen, 2000) approach has
been developed at the Global Modeling and Assimilation Office (GMAO) of the National
Aeronautics and Space Administration (NASA, USA) to assimilate (sub-) basin averaged
(Zaitchik et al., 2008, Forman et al., 2012, Houborg et al., 2012, Li et al., 2012, Reager
et al., 2015) or gridded (Girotto et al., 2016, Kumar et al., 2016) GRACE TWSA products
into NASA’s catchment land surface model (CLSM), while assuming uncorrelated errors
for GRACE TWSA observations. Forman and Reichle (2013) investigated the effect of
the spatial aggregation of GRACE TWSA on the final assimilation results using NASA’s
framework. They concluded that TWSA observations should be assimilated at the smallest
spatial scale, for which the observation errors can be considered uncorrelated.

At the Australian National University (ANU, Australia), an off-line data blending ap-
proach based on the ensemble Kalman filter (EnKF; Evensen, 1994) has been developed
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to provide a Global Water Cycle Reanalysis (GWCR) for 2003-2012 (van Dijk et al., 2014).
In their study, five global land surface models, i.e. four variants of NASA’s Global Land
Data Assimilation System (GLDAS) and the World-Wide Water Resources Assessment
(W3RA) model, as well as an ensemble of TWSA estimates from GRACE time-variable
products were merged. Errors of the different model estimates and GRACE products
were derived through a triple collocation error estimation approach (Tavella and Premoli,
1994).

Table 1.1: Calibration (C) and sequential data assimilation (DA) studies on merging GRACE
TWSA and hydrological model simulations.

Method Model GRACE Resolution Region Reference
error (106km2)

EnKS (DA) CLSM white 0.5-1.2 Mississippi Zaitchik et al. (2008)
” ” ” 0.3-1.6 Mackenzie Forman et al. (2012)
” ” ” 0.3-1.2 North America Houborg et al. (2012)
” ” ” 0.3-0.8 Europe Li et al. (2012)
” ” ” 0.2-1.6 Mackenzie Forman and Reichle (2013)
” ” ” 1.2 Missouri Reager et al. (2015)
” ” ” 1◦×1◦ USA Girotto et al. (2016)
” ” ” 1◦×1◦ USA Kumar et al. (2016)
EnKF (DA) GLDAS white 1◦×1◦ global van Dijk et al. (2014)

W3RA
EnKF (DA) CLM white 4◦×4◦ North America Su et al. (2010)
EnKS (DA) ” ” ” ”
EnKF (DA) HBV-96 white 1 km×1 km Rhine Tangdamrongsub et al. (2015)
EnKF (C/DA) WGHM correlated 3.0 & Mississippi Eicker et al. (2014)
” ” ” 5◦×5◦ ” ”
EnKF (C/DA) WGHM white & 0.1-1.2 & Mississippi Schumacher et al. (2016b)
SQRA (C/DA) ” correlated 5◦×5◦ ” ”
SEIK (C/DA) ” ” ” ” ”
EnKF (C/DA) WGHM correlated 0.2-0.4 Murray-Darling Schumacher et al. (2016c)

Other experiments based on the EnKF/EnKS were reported in Su et al. (2010) who ap-
plied data assimilation to snow dominated river basins, as well as in Tangdamrongsub
et al. (2015) who assimilated GRACE TWSA into a variant of the HBV-96 (Hydrol-
ogiska Byråns Vattenbalansavdelning) model for the Rhine River Basin. These studies
have mainly focused on the application of data assimilation rather than addressing the
technical details of the algorithms. So far, applied hydrological data assimilation tech-
niques were limited to the EnKF/EnKS methods.

Data assimilation has a longer history in the atmosphere and ocean sciences. In these
fields, the dynamics are considered to be chaotic. As a result, small errors in the initial
conditions result in large differences in the temporal evolution of model states. This is
critical and a limiting factor, e.g., in numerical weather prediction. Data assimilation
methods have been developed in order to estimate optimal initial conditions (e.g., Daley,
1991, Kalnay, 2003). For example, three and four dimensional variational methods (3D-
Var and 4D-Var) are used for global weather predictions at the European Centre for
Medium-Range Weather Forecasts (ECMWF; Courtier et al., 1994, Klinker et al., 2000).
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In recent years, sequential data assimilation methods have found an increasing interest in
atmospheric and oceanic applications (e.g., Houtekamer et al., 2005, Losa et al., 2012).
Saynisch et al. (2015), for instance, presented an assimilation of GRACE data into an
ocean model using the EnKF.

Further developments of alternative ensemble methods were also undertaken in atmo-
spheric and oceanic sciences. For example, the square root analysis scheme (SQRA) ap-
proach (Evensen, 2004) and the singular evolutive interpolated Kalman (SEIK) filter
(Pham et al., 1998) have been developed to assimilate observations into ocean models.
In the context of GRACE data assimilation, Schumacher et al. (2016b) recently investi-
gated for the first time the application of these alternative ensemble filtering approaches
in hydrology.

In contrast to atmospheric and oceanic dynamics, the accuracy of terrestrial water stor-
age simulations is predominantly influenced by uncertain meteorological forcing conditions
and model parameterization (Reichle, 2008). Thus, the simultaneous estimation of water
states and model parameter values is beneficial for accurate hydrological model simula-
tions. Several studies applied ensemble filter methods to jointly estimate model states and
parameters, e.g., in order to improve the simulation of conceptual rainfall-runoff models
(e.g., Moradkhani et al., 2005), of land surface models (e.g., Vrugt et al., 2005, Zhang
et al., 2016) or of groundwater changes in hydraulic and groundwater flow models (Chen
and Zhang, 2006, Drécourt et al., 2006, Hendricks Franssen and Kinzelbach, 2008). For the
first time, Schumacher (2012) investigated the potential of assimilating GRACE TWSA
with their full error information into WGHM in a combined calibration and data assimi-
lation (C/DA) framework, which was built based on the EnKF technique. This view was
followed by Eicker et al. (2014) and Schumacher et al. (2016b) who assimilated sub-basin
averaged and gridded GRACE TWSA (5◦×5◦ grids) into WGHM for the Mississippi River
Basin and simultaneously calibrated model parameters. Before, GRACE data assimilation
studies performed only the assimilation part and no attempt was undertaken to calibrate
model parameters. A transfer of the C/DA framework to the Murray-Darling River Basin
was reported in Schumacher et al. (2016c).

1.2.3 Challenges of GRACE Data Assimilation for Hydrology

As summarized in Schumacher et al. (2016b), assimilating GRACE TWSA into hydrolog-
ical and land surface models is challenging due to (i) the temporal and spatial resolution
mismatch between model-derived simulated water states and GRACE TWSA maps, (ii)
the difficulty in describing model errors due to forcing, model parameters and model
structure (e.g., Reichle and Koster, 2003, Liu et al., 2012), and finally (iii) the problem
to appropriately determine errors of GRACE TWSA. In particular, GRACE level-2 prod-
ucts contain correlated errors, which result from instrumental noise (Pierce et al., 2008),
anisotropic spatial sampling of the mission (Schrama et al., 2007), and temporal aliasing
caused by incomplete reduction of short-term mass variations by models (Forootan et al.,
2014a). These errors manifest themselves as “striping” patterns in GRACE TWSA maps
(Kusche, 2007). Although striping is reduced after applying de-correlation filters (Swen-
son and Wahr, 2006, Kusche et al., 2009), correlated errors still exist even after spatial
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aggregation (Longuevergne et al., 2010, Sakumura et al., 2014). The choice of the data
assimilation method, of the simulation and observation error models, and of the spatial
discretization of observations (gridded or basin averaged) will have significant impacts on
the final results of data-model fusion. Various assessments should be performed to explore
the benefit of each decision, which will be discussed in this thesis.

1.3 Research Gaps

The calibration of hydrological model parameters against GRACE observations and the
assimilation of GRACE data into hydrological models represent a relatively new research
subject. Therefore, in the following, the major research gaps are summarized:

• The errors of GRACE TWSA are spatially correlated. GRACE data assimilation
into hydrological models does not consider a realistic characterization of these un-
certainties so far. Most of previous studies disregarded the correlation of observation
errors by assuming white noise, i.e. spatially uncorrelated errors, for GRACE TWSA
errors. Therefore, the technical aspect of introducing a full error covariance matrix
of GRACE observations for data assimilation, as well as the interpretation how the
correlated GRACE errors affect the data assimilation results are not fully addressed.
The distribution of GRACE errors will change after applying spatial averaging. Sys-
tematic investigations to address various decisions about the spatial resolution of
GRACE TWSA and the errors in data assimilation frameworks are missing.

• Different strategies have been proposed in previous studies to handle the temporal
and spatial resolution mismatch of GRACE TWSA and hydrological models. Further
investigations and comparisons of these approaches are required to find a “best”
strategy.

• Improvements for the description of model uncertainties are desirable to better char-
acterize and identify the water compartments that GRACE TWSA assimilation
should in particular contribute to. For this, investigations on selecting appropriate
a priori probability density functions for model parameters, as well as on producing
representative correlated error models for climate input fields such as precipitation,
temperature, and solar radiation are required.

• While GRACE TWSA assimilation improves the representation of modeled TWSA,
this does not necessarily hold for individual water compartments and other state
variables and fluxes. Therefore, validation with independent data sets, such as soil
moisture or groundwater observations, is required to assess the performance of as-
similation results. Validation is, however, not trivial due to limited available ground-
based observations, limited spatial and temporal coverage, as well as resolution mis-
match between model outputs and ground- or satellite-based observations. Further
investigations in the direction of a multi-criteria validation is necessary for better
understanding the influence of GRACE TWSA on the individual compartments and
fluxes.
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• For validating the assimilation results with independent measurements, adequate
metrics have to be defined. These metrics, however, might not lead to the same
interpretation and conclusions. For example, the RMSE measures the differences
between model simulations and observations. Small RMSE values suggest a small
bias and variance between model and observations. On the other hand, the correla-
tion between the modeled and observed water state time series reveals their timing
(or phase shift). It might occur that the correlation is improved after data assim-
ilation but not the RMSE. Multi-objective metrics should be introduced to help a
more extensive evaluation of data assimilation results.

• Previous GRACE data assimilation studies showed that an individual adaption of
the data assimilation approach to a specific region might be required. For instance,
in some regions a specific water storage compartment might represent a dominant
influence on TWSA, while water fluxes such as evapotranspiration might be highly
important in other areas. Finding the “best” strategy for data assimilation is how-
ever not trivial, since the performance depends on various aspects, and therefore is
missing so far.

• To guarantee an improvement of the simulation of individual water storage compart-
ments or fluxes, a multi-criteria data assimilation is desirable. A combined assimi-
lation framework to integrate various observations of, e.g., lake and river variations
from altimetry, remotely-sensed soil moisture, in-situ groundwater, and river dis-
charge, along with GRACE TWSA might help in further improving hydrological
models and therefore our understanding of the global water cycle. Such comprehen-
sive frameworks are still missing in the literature.

1.4 Objectives of the Thesis

This PhD study aims to develop a C/DA framework that merges predicted water states
from hydrological models and GRACE TWSA while simultaneously calibrating model
parameters. In this section, the main objectives of the PhD research are summarized.
Furthermore, hypotheses are formulated and strategies on how to test these hypotheses
are proposed.

Objective 1: Establishing a C/DA framework to integrate (sub-)basin averaged and grid-
ded GRACE TWSA into the WGHM using an ensemble Kalman filter (EnKF).

Hypothesis I of this thesis states that the calibration of model parameters using
GRACE TWSA via parameter-state correlations is possible. To test this hypothesis,
a sensitivity and model covariance analysis will be performed. It will be investi-
gated if the assimilation of GRACE TWSA enables a more realistic representation
of TWSA in hydrological models (hypothesis II a), as well as improvements of indi-
vidual water compartments and fluxes (hypothesis II b). First, a simulation study
will be set up to test the performance of the framework and validate the results with
a simulated truth (twin experiment). Then observed GRACE TWSA will be assim-
ilated into WGHM. Independent measurement data sets of individual water states
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and fluxes will be used to validate the C/DA results, and thereby testing hypothesis
II a and b.

Objective 2: Accounting for observation error correlations and for a flexible discretization
of GRACE TWSA.

In this thesis, the proposed C/DA strategy is based on the assumption that an im-
proved spatial resolution of TWSA enables a better adjustment to the observations
(“reality”) than using basin averaged observations (hypothesis III), and that consid-
ering or neglecting the correlated errors of GRACE TWSA affects the C/DA results
(hypothesis IV). Thus, simulation and real case studies will be used to test both
hypotheses.

Objective 3: Extending the framework by variants of the ensemble filter algorithm.

It will be investigated if introducing ensemble filter variants, i.e. alternative filtering
algorithms and tuning techniques, helps to improve the performance of the C/DA
framework (hypothesis V). The assimilation techniques will be described using a
simple hydrological model. Then, hypothesis V will be tested in a simulation study.

Objective 4: Transferring the framework to river basins with different climatic and hydro-
logical characteristics.

Finally, the C/DA framework will be transferred to another region with different cli-
matic and anthropogenic conditions to show that the proposed assimilation strategy
does not only work in the test region (hypothesis VI). Observed GRACE TWSA
will be assimilated into WGHM and independent measurements will be used for the
validation of the results.

Parts of the results of a regional and global sensitivity and covariance analysis were pub-
lished in Schumacher et al. (2016a). In this thesis, additionally, an analysis of the dis-
tributions of the calibration parameters is provided (chapter 6). A synthetic experiment
was proposed in Schumacher et al. (2016b) to investigate the impact of C/DA strategies
on the updated water states, including the spatial resolution of GRACE TWSA and the
observation error model. In addition, alternative filter methods have been introduced and
their influence on the C/DA results was assessed. Furthermore, in this thesis, the mathe-
matical foundations of data assimilation are described in details for linear and non-linear
model equations (chapters 3 and 4). To illustrate the functionality of the ensemble filter
algorithms, a simple model is introduced. In addition, the practical implementation of the
C/DA framework to assimilate GRACE TWSA into WGHM is addressed (chapter 5). The
simulation study for the complex hydrological model WGHM (Schumacher et al., 2016b)
has also been extended in this thesis (chapter 7). First results of a one year assimilation
of observed GRACE TWSA into WGHM for the Mississippi River Basin were presented
in Eicker et al. (2014), while an extensive validation of individual water compartments
and fluxes is provided in this thesis (chapter 8). The application of the C/DA framework
to the Murray-Darling River Basin was presented in Schumacher et al. (2016c). In the
second part of chapter 8 of this thesis, the details of this transfer are provided.
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1.5 Outline of the Thesis

This PhD thesis provides technical details for integrating GRACE TWSA into hydrolog-
ical model simulations within a C/DA framework. It also discusses the influence of the
C/DA strategies on the model simulations. In chapter 2, observations and models of the
terrestrial water cycle are described. An overview of the GRACE satellite mission is given
in section 2.1. The mathematical representation of the observed gravity field changes, as
well as its conversion to TWSA, are introduced. Aspects of data post-processing and the
propagation of the error information are also addressed. This is followed by the description
of a simple hydrological model and a detailed discussion of WGHM used for applying the
proposed C/DA framework (section 2.2). In section 2.3, an overview of the hydrological
data used for performing validation is provided.

The mathematical foundations of data assimilation are discussed in chapter 3. This in-
cludes an introduction of statistical foundations (section 3.1) and of the Bayes’ theorem
(section 3.2). The basic principles of variational and sequential data assimilation are pre-
sented in sections 3.3 and 3.4 for linear and non-linear models, respectively. State aug-
mentation to estimate model parameter values in data assimilation is also shown. Finally,
the choice of sequential data assimilation and the application of the EnKF in particular
are explained.

In chapter 4, the data assimilation procedure is described. After presenting the model
prediction step (section 4.1), first the classical EnKF algorithm is discussed (section 4.2.1).
Subsequently, the SQRA scheme (section 4.2.2), the SEIK filter (section 4.2.3), and the
EnKS (section 4.2.4) are treated, and their similarities and differences with respect to the
classical EnKF are presented. In section 4.3, tuning techniques to improve the performance
of the filter update are discussed, including improved initial sampling schemes, covariance
inflation, and localization. The simple hydrological model (see section 2.2) is applied
throughout the chapter to illustrate the ensemble filter algorithms.

The implementation of the C/DA framework to integrate GRACE TWSA into WGHM
is described in chapter 5. After giving an overview of the C/DA procedure in section 5.1,
the strategies to deal with the temporal and spatial resolution mismatch of GRACE
TWSA and WGHM are proposed in section 5.2, followed by a summary of the model and
observation error information. At the end of the chapter, pseudo codes for the EnKF,
SQRA, and SEIK algorithms are presented.

In chapter 6, a sensitivity and model covariance analysis is performed to investigate
whether TWSA and the individual water compartments simulated by WGHM react to
changes in model parameter values and to reveal which parameters exhibit dominant
influences. In addition, the correlation coefficients between water storage changes and
model parameters are analyzed to test whether WGHM parameters can be calibrated
using GRACE TWSA.

A synthetic experiment is set up to assess the influence of C/DA strategies on the updated
water states and calibrated model parameters. In chapter 7, the synthetic experiment is
applied to the Mississippi River Basin (USA), which serves as the test region. In particular,
the impact of the observation error model in the filter update, the spatial resolution of
GRACE TWSA, and alternative filter methods are evaluated.
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In chapter 8, two real case assimilation scenarios are reported. The assimilation of GRACE
TWSA into WGHM for the Mississippi River Basin for one year is presented in section 8.1.
The model is run for the following three years using the calibrated parameters and im-
proved initial states to investigate whether an improved prediction of TWSA is achieved.
Independent measurements of soil moisture, surface water extent, groundwater, and river
discharge are taken to evaluate the performance of individual water compartments and
fluxes. Afterwards, the C/DA framework is transferred to the Murray-Darling River Basin
(Australia) in section 8.2. The focus is on exploring the effect of the meteorological drought
during 2003-2009 that influenced the water budget of the basin. Decline in TWSA and
groundwater are estimated after C/DA to assess whether merging GRACE data with
WGHM improves the representation of the hydrological processes. In-situ groundwater
well observations are also used as an independent validation.

In chapter 9, the major findings of this PhD thesis are summarized and an outlook for
further research is provided.



.



13

2. The Terrestrial Water Cycle

The global water cycle describes the movement of water through the Earth system and
was introduced in section 1.1. A fundamental principle for the system is the conservation
of mass, i.e. water is not removed from and added to the water cycle. Therefore, changes in
the total terrestrial water storage ∆S (e.g., mm/month) can be directly related to precip-
itation P (mm/month), evapotranspiration E (mm/month), and runoff R (mm/month)
within a river basin and assuming (Baumgartner and Liebscher, 1990)

∆S = P − E −R. (2.1)

In section 2.1, the Gravity Recovery And Climate Experiment (GRACE) satellite mis-
sion is introduced. GRACE data can be converted to total water storage anomaly
(TWSA) fields, i.e. ∆S in Eq. (2.1). After describing the mathematical representation
(section 2.1.1), smoothing of GRACE TWSA (section 2.1.2) and spatial averaging are
discussed (section 2.1.3). The section is concluded by providing a description of TWSA
error estimation (section 2.1.4). In section 2.2, hydrological models are introduced that
can be used to simulate water storage changes (∆S) and fluxes (E and R) based on
climate forcing such as observed precipitation (P ). First, a simple model is described
(section 2.2.1) and then a more complex model, the WaterGAP Global Hydrology Model
(WGHM), is presented (section 2.2.2). Finally, observations of individual water storage
compartments and fluxes are discussed in section 2.3.

2.1 TWSA from GRACE

GRACE is a joint satellite mission of the American National Aeronautics and Space
Administration (NASA) and the German Aerospace Center (Deutsches Zentrum für
Luft- und Raumfahrt, DLR). Since its launch on March 17, 2002, GRACE continuously
monitors the Earth’s time-variable gravity field (Tapley et al., 2004). Its nominal life-
time was five years, but at the time of writing this thesis, GRACE is still operating.
The mission consists of two almost-identical satellites in tandem formation (GRACE
twins) chasing each other in one orbital plane initially with an altitude of 500 km
and with a distance of about 220 km between each other. The orbit is near-circular,
i.e. the eccentricity is smaller than 0.0005, and it has an inclination of 89.5◦. Due to
atmospheric drag the initial altitude is decreased to about 362 km over the last 14
years (http://www.csr.utexas.edu/grace/operations/mission_status/). The orbital period
is about 94 minutes.

The distance between the two satellites is measured by a highly accurate inter-satellite
K-Band microwave Ranging (KBR) system in 5 second intervals with an accuracy of
about 1 µm (Fig. 2.1). Variations in the Earth’s gravity field occur due to mass changes
on the continents, in the atmosphere and oceans including tides, ice volume changes, as
well as post-glacial rebound. If the first satellite approaches a positive gravity anomaly,
its attraction to the anomaly will increase, resulting in a larger distance between the



14 2. The Terrestrial Water Cycle

two satellites. Then, the second satellite approaches the anomaly, leading to a higher
attraction and therefore to a decrease in distance between the satellites. By this principle,
GRACE observes the integral sum of mass changes in the Earth system but is not able to
distinguish between the different sources. Furthermore, Global Positioning System (GPS)
receivers are installed on board of the satellites to enable a precise positioning. They
also allow a precise time tagging of the K-Band measurements. Satellite Laser Ranging
(SLR) reflectors are used as an additional orbit determination technique. A high precision
accelerometer measures non-gravitational surface forces, dominated by the atmospheric
drag, which have to be removed from GRACE observations (Mayer-Gürr, 2008). Finally,
two star cameras measure the absolute and relative orientation of the satellites.

Figure 2.1: Overview of the GRACE data processing steps. The figure on the top is taken
from http://photojournal.jpl.nasa.gov/catalog/PIA04235. The individual processing details are
described in sections 2.1.1-2.1.4.

Three official analysis centers process the GRACE observations: the Center for Space
Research (CSR, USA), the Jet Propulsion Laboratory (JPL, USA), and the Geo-
ForschungsZentrum (GFZ, Germany). These centers provide spherical harmonic potential
coefficients (level-2 data products) from the GRACE inter-satellite distance measure-
ments. Furthermore, other research institutes estimate level-2 products, e.g., University
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of Bonn (Germany), University of Graz (Austria), NASA Goddard Space Flight Center
(GSFC, USA), Space Geodesy Research Group (GRGS, France), Delft University of Tech-
nology (Netherlands), and The Ohio State University (USA). During the data processing,
most centers use different gravity recovery techniques and different background models to
remove tidal and non-tidal high frequency mass variations, such as fast mass changes in
the ocean and atmosphere, to extract hydrological mass variations from the observations.
The effect of glacial isostatic adjustment (GIA) is usually not reduced but its effect is
treated as post-processing in hydrological applications.

GRACE time-variable level-2 gravity products are provided with a temporal resolution
of one month to even one day (Kurtenbach, 2011) depending on the analysis technique.
They can be converted into TWSA (Wahr et al., 1998, Tapley et al., 2004), which have a
spatial resolution of down to a few hundred kilometers (Schmidt et al., 2008).

In this thesis, GRACE level-2 products are used to estimate TWSA. Mass variations
in the atmosphere and oceans have already been removed. In the following, first the
mathematical representation of gravity field changes (sections 2.1.1.1 and 2.1.1.2) and their
conversion to equivalent water heights (section 2.1.1.3), i.e. TWSA, are described. Due
to the GRACE signal and error characteristics, the observations have to be filtered and
spatially averaged (sections 2.1.2 and 2.1.3). Finally, the propagation of correlated errors
of potential harmonic coefficients to correlated errors of TWSA is described (section 2.1.4).
An overview of the GRACE data processing steps is given in Fig. 2.1.

2.1.1 GRACE Time-Variable Gravity Fields

2.1.1.1 Mathematical Representation of Gravity Field Changes

In this section, the description of the mathematical representation of the Earth’s gravity
field follows Heiskanen and Moritz (1967, chapter 1).

The Earth’s gravitational potential V (J/kg) satisfies Laplace’s equation outside the at-
tracting masses

∆V = 0. (2.2)

Therefore, its solution can be explained as a sum of harmonic basis functions Yn(λ, θ)

V (λ, θ, r) =
∞∑
n=0

1

rn+1
Yn(λ, θ). (2.3)

Here, (λ, θ, r) is the geocentric position vector in spherical coordinates with λ and θ denot-
ing the geographical longitude (rad) and co-latitude (rad), while r is the distance (m) to
the origin of an Earth-fixed coordinate system. Equation (2.3) is a spectral representation
of the gravitational potential in the exterior of a unit sphere and Yn(λ, θ) are denoted as
surface spherical harmonics. It can be shown that Yn(λ, θ) can be expressed as

Yn(λ, θ) =
n∑

m=0

[cnmCnm(λ, θ) + snmSnm(λ, θ)], (2.4)
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where cnm and snm are spherical harmonic coefficients, and Cnm and Snm denote the
surface spherical harmonics of degree n and order m

Cnm = P nm(cosθ) cos(mλ), (2.5)

Snm = P nm(cosθ) sin(mλ). (2.6)

The spherical harmonics define a complete orthogonal system on the surface of a sphere.
In Eq. (2.5) and (2.6), the normalized associated Legendre functions are denoted by P nm,
which can be evaluated using a stable recursion formula. To apply Eq. (2.3) to the Earth
defined as a sphere with the radius R (m) and with mass M (kg), as well as Newton’s
gravitational constant G (m3/(kg · s2)), the potential field can be expressed as

V (λ, θ, r) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=0

[cnmCnm(λ, θ) + snmSnm(λ, θ)]. (2.7)

In Eq. (2.7), cnm and snm are the Stokes’ coefficients. Due to the choice of the factor GM
R

,
the coefficients are dimensionless.

Mass re-distributions in the Earth system are time-dependent. Thus, it is necessary to
consider temporal changes of the gravitational potential, which can be represented in
terms of changes of the Stokes’ coefficients ∆cnm = cnm − c

′
nm and ∆snm = snm − s

′
nm. It

is common to subtract the spherical harmonic coefficients c′nm and s′nm from a static field
or a temporal mean of monthly cnm and snm, i.e. c

′
nm = 1

T

∑T
t=1 cnm(t), and s

′
nm in the

same way. Assuming global mass conservation, changes in the degree zero coefficient will
vanish (see section 2.1.1.2) and Eq. (2.7) is modified as

∆V (λ, θ, r) =
GM

R

∞∑
n=1

(
R

r

)n+1 n∑
m=0

[∆cnmCnm(λ, θ) + ∆snmSnm(λ, θ)]. (2.8)

2.1.1.2 Coefficients of Lower Degree

The coefficients of lower degree can be directly related to the physical shape of the Earth.
The c00 = 1 coefficient can be interpreted as a scaling factor for GM

R
in Eq. (2.8). Due

to the general assumption of mass conservation in the Earth system the coefficient does
not change with time, thus ∆c00 = 0. Therefore, the summation over n in Eq. (2.8) starts
with n = 1. Changes in the degree-1 coefficients ∆c10, ∆c11, and ∆s11 are linked to the
offset ∆x between the Earth’s center of mass (CM) and the origin of the chosen reference
system ∆c11

∆s11

∆c10

 = −M
R2

 ∆x1

∆x2

∆x3

 . (2.9)

GRACE level-2 products are evaluated with respect to a reference system with its origin
located at the CM, and therefore, the degree-1 coefficients vanish. For other geodetic tech-
niques, such as altimetry and GPS, a reference ellipsoid is used (Wahr et al., 1998) with its
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origin located at the center of figure (CF). Hydrological models also simulate changes of
the water states with respect to the Earth surface and therefore in a reference frame with
its origin at the CF. The difference between CM and CF is known as geocenter motion.
Due to the mass re-distribution within the Earth system, the offset between CF and CM
varies temporally (Blewitt, 2013). GRACE observations are insensitive to these changes.
These mass re-distributions represent, however, significant variations on the seasonal time
scale, which was pointed out by, e.g., Chambers (2006) for ocean mass changes. Therefore,
the degree-1 coefficients are usually replaced by geocenter motions estimated by analyz-
ing physical models (http://grace.jpl.nasa.gov/data/get-data/geocenter/) or by combin-
ing GPS, GRACE, and ocean bottom pressure observations in an inversion approach (Ri-
etbroek, 2014). In this thesis, the degree-1 time series are replaced by those estimated using
the latter approach (http://www.igg.uni-bonn.de/apmg/index.php?id=geozentrum).

The influence of the replaced degree-1 coefficients on hydrological mass variations is shown
in Fig. 2.2. For this, the root mean square (RMS) variability of the equivalent water height
time series from degree-1 between 02/2003-06/2014 averaged over the 33 largest river
basins was calculated. The smallest RMS values of 2-3 mm are found for the southern
African River Basins, and the largest RMS values of 9-10 mm in the Australian River
Basins, the central USA, as well as central and eastern Canada.
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Figure 2.2: Influence of degree-1 coefficients on hydrological mass variations in terms of RMS
variability (in mm) of their equivalent water height time series. Results are shown for the world’s
major river basins.

The degree-2 terms are related to the moments of inertia according to

c20 = − 1

R3

(
θ33 −

θ11 − θ22

2

)
. (2.10)

Here, θ11, θ22, and θ33 denote the moments of inertia. The determination of the c20

coefficient (an indicator of the Earth’s flattening) from GRACE is affected by various
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errors, e.g., likely the S2 tidal aliasing at about one cycle in 161 days. Therefore, it
is also common in hydrological applications to replace this coefficient. In this thesis,
c20 is replaced by monthly estimates from SLR measurements (Cheng and Ries, 2012,
grace.jpl.nasa.gov/data/get-data/oblateness/).

2.1.1.3 Conversion of Gravity Fields to TWSA

Wahr et al. (1998) considered a thin layer at the Earth’s surface to model the loading
effect of mass re-distributions from GRACE observations. Since mass changes ∆m (kg)
can also be expressed as surface density changes ∆σ (kg/m2), the latter can be related to
temporal changes of the Earth’s gravity field as

∆σ(λ, θ) =
M

4πR2

∞∑
n=1

n∑
m=0

(2n+ 1)

(1 + k′n)
[∆cnmCnm(λ, θ) + ∆snmSnm(λ, θ)]. (2.11)

Considering Eq. (2.11), changes of the surface density create a direct gravitational effect
due to mass changes as well as an indirect gravitational attraction through loading and
deformation of the underlying solid Earth (Wahr et al., 1998). The indirect effect is rep-
resented by the degree-dependent gravitational load Love numbers k′n. Solutions for the
load Love numbers can be estimated based on Earth models, such as the spherically sym-
metric, non-rotating, elastic, and isotropic Earth, so called SNREI models (e.g., Farrell,
1972, Dziewonski and Anderson, 1981).

The density changes ∆σ can be converted into changes of equivalent water heights ∆E
(m), i.e. TWSA, by dividing the surface density by the mean density of seawater ρw = 1025
kg/m3, i.e.

∆E(λ, θ) =
M

4πR2ρw

∞∑
n=1

n∑
m=0

(2n+ 1)

(1 + k′n)
[∆cnmCnm(λ, θ) + ∆snmSnm(λ, θ)]. (2.12)

2.1.2 Smoothing in Spectral Domain and Leakage Reduction

GRACE level-2 products, represented in terms of potential spherical harmonics, contain
correlated errors, which manifest themselves as north-south “striping” patterns in GRACE
TWSA in the spatial domain (Kusche, 2007). Also, the noise increases at higher degree
and order of coefficients (Swenson and Wahr, 2006). To reduce the noise, smoothing (also
called filtering) needs to be applied to GRACE data. In the spectral domain, this can be
done by incorporating a filter matrixW (containing degree or degree and order dependent
weights) to the spherical harmonic coefficient vector x to derive smoothed coefficients xs
as

xs = Wx = W
(

∆cnm
∆snm

)
. (2.13)

Alternatively, the gridded GRACE TWSA can be filtered by convolving a filter kernel in
the spatial domain. Generally, one distinguishes between isotropic and anisotropic filters.
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Isotropic filters are only degree dependent in the spectral domain and independent of direc-
tion in the spatial domain, e.g., the Gaussian filter introduced by Jekeli (1981). Therefore,
W in Eq. (2.13) is a diagonal matrix in the spectral domain. In contrast, anisotropic fil-
ters, e.g., those of Swenson and Wahr (2006), Kusche (2007), and Klees et al. (2008), are
degree and order dependent in the spectral domain and location dependent in the spatial
domain. The DDK filter (Kusche et al., 2009), for example, imitates the regularization of
the GRACE level-2 normal equation matrix to construct an anisotropic smoothing ker-
nel. In the spatial domain, the smoothing is direction-dependent, and thereby adapted
to the anisotropic error correlation structure of GRACE observations. The kernel further
depends on the geographical latitude. In the spectral domain, W in Eq. (2.13) is a full
matrix, whose entries are degree and order dependent. The filtered coefficients ∆csnm and
∆ssnm are then used in Eq. (2.12) to determine spatially smoothed TWSA as

∆Es(λ, θ) =
M

4πR2ρw

∞∑
n=1

n∑
m=0

(2n+ 1)

(1 + k′n)
[∆csnmCnm(λ, θ) + ∆ssnmSnm(λ, θ)]. (2.14)

In practice, the summation over n has to be truncated at a maximum degree nmax accord-
ing to

∆Es′(λ, θ) =
M

4πR2ρw

nmax∑
n=1

n∑
m=0

(2n+ 1)

(1 + k′n)
[∆csnmCnm(λ, θ) + ∆ssnmSnm(λ, θ)], (2.15)

and the error due to spectral truncation can be expressed as

δ∆Es′(λ, θ) =
M

4πR2ρw

∞∑
n=(nmax+1)

n∑
m=0

(2n+ 1)

(1 + k′n)
[∆csnmCnm(λ, θ) + ∆ssnmSnm(λ, θ)]. (2.16)

If ∆csnm and ∆ssnm are derived from GRACE, nmax = 60 or 90 is usually used in hydrological
studies. The omission error of neglecting degrees n > nmax can be estimated by evaluating
Eq. (2.15) up to nmax = 60 and nmax = 90. This results in a difference in equivalent water
heights of less than 5 mm on a regular 1◦×1◦ grid. The omission error of higher degrees,
i.e. n > 90, is expected to be even smaller.

As a consequence of spatial smoothing, water mass inside a specified region might move
outside of this region, as well as water from the outside might also move into this region.
These effects are known as spatial leakage-out and leakage-in (Swenson and Wahr, 2002,
Klees et al., 2006). Their impact on TWSA depends on the filter, area of the region,
amplitude and phase of TWSA inside and outside of the region, and its location. In case
of larger smoothing radii, smaller regions or along coast lines, the spatial leakage is large
(e.g., Longuevergne et al., 2010).

Landerer and Swenson (2012) discussed that the differences in spatial scale between
GRACE TWSA and other hydrological data such as model simulations have to be ac-
counted for in order to consistently compare both. Otherwise differences in the data sets
due to the scale mismatch might be attributed to limited skills of the observations or model
simulations. To resolve this problem, filtering both observations and model simulations in
the same way is suggested to harmonize their spatial scale, as applied, e.g., in Landerer
et al. (2010) and Döll et al. (2014). Alternatively, Klees et al. (2006), Longuevergne et al.
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(2010), as well as Landerer and Swenson (2012) suggested to estimate a damping factor
of the TWSA signal (due to filtering) to reduce the effect of spatial leakage. This can
be done by comparing the TWSA signal of a hydrological model before and after spatial
filtering, and applying the ratios as either constant or time-dependent re-scaling factors
to the filtered GRACE TWSA (Landerer and Swenson, 2012). Then, the re-scaled TWSA
values can be directly compared to hydrological model outputs as, e.g., in Rodell et al.
(2009) and van Dijk et al. (2011). Moreover, “mascon” (mass concentration blocks) solu-
tions have been developed as another form of gravity field basis functions (e.g., Ramillien
et al., 2012, 2015, Watkins et al., 2015). The masons act as inherent smoother on the
data in such a way that spatial smoothing is not longer required in the post-processing.
However, the signal amplitudes might still be attenuated and therefore scaling factors are
e.g., applied to the mascon solutions determined at JPL (Watkins et al., 2015). In this
thesis, re-scaling of (sub-)basin averaged and smoothed GRACE TWSA is selected to
account for spatial leakage and to reduce differences in the spatial scale of observations
and model simulation outputs. The reason is to save computation time and costs during
the C/DA, since filtering of WGHM outputs is not required. Further investigations should
be performed to find a “best” post-processing strategy for C/DA purposes.

2.1.3 Spatial Averaging of TWSA

For hydrological applications, usually GRACE TWSA are averaged over river basins. In
the spectral domain, spatial averaging is performed by multiplying the filtered spherical
harmonic coefficients (∆csnm and ∆ssnm) with the spherical harmonic coefficients (∆cfnm
and ∆sfnm) of a basin function f as

∆Es
f =

M

4πR2ρw

∞∑
n=1

n∑
m=0

(2n+ 1)

(1 + k′n)
[∆cfnm∆csnm + ∆sfnm∆ssnm]. (2.17)

For this purpose, harmonic coefficients of the basin function can be determined by defining
a global grid with ones inside of the basin and zeros outside

f(λ, θ) =

{
1 within river basin
0 outside

, (2.18)

and expanding the so-called basin function f into spherical harmonic functions

∆cfnm =
1

Af

∫
Ω

f(λ, θ)Cnm(λ, θ)dω, (2.19)

∆sfnm =
1

Af

∫
Ω

f(λ, θ)Snm(λ, θ)dω. (2.20)

In Eqs. (2.19) and (2.20), the integral is calculated over the entire sphere Ω and scaled by
the area of the region of interest Af . In practice, the summation over n in Eq. (2.17) is
truncated at a maximum degree nmax as

∆Es′

f =
M

4πR2ρw

nmax∑
n=1

n∑
m=0

(2n+ 1)

(1 + k′n)
[∆cfnm∆csnm + ∆sfnm∆ssnm], (2.21)
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with the corresponding error due to spectral truncation δ∆Es′

f .

Alternatively, first the filtered spherical harmonic coefficients can be used to determine
TWSA following Eq. (2.14), and then the equivalent water heights are integrated over the
entire sphere Ω while taking the basin function in Eq. (2.18) into account

∆Es
f =

1

Af

∫
Ω

f(λ, θ)∆Es(λ, θ)dω. (2.22)

In practice, ∆Es (see Eq. (2.14)) is replaced by ∆Es′ (see Eq. (2.15)) and a discretization
of the surface of the sphere is defined, e.g., in form of a regular grid with mid points λj
and θj, according to

∆Es′

f =
1

Af

J∑
j=1

aj∆E
s′(λj, θj), (2.23)

with the corresponding discretization error δ∆Es′

f . In Eq. (2.23), aj is the area fraction
of each grid cell j and

∑J
j=1 aj = Af . The definition of, e.g., a regular grid can be made

under different assumptions. Usually, one assumes that the equivalent water height within
one grid cell is constant. It would be also possible to define polynomials or finite elements
to describe the equivalent water heights within one grid cell. The smoother the equivalent
water heights are mathematically represented within one grid cell, the smaller is the
discretization error, i.e. the comission error.

Although striping is reduced after applying de-correlation filters (Swenson and Wahr,
2006, Klees et al., 2008, Kusche et al., 2009), correlated errors still exist even after spatial
aggregation (Longuevergne et al., 2010, Sakumura et al., 2014). In the spectral domain
the Gibb’s effect occurs and should be taken care of, while a mismatch between the basin
boundaries and the resolution of the gridded observations can be a source of errors in the
spatial domain.

2.1.4 Error Estimation of TWSA

To estimate the errors of GRACE TWSA, a formal error propagation is applied to convert
the uncertainties of the monthly potential coefficients and the static field (or temporal
mean field), which are stored in their corresponding covariance matrices Σxx and Σx′x′ ,
to the covariance matrix of equivalent water heights Σll

Σll = FW(Σxx + Σx′x′ )W
TFT (2.24)

= FW


σ2
c10

σc10c11 . . . σc10cnmaxnmax

σ2
c11

. . . σc11cnmaxnmax

. . . ...
symm. σ2

cnmaxnmax

WTFT

=


σ2

∆E1
σ∆E1∆E2 . . . σ∆E1∆En

σ2
∆E2

. . . σ∆E2∆En

. . . ...
symm. σ2

∆En

 .
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Here, each row of the Jacobian matrix Fi =
(
∂∆Ei

∂c10

∂∆Ei

∂c11
. . . ∂∆Ei

∂cnmaxnmax

)
contains the

partial derivatives of Eq. (2.12) with respect to each potential coefficient

∂∆Ei
∂cnm

=
M

4πR2ρw

(2n+ 1)

(1 + k′n)
Cnm(λi, θi), (2.25)

∂∆Ei
∂snm

=
M

4πR2ρw

(2n+ 1)

(1 + k′n)
Snm(λi, θi). (2.26)

The filter matrix W was introduced in Eq. (2.13) to reduce the noise in GRACE data.
The actual computation of W is addressed in Jekeli (1981) for Gaussian smoothing and
in Kusche (2007) for anisotropic filter. There exists no common consensus regarding the
error covariance matrix of the static field Σx′x′ in Eq. (2.24). The error variances are much
smaller than the error variances of the monthly gravity field coefficients. In this thesis,
the error information of the static field is considered.

Section 2.1.1.2 describes how the spherical harmonic coefficients of degree-1 and c20 from
GRACE are usually replaced by external time series. Rietbroek et al. (2009) and Rietbroek
et al. (2012) estimated a full error covariance matrix for the degree-1 coefficients based on
measurements of GPS, GRACE and ocean bottom pressure. Furthermore, an estimation
of the error variance of c20 is available (grace.jpl.nasa.gov/data/get-data/oblateness/).
Therefore, the 3×3 block of the degree-1 error information in Eq. (2.24) is replaced by the
external data, as well as the error variance of c20. The covariances between the replaced
lower degree coefficients and the spherical harmonic coefficients from GRACE are assumed
to be zero.

During the data processing, background models are applied to reduce high frequency mass
variations within other Earth system components. Errors in these models, e.g., in the tidal
and non-tidal ocean-atmosphere de-aliasing products (Forootan et al., 2013, 2014a), are
not included in the formal error propagation. Since such errors are neglected in this thesis,
the total error estimation might still be underestimated.

2.2 Hydrological Model Simulations

To simulate large-scale continental hydrology, several land surface and hydrological water
balance models have been developed. Land surface models basically represent the land-
atmosphere interface in climate models and numerical weather prediction, and aim to
represent the energy and water fluxes by implementing surface energy and water balance
equations. In contrast, hydrological water balance models have mainly been designed to
simulate river discharge, and are often used for water resources assessments and flooding
predictions. They are of conceptual structure, i.e. even though the complex physical pro-
cesses are often known, the model equations are reasonably simplified due to the lack of
adequate forcing data sets (Kaspar, 2004). In the following, two models that both belong
to the class of hydrological water balance models are described: a simple one-bucket model
and the complex WGHM.
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2.2.1 Simple One-Bucket Model

In this section, a simple linear model is introduced. The model consists of only one water
storage S (the so-called “bucket” or total water storage TWS), which is filled by net
precipitation P -E (precipitation minus evapotranspiration) and reduced by runoff (or
discharge) R (see Fig. 2.3 a). The state of the storage S might be expressed in volume, e.g.,
m3, and the fluxes P , E, and R as volume per time, e.g., m3/day. Here, net precipitation
and runoff are accumulated over one day and introduced as volume to the water storage
S. The hydrological processes are described by two simple model equations (de Zeeuw,
1973). The storage of time step k is determined by adding net precipitation to the storage
of the previous time step k − 1 and reducing the runoff

Sk = Sk−1 + (P − E)k −Rk. (2.27)

The runoff Rk depends linearly on the storage value Sk−1

Rk = KSk−1, (2.28)

which is shown in Fig. 2.3 b. The amount of runoff is controlled by the outflow coefficient
K, which is dimensionless. The model might be applied to a river basin or to (sub-)
catchments. By introducing the daily accumulated net precipitation P -E time series of
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Figure 2.3: a) Scheme of a simple hydrological model, which consists of a one-bucket storage
S. b) The relation between the water storage compartment S (in m3) and daily accumulated
outflow R (in m3) is shown, which is linear. By defining the model input, i.e. daily accumulated
net precipitation P −E (in m3) as in c), the storage S (in m3) and daily accumulated outflow R
(in m3) change over time as shown in d) and e), respectively.

Fig. 2.3 c, the time evolution of the water storage S (Fig. 2.3 d) and the daily accumulated
runoff R (Fig. 2.3 e) are determined. Thus, by definition and as it can be seen in Fig. 2.3
d and e, it is clear that S and R are correlated with a correlation coefficient of 1.0. The
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motivation to select such a simple model is to better illustrate the steps of the assimilation
methods of this thesis (see chapter 4). The time step and units for S, P -E, and R have been
chosen arbitrarily, since the simple model is used to describe the mathematical details.

2.2.2 The WaterGAP Global Hydrology Model (WGHM)

The global model of water availability and water use WaterGAP (Water-Global Assess-
ment and Prognosis) consists of WGHM and the groundwater and surface water use
model (GWSWUSE; Alcamo et al., 2003, Döll et al., 2003, Müller Schmied et al., 2014).
WGHM simulates water storage changes and fluxes for all continents excluding Antarctica
on a 0.5◦×0.5◦ grid, i.e. 66896 grid cells in total, with a daily time step. Water storage
changes in ten individual compartments, i.e. canopy, snow, soil, groundwater, local wet-
lands, global wetlands, local lakes, global lakes, global reservoirs and rivers are calculated
for each grid cell. Local lakes and wetlands receive only runoff from the specific cell, while
global surface water bodies as well as rivers receive inflow from the upstream grid cells,
too. Human water use for irrigation, livestock, households, manufacturing and cooling of
thermal power plants is simulated by separate sub-models. GWSWUSE defines whether
human water abstraction is taken from surface water bodies or groundwater. This is then
considered in the WGHM simulations. The model is calibrated against mean annual river
discharge at 1319 stations by adjusting the runoff coefficient γ for all grid cells in each
calibration basin. In the case that the simulated discharge deviates more than 1 % from
the observed discharge, up to two additional correction factors are applied (Hunger and
Döll, 2008, Müller Schmied et al., 2014).

2.2.2.1 Overview of the WGHM Structure

An overview of the WGHM structure is given in Fig. 2.4. The vertical water balance
describes the transport of water through the canopy, snow, soil, and groundwater com-
partment, as well as the partitioning of precipitation into evapotranspiration and runoff.
Water transport as runoff from the land area is partitioned into fast surface and subsur-
face runoff, which flows directly into the surface water bodies, and groundwater recharge.
The latter first flows into the groundwater and subsequently as groundwater outflow into
surface water bodies. In addition, precipitation over surface water is added to the lake,
wetland, reservoir and river compartments, while evaporation reduces the amount of wa-
ter. The river compartment is the final storage of the grid cells. The outflow for each cell,
and thus the inflow of the global lake, reservoir and wetland or river compartment of the
next cell is directed laterally on the basis of the global Drainage Direction Map (DDM30;
Döll and Lehner, 2002). Furthermore, the impact of human water use as simulated by
WaterGAP water use sub-models is taken into account in WGHM. Net water use (wa-
ter abstractions minus return flows) are abstracted from surface water bodies (including
rivers) or groundwater (Döll et al., 2012).

WGHM is a conceptual model with significant complexity that accounts for a variety of
known hydrological processes as described in this section. In the following, the climate forc-
ing fields that drive WGHM are introduced (section 2.2.2.2). Then, the model equations
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describing the vertical water balance (section 2.2.2.3) and the horizontal water balance, as
well as the lateral routing are presented (section 2.2.2.4). An overview of the simulation
of anthropogenic water use and the model calibration procedure are presented in sections
2.2.2.5 and 2.2.2.6, respectively. Finally, sources of uncertainties in the simulation of water
storage changes and fluxes are described (section 2.2.2.7).

a

sw sw sw

sw

Anet,gw Anet,sw

Figure 2.4: Schematic structure of WGHM water storage compartments and fluxes that are
computed within each 0.5◦×0.5◦ grid cell (Müller Schmied et al., 2014, p. 3530). Water storage
compartments are represented by boxes and water fluxes by arrows.

2.2.2.2 Climate Forcing

WGHM can be forced by several climate input data sets. In this thesis, monthly time
series of the number of wet days in month, temperature and cloudiness were used from
the data set CRU TS 3.2 (Climate Research Unit’s Time Series; Harris et al., 2013),
whereas monthly precipitation input fields were taken from the GPCC (Global Precipi-
tation Climatology Centre data, version 6) precipitation monitoring product (Schneider
et al., 2014). In WGHM, precipitation values are equally partitioned into the number of
wet days in month, while the wet days are distributed using a first order Markov chain
algorithm. Daily short- and long-wave radiation is determined from the cloudiness infor-
mation. Alternatively, daily time series of precipitation, temperature, short- and long-wave
radiation from the WFDEI meteorological data set (WATCH Forcing Data methodology
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applied to ERA-Interim data; Weedon et al., 2014) were used in this thesis. The impact of
using these two different climate input data sets on water flows and water storage changes
as computed by WaterGAP 2.2 has been reported in Müller Schmied et al. (2014, 2016).

2.2.2.3 Vertical Water Balance

The description of the vertical water balance in this section and the horizontal water
balance in section 2.2.2.4 follows those in Döll et al. (2003) and Müller Schmied et al.
(2014).

Canopy Water Balance

Daily changes in the canopy storage Sc (mm) over time t are determined as the differ-
ence between incoming daily precipitation P (mm/day), throughfall Pt (mm/day), and
evaporation Ec (mm/day)

dSc
dt

= P − Pt − Ec. (2.29)

In this thesis, a precipitation multiplier (parameter with identification number IN=22 in
Tab. 2.1) was introduced. The maximum amount of water that can be stored in canopy
Sc,max (mm) is defined by the maximum canopy water height mc (mm, IN=10 in Tab. 2.1)
and the leaf area index ILAI

Sc,max = mc · ILAI, (2.30)

where the latter depends on a biomass multiplier and a specific leaf area multiplier (IN=11
in Tab. 2.1). By defining the difference between the maximum canopy water storage Sc,max

and the current canopy water storage Sc as canopy deficiency Sc,def = Sc,max − Sc, the
throughfall Pt is calculated as

Pt =

{
0 if P ≤ Sc,def

P − Sc,def if P > Sc,def
. (2.31)

In addition, canopy evaporation Ec reduces the storage (Deardorff, 1978) as

Ec = Ep

(
Sc

Sc,max

) 2
3

. (2.32)

Herein, Ep denotes the potential evapotranspiration (mm/day), which is determined using
the Priestley-Taylor equation (Priestley and Taylor, 1972) according to

Ep = αPT
∆

∆ + γpsy
(Rn −G). (2.33)

In Eq. (2.33), ∆ is the saturation vapor pressure, γpsy denotes the psychrometer constant,
G labels the soil heat flow, αPT is the empirical Priestley-Taylor coefficient, and Rn char-
acterizes the net radiation. The Priestley-Taylor coefficient is defined for humid and arid
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Table 2.1: WGHM parameters and their properties that are calibrated within the calibration and
data assimilation (C/DA) framework of this thesis. The identification number of each parameter
is shown under “IN”, while “mode” represents the value that is used in WaterGAP version 2.2, and
under “limits” the spread of parameter values used for ensemble generation are summarized (see
section 5.2.3). To generate ensembles of parameters, either triangular or uniform distributions
were assumed, indicated in the first column by “4” and “◦”, respectively. Units of parameters
are given in the second column. Parameters, marked with “∗”, are not integrated in the original
WaterGAP 2.2 version but are extra parameters that are calibrated in the C/DA framework in
this thesis. Based on the experiences in the sensitivity and covariance study (chapter 6), the
triangular distributions of parameters IN=4 and IN=19 were modified (see section 6.2.1).

IN Calibration Parameter Mode Limits

1∗4 root depth multiplier 1 [0.5 2.0]
2∗4 river roughness coefficient multiplier 1 [0.5 2.0]
34 lake depth (m) 5 [1 20]
44 wetland depth (m) 2 [0.5 5]
54 surface water outflow coefficient (day−1) 0.01 [0.001 0.1]
6∗4 net radiation multiplier 1 [0.5 2.0]
74 Priestley-Taylor coefficient (humid) 1.26 [0.885 1.65]
84 Priestley-Taylor coefficient (arid) 1.74 [1.365 2.115]
94 maximum daily potential evapotranspiration (mm/day) 15 [7.25 22.5]
104 maximum canopy water height per leaf area (mm) 0.3 [0.1 1.4]
11∗4 specific leaf area multiplier 1 [0.5 2.0]
124 snow freeze temperature (◦C) 0 [-1.0 3.0]
134 snow melt temperature (◦C) 0 [-3.75 3.75]
14∗4 degree day factor multiplier 1 [0.5 2.0]
154 temperature gradient (◦C/m) 0.006 [0.004 0.01]
16∗4 groundwater recharge factor multiplier 1 [0.5 2.0]
17∗4 maximum groundwater recharge multiplier 1 [0.5 2.0]
18◦ critical precipitation for groundwater recharge (mm/day) 10 [2.5 20.0]
194 groundwater baseflow coefficient (day−1) 0.006 [0.006 0.018]
20∗4 net abstraction surface water multiplier 1 [0.5 2.0]
21∗4 net abstraction groundwater multiplier 1 [0.5 2.0]
22∗4 precipitation multiplier 1 [0.8 1.2]

regions (IN=7 and IN=8 in Tab. 2.1). In the WaterGAP version used in this thesis, a
multiplier is applied to the net radiation (IN=6 in Tab. 2.1). A detailed description of the
parameters can be found in Shuttleworth (1993) and Kaspar (2004).

Snow Water Balance

The throughfall Pt is stored in the form of snow if the daily temperature (◦C) is below
the snow freeze temperature Tf (◦C, IN=12 in Tab. 2.1). Then, daily changes of the snow
water storage Ssn (mm) are determined as

dSsn

dt
= Psn −M − Esn, (2.34)
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where Psn is precipitation falling as snow (mm/day), M is snow melt (mm/day), and
Esn denotes sublimation (mm/day). If the current temperature T is above the snow melt
temperature Tm (◦C, IN=13 in Tab. 2.1), snow melt is determined depending on a land
cover specific degree-day factor Df (mm/(day◦C))

M = Df (T − Tm). (2.35)

In the WaterGAP version used in this thesis, a degree-day factor multiplier (IN=14 in
Tab. 2.1) was introduced. Furthermore, the effect of elevation on the temperature (IN=15
in Tab. 2.1) is taken into account. The snow storage decreases due to sublimation Esn

(mm/day), which is calculated according to Eq. (2.33) but using snow specific parameter
values. For the snow algorithm, a detailed description can be found in Hunger and Döll
(2008).

Soil Water Balance

Changes of the soil storage Ss (mm)

dSs
dt

= Peff − Ea −Rl (2.36)

depend on the effective precipitation Peff = Pt−Psn+M (mm/day), the actual evaporation
from soil Ea (mm/day), and the runoff from landside Rl (mm/day). The soil storage
represents the water content in the effective root zone of the ground covering plants. Its
maximum capacity (mm) is determined as

Ss,max = mdrootdrootCs, (2.37)

based on the root depth multiplier mdroot (IN=1 in Tab. 2.1), as well as the root depth
droot (mm) and the water capacity of the root zone Cs, which are associated with a specific
land-cover class. The actual evaporation of water from soil (mm/day)

Ea = min((Ep − Ec), (Ep,max − Ec)
Ss

Ss,max
) (2.38)

depends on the difference between the maximum daily potential evapotranspiration Ep,max

(mm, IN=9 in Tab. 2.1), the canopy evaporation Ec, and the degree of saturation of the
soil water storage. Its value is limited by the potential evapotranspiration Ep reduced by
canopy evaporation. The runoff from landside Rl depends on the effective precipitation,
the degree of saturation of the soil water storage and the runoff coefficient γ

Rl =


0 if Ss = 0

Peff( Ss

Ss,max
)γ if 0 < Ss < Ss,max

Peff if Ss = Ss,max

. (2.39)

The parameter γ has already been calibrated in the WaterGAP 2.2 version used in this
thesis (see section 2.2.2.6). It is not considered in the calibration of WGHM parameters
in the C/DA framework that is developed in this thesis.
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Groundwater Balance

The groundwater storage Sg (mm) is increased by groundwater recharge Rg (mm/day),
and reduced by groundwater baseflow Qg (mm/day) and net abstractions from ground-
water Anet,gw (mm/day) according to

dSg
dt

= Rg −Qg − Anet,gw. (2.40)

Herein, the amount of groundwater recharge is a fraction of the total runoff from landside
Rl in Eq. (2.39) controlled by the groundwater recharge factor fg, which accepts values
between zero and one, and is limited by the maximum groundwater recharge Rg,max (mm)
as

Rg = min(Rg,max, fg ·Rl). (2.41)

Multipliers for the groundwater recharge factor (IN=16 in Tab. 2.1) and the maximum
groundwater recharge (IN=17 in Tab. 2.1) were introduced to be calibrated in this thesis.

In arid regions, groundwater recharge only occurs if a critical precipitation value is ex-
ceeded (mm/day, IN=18 in Tab. 2.1). A detailed description can be found in Döll and
Fiedler (2008). The groundwater baseflow Qg (mm/day) is regulated by the groundwater
baseflow coefficient kg (1/day, IN=19 in Tab. 2.1) as

Qg = kgSg. (2.42)

Net abstraction from groundwater Anet,gw is simulated in the global water use model
GWSWUSE and can take positive or negative values (see section 2.2.2.5). In this thesis,
a net abstraction from groundwater multiplier was introduced in the C/DA (IN=21 in
Tab. 2.1). While the minimum water state of all other storage compartments is limited
by zero, the water state of the groundwater storage can always be reduced. In case that
the sum of groundwater baseflow and anthropogenic water use is larger than groundwater
recharge, depletion of groundwater is simulated by allowing the groundwater storage to
take negative values. Then, the groundwater baseflow Qg is zero.

2.2.2.4 Horizontal Water Balance

Surface Water Balance

Changes in surface water storage Ssw (m3), e.g., lake or wetland, are determined as

dSsw

dt
= P + I − Esw −Qsw − Anet,sw. (2.43)

Precipitation P (m3/day) over open surface water and inflow I (m3/day) from other
storage compartments, for example groundwater baseflow, as well as from upstream grid
cells in case of global lakes and wetlands (see Fig. 2.4) increase the storage. Potential
evaporation of open water surfaces Esw (m3/day) is calculated similar to Eq. (2.33), but
with parameter values for open water bodies, and reduced from Ssw. In addition, surface
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water outflow Qsw (m3/day) and net abstraction from surface water Anet,sw (m3/day) are
reduced. The maximum water storage of lakes and wetlands Ssw,max (m3) is the product
of their constant area F (m2) and a constant maximum depth hsw (m), which correspond
to IN=3 and IN=4 in Tab. 2.1, respectively,

Ssw,max = Fhsw,max. (2.44)

WaterGAP 2.2 does not consider shrinking or expansion of water body areas. Instead, a
reduction parameter is introduced, which reduces evaporation if the fill level of the surface
water storage is low (for details see Hunger and Döll, 2008). The outflow of local surface
water bodies Qsw,loc (m3/day) depends on the degree of saturation of the storage and the
surface water outflow coefficient ksw (1/day, IN=5 in Tab. 2.1) as

Qsw,loc = kswSsw(
Ssw

Ssw,max
)
3
2 . (2.45)

In case of global lakes and wetlands, Qsw,glo is simulated as linear outflow similar to
the groundwater baseflow in Eq. (2.42). Net abstraction from surface water Anet,sw

is simulated in the global water use model (GWSWUSE, see section 2.2.2.5). In this
thesis, a net abstraction from surface water multiplier was introduced (IN=20 in Tab. 2.1).

River Routing

The outflow from the grid cells, and thus the inflow of global lakes, reservoirs and wetlands,
as well as the river compartment of the next grid cell is routed through the stream network
based on the global map DDM30 (Fig. 2.5). In contrast to groundwater baseflow Qg in
Eq. (2.42), fast surface runoff Rs (mm/day), which is a fraction of the total runoff from
landside Rs = Rl−Rg, is directed to the surface water storage without delay. The outflow
Qr (m3/day) from the river storage Sr (m3) is defined as

Qr =
vr
s
Sr, (2.46)

where its magnitude depends on the river velocity vr (m/day) and the distance s (m)
between neighboring cells. The river velocity depends on the river bed roughness, for
which a multiplier was introduced in this thesis (IN=2 in Tab. 2.1).

2.2.2.5 Anthropogenic Water Consumption

The global water use model simulates anthropogenic water consumption from surface
water bodies and groundwater (Döll et al., 2012). For this, five separate sub-models are
used to estimate water use for irrigation (Döll and Lehner, 2002, Siebert et al., 2005),
livestock, households, and manufacturing (Flörke et al., 2013), as well as cooling of thermal
power plants (Vassolo and Döll, 2005, Flörke et al., 2013). In the sub-models, the source
of water abstraction is not specified. The values for net abstraction from groundwater
Anet,gw (in Eq. (2.40)) or from surface water Anet,sw (in Eq. (2.43)) are then determined
in the GWSWUSE model and are used as inputs for the WGHM simulations.
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a) b)

Figure 2.5: a) The Drainage Direction Map (DDM30; Döll and Lehner, 2002) is defined over
the globe, from which a zoom over Australia is shown in b).

2.2.2.6 Model Calibration

WGHM is calibrated against mean annual river discharge at 1319 stations in 724 river
basins (Fig. 2.6) based on measurements provided by the Global Runoff Data Centre
(GRDC; Bundesanstalt für Gewässerkunde (BfG), Koblenz, Germany). The runoff coef-
ficient γ in Eq. (2.39) was adjusted homogeneously for all grid cells in each calibration
basin (Döll et al., 2003). The coefficient is allowed to take values between 0.1 and 5 to
ensure realistic simulations of soil dynamics. In case that the simulated long-term aver-
aged discharge still deviates more than 1 % from the observed discharge after calibration,
up to two additional correction factors can be applied (Hunger and Döll, 2008). These
differences might be caused by a strong impact of processes on the basin hydrology that
are not taken into account in WGHM and by errors in climate input data (Döll et al.,
2003). The calibration was performed using all available data during the 30-year period
1971-2000, for which the climate input of WGHM is most reliable (Müller Schmied et al.,
2014).

2.2.2.7 Uncertainties of Model Simulations

Uncertainties of input data, imperfect parameters, errors in the model structure, dis-
cretization errors, and heterogeneity within a grid cell are the major sources of uncer-
tainty in hydrological model simulations and might result in large differences between
model simulations and observed values (Döll et al., 2003). It is not trivial to quantify
these errors and determine errors of the model outputs. In this thesis, a Monte-Carlo
approach is applied to empirically estimate the uncertainties of WGHM simulations (see
section 5.2.3).

2.3 Supplementary Observation Data

Various in-situ and remotely-sensed observations of individual water storage compart-
ments can be used to assess the accuracy of WGHM simulations. These include snow
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Figure 2.6: The runoff coefficient has been calibrated for the 724 gray shaded river basins.

water, soil moisture, groundwater, surface water body levels and extent, as well as water
fluxes, e.g., river discharge and evapotranspiration. In the following, the data sets used
for validation in this thesis are described.

In-situ Soil Moisture

Daily in-situ volumetric soil moisture data (in m3m−3) were obtained from the Soil
Climate Analysis Network (SCAN; http://www.wcc.nrcs.usda.gov/scan/) over the entire
United States, from which 69 observation sites are located in the Mississippi River Basin
(Schaefer et al., 2007), which serves as test region in this thesis. Measurements are
provided at depths of 5, 10, 20, 51 and 102 cm. A total of 29 stations are analyzed in
this study after excluding stations (i) for which no information about the bottom depth
is available (13 stations), (ii) that have no or little data during the study period (22
stations), and (iii) for which the time series contain large jumps (possibly due to an
exchange of the sensor; 5 stations). In this thesis, remotely-sensed soil moisture was not
considered, since these measurements represent changes in a thin upper soil layer (up to
∼5 cm depth), and such a layer is not defined in WGHM. The uppermost measurement is
assumed to represent volumetric soil moisture from 0 to 7.5 cm, the second measurement
from 7.5 to 15 cm, the third from 15 to 35.5 cm, the fourth from 35.5 to 76.5 cm, and
the fifth from 76.5 cm to the bottom of the soil zone. To define the bottom depth,
the deepest part of the soil horizons was used, which is provided by the National Soil
Survey Center (NSSC, http://ncsslabdatamart.sc.egov.usda.gov/). The definition of the
soil layers is based on the measurement depths and not necessarily due to, e.g., changes
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in soil (layer) properties. To convert soil moisture into equivalent water heights, the
observed values were multiplied by the height of the corresponding observation lay-
ers. The sum of all layers defines the equivalent water height of the total soil water storage.

Groundwater Well Measurements

Daily depths of groundwater for 58 wells located in the Mississippi River Basin were
obtained from the US Geological Survey (http://www.usgs.gov/water/) and Illinois State
Water Survey (http://il.water.usgs.gov/). The observations were processed by Rodell et al.
(2007) and provided for this study. Time series of groundwater storage anomalies were
derived by taking into account specific yield estimates for the well locations, i.e. factors
to convert groundwater tables to equivalent water heights were applied, which depend
on the soil properties. The considered measurement wells were located in unconfined or
semi-confined aquifers and were not influenced by nearby pumping or injections. Monthly
basin-averaged time series were computed using the Thiessen polygon areas to weight
the individual well time series for the whole Mississippi River Basin and its four major
sub-basins.

In addition, groundwater tables for around 15800 wells within the Murray-Darling
River Basin, which serves as the second test region of this thesis, were provided by
Dr. Russell Crosbie (CSIRO Land and Water, Adelaide, Australia). The measure-
ments were averaged over 1◦×1◦ grid cells, including between one to around 2680
wells per grid cell. The locations of the individual measurement wells are reported
in Tregoning et al. (2012, chapter 5.1) who evaluated groundwater estimates from
GRACE. It was reported that these wells might be influenced by local effects such as
pumping that might cause drawdown or recharge due to irrigation. A specific yield
of 0.1 as a typical value for water aquifers was applied to convert groundwater tables
to equivalent water heights as proposed by Tregoning et al. (2012). In this study, a
specific yield map based on geological information is additionally applied (Johnson, 1967).

River Discharge

Monthly river discharge data are obtained from GRDC, from which values at 1319
stations world-wide were previously used to calibrate the river basin-specific runoff
coefficients of WGHM. A total of 84 of these stations are located within the Mississippi
River Basin and eleven stations are located in the Murray-Darling River Basin. Please
note that the calibration was performed against mean annual river discharge, and that
monthly variations of river discharge are evaluated after applying C/DA. Therefore, the
discharge data can be used for validation.

Surface Water Extent

The Global Inundation Extent from Multi-Satellite (GIEMS) data set globally describes
the area that is covered by surface water, i.e. lakes, wetlands, rivers, irrigated agriculture,
as well as episodic and seasonal inundation on an equal area grid (Papa et al., 2008). The
spatial resolution of these maps is 773 km2, corresponding to 0.25◦× 0.25◦ at the equator.
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The monthly data are available from 01/1993 to 12/2007. Grid cells that are covered by
snow or ice, located at the coast, or not subject to inundation are not considered in these
maps. The data set is based on a combination of multi-satellite observations of surface
water extent, water levels from the altimetry satellite mission Topex/Poseidon, and in-situ
hydrographic measurements (for details see e.g., Papa et al., 2006, Prigent et al., 2007,
Papa et al., 2010). In this thesis, spatial averages of the gridded surface water extent data
set for the entire Mississippi River Basin and its four major sub-basins were determined.
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3. Data Assimilation

In this chapter, the mathematical foundations of variational and sequential data assim-
ilation techniques for both linear and non-linear models are described. Therefore, first,
statistical foundations are introduced in section 3.1. Then, the Bayes’ theorem that re-
lates the probability density functions (PDF) of observations and unknown parameters
is introduced in section 3.2. Section 3.3 addresses the variational data assimilation ap-
proach, including the formulation for linear (section 3.3.1) and non-linear models (section
3.3.2). This is followed by an introduction to sequential data assimilation in section 3.4.
The traditional Kalman filter (KF) equations are derived for combining states from linear
models with observations (section 3.4.1). Based on these equations, ensemble methods are
introduced to deal with non-linear models (section 3.4.2), including the ensemble Kalman
filter (EnKF) and its variants, as well as non-linear ensemble methods. Methods that
are able to deal with non-linear models are of interest to this PhD thesis since the model
equations of the WaterGAP Global Hydrology Model (WGHM, see section 2.2.2) are non-
linear. Since many variants of EnKF have been developed to make the original approach
more efficient or to adapt it to a specific application, in this chapter only a brief overview
will be provided. Then, in chapter 4 the algorithms of several selected variants will be
described in detail. A strategy for simultaneous parameter estimation and sequential data
assimilation is introduced in section 3.4.3. Finally, alternative sequential ensemble data
assimilation methods used in this thesis are explained in section 3.4.4.

3.1 Statistical Foundations for Data Assimilation

The description of the statistical foundations in this section follows Koch (2007) and
Evensen (2007).

Probability Density Function

The probability distribution function F defines the likelihood that a realization of a con-
tinuous random variable X takes a value less than or equal to x, thus

F(x) =

∫ x

−∞
f(t) dt. (3.1)

Herein, f(t) denotes the PDF that indicates the likelihood that a random variable X takes
a particular value x, and t is an integration variable. The PDF must satisfy the conditions
that the probability for the random variable X to take a value x is positive or zero, and
that its integral over the space of real numbers is equal to one

f(x) ≥ 0 and
∫ ∞
−∞

f(x) dx = 1. (3.2)

Most methods in data assimilation are optimal under the assumption of Gaussian distri-
butions. The bell shape of this distribution is isotropic and can be fully described by the
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first and second order statistical moments, i.e. the mean and variance, while higher order
statistical moments are equal to zero or constant. The Gaussian distribution, also called
normal distribution, is defined as

f(x) =
1√
2πσ

exp
(
−(x− µ)2

2σ2

)
, (3.3)

in which µ denotes the mean value and σ the standard deviation. This can also be
expressed as X ∼ N (µ, σ2).

Second Order Statistical Moments

The first statistical moment defines the expectation value E[X ] of the random variable X
as

E[X ] =

∫ ∞
−∞

x f(x) dx = µ, (3.4)

and specifies the average value of an infinite number of samples drawn from the PDF f(x).
The second central moment defines the variance as

E[(X − E[X ])2] =

∫ ∞
−∞

(x− E[X ])2 f(x) dx = σ2. (3.5)

It describes the expected value of the squared deviations of x from its expectation value
E[X ]. In case of two random variables X and Y with their PDFs f(x) and f(y), the joint
probability is defined as f(x,y)=f(x|y)f(y)=f(y|x)f(x). This is the Bayes’ theorem (Koch,
2007, p.31, Eq. (2.122)) in which f(x|y) denotes the conditional PDF of a random variable
X . The covariance of the random variables X and Y is defined as

E[(X − E[X ])(Y − E[Y ])] =

∫ ∫ ∞
−∞

(x− E[X ])(y− E[Y ]) f(x, y) dx dy = σx,y. (3.6)

Statistical Moments from Samples

Usually, only a limited number Ne of samples, i.e. realizations from the PDF f(x), is
available to determine a “best guess” of the expectation value in Eq. (3.4) as

µ = E[X ] ' x =
1

Ne

Ne∑
i=1

xi. (3.7)

Herein, x denotes the (ensemble) mean. The sample variance s2 can be determined as

σ2 = E[(X − E[X ])2] ' s2 =
1

Ne − 1

Ne∑
i=1

(xi − x)2, (3.8)

and the sample covariance sx,y can be calculated as

σx,y = E[(X − E[X ])(Y − E[Y ])] ' sx,y =
1

Ne − 1

Ne∑
i=1

(xi − x)(yi − y). (3.9)
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Sampling from Gaussian Distributions

In the following, vectors will be indicated by small letters and bold, and matrices will be
indicated by capital letters and bold. If the mean vector µ and the error covariance matrix
Σ of a (multi-variate) Gaussian distribution are known, samples can be generated by, e.g.,
using random Monte Carlo sampling (Fishman, 1996). For this, a Cholesky decomposition
of the error covariance matrix is performed according to Σ = GGT , where G denotes a
regular lower triangular matrix. Following Koch (2007, p. 197, Eq. (6.13)), realizations
e of a standard normal distributed random variable ε ∼ N (0, I) can be generated and
transformed to realizations x of the random variable X ∼ N (µ,Σ) as

x = µ + Ge. (3.10)

Alternatively, the minimum second order exact sampling (Appendix in Pham, 2001) can
be applied to generate realizations of the random variable from an eigenvalue-decomposed
error covariance matrix. It is used in the singular evolutive interpolated Kalman (SEIK)
filter (Pham et al., 1998) and described in detail along with the filter equations in sec-
tion 4.2.3.

In the following, the random variable X and its realization x will not be distinguished in
notation, since in ensemble data assimilation the random variable is replaced by samples.

3.2 Bayes’ Theorem for Data Assimilation

In this section a function that specifies how to combine model simulations and measure-
ments, the so-called “cost function”, is introduced. It is assumed that error information
about model and observations is available in form of error covariance matrices and thus
leads to a weighting in the cost function. Based on the uncertainty information the cost
function is derived using the Bayes’ theorem (see e.g., chapter 3 in Evensen, 2007, Nichols,
2010).

One can consider the prediction x−, e.g., of a model simulation, and the measurements y
as two realizations of the true states stored in the m× 1 vector xtrue, where m indicates
the number of states:

x− = xtrue + q−, (3.11)
y = Axtrue + ε, (3.12)

In Eq. (3.12), q− denotes the errors of the model prediction and ε the measurement errors,
as well as A is the n×m design matrix, which defines the relation between xtrue and y,
and n is the number of measurements.

It is of interest to find an improved state estimate x+ based on the error information of
model prediction and observations. For the time being, Gaussian distributions are assumed
for the error terms, i.e. the mean values q− and ε, denoted by the overline, of the model
prediction and the observation error vectors are zero, while the error covariance matrices
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C(x−) = q−(q−)T and Σyy = εεT hold the second order statistical moments (variances
and co-variances of predicted and observed states, respectively). Furthermore, the model
states and observation errors are assumed to be uncorrelated, i.e. the expectation of their
inner product is zero q−εT = 0.

Based on the assumption of Gaussian distributions, the prior PDF p(x) (e.g., Koch, 2007,
p. 80) of the optimal model states x is given by

p(x) ∝ exp[−1

2
(x− x−)TC(x−)−1(x− x−)], (3.13)

and the likelihood function p(y|x) of the observations depending on the optimal model
states (Koch, 2007, p. 86, Eq. (4.4)) is

p(y|x) ∝ exp[−1

2
(Ax− y)TΣ−1

yy (Ax− y)]. (3.14)

Using the Bayes’ theorem p(x|y) ∝ p(x)p(y|x) (Koch, 2007, p.31, Eq. (2.122)), the poste-
rior PDF p(x|y) of the optimal model states depending on the observations (Koch, 2007,
p.81, Eq. (3.78)) results in

p(x|y) ∝ exp[−J(x)], (3.15)

with J(x) =
1

2
(x− x−)TC(x−)−1(x− x−)︸ ︷︷ ︸

J1

+
1

2
(Ax− y)TΣ−1

yy (Ax− y)︸ ︷︷ ︸
J2

. (3.16)

The cost function J(x) is a linear combination of the residuals of the model forecast x−
(J1) and the residuals of the measurements y (J2) weighted by their error covariance
matrices C(x−) and Σyy. The solution x+ that maximizes the likelihood estimate in
Eq. (3.15) for x, i.e. that gives the maximum of the posterior PDF, is equivalent to the
least squares solution that minimizes J(x) in Eq. (3.16). The solution is the best linear
unbiased estimator (BLUE), in which “best” is defined as the estimator with minimum
variance. The cost function is used in the following sections to derive a formulation for
the BLUE.

3.3 Variational Data Assimilation

It is assumed that a model simulation x− is available with initial values x0 and predictions
x−k at time steps tk with k = 1, . . . , K (black points in Fig. 3.1). Additionally, for each
time step observations yk are available (black triangles in Fig. 3.1). In variational data
assimilation, all available measurements are used simultaneously to correct the initial
conditions of the model x+

0 . The idea is to obtain the best overall fit of the corrected
model values x+

k (white points in Fig. 3.1) and the observations. For this, it is necessary
to integrate the model forward and backward in time. In addition, adjoint code of the
model is required to determine gradients for error estimation. In practice, time windows
are defined and only observations within these windows are taken into account to estimate
corrected initial model conditions.
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Variational data assimilation is of particular interest when the behavior of a model sys-
tem is very much under influence of the accuracy of initial conditions, e.g., in atmospheric
modeling. Following this section, formulations of the cost functions for variational data
assimilation when considering linear (section 3.3.1) and non-linear (section 3.3.2) model
equations with and without model errors are presented. A detailed description on for-
mulating the cost functions can be found in, e.g., Evensen (2007) or Talagrand (2010).

tk tk+1 tk+2 timet0

value

tK

yk

xk
+

xk
-

x0

x0
+

Figure 3.1: Scheme of variational data assimilation: All available data yk (black triangles) are
used simultaneously to improve the initial model conditions x0 and original model states x−k
(black points and solid line). The corrected initial conditions x+

0 yield the best overall fit of
model states x+

k (white points and dashed line) and observations.

3.3.1 Linear Variational Problems

Sasaki (1970a) introduced two main approaches to implement variational data assimila-
tion for linear models. These include the “strong” and “weak” constraint formulations.
For the first, a perfect model is assumed, while the latter considers model errors.

Strong Constraint Formulation

First, it is assumed that the temporal evolution of model states can be described by a
perfect linear discretized model, i.e. the model states xk of time step tk can be obtained
by applying the linear model operator Fk−1 to the model states xk−1 of the previous time
step k − 1, i.e.

xk = Fk−1xk−1, k = 1, . . . , K. (3.17)

Thus, in Eq. (3.17) model errors are ignored. Additionally, it is assumed that initial states
x−0 at time step k = 0 along with their error covariance matrix C(x−0 ) are given and
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that these errors are uncorrelated with the observation errors Σyy. The cost function in
Eq. (3.16) is modified to

J(x0) =
1

2
(x0 − x−0 )TC(x−0 )−1(x0 − x−0 )︸ ︷︷ ︸

Part 1

+
1

2

K∑
k=1

(Akxk − yk)
TΣ−1

yy (Akxk − yk)︸ ︷︷ ︸
Part 2

, (3.18)

in which Part 1 minimizes the residuals of the initial model conditions x−0 , since it is of
interest to find their optimal values x+

0 . This automatically leads to the best fit between
the model states Akxk and the observations yk of each time step tk (Part 2), because
the model forward integration is error-free. Herein, the design matrix Ak relates the
modeled states to the observations. This form of data assimilation is the so-called strong
constraint variational problem (for details see Sasaki, 1970a, Talagrand, 2010).

Weak Constraint Formulation

In this version, it is still assumed that the temporal evolution of model states can be
described by a linear discrete relation, but a random model error term qk−1 with covariance
matrix Qk−1 is added to the equation

xk = Fk−1xk−1 + qk−1, k = 1, . . . , K. (3.19)

This means that the model does not perfectly describe the relation between xk and xk−1. In
Eq. (3.19), the model errors qk−1 are assumed to be uncorrelated in time and uncorrelated
with the observation errors and the errors of the inital values. When formulating the cost
function, it is not only of interest to optimize the initial model states x0 (like in Eq. (3.18))
but it is also of interest to improve the sequence of model states {xk, k = 1, . . . , K}

J(x0,x1, . . . ,xK) =
1

2
(x0 − x−0 )TC(x−0 )−1(x0 − x−0 )︸ ︷︷ ︸

Part 1

+
1

2

K∑
k=1

(Akxk − yk)
TΣ−1

yy (Akxk − yk)︸ ︷︷ ︸
Part 2

+
1

2

K∑
k=1

(xk − Fk−1xk−1)TQ−1
k−1(xk − Fk−1xk−1)︸ ︷︷ ︸

Part 3

. (3.20)

Part 3 appears here in addition to Part 1 and 2 in Eq. (3.18), which minimizes the model
errors qk−1. This form of data assimilation is the so-called weak constraint variational
problem (Sasaki, 1970a).

A large number of methods exists to minimize the cost function of variational problems.
Commonly used approaches to minimize J(.) are the representer method (Bennett, 1992,
2002) and adjoint methods (Talagrand and Courtier, 1987, Courtier and Talagrand, 1987),
including the three- or four-dimensional variational assimilation (3D/4D-Var; Sasaki,
1970a,b,c). Since this thesis focuses on sequential data assimilation algorithms, the reader
is referred to the mentioned literature for more details.
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3.3.2 Non-Linear Variational Problems

In the following, it is assumed that the time evolution of the model states is given by a
non-linear discrete model, denoted by f(.),

xk = f(xk−1) + qk−1, k = 1, . . . , K, (3.21)

while accounting for model errors qk−1. When minimizing the cost function

J(x0,x1, . . . ,xK) =
1

2
(x0 − x−0 )TC(x−0 )−1(x0 − x−0 )︸ ︷︷ ︸

Part 1

+
1

2

K∑
k=1

(Akxk − yk)
TΣ−1

yy (Akxk − yk)︸ ︷︷ ︸
Part 2

+
1

2

K∑
k=1

(xk − f(xk−1))TQ−1
k−1(xk − f(xk−1))︸ ︷︷ ︸

Part 3

, (3.22)

basically only Part 3 of Eq. (3.22) differs from the definition of the cost function for
linear models in Eq. (3.20). Various methods are used to solve Eq. (3.22), e.g., the four-
dimensional variational method (Rabier et al., 2000), the iterative representer method
(Bennett et al., 1996, Evensen, 2007, p. 67f.), the linearized model operators for ad-
joint/backward equation (Evensen, 2007, p.71), genetic algorithms such as the adapted
Metropolis algorithm (Metropolis et al., 1953), and the Hybrid Monte Carlo algorithm
(Duane et al., 1987, Bennett and Chua, 1994). The solution of the listed methods is only
optimal (in sense of the BLUE) when the model equations are linear. A more detailed de-
scription of variational data assimilation for non-linear models is given in Evensen (2007),
Talagrand (2010), and references therein.

3.4 Sequential Data Assimilation

In sequential data assimilation, observations are used to correct the present states of
a model as soon as they become available. In Fig. 3.2, the concept of sequential data
assimilation is illustrated. The model run starts at time t0 with initial conditions x0

and is integrated forward until time tk, for which observations yk are available (black
triangles in Fig. 3.2). The measurements are directly incorporated to correct the model
prediction x−k (black points in Fig. 3.2). The corrected values x+

k (white points in Fig.
3.2) are subsequently used to start the next model forward integration. This procedure is
repeated sequentially for each time step, at which observations are available. The approach
is suitable when systems are driven by forcing fields, e.g., precipitation, temperature and
other climate variables in hydrological models, and when initial conditions are less relevant.
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tk tk+1 tk+2 timet0
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Figure 3.2: Scheme of sequential data assimilation: Observations (black triangles) are used as
soon as they are available to improve the current model states x−k (black points and solid line).
The updated model states x+

k (white points) give the best fit to the observations at the current
time step k.

3.4.1 Linear Problems: The Kalman Filter

The Kalman filter (KF; Kalman, 1960) provides a formulation to find the BLUE for the
predicted model states for each time step at which observations are available. Here, the
cost function in Eq. (3.16) is applied to one specific time step k

J(xk) =
1

2
(xk − x−k )TC(x−k )−1(xk − x−k )︸ ︷︷ ︸

Part 1

+
1

2
(Akxk − yk)

TΣ−1
yy (Akxk − yk)︸ ︷︷ ︸

Part 2

, (3.23)

where Part 1 gives the optimal model condition at time step k that guarantees the best
fit between model and observations at this specific time step (Part 2). Part 2 of Eq. (3.23)
is similar to Part 2 of Eq. (3.18) and (3.20) with the small difference that it only focuses
on the current time step. The optimal guess of the model states can be determined by
minimizing the derivative of the cost function J(xk) in Eq. (3.23) as

J(xk)
dxk

= 2(xk − x−k )TC(x−k )−1 + 2(Akxk − yk)
TΣ−1

yy = 0. (3.24)

In the update step of the KF, the optimal estimate x+
k is given by the model prediction

x−k plus a weighted linear combination of the model prediction and the measurements yk

x+
k = x−k + Kk(yk −Akx−k ), (3.25)

with Kk = C(x−k )AT
k (AkC(x−k )AT

k + Σyy)
−1, (3.26)

where Kk is the Kalman gain matrix. The time evolution of the covariance matrix of the
model prediction at time step k−1 to time step k is calculated by a formal variance error
propagation as

C(x−k ) = FTC(x−k−1)F + Qk−1. (3.27)
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Herein, the transition matrix F relates the covariance matrices of time steps k − 1 and
k. In case of a perfect model as in Eq. (3.17), the term Qk−1 will be neglected. For an
imperfect model as in Eq. (3.19), the model errors are reflected in the covariance matrix of
the model prediction Qk−1. Considering Eq. (3.25), the covariance matrix of the updated
model prediction C(x+

k ) is determined by a formal variance error propagation, i.e.

C(x+
k ) = (I−KkAk)C(x−k ). (3.28)

The model update x+
k in Eq. (3.25) is the least squares solution of Eq. (3.24) and it is

only optimal for linear models with Gaussian distributed model prediction and observation
errors since the estimation considers only second order moments. For linear problems, the
KF and the weak constraint variational method provide identical solutions at the final
time step, when introducing prior error statistics and formulations consistently (Evensen,
2007, p. 50).

3.4.2 Non-linear Sequential Problems

In case of the KF, where linear model equations are evaluated and Gaussian error
statistics are assumed, the time evolution of the PDF is fully described by the variance
error propagation of the model covariance matrix C(xk−1) to C(xk) (see Eq. (3.27)). In
case of non-linear model equations, the full PDF needs to be evolved in time, which is
described by the Fokker-Planck equation when assuming additive Gaussian model errors
(e.g., Risken and Frank, 1996). The explicit solution of the Fokker-Planck equation is
not possible for high dimensions. However, it is possible to derive statistical moments
of the PDF. In case of linear model equations and Gaussian distributions as assumed
in the KF, mean and covariance represent the full PDF of the model prediction. For
non-linear models, the PDF is not fully characterized by the first and second order
statistical moments. However, they are often used to represent valuable information on
errors. Therefore, for non-linear model equations, the traditional KF approach is replaced
by the extended Kalman filter (EKF; Kalman and Bucy, 1961) that uses an approximate
linear equation for predicting the error covariance matrix (Evensen, 2007, p. 32) and
that allows to handle non-linear model equations. The disadvantage of this filter choice
is that it uses an approximation of the error statistics due to linearization and leads to
large computational costs for the forward integration of the error covariance matrix. To
overcome these problems, the EnKF has been developed (Evensen, 1994), which applies
a Markov Chain Monte Carlo (MCMC) method (e.g., Gamerman and Lopes, 1997) to
solve the Fokker-Planck equation (Evensen, 2009, p. 40). In this section, the focus is on
ensemble filter methods, which can be interpreted as suboptimal KF in the sense that
higher order statistical moments are neglected in the filter update.

Ensemble Kalman Filter

In ensemble methods, the PDF is estimated by an ensemble of Ne model realizations
and evolves in time by evaluating the non-linear model equations of Eq. (3.21) for each
ensemble member. Thus, the ensemble mean statistically represents the best estimate
of x−k in Eq. (3.25) and the ensemble spread defines the error in the ensemble, i.e. it
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approximates C(x−k ) in Eq. (3.27). Each of the model states represents one point in the
n-dimensional state space. The cloud of points in the state space can be described using a
PDF. The full state space and thus the full PDF p(x) would be described with an infinite
ensemble size, while in practice, it is approximated by a finite ensemble

lim
Ne→∞

dNe

Ne

= p(x), (3.29)

in which dNe denotes the number of points in a small unit volume and Ne is the total
number of points. In a one-dimensional state space, Eq. (3.29) can be visualized by a
histogram. With knowledge about the PDF or the ensemble representation, statistical
moments can be determined (Evensen, 2007, p. 39). In the update step of the EnKF,
which implies that the PDF of model and observations are Gaussian, the model mean
and error covariance matrix are approximated by the finite ensemble. The EnKF does
not use higher order statistical moments. The update step of the EnKF is very close to
that of the KF. However, the expression for the analytical error covariance matrix of the
model prediction in Eq. (3.26) is replaced by an empirical approximation based on the
model ensemble. The filter algorithm is described in detail in section 4.2.1.

Variants of the Ensemble Kalman Filter

In the following, a selection of various variants of the EnKF algorithm is described in
order to give an overview of the large number of methods that have been developed to
make the original approach more efficient (Tab. 3.1). Each of these modifications focused
on a specific characteristic of the EnKF. Burgers et al. (1998) showed that an ensemble
of observation errors needs to be introduced to keep the error statistics of the ensemble
update unbiased (see section 4.2.1). To mitigate additional sampling errors that occur
when generating an observation ensemble, several square root analysis schemes (SQRA)
have been developed that update the ensemble mean instead of each ensemble member
(e.g., Whitaker and Hamill, 2002, Tippett et al., 2003, and references therein). Evensen
(2004) developed a straight forward square root variant of the classical EnKF, which is
implemented in this thesis (see section 4.2.2). Besides a reduced rank SQRA Kalman filter
was developed, in which the ensemble is forced to represent the most dominant modes
of the error description (see, e.g., Verlaan and Heemink, 2001). Anderson (2001) noticed
that the covariance structure of model states is destroyed when re-sampling of the up-
date is required, such as in methods based on SQRA. Therefore, the ensemble adjustment
Kalman filter (EAKF) was developed to preserve information about prior covariances be-
tween model states. This is also guaranteed when applying the classical EnKF. Hybrid
variants of the EnKF with SQRA approaches have been applied, e.g., in Heemink et al.
(2001) who introduced the partially orthogonal ensemble Kalman filter (POEnKF) and
the complementary orthogonal subspace filter for efficient ensembles (COFFEE). Further-
more, ensemble transform Kalman filter (ETKF; Bishop et al., 2001) and error subspace
statistical estimation (ESSE; Lermusiaux and Robinson, 1999) exist. The SEIK filter prop-
agates the ensemble members in the same way as the original EnKF does (Pham et al.,
1998). It differs in the generation of the initial ensemble, which is not completely random
but relies on the main orthogonal directions of the model error covariance matrix (Dré-
court, 2004). By applying the minimum second order exact sampling (see section 2.3) the
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exact representation of the first and second order error statistics by the finite ensemble
is guaranteed. In addition, the SEIK reformulates the Kalman gain matrix in such a way
that the update is performed in the ensemble space instead of the observation space (see
section 4.2.3). A detailed overview of EnKF variants and EnKF applications is given in
Evensen (2004).

Table 3.1: Selection of ensemble filter and smoother approaches that are used for data-model
fusion. Filters that have been implemented in this thesis are shown in bold.

Abbreviation Ensemble Filter Reference
EnKF ensemble Kalman filter Evensen (1994), Burgers et al. (1998)
SQRA square root analysis scheme e.g., Evensen (2004)
SQRA KF reduced rank square root Kalman e.g., Verlaan and Heemink (2001)

filter
EAKF ensemble adjustment Kalman filter Anderson (2001)
POEnKF partially orthogonal ensemble e.g., Heemink et al. (2001)

Kalman filter
COFFEE complementary orthogonal subspace e.g., Heemink et al. (2001)

filter for efficient ensembles
ETKF ensemble transform Kalman filter Bishop et al. (2001)
ESSE error subspace statistical estimation Lermusiaux and Robinson (1999)
SEIK singular evolutive interpolated Pham et al. (1998)

Kalman filter
EnKS ensemble Kalman smoother Evensen and van Leeuwen (2000)
PF particle filter Pham (2001)

Ensemble Kalman Smoother

The ensemble Kalman smoother (EnKS) was introduced by Evensen and van Leeuwen
(2000) and can be interpreted as an extension of the EnKF (Evensen, 2007, p.130).
In contrast to the EnKF, the EnKS uses the current observations not only to update
the current model states but also to update model states backward in time. For this,
the model prediction vector of the EnKF is extended with previous model states (see
section 4.2.4). Therefore, the empirical error covariance matrix of the model states
describes the covariances in space and time, while the error covariance matrix of the
EnKF only holds the covariances in space. The EnKS might be limited to a maximum
number of updates backward in time (Cohn et al., 1994).

Non-linear Ensemble Methods

The EnKF, EnKS, and their variants perform a linear combination of model predictions
and observations in the update step, while considering the first and second order moments
of the uncertainty information. In case of non-linear model equations, the consideration of
the full PDF of model and observations in the update step is expected to more realistically
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weight model predictions and measurements, and therefore to improve the data assimila-
tion results (Evensen, 2007, p. 265). An example for a non-linear ensemble method is the
particle filter (PF; Pham, 2001) that is already successfully applied to low-dimensional
systems. The model forecast step of the PF is performed by evaluating the non-linear
model equations with an ensemble of model states, such as in the EnKF/EnKS prediction
step. In the update step of the PF, the full PDF of the model predictions and observations
are considered to obtain corrected model updates. In contrast to EnKF/EnKS, the PDF
of each ensemble member (the so-called “particle”) is updated in the PF approach rather
than the states of the particle. Thus, for non-linear problems the application of PF might
be more desirable. However, so far the PF or other non-linear ensemble methods (see e.g.,
references in Evensen, 2007, p. 265) could not be practically used for high-dimensional
systems as it is the case for this thesis.

3.4.3 Simultaneous C/DA

In hydrological modeling, it is common to calibrate basin-specific empirical model pa-
rameters that are usually assumed to be temporally constant. Some of these parameters
describe physio-geographic characteristics, e.g., average lake depth, while other parame-
ters appear as conceptual such as the groundwater outflow coefficient in WGHM. In data
assimilation, the model ensemble prediction vector can be augmented by model parame-
ters for a simultaneous calibration and data assimilation (C/DA) in the EnKF analysis
step. Therefore, here the prediction vector x−k is composed of two parts

x−k =

(
w−k
p−k

)
, (3.30)

in which w−k contains the model state values and p−k comprises the model calibration pa-
rameters. The latter typically cannot be observed, and they are therefore updated via the
cross-correlations of model states and parameters. The update of model parameters in the
EnKF is also called parameter estimation. In contrast to traditional parameter calibration
(Gupta et al., 1998), the parameters are updated in each EnKF analysis step, and there-
fore, their values vary temporally. Schumacher et al. (2016a), for instance, showed how
GRACE observations contribute in calibrating WGHM parameters (see chapter 6). This
is especially the case whenever large correlations between model states and calibration
parameters exist, as expected.

3.4.4 Discussion of the Choice of Sequential Data Assimilation
Methods

In this thesis, the EnKF has been chosen to develop a new C/DA framework for integrat-
ing GRACE data into WGHM. The reason was threefold: (1) Variational methods require
the integration of the model backward in time. In addition, these methods demand the
implementation of adjoint models for uncertainty estimation, i.e. models that are used to
obtain the gradient of the cost function J(.) with respect to the initial conditions. These
methods are usually chosen for atmospheric and oceanic data assimilation to estimate
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optimal initial conditions. The dynamic processes are described using physical equations,
i.e. nonlinear partial differential equations, which are numerically solved by applying, e.g.,
spectral methods or finite element methods. The stochastics of the system are represented
by the physical and energetic equations which are, e.g., described by stochastically per-
turbed physics tendencies and stochastic kinetic energy backscatter schemes in ECMWF’s
integrated forecasting system (IFS; Shutts et al., 2007, Palmer et al., 2009). (2) In contrast,
hydrological models are driven by forcing input fields including precipitation, tempera-
ture, long- and short-wavelength radiation. These boundary conditions are not perfectly
known but subject to measurement and interpolation errors. In addition, uncertain model
parameters highly influence the simulation accuracy. The stochastics lie in the forcing data
and background information such as topography and land cover. Therefore, it is necessary
to ingest observation data into the model as soon as they are available to constrain the
current state of the system. Hence, sequential data assimilation is a suitable method in
hydrological science. (3) Due to the simple form of the EnKF, ease of implementation, and
affordable computational requirements (Evensen, 2007, p. 38), as well as already success-
ful applications to oceanography, atmosphere, and recently to hydrology, the EnKF and
two of its extensions, the SQRA according to Evensen (2004) and the SEIK filter (Pham
et al., 1998), are implemented in this thesis and applied to a simple hydrological model
in chapter 4 and to WGHM in chapters 7 and 8. In addition, the EnKS is implemented
and applied to the simple hydrological model.



.
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4. Ensemble Kalman Filter Methods

In this thesis, a new calibration and data assimilation (C/DA) framework is introduced.
This framework has been designed based on the classical ensemble Kalman filter (EnKF;
Evensen, 1994, Burgers et al., 1998, Evensen, 2003). After first successful applications
(Schumacher, 2012, Eicker et al., 2014), the framework has been extended in Schumacher
et al. (2016b) by the square root analysis scheme (SQRA; Evensen, 2004) and the singu-
lar evolutive interpolated Kalman filter (SEIK; Pham et al., 1998). The first motivation
for considering variants of the filter algorithm is that the classical EnKF approach uses
an observation ensemble that introduces an additional source of sampling errors to the
algorithm (Evensen, 2004). Whitaker and Hamill (2002) showed that for small ensemble
sizes the sampling errors decrease by applying SQRA (Tippett et al., 2003, and refer-
ences therein) as will be shown later in this chapter. The second motivation is to reduce
computation time in the update step. The update step of the SEIK filter is performed
in the ensemble space instead of the observation space, unlike for the EnKF and SQRA
methods. Therefore, especially the assimilation of large numbers of observations, i.e. much
larger than the ensemble size, is usually better handled by the SEIK filter. Thus, the SEIK
filter allows to establish a flexible framework for larger river basins and for integrating
additional observations of, e.g., river discharge, lake level, soil moisture or snow water
equivalent in future work. Additionally, the ensemble Kalman smoother (EnKS; Evensen
and van Leeuwen, 2000) is introduced for smoothing possibly occurring jumps in the EnKF
update due to introduced observations.

In this chapter, the two-step procedure of the C/DA is described: (i) the ensemble predic-
tion step (section 4.1), i.e. the forward integration of the model for each ensemble mem-
ber, which is basically independent of the applied filter algorithm, and (ii) the update (or
analysis) step that merges model states and observations (section 4.2). The algorithms
of EnKF (section 4.2.1) as well as SQRA (section 4.2.2), SEIK (section 4.2.3) and EnKS
(section 4.2.4) are discussed and related to the EnKF. A range of tuning techniques for
optimizing the C/DA results, e.g., improved initial sampling (Evensen, 2004), variance
inflation factors (Hamill and Snyder, 2002) and localization (Houtekamer and Mitchell,
2001, Hamill et al., 2001) are addressed in section 4.3. Furthermore, throughout the chap-
ter a simple example is used to illustrate the filtering procedure and to highlight selected
issues. Therefore, a simple hydrological model was introduced in section 2.2.1.

4.1 Model Prediction

The model forward integration is implemented by evaluating the non-linear dynamical
model equations, denoted by f(.),

xk = f(xk−1,uk,p) + qk−1. (4.1)

The model states xk of the current time step k depend non-linearly on the model states
xk−1 of the previous time step (k−1), time dependent input forcing fields uk and constant
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model parameters p, as well as on unknown model errors qk−1 of any probability distribu-
tion, i.e. not necessarily of the Gaussian distribution. Note that in addition to Eq. (3.21)
forcing fields (uk) and model parameters (p) are considered. In linear approaches, the
error covariance matrix of the model is obtained from error propagation of the previous
model state covariance matrix C(xk−1) to the current time step, as given in Eq. (3.27),
for which the model error covariance matrix Qk−1 = E(qk−1qTk−1) should be given.

In ensemble based data assimilation, the model equations are evaluated for each of the
i = 1, . . . , Ne ensemble members (e.g., Evensen, 2007), i.e.

x(i)−
k = f(x(i)

k−1,u
(i)
k ,p

(i)). (4.2)

The model states x(i)−
k of the current time step k, referred to as model predictions, are

denoted with the superscript ”−“. In this work, qk−1 is neglected, i.e. no explicit real-
izations of the model errors are generated, due to the difficulty in specifying the matrix
Qk−1. However, an alternative strategy to consider these errors is introduced in section 4.3.
Uncertainties in model states xk−1, input forcing fields uk, and model parameters p are in-
troduced by generating Ne ensemble members. In Eq. (4.2), only model states are written
to the model prediction vector, i.e. x(i)−

k = w(i)−
k (see Eq. (3.30)).

For a simultaneous C/DA, Eq. (4.2) is reformulated to

x(i)−
k =

(
w(i)−
k

p(i)−
k

)
=

(
f(w(i)

k−1,u
(i)
k ,p

(i)
k−1)

p(i)
k−1

)
. (4.3)

Here, the time indices k − 1 and k are added to the model calibration parameters p. In
the model prediction step, the values of the calibration parameters are constant. Then, in
the ensemble filter update the calibration parameters are simultaneously updated along
with the model states w.

The error statistics of the model prediction are represented by the ensemble mean xk =
1
Ne

∑Ne

i=1 x
(i)−
k and the empirical error covariance matrix (e.g., Ripley, 1987)

Ce(x−k ) =
1

Ne − 1
∆X−k (∆X−k )T , (4.4)

determined from the ensemble spread. Here, the matrix ∆X−k stores the ensemble pertur-
bations ∆x(i)−

k = x(i)−
k − xk in its columns. It is possible to define ∆X−k = X−kW with

X−k = (x(1)−
k , . . . ,x(Ne)−

k ) and the idempotent (Ne × Ne)-projection matrix W with ele-
ments equal to 1−N−1

e on its diagonal and −N−1
e as off-diagonal entries. By introducing

W in the mentioned way, the rank of the matrix is (Ne − 1) and the formulation of the
model covariance matrix results in

Ce(x−k ) =
1

Ne − 1
X−kW(X−k )T . (4.5)

In the following, five examples are designed to describe the details of the sequential en-
semble data assimilation methods (box 1-5).
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Box 1: Prediction with a Simple Model and WGHM

Let us assume that we aim to improve the simulation of the total water storage (TWS),
denoted by S, of the simple model presented in section 2.2.1, and simultaneously
calibrating the model parameter K by introducing observations Y of TWS. In the
model prediction step, an ensemble of model states is first initialized. In this example,
Ne = 30 realizations of K0 (dimensionless), of the initial water state S0 (m3) and of
the precipitation minus evapotranspiration time series (P − E)k (m3) are generated
based on arbitrarily chosen PDFs (Tab. 4.1).

Table 4.1: Details to generate an initial ensemble of model runs by introducing uncertainties
of the initial water state S0, the model parameter K, and the input forcing field (P −E), i.e.
net precipitation. The model prediction is then performed using the equations of the simple
model which was presented in section 2.2.1.

Ensemble of Variable Simple Model Initial Values
name in in Eqs. (2.27)

(Eq. (4.3)) and (2.28)
model state w S S

(i)
0 ∈ [2, 8]

calibration parameter p K K
(i)
0 ∈ [0.01 0.99]

forcing field u (P − E) (P − E)
(i)
k = m(i) · (P − E)k

with m(i) ∈ [0.8, 1.2]

For K0, a minimum and maximum limit of 0.01 and 0.99 was defined, respectively.
Subsequently, 30 uniformly distributed ensemble members K(i)

0 were generated within
these limits. The same procedure was applied to S0 while considering 2 m3 and 8 m3

as limits. In order to account for uncertainties in the forcing field, i.e. net precipitation
in this example, a multiplicative error centered at one and with maximum limits of
0.8 and 1.2 was assumed for (P −E)k. Thus, larger uncertainties were associated with
higher net precipitation values. It is worth mentioning that the ensemble of (P−E)k is
only used to represent uncertainties of the forcing field and, therefore, to realistically
represent uncertainties of the model simulation. It is not updated in the ensemble
filter. The model in Eq. (4.3) depends on w(i)

k−1, which is the water storage S(i)
k−1 of

the previous time step k − 1 for sample i, u(i)
k (the i-th realization of (P − E)

(i)
k at

time step k), and p(i)
k−1 (associated with the parameter K(i)

k−1). The initial ensemble
mean and error covariance matrix of S0 and K0, which both should be improved, are
calculated using their respective ensembles and given by

x0 =

[
S0

K0

]
=

[
4.88
0.47

]
, and Ce(x0) =

[
σ2
S0

σS0K0

σK0S0 σ2
K0

]
=

[
3.28 −0.05
−0.05 0.09

]
.

By evaluating Eqs. (2.27) and (2.28) for each ensemble member over 24 time steps,
the open loop (OL) simulations, i.e. no observations of S are assimilated, in Fig. 4.1
are determined.
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Figure 4.1: An overview ofNe = 30 ensemble members of the generated daily a) accumulated
net precipitation P − E (in m3), b) the open loop simulations of storage S (in m3), and c)
accumulated runoff R (in m3).

For data assimilation, the model prediction is performed until time step k, at which
observations are available. The model simulations of each ensemble member are written
into a prediction vector

x(i)−
k =

[
w(i)−
k

p(i)−
k

]
=

[
S

(i)
k

K
(i)
k

]
=

[
(1−K(i)

k−1)S
(i)
k−1 + (P − E)

(i)
k−1

K
(i)
k−1

]
,

with m=2 rows, which is the number of states and parameters that will be updated,
and one column. These vectors are collected in the model prediction matrix

X−k =

[
S

(1)
k S

(2)
k . . . S

(Ne)
k

K
(1)
k K

(2)
k . . . K

(Ne)
k

]
,

with m=2 rows and Ne columns. The second order error statistics of the model predic-
tion are represented by the ensemble mean x−k and the empirical model error covariance
matrix Ce(x−k ), which are given at time step k =1 by

x−1 =

[
S1

K1

]
=

[
3.47
0.47

]
, and Ce(x−1 ) =

[
σ2
S1

σS1K1

σK1S1 σ2
K1

]
=

[
2.46 −0.24
−0.24 0.09

]
.

The variance of the TWS S is ∼27 times larger than the variance of the model pa-
rameter K, since the minimum and maximum limits form a much larger interval for
TWS. This depends obviously on the selected units for S. Since the parameter is not
observed, the variance of K or its ratio to the variance of S will not affect the C/DA
results. Instead, the parameter K will be calibrated via the dimensionless correlation
to the state S. The model state and parameter have a covariance of -0.24 and a cor-
relation coefficient of -0.52. The correlation coefficient does not depend on the unit of
S and, thus, the calibration of K is independent of the selected unit.

To transfer this example to the more complex WaterGAP Global Hydrology Model
(WGHM), the model prediction vector is extended in three ways: (1) In WGHM,
not only one TWS but ten individual water storage compartments are defined (see
section 2.2.2). Therefore, the simulated values of each compartment are written to
the model prediction vector. (2) WGHM does not only consider one storage for a
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river basin but simulates water changes on a 0.5◦×0.5◦ grid. Thus, the water storage
values in all grid cells within the river basin of interest are included in the prediction
vector. (3) It is of interest to calibrate not only one but 22 model parameters, which
are considered as constant for all grid cells within one river basin. Therefore, all of
these parameter values are added to the prediction vector. For each model forward
integration i=1,. . . , Ne, the prediction vector is determined as

x(i)−
k =


storage compartments in cell 1(i)

...
storage compartments in cell n(i)

WGHM calibration parameters(i)

 .

The vector includes 10·n+p considering ten water storage compartments in n grid cells
and p model parameters. The Mississippi River Basin, the test region for the C/DA
framework, comprises n=1382 grid cells, which results in 13842 rows of the prediction
vector.

4.2 Filter Update

4.2.1 Ensemble Kalman Filter (EnKF)

In the update (or analysis) step of the EnKF (Evensen, 2003), each model prediction
sample x(i)−

k is informed by a perturbed version yk + δy(i)
k of the observation data. By

introducing the perturbations δy(i)
k , the observation vector is treated as a random variable

in such a way to keep the update error covariance matrix within the ensemble unbiased.
Burgers et al. (1998) showed that, when neglecting these observation perturbations, the
variance of the updated ensemble is too low (see example in box 2). The ensemble of EnKF
updated states X+

k = (x(1)+
k , . . . ,x(Ne)+

k ) is denoted with superscript ”+“, and obtained
from

X+
k = X−k + Kk((Yk + ∆Yk)−AX−k ), (4.6)

with

Kk = Ce(x−k )AT (ACe(x−k )AT + Σyy)
−1. (4.7)

Herein, Yk contains the observation vector yk in each of its columns, while ∆Yk stores the
realizations of the observation perturbations δy(i)

k . The difference between the measured
(and perturbed) and the predicted observations ((Yk + ∆Yk) − AX−k ) is weighted and
used to correct the predicted model ensembleX−k . In Eq. (4.7),A is the design matrix that
relates model states to observations and, here, is assumed to be constant over time. The
gain matrix Kk weights the empirical ensemble covariance matrix of the model prediction
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Ce(x−k ) and the observation error covariance matrix Σyy = E(δykδyTk ). The update error
covariance matrix Ce(x+

k ) is given by

Ce(x+
k ) = (I−KkA)Ce(x−k ), (4.8)

in which I denotes the identity matrix.

Box 2: EnKF Update with Simple Model and WGHM

In general, three extreme cases might happen when the EnKF update step adjusts
the model prediction. Assume that the difference between a TWS observation Y and
a model prediction X− is 10 mm (Fig. 4.2).

X- Y Y-X- A B C

X+

10

20

30

40

Case

Figure 4.2: Scheme of three extreme
cases that might happen when the EnKF
update adjusts the model prediction.

.

In case (A) the observation error is small,
while the model prediction error is large.
Therefore, nearly 10 mm are added to the
model prediction to determine the model
update X+. In case (B), both, model pre-
diction and observation are equally accu-
rate. Thus, 5 mm are added to the model
prediction. Finally, in case (C), the model
prediction has much smaller uncertainties
than the observation, and therefore, its
value is rarely influenced.

In the following, the model update by the EnKF is calculated for the model prediction
vector in the example described in box 1. Assuming the synthetic true model parameter
Ktrue = 0.3 and evaluating the simple one-bucket model over 24 time steps gives
the true TWS states Strue (Fig. 4.3 a). For obtaining synthetic observations y, a
multiplicative error is added to the true TWS values, i.e.

y = Strue + 0.3 · Strue · noiseuniform.

Using a multiplicative observation error model leads to observation errors depending
on the fill level of the storage S. An ensemble of Ne = 30 observations is generated by
adding realizations of the same noise type. The observation ensemble matrix (Yk +
∆Yk) has Ne = 30 entries at each time step k

(Yk + ∆Yk) =
[
y(1)
k y(2)

k . . . y(Ne)
k

]
.

The observation ensemble is used at each time step k to update the model prediction
ensemble. At time step k = 1 the observation ensemble mean y1 is 5.34 m3 and its
error variance Σyy is 4.10 (m3)2. The design matrix A = [1 0] relates the model
prediction vector to the observations. The Kalman gain K is applied to the difference
∆ between the observed and the model predicted water storage S resulting in Ne
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innovation vectors d, which are added to the Ne model prediction vectors. Here, the
ensemble mean of ∆ and the ensemble mean d1 of the innovation vectors are provided

K1 =

[
σ2
S1

(σ2
S1

+ σ2
Y1

)−1

σK1S1(σ
2
S1

+ σ2
Y1

)−1

]
=

[
0.37
−0.04

]
, ∆ = 1.88, and d1 =

[
0.70
−0.07

]
.

The updated model ensemble mean and the corresponding error covariance matrix
result in

x+
1 =

[
4.17
0.41

]
, and Ce(x−1 ) =

[
1.57 −0.15
−0.15 0.08

]
.

In this example, the model prediction of S is more accurate than the observations, and
therefore, the model update is closer to the model prediction value than the observed
value.

The time series of the ensemble means of the model prediction and the update of S,
as well as the synthetic observations and the truth are shown in Fig. 4.3 a.
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Figure 4.3: Results of the EnKF update for the simple model in section 2.2.1 over 24 time
steps: the time series are shown for a) the ensemble mean of model TWS prediction S−1 ,
the ensemble mean S+

1 and ensemble members of the model update, observations Y1, and
synthetic truth (in m3); b) ensemble mean K+

1 and ensemble members of the updated model
parameter values, and the true parameter value; c) variances of observations as well as of
model prediction and update (in m3), which are shown in a). d) Comparison of empirically
estimated variances (in (m3)2) of the filter updates when using an observation ensemble
(Empirical (Ensemble) in d)) or neglecting the observation ensemble (Empirical in d)) and
the analytical variances (determined by applying formal variance error propagation) shows
that the observation perturbations keep the update ensemble unbiased.
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During the first twelve update steps the innovation, i.e. the correction of the predicted
value, is larger than during the second twelve updates, in which the model prediction
is already very close to the truth. Fig. 4.3 b shows the ensemble mean and ensemble
members of the updated model parameter K. After eight updates the calibrated pa-
rameter converges to the true parameter value. This results in a much more precise
model prediction during the following model forward integrations. In the present case,
the model parameter should be calibrated for around ten update steps until it suffi-
ciently represents the true value. Afterwards, the assimilation of TWS observations
has only a marginal influence on the model predictions. This is also reflected in the
variances of model predictions and observations (Fig. 4.3 c). By assimilating TWS ob-
servations, the variances of the model update x+ is reduced compared to the variances
of the model prediction x−, i.e. that the spread of the model ensemble decreases with
each update. Depending on the model input P −E and the parameter sample Ki, the
ensemble spread increases in the next model forward integration. During the second
half of the update phase the variance of the model prediction is small compared to the
standard deviation of the observations. The gain matrix therefore has entries close to
zero, i.e. the influence of the observations is nearly negligible.

The updated model states were determined by evaluating Eq. (4.6) while (i) consid-
ering the observation perturbation matrix ∆Yk in one case and (ii) neglecting it in
the other case. The results in Fig. 4.3 a, b and c are shown for case (i). The analytical
covariance matrix of the update is determined by evaluating Eq. (4.8). For calculat-
ing the empirical model covariance matrix using the ensemble members of the filter
update in case (i), the main diagonal elements represent the variances determined by
formal error propagation well (Fig. 4.3 d). However, by neglecting the perturbation
of observations, the variances of the filter updates are considerably underestimated
(Fig. 4.3 d). This justifies the introduction of the observation perturbations ∆Yk in
Eq. (4.6) as proposed by Burgers et al. (1998).

As indicated in the example of box 1, the prediction vector of WGHM does not contain
TWS but values of individual water compartments. Here, it is assumed that simulated
TWS is the sum of a soil water and a groundwater compartment to illustrate the
vertical disaggregation of TWS (Fig. 4.4). The difference between observation Y and
model prediction X− is 10 mm as in Fig. 4.2, and the observation is more accurate
than the model prediction (case A in Fig. 4.2). In case (A) of Fig. 4.4, the simulation
of groundwater is very accurate but the simulation of soil water exhibits large uncer-
tainties. Thus, a large portion of Y − X− is associated with the soil water storage,
i.e. 9 mm in this example, and only 1 mm is added to the groundwater storage. In
case (B), both storage compartments have equal uncertainties, and 5 mm are added to
each storage. Finally, in case (C), the simulation of groundwater is uncertain but the
soil water compartment is precisely known (in a real case study, this might have been
checked with independent in-situ measurements). Here, nearly 10 mm are associated
with the groundwater compartment. Case (A), (B) and (C) are determined for uncor-
related soil water and groundwater compartments. In case (D), a moderate correlation
of 0.5 and uncertainties as in case (C) are assumed. This results in a slightly larger
update of the soil water compartment compared to case (C). Then, in case (E), a high
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correlation of 0.99 is introduced, for which the update increment of soil water is found
to be even higher.

In addition to the vertical disaggregation of TWS into its individual compartments,
the spatially coarser GRACE TWS anomalies are horizontally disaggregated to the
finer resolved WGHM grid cells within the EnKF update (Fig. 4.5). Here, the spatial
average of TWS in two grid cells (X−) is compared to the observed TWS Y . It is
assumed that the difference of 10 mm is completely introduced into the model. If the
left grid cell is more accurate than the right grid cell, the update will be larger for
the right grid cell (case A), and vice versa (case C). For equally accurate grid cells,
both cells receive an update of 5 mm (case B). Spatial correlations between storage
compartments might exist, e.g., if neighboring grid cells belong to one surface water
body. In this case, the water level will not change strongly from one to the next
grid cell. Assuming uncertainties as in case C but introducing a moderate correlation
between the grid cells of 0.5 (case D) or a high correlation of 0.99 (case E), the updated
grid cell values get closer together.
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Figure 4.4: Vertical disaggregation of the
EnKF update.
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Figure 4.5: Horizontal disaggregation of the
EnKF update.

In case of WGHM, vertical and horizontal disaggregation is performed simultaneously,
while additionally model parameter values are adjusted. Thus, the update results
might not be easily traced back to their cause.

4.2.2 Square Root Analysis Scheme for EnKF (SQRA)

The idea of the SQRA method is to avoid the generation of observation perturbations,
which are required in the classical EnKF. The SQRA update (Evensen, 2004, 2007) con-
sists of two parts: (1) the update of the ensemble mean and (2) the update of the ensemble
perturbations. In contrast to the EnKF, SQRA does not perform the update for each sam-
ple individually (see Eq. (4.6)) but for the ensemble mean of the model predictions, i.e.

x+
k = x−k + Kk(yk −Ax−k ). (4.9)

Here, the original observation vector yk is used for correcting the predicted ensemble mean
x−k . In this way, the generation of observation perturbations is avoided, which is required
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in the EnKF but provides an additional source of sampling errors (Whitaker and Hamill,
2002, see example in box 3).

Since an unbiased ensemble of updated model states X+
k is needed for the next model

forward integration, re-sampling of the ensemble perturbations is required. In this PhD
thesis, the simple and straightforward version of the SQRA introduced by Evensen (2004)
is implemented. First, Eq. (4.4) is used to define the error covariance matrix of the model
update as Ce(x+

k ) =
∆X+

k (∆X+
k )T

Ne−1
. Then, the ensemble versions of Ce(x−k ) and Ce(x+

k ) are
inserted in Eq. (4.8) to calculate ∆X+

k as depending on the ensemble perturbations of the
predictions

∆X+
k (∆X+

k )T = (4.10)

∆X−k (I− (∆X−k )TAT (A∆X−k (∆X−k )TAT + (Ne − 1)Σyy)
−1A∆X−k )(∆X−k )T .

An eigenvalue decomposition is applied to

(A∆X−k (∆X−k )TAT + (Ne − 1)Σyy)
−1 = ZΛ−1ZT , (4.11)

and Eq. (4.10) is then reorganized to

∆X+
k (∆X+

k )T = ∆X−k (I− (Λ−
1
2ZTA∆X−k )T︸ ︷︷ ︸

DT

(Λ−
1
2ZTA∆X−k︸ ︷︷ ︸

D

))(∆X−k )T . (4.12)

The singular value decomposition of D = UΣVT is inserted into Eq. (4.12), which results
in

∆X+
k (∆X+

k )T = ∆X−k (I− (UΣVT )T (UΣVT ))(∆X−k )T (4.13)

= ∆X−kV(I−ΣTΣ)VT (∆X−k )T .

Using the square root of the diagonal matrix (I−ΣTΣ), Eq. (4.13) is written as

∆X+
k (∆X+

k )T = (∆X−kV
√
I−ΣTΣ)(∆X−kV

√
I−ΣTΣ)T , (4.14)

which represents a symmetric expression that can be used to generate normally distributed
perturbation vectors with zero mean and covariance matrix Ce(x+

k ) (see Eq. (3.10)). Fi-
nally, the updated ensemble perturbations are added to the updated ensemble mean

X+
k = X+

k + ∆X−kV
√
I−ΣTΣ︸ ︷︷ ︸

∆X+
k

ΘT . (4.15)

In Eq. (4.15), ΘT holds standard normal distributed random numbers. It contains the
right hand side eigenvectors of a matrix M = ΘΛΘT that holds uniformly distributed
random numbers Mij in its rows i and columns j. Using this random orthonormal matrix
guarantees that the vectors in each column of ΘT are independent from each other. By
multiplying ∆X+

k with ΘT, realizations of ensemble perturbations are generated from the
update error covariance matrix Ce(x+

k ) by Monte Carlo sampling (e.g., Kusche, 2003). A
detailed derivation of the algorithm and a comparison to the classical EnKF can be found
in Evensen (2004) and Evensen (2007).
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Box 3: SQRA Update with Simple Model

The examples in box 1 and box 2 are extended in the following, by performing the
filter update applying the SQRA approach. Here, the focus is on the representation of
the uncertainties of the model update. The differences of the main diagonal elements of
the empirical ensemble update covariance matrix to the analytical solution, which was
determined by formal error propagation, are shown in Fig. 4.6. The variances of the
updated model values are represented much more accurate when applying the SQRA
compared to the EnKF that relies on an ensemble of observation perturbations.
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Figure 4.6: Absolute differences between the variances of the model update determined by
formal error propagation (in (m3)2) and the empirical variances when applying the EnKF,
SQRA or SEIK method.

In this and the following examples, it is of interest to provide insights about the
ensemble filter methods. The simple model is used for this. The underlying concept is
identical for more complex models such as WGHM.

4.2.3 Singular Evolutive Interpolated Kalman Filter (SEIK)

The idea of the SEIK algorithm (Pham et al., 1998) is to reformulate the equation of the
Kalman gain matrix to reduce computational time in the filter update step. In the SEIK
filter, the ensemble representation of the model prediction error covariance matrix is given
in form of

Ce
SEIK(x−k ) = LekG

eLe
T

k , (4.16)
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where the matrix Lek = X−kT is of dimension m × (Ne − 1), m is the number of entries
in the model prediction vectors x(i)−

k , and Ne is the ensemble size. Here, T is a full rank
matrix with zero column sums, which consists of the first (Ne− 1) columns of the matrix
W in Eq. (4.5): W = [T|t] with t representing the last column of W. Ge = 1

Ne
(TTT)−1

is normalized by the ensemble size Ne. Using Eq. (4.16), the model prediction errors are
represented in the space that is spanned by the columns of Lek.

As for the EnKF, the formulation of the SEIK filter update can be derived from the KF
equations. Here, however, the model prediction error covariance matrix in Eq. (4.7) is
replaced by the ensemble representation defined in Eq. (4.16)

Kk = LekG
eLe

T

k AT (ALekG
eLe

T

k AT + Σyy)
−1. (4.17)

By applying the matrix identity QW(Z+VQW)−1 = (Q−1 +WZ
−1V)−1WZ−1 (Koch,

1999, p. 34, Eq. (1.115)) for invertible matrices Q and Z and arbitrary matrices V and
W to Eq. (4.17), the formulation of the gain matrix becomes

Kk = Lek [(Ge)−1 + Le
T

k ATΣ−1yyALek]
−1︸ ︷︷ ︸

Ne×Ne

Le
T

k ATΣ−1yy . (4.18)

This is the SEIK filter formulation implemented in this thesis. Here, the observation error
covariance matrix Σyy is transformed to the ensemble space by applying ALek to Σ−1

yy : It
becomes obvious that the size of the matrix to be inverted depends on the model ensemble
size Ne. The update is performed in the ensemble space, and if the number of observations
is much larger than the ensemble size, the application of the SEIK filter is efficient. By
defining

Uk = ((Ge)−1 + (ALek)
TΣ−1

yyALek)
−1, (4.19)

as well as ak = Uk(ALek)TΣ−1
yy (yk −Ax−k ), and inserting these together with Eq. (4.18)

into Eq. (4.9), the formulation of the model update is finally converted to the common
notation of the SEIK filter

x+
k = x−k + Lekak. (4.20)

Basically, one projects the errors of the updated states onto the space that is spanned
by the columns of Lek, which results in the formulation of the model update covariance
matrix Ce(x+

k ) as

Ce(x+
k ) = LekUkLe

T

k . (4.21)

A detailed derivation of Eq. (4.21) can be found in Pham et al. (1998).

Finally, the update of the ensemble perturbations is performed. To this end, the minimum
second order exact sampling is used (Appendix in Pham, 2001). Ensemble perturbations
are generated from the eigenvalue-decomposed error covariance matrix of the filter up-
date. The ensemble mean and the ensemble covariance matrix need to match exactly the
updated ensemble mean x+

k and the updated error covariance matrix C(x+
k ), i.e.

1

Ne

Ne∑
i=1

x(i)
k = xk ≡ x+

k , (4.22)

L0CT
0 ΩT

0 Ω0C0LT0 = S0 ≡ C(x+
k ). (4.23)
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This is realized by determining a low (Ne−1)-rank approximation of the covariance matrix,
using the leading eigenvalues and eigenvectors (or dominant orthogonal modes) of the
ensemble update error covariance matrix Ce(x+

k ), whose eigenvectors and eigenvalues are
stored in L0 and U0 = CT

0 C0, respectively. In Eq. (4.23), Ω0 is an orthonormal matrix. Its
columns are orthogonal to a vector that contains only the numbers one. This matrix can,
for example, be determined by Householder transformation (Hoteit et al., 2002, Appendix,
p. 125-126). The update ensembleX+

k is determined by adding the generated perturbations
to the updated ensemble mean, which is stored in each column of X+

k :

X+
k = X+

k +
√
NeL0CT

0 ΩT
0 . (4.24)

A comparison of the classical EnKF and SEIK filter can also be found e.g., in Nerger
(2003). The formulation of the Kalman gain matrix based on the EnKF ensemble rep-
resentation Ce(x−k ) in Eq. (4.7) and on the SEIK ensemble representation Ce

SEIK(x−k ) in
Eq. (4.18) of the model prediction error covariance matrix is only identical during the
first update (identical model configuration and initial state estimate and covariance ma-
trix implied). However, the EnKF and SEIK updated model state vectors differ from
each other, since the EnKF relies on an observation ensemble but the SEIK considers
an update of the ensemble mean of the model prediction vector similar to the SQRA
method. Therefore, the sequence of updates will numerically differ in both approaches. In
the limit Ne →∞, assuming ergodicity, the two ensemble representations fall back to the
conventional Kalman filter and thus would lead to identical data assimilation results.

Box 4: SEIK Update with Simple Model

Here, the examples in boxes 1-3 are solved by applying the SEIK filter. Due to the
fact that the minimum second order exact sampling is used for generating the per-
turbations of the updated model values, the variances derived from the SEIK filter
ensemble exactly equal the analytical solution derived by formal variance error prop-
agation (Fig. 4.6). Even though the three filter methods that are reviewed in this
thesis can all be derived from the original Kalman filter equations, the calibration and
data assimilation results are not the same. This is due to the different approaches of
generating perturbations of the filter update (and of the observations in case of the
EnKF).

4.2.4 Ensemble Kalman Smoother (EnKS)

Similar to the EnKF, the EnKS (Evensen and van Leeuwen, 2000) processes the measure-
ments sequentially in time. The essential difference is that the observations are not only
used to correct the ensemble members of the model prediction at the current time step but
also backward in time. For describing the algorithm, a second time index is introduced.
The index k still refers to the time steps when measurements are available. The index
l(k) stands for the number of model predictions until time step k. Each model prediction
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vector x(i)−
l(k) of the current k-th available measurements is extended by the corrected en-

semble members of the previous update x̃(i)+
l(k−1) and the predicted model states starting

from that last update x(i)−
[l(k−1)]+1, . . . ,x

(i)−
l(k)

x̃(i)−
k =


x̃(i)+
l(k−1)

x(i)−
[l(k−1)]+1

...
x(i)−
l(k)

 , (4.25)

which results in Nm(k) = l(k) · (n + p) rows of the model prediction vectors, with n

being the number of model states and p the number of calibration parameters. x̃(i)+
l(k−1)

holds the EnKS updates (model states and parameters) until the starting point of the
data assimilation and calibration phase. The associated empirical model prediction error
covariance matrix, i.e.

Ce(x̃−k ) =


Ce(x0) Ce(x0,x−1 ) . . . Ce(x0,x−l(k))

... Ce(x−1 ) Ce(x−1 ,x
−
l(k))

. . . ...
symm. . . . Ce(x−l(k))

 , (4.26)

contains the covariances of the model states and parameters in space and time.

The ensemble of the EnKS update is

X̃
+

k = X̃
−
k + Ce(x̃−k )AT

k︸ ︷︷ ︸
Part 1

(AkCe(x̃−k )AT
k + Σyy)

−1((Yk + ∆Yk)−AkX̃
−
k )︸ ︷︷ ︸

Part 2

. (4.27)

The time index k is now written to the design matrix A, since the size of the model
prediction matrix and therefore the size of the design matrix increase with each EnKS
update. Part 2 in Eq. (4.27) only depends on the model predictions and observations at
time step k, while Part 1 distributes the current update increment to the current model
predictions and the model states backward in time.

By inserting Eq. (4.4) and the definition Dk = ((Yk + ∆Yk) − AkX̃
−
k ) into Eq. (4.27),

the update equation can be reformulated (see e.g., Evensen, 2007, p. 127) as

X̃
+

k = X̃
−
k +

∆X̃
−
k (∆X̃

−
k )T

Ne − 1
AT
k (Ak

∆X̃
−
k (∆X̃

−
k )T

Ne − 1
AT
k + Σyy)

−1Dk

= X̃
−
k + ∆X̃

−
k S

T
kC
−1
k Dk

with Sk = Ak∆X̃
−
k and Ck = SkSTk + (Ne − 1)Σyy.
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By additionally using the definition of the state perturbations ∆X̃
−
k = (I − IN)X̃

−
k , in

which IN is a quadratic matrix that contains 1
Ne

for each element, a compact formulation
is obtained

X̃
+

k = X̃
−
k + (I− IN)X̃

−
k S

T
kC
−1
k Dk

= X̃
−
k (I + (I− IN)STkC

−1
k Dk)

= X̃
−
k︸︷︷︸

Part 1

(I + STkC
−1
k Dk)︸ ︷︷ ︸

Part 2

. (4.28)

Herein, INSTk = 0 is used. The EnKS update equation still consists of two parts, from
which the second part only depends on the current update time step k and therefore
adds the incremental information of the current measurements. The first part includes
information of the current and all time steps backward in time that have already been
corrected by the observations at time steps 1 to k−1. According to Evensen (2007, p.
129), the update is a weak non-linear combination of the prior ensemble. In practice, time
windows are defined and only observations within these windows are taken into account
in the EnKS update (see lagged EnKS in Eq. (4.30)).

EnKS using EnKF as first guess

Since the EnKS can be interpreted as an extension of the EnKF (Evensen, 2007, p. 130),
here the EnKS update is determined by interpreting the EnKF update as first guess of
the EnKS solution. Thus, the update equation can be written as

X̃
+

EnKS = X+
EnKF

k∏
j=t

(I + STj C
−1
j Dj). (4.29)

The observations of all time steps until time step t are already included in the EnKF
update. The observations after time step t until the current update time step k are used to
determine the EnKS solution, which is therefore informed by all available measurements
until the present time step k.

Lagged EnKS

The lagged EnKS exactly works like the EnKS but the propagation of update increments
backward in time is limited to a constant lag (Evensen, 2007, p. 136). This is motivated
by the assumption that the influence of the observations strongly decreases with larger
distances in time and is negligible after some time. For a fixed time lag of b measurement
time steps, Eq. (4.29) becomes

X̃
+

EnKS = X+
EnKF

k∏
j=k−b

(I + STj C
−1
j Dj). (4.30)

The lag might be chosen with respect to the temporal correlation length of (geophysical
or hydrological) time series.
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Box 5: EnKS Update with Simple Model

In this example, the EnKS and lagged EnKS with a lag of two time steps are used
to derive the EnKS solution of the simple model in section 2.2.1. The lag of only two
time steps was chosen to show the extremes of using all available information in the
EnKS and only a very limited number of observations in the lagged EnKS. The EnKS
has a large positive impact on the state estimation S, where the EnKF update showed
large discrepancies to the true state (Fig. 4.7 a, e.g., at time step k = 2, 5 and 7).
This was the case when the observation noise led to a poor representation of the true
states (see Fig. 4.3). The performance of the EnKS was however not always closer to
the true value than the lagged EnKS. This shows that the influence of observations
decreases with increasing time difference.
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Figure 4.7: Results of the EnKF, EnKS and lagged EnKS update for the simple model
in section 2.2.1 over 24 time steps: the time series are shown for a) the ensemble means of
model TWS updates and synthetic truth (in m3); b) the ensemble mean of the updated model
parameter values K and the true parameter value; c) the empirical variances (in (m3)2) of
model updates of S that are shown in a).

Regarding the calibration parameter, the EnKS update at time step k-lag is exactly
the same as the EnKF update at time step k (Fig. 4.7 b). This shows that considering
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the same observations leads to identical results for the calibrated parameter. Since
usually the parameter value of the last update step is defined as calibrated model
parameter and used in future model simulations, the choice of using the EnKF or
(lagged) EnKS does not influence the calibrated parameter value, which is identical
for all three variants at the last update time step. Obviously, this holds only if the
initial model configuration is introduced consistently among the approaches.

Applying the EnKS also affects the variances, i.e. the spread in the ensemble of the
updated water states S (shown in Fig. 4.7 c) and parameter K. At time step k = 5,
6 and 7, the ensemble members are quite different from each other after applying the
EnKF and therefore the values of their variances are relatively high. At these time
steps, the uncertainty of the observations is large compared to the uncertainties in
the model predictions (shown in Fig. 4.3). Thus, the observations have only a small
influence on the water state S and the parameter K in the EnKF update due to small
weights in the gain matrix. In contrast, by applying the lagged EnKS, the model
ensemble members are closer together since more observation information is used to
constrain the model simulation. Thus, the variances of S andK are smaller. As a result,
the variances of the updated water state S and parameter K are further reduced. The
reduction of the variance of S by applying the EnKS using all available data instead
of the lagged EnKS is however not as strong as the reduction derived by applying the
lagged EnKS instead of the EnKF. Therefore, and due to saving computational costs,
the lagged EnKS is preferred here.

4.3 Tuning Techniques to Improve the Filter Perfor-
mance

Applying EnKF/EnKS techniques involves few mathematical issues, which might poten-
tially limit their performance including (1) small ensemble size, (2) fast filter convergence,
and (3) artificial state correlations: (1) Due to the high dimensions of hydrological or geo-
physical models, it is desirable to keep the number of model forward integrations small to
reduce computational loads. Therefore, an ensemble of limited size is used in practice that
should be sufficiently large to represent the error statistics of the model states. By choos-
ing the ensemble members wisely, a smaller ensemble might represent the error statistics
as accurate as a randomly generated larger ensemble (Evensen, 2004). (2) In each update
step, the model prediction ensemble members are pulled towards the observations. Thus,
the model ensemble spread is even more reduced with increasing the number of update
steps. Ensemble inbreeding might be the consequence, which unrealistically reduces the
influence of observations on the model prediction in the update step (see Fig. 4.3 a, b,
c in the second update phase). This is less critical for data assimilation only, since an
ensemble of constant parameters usually keeps the model ensemble spread large. How-
ever, for a simultaneous C/DA, fast ensemble convergence is challenging. To inflate the
ensemble, a multiplication factor can be introduced (Hamill and Snyder, 2002), which can
be interpreted as a strategy to account for model errors. (3) The limited ensemble size can
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cause artificial model state correlations (e.g., Liu et al., 2012). Localization methods have
been developed to reduce correlations that are likely caused by numerical problems rather
than physical reasons. Strategies to address these issues are presented in the following.

4.3.1 Improved Initial Sampling

The improved sampling scheme described here follows the one introduced by Evensen
(2004). To choose initial ensemble members that represent the most dominant directions
of the error space, firstly, a large ensemble of size z × Ne is generated, e.g., with z = 10
(Evensen, 2004) and Ne = 30. The perturbations of the ensemble members around their
mean are collected in the perturbation matrix ∆Xinit. The number of its rows is equal
to the number of model states m (model parameters are excluded here) and the number
of its columns is equal to the ensemble size zNe. A singular value decomposition (SVD)
gives

∆Xinit = UinitΛinitVT
init, (4.31)

where the singular values are the main diagonal elements of Λinit, as well as Uinit and
VT

init store the right- and left-side singular vectors in their columns, respectively. The first
Ne dominant singular values are stored in the full rank (Ne × Ne) matrix Λ and their
corresponding first Ne left-side singular vectors are stored in the (m×Ne) matrix U as

Λinit =

[
Λ 0

0 . . .

]
, and Uinit = [U| . . .] . (4.32)

Further, a random orthogonal matrix VT
o is determined by computing the SVD of a

quadratic random matrix R = UoΛoVT
o with Ne rows and columns. The improved initial

ensemble is obtained by

∆X0 = UΛVT
o , (4.33)

where the dominant singular values are scaled by z to retain the correct variance of
the new ensemble perturbations ∆X0. Finally, the ensemble mean of the new ensemble
perturbations is subtracted from each new ensemble member to ensure that the mean is
zero. The described procedure is similar to the minimum second order exact sampling (see
Appendix in Pham, 2001, and section 4.2.3).

4.3.2 Covariance Inflation

Estimation of the empirical model covariance matrix Ce(x−k ) might be too optimistic,
i.e. the variances might be too small due to neglecting errors in the model structure
(qk−1 in Eq. (4.1)). In the absence of reliable information about these errors, alternative
strategies to enlarge the ensemble spread have been developed: Hamill and Snyder (2002)
introduced the so-called inflation factor. Here, the ensemble perturbations are multiplied
by a constant inflation factor mc

X
′−
k = mc(X−k −X−k ) + X−k , (4.34)
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prior to the introduction of the predicted model states into the classical EnKF or SQRA.
As a result, X

′−
k appears as the predicted ensemble with increased perturbations. This

factor avoids fast ensemble convergence due to the reduction of the variances, i.e. the
ensemble spread after each filter update. In the SEIK filter, the inverse matrix (Ge)−1

in Eq. (4.19) is replaced by 1
mc
G−1, where 1

mc
is denoted as forgetting factor in Pham

et al. (1998). Furthermore, adaptive inflation factors have been developed that replace
manual optimization (e.g., Anderson, 2007, 2009, Li et al., 2009, Miyoshi, 2011). These
factors might vary in space and time. Hendricks Franssen and Kinzelbach (2008), for
example, discussed the fast ensemble convergence in the joint estimation of states and
parameters of a groundwater flow model. They compared adaptive inflation factors and
efficient parameter space sampling and found that a combination of both strategies yielded
the best result, i.e. the strongest reduction of the fast convergence problem. Nerger et al.
(2007) assimilated synthetic sea surface heights into the Finite Element Ocean Model
(FEOM) while using a constant forgetting factor to inflate the underestimated variances
and to stabilize the SEIK filter process. Applying adaptive inflation factors increases
the computational loads of the ensemble filter process, since their estimation requires
information about observation and model residuals. Therefore, in this thesis, the constant
inflation factor in Eq. (4.34) is implemented. The estimation of variance components might
be investigated in future work.

4.3.3 Localization

Covariance Localization

A weighting matrix M, denoted as covariance localization, can be applied to the model
prediction covariance matrix Ce(x−k ) to reduce the correlations between model states
with large spatial distances (Houtekamer and Mitchell, 2001, Hamill et al., 2001). The
formulation of the Kalman gain matrix in Eq. (4.7) is extended to

Kk = (M ◦Ce(x−k ))AT (A(M ◦Ce(x−k ))AT + Σyy)
−1, (4.35)

in which ◦ denotes the Schur or Hadamard product that is an element-wise multiplication
of two matrices. The weight matrix M is usually chosen to be a correlation matrix of
compact support drawn from a correlation function with local support. Several examples
of localization functions with local support can be found, e.g., in Gaspari and Cohn (1999)
including the widely used fifth-order polynomial function, which might be interpreted as
Gaussian function with local support. Covariance localization is applicable for all filter
methods that compute the covariance matrix or its projection on the observation space
explicitly, such as the EnKF (section 4.2.1) and SQRA (section 4.2.2). The challenge is
to select a reasonable localization distance (e.g., Kirchgessner et al., 2014).

Usually, covariance localization has been applied to pixel data. Its application has never
been discussed in the context of GRACE TWSA assimilation. Since GRACE provides the
integral of water mass over a specific region, its horizontal distribution into model grid
cells and its vertical distribution into individual water compartments needs to be specified
by variances and covariances of the model states. For this, the spatial covariances of
simulated water states have to be estimated, as well as covariances between different
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water compartments, i.e. multi-variate covariances. A data-adaptive approximation of
analytically positive definite covariance functions would probably allow a more realistic
description of the model error covariance matrix and should be investigated in future work.

Domain Localization

For ensemble filter methods that do not explicitly determine the model prediction error
covariance matrix, such as the SEIK filter (section 4.2.3), domain localization can be ap-
plied. It is also applicable for the other filters. Therefore, the assimilation process is split
up into local regions, in which independent assimilation updates are performed. For each of
the local analysis, measurements are considered within a predefined cut-off radius, which
is similar to the localization length in covariance localization. Often, domain localization
is combined with additional observation localization. The influence of observations with
increasing distances is reduced. Details on these methods are given in Ott et al. (2004),
Nerger et al. (2006) and Hunt et al. (2007). Comparisons between covariance and domain
localization have shown that the performance is similar, where domain localization gener-
ally results in weaker localization. However, the optimal correlation length in covariance
localization is wider (see e.g., Janjić et al., 2011, Greybush et al., 2011).
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5. Implementing C/DA to Merge
GRACE and WGHM

In chapters 3 and 4, a calibration and data assimilation (C/DA) framework was intro-
duced. In this chapter, details of implementing the merging process of monthly GRACE
total water storage anomalies (TWSA) with the WaterGAP Global Hydrology Model
(WGHM) are discussed. To implement the C/DA framework, a modular structure is cho-
sen that separates the model forward integration, assembling the model prediction vectors
and observations, as well as the filter algorithms in order to allow a simple exchange of indi-
vidual program parts (e.g., the filter update method). In this way, only minimal changes of
the WGHM source code are required for implementation. This strategy makes the transfer
of the proposed C/DA to other hydrological models easier.

In this chapter, first an overview of the developed C/DA procedure is provided (sec-
tion 5.1). Then, approaches to address the temporal and spatial resolution mismatch
between WGHM and GRACE (section 5.2.1 and 5.2.2), as well as the description of
model and observation uncertainties are described (section 5.2.3 and 5.2.4). Finally, pseudo
codes to implement the ensemble Kalman filter (EnKF), the square root analysis scheme
(SQRA), and the singular evolutive interpolated Kalman (SEIK) filter algorithms are
presented (section 5.3).

5.1 Overview of the C/DA Procedure

In the following, the C/DA framework developed for assimilating GRACE TWSA data
into WGHM is described (see Fig. 5.1). For the model forward integration phase, an
ensemble of Ne WGHM runs with different model parameters, climate forcing, and initial
water states is performed. A proper selection of probability distributions to generate
the required ensembles is discussed in section 5.2.3. All model forward integrations are
evaluated in parallel, since the runs are completely independent from each other.

In the filter update, it is intended to correct the monthly means of water states, which are
stored as model outputs, in a single river basin. Since WGHM always runs globally, the
grid cells are masked out for the basin of interest. This is possible, since the calculation
of the water balance equation for each river basin is independent. However, a simultane-
ous C/DA of multiple river basins can also be performed. In the presented set-up, the
usage of a single river basin results in a model prediction state vector x(i)−

k for each en-
semble member, which contains the WGHM water storage states in ten individual model
compartments (canopy, snow, soil, local lake, global lake, local wetland, global wetland,
reservoir, river and groundwater) for each grid cell of the basin. In order to jointly cali-
brate model parameters within the assimilation procedure, the state vector is augmented
by the WGHM calibration parameters. The design matrix A establishes the relationship
between the model states and the TWSA observed by GRACE. In the following, A will
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be split into a measurement operator H that accumulates the ten individual storage com-
partments for each model grid cell and a mapping operator B that spatially averages the
gridded model predicted TWSA to match the resolution of GRACE observations stored
in the vector y.

Either the EnKF, the SQRA or the SEIK filter algorithm can be chosen to perform the
update of model water states and parameters. In case of EnKF, an ensemble of obser-
vations needs to be generated. Finally, the updated state vector is prepared for the next
model forward integration. This procedure is repeated sequentially as long as observations
are available.
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Figure 5.1: Flowchart of the calibration and data assimilation (C/DA) procedure.

5.2 Addressing the Challenges of Merging GRACE
TWSA and Models

It has been discussed in section 1.2 that several challenges occur when combining model-
predicted water states and TWSA observations from GRACE. In this section, approaches
are discussed that deal with the temporal and spatial resolution mismatch between the
hydrological model and GRACE TWSA products (section 5.2.1 and section 5.2.2), as well
as methods that address the uncertainty estimation for the model forward prediction and
for GRACE TWSA observations (section 5.2.3 and section 5.2.4).
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5.2.1 Temporal Resolution Mismatch

The simulation step of WGHM is one day (black points in Fig. 5.2 a), whereas only
monthly means of TWSA from GRACE are available to inform the model (dashed gray
lines). To deal with this resolution mismatch, first, the monthly mean of the daily predicted
model states is determined (solid black line). The model predicted monthly TWSA mean
is informed by GRACE (dashed black line) using one of the proposed ensemble filter
algorithms (section 4.2.1, 4.2.2, and 4.2.3). Since GRACE does not provide information on
sub-monthly dependencies, it is assumed that the disagreement between model prediction
and observations ∆X can be applied in the same way to each day. Therefore, each of the
daily values is shifted by ∆X (gray arrows), leading to daily updates (black stars). The
temporal mean of the updated daily values therefore equals exactly the updated monthly
mean. To start the next model forward integration, the updated last day of the current
month k (black arrow) is used and the model is started for the next month k+ 1. Since at
the time being a more sophisticated approach for correcting daily values is not applied,
the monthly updated values after completing the C/DA procedure are evaluated. It is
important to realize that no daily updates are calculated but only the last day of a month
is updated to enable the model forward integration for the next month.

In previous studies, different strategies were applied to deal with the temporal resolution
mismatch. Zaitchik et al. (2008) proposed to estimate the monthly mean of the model
forward prediction using the 5-th, 15-th and 25-th day of a month to mimic the approxi-
mately three overpasses of the GRACE satellites over one river basin (larger black points
in Fig. 5.2 b). An ensemble Kalman smoother (EnKS) approach was used to update the
model state at the first day of a month based on the covariances between the model pre-
dicted first day and the model predicted monthly mean (solid black lines). Subsequently,
the update is equally distributed over the days of each month. For this, the model is once
again integrated for the current month, and the fraction of the update (∆X divided by
the number of days of the current month) is added to the model for each day. This ap-
proach ensures that the discontinuity between the daily values of two successive months
(introduced by the update) is small, whereas it is likely larger in the approach applied in
this thesis (black dashed arrow in Fig. 5.2 a). A disadvantage of the approach suggested
by Zaitchik et al. (2008) is that the model forward simulation needs to be performed twice
for the same month. The approach was also applied by Forman et al. (2012), Houborg
et al. (2012), Li et al. (2012), as well as Forman and Reichle (2013). Girotto et al. (2016)
investigated how introducing the entire update increment at the beginning or at the end
of a month influences the assimilation performance and found only a small differences for
groundwater and soil moisture simulations. Alternatively, Tangdamrongsub et al. (2015)
assumed that the monthly mean of GRACE data corresponds to the middle of a month
and they suggested to interpolate the time series at five-day intervals (Fig. 5.2 c). Then,
the interpolated GRACE TWSA are assimilated every five days. However, interpolation of
monthly to daily observations introduces interpolation errors, which should be considered
as an additional source of uncertainties for GRACE observations. A different model-data
blending approach is introduced by van Dijk et al. (2014) that only merged monthly values
of model and GRACE observations avoiding disaggregation to daily values. This however
restricts the evaluation of the updated hydrological model states to monthly resolution,
which poses no problem when only the seasonal time-scale is of interest of the study.
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a)

b)

c)

Figure 5.2: Approaches to deal with the temporal resolution mismatch between model predicted
and GRACE TWSA, a) which is implemented in this thesis, b) was proposed by Zaitchik et al.
(2008), and c) was suggested by Tangdamrongsub et al. (2015).
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5.2.2 Spatial Resolution Mismatch

5.2.2.1 Resolution of GRACE TWSA Observations

As mentioned in section 2.2.2, the spatial resolution of WGHM is 0.5◦×0.5◦. However,
an accurate estimation of GRACE TWSA is limited to larger grid size or to (sub-) basin
average estimates (see section 2.1). In order to assign a reasonable choice for the spa-
tial resolution of GRACE TWSA observations, the rank and condition number of the
observation error covariance matrix Σyy smoothed with a 500 km Gaussian filter are cal-
culated for the Mississippi River Basin (Eicker et al., 2014), which serves as the main
test region of this thesis (see chapter 7 and section 8.1). Table 5.1 reports the matrix
dimension, rank (determined by singular value decomposition), and condition number for
different spatial grid resolutions. For grid sizes smaller than 2◦×2◦, the error covariance
matrix clearly shows a rank deficiency. Starting from 2◦×2◦, the matrix has numerically
full rank, however, the condition numbers are very poor for small grid sizes, making stable
computations very difficult. Therefore, observing the trade-off between spatial resolution
and stability of the matrices, an averaging grid size of 5◦×5◦ is proposed (Eicker et al.,
2014). This also matches well to the 500 km Gaussian smoothing, which was applied to
the GRACE solution for this investigation. The optimal spatial resolution of GRACE data
might change when considering other large-scale river basins or when improved GRACE
level-2 products with better post-processing (e.g., anisotropic smoothing approaches; see
section 2.1.2) are available.

Table 5.1: Matrix dimension, rank, and condition number of the GRACE observation error
covariance matrix depending on the selected grid cell size. The table is taken from Eicker et al.
(2014).

cell size matrix dimension rank condition number
0.5◦×0.5◦ 1382×1382 128 4.6 · 1020

1◦×1◦ 357×357 128 3.6 · 1019

2◦×2◦ 91×91 91 1.3 · 1014

3◦×3◦ 38×38 38 2.2 · 1007

4◦×4◦ 25×25 25 2.5 · 1005

5◦×5◦ 17×17 17 6.4 · 1003

10◦×10◦ 5×5 5 4.6 · 1001

In previous studies either (sub-)basin-averaged (e.g., Zaitchik et al., 2008, Forman et al.,
2012, Houborg et al., 2012, Li et al., 2012), 1◦×1◦ gridded GRACE observations (van
Dijk et al., 2014, Girotto et al., 2016, Kumar et al., 2016) or 1 km × 1 km gridded ob-
servations respectively (Tangdamrongsub et al., 2015) were assimilated into hydrological
models. It should be emphasized that neighboring TWSA values on fine grids, i.e. smaller
than ∼ 200000 km2 and therefore below the spatial resolution that can be achieved with
GRACE observations, are highly correlated. Forman and Reichle (2013) systematically
investigated the effect of spatial aggregation of GRACE TWSA in a data assimilation
framework by conducting a synthetic experiment. However, these authors considered only
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white noise for simulated TWSA. They investigated the assimilation of TWSA aggregated
to one, two, four, and six sub-basins in the Mackenzie River Basin, and concluded that
the observations should be assimilated at the smallest spatial scale for which the observa-
tions can be considered as uncorrelated, i.e. around 200000-360000 km2. In the following,
similar to Eicker et al. (2014) and Schumacher et al. (2016b), the design matrix A is
implemented to merge e.g., 5◦×5◦ or (sub-)basin average GRACE TWSA with 0.5◦×0.5◦
WGHM simulations.

5.2.2.2 Aggregation and Mapping Operator

First, the water states and model parameters are assembled in the model prediction vector
x(i)−
k for each sample i=1,. . . , Ne (see Eq. 4.3). The first part of the vector w

(i)−
k holds the

individual water compartment states in each grid cell within the river basin of interest,
and p(i)−

k contains the calibration parameters (see Eq. 3.30). Then, the design matrix
(e.g., in Eqs. (4.6) to (4.8) of the EnKF, in Eq. (4.9) of the SQRA, and in Eqs. (4.17)
to (4.19) of the SEIK filter) is split according to A = BH, consisting of the vertical
aggregation operator H and the horizontal mapping operator B (Fig. 5.3). The vertical
sum of all modeled storage compartments (canopy, snow, soil, local lake, global lake, local
wetland, global wetland, reservoir, river, and groundwater) is determined for each grid
cell by incorporating H that is of dimension n× (10 · n+ p), i.e. TWS in cell 1(i)

...
TWS in cell n(i)


n×1

= Hn×(10·n+p)(x
(i)−
k )(10·n+p)×1 (5.1)

= Hn×(10·n+p)

(
(w(i)−

k )(10·n)×1

(p(i)−
k )p×1

)

=


1 . . . 1 0 . . . 0 . . . 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0

...
... . . . ...

0 . . . 0︸ ︷︷ ︸
10

0 . . . 0︸ ︷︷ ︸
10

. . . 0 . . . 0︸ ︷︷ ︸
p




storage compartments in cell 1(i)

...
storage compartments in cell n(i)

WGHM calibration parameters(i)

 .

The mapping operator B of dimension J×n is introduced to upscale the model simulated
TWS (here on a 0.5◦×0.5◦ grid) to coarser resolved grid cells or to (sub-)basin averages TWS in cell j = 1(i)

...
TWS in cell J (i)


J×1

= BJ×nHn×(10·n+p)(x
(i)−
k )(10·n+p)×1 (5.2)

=


a1
A1

0 a3
A1

. . . 0

0 a2
A2

0 . . . 0
...

...
... . . . ...

0 0 0 . . . an
AJ


 TWS in cell 1(i)

...
TWS in cell n(i)

 .

Each row of B has elements ai
Aj

with i = 1 . . . nj containing the area fraction for each
of the nj gridded values on the 0.5◦×0.5◦ grid belonging to the larger cell j. The total
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area of cell j is given by Aj =
∑
ai. As a limit case, for J = 1 the GRACE TWSA

basin average is used. The vector on the left side of Eq. (5.2) therefore holds the model
predicted TWS, which are combined with the TWSA observations from GRACE. Thus, in
all approaches, i.e. EnKF, SQRA, and SEIK, the design matrix is replaced by the product
of the aggregation H and the mapping operator B, as it was done in Eicker et al. (2014)
and Schumacher et al. (2016b).
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Figure 5.3: Schematic visualization of measurement and mapping operators, where H in a)
vertically sums up the model storage compartments (left) to be comparable with GRACE TWSA
(right), and in b) the operator B provides the spatial average of the model grids (left) to be
equivalent with GRACE resolution (right). This figure is taken from Schumacher et al. (2016b).

5.2.3 Errors of Model Forward Integration

It was mentioned in section 1.2 that uncertainties in model parameters, forcing data,
initial water states, and errors in the model structure have a significant impact on the
accuracy of model simulations. Since the WGHM equations are non-linear, an ensemble
of model runs is used to represent the errors of parameters, forcing and water states and
to propagate them to the model output.
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For this, WGHM is initialized over a minimum of five years to ensure a realistic fill level
of the individual water compartments. Subsequently, an ensemble of Ne model runs is
configured. An ensemble of model parameters (Tab. 2.1) according to predefined distri-
butions is generated using the Latin-Hypercube method (Mckay et al., 2000). Most of
the parameters are assumed to be triangular distributed with the parameter value that
is used in the standard WGHM runs as mode (which is the highest value of a triangular
distribution, see Tab. 2.1). The lower and upper limits are defined according to Döll et al.
(2003), Kaspar (2004), Güntner et al. (2007) and Hunger and Döll (2008). The multipliers
that are marked with (∗) in Tab. 2.1 are not integrated in the standard WaterGAP 2.2
version, but are considered as calibration parameters within the C/DA framework.

Additionally, precipitation and temperature forcing fields are perturbed using random
Monte Carlo sampling from triangular distributions. An additive error is assumed for
temperature, centered at 0◦C with the maximum limits of ± 2◦C. A multiplicative error
model is introduced for precipitation, centered at 1 with minimum and maximum limits
of 0.7 and 1.3. These values were chosen based on personal communication with Prof. Dr.
rer. nat. Petra Döll and Dipl.-Geogr. Hannes Müller Schmied (University of Frankfurt,
Germany). Realizations of errors are drawn from triangular distributions using random
Monte Carlo sampling. Additionally, a precipitation multiplier is calibrated which accounts
for a systematic under- or overestimation of observed precipitation (systematic sensor
error) and is identical for all grid cells within one basin. In contrast, the perturbations
of the gridded precipitation and temperature input fields are different for each grid cell
within a basin and account for random errors. It is worth mentioning that the ensembles
of climate fields are only used to represent uncertainties in forcing input data to ensure
a realistic representation of water state uncertainties. However, the climate fields are not
included in the C/DA update.

Afterwards, a model spin-up phase over a few years (e.g., two years) with the parame-
ter and forcing ensembles is performed to generate an ensemble of initial water states.
As an example, in Fig. 5.4, the spread of the TWS ensemble over the Mississippi River
Basin (used as test region in chapter 7 and section 8.1) after a two years spin-up phase
(2002-2003) is shown for a three years model ensemble run (2004-2006). The model predic-
tion error covariance matrix can be empirically determined by Eq. (4.4) or alternatively
by Eq.(4.5) using the model output of monthly means of compartmental water states
(canopy, snow, soil, local lake, global lake, local wetland, global wetland, reservoir, river
and groundwater) and the calibration parameters.

In absence of reliable information about the errors in the model structure, a constant
inflation factor (section 4.3.2) is used in the EnKF and in the SQRA approach to en-
large the ensemble spread prior to the filter update. Similarly, the inverse inflation factor,
which is denoted as forgetting factor, is introduced in the SEIK filter (section 4.3.2). This
factor also mitigates ensemble convergence. The range of possible values for the inflation
factor are selected based on previous data assimilation experiments reported in Janjić
et al. (2011) and Nerger et al. (2012). Subsequently, several C/DA runs are performed
and a factor of 10% is selected as small as possible to avoid a strong influence on the
model ensemble and large enough to ensure a contribution of the observations. Hendricks
Franssen and Kinzelbach (2008) discussed the fact that fast ensemble convergence is prob-
lematic for the joint estimation of model states and parameters. Since previous GRACE
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Figure 5.4: Ensemble mean and 30 ensemble members of TWS for a three years model ensemble
run. The ensemble is generated by sampling of 22 calibration parameters and perturbed forcing
data (precipitation and temperature). The run is performed after a two years spin-up phase to
generate an ensemble of initial water states.

data assimilation studies focused on data assimilation and no attempt was undertaken to
jointly update model parameters, fast ensemble convergence was not identified as a prob-
lem and no inflation factors were considered. Thus, the model uncertainty estimations did
not include a description of errors in the model structure, for which the inflation factor is
applied in this thesis.

In the ensemble filter updates, only the first and second order statistical moments are
used to construct the Kalman gain matrix (Eq. (4.7)). As an example, the model error
covariance matrix for 01/2004 is estimated (after the two years spin-up phase). In order
to check whether the total and compartmental water states from WGHM are Gaussian
distributed, their histograms are plotted. Alternatively, a Kolmogoroff-Smirnow test could
have been applied to test the Gaussianity of the water states (Koch, 1999, p. 271). In
case of Gaussian distributions, the histogram is bell-shaped, which is the case for the
simulated TWSA shown in Fig. 5.5 a. Therefore, assuming a Gaussian distribution might
be adequate for TWSA. The histogram of groundwater might be considered as a skewed
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Figure 5.5: Histograms of simulated a) TWSA, b) groundwater, and c) soil water for 01/2004
after a two years spin-up phase. In this example, 30 ensemble members are generated and 1262
grids cells within the Mississippi River Basin are used for calculations. In each case 50 bins are
selected for visualization of the histograms.

Gaussian distribution (Fig. 5.5 b), and that of the soil water compartment is found to
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be clearly non-Gaussian distributed (Fig. 5.5 c). Therefore, the Gaussian assumption
might not be adequate for the groundwater storage and in particular for the soil water
compartment. Since the EnKF, SQRA, and SEIK update steps only take the first and
second order statistical moments into account, the non-Gaussian parts will be neglected.
In contrast, in the model forward integration non-Gaussian information is considered.
Even by starting the model run with a Gaussian distributed ensemble of water states,
the model will introduce non-Gaussianity as a result of its non-linear equations. Since the
non-Gaussian parts are neglected in the update steps, the EnKF, SQRA and SEIK are
“suboptimal” filters.

5.2.4 Errors of GRACE TWSA Observations

As described in Schumacher et al. (2016b), various levels of approximation can be applied
to account for the uncertainty of GRACE TWSA observations in the C/DA procedure,
three of which will result in white noise and the other two in spatially correlated errors
(Fig. 5.6): The assumption of white noise can be made by either (1) using standard
deviations based on literature, e.g., Wahr et al. (2006) (used, e.g., in Zaitchik et al.,
2008, Su et al., 2010, Forman et al., 2012, Forman and Reichle, 2013), (2) propagating
errors from standard deviations of GRACE level-2 potential coefficients or (3) propagating
errors from the full covariance matrix of GRACE level-2 potential coefficients to standard
deviations of TWSA. Correlated error samples can be generated from (4) error propagation
of standard deviations of potential coefficients or from (5) propagation of the full error
covariance matrix of potential coefficients to a full covariance matrix of TWSA (as shown
in Eicker et al., 2014, Schumacher et al., 2016b,c). Alternatively, the three-cornered hat
method (Tavella and Premoli, 1994) can be applied to quantify the errors in one GRACE
product by comparing it to other products (used in van Dijk et al., 2014), in which the
products are assumed to be independent from each other.

According to method (1), for instance, Zaitchik et al. (2008), Su et al. (2010), Forman
et al. (2012), and Forman and Reichle (2013) assumed spatially uncorrelated errors for
TWSA with variances depending on the size of river (sub-)basins, i.e. between 82 mm2

for large areas of about 1.6 million km2 and 202 mm2 for smaller sub-basins of about
200000-300000 km2. Tangdamrongsub et al. (2015) also used uncorrelated TWSA errors
with a variance of 202 mm2 but for 1 km × 1 km gridded observations. In this case, the
assumption of white noise and the selected error variance are not realistic since GRACE
does actually not resolve such small spatial scales. The signal and errors are both highly
correlated in space, and the observation error is expected to be large, i.e. larger than the
signal itself. Therefore, the gain matrix would exhibit negligible values for the observations
and assimilation of GRACE would rarely influence the model simulations. In contrast, in
this thesis, correlated GRACE TWSA errors according to method (5) are used, since it
considers all available error information in the assimilation procedure in the best manner.
The mathematical procedure of formal error propagation was described in section 2.1.4.
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Figure 5.6: GRACE TWSA error description: (1) using standard deviations based on literature;
propagating standard deviations of potential coefficients cnm and snm (2) to standard deviations
or (4) to correlated errors of TWSA, and propagating correlated errors of potential coefficients to
(3) standard deviations or (5) correlated errors of TWSA. This figure is taken from Schumacher
et al. (2016b).

5.3 Practical Implementation of the Filter Methods

In the following, pseudo codes are provided for the EnKF (section 4.2.1), SQRA (sec-
tion 4.2.2), and SEIK (section 4.2.3) filter methods. These codes are not in a strict sense
pseudo codes but should be better interpreted as “implementation guides”. In addition,
the Householder transformation is described, since it is an important part of the SEIK
algorithm.

5.3.1 Implementing the EnKF

In this section, Algorithm 1 provides an implementation guide for determining the up-
dated WGHM water states and parameters, as well as the corresponding error information
using the classical EnKF. First, the ensemble mean x− of the model prediction vectors,
which are stored in the matrix X− with n rows (number of model states) and Ne columns
(ensemble size), is calculated (line 1 of Algorithm 1). The operator X−(:, i) refers to the
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Algorithm 1: EnKF algorithm.
Data:
X− . . . Matrix of model prediction ensemble ((10n+p)×Ne)
Y + ∆Y . . . Matrix of observation ensemble (J ×Ne)
Σyy . . . Error covariance matrix of observations (J × J)
H . . . Measurement operator (n×(10n+p))
B . . . Mapping operator (J × n)
fc . . . Inflation factor (1×1)
Ne . . . Ensemble size (1×1)

Result:
X+ . . . Matrix of model update ensemble ((10n+p)×Ne)
Ce(x+) . . . Error covariance matrix of model update ((10n+p)×(10n+p))

1: mean of model prediction ensemble
x̄− = N−1

e

∑Ne
i=1 X−(:, i)

2: ensemble inflation (not in classical EnKF)
for i=1:Ne do

X−(:, i) = fc(X−(:, i)− x̄−) + x̄−

end
3: empirical covariance matrix of model prediction

a: reduce mean from each ensemble member
for i=1:Ne do

∆X−(:, i) = X−(:, i)− x̄−

end
b: error covariance matrix of predicted water states and parameters
Ce(x−) = (Ne − 1)−1∆X−(∆X−)T

c: error covariance matrix of predicted TWS
Ce(x−TWS) = BHCe(x−)(BH)T

4: gain matrix K = K
′
B

a: W = Ce(x−TWS) + Σyy

b: solve L = (BH)TW−1 for L (avoid explicit inversion of W)
c: K

′
= Ce(x−)L

5: EnKF update of model states and parameters
X+ = X− + K

′
((Y + ∆Y)−BHX−)

6: mean of model update ensemble
x̄+ = N−1

e

∑Ne
i=1 X+(:, i)

7: covariance matrix of model update
Ce(x+) = (I−K

′
BBH)Ce(x−)

i-th column of the matrix. Optionally, an inflation of the ensemble perturbations may be
applied by multiplication with the factor fc >1 (line 2) in order to avoid fast ensemble
convergence (see section 4.3.2). If the factor is equal to 1, no inflation is considered. The
possibly inflated ensemble perturbations are collected in the matrix ∆X− (line 3a) and
used to determine the empirical error covariance matrix of the WGHM predicted water
states and model parameters (line 3b). In addition, by incorporating the measurement
and mapping operators H and B (introduced in section 5.2.2.2) the covariance matrix of
model predicted TWS is obtained (line 3c). The gain matrix K can be calculated using
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Eq. (4.7), while avoiding the explicit inversion of the sum of model predicted and observed
TWS covariances (line 4a,b). Since the mapping operator B is already incorporated with
the perturbed measurements Y+ ∆Y, the gain matrix is assembled except for the multi-
plication with matrix B (line 4c). The individual EnKF update of each model prediction
vector is estimated using Eq. (4.6) (line 5) and the final model update x̄+ is obtained by
evaluating the ensemble mean of the model update vectors (line 6). The error covariance
matrix of the model update Ce(x+) is calculated using formal error propagation (line 7).

5.3.2 Implementing the SQRA Method

In section 4.2, the usage of alternative filter algorithms to update the WGHM water states
and parameters by integrating GRACE TWSA was motivated. Therefore, in Algorithm 2,
an implementation guide for the SQRA method is provided. Steps 1 to 3b, i.e. the deter-
mination of the model prediction ensemble mean and the corresponding empirical error
covariance matrix (and possible inflation), are identical to those of the EnKF (Algorithm
1). However, to avoid an explicit calculation of the Kalman gain matrix in Eq. (4.9), first,
the ensemble perturbations of the model predicted TWS are stored in the matrix S with
J rows (number of observations) and Ne columns (ensemble size; line 4), which is then
used to determine the sum of the covariances including model predicted and observed
TWSA, i.e. C (line 5). This is equal to step 4a in Algorithm 1 except for the factor
(Ne − 1), i.e. C = (Ne − 1)W. An eigenvalue decomposition of C is performed (line 6)
and used to determine several auxiliary variables (y1 to y4 in line 7). These are useful
for an efficient implementation of the SQRA update of the ensemble mean of WGHM
water states and model parameters x̄+ (line 8). As described in section 4.2.2, the SQRA
consists of two steps, and therefore after updating the model ensemble mean, an update
of the ensemble perturbations is required (see Eq. (4.15)). From Eq. (4.8), it is obvious
that the model update error covariance matrix Ce(x+) is not expressed by symmetric
matrix operations. The following auxiliary matrices are therefore introduced to obtain
such a symmetric expression for Ce(x+). An auxiliary matrix is constructed based on the
ensemble perturbations of model predicted TWS and the decomposed sum of the error
covariance matrices (line 9a in Algorithm 2). Then, a singular value decomposition of this
matrix is performed (line 9b), which allows to represent Ce(x+) by symmetric matrix
operations (see Eq. (4.14)). Additionally, a random orthonormal matrix Θ is generated
based on an eigenvalue decomposition of a random matrix M (line 9c-d). The matrix
Θ is subsequently used to update the ensemble perturbations according to the second
part of Eq. (4.15). Finally, the update of each model ensemble member is estimated by
adding the updated ensemble perturbations to the updated ensemble mean (line 10) and
the corresponding error information is empirically determined from the updated ensemble
perturbations (line 11).

5.3.3 Implementing the SEIK Filter

Algorithm 3 provides a guide for implementing the SEIK algorithm. As for the EnKF
and SQRA, the algorithm starts with the determination of the ensemble mean of the
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Algorithm 2: SQRA algorithm.
Data:
X− . . . Matrix of model prediction ensemble ((10n+p)×Ne)
y . . . Vector of observations (J×1)
Σyy . . . Error covariance matrix of observations (J × J)
H . . . Measurement operator (n×(10n+p))
B . . . Mapping operator (J × n)
fc . . . Inflation factor (1×1)
Ne . . . Ensemble size (1×1)

Result:
X+ . . . Matrix of model update ensemble ((10n+p)×Ne)
Ce(x+) . . . Error covariance matrix of model update ((10n+p)×(10n+p))

1: mean of model prediction ensemble
x̄− = N−1

e

∑Ne
i=1 X−(:, i)

2: ensemble inflation (not in classical SQRA)
for i=1:Ne do

X−(:, i) = fc(X−(:, i)− x̄−) + x̄−

end
3: empirical covariance matrix of model prediction

a: reduce mean from each ensemble member
for i=1:Ne do

∆X−(:, i) = X−(:, i)− x̄−

end
b: error covariance matrix of predicted water states and parameters
Ce(x−) = (Ne − 1)−1∆X−(∆X−)T

4: matrix of ensemble perturbations of model predicted TWS
S = BH∆X−

5: sum of error covariance matrices of model predicted and observed TWS
C = SST + (Ne − 1)Σyy

6: eigenvalue decomposition of C
C = ZLZT

7: auxiliary variables
y1 = ZT (y−BHx̄−)
y2 = L−1y1

y3 = Zy2

y4 = STy3

8: SQRA update of ensemble mean of model states and parameters
x̄+ = x̄− + ∆X−y4

9: SQRA update of ensemble perturbations
a: X2 = L

1
2ZTS

b: singular value decomposition of X2

X2 = U2S2VT
2

c: generate matrix M that holds uniformly distributed random numbers
d: generate random orthonormal matrix ΘT from eigenvalue decomposition of M
M = ΘΛΘT

e: ∆X+ = ∆X−V2(I− ST2 S2)
1
2ΘT

10: SQRA update of model state and parameter ensemble
X+ = X̄+

+ ∆X+

11: covariance matrix of model update
Ce(x+) = ∆X−(I−XT

2 X2)(∆X−)T
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model states and parameters (line 1). However, the empirical error covariance matrix of
the model prediction is not calculated explicitly but represented by the matrices L and
G (defined in Eq.(4.16)) with the help of an auxiliary variable T (line 2a-c). In line 2a, I
denotes the identity matrix and 1 is a matrix containing the number one for each element.
Similar to the SQRA approach, the gain matrix is not determined explicitly but

Algorithm 3: SEIK algorithm.
Data:
X− . . . Matrix of model prediction ensemble ((10n+p)×Ne)
y . . . Vector of observations (J×1)
Σyy . . . Error covariance matrix of observations (J × J)
H . . . Measurement operator (n×(10n+p))
B . . . Mapping operator (J × n)
fc . . . Inflation factor (1×1)
Ne . . . Ensemble size (1×1)

Result:
X+ . . . Matrix of model update ensemble ((10n+p)×Ne)
Ce(x+) . . . Error covariance matrix of model update ((10n+p)×(10n+p))

1: mean of model prediction ensemble
x̄− = N−1

e

∑Ne
i=1 X−(:, i)

2: empirical error covariance matrix of model prediction

a: T =

(
I[(Ne−1)×(Ne−1)]

0[1×(Ne−1)]

)
− 1

Ne
1[Ne×(Ne−1)]

b: G = N−1
e (TTT)−1

c: L = X−T
3: SEIK update of ensemble mean of model states and parameters and ensemble inflation (not
in classical SEIK algorithm)

a: U = [(f−1
c G−1 + (BHL)TΣ−1yyBHL]−1

b: a = U(BHL)TΣ−1yy (y−BHx̄−)
c: x̄+ = x̄− + La

4: covariance matrix of model update
Ce(x+) = LULT

5: SEIK update of ensemble perturbations
a: Cholesky decomposition of (Ne − 1)-rank matrix U
U = CTC
b: generate orthonormal matrix using Householder transformation
Ω = generateOmega(Ne) (see Algorithm 4)
c: update of model state and parameter ensemble
X+ = X̄+

+
√
NeLCTΩT

the auxiliary matrix U and the vector a (line 3a-b) are used for an efficient estimation of
the update of the ensemble mean of model states and parameters x̄+ (line 3c). The error
covariance matrix of the model update is obtained using formal error propagation (line
4). As for the SQRA method, the SEIK filter also requires an update of the ensemble
perturbations. For this, Cholesky decomposition of the matrix U is performed (line 5a),
which enables a representation of the model update error covariance matrix by symmetric



84 5. Implementing C/DA to Merge GRACE and WGHM

matrix operations (see Eq. (4.23)) as it was also required in the SQRA method. Finally, by
means of the matrix Ω, whose columns are orthonormal and orthogonal to a vector that
contains only ones (line 5b, see also Algorithm 4), the update of each individual ensemble
member is calculated (line 5c).

Algorithm 4: Householder transformation.
Data:
Ne . . . Ensemble size (1×1)

Result:
Ω . . . Orthonormal matrix whose columns are orthogonal to a vector containing only the

number one (Ne × (Ne − 1))

1: Initialization
S =1 or -1

2: Generate orthonormal matrix
for k=2:(Ne−1) do

a: uniformly distributed random vector with length k and norm one
z = rand(k, 1)
z = z/norm(z)
b: Householder matrix associated to vector z

J = I− 1
1−z(1)

(
z(1)− 1
z(2 : end)

)(
z(1)− 1 z(2 : end)T

)
c: matrix defined by k − 1 columns
M = J(:, 2 : end)
d: Householder transformation
T =

(
z MS

)
e: set matrix of current step to matrix of previous step
S = T

end
3: make columns of S orthogonal to a vector containing only the number one

a: vector that contains only the number one divided by Ne with length Ne and norm one
e = ones(Ne, 1)
e = e/norm(e)
b: Householder matrix associated to vector e

J = I− 1
1−e(1)

(
e(1)− 1
e(2 : end)

)(
e(1)− 1 e(2 : end)T

)
c: matrix defined by k − 1 columns
M = J(:, 2 : end)

4: Householder transformation to obtain orthonormal matrix whose columns are orthogonal to
a vector containing only the number one

Ω = MS

To compute the matrix Ω (line 5b of Algorithm 3), an auxiliary matrix S is initialized
by randomly choosing 1 or -1 (line 1 of Algorithm 4). Then, a uniformly distributed
normalized random vector is sampled (line 2a). The Householder matrix J is determined
(line 2b), from which only the last k − 1 columns are used (line 2c) to calculate the
orthonormal matrix T (line 2d), which is extended in the next step (line 2e). Finally, S
is transformed in a way that its columns are orthogonal to a vector containing only ones.
For this, a vector containing ones for each element is generated and normalized (line 3a).
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The Householder matrix associated with this vector is determined (line 3b) and its last
Ne− 1 columns (line 3c) are used to transform the orthonormal matrix (line 4), and Ω is
then used in the SEIK filter (Algorithm 3).



.
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6. Covariance Analysis and Sensitivity
Study

Before developing the calibration and data assimilation (C/DA) framework (objective 1 of
this thesis), a covariance analysis and sensitivity study is performed. In a sensitivity study,
a large number of model parameter values is generated, the so-called parameter ensemble,
and it is used to perform an ensemble of model runs. The ensemble of model outputs
is then analyzed to determine those model parameters that exhibit the highest influence
on the model outputs (Hamby, 1994). In the context of model calibration, a sensitivity
study helps to decide which of the model parameters are crucial to be calibrated. In this
thesis, the sensitivity analysis is also useful to assess the empirical error covariance matrix
of WGHM simulations, which is used to estimate correlation coefficients between model
parameters and water state outputs.

First, the sensitivity index (SI, Hoffman and Gardner, 1983), the Spearman’s rank cor-
relation coefficient (SRCC, Iman and Conover, 1979) and the empirical model covariance
matrix are introduced in section 6.1 as measures of sensitivity. Second, an ensemble of
WGHM runs is used to investigate whether it adequately represents the standard WGHM
run (section 6.2.1). Then, the sensitivity of the water storage in individual compartments
with respect to changes in model parameter values is investigated in section 6.2.2 and the
results are presented for the Mississippi River Basin. A global sensitivity analysis was per-
formed for the 33 largest river basins world-wide to assess which parameters dominantly
influence the simulation of total water storage anomalies (TWSA). The results with re-
spect to the Mississippi and Murray-Darling River Basins are presented in section 6.2.3.
Both river basins will serve as test regions in chapters 7 and 8, where the C/DA frame-
work is implemented. In section 6.3, the main findings of the sensitivity investigations are
summarized. Parts of the regional and global sensitivity analysis have also been described
in Schumacher et al. (2016a).

6.1 Sensitivity Study Set-Up

In this thesis, the sensitivity of storage changes in WGHM compartments is assessed 1)
with respect to changes in one single model parameter, as well as 2) with respect to changes
in all parameters reported in Tab. 2.1. First,Ne realizations of a single model parameter are
generated, given the a priori probability density functions (PDF) in Tab. 2.1, while other
model parameters are assumed to be constant (top left column of Fig. 6.1). An ensemble
of free model runs, i.e. without considering any GRACE information, is generated for
different parameter values and considering identical climate forcing and initial water states
for 2002-2009 (center of Fig. 6.1). To evaluate the sensitivity of the modeled water storage
compartments to the changes in one particular parameter, the so-called sensitivity index
(SI, Hoffman and Gardner, 1983) is calculated. The SI describes the relative difference
between the minimum (Smin) and maximum (Smax) water storage output of the
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ensemble according to

ISI(i, j, k) =
Smax(j, k)− Smin(j, k)

Smax(j, k)
, (6.1)

with respect to parameter i, compartment j, and time step k. This is successively per-
formed for all possible calibration parameters, i.e. for the 22 WGHM parameters listed
in Tab. 2.1. SI is a simple measure, which is widely used due to its straight-forward in-
terpretation. However, it strongly depends on a priori selections of the PDFs of model
parameters, and it does not consider correlations between parameters.

Perturbed States

Ne samples of
- single parameter: Tab. 2.1 (others being 

constant)

Free Model
Run

WGHM
WGHM

Ne x

01/2002-
12/2009

Spearman‘s Rank
Correlation Coefficient
(SRCC)

Sensitivity Index (SI)

Evaluation

Perturbed States

Ne samples of
- all parameters: Tab. 2.1

- constant forcing: CRU TS 3.2, GPCC
- constant initial states: 7 years model initialization (1995 -2001)

Correlation Coefficient
(CC)

Figure 6.1: Overview of the set-up for the covariance and sensitivity analysis. The left column
(black boxes and arrows) represents the first sensitivity set-up, in which only one parameter is
modified for the Ne model runs and the others are considered as constant. The right column
(gray boxes and arrows) represents the second set-up, in which ensembles of all parameters are
generated simultaneously to perform the Ne model runs.

Secondly, realizations of all calibration parameters are therefore generated simultaneously
(top right column of Fig. 6.1). Then, in total Ne model runs are performed with different
values for each of the 22 parameters (center of Fig. 6.1). To evaluate the ensemble of
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WGHM water state outputs, the Spearman’s rank correlation coefficient (SRCC, Iman
and Conover, 1979) is determined (middle entry of bottom row in Fig. 6.1). The SRCC
allows to account for non-linear model equations by carrying out a rank transformation
of the parameters and states, i.e. the input parameters and output states are sorted in
ascending order according to their magnitudes, which defines their ranks. The Pearson’s
correlation coefficient between the ranks RPi

of the i-th parameter and the ranks RSj of
the water states in compartment j for each time step k is determined (Hamby, 1994) as
follows

ISRCC(i, j, k) =

∑Ne

n=1(RPi,n
(k)−RPi

(k))(RSj,n(k)−RSj(k))√∑Ne

n=1(RPi,n
(k)−RPi

(k))2
∑Ne

n=1(RSj,n(k)−RSj(k))2

. (6.2)

Herein, RPi
and RSj are the ensemble means (defined as unweighted means) of the ranks

of parameter i and water states in compartment j, respectively.

In addition, the empirical covariance matrix of the calibration parameters and water state
outputs, i.e.

Ce(x−k ) =

[
Ce(w−k ,w

−
k ) Ce(w−k ,p

−
k )

Ce(p−k ,w
−
k ) Ce(p−k ,p

−
k )

]
,

is determined using Eqs. (4.4) and (3.30). The block Ce(w−k ,p
−
k ) contains the covariances

between predicted model states w−k and parameters p−k . The correlation coefficients (CC,
hereafter named correlations unless stated otherwise) between predicted model states
(averaged over the Mississippi River Basin) and parameters are calculated according to

ICC(i, j, k) =
σpiwj

(k)

σpi(k)σwj
(k)

, (6.3)

where σpi(k) and σwj
(k) denote the standard deviations of the parameter i and water

states in compartment j at time step k, and σpiwj
(k) denotes their covariance (right entry

of bottom row in Fig. 6.1). Since GRACE does not observe the parameters directly, the
correlation values justify whether the observations will contribute in calibrating the model
parameters.

6.2 Covariance and Sensitivity Analysis

6.2.1 Analysis of Parameter Distributions

It is obvious that the results of the covariance and sensitivity analysis directly depend on
the chosen PDFs for the model parameters (see Tab. 2.1). Therefore, the ensemble mean
of Ne = 60 free model runs is compared to the standard WGHM simulation to investigate
whether the WGHM ensemble adequately represents the standard run. For 21 WGHM
parameters, the simulated TWS time series differ less than 1 cm from each other. However,
changes in the groundwater baseflow coefficient (IN=19 in Tab. 2.1) lead to a negative bias
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in the ensemble mean of about 2 cm in groundwater and TWS compared to the standard
model run (Fig. 6.2 a, b). To handle this, the PDF of the groundwater baseflow coefficient
with 0.01 as mode and 0.006 and 0.1 as limits is modified to keep the difference between the
ensemble mean and the standard model run less than 1 cm for total and individual water
storage changes (Fig. 6.2 c, d). The mode of the new triangular distribution is empirically
determined as 0.006 with 0.006 and 0.018 being the lower and upper limit values. In this
case, the mode and the lower limit of the distribution coincide. This modified PDF results
in lower baseflow and more groundwater storage, which might be a good choice given that
WGHM tends to underestimate seasonality. However, a selection of other PDFs would
have been possible.

In addition, the a priori limits of the triangular distribution of wetland depth are modified
from 1 m and 20 m to 0.5 m and 5 m. Only in exceptional cases like the Amazon River
Basin, a wetland depth of 20 m might occur. Therefore, the modified PDF fits better in
most regions of the world, but this would not work for the Amazon River Basin.
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Figure 6.2: Time series of a) groundwater and b) TWS averaged over the entire Mississippi
River Basin are shown, while using the a priori PDF in Tab. 2.1 to generate realizations of the
groundwater outflow coefficients. Time series of c) groundwater, as well as d) TWS are shown,
while using the modified PDF in section 6.2.1.

6.2.2 Sensitivity of Individual Water Storage Changes

To identify sensitive WGHM parameters, which predominantly influence the water stor-
age compartments, the SI, SRCC, and CC between the water states averaged over the
Mississippi River Basin and each model parameter for each month in 2002-2009 are de-
termined (see Fig. 6.1). As an example in Fig. 6.3, the time evolution of the SI and CC



6.2. Covariance and Sensitivity Analysis 91

between the averaged snow and soil water storage and all model parameters are shown
for 2008 (see also Schumacher et al., 2016a). Figure 6.3 a shows that considering SI as a
measure of sensitivity, the snow storage is identified to be highly sensitive with respect
to changes in the snow melt temperature (IN=13), the precipitation multiplier (IN=22)
and the net radiation multiplier (IN=6) parameters. This can be understood by consid-
ering the physical meaning of these parameters: the precipitation multiplier represents a
multiplication factor applied to the input forcing fields after interpolation to daily rainfall
values; snow melts when the actual temperature exceeds the snow melt temperature; and
the net radiation multiplier is used to scale solar radiation, which controls the potential
evapotranspiration from land and water bodies. Note that between May and November
no sensitivity is observed for the snow compartment, since there is usually no snow in the
basin at this time.
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Figure 6.3: Time evolution of the SI between the 22 model parameters and the basin mean of
the a) snow and b) soil compartment, and of the CC for the c) snow and d) soil compartment.
The parameters with the highest correlations to the averaged compartment states are listed in
the legend. The gray lines belong to the other parameters. See Tab. 2.1 for parameter names.
This figure is taken from Schumacher et al. (2016a).

The CC confirms the high sensitivity of the snow storage change to the snow melt tempera-
ture and the precipitation multiplier (Fig. 6.3 c). However, high correlations are also found
between the snow storage and the groundwater factor multiplier (IN=16). This parameter
does not exhibit a direct physical relationship to the snow compartment. It appears this
correlation is introduced through joint dependence of other perturbed parameters, and
thus is only captured by CC and not by SI. The magnitude of the correlations is found
to be different, e.g., the maximum correlation value for the snow melt temperature varies
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between 0.5 in case of SI and 0.8 in case of CC and SRCC. However, the overall interpre-
tation of all metrics leads to the same result: the snow melt temperature (IN=13) is the
most important parameter with respect to the snow storage (see also Tab. 6.1).

For the soil compartment, the SI approach identifies high dependencies between soil water
changes and the net radiation multiplier (IN=6), the root depth multiplier (IN=1), and the
precipitation multiplier (IN=22) for the year 2008 (Fig. 6.3 b). The sensitive parameters
for the soil water storage are confirmed by evaluating the CC and the SRCC (Fig. 6.3 d,
here shown for CC).

Storage changes in the other individual compartments show lower variability of the SI,
SRCC, and CC during the year 2008. Therefore, their time series are not shown here. The
most sensitive parameters based on the analysis of SI, SRCC, and CC (temporal averaged
during 2002-2009) are summarized in Tab. 6.1 as ISI, ISRCC, and ICC.

Table 6.1: Most sensitive parameters are indicated for the Mississippi River Basin corresponding
to the ten individual water storage compartments of WGHM. The identification numbers of the
parameters (i=IN) can be found in Tab. 2.1. The overline denotes the temporal average. In case
that only one parameter is provided, the index is zero for all other parameters.

Three most sensitive parameters i
Compartment j ISI(i, j) ISRCC(i, j) ICC(i, j)
canopy 10 10, 6, 7 10, 6, 7
snow 13, 22, 6 13, 22, 16 13, 22, 16
soil 6, 1, 22 1, 6, 3 1, 6, 9
local lake 3, 5, 6 3, 7, 6 3, 7, 6
local wetland 4, 5, 22 4, 5, 22 4, 22, 5
global lake 3 3, 7, 2 3, 7, 5
global wetland 4 4, 22, 9 4, 22, 5
reservoir 22, 6, 7 22, 6, 1 22, 6, 7
river 2, 6, 22 2, 6, 22 2, 6, 22
groundwater 6, 21, 17 21, 6, 7 19, 6, 21

Changes in the maximum canopy water height (IN=10), as well as the net radiation
multiplier (IN=6), and the Priestley-Taylor coefficient for humid areas (IN=7) consider-
ably influence the canopy water storage. All metrics suggest that the lake and wetland
compartments are mostly sensitive to changes in the lake and wetland depth (IN=3 and
IN=4), respectively. The precipitation multiplier (IN=22) and the surface water outflow
coefficient (IN=5) also exhibit a high impact on the water storage in surface water bodies.
Furthermore, the river storage is most sensitive to the river roughness coefficient (IN=2),
the net radiation (IN=6) and the precipitation multiplier (IN=22), whereas the multipliers
also show a high influence on reservoirs. For the groundwater compartment, all metrics
indicate high influences of the net radiation (IN=6) and net groundwater abstraction
multiplier (IN=21).
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6.2.3 Sensitivity of TWSA

In Schumacher et al. (2016a), a sensitivity analysis for the 33 largest river basins world-
wide was performed. For this, the SRCC between the calibration parameters and monthly
GRACE TWSA averaged over the 33 basins were calculated. Different parameters were
identified for these basins that exhibit the most dominant influence on simulated TWSA
(Fig. 3, 4 in Schumacher et al., 2016a). Numerous river basins (e.g., the Mississippi River
Basin) were found to react very sensitive to changes in the net radiation multiplier, the
river roughness coefficient and the precipitation multiplier. Thus, it is concluded that
these calibration parameters have an overall strong influence.

In Güntner et al. (2007) and Werth and Güntner (2010), a sensitivity study of WGHM
parameters was reported. Their study used the WGHM version 2.1 f that is calibrated for
724 river basins. WGHM was forced by time series of the Climate Research Unit (CRU TS
2.0). In contrast, CRU TS 3.2 and precipitation data from GPCC are used in this thesis
(see section 2.2.2.2). In Güntner et al. (2007) and Werth and Güntner (2010), Ne = 2000
ensemble members were generated from uniform, triangular and normal distributions for
36 calibration parameters (Kaspar, 2004), as well as for climate input fields comprising
precipitation, the number of rain days, temperature and sunshine duration. The SRCC was
used as a measure of sensitivity and was determined between the calibration parameters
and the mean annual amplitude of TWS as a measure for sensitivity for the 22 largest river
basins world-wide. To make the presented investigations comparable to their results, the
global sensitivity analysis is repeated for the mean annual amplitude of TWS. However,
the 33 largest river basins world-wide are considered and the climate input fields are not
perturbed.

The parameters, that are found to be sensitive in this study, confirm some of the sensitive
parameters that were listed in Güntner et al. (2007) as well as Werth and Güntner (2010)
but not all of them. The reason for this is not clear but it might be explained due to
differences in the study set-ups. As an example, for the Mississippi River Basin, the
snow melt temperature (IN=13), the precipitation multiplier (IN=22), the groundwater
baseflow coefficient (IN=19), the root depth multiplier (IN=1), the critical precipitation
for groundwater recharge in semi-arid and arid regions (IN=18), and the maximum daily
potential evapotranspiration (IN=9) are identified as most sensitive. Only the root depth
multiplier and the snow melt temperature were also found to be sensitive in Güntner et al.
(2007) as well as Werth and Güntner (2010). For the Murray-Darling River Basin, it was
found that the net radiation multiplier (IN=6), the precipitation multiplier (IN=22), the
root depth multiplier (IN=1), the Priestley-Taylor coefficient for arid areas (IN=8), the
net abstraction surface water multiplier (IN=20), and the temperature gradient (IN=15)
have a high impact on the simulation of TWSA. However, from these parameters only the
Priestley-Taylor coefficient for arid areas was found to be sensitive in the study of Güntner
et al. (2007) as well as Werth and Güntner (2010). In summary, the results of the global
comparison only confirm some of those parameters with large model sensitivity in the
world’s largest river basins that were found in Güntner et al. (2007) as well as Werth and
Güntner (2010). In their studies, parameters that govern radiation were identified as most
sensitive, while in this study precipitation and net radiation multipliers are identified.
Thus, a strong overall dependence of TWS on climate input is found in all investigated
studies.
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6.3 Discussion and Conclusions of the Sensitivity In-
vestigations

The analysis of the SI, the SRCC, and the CC indicates that correlations between the
model states and parameters exist and are mostly larger than 0.2, and thus enabling the
parameter calibration by GRACE measurements. This supports hypothesis I of this thesis:
The simulated water storage changes must be sensitive to changes in model parameters,
and thus, enabling the calibration of parameters using GRACE TWSA via model state-
parameter correlations. By performing the analysis for the Mississippi River Basin, it was
demonstrated that the water compartments are sensitive to different model parameters.

However, it was noticed that some of the identified parameters do not have any direct
physical relationship to the storage compartment (e.g., the groundwater factor multiplier
for snow or the net radiation multiplier for groundwater). It is possible that spurious cor-
relations exist when generating realizations of all calibration parameters simultaneously.
This might be due to an over-parametrization, i.e. too many parameters are considered in
the sensitivity analysis that influence each other. Some of these parameters might have a
contrary effect on the model outputs, and therefore, their effects are compensated. This
suggests investigations on the optimal selection and number of WGHM parameters to be
calibrated within the EnKF update.

In addition, the time evolution of the parameter-state correlations indicates that the
impact of GRACE TWSA in the calibration procedure changes over time. Therefore,
calibrating the model parameters at least for one full year is required, since some param-
eters such as those related to the snow compartment cannot be updated during summer.
Probably, this is the most obvious case, others may also exist.

The sensitivity analysis with respect to the SRCC could confirm some parameters, which
were identified to be most sensitive in the previous studies of Güntner et al. (2007) as well
as Werth and Güntner (2010). Based on the global sensitivity analysis of the 33 largest
river basins world-wide (Schumacher et al., 2016a) and regarding the results in this thesis
for the Mississippi and Murray-Darling River Basins, a basin-specific parameter calibration
seems appropriate, since different sensitive parameters are found in different river basins.

Finally, it is worth mentioning that in traditional hydrological calibration 1000-2000 en-
semble members are generated to perform a sensitivity analysis. Here, Ne = 60 samples
were chosen to use more or less the same ensemble size that will be used in the application
of the developed C/DA framework (chapters 7 and 8). It was shown that the calibration
of WGHM parameters against GRACE TWSA seems possible. However, it should be
stressed that a larger ensemble size will likely enable a more statistically stable estimation
of the sensitive parameters.
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7. Synthetic Experiment

A synthetic experiment was designed to test the developed calibration and data assim-
ilation (C/DA) framework. The advantage of a simulation is that the true total and
compartmental water states and fluxes are known by definition. This enables to compare
the updated model states with true time series and to assess the performance of the C/DA
framework under different configurations.

In section 7.1, the set-up of a twin experiment to assimilate synthetic GRACE total
water storage anomalies (TWSA) into the WaterGAP Global Hydrology Model (WGHM)
for the Mississippi River Basin is introduced. This basin was chosen, since it will also
serve as a test region for the assimilation of observed GRACE TWSA in section 8.1.
The impact of different configurations on the C/DA results is discussed in section 7.2.
This includes considering a diagonal or full observation error covariance matrix in the
ensemble Kalman filter (EnKF) update step to identify how the implementation of the
correlated errors of GRACE TWSA affects the C/DA results (part 1 of objective 2, see
section 7.2.1). Afterwards, the observations are aggregated to different spatial scales to
investigate the effect of the spatial resolution of the observations on the C/DA results
(part 2 of objective 2, see section 7.2.2). Furthermore, the square root analysis (SQRA)
scheme and the singular evolutive interpolated Kalman (SEIK) filter technique are applied
to update WGHM water states and parameters and these are compared to those of the
EnKF. This is applied to understand the impact of alternative filtering methods on the
C/DA results (objective 3, see section 7.2.3). A discussion on the calibration parameters
is provided in section 7.2.4.

Parts of these assessments were presented in Schumacher et al. (2016b). As it is not trivial
to choose an appropriate ensemble size for our study, here in addition, an analysis of the
impact of the ensemble size on C/DA results is performed (section 7.2.5). Finally, the
findings are summarized in section 7.3.

7.1 Twin Experiment Set-Up

An overview of the twin experiment set-up is given in Fig. 7.1. The experiment starts with
the definition of “true” hydrological water states (left column in Fig. 7.1). For this, WGHM
is driven by daily time series from the WFDEI meteorological data set (see section 2.2.2.2).
The applied “true” model parameters are the calibrated values derived from the C/DA
study by Eicker et al. (2014, see also section 8.1). WGHM is initialized over a period of
nine years (1995-2003), followed by a three years model forward integration phase (2004-
2006). Eventually, the monthly outputs of true total and compartmental water states serve
as the basis to assess the C/DA results.

An imperfect representation of the truth in the analysis is realized by replacing the daily
forcing with monthly time series of temperature, cloudiness and the number of wet days
in months from CRU TS 3.2, as well as precipitation from GPCC (see section 2.2.2.2). In
addition, the model parameters reported in Tab. 2.1 are used (second column in Fig. 7.1).
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True States Perturbed States

Forcing: WFDEI
Parameters: ensemble means
in 12/2005 (Eicker et al., 2014)
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- Parameters: Tab. 2.1
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Comparison

Figure 7.1: Overview of the twin experiment set-up, in which the true and perturbed model
states are explained in the first row. Model prediction in open loop (OL) mode, i.e. without
integrating GRACE data, and in C/DA mode for the Ne generated model ensemble members
are shown in the second and third column. The generation of synthetic GRACE-like observations
is described in the bottom row. OL and C/DA variants are compared to the true states. The
performance of the C/DA variants is analyzed compared to the OL performance and compared
to each other. This scheme is taken from Schumacher et al. (2016b).

An ensemble size of Ne = 30 samples is defined as a trade-off between computational
costs, storage capacity and representative error statistics, and it is in accordance with
previous GRACE data assimilation studies in hydrology, i.e. from five ensemble members
in van Dijk et al. (2014) to 25 in Su et al. (2010), and 30 in Eicker et al. (2014). Con-
sequently, errors of the model simulation are represented by an ensemble of 30 randomly
perturbed precipitation and temperature input fields (see section 5.2.3 for details), and by
an ensemble of calibration parameters according to the distributions provided in Tab. 2.1.
For generating an ensemble of initial water states, the model initialization phase is short-
ened to seven years, and a spin-up phase of two years (2002-2003) is performed using the
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parameter and climate input ensembles. The model outputs for the individual water com-
partments are introduced as initial values at the beginning of the C/DA phase. Open loop
(OL) simulations are performed without integrating GRACE TWSA observations during
2004-2006 for each of the initial model ensemble members. The model prediction vector,
Eqs. (4.6), (4.9) and (4.20), in this study is composed of monthly means of model derived
water states in the ten individual water compartments for each of the 1262 grid cells in
the Mississippi River Basin and the 20 WGHM calibration parameters. Please note that
the lake depth and wetland depth (IN=3 and IN=4) are not included in this study.

The synthetic GRACE-like TWSA observations are generated in four steps (bottom row
in Fig. 7.1): (1) 0.5◦× 0.5◦ gridded monthly means of TWS outputs of the true model
are reduced by their temporal mean over the C/DA period during 2004-2006. (2) These
values are then spatially averaged to four (similar to Zaitchik et al., 2008) and eleven
sub-basin means, as well as sixteen 5◦× 5◦ grid cells (similar to Eicker et al., 2014),
where the boundaries are taken from Fig. 7.2. (3) Spatially correlated errors of TWSA
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Figure 7.2: Sub-basins within the Mississippi River Basin. The four sub-basin definition is
chosen similar to Zaitchik et al. (2008) and is shown with shaded areas. Eleven sub-basins are
shown with the thick gray polygons. The grid definition is chosen similar to Eicker et al. (2014)
and is shown using the thin black lines.

are generated by error propagation of the full ITG-Grace2010 error covariance matrix in
08/2003 (http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010). In this study,
a time-constant observation error covariance matrix is assumed. The sub-basin/grid cell
size influences the number of grid cells with error correlations, as well as the magnitude
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of correlations, which increases when selecting smaller spatial averages. Correlations be-
tween GRACE TWSA errors of up to -0.5 exist when assimilating four sub-basin-averaged
observations, up to 0.9 can be seen in case of eleven sub-basin averages, and the corre-
lations exceed 0.9 in case of gridded observations being assimilated (for details see Fig.
6 in Schumacher et al., 2016b). The generated correlated errors are added to the TWSA
time series derived in step 2. (4) Merging TWSA from the perturbed model states and the
synthetic observations requires that the same temporal mean has been removed. There-
fore, the temporal means of the OL simulations are added to the synthetic TWSA. As a
result, corresponding to the number of sub-basins, the observation vector in Eqs. (4.6),
(4.9), and (4.20) includes four, eleven or 16 sub-basin/grid cell averaged TWSA values.

To integrate the synthetic GRACE TWSA observations into WGHM, a range of configu-
rations is defined (third and last column in Fig. 7.1, and Tab. 7.1): The EnKF, SQRA or
SEIK is used (first column in Tab. 7.1), and the GRACE TWSA observations are averaged
over four sub-basins, eleven sub-basins or 16 grid cells (second column in Tab. 7.1), while
either white noise (indicated by “w”) is assumed or correlated TWSA errors (indicated by
“c”) are considered in the update step (third and fourth column in Tab. 7.1). In addition,
the ensemble size Ne is modified between 10, 30, 60 and 100 samples (last column in
Tab. 7.1). In the ensemble filter updates, the principle of mass conservation, which is a
basic assumption in hydrological models, is violated. Water mass might be added to or
removed from the model. Additionally, an inflation factor of 10 % is introduced in all
variants for representing errors in the model structure as well as in order to mitigate fast
ensemble convergence. This factor is experimentally chosen as small as possible to avoid a
strong influence on the model ensemble, and large enough to ensure that a contribution of
the GRACE observations to the model update is guaranteed over the entire study period.
An overview of the variants used in this study is given in Tab. 7.1. Here, in addition
to the investigations reported in Schumacher et al. (2016b), the influence of alternative
methods on the individual water storage compartments (not only on TWSA) is analyzed,
and the influence of the ensemble size Ne on the performance of the C/DA framework is
investigated.

Table 7.1: Calibration and data assimilation (C/DA) variants used in this study. For each case,
an inflation factor of 10 % is used.

Variant Name
Filter Method Discretization White Noise Correlated Noise Ensemble Size

EnKF 4 sub-basins 4 w 4 c 30
EnKF 11 sub-basins 11 w 11 c 30
EnKF 16 grid cells 16 w 16 c 30
SQRA 11 sub-basins Sq w Sq c 30
SEIK 11 sub-basins Se w Se c 30
EnKF 11 sub-basins - 10 10
EnKF 11 sub-basins - 60 60
EnKF 11 sub-basins - 100 100
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7.2 Influence of C/DA Configurations on the Results

7.2.1 Choice of the Observation Error Model

In Fig. 7.3, the time series of total and compartmental water storage changes averaged
over the Ohio/Tennessee Basin are shown: The C/DA results when introducing eleven
sub-basin averaged TWSA observations and considering correlated TWSA errors in the
EnKF update are shown as an example (variant 11 c in Tab. 7.1); the synthetic true and
perturbed model states are included as references. The perturbed model states strongly
overestimate the seasonal variations of TWSA compared to the synthetic truth (7.3 a).
Assimilating synthetic GRACE observations into WGHM reduces the variability and
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Figure 7.3: Time series of a) total and b)-f) compartmental water storage anomalies averaged
over the Ohio/Tennessee Basin are shown for the synthetic truth, the perturbed model run, and
the EnKF variant 11 c (see Tab. 7.1).

therefore results in a much better agreement with the synthetic truth. Water is stored
in form of snow only during January to March, whereas the perturbed model run suggests
a higher amount of snow water than the synthetic truth (7.3 b). Assimilation of GRACE
TWSA also reduces the amount of snow. Thus, the EnKF variant 11 c (see Tab. 7.1) rep-
resents the true snow water states better than the OL variant. While changes in surface
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water bodies and rivers only show small contributions to TWSA (7.3 c, d), soil water
and groundwater variations influence TWSA throughout the whole year. During the first
update steps in 2004, the soil water storage only obtains small update increments, such
that the updated values are close to the perturbed model water states (7.3 e). In contrast,
large update increments are associated with the groundwater storage (7.3 f). However, the
updated values in 2004 do neither fit well to the true nor to the perturbed model water
states. It seems that the vertical disaggregation of TWSA into soil water and groundwa-
ter does not fully succeed. The water mass that is reduced from the groundwater storage
would actually be needed to be reduced from the soil water. In 2005 and 2006, the soil
water changes follow the true values very closely after C/DA, while groundwater obtains
smaller update increments resulting in values close to the perturbed model water states.

To evaluate the time series averaged over the Ohio/Tennessee Basin, several metrics are
calculated with respect to the synthetic truth and are shown for the different EnKF vari-
ants in Fig. 7.4: (i) the root mean square error (RMSE), (ii) the correlation between
residual curves after subtracting a linear trend, annual and semi-annual cycles, and (iii)
the relative annual amplitudes, i.e. zero represents equal amplitudes. (i) Reductions in
RMSE for the EnKF results compared to the OL results indicate that the temporal vari-
ability of total and individual water states is closer to the synthetic truth, while (ii) the
residual correlation provides information on the phase (or timing) of the time series. A
higher correlation indicates a better agreement with the true time series. In addition, (iii)
the relative annual amplitude shows that the seasonal amplitude is closer to the truth.
Metrics associated with TWSA are shown along the top row of Fig. 7.4, while the fol-
lowing rows correspond to the individual water compartments (snow, soil, surface water,
river and groundwater). Each individual subplot contains the results from OL (shown in
gray) and C/DA indicating the discretization level of assimilated TWSA observations.
White bars correspond to the white observation noise introduced in the EnKF update
step (additionally indicated by “w”), while black bars denote results from considering
correlated observation errors (indicated by “c”). In all cases, TWSA are improved after
C/DA compared to OL; yet assimilating GRACE data into WGHM does not guarantee
an improved simulation of individual compartments. This is observed here for the surface
water and groundwater in terms of RMSE, as well as for soil and groundwater in terms
of residual correlations. Some metrics reveal that it is helpful to consider the full GRACE
error covariance matrix, e.g., RMSE of surface water and river, as well as residual cor-
relations of soil and groundwater in case of 16 c compared to 16 w (see Tab. 7.1), while
others show a negative impact (e.g., RMSE of TWSA, soil and groundwater, as well as
residual correlation of TWSA). These results indicate that the chosen observation error
model has a considerable impact on the C/DA results in terms of TWSA as well as for
several individual water storage compartments.

For all EnKF variants, water mass is removed from the model (see Fig. 8 in Schumacher
et al., 2016b), which results in a more realistic representation of TWSA (see Fig. 7.3
a). Water is mainly removed from the soil water and from the river compartments, as
well as from snow in winter months, while water is generally added to the groundwater
compartment. The absolute mass change of TWSA, i.e. the sum of the absolute values of
the update increments (difference between model update and prediction) over the entire
study period, is about 300-400 mm depending on the EnKF variant. The largest parts of
the mismatch between observed and simulated TWSA are associated with the soil water
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Figure 7.4: Root mean square error (RMSE), residual correlations, and relative annual ampli-
tudes of total and individual water storage anomalies averaged over the Ohio/Tennessee Basin
from open loop (OL) runs and C/DA results with respect to the truth. The time series and
overall amplitudes are shown in Fig. 7.3 for EnKF variant 11 c (see Tab. 7.1). The definition of
the names used in the x-axis can be found in Tab. 7.1. Some bars are truncated in order to fit the
shown range. For these, the values are displayed at the top (or bottom) of the bar. This scheme
is taken from Schumacher et al. (2016b).
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and groundwater compartments with about 200-300 mm each. Since the EnKF update
does not conserve water mass, the absolute mass changes indicate the degree of violating
the principle of mass conservation.

The analysis is also performed for the spatial averages over the entire Mississippi River
Basin and the remaining sub-basins (Fig. 9 in Schumacher et al., 2016b). The interpreta-
tion of the other regions confirms the findings for the Ohio/Tennessee Basin. In addition,
higher impacts of the observation error model were found in those sub-basins with high
EnKF update increments, i.e. in sub-basins with large discrepancies between modeled and
observed TWSA or in sub-basins with accurate TWSA observations. Furthermore, it was
demonstrated that sub-basins with north-south expansion are predominantly affected by
the chosen observation error model in the EnKF.

7.2.2 Choice of the Spatial Resolution of Observations

Similar results were found for both EnKF variants 11 w and 16 w, which means that
the change of the spatial resolution of the observations from eleven sub-basin averages to
sixteen grid cell averages has only a small influence on the C/DA results (see Fig. 7.4). A
similar conclusion holds for the cases 11 c and 16 c. Only the residual correlation between
true soil changes and simulated soil changes after C/DA is considerably reduced to 0.1
in case 11 c. In contrast, switching from a diagonal to a full observation error covariance
matrix in the EnKF update step has a clear impact on the C/DA results (compare e.g., 11
w and c, as well as 16 w and 16 c in Fig. 7.4). However, when assimilating synthetic TWSA
aggregated to four sub-basins (case 4 w and 4 c), the effect of changing the observation
error model in the EnKF update is found to be small.

7.2.3 Choice of Alternative Filtering Methods

The SQRA and SEIK algorithms are also applied to assimilate the eleven sub-basin obser-
vations into WGHM. As for the application of the classical EnKF, some metrics indicate
that it is helpful to consider correlated errors of GRACE, while it seems to have an ad-
verse impact on others (Fig. 7.5). Implementing the SQRA and SEIK has only a small
influence on the RMSE of TWSA with respect to the classical EnKF when considering
white noise in the update step (less than 2 mm). In case of SQRA, the residual correlation
is even degraded by 0.1. After considering correlated errors in the SEIK filter, the RMSE
is improved by 6 mm and the residual correlation by 0.1. The application of SQRA and
SEIK only marginally influences the snow compartment, as well as the RMSE and relative
annual amplitude of surface water changes compared to the classical EnKF. In contrast,
both methods help to considerably increase the residual correlation of soil water from
0.12 to 0.75 and 0.70 in case of using correlated observation errors in the update step
(compare 11 c with Sq c and Se c in Fig. 7.5). In case of SQRA, even an improvement
compared to the OL was achieved. The residual correlation of groundwater is however
reduced. This confirms the assumption that dependencies between soil water and ground-
water time series exist, which complicate the vertical disaggregation of TWSA into these
two compartments.
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Figure 7.5: Root mean square error (RMSE), residual correlations, and relative annual am-
plitudes of total and individual water storage changes averaged over the Ohio/Tennessee Basin
from open loop (OL) runs and C/DA results based on EnKF (11 w and 11 c), SQRA (Sq w and
Sq c) or SEIK (Se w and Se c) with respect to the truth. The time series and overall amplitudes
are shown in Fig. 7.3 for EnKF variant 11 c. The definition of the names used in the x-axis can
be found in Tab. 7.1. Some bars are truncated in order to fit the shown range. For these, the
values are displayed at the top of the bar.
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7.2.4 Calibration Parameters

The impact of GRACE TWSA on model calibration parameters is influenced by the num-
ber of observations that are assimilated into WGHM. Those parameters are defined as
sensitive to TWSA assimilation, whose ensemble spread is reduced to less than 25 % of its
initial spread after 18 months (see Tab. 6 in Schumacher et al., 2016b). Using synthetic
observations averaged over four sub-basins does not affect the parameter estimation. En-
hancing the spatial resolution to smaller sub-basins indicates that 15 % of the calibration
parameters are sensitive to GRACE C/DA (case 11 w). Using gridded GRACE TWSA
increases the impact from 15 % to 55 % in case of 16 c. The number of sensitive parame-
ters is found to be higher when introducing the correlated observation error model in the
update step. The number of sensitive parameters also grows up to 40 % when applying the
SQRA and SEIK algorithms. However, it cannot be stated with certainty that individual
parameter values improve after C/DA. The reason for this is equifinality, i.e. different
parameter sets may result in a similar optimal simulation of WGHM water states.

7.2.5 Choice of the Ensemble Size

To investigate how the ensemble size affects the C/DA performance within the classical
EnKF, eleven sub-basin average observations are also assimilated into WGHM using 10, 60
and 100 model ensemble members, while considering the full observation error covariance
matrix. The RMSE, the residual correlation, and the relative annual amplitudes with
respect to the synthetic truth are shown in Fig. 7.6. Generating only ten ensemble members
does not improve the simulation of TWSA in terms of RMSE and in terms of residual
correlation with respect to the run with 30 samples. This was expected, since enlarging
the ensemble size likely leads to a more stable computation of the model error covariance
matrix, and thus, yields a more realistic weighting of model and observations in the EnKF
update. It is reasonable that an ensemble of ten samples is too small to well represent the
model error statistics. When performing C/DA with 60 or 100 samples, the representation
of TWSA in terms of RMSE is improved by 3 mm and 4 mm compared to the run with 30
samples and in terms of residual correlation by 0.1 in both cases. The difference between
the metrics when using 60 or 100 samples is marginal, i.e. less than 1 mm in terms of
RMSE and there is no difference in residual correlation. The representation of snow has not
become better with respect to OL when considering only 10 samples in the assimilation.
However, improvements are achieved for the other compartments, except for the residual
correlation of soil water and for the relative annual amplitude of the river. The usage
of 60 or 100 samples improves the RMSE of all individual compartments compared to
the C/DA run with 30 samples. The residual correlation is better for snow, soil water
and river but not for surface water and groundwater. A comparison of the metrics with
respect to TWSA for 100 samples and for the application of the SEIK filter (case Se c in
Fig. 7.5) reveals less than 1 mm difference in terms of RMSE, and less than 0.02 in terms
of residual correlation. The performance metrics of the individual compartments exhibit
also similar values.

In the following, the computational issues related to the choice of the ensemble size are
discussed. The computations have been performed on the cluster of the APMG/TG groups
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Figure 7.6: Root mean square error (RMSE), residual correlations, and relative annual ampli-
tudes of total and individual water storage changes averaged over the Ohio/Tennessee Basin from
open loop (OL) runs and C/DA after applying the classical EnKF, and varying the ensemble
size (numbers in the x-axis; case 30 denotes the EnKF variant 11 c in Tab. 7.1). The time series
and overall amplitudes are shown in Fig. 7.3. Some bars are truncated in order to fit the shown
range. For these, the values are displayed at the top of the bar.

at the Institute of Geodesy and Geoinformation, University of Bonn. This cluster has 32
cores, from which 30 cores were used to run the 30 model samples in parallel. For merging
GRACE and WGHM over three years for the Mississippi River Basin, the computation
time was about 7 hours (Fig. 7.7). Decreasing the number of observations to 10 shortened
the computation time to three hours, which corresponds to approximately 43 %. Increasing
the ensemble size to 60, lengthened the computation time by 71 % to 11 hours and by
143 % in case of 100 ensemble members. The required storage capacity also grows with
the number of ensemble members, e.g. from 53 GB in case of 30 samples to 171 GB in
case of 100 samples. For this purpose, the source code needs to be optimized for future
applications.

7.3 Discussion and Conclusions of the Synthetic Study

The results of the synthetic experiment show that C/DA of GRACE TWSA into WGHM
improves the representation of simulated TWSA (hypothesis II a of this thesis). How-
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a) b)

Figure 7.7: a) The computational time (in hours) and b) the required storage (in GB) depending
on the ensemble size are shown for the assimilation of synthetic GRACE data into WGHM for
the Mississippi River Basin over three years.

ever, it does not guarantee improvements for individual water storage compartments (hy-
pothesis II b of this thesis). Insufficiently resolved or numerically introduced correlations
between the individual states, as reflected in the error covariance matrix of the model (hav-
ing a rank-defect and showing large condition numbers), might result in a deterioration
of individual water compartment estimates. Investigations on estimating data-adaptive
empirical and analytical covariance functions might help to tackle this challenge.

The findings suggest that error correlations of GRACE should not be neglected, since
they affect the C/DA results considerably (hypothesis IV of this thesis). However, no gen-
eral rule can be formulated that states whether applying correlated GRACE errors in the
update step improves the agreement with the synthetic truth. Yet, the description of the
GRACE errors is more realistic. For GRACE assimilation, the vertical and horizontal dis-
aggregation is challenging, because the spatial scales of GRACE TWSA error correlations
of a few hundred km are similar to the scales of physical correlations of land surface and
groundwater variables in hydrological models. In addition, the assumption of spatially un-
correlated observation errors results in higher weights for the GRACE data in the update
step. Therefore, the model update is usually pulled closer towards GRACE TWSA than
with the correlated noise model; yet this does not always mean that the metrics of total
and individual water states improve. It is thus difficult to directly compare experiments
with and without (or with partly) implementing error correlations. This is made worse
by the fact that in limited-size ensemble approaches the model covariance matrix has a
rank-defect. A full-rank observation error covariance matrix enables a numerically stable
solution of the EnKF update equation. Therefore, assuming spatially uncorrelated errors,
i.e. a diagonal covariance matrix, has a regularization effect.

In summary, it has been demonstrated that investigations on the observation error model
(which has not been done so far) are at least as important as studies on the choice of
observation discretization (which has been tackled in previous GRACE data assimilation
studies). The investigations also indicate that the observation error model in the filter
update step affects the C/DA results on the three selected spatial scales, i.e. when assim-
ilating GRACE TWSA as four or eleven sub-basin averages and 16 grid cells. The effect
of changing the observation error model is found to be large for TWSA and several indi-
vidual storage compartments, when assimilating TWSA with a fine spatial discretization.
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Regarding e.g., groundwater, the effect of changing the observation error model is large
for all selected spatial scales.

Promising results were found after applying alternative ensemble filter methods. Partic-
ularly, applying the SEIK filter and considering correlated GRACE errors improved the
RMSE and the residual correlation of TWSA by 6 mm and 0.10 with respect to the
classical EnKF. A likely explanation for this is that the EnKF relies on an observation
ensemble to update each model sample individually, which introduces sampling errors.
The SEIK and SQRA filter avoid this by updating the model ensemble mean. In addition,
the SEIK filter uses the minimum second order exact sampling method to update the
model ensemble perturbations, and thus ensures that no additional sampling errors are
introduced.

The number of parameters that are sensitive to assimilation of GRACE TWSA into
WGHM increases particularly when considering TWSA averaged over small sub-basins.
However, the uncertainties of several parameters do not decrease during the ensemble
updates. The choice of a smaller sub-set of the 22 parameters might enlarge the impact
of GRACE TWSA assimilation on model parameters.

Two strategies were identified that almost always improve the performance of the C/DA
procedure. First, increasing the number of ensemble members from 10 to 30, and then
to 60 and 100 improves the C/DA results of TWSA and the majority of the individual
compartments. However, using 100 samples instead of 60 has marginal influence on the
metrics. Second, implementing the SEIK filter with 30 ensemble members shows a sim-
ilar performance compared to the application of the classical EnKF with 100 ensemble
members. Therefore, alternative methods can help to keep the ensemble size small which
is necessary to minimize computational costs and required storage.



.
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8. Case Studies

To test the calibration and data assimilation (C/DA) framework with observed data,
GRACE total water storage anomalies (TWSA) are assimilated into the WaterGAP
Global Hydrology Model (WGHM) for the Mississippi River Basin (USA) for one year
(section 8.1). Afterwards, the model is run for the following three years with the param-
eter values calibrated from the previous one year assimilation. Subsequently, the simu-
lated TWSA states are compared to GRACE measurements. Furthermore, independent
in-situ and remotely-sensed measurements are considered for validating individual wa-
ter compartments and fluxes. In line with objective 4 of this thesis, the assimilation is
then performed for the Murray-Darling River Basin (Australia) to investigate whether the
framework is transferable to other regions that face different climatic and anthropogenic
conditions (section 8.2). Seven years of observed GRACE data (2003-2009) are assimilated
into WGHM while keeping the ensemble Kalman filter (EnKF) settings that were found
optimal for the Mississippi River Basin. Here, independent observations of groundwater
wells are used to validate the C/DA results.

8.1 Test Region: Mississippi River Basin

The C/DA framework was established in chapter 5 and is tested here to assess whether
the integration of GRACE TWSA into WGHM enables a more realistic representation
of the water cycle, including total and individual water compartments and fluxes, re-
lated to hypotheses II a and II b of this thesis. The C/DA of 5◦×5◦ gridded GRACE
TWSA is examined and compared to the C/DA of basin averages to analyze the poten-
tial of highly resolved observations for an improvement of the fit with GRACE TWSA
(hypothesis III of this thesis). Therefore, in the first part of the study, basin averaged and
gridded monthly GRACE TWSA are assimilated into WGHM for one year, while simul-
taneously calibrating 22 model parameters, i.e. following the strategy reported in Eicker
et al. (2014). Afterwards, the model is run for the following three years with the standard
model parameters and the calibrated values. The set-up of this experiment is described in
section 8.1.1. Updated TWSA states of both C/DA versions are then compared to TWSA
measured by GRACE (section 8.1.2.1). In the second part of the study, the performance of
the C/DA process is assessed for the individual water compartments and fluxes including
soil moisture, groundwater, river discharge, and surface water extent (section 8.1.2.2).

The Mississippi River Basin is located in the eastern part of the USA with a mostly
humid climate. It is the third largest basin world-wide with an area of about 3 million
km2, draining 41 % of the USA and providing a source of water to more than 18 million
people. Water is intensively used for agriculture, especially in the High Plains Aquifer,
covering parts of the Arkansas and Missouri Basins in the south-west of the basin, where
groundwater is abstracted for irrigation purposes resulting in groundwater depletion (e.g.,
Rodell et al., 2007, Strassberg et al., 2009, Döll et al., 2012, 2014). Several data sets on
water storage variability over the entire basin exist, including in-situ observations of, e.g.,
snow, soil moisture and groundwater, as well as remotely-sensed observations of, e.g., soil
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moisture, surface water storage changes and inundation that are used for validation. In
addition, several studies on the water cycle within the basin have been published, which
can also be used for comparison. The main findings of this study are summarized in
section 8.1.3.

8.1.1 Set-up of Assimilating Observed TWSA

An overview of the C/DA set-up for assimilating observed GRACE data for the Missis-
sippi River Basin can be found in Fig. 8.1. First, a WGHM ensemble of Ne = 30 members
is defined as described in section 5.2.3 by generating sets of forcing input data, model
parameters, and initial water states (top left box in Fig. 8.1). It should be stressed that
modified PDFs for the parameters wetland depth (IN=4) and groundwater baseflow coef-
ficient (IN=19) are implemented as described in section 6.2.1. Then, the model is run in
open loop (OL) mode for each of the ensemble members for 2005-2008 (first column), i.e.
without integrating GRACE TWSA. This run will be denoted by WGHM_MRB-1 in the
following. MRB serves as an abbreviation for Mississippi River Basin and the last digit
is a consecutive number (Tab. 8.1). The OL is followed by model runs in C/DA mode
(second column), i.e. GRACE TWSA are used to correct model states and parameters
for each month in 2005. The C/DA variant that assimilates basin averaged observations
into WGHM is called EnKF_MRB-1, and the variant derived by assimilating gridded
TWSA is referred to as EnKF_MRB-2 (Tab. 8.1). Consistent with Eicker et al. (2014),
perturbation vectors are not generated for the observations (see Eq. 4.6). This has to be
kept in mind when interpreting the uncertainty estimations of the C/DA results.

Table 8.1: Overview of model simulations and assimilation runs that are analyzed in this study.

Run Description Reference
WGHM_MRB-1 WaterGAP 2.2 using monthly climate input Müller Schmied et al. (2014)

(CRU TS 3.2, GPCC v6 precipitation),
calibration against mean annual river
discharge, consideration of human water use

EnKF_MRB-1 Similar to WGHM_MRB-1 but assimilated Eicker et al. (2014)
by monthly GRACE TWSA averaged over the
MRB from 01/2005 to 12/2005 (C/DA) and
free (i.e. without assimilation) model run
in 2006-2008 (validation)

EnKF_MRB-2 Similar to WGHM_MRB-1 but with assimilation Eicker et al. (2014)
of monthly 5◦×5◦ gridded GRACE TWSA
over 01/2005 to 12/2005 (C/DA) and free
model run in 2006-2008 (validation)

In this study, monthly GRACE TWSA estimated from ITG-Grace2010 spherical har-
monic coefficients (http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010) are
used. These coefficients are provided with full variance-covariance information for the
time span 08/2002-08/2009. For the ITG-Grace2010 solutions, a 500 km Gaussian filter
is applied to smooth its spherical harmonic coefficients of up to degree/order 60, and con-
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Figure 8.1: An overview of the set-up for assimilating observed TWSA into WGHM for the
Mississippi River Basin. After running the model in open loop (OL) mode for each of the Ne = 30
ensemble members (left column), GRACE TWSA are assimilated into WGHM in 2005 as either
basin averages or gridded TWSA (second column). Then, free model runs, i.e. without assimilat-
ing GRACE TWSA, are performed for 2006-2008. The C/DA updated total and compartmental
water states are validated against independent measurements (last row).

verted to gridded values of TWSA (on the 0.5◦×0.5◦ grid used by WGHM). To account
for the signal attenuation effect of the filtering process, an average re-scaling factor of 1.1
is determined for the Mississippi River Basin from analyzing basin-averaged filtered vs.
unfiltered monthly WGHM model outputs in 2005. This factor is applied to the gridded
TWSA values, and the GRACE observations are then aggregated to spatial averages over
the entire Mississippi River Basin and over 5◦×5◦ grid cells (see black crosses in Fig. 8.2).
Formal variance-covariance error propagation is carried out to obtain the full observation
error covariance matrices for the gridded TWSA values from the full error covariance ma-
trices of the potential coefficients (last column in Fig. 8.1). The methodology is described
in section 2.1 for filtering and scaling (section 2.1.2) as well as for the error propagation
(section 2.1.4).

The GRACE TWSA are assimilated into WGHM and model parameters are simultane-
ously calibrated in 2005. The principle of mass conservation is not maintained, since water
is introduced to or removed from WGHM. Then, a three year model forward integration
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Figure 8.2: Overview of the Mississippi River Basin (black polygon), its four major sub-basins
(gray shaded areas) and the 5◦×5◦ grid (black crosses), which are used for averaging GRACE
observations. The distribution of the in-situ measurement stations is also shown.

with updated initial states and calibrated parameters is performed for 2006-2008, i.e. the
free model run in the middle column in Fig. 8.1. Finally, OL and C/DA variants are
compared to GRACE TWSA and validated against measurements of individual water
compartments and fluxes (last row; see Tab. 8.2). For the first time, four independent
data sets are used for validating individual water states and fluxes after GRACE data as-
similation. These are USGS in-situ groundwater table observations (as in Zaitchik et al.,
2008), SCAN in-situ soil moisture data (as in Houborg et al., 2012), and river discharge
from the Global Runoff Data Centre (GRDC) (as in Li et al., 2012). New is the evaluation
of assimilation results with the Global Inundation Extent from Multi-Satellite (GIEMS)
data that was created for comparisons with GRACE and WGHM simulations in Papa
et al. (2008).

Table 8.2: Overview of independent observations that were used for validation of C/DA for the
Mississippi River Basin.

Name Description Reference Details in
SCAN In-situ soil moisture Schaefer et al. (2007) section 2.3
USGS In-situ groundwater table in Rodell et al. (2007) section 2.3

observation wells
GRDC In-situ river discharge http://grdc.bafg.de/ section 2.3
GIEMS Multi-satellite product of surface Papa et al. (2008) section 2.3

water extent
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8.1.2 First C/DA Results

8.1.2.1 Comparison to GRACE TWSA

Monthly time series of TWSA, averaged over the entire Mississippi River Basin, are shown
in Fig. 8.3 for the standard and C/DA variants of WGHM, as well as for GRACE. The
observed annual variations are found to be smaller than the simulated variations, especially
in the C/DA phase in 2005. According to Llovel et al. (2010), the Mississippi River Basin
lost an unusual large amount of water in the dryer period of 2005. Assimilating either
GRACE TWSA averaged over the entire Mississippi River Basin (EnKF_MRB-1) or
averaged over 5◦×5◦ grid cells (EnKF_MRB-2) into WGHM nudged the updated water
states towards the GRACE observations, resulting in smaller annual variations. During
the C/DA phase, the temporal root mean square error (RMSE) of the basin averaged time
series with respect to GRACE is reduced from 28 mm to 8 mm and 9 mm, respectively.
Even during the validation phase in 2006-2008, i.e. without any further assimilation of
GRACE data, the prediction of TWSA has significantly improved, resulting in a temporal
RMSE of 20 mm and 19 mm instead of 27 mm. The positive impact of assimilating
spatially high resolved GRACE observations is visible in the spatial domain: the spatio-
temporal RMSE is reduced by 47 % (66 mm instead of 126 mm) for EnKF_MRB-2,
while EnKF_MRB-1 improves by 25 %. In the validation phase, the effect is smaller with
reductions in the RMSE values of about 40 % for both C/DA variants. This can also be
seen when analyzing the spatial pattern of the C/DA results, which was described in more
detail in Eicker et al. (2014).
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Figure 8.3: Monthly time series of basin-averaged TWSA (in mm) from the standard and two
C/DA variants of WGHM, and from GRACE observations during the C/DA phase in 2005 and
the validation phase in 2006-2008.

In Fig. 8.4, time series of the update increments for the total and individual water storage
changes, averaged over the entire Mississippi River Basin, are shown; i.e. the difference
between the model prediction and the model update. The update increment varies among
the individual water compartments and in time. An analysis of the spatial pattern of the
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update increments also showed variations in the spatial domain (see Eicker et al., 2014).
Snow storage content is updated during the winter months, mainly in the mountainous
regions of the Mississippi River Basin, while soil water content is updated throughout the
year over the entire basin. The water level in surface water bodies (lakes, wetlands, reser-
voirs and rivers) is updated only in some parts of the basin, e.g., along the Mississippi
River. The groundwater storage is predominantly updated in the High Plains Aquifer,
where the present simulation of human water consumption introduced large uncertain-
ties to the model simulation. In general, the spatial and the temporal patterns of the
increments are found to be similar to those of the water storage uncertainties. The model
uncertainties decrease gradually, since the ensemble spread of water states and parame-
ters becomes less. Therefore, the contribution of GRACE on updating the WGHM water
states also decreases with time. The amount of water that is assimilated into the model
run depends also on the difference between the observed and the model predicted TWSA
values. However, hydrological models rely on the concept of mass conservation. Therefore,
the amount of total water mass that is assimilated into WGHM also represents the degree
to which mass conservation is violated.
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Figure 8.4: Time series of the basin-averaged monthly update increments (in mm) for total
water storage and disaggregation to individual water compartments during the C/DA phase in
2005.

In Fig. 8.5 a, the percentages of TWSA from the individual water compartments are shown
for the ensemble mean of the open loop (OL) run. The surface water storage significantly
contributes in the Mississippi River Basin, followed by water stored in soil and ground.
The changes in the percentages of TWSA after C/DA (Fig. 8.5 b) are caused by the



8.1. Test Region: Mississippi River Basin 115

disaggregation of assimilated TWSA into the individual compartments (see Fig. 8.4) and
by updating the model parameter values. After C/DA, the variability in surface water
and groundwater is reduced, while the snow and soil water reflect more or less the same
contribution to TWSA compared to the OL.
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Figure 8.5: Time series of the percentages of basin-averaged TWSA for the individual water
compartments of a) the OL run and b) the C/DA run for variant EnKF_MRB-2 during the
C/DA phase in 2005.

In section 8.1.2.2, the individual water storage compartments of the standard and C/DA
variants of WGHM are validated with independent measurements of soil moisture, ground-
water, river discharge and surface water inundation to investigate whether the vertical
disaggregation of the total water mass as illustrated in Fig. 8.4 allows for a more realistic
representation of compartmental water storage changes.

In Fig. 8.6, time series for the estimates of the six most sensitive parameters are shown
for the run EnKF_MRB-2. During the winter months, the calibration suggests a snow
melt temperature below 0◦ (Fig. 8.6 a), while during April to December the parameter
value changes marginally. This is in line with the findings in chapter 6, saying that snow
parameter values are only updated in the winter months. Also for the other parameters
directly related to snow only marginal updates are obtained (not shown here). The small
changes in the parameter values between April and December are likely caused by numer-
ically introduced correlations due to the finite ensemble size and due to cross-correlations
of the 22 calibration parameters.

Four of the six sensitive parameters converge rather fast against their upper or lower
limits (Fig. 8.6 b, c, e, f). A possible reason for this is that the ensemble spread of the
parameters is often already strongly reduced to a high extent during the first two update
steps. An adjustment of the model parameters in the following months is not obtained,
since their uncertainties are too small to be updated in the EnKF. Including an inflation
factor will help to avoid the fast ensemble convergence.

8.1.2.2 Validation Using Independent Data Sets

Figure 8.7 shows time series of soil water, groundwater, and surface water averaged over
the entire Mississippi River Basin, as well as river discharge for one example station
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Figure 8.6: Time series of calibrated parameters (ensemble mean) and ensemble members that
are found to be most sensitive in chapter 6. The initial parameter ensemble is shown for month
"0".

(GRDC station number 4123400). The simulated water changes from the standard WGHM
variant (WGHM_MRB-1) and the C/DA variants (EnKF_MRB-1 and EnKF_MRB-2)
are compared to independent observations.

In-situ observations and model simulations of soil water changes are spatially averaged
over the entire Mississippi River Basin (Fig. 8.7 a). Estimates of soil water changes become
better during the C/DA phase. The correlation of model outputs and in-situ soil moisture
measurements from SCAN is improved from 0.81 for WGHM_MRB-1 to 0.97 and 0.93
in case of EnKF_MRB-1 and EnKF_MRB-2, respectively. This indicates a better repre-
sentation of the seasonal phase of the observations. However, in the validation phase, the
correlations drop from 0.83 to 0.75 and 0.78. In terms of RMSE, which is used to test the
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reproducibility of the seasonal amplitude, only during the C/DA phase of EnKF_MRB-2
the simulation of soil water changes are improved (36 mm instead of 40 mm). This can
be explained by the very dry conditions in 2005 that might not reflect the hydrological
conditions for the three following years. This leads to an underestimation of the seasonal
amplitudes of the soil water storage. Thus, only adapting the model parameters in 2005
does not guarantee improvements between 2006-2008. Uncertainty information for the
soil moisture measurements are not available. Instead, the time series of the in-situ ob-
servations at all 29 stations in the Mississippi River Basin are shown in Fig. 8.7 a, which
illustrates the high spatial variability of soil moisture in the basin. Soil water changes are
also averaged over the four major sub-basins of the Mississippi River Basin to investigate
the influence of GRACE data assimilation on a smaller spatial scale. During the C/DA
phase, the correlation of EnKF_MRB-1 and EnKF_MRB-2 with in-situ soil moisture was
increased up to 0.41 in three of four sub-basins but was not improved in the validation
phase.

The observed groundwater time series from USGS, prepared for investigations in Rodell
et al. (2007), and the study period overlap only for the year 2005. A comparison of the ob-
served and simulated basin averaged time series (Fig. 8.7 b) shows that WGHM_MRB-1
underestimates the annual amplitude by a factor of 2.2 (17 mm instead of 38 mm). In
case of EnKF_MRB-1 the representation of the annual amplitude has not considerably
changed, while EnKF_MRB-2 leads to a larger amplitude. This seems to disagree with
the reduction of the annual amplitude that is found for TWSA. However, while integra-
tion of GRACE into WGHM results in larger amplitudes for groundwater, the ampli-
tudes of soil water changes are considerably reduced (see Fig. 8.7 a). Nonetheless, the
observed groundwater amplitude is still underestimated by EnKF_MRB-2 by a factor
of 1.9. WGHM_MRB-1 shows a high correlation of 0.95 for the Mississippi River Basin.
When basin-averaged or gridded TWSA are assimilated, the correlation decreased to 0.36
and 0.80. The sub-basin averages are also analyzed. These time series are shown in Fig. 8.7
b as well, since their values were spatially averaged to determine the basin averaged time
series. The investigations showed higher agreements with the measurements in two of four
sub-basins in case of EnKF_MRB-2. Compared to previous GRACE data assimilation
experiments into NASA’s catchment land surface model for the Mississippi River Basin
improvements in terms of correlations also for two or three of the four sub-basins were
reported (Houborg et al., 2012, Zaitchik et al., 2008).

Simulated river discharge at seven stations was validated against measurements provided
by GRDC. In Fig. 8.7 c, for example, the time series at one particular river discharge sta-
tion (GRDC station number 4123400) located in the eastern part of the Ohio/Tennessee
Basin (Fig. 8.2) is shown. Uncertainty information is not available for the river discharge
observations. WGHM_MRB-1 overestimates the high flows occurring in spring dramati-
cally, while the low flows are represented almost perfectly. In case of EnKF_MRB-1, the
simulation of high flows is nudged to the observed river discharge. Even further improve-
ments are achieved in case of EnKF_MRB-2 in terms of the Nash-Sutcliffe coefficient
(NSC). In the C/DA phase, NSC is improved from -1.48 to -0.22, which still represents
a poor fit with the observations. Then, during the validation phase, the NSC increases
from 0.43 to 0.63 (Fig. 8.7 c). Since NSC is very sensitive to high flows, better values are
achieved for EnKF_MRB-1 and EnKF_MRB-2, although the low flows are better repre-
sented by WGHM_MRB-1. A perfect fit between simulated and observed river discharge
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a)

b)

c)

d)

Figure 8.7: Time series of a) soil water and b) groundwater changes, c) river discharge at
GRDC station 4123400, and d) normalized surface water changes and extent are shown from the
standard and C/DA variants of WGHM averaged over the entire Mississippi River Basin (except
for river discharge). Corresponding independent measurements are also shown, which are used
for validation.
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would result in a NSC of 1. The investigations indicate that the simulation of river dis-
charge during the C/DA phase is improved for up to five stations for both C/DA variants
and for four stations in case of EnKF_MRB-2, even during the validation phase. C/DA
of TWSA into WGHM shows potential to also exhibit a positive impact on water fluxes.

Figure 8.7 d presents the time series for surface water bodies (summarizing lakes, wet-
lands, reservoirs and rivers) for 2005-2007 averaged over the entire Mississippi River Basin.
The time series of the individual grid cells that contribute to the basin average are also
shown. Since WGHM simulates water storage changes, represented as equivalent water
heights (in mm), and GIEMS specifies the area of a grid cell that is inundated (in km2),
the time series are normalized and their correlation coefficients are computed following
Papa et al. (2008). A high correlation of 0.90 exists in the C/DA phase and a moderate
correlation of 0.64 in the validation phase between WGHM_MRB-1 and GIEMS. These
values are found to be higher than the correlation of 0.51 that was reported in Papa
et al. (2008), who compared surface water extent from GIEMS to model simulations from
WGHM for the Mississippi River Basin for 2003-2004. Papa et al. (2008) explained the
low to moderate correlations by snow melt in the northern part of the basin (Missouri,
Upper Mississippi, and northern part of Ohio/Tennessee) which causes spring floods that
complicate the hydrological processes within the basin. Assimilation of GRACE TWSA
results in decreased correlation coefficients of 0.85 and 0.66 during the C/DA phase, while
improvements in the validation period are achieved (0.74 and 0.71). Analyzing the four
sub-basins of the Mississippi River Basin shows that in each case of the C/DA variants
two sub-basins were improved during the assimilation phase. Then, the surface water sim-
ulation of two sub-basins for EnKF_MRB-1 and three for EnKF_MRB-2 were enhanced
in the validation phase.

8.1.3 Discussion and Conclusions for the Mississippi Case Study

Assimilation of GRACE TWSA into WGHM improves the fit of its TWSA simulations
with GRACE in the C/DA phase in 2005, as well as in the validation phase during 2006-
2008. However, this does not necessarily hold for the individual water states and river
discharge. For some compartments, assimilation improves the fit to observations during
the C/DA period, while for a few the fit becomes worse. Over the validation period, the
calibrated parameters often lead to a worse fit as compared to the (already calibrated)
standard model output. In summary, hypothesis II a of this thesis is supported. It was
shown that assimilation of GRACE TWSA enables a more realistic representation of
TWSA even after the C/DA phase. Hypothesis II b, stating that assimilation of GRACE
TWSA also positively impacts individual water compartments and fluxes, cannot com-
pletely be proven in this study. In case of in-situ soil moisture and groundwater data, the
locations and the rather sparse station networks complicate the assessment of the C/DA
results. Even so the groundwater observation wells were chosen based on their location in
unconfined or semi-confined aquifers (Rodell et al., 2007), local effects such as pumping
might influence the measurements, which means they are likely to be more seasonally
dynamic. This might result in overestimated observed seasonal amplitudes (Strassberg
et al., 2009). Additionally, in case of spatial averaging, i.e. interpolation to the areas
between the soil moisture or groundwater observation stations, seasonal amplitudes of
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(sub-)basin averages may be over- or underestimated (Döll et al., 2012). Nevertheless, our
investigations show improvements of groundwater and soil water changes at least dur-
ing the C/DA phase in half of the sub-basins of the Mississippi River Basin or more,
which suggests that GRACE data contain valuable information that helps constraining
these individual model compartments. Integrated GRACE information on a 5◦×5◦ grid
(EnKF_MRB-2) performs better for the groundwater compartment, while integration of
basin-averaged GRACE TWSA data (EnKF_MRB-1) shows higher agreement with soil
moisture observations. Therefore, hypothesis III of the thesis could not completely be
proven in this C/DA experiment. However, it is noticed that the informative value of a
one year validation is questionable, as it is presented for the groundwater compartment.

A large amount of river discharge during spring in the modeled time series at stations
in the north-eastern part of the Mississippi River Basin could not be confirmed by the
observations. It is likely that this is caused by overestimated snow melt in spring for
this region, which is reduced by TWSA assimilation, especially in case of EnKF_MRB-2.
Therefore, it was shown that GRACE data assimilation enables detecting limitations in
the representation of water changes in the model and might even reduce their effect on
the model outputs.

EnKF_MRB-1 and EnKF_MRB-2 partly show better fits to GIEMS in terms of correla-
tion coefficients, but partly worse fits compared to WGHM_MRB-1. However, the mean
annual cycle was analyzed which revealed a non-linear relation between water storage
extent and changes (not shown here). This suggests the application of a rank correlation
coefficient, which takes into account the non-linearity and therefore might be better suited
for interpretation than the application of the linear correlation coefficient.

From these findings, one can conclude that assimilation of GRACE observations into
WGHM over only one year already enables an improved prediction of TWSA in the
following years, but this is apparently not the case for individual water compartments.
The parameters have been calibrated when the hydrology in the Mississippi River Basin
exhibited an extreme state, i.e. the dry conditions in 2005, and therefore are not valid
for the following years. A longer period for C/DA would smooth these extreme events,
and calibrated parameter values might likely be more representative for the following
period. Therefore, it is preferable to assimilate GRACE TWSA data whenever they are
available. However, this would require the introduction of an inflation factor to avoid fast
ensemble convergence (see section 4.3). It is noticed that the C/DA phase was probably
chosen too short to allow the model parameters to transfer the seasonal behavior of the
observations to WGHM. Another difficulty might be the fact that 22 model parameters
are calibrated simultaneously. Choosing any sub-set of these parameters for calibration
and freezing the others might improve the results by avoiding dependencies between the
calibration parameters and thereby leading to a better representation of individual water
compartment changes as well as water fluxes.
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8.2 Transfer C/DA to Murray-Darling River Basin

The C/DA framework is tested for the Murray-Darling River Basin in the south-east
of Australia, that faces different climatic and anthropogenic conditions compared to the
Mississippi River Basin. The motivation is to prove the general application of the proposed
C/DA framework, which is formulated in objective 4 of this thesis. The Murray-Darling
River Basin is one of the driest basins over the world. A long drought period occurred over
the basin during 2001-2009, the so-called Millennium Drought (Leblanc et al., 2012). As
a result, the water storage in the region steadily decreased, attributed to a combination
of dry meteorological conditions and extensive irrigation for agriculture. Simulations of
WGHM are used to estimate linear trends in soil water, surface water and groundwater
compartments, as well as in TWSA during 2003-2009. However, the model is not able to
capture the effect of the Millennium Drought on the storage in compartments, likely due
to missing processes in dry regions or uncertainties in climate forcing data. Therefore, in
the following it is investigated whether assimilating GRACE TWSA into WGHM enables
a more realistic representation of the water decline.

In section 8.2.1, an overview of the study set-up is given. Firstly, the linear trend of TWSA
from different GRACE solutions and with different post-processing (filtering) is analyzed
(section 8.2.2.1). Secondly, the EnKF and singular evolutive interpolated Kalman filter
(SEIK) are then applied to integrate GRACE TWSA along with its full error covariance
information into WGHM during 2003-2009 (section 8.2.2.2). Finally, independent observa-
tions of groundwater are used to validate the model outputs after C/DA (section 8.2.2.4).
The findings of the study are summarized in section 8.2.3.

Parts of these assessments were presented in Schumacher et al. (2016c). Results were
shown for 2003-2010, in which both GRACE data and forcing data for WGHM are avail-
able. In this thesis, the focus is on the Millennium Drought period between 2003-2009.
Additionally, the SEIK filter is applied and a detailed discussion of the update increments
is provided, which describe the violation of the mass conservation principle.

8.2.1 Set-up of C/DA for the Murray-Darling River Basin

Similar to the synthetic experiment in chapter 7 and to the Mississippi case study in
section 8.1, the WaterGAP version 2.2 is used here. The model has already been calibrated
against mean annual river discharge at 1319 gauge stations, of which 11 stations are
located in the Murray-Darling River Basin (Müller Schmied et al., 2014). Monthly forcing
fields of temperature, cloud cover, and the number of wet days are used from the Climate
Research Unit’s Time Series (CRU TS 3.2) and precipitation is taken from the Global
Precipitation Climatology Center (GPCC v6; see section 2.2.2.2). An overview of the set-
up for transferring the developed C/DA approach to the Murray-Darling River Basin is
given in Fig. 8.8.

The initial ensemble of WGHM water states as well as the ensemble of model parameters
and forcing data are generated using the same procedure as for the Mississippi case study
(section 8.1). Here, the model is initialized during 1995-2000 and the model spin-up phase
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Figure 8.8: An overview of the set-up of the transfer study for the Murray-Darling River
Basin. First, Ne = 30 open loop (OL) model runs are performed for 2003-2009 (left column).
Then, GRACE TWSA are assimilated into WGHM considering different configurations (center
and right column). To assess the C/DA results, simulated TWSA and groundwater changes are
compared to GRACE and to independent groundwater well measurements.

with the ensembles for the parameters, temperature and precipitation is performed for
2001-2002 to generate the ensemble of initial water states. This is followed by an open
loop (OL) run of WGHM during 2003-2009 (first column in Fig. 8.8 and Tab. 8.3). Monthly
GRACE observations along with their full error covariance information are assimilated
into WGHM using the EnKF, as well as the SEIK filter during 2003-2009 (second column
in Fig. 8.8 and Tab. 8.3).

In this study, monthly GRACE spherical harmonic coefficients of the ITSG-
Grace2014 time series are used (https://www.tugraz.at/institute/ifg/downloads/gravity-
field-models/itsg-grace2014/), which are provided with full variance-covariance infor-
mation for the time span 02/2003-06/2014. The GRACE solutions are evaluated up
to spherical harmonic degree/order 90, smoothed using a 300 km Gaussian filter, and
converted to gridded values of TWSA on the 0.5◦×0.5◦ grid used by WGHM. A for-
mal variance-covariance error propagation is applied to obtain the observation error co-
variance matrices for the gridded values. The full error covariance matrix of the po-
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tential coefficients provided for 05/2003 is used and it is assumed that the error in-
formation of TWSA is temporally constant. To study the effect of different filter ap-
proaches on the C/DA results, the GRACE solution is also prepared with a 500 km
Gaussian filter, as well as the anisotropic DDK3 filter (Kusche et al., 2009). In addi-
tion, the influence of different GRACE products on the results is investigated. Therefore,
GFZ RL05 (ftp://podaac.jpl.nasa.gov/allData/grace/L2/GFZ/RL05/) and JPL RL05
(ftp://podaac.jpl.nasa.gov/allData/grace/L2/JPL/RL05/) official products are consid-
ered in this case study, filtered using a DDK3 filter. In order to isolate the influence
of changing the TWSA observation vector, in all cases the covariance matrix of the ITSG-
Grace2014 for 300 km Gaussian filtering is considered. No correction for signal damping
and spatial leakage due to filtering is applied, since the re-scaling factors at the scale of
the four sub-basins are estimated to be close to 1 (see Schumacher et al., 2016c).

With respect to the findings in the Mississippi River Basin and considering the spatial
resolution of GRACE data, the GRACE TWSA observations are aggregated to spatial
averages over the four major sub-basins of the Murray-Darling River Basin (Fig. 8.9). The
Darling Basin in the North is divided into a western and an eastern part with areas of
about 240000 km2 and 380000 km2 and the Murray Basin in the South into two areas of
about 215000 km2 each.
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Figure 8.9: The north-western (NW) and north-eastern (NE) Darling Basins as well as the
south-eastern (SE) and south-western (SW) Murray Basins are defined as the four major sub-
basins of the Murray-Darling River Basin. GRACE TWSA are spatially averaged over these
regions and introduced as observations in the C/DA.

The C/DA is performed during 2003-2009. In contrast to the Mississippi case study, an
inflation factor of 10 % is used for representing errors in the model structure and to ensure
a contribution of GRACE TWSA to the updated water states as well as parameters over
the entire study period (see section 7.1 of the synthetic experiments for details on the
chosen inflation factor). Here, again water mass is not conserved in the EnKF/SEIK filter
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update steps. Seven experiments are carried out, for which a range of configurations is
defined: (i) different GRACE products are used (ITSG, GFZ, JPL), (ii) various filters are
applied to the ITSG-Grace2014 data product (300 km and 500 km Gaussian filter, as well
as DDK3), and (iii) the classical EnKF algorithm as well as the SEIK filter are applied to
evaluate their effects on the C/DA results (see section 4.2.1 and 4.2.3). The abbreviations
and applied options are provided in Tab. 8.3.

Table 8.3: Overview of model simulations and assimilation runs that are analyzed in this study.

Run Method GRACE solution Spatial Filtering
OL Open Loop - -
ITSG-300km EnKF ITSG-Grace2014 300 km Gaussian
ITSG-500km EnKF ITSG-Grace2014 500 km Gaussian
ITSG-DDK3 EnKF ITSG-Grace2014 DDK3
GFZ-DDK3 EnKF GFZ RL05 DDK3
JPL-DDK3 EnKF JPL RL05 DDK3
ITSG-SEIK SEIK ITSG-Grace2014 DDK3

To assess the performance of the C/DA results, the simulated TWSA and groundwater
changes are compared to GRACE and to independent groundwater well measurements
(see section 2.3), respectively.

8.2.2 Hydrological Characteristics of the River Basin

8.2.2.1 Meteorological and Hydrological Drought

Precipitation data from the Bureau of Meteorology (BoM, Australia;
http://www.bom.gov.au/climate/data/) are analyzed to identify dry and wet peri-
ods in the Murray-Darling Basin. Figure 8.10 a shows the annual rainfall during
1981-2013 averaged over the entire region compared to the temporal mean of 477 mm
over the time period. During the first two decades, there have been regularly drier
and wetter years, while between 2001-2009 the annual rainfall remained always below
the long term temporal mean, including two years that belong to the driest years over
the whole period (2002, 2007). The annual rainfall sum over the basin was up to 41
% smaller between 2001-2009 than the three decade average rainfall. In contrast, the
years 2010-2012 have been wetter than the long term average. Especially, in 2010 the
annual rainfall was 66 % larger than the average. These investigations show that a
meteorological drought over the Murray-Darling River Basin occurred between 2001-2009
(see also Forootan et al., 2016). In Fig. 8.10 b, the monthly TWSA from GRACE
averaged over the entire Murray-Darling River Basin are shown between 2003-2013.
During 2003-2007, TWSA decreased and was below the mean up to the end of 2009. The
strong rainfall events in the two following years resulted in an increase of the total water
mass in 2010-2011. Afterwards, the water mass was still above the temporal mean during
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2003-2013. In addition, the time series of WGHM simulated TWSA is shown during
1995-2010 in Fig. 8.10 b. The strong water decline in 2002 and the strong increase of
TWSA in 2010 are clearly visible in WGHM showing the model reacting to these extreme
rainfall events, although, the increase in model simulations of TWSA is smaller compared
to GRACE TWSA. In 2006-2007, WGHM simulates no further decline in TWSA, which
is clearly suggested by GRACE observations. It seems that the WGHM water storage
compartments are already quite empty. Therefore, an improved representation of the
TWSA decline between 2003-2009 is expected by merging GRACE and WGHM in the
C/DA framework.

a)

b)

Figure 8.10: a) Annual precipitation from BoM is shown averaged over the entire Murray-
Darling River Basin with respect to the temporal mean of 477 mm during 1981-2013. b) TWSA
time series from ITSG-Grace2014 during 2003-2013 and WGHM standard run during 1995-2010
are plotted, as well as monthly precipitation from BoM during 1995-2013 averaged over the entire
Murray-Darling River Basin.

The estimation of linear trends over 2003-2009 from ITSG-DDK3 shows a decrease of
-7.6 mm/year over the entire Murray-Darling River Basin, ranging from -2.9 mm/year
in the north-eastern Darling Basin to -14.0 mm/year in the south-eastern Murray Basin
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(Tab. 8.4). The application of different filters to smooth GRACE TWSA has a small
impact on the linear trend estimation in the Darling sub-basins (differences of around 0.3
mm/year, see Tab. 8.4) and a higher influence in the Murray sub-basins (differences of up
to 3.0 mm/year, see Tab. 8.4). Using different GRACE products for the trend estimation
has a similar effect on the results. However, all analyzed GRACE data sets show negative
trends in TWSA for the entire Murray-Darling River Basin and its four major sub-basins.

Table 8.4: Linear trend in TWSA during 2003-2009 in mm/year from different GRACE products
and after applying different filter methods. The trends are provided for the spatial averages over
the entire Murray-Darling River Basin (MDB), and its four major sub-basins (columns 2-6).
Averaged trends and their uncertainties are estimated after applying different filtering techniques
(column 7), as well as from different GRACE products (column 8).

Basin ITSG ITSG ITSG GFZ JPL Filtering Product
300 km 500 km DDK3 DDK3 DDK3

MDB -7.0 -5.7 -7.6 -5.6 -4.6 -6.8 ± 1.0 -5.9 ± 1.5
Darling (NW) -4.5 -4.3 -3.8 -2.2 -2.0 -4.2 ± 0.3 -2.7 ± 1.0
Darling (NE) -3.3 -3.5 -2.9 -0.6 1.2 -3.2 ± 0.3 -0.8 ± 2.1
Murray (SE) -11.2 -8.0 -14.0 -11.3 -9.8 -11.1 ± 3.0 -11.7 ± 2.1
Murray (SW) -12.0 -8.7 -13.5 -12.6 -12.4 -11.4 ± 2.4 -12.8 ± 0.6

8.2.2.2 Update of TWSA

The TWSA time series from OL, GRACE and the C/DA variant ITSG-DDK3 are shown
in Fig. 8.11, averaged over the entire Murray-Darling River Basin and its four major sub-
basins. The C/DA results show a much better agreement with the GRACE TWSA than
the OL variant of WGHM. In terms of RMSE, the fit for the entire basin is improved
by 50 % (from 21.4 mm to 10.7 mm), ranging from 45 % in the north-western Darling
Basin to 53 % in both Murray sub-basins (Tab. 8.5). The choice of different filters or
different GRACE products leads to improvements for the entire basin up to 60 %. The
low up to moderate correlations between the OL and GRACE observations, e.g., 0.21 in
the north-western Darling to 0.68 in the south-eastern Murray Basin, are considerably
increased after GRACE assimilation (Tab. 8.6). In case of assimilating ITSG-DDK3, high
correlations for all basins are achieved, ranging from 0.75 in the north-western Darling
to 0.95 in the south-eastern Murray Basin. In summary, all EnKF variants of WGHM
outperform the OL in terms of RMSE and correlation for the entire Murray-Darling River
Basin as well as for all sub-basins. The seasonal variability which is assessed in terms
of RMSE, and the seasonal cycle of TWSA, which is assessed in terms of correlation
coefficients, are better represented after C/DA.

The estimation of linear trends in TWSA from the OL and C/DA variants of WGHM
are summarized in Tab. 8.7 for the spatial averages over the entire Murray-Darling River
Basin and its four major sub-basins. A comparison of the trends after C/DA to the trends
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a) Murray-Darling Basin

b) Darling (NW)

c) Darling (NE)

d) Murray (SW)

e) Murray (SE)

Figure 8.11: Time series of TWSA (in mm) from open loop (OL) simulations from WGHM
and from ensemble filter updates averaged over a) the entire Murray-Darling River Basin and
the four major sub-basins b)-e).
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Table 8.5: Agreement between model predicted and observed TWSA in terms of RMSE in mm
averaged over the entire Murray-Darling River Basin (MDB) and over its four major sub-basins.
The values in brackets indicate the improvement of RMSE in mm compared to the OL run.
The OL run is compared to each assimilated GRACE data set (see Tab. 8.3 for names of C/DA
variants): The average of the RMSE values is provided in column 2 and its range in brackets.

ITSG- ITSG- ITSG-
Basin OL 300km 500km DDK3
MDB 21.4 (±3.9) 15.5 (-4.5) 8.2 (-7.4) 10.7 (-11.0)
Darling (NW) 28.5 (±7.3) 34.8 (-3.1) 11.5 (-7.9) 15.7 (-7.6)
Darling (NE) 28.2 (±6.6) 20.3 (-12.9) 9.1 (-8.2) 14.7 (-13.1)
Murray (SE) 28.9 (±5.6) 22.3 (-10.4) 9.3 (-9.8) 13.7 (-16.5)
Murray (SW) 34.6 (±8.1) 23.3 (-12.0) 10.1 (-11.6) 16.1 (-17.7)

GFZ- JPL- ITSG-
DDK3 DDK3 SEIK

MDB 17.0 (-9.0) 16.9 (-6.6) 17.3 (-4.4)
Darling (NW) 23.4 (-6.9) 23.5 (-7.9) 20.8 (-2.4)
Darling (NE) 20.1 (-13.3) 17.4 (-11.8) 26.0 (-1.8)
Murray (SE) 19.6 (-12.9) 18.6 (-11.5) 20.6 (-9.6)
Murray (SW) 20.2 (-18.2) 28.2 (-15.4) 24.6 (-9.2)

Table 8.6: Agreement between model predicted and observed TWSA in terms of correlation
averaged over the entire Murray-Darling River Basin (MDB) and over its four major sub-basins.
The values in brackets indicate the improvement of correlation compared to the OL run. The OL
run is compared to each assimilated GRACE data set (see Tab. 8.3 for names of C/DA variants):
The average of the correlation values is provided in column 2 and its range in brackets.

ITSG- ITSG- ITSG-
Basin OL 300km 500km DDK3
MDB 0.58 (±0.05) 0.78 (+0.18) 0.92 (+0.29) 0.92 (+0.31)
Darling (NW) 0.21 (±0.07) 0.39 (+0.26) 0.79 (+0.62) 0.75 (+0.52)
Darling (NE) 0.44 (±0.05) 0.84 (+0.44) 0.90 (+0.39) 0.89 (+0.44)
Murray (SE) 0.68 (±0.06) 0.84 (+0.24) 0.94 (+0.19) 0.95 (+0.22)
Murray (SW) 0.50 (±0.04) 0.80 (+0.32) 0.92 (+0.38) 0.91 (+0.39)

GFZ- JPL- ITSG-
DDK3 DDK3 SEIK

MDB 0.83 (+0.30) 0.80 (+0.27) 0.76 (+0.15)
Darling (NW) 0.69 (+0.39) 0.69 (+0.49) 0.46 (+0.23)
Darling (NE) 0.85 (+0.47) 0.85 (+0.40) 0.54 (+0.09)
Murray (SE) 0.89 (+0.24) 0.90 (+0.22) 0.88 (+0.15)
Murray (SW) 0.89 (+0.35) 0.81 (+0.37) 0.77 (+0.25)



8.2. Transfer C/DA to Murray-Darling River Basin 129

estimated from OL and from the different GRACE data sets shows that C/DA introduces
or intensifies negative trends in TWSA. The mean difference from the C/DA variants
compared to GRACE is 1.5 mm/year, while the mean difference to OL is 5 mm/year.
Only in case of applying the SEIK filter, the decline is close to the equally weighted
average of OL and GRACE decline in TWSA.

The differences in TWSA trends, estimated from the different C/DA variants (Tab. 8.7),
are found to have a similar magnitude as the differences in TWSA trends estimated
from the different GRACE products and after applying different filtering (Tab. 8.4). This
indicates that the choice of the GRACE solution and the filter to smooth GRACE TWSA
affect the C/DA results.

Table 8.7: Linear trend (in mm/year) in TWSA during 2003-2009 from OL and C/DA variants.
The trends are provided for the spatial averages over the entire Murray-Darling River Basin
(MDB) and over its four major sub-basins in the Darling (D) and Murray (M) basins (columns
2-8). See Tab. 8.3 for names of C/DA variants. Averaged trends and their uncertainties are esti-
mated after applying different filtering techniques (column 9), as well as from different GRACE
products (column 10).

ITSG- ITSG- ITSG- GFZ- JPL- ITSG- Filtering Product
Basin OL 300km 500km DDK3 DDK3 DDK3 SEIK
MDB -0.9 -6.2 -4.4 -6.5 -5.8 -3.5 -5.2 -5.7 ± 1.1 -5.3 ± 1.6
D (NW) 2.1 -3.0 -2.0 -1.0 -1.7 0.4 0.2 -2.0 ± 1.0 -0.8 ± 1.0
D (NE) -1.6 -4.0 -3.4 -4.2 -2.8 0.0 -4.8 -3.9 ± 0.4 -2.3 ± 2.1
M (SE) -3.7 -9.8 -6.3 -13.0 -11.6 -8.2 -11.1 -9.7 ± 3.4 -10.9 ± 2.5
M (SW) -0.4 -10.1 -6.9 -10.0 -10.1 -9.1 -6.0 -9.0 ± 1.8 -9.7 ± 0.6

8.2.2.3 Update of Individual Water Storage Compartments

In Fig. 8.12, the update increments, i.e. the difference between model prediction and model
update, are shown for the total and the individual water compartments averaged over the
entire Murray-Darling River Basin. The amount of water mass that is introduced into
WGHM varies over time. The TWSA update increments have similar magnitudes com-
pared to the update increments in the Mississippi River Basin (see Fig. 8.4). However,
after a few update steps the introduced water mass decreased considerably in the Missis-
sippi Basin. In contrast, even after six full years of C/DA, water mass is still introduced
into the model in 2009 for the Murray-Darling River Basin. This is ensured through the
application of an inflation factor that keeps the model ensemble spread large enough, and
thereby guarantees a contribution of GRACE observations over the entire study period.

In 2003, the TWSA update increment is predominantly associated with the soil water
compartment (Fig. 8.12 b). This was also the case for the one year C/DA phase in the
Mississippi case study (section 8.1). Then, in 2004 a large portion of the TWSA update
increment is introduced to the surface water storage compartments (Fig. 8.12 a), while
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Figure 8.12: Time series of monthly update increments (in mm) for TWSA and a) surface water
storage, b) soil water storage, and c) groundwater storage averaged over the entire Murray-Darling
River Basin. Here, ITSG-Grace2014 (DDK3) is assimilated into WGHM.



8.2. Transfer C/DA to Murray-Darling River Basin 131

between 2005-2009 the TWSA update increment is predominantly associated with the
groundwater storage (Fig. 8.12 c).

The spatial distribution of the update increments of the total and individual water storage
compartments were presented in Schumacher et al. (2016c). The updates of soil water are
higher in the east and south-east of the Murray-Darling River Basin and decrease in
western direction. For groundwater, the same spatial pattern is visible but the amount
of water mass associated with the groundwater compartment is considerably larger. Only
small update increments were found for lakes, which seems to be reasonable, since only a
few small surface water bodies are located in the Murray-Darling River Basin. However,
large increments are found for the wetland and the river compartment alongside the
Murray and Darling Rivers, which was not expected. Wetlands in the Murray-Darling
River Basin are usually large in area, at least for Australian standards, but small in depth
(up to about 0.5 m), and therefore water evaporates quickly.

The sum of the update increments over all time steps shows how much water is introduced
to or subtracted from WGHM in total. This is a measure how strong the concept of mass
conservation is violated by C/DA. In Fig. 8.13, the sum of increments averaged over the
entire Murray-Darling River Basin and its four major sub-basins is shown for TWSA, as
well as soil water, surface water and groundwater.
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Figure 8.13: Sum of update increments (in mm) during 2003-2009 for total and for individual
water storage compartments averaged over the entire Murray-Darling River Basin and over its
major sub-basins in the Darling (D) and the Murray (M) basins (first row). Absolute values
are used to calculate the sum (second row). Here, ITSG-Grace2014 (DDK3) is assimilated into
WGHM.
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During 2003-2009, the TWSA mass is more or less conserved over the entire Murray-
Darling River Basin: Water is reduced in the north-western Darling and south-western
Murray Basin, while water mass is added to the eastern parts of the basin, which are
closer to the coast lines. In general, water is added to the soil water storage and reduced
from the surface water storage all over the basin. Also, water is mostly added to the
groundwater storage. The sum of the absolute water increment values shows that the
sub-basins, which are located closer to the coast line, receive larger update increments for
TWSA, as well as soil water and groundwater. The surface water storage is predominantly
affected by C/DA in the western sub-basins. A spatial analysis of the update increment
revealed that water is mainly added to or reduced from the Darling River and Murray
River as well as the surrounding wetlands (see Fig. 13 in Schumacher et al., 2016c).

The update increments of the individual water compartments change their percentage of
TWSA considerably. In case of the ensemble mean of OL, soil water has the highest contri-
bution to TWSA during 2003-2009, which varies seasonally between 30 % and 75 % (Fig.
8.14 a, c). Surface water contributes with less than 5 %, while groundwater has a negative
contribution to TWSA of up to -20 % between 2006-2009. The negative contribution of
the groundwater changes to TWSA is caused by the model realization of the groundwater
compartment that allows for negative storage values to simulate groundwater depletion
(see section 2.2.2.3). After C/DA, the soil water storage has still a high contribution to
TWSA in 2003 and 2004. Then, starting in 2006 the decline of TWSA is predominantly
generated by the loss of groundwater. However, the interpretation of the compartment
percentage of TWSA is not straightforward for the C/DA results, since large negative val-
ues exist for the groundwater storage and partially small positive values occur for TWS
causing high percentage values (> 3000 %). Therefore, the values are not shown here.

In Fig. 8.14 b, it is clearly visible that the negative trend in GRACE TWSA is strongly
associated with the groundwater storage compartment. Linear trends are calculated for
the changes in soil water, surface water and groundwater averaged over the entire Murray-
Darling River Basin and its four major sub-basins. The results show that the water decline
in the updated TWSA, introduced into WGHM by assimilation of GRACE TWSA, mainly
affects the groundwater compartment and is much less associated with the surface water
and soil water storage compartments. This agrees with the findings in Leblanc et al.
(2009), who did not discover any trend in surface water and soil moisture since 2003. In
contrast, van Dijk et al. (2013) reported a decrease in public reservoirs between 2006-2007.
In the following, the decline of groundwater storage changes is further investigated.

8.2.2.4 Groundwater Depletion

In this section, groundwater observations from wells are used to investigate the C/DA
results for the groundwater storage compartment (see section 2.3 for details on the ob-
servations). The observations are given in terms of groundwater levels, which have to be
converted into equivalent water heights by considering a factor known as the specific yield
(Tregoning et al., 2012). However, the specific yield is usually unknown and cannot be
measured. In the following, it is demonstrated that the choice of the specific yield values
affects the validation of the C/DA results. First, an assumption of 0.1 as a typical value
for water aquifers for the specific yield in each 1◦×1◦ grid cell is used, which was proposed
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Figure 8.14: Time series of total and individual water storage changes a) of the OL and b)
after C/DA. Here, ITSG-Grace2014 (DDK3) is assimilated into WGHM. In c), the percentages
of TWSA for the individual water storage compartments are shown for the OL run.
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by Tregoning et al. (2012). In addition, specific yield values ranging from 0.06 to 0.30 are
applied based on geology maps (personal communication with Dr. Russell Crosbie, CSIRO
Land and Water, Australia). Finally, those groundwater time series were identified that
exhibit the highest RMSE compared to the (sub-)basin averaged time series. These are
neglected for calculation of the (sub-)basin averages to investigate the influence of spatial
averaging on the validation results.

The time series of the obtained three data sets are shown in Fig. 8.15. These indicate
that the annual minimum and maximum values strongly depend on the chosen specific
yield values and on the considered grid cells to calculate the basin averages. The seasonal
variability might be overestimated due to local effects such as pumping and recharge from
irrigation close to the considered observation wells (Tregoning et al., 2012).

The correlation coefficients of the OL and C/DA time series with respect to the groundwa-
ter observation time series, while considering the specific yield map, are shown in Tab. 8.8.
The C/DA variants outperform the OL simulation of groundwater in all (sub-)basins, ex-

Table 8.8: Agreement between model predicted and observed groundwater in terms of correlation
during 2003-2009 averaged over the entire Murray-Darling River Basin (MDB) and over its four
major sub-basins. The values in brackets indicate the improvement of correlation compared to
the OL run.

ITSG- ITSG- ITSG-
Basin OL 300km 500km DDK3
MDB 0.53 0.71 (+0.17) 0.63 (+0.10) 0.66 (+0.13)
Darling (NW) -0.01 0.63 (+0.64) 0.72 (+0.73) 0.74 (+0.75)
Darling (NE) 0.32 0.44 (+0.12) 0.31 (-0.01) 0.16 (-0.17)
Murray (SE) 0.01 0.37 (+0.36) 0.30 (+0.28) 0.36 (+0.34)
Murray (SW) -0.05 0.60 (+0.66) 0.66 (+0.72) 0.77 (+0.82)

GFZ- JPL- ITSG-
DDK3 DDK3 SEIK

MDB 0.69 (+0.16) 0.42 (-0.12) 0.52 (-0.01)
Darling (NW) 0.77 (+0.78) 0.56 (+0.56) 0.36 (+0.37)
Darling (NE) 0.15 (-0.17) -0.12 (-0.44) 0.23 (-0.09)
Murray (SE) 0.38 (+0.37) 0.17 (+0.16) -0.12 (-0.13)
Murray (SW) 0.74 (+0.79) 0.60 (+0.66) 0.60 (+0.65)

cept for the entire Murray-Darling River Basin and two sub-basins in case of ITSG-SEIK.
The improvements range from 0.10 to 0.17 for the average over the entire region and from
0.66 to 0.82 in the south-western Murray Basin. This clearly confirms the positive effect
of GRACE data assimilation on the seasonal representation of the groundwater com-
partment in the Murray-Darling River Basin. In Fig. 8.16, the normalized time series of
groundwater are shown, i.e. the temporal mean is reduced and the simulated and observed
values are divided by their root mean square (RMS) of the time series. This allows a better
interpretation of the seasonal cycles of groundwater changes.The OL simulation exhibits
a phase shift compared to the observed groundwater changes, especially over the Murray
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b)

c)

d)

e)

Figure 8.15: Time series of groundwater changes (in mm) from open loop (OL) simulations from
WGHM and ensemble filter updates averaged over a) the entire Murray-Darling River Basin, b)
the Darling (NW), c) the Darling (NE), d) the Murray (SE), and e) the Murray (SW).
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sub-basins. This leads to their small correlation coefficients. After C/DA, the phase shift
is reduced over all regions except for the north-eastern Darling Basin. The improvements
occur mainly between 2006-2009, which are reflected in the higher correlation coefficients.
However, the inter-annual variability between 2003-2005 seems to be underestimated in
all regions (see also Fig. 8.15).

The estimation of linear trends in groundwater from the OL variant of WGHM indicates
no or only a small decline with less than 1.5 mm/year in the four sub-basins (Tab. 8.9).

Table 8.9: Linear trends (in mm/year) in groundwater changes during 2003-2009 computed for
the entire Murray-Darling River Basin (MDB) and the four sub-basins in the Darling (D) and
Murray (M) basins. The linear trends estimated from groundwater (GRW) well measurements
are provided assuming a specific yield map (column 2), a specific yield value of 0.1 (column 3),
and modifying the sub-basin averages (column 4). The results of WGHM OL and after C/DA
are shown in columns 5-11. The names of the C/DA variants are provided in Tab. 8.3.

GRW GRW GRW ITSG- ITSG- ITSG- GFZ- JPL- ITSG-
Basin Sy map Sy=0.1 Mod OL 300km 500km DDK3 DDK3 DDK3 SEIK
MDB -23.8 -16.1 -21.6 -0.6 -4.1 -5.4 -8.3 -9.9 -5.1 -1.7
D (NW) -49.5 -28.7 -21.7 0.1 -2.1 -3.0 -3.6 -5.6 -4.3 -0.1
D (NE) -14.4 -12.6 -40.4 -1.4 -3.6 -4.9 -6.4 -6.9 -2.3 -3.1
M (SE) -7.4 -8.4 -19.1 -0.4 -7.5 -9.5 -19.2 -20.7 -9.0 -1.3
M (SW) -24.1 -14.9 -5.1 -0.1 -3.9 -4.7 -5.8 -8.9 -6.9 -1.4

Depending on the preparation of the observations, i.e. the choice of specific yield values and
the choice of 1◦×1◦ grid cells contributing to the (sub-)basin averages, the water storage
decreased about -11.6± 6.5 mm/year in the south-eastern Murray Basin up to -33.3± 14.5
mm/year in the north-western Darling Basin (Tab. 8.10). In contrast, GRACE provides

Table 8.10: The average of linear trends in groundwater during 2003-2009 in mm/year and
standard deviations are shown for the entire Murray-Darling River Basin (MDB) and its four
sub-basins: from different post-processing strategies (i.e. specific yield and spatial averaging) for
the groundwater well measurements (column 2), after applying different filtering techniques for
GRACE (column 3), and for different GRACE products (column 4).

Groundwater GRACE GRACE
Basin Observations Filtering Product
MDB -20.5 ± 4.0 -5.9 ± 2.2 -7.7 ± 2.4
Darling (NW) -33.3 ± 14.5 -2.9 ± 0.8 -4.5 ± 1.0
Darling (NE) -22.5 ± 15.6 -5.0 ± 1.4 -5.2 ± 2.5
Murray (SE) -11.6 ± 6.5 -12.1 ± 6.3 -16.3 ± 6.3
Murray (SW) -14.7 ± 9.5 -4.8 ± 1.0 -7.2 ± 1.6

the largest TWSA decline in the south-eastern and south-western Murray Basins, while
the north-eastern and north-western Darling Basins show a smaller decline in TWSA. The
large differences in the linear trend of the measured groundwater imply large uncertainties
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Figure 8.16: Normalized time series of groundwater changes (in mm) from open loop (OL)
simulations from WGHM and EnKF update ITSG-DDK3 averaged over a) the entire Murray-
Darling River Basin, b) the Darling (NW), c) the Darling (NE), d) the Murray (SE), and e) the
Murray (SW).
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due to the application of the specific yield and due to the interpolation of point measure-
ments to create (sub-)basin averages. The C/DA variants of WGHM suggest that the
strongest negative trend occurs in the south-eastern Murray Basin. This is caused by the
stronger decline in the south observed by GRACE. The ranking of the basins with respect
to the decline of groundwater is still different after C/DA compared to the groundwater
measurements. Depending on the GRACE post-processing variant (i.e. filtering), the trend
is estimated to be about -12.1 ± 6.3 mm/year, and depending on the GRACE product
the trend is about -16.3 ± 6.3 mm/year. The effect of the chosen GRACE product and
the choice of the filtering are therefore considerably smaller than the a priori choices of
the specific yield and the spatial averaging for the groundwater observations.

8.2.2.5 Calibration of Model Parameters

In total 22 parameters are calibrated during the C/DA procedure. In Fig. 8.17, the time
series of six parameters after C/DA using the ITSG-DDK3 product are shown: Three
parameters were found to be most sensitive in Schumacher et al. (2016a) and are related
to the soil water compartment and to the calculation of evapotranspiration (Fig. 8.17
a, b, c); The other three parameters are related to the surface water and groundwater
compartments (Fig. 8.17 d, e, f).

The root depth multiplier is a factor to regulate the depth of the soil compartment, and
it is equal to one in the standard WGHM run. After one year, the ensemble mean of the
calibrated values is larger than one (Fig. 8.17 a). Therefore, the model allows a higher
amount of water to be stored in the soil compartment before it is saturated. By this,
the calibrated root depth multiplier likely contributes to a larger variability in soil water
changes after C/DA, and thus leads to a better agreement with GRACE TWSA compared
to the OL. However, the calibrated parameter neither converges to a constant value nor
is its uncertainty reduced.

The net radiation multiplier and the Priestley-Taylor (PT) coefficient for arid regions are
used for the computation of potential evapotranspiration. The net radiation multiplier
converges to a value close to the lower limit of 0.5, and its uncertainty clearly becomes
smaller except for one sample (Fig. 8.17 b). In contrast, the PT coefficient does not show
a clear pattern over the C/DA period and its uncertainty remains large (Fig. 8.17 c).

The net abstraction groundwater multiplier controls the amount of water that is consumed
and is set to one in the standard WGHM run. Until the end of 2007, the calibrated value is
mostly larger than one suggesting a higher anthropogenic water use (Fig. 8.17 d). It seems
likely that during the drought period more water is consumed than originally simulated by
the WaterGAP sub-models. However, this would also be expected for the years 2008-2009,
in which the value is smaller than one. The uncertainty of the calibrated parameter also
does not decrease over time.

The wetland depth decreases with increasing the number of EnKF updates (Fig. 8.17 e).
This seems to be reasonable, since the wetlands are not very deep within the Murray-
Darling River Basin. Finally, for the river roughness coefficient multiplier, which is closely
related to the river velocity, no clear pattern is visible over the study period (Fig. 8.17
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f). The estimated parameter values in the EnKF updates generally do not converge to a
constant value and their uncertainties do not become smaller with time.

a) b)

c) d)

e) f)

Figure 8.17: Time series of six selected calibration parameters (ensemble mean) and ensemble
members. The initial parameter ensemble is shown for month “Dec 2002”.

8.2.3 Discussion and Conclusions for the Murray-Darling Case
Study

In this section, the developed C/DA framework of this PhD is successfully transferred
to the Murray-Darling River Basin. It is shown that the assimilation of GRACE TWSA
products into WGHM over 2003-2009 considerably improves the representation of TWSA.
Decline in TWSA, resulting from the Millennium Drought over the region, is successfully
introduced or intensified by C/DA using GRACE data. The trends are found to be pre-
dominantly associated with the changes in groundwater storage, which is confirmed by
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validation with in-situ groundwater observations. However, the ranking of the trends in the
four sub-basins coincides with the distribution of linear trends in GRACE TWSA but it is
somewhat different from the ranking suggested by groundwater observations. In addition,
C/DA improves the representation of the seasonality of the groundwater compartment
in terms of phase shift, which is assessed via correlation coefficients. The inter-annual
variability of groundwater changes has a better quality after 2006 but is still underesti-
mated during 2003-2005. In summary, hypothesis VI of this thesis is supported. However,
conclusions on the representation of surface and soil water cannot be made here, since the
validation with independent measurements has to be done in future work. It is worth men-
tioning that the representation of river discharge deteriorated after C/DA (Schumacher
et al., 2016c). Therefore, a multi-criteria C/DA is desirable, e.g. including GRACE TWSA
and river discharge measurements to simultaneously constrain water storage changes and
water fluxes.

The analysis of the model parameters shows that large dependencies exist even after seven
years of C/DA. Obviously, several of the 22 calibrated parameters seem to compensate
each other due to their dependencies, e.g., the net radiation multiplier and the PT coeffi-
cient that both influence the calculation of evapotranspiration. However, the calibrated set
of parameters contributes to a good representation of TWSA and groundwater as shown
in sections 8.2.2.2 and 8.2.2.4. Therefore, the presented interpretations of the parameters
in Fig. 8.17 should be considered with caution. Based on these investigations, a final an-
swer cannot be given whether individual parameter values have improved. Calibrating a
parameter sub-set might result in a stronger constraint of GRACE TWSA on these pa-
rameters, and therefore might lead to improvements of individual values. Furthermore, the
results suggest to carefully investigate the assumptions about the parameter distributions,
which are used to generate a parameter ensemble. For example, to create an ensemble of
WGHM runs, samples of wetland depth are realized using a triangular distribution with
the most probable value of 2 m and minimum and maximum limits of 0.5 and 5 m. In
the Murray-Darling River Basin, wetlands are usually of small depth. Therefore, several
WGHM runs might overestimate the amount of water that is stored in the wetland com-
partment. In the C/DA procedure, this leads to rather high uncertainties for the wetland
depth parameter as well as for the wetland water storage compartment. As a result, the
update increments are likely overestimated. An improved representation of surface water
might thereby not be achieved after C/DA.

A comparison of the C/DA results, while assimilating different GRACE products and
applying different filtering strategies, revealed that the differences in the estimated trends
are of the same magnitude as the differences in the estimated trends from the GRACE
products. However, a comparison of TWSA from the C/DA results to GRACE or the
validation with independent groundwater measurements could not identify a particular
GRACE product or a particular filtering approach that always produced superior results.
Therefore, a recommendation on the “best” product or filtering approach cannot be given
based on the presented investigations.

The application of the SEIK filter indicates a smaller effect of GRACE on the WGHM
water states. The filter update appears to trust the model simulation more than it is
the case for the application of the EnKF. This is related to smaller uncertainties for the
model prediction in case of the SEIK filter, although a forgetting factor was introduced
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to enlarge the model ensemble spread for each update step similar to the inflation factor
in the EnKF. Inflation and forgetting factor do not seem to have identical impacts on the
model covariance matrices.

The validation with groundwater observations suggested that the inconsistencies between
C/DA variants of WGHM and measurements are not only due to model uncertainties,
uncertainties in GRACE products or due to the disaggregation of TWSA into individ-
ual water storage compartments during the C/DA update step, but also associated with
uncertainties in the groundwater measurements and their post-processing. However, the
validation confirmed that the improvement of groundwater decline and its seasonality is
possible when assimilating GRACE TWSA into WGHM. This outcome provides a first
step towards transferring the developed C/DA framework also to assimilate TWSA into
hydrological models over data-sparse regions, where a validation of the C/DA results is
limited.

A comparison of the Murray-Darling River Basin case study to the case study for the Mis-
sissippi River Basin, in which one year of GRACE TWSA were assimilated into WGHM,
shows that the developed C/DA framework can be applied in different river basins. In
contrast to the Mississippi study, a constant inflation factor was introduced to avoid fast
ensemble convergence here. The application of C/DA over a period of seven years, revealed
considerable improvements with respect to the standard WGHM version. The outcomes
indicate that a long period of C/DA helps clearly to improve water state simulations.
Therefore, in further studies, a longer period of C/DA for the Mississippi River Basin
might be considered.
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9. Conclusions and Outlook

This PhD study aimed at developing a flexible calibration and data assimilation (C/DA)
framework to merge model predicted water states with GRACE total water storage anoma-
lies (TWSA), while simultaneously calibrating model parameters.

The main results of this thesis can briefly be summarized as:

• GRACE TWSA are beneficial for improving hydrological model simulations (ob-
jective 1). This is always the case for the representation of TWSA. Yet, a general
statement for the individual water compartments cannot be formulated. A better
quality of the simulation of water states in individual storage compartments depends
on the C/DA analysis strategy, quality of observations, and the characteristics of
the basin.

• Several configurations of the C/DA strategy were applied and the C/DA results indi-
cated a significant influence of the observation error model and the spatial resolution
of GRACE TWSA (objective 2).

• Application of alternative ensemble filter approaches helped to improve the C/DA
performance (objective 3).

• The transferability of the developed C/DA framework was demonstrated by applying
the approach to two different case studies, the Mississippi River Basin, USA, and
the Murray-Darling River Basin, Australia, that are distinguishable in terms of
hydrological and climatic characteristics (objective 4).

A strategy to investigate the C/DA framework and its benefit for hydrological model
simulations was proposed in chapter 1. After introducing GRACE TWSA products and
providing a detailed description of the WaterGAP Global Hydrology Model (WGHM)
in chapter 2, the principle of variational and sequential data assimilation using linear or
non-linear models was discussed in chapter 3. Ensemble filter algorithms were introduced
in chapter 4. The similarities and differences between the classical ensemble Kalman fil-
ter (EnKF) and the alternative filter formulations, i.e. the square root analysis scheme
(SQRA) and the singular evolutive interpolated Kalman (SEIK) filter, were addressed. Fil-
ter tuning techniques were also presented. In chapter 5, the implementation of GRACE
data assimilation into WGHM and the model parameter calibration was described, in-
cluding strategies to handle the temporal and spatial resolution mismatch between obser-
vations and model, as well as the description of measurement and model uncertainties.
A sensitivity and covariance analysis were presented in chapter 6 to investigate whether
a combined C/DA approach is appropriate to improve WGHM simulations. In chapters
7 and 8, the application of the established C/DA framework was investigated via a sim-
ulation experiment and two real case studies. In this chapter, the main conclusions are
drawn from this thesis and an outlook on future research is given.
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9.1 Conclusions

Traditionally, hydrological models have been calibrated against river discharge mea-
surements (Gupta et al., 1998). A parameter that regulates the amount of land runoff
has already been calibrated in the case of WGHM against mean annual river discharge
at 1319 gauge stations (Müller Schmied et al., 2014). In Werth (2010), a multi-criteria
calibration against river discharge and GRACE TWSA has been performed. In addition,
a number of studies have suggested to assimilate GRACE TWSA into hydrological
models (Zaitchik et al., 2008, Su et al., 2010, Forman et al., 2012, Houborg et al., 2012,
Li et al., 2012, Forman and Reichle, 2013, van Dijk et al., 2014, Tangdamrongsub et al.,
2015, Reager et al., 2015, Girotto et al., 2016, Kumar et al., 2016). In this thesis, for
the first time, a combined C/DA approach was proposed to assimilate remotely-sensed
TWSA of GRACE into a hydrological model, while simultaneously calibrating model
parameters (see also Schumacher, 2012, Eicker et al., 2014, Schumacher et al., 2016a,b,c).
The mathematical aspects of C/DA and their implementations were described in detail
using a simple model and the more complex global WGHM.

Benefit of GRACE TWSA for Model Parameter Calibration

A fundamental question regarding the assimilation of GRACE TWSA into hydrological
models was “whether it has a benefit for simultaneously calibrating model parameters”.
Therefore, a sensitivity and covariance analysis was performed to test the sensitivity
of WGHM water storage variability with respect to changes in the model parameter
values and to assess the correlations between water states and parameters (see chapter 6
and also Schumacher et al., 2016a). The investigations indicated that high correlations
between water states and several model parameters exist, which enable a calibration of
parameters against GRACE TWSA. This supports hypothesis I of this thesis. Numerical
simulations confirmed that indeed the large correlations between water states and model
parameters are responsible for the observed big contribution of GRACE TWSA in the
ensemble filer update. Therefore, a combined C/DA approach seems to be beneficial for
improving hydrological model simulations. In addition, basin-specific calibration of model
parameters appears to be more appropriate than a global calibration, since each river
basin exhibits different climatic and anthropogenic characteristics, and therefore different
parameters were found to be sensitive to TWSA. Moreover, it was found that calibrating
a large number of parameters, e.g., 20-22 parameters, might not always be beneficial and
the improvement of some parameters might be compensated by others. This might lead
to changes in the parameter values without any improvements of the water compartment
simulation. While the calibrated parameters as a set contributed to a good representation
of TWSA as well as to several individual water storage compartments in the presented
simulation and real case studies, the results indicated that individual parameters have
not always been improved after C/DA. Therefore, it is concluded that if dependencies
between model parameters exist, it seems more appropriate to calibrate only one of these
parameters.
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Benefit of GRACE TWSA for Improving Hydrological Water States and
Fluxes

To answer the research question “whether the assimilation of GRACE TWSA into hy-
drological models and simultaneous parameter calibration improves the representation of
total and individual water storage changes”, the established C/DA framework was tested
within a simulation experiment designed for the Mississippi River Basin. Using this, one
can evaluate the C/DA results by comparison to the realistically defined synthetic “truth”
(see chapter 7 and also Schumacher et al., 2016b). Evaluation of the metrics RMSE and
of the correlation coefficients of residual curves (i.e. after subtracting trend, annual and
semi-annual cycles) showed that model simulations of TWSA were always improved after
C/DA as expected, which confirms hypothesis II a of this thesis. However, this did not
necessarily hold for the individual water compartments and water fluxes. Especially, the
vertical disaggregation into soil water and groundwater was not always performed suc-
cessfully. A possible reason might be the similarity of the inter-annual cycles of soil water
and groundwater that complicates the separation of GRACE TWSA signal. In addition,
residual issues in the C/DA update might exist, such as wrong correlations introduced by
the finite approximation of error statistics with a limited model ensemble size. The inves-
tigations show the potential of GRACE TWSA for improving the simulation of individual
water states and fluxes but do not absolutely confirm hypothesis II b of this thesis.

Observed GRACE data were assimilated into WGHM for one year for the Mississippi
River Basin (section 8.1). Then, the model was run forward for the next three years, which
indicated that an improved prediction of TWSA is possible after the assimilation (see
also Eicker et al., 2014). During the data assimilation period, integrating GRACE TWSA
was found to have a positive impact on several individual water compartments and on
the river discharge but not on all water states and fluxes. During the three following
years without additional GRACE data assimilation, the performance of individual water
compartment simulations rather degraded compared to the standard model simulation.
The length of the period of C/DA influences the performance for individual water
compartments and fluxes and therefore should be chosen according to the availability of
observation data, as it was followed in this thesis when transferring the C/DA framework
to the Murray-Darling River Basin (see section 8.2).

Impact of TWSA Discretization and GRACE Error Model Settings on C/DA
Results

The question “whether and how accounting for GRACE TWSA error correlations and
exploiting the spatial resolution of GRACE observations influence the C/DA results”
was investigated in this thesis. In the theoretical part of this work, it was described
how GRACE TWSA can be spatially averaged. The impact of spatial discretization was
subsequently examined when assimilating observed GRACE TWSA into WGHM for the
Mississippi River Basin. It was shown that the assimilation of 5◦×5◦ gridded data or sub-
basin averages was found to be superior compared to a basin average assimilation (see
section 8.1). This supports hypothesis III of this thesis, which states that exploring the
spatial resolution of GRACE TWSA leads to better C/DA results.

It the theoretical part of this thesis it was described how correlated errors of GRACE
TWSA can be handled (section 2.1.4). The formal error propagation of the full error
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covariance matrix of potential coefficients to a full error covariance matrix of TWSA
was demonstrated. In the application part of this study, a simulation experiment was
designed to investigate the effect of introducing either white or correlated observation
noise in the ensemble filter update step (see chapter 7 and also Schumacher et al., 2016b).
The results indicated that the choice of the observation error model has a considerable
influence on the C/DA results with respect to the three selected spatial scales (four and
eleven sub-basin averages, and sixteen grid cells within the Mississippi River Basin).
This supports hypothesis IV of this PhD study, which states that the error model of
observations matters significantly. However, applying GRACE TWSA error correlations
did not always lead to a better representation of total and compartmental water states.
Assuming white noise for GRACE TWSA results in a higher Kalman gain in the update
step, and therefore the model states are usually pulled closer towards the observations.
Nevertheless, this did not always result in superior metrics of total and compartmental
water storage (see sections 7.2.1-7.2.3). Since an accurate representation of observation
errors is desirable to estimate a realistic Kalman gain, investigations regarding the effect
on the C/DA results are important and it is recommended to implement the GRACE
TWSA error correlations. Yet, a final answer cannot be provided whether accounting
for GRACE TWSA error correlations helps improving the performance of the C/DA
framework.

Impact of Alternative Filter Algorithms on C/DA Results

The C/DA framework based on the classical EnKF was extended by variants of ensemble
filter algorithms to answer the research question “whether alternative algorithms help
to improve the performance of the ensemble filter update”. The SQRA and SEIK
methods were introduced as alternative filter algorithms in the theory part of this work.
Their similarities and differences with respect to the classical EnKF were discussed
(chapter 4). While alternative algorithms have already been used in meteorological and
oceanographic data assimilation studies (e.g., Nerger, 2003), in this thesis, these filters
were introduced for the first time to GRACE data assimilation. The application of SQRA
and SEIK was tested in a simulation experiment and their C/DA performance for total
and individual water storage was compared to the classical EnKF (see chapter 7 and
also Schumacher et al., 2016b). Especially after applying the SEIK filter, improvements
were found compared to the classical EnKF. These are likely attributed to smaller
sampling errors in the filter update step: The SEIK filter does not generate an ensemble
of observation perturbations, which is required in the EnKF. The SEIK filter, when
using 30 ensemble members, was found to show a similar performance as the EnKF with
100 ensemble members. These results indicate that the application of alternative filters
can also help to keep the ensemble size small. Eventually, it was shown that alterna-
tive filter algorithms improve the C/DA performance, and thus, hypothesis V is supported.

Transferability of the C/DA Framework

Finally, the research question “whether the C/DA framework is transferable to river
basins with different climatic and hydrological conditions” was investigated in this
thesis. After testing the established C/DA framework using a synthetic experiment and
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observed GRACE TWSA assimilation for the Mississippi River Basin, the framework
was successfully applied to the Murray-Darling River Basin, which exhibits different
climatic and anthropogenic characteristics compared to the Mississippi River Basin (see
section 8.2 and also Schumacher et al., 2016c). Identical initial settings were used to
test whether the framework is in principle transferable to any region world-wide without
tuning. For the Murray-Darling River Basin study, the focus was on the drought period
during 2003-2009, in which WGHM did not show significant TWSA trends. The C/DA
results revealed considerable improvements of TWSA and groundwater after assimilating
GRACE products supporting hypothesis VI of this thesis. Evaluating linear trends in
TWSA indicated that GRACE data assimilation indeed introduced or intensified negative
trends, which were missing before. The validation of the groundwater simulations with
independent groundwater measurements showed that the trend was correctly associated
with changes in the groundwater storage. The ranking of the linear trends in the four
sub-basins coincided with the spatial distribution of linear trends in GRACE TWSA but
differed somewhat from the distribution suggested by groundwater well measurements.
Seasonal variations did not agree with in-situ observations even though C/DA achieved
to modify the seasonal variations. In addition, C/DA led to an overestimation of river
discharge during high-flow periods. As also found in the simulation and by the real case
studies for the Mississippi River Basin, the potential of C/DA in vertically disaggregating
and downscaling TWSA, and in adapting model parameters has to be better exploited
in further work. Generally, the applications presented in chapter 8 provide a first step
towards transferring the established C/DA framework to data-sparse regions, where
validation using independent measurements is limited.

Independent Validation of C/DA Results

To assess the C/DA results for individual water states and fluxes, a combined use of
different observations and model simulations is important. This is, however, difficult due
to limited ground-based observations, including sparse networks and data gaps, as well
as spatial and temporal coverage and resolution mismatch between ground- or satellite-
based measurements and model outputs. Furthermore, uncertainties exist for both model
simulations and observations. The cause of the mismatch between model outputs and
observations might therefore not always be identified.

9.2 Outlook

Improving the Model Parameter Calibration

The investigations on the calibrated model parameters in sections 7.2.4, 8.1.2.1, and
8.2.2.5 showed that some parameters likely compensate each other, and thereby a
simultaneous calibration is not possible. Therefore, studies on the optimal number and
selection of calibration parameters will be conducted in future research. The intention is
to avoid dependencies of calibration parameters and therefore to improve the calibration
of individual model parameter values in the ensemble filter update. It will also be
investigated to what extent a desirable parameter convergence and the application of
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inflation factors to ensure a contribution of observations during the entire C/DA phase
contradict each other. In addition, it will be analyzed how a more efficient sampling
of the parameter space might contribute in avoiding fast ensemble convergence (Pham,
2001, Evensen, 2004, Hendricks Franssen and Kinzelbach, 2008). Tests on an optimal
length of C/DA will also be performed. For the future basin-specific calibration of smaller
parameter sets, adapting the initial model parameter distributions will be tested to
address the individual climatic and anthropogenic conditions in the different river basins.
Iterative C/DA will also be investigated. The calibrated parameters after a first C/DA
phase will be used to start the C/DA procedure once again and to iteratively improve the
parameter values and water state estimates. For this, the calibration and the data assimi-
lation might be separated and performed sequentially or a combined C/DA might be used.

Constraining Individual Water States and Fluxes

Since the real case studies in section 8.1 and 8.2 showed that assimilation of GRACE
TWSA does not automatically improve individual water compartments, a multi-criteria
data assimilation approach that considers further data sets in the C/DA update is
desirable. These extra observations may include lake and river levels from altimetry
observations, in-situ river discharge, in-situ groundwater measurements or remotely-
sensed soil moisture (e.g., from the Soil Moisture Ocean Salinity (SMOS) satellite mission).

Improving the Disaggregation of GRACE TWSA

To improve the performance of the ensemble filter updates with respect to the vertical and
horizontal disaggregation of GRACE TWSA into individual water storage compartments,
a range of tuning techniques will be analyzed. For a more stable computation of the
model error covariance matrix, the model ensemble size will be reviewed, the application
of covariance localization will be implemented to suppress unphysical correlations, e.g.
between large-distant points, and the sampling of model uncertainties will be revised.
The latter will help to realize a more realistic, i.e. physics-based description of hydro-
logical model uncertainties. For this, adapting distributions for model parameters, using
spatially and temporally correlated error models for climate forcing data, in particular
for precipitation, and applying the minimum second order exact sampling technique (see
section 4.2.3) for initial water states will be analyzed in future work. On the other hand,
the adequate handling of GRACE TWSA observations should be further developed. This
comprises a more sophisticated method to distribute the monthly updated water states to
daily values, or alternatively, assimilating weekly or daily GRACE data products into the
model. Alternative to formal error propagation, triple collocation error estimation will be
examined. Moreover, model improvements may also be obstructed by considering errors
of the background models for other Earth system components that have already been
reduced from GRACE products (see e.g., Forootan et al., 2014a). Such errors are worth to
be investigated, since they represent additional uncertainty sources of TWSA observations.

Improving the Data Assimilation Methodology

The benefit of extending the C/DA framework based on the classical EnKF by alternative
filtering methods such as the SQRA and SEIK approaches was demonstrated in this
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thesis. For future work, the EnKS will be applied and methods that perform a full
Bayesian update, e.g., the Particle Filter (Del Moral, 1997) or a combination of particle
and ensemble Kalman filter (Hoteit et al., 2008a,b, Stordal et al., 2011) will be tested
for hydrological data assimilation. This provides a chance to include statistical moments
of higher order in the ensemble update as well as probability distributions that are not
Gaussian. One might also consider the introduction of a bias estimation, e.g., via random
walk Markov processes, or constraint ensemble methods that ensure mass conservation,
such as the Constraint EnKF (CEnKF) using the terrestrial water balance as additional
constraint in the EnKF update step (Pan and Wood, 2006). A systematic investigation
on the optimal inflation factor also has to be done.

Future Applications

A comparison of the C/DA results to other data assimilation strategies (e.g., van Dijk
et al., 2014) or inversion techniques (e.g., Forootan et al., 2014b) might help to better
interpret the updated model water states. Applications of the framework to analyze the
impact of climatological conditions on the basin hydrology and to assess natural hazards
such as droughts and floods will be considered in further work. Studies on the predic-
tion skills of WGHM after C/DA are planned. A merged TWSA product might bridge
the possible gap between the still operating GRACE satellite mission and its follow-on
mission, whose launch is planned for the end of 2017. Moreover, establishing an (opera-
tional) daily GRACE TWSA data assimilation approach would contribute in monitoring
and early warning systems for natural hazards, especially droughts and floods. Since the
WaterGAP model has already been used, e.g., in the IPCC Report in 2013 for estimat-
ing hydrological impacts of climate change, eventually, the developed C/DA framework
allows to provide a globally improved WGHM version delivering more reliable hydrology
and climate predictions in future.
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