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Abstract

The rapid increase in population in the world has propelled pressure on arable land. Consequently,
the food basket has continuously declined while the global demand for food has grown twofold.
There is need for continuous monitoring and spatial information update of agriculture activities.
This will support decision and policy making organs to take necessary actions towards enhancing
food security. However, economic factors, farm management, natural aspects (such as weather,
soils e.t.c.) and government policy for instance, influence types of crops planted in a season.
Therefore, data acquisition and mapping methods need to consider these dynamics. The study
adopts microwave remote sensing with synthetic aperture radar (SAR) for data acquisition. Mi-
crowave remote sensing is daylight and weather independent thus guarantees the highest temporal
density of images regardless of climatic zones. This also means that images at different phenolo-
gical stages can be captured by radar sensors.

Crop phenology is dynamic as it changes spatially in different times of the year. Such biophysical
processes also look spectrally different to radar sensors. Some crops may depict similar spectral
properties if their phenology coincide, but differ later when their phenology diverge. Thus, crop
mapping methods using single-date remote sensing images can not offer optimal results in case
of crops with similar phenology. In addition, methods stacking images within a cropping season
for classification limits discrimination to a single high dimensional feature space vector that can
suffer from overlapping classes. However, phenology can aid discrimination of crops since their
backscatter varies with time. Therefore, this research seeks to fill this gap by developing a crop
sequence classification method using multitemporal SAR images. The method is built to use spatial
and temporal context.

The study designed first order and higher order undirected Dynamic Conditional Random Fields
(DCRFs) for spatial-temporal crop classification. Basically, the DCRFs model has a repeated struc-
ture of temporally connected conditional random fields (CRFs). Each node in the sequence is
connected to its temporal neighbours via conditional probability matrix. The matrix is computed
using posterior class probabilities estimated by random forest classifier. We use the matrix on one
hand to encode expert and image based phenological information in higher order DCRFs. On the
other hand, the matrix integrates only image based phenological information in first order DCRFs.
When compared to independent epoch classification, the designs improved crop discrimination
at each epoch with higher order DCRFs having the highest accuracy in the sequence. However,
stakeholders and policy makers need to know the quantity and spatial coverage of crops in a given
season so as to ensure food security and a balanced ecosystem. Therefore, we went an extra step
to develop a DCRFs ensemble classifier. The DCRFs ensemble considers a set of computed pos-
terior crop type probabilities at each epoch in order to generate an optimal label of a node. This
is done by maximizing over posterior crop type probabilities selected from the sequence based on
maximum F1-score and weighted by user accuracy. Our ensemble technique is compared to stand-
ard approach of stacking all images as bands for classification using maximum likelihood classifier
(MLC) and CRFs. So far it outperforms MLC and CRFs using crop type posterior probabilities
estimated by both first and higher order DCRFs.
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Zusammenfassung

Der rasche Anstieg der Weltbevölkerung führte zu einem erhöhten Druck auf landwirtschaftli-
che Flächen. Die Folge ist ein verringertes Nahrundmittelangebot bei zeitgleicher Verdopplung der
Nachfrage. Dadurch entsteht ein Bedarf nach kontinuierlichem Monitoring zur Laufendhaltung der
räumlichen Information über die Nutzung von Agrarflächen als eine wichtige Voraussetzung zur
Unterstützung entscheidungstragenden gesellschaftlichen Organe bei der Sicherung der Versor-
gung mit Nahrungsmitteln. Die Wahl der angebauten Kulturen wird dabei von ökonomischen und
ökologischen (z.B. Klima, Boden etc.) Aspekten, des Weiteren der Bewirtschaftungsweise und poli-
tischen Entscheidungen beeinflusst. Diese durchaus dynamischen Faktoren gilt es bei der Auswahl
von Daten und Methoden zur kartografischen Erfassung von Feldfrüchten zu berücksichtigen. Die
vorliegende Studie nutzt bildgebendes Radar (Synthetic Aperture Radar, SAR) zur Datenerfassung.
Mikrowellenbasierte Fernerkundung ist unabhängig von Wetter- sowie Tageslichtverhältnissen und
garantiert daher in allen klimatischen Zonen der Erde eine höchstmögliche zeitliche Dichte der Da-
ten. Damit besteht die Möglichkeit, Aufnahmen aus allen phänologischen Entwicklungsstadien der
einzelnen Feldfruchtarten zu liefern.

Die Phänologie der Feldfrüchte weist eine starke räumliche und zeitliche Dynamik im jährlichen
Wachstumszyklus auf. Die hier auftretenden biophysikalischen Prozesse führen zu unterschiedli-
chen spektralen Reflektionseigenschaften im Radarbild. Die spektralen Eigenschaften verschiede-
ner Feldfrüchte können bei gleichen Phänologien zu zeitweise identischen Messungen führen, in
späteren Entwicklungsstadien jedoch variieren. Dementsprechend führen Klassifikationsverfahren
mittels Bildern, die lediglich zu einem bestimmten Zeitpunkt des Pflanzenwachstums aufgenom-
men wurden, nicht zu optimalen Ergebnissen im Falle ähnlicher Phänologien. Zusätzlich hierzu
führt ein sehr großer Merkmalsraum, in den alle Aufnahmen der Vegetationsperiode einfließen, zu
einer Überlappung der Klassen und somit ebenfalls zu einer schlechten Trennbarkeit. Die Phänolo-
gie der Pflanzen kann jedoch insofern hilfreich bei der Klassentrennung sein, als dass der gemes-
sene Rückstreukoeffizient zeitlich variiert. Das Ziel dieser Studie ist daher die Entwicklung eines
Klassifikationsverfahrens, welches phänologische Sequenzen der Feldfrüchte unter Verwendung
von Radarbildern berücksichtigt. Die Methode ist dabei derart konstruiert, dass sie den zeitlichen
und räumlichen Kontext berücksichtigt.

Im Rahmen der Forschungsarbeit wurde ein Ansatz entwickelt, der auf Zufallsfeldern erster und
höherer Ordnung (Dynamic Conditional Random Fields, DCRFs) basiert. Das DCRFs-Modell hat
die Struktur sich wiederholender, zeitlich verbundener Zufallsfelder (Conditional Random Fields,
CRF), die als ungerichtete Graphen definiert sind. Jeder Knoten der Sequenz ist über eine Matrix
von bedingten Wahrscheinlichkeiten mit seinem jeweiligen zeitlichen Nachbarn verbunden. Die Be-
rechnung der Matrix erfolgte über die Bestimmung der A-posteriori-Wahrscheinlichkeiten mittels
des Random Forests Klassifikators. Die Matrix wird einerseits zur Implementierung expertenbasier-
ter und phänologischer Information in den DCRFs höherer Ordnung verwendet. Zugleich ermög-
licht sie die Berücksichtigung phänologischer Information ausschließlich aus den Daten bei Anwen-
dung der DCRFs ersten Ordnung. Ein Ergebnisvergleich der Klassifikation einzelner Epochen zeigt,
dass die Verwendung der DCRFs höherer Ordnung zu den höchsten Klassifikationsgenauigkeiten
für alle Epochen der Sequenz führt. Beteiligte Akteure und Politiker benötigen oftmals quantitative
Informationen über die vorhandenen Feldfrüchte sowie deren räumliche Verteilung zur Sicherstel-
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lung der Nahrungsmittelproduktion und eines ausgeglichenen Naturhaushaltes. Aus diesem Grund
wurde in einem weiteren Arbeitsschritt ein DCRFs-Ensemble-Klassifikationsverfahren entwickelt.
Dieses berücksichtigt einen Satz berechneter A-posteriori-Wahrscheinlichkeiten für jede Klasse zu
jeder Epoche mit dem Ziel, eine optimale Klassenentscheidung für einen Knoten zu treffen. Hierzu
werden die A-posteriori-Wahrscheinlichkeiten der Sequenzen maximiert, nachdem sie basierend
auf dem maximalen F1-score ausgewählt und mit den Nutzergenauigkeiten gewichtet wurden.
Diese Ensemble-Technik wird anschließend mit Standardverfahren verglichen, bei denen alle Auf-
nahmen in einen Merkmalsraum zusammengeführt und mit dem Maximum Likelihood Klassifika-
tor (MLC) sowie den CRFs klassifiziert werden. Es zeigt sich, dass mit dem entwickelten Verfahren
bessere Ergebnisse erzielt werden als mit MLC und CRFs. Dies gilt sowohl für die Berechnung der
feldfruchtspezifischen A-posteriori-Wahrscheinlichkeit mit den DCRF erster Ordnung als auch mit
jenen der höheren Ordnung.



Contents

Acknowledgements iii

Abstract v

Zusammenfassung vii

List of Figures xiii

List of Tables xvii

Acrynomns, abbreviations and symbols xix

1. Introduction 1

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Motivation and problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Research identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1. Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2. Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3. State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4. Research novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4. Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Theoretical concepts 13

2.1. Microwave remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1. Imaging with synthetic aperture radar . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2. Phenology and Context in SAR images . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2. Reasoning with probabilistic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1. Graphical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2. Markov random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3. Conditional random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Methodology 35

3.1. Dynamic conditional random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1. Association Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



3.1.2. Interaction Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.3. Temporal Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2. Higher order DCRFs with expert phenology . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3. Optimal crop mapping with DCRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4. Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5. Accuracy assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4. Experiments 47

4.1. Crop type mapping using TerraSAR-X images . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1. Fuhrberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2. Kitale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2. Crop type mapping from Sentinel 1 images . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1. Study site and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2. DCRFs crop type mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5. Results 59

5.1. Results of crop type mapping using TerraSAR-X images . . . . . . . . . . . . . . . . . . 59

5.1.1. Fuhrberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2. Kitale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2. Results of crop type mapping from Sentinel 1 images . . . . . . . . . . . . . . . . . . . 73

5.2.1. Parameter determination results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2. Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6. Discussion 87

6.1. Analysis of crop type mapping using TerraSAR-X images . . . . . . . . . . . . . . . . . 87

6.1.1. Fuhrberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.2. Kitale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2. Analysis of Crop type mapping from Sentinel 1 images . . . . . . . . . . . . . . . . . . 90

6.3. Spatial interaction potential review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4. Temporal interaction potential and expert phenology review . . . . . . . . . . . . . . 94

6.5. Comments on optimal map generation from a sequence . . . . . . . . . . . . . . . . . 95

6.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7. Conclusion and outlook 99

Bibliography 101

Index 109

x



A. Appendix: Part one A-1

A.1. Complimentary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.1.1. Crop type classification in Fuhrberg . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.1.2. Crop type classification in Kitale . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6

A.1.3. Crop type mapping using Sentinel 1 images . . . . . . . . . . . . . . . . . . . . A-6

xi





List of Figures

1.1. Percentage distribution of undernourished population; source World Food Pro-

gramme (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Map depicting proportion of agricultural area adopted for food production (Foley

et al., 2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Parcels of sugar beet before seeding under different managements in (a), (b) and (c). 5

2.1. Past and current operating microwave remote sensing satellites with their frequen-

cies and corresponding wavelengths; modified from (Richards, 2009). . . . . . . . . 14

2.2. Components of SAR imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4. Illustration of some phenology stages of maize. . . . . . . . . . . . . . . . . . . . . . . 19

2.5. An illustration of radar amplitude variation from crop parcels in different months

of 2009 as captured by TerraSAR-X in VV polarization (©DLR). Blue and red parcel

line boundaries represent rye and canola crops respectively. The variations depict

strong correlations within a class in time, hence temporal dependency. . . . . . . . . 20

2.6. An illustration of the fact that radar remotely sensed images contain strong context

– that represent spatial heterogeneity – rather than being a random collection of

independent pixels or blocks/segments (Kumar, 2005). (a) Normal image scene.

Image (b) is obtained by randomly combining pixel values in (a). Image (c) is

obtained by randomly combining the original image blocks, ©DLR. . . . . . . . . . . 21

2.7. Illustration of classification over a sequence of images. . . . . . . . . . . . . . . . . . . 23

2.8. Directed and undirected graphs modelled over pixels of an image. Nodes are rep-

resented by green circles while edges have blue lines. Each node has a spatial extent

of corresponding pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9. Neighbourhood systems as defined in (Tso and Mather, 2009, chap. 8). Higher-

order can be extended in a similar fashion. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.10. Configuration of cliques in a second order neighbourhood system. . . . . . . . . . . . 28

2.11. Comparison of how spatial context is incorporated to labelling of nodes in; (a) MRF

and (b) CRF (Wegner, 2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1. First order DCRF sequence graph showing a subset of temporal nodes and image

data in a sequence. First order spatial (N=4) and temporal interactions are illus-

trated by blue and black lines respectively while red lines depict node potentials. . 36

xiii



3.2. First order temporal (k) and second order spatial (N=8) neighbours of node i in a

sequence of T images (see Figure 3.1). Spatial and temporal edges are indicated

by solid and dashed lines respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3. Mean backscatter variation of crops as captured in different TerraSAR-X HH polar-

ized image acquisitions in the year 2009. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4. Higher order DCRFs sequence graph showing a subset of nodes and image data in

a sequence. First order spatial and higher (3rd) order temporal interactions are

illustrated by blue and black lines respectively while red lines are node potentials. . 42

3.5. Illustration of optimal node labelling using class posterior probabilities estimated

by first and higher order DCRFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1. Fuhrberg study area located in Northern Germany. . . . . . . . . . . . . . . . . . . . . 48

4.2. Phenology stages of crops considered for classification in Fuhrberg. . . . . . . . . . . 48

4.3. Study area in Kitale, Kenya. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4. Phenology stages of crops considered for classification in Kitale. . . . . . . . . . . . . 52

4.5. Hannover study area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6. Crop phenology stages. Seeding and growing phases are within plant life cycle and

the rest are outside. S. Barley and W. Barley correspond to summer and winter

barley respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1. Random forest variable importance of different GLCM features based on a mean

of four directions, 0◦, 45◦, 90◦, and 135◦, and subsequently their average over all

epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2. Classification accuracy of the new expanded version of contrast sensitive model; (a)

is overall accuracy and (b) is kappa coefficient in percentage. . . . . . . . . . . . . . . 60

5.3. Standard contrast sensitive model classification accuracy; (a) is overall accuracy

and (b) is kappa coefficient in percentage. . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4. Proposed Pearson correlation interaction data dependent function classification ac-

curacy; (a) is overall accuracy and (b) is kappa coefficient in percentage. . . . . . . 62

5.5. Fuhrberg epoch-wise classification results from different approaches; HDCRF refers

to 5th order DCRF. Overall accuracy and kappa coefficient are shown by bars and

lines in percentage respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6. Comparison of different strategies of integrating DCRFs posterior probabilities to

produce an optimal seasonal crop map. Methods in (a) and (b) are based on estim-

ated class probabilities from standard and higher order DCRFs respectively. . . . . . 63

5.7. A Maize parcel well discriminated by 5th order DCRFs max F1-score compared to

MLC-stack and first order DCRFs max F1-score methods. False positives (white

areas) are potato and sugar beet crops. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiv



5.8. An oat parcel well detected by 5th and first order DCRFs max F1-score methods but

dominantly misclassified as rye by MLC-stack. In all maps false positives are white

regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.9. A sugar beet parcel well detected by 5th and first order DCRFs max F1-score meth-

ods but dominantly misclassified as potato and partly as maize by MLC-stack. In all

maps false positives are white regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.10. A potato parcel as mapped in MLC-stack and 5th and first order DCRFs max F1-

score techniques. The arrows indicate row directions which possibly influenced

radar signal and hence false positives (white areas) in the maps. . . . . . . . . . . . . 67

5.11. A rye parcel as mapped in MLC-stack and 5th and first order DCRFs max F1-score

techniques. False positives (white areas) caused by harvested rye in photo (e) and

planting of strawberry in photo (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.12. Scatterplot of first order DCRFs max F1-score against MLC-stack producer accuracy

computed from each grassland validation parcel. . . . . . . . . . . . . . . . . . . . . . 69

5.13. Grassland parcels as classified by MLC-stack and first order DCRF max F1-score

and corresponding ground referencing photos. Top to bottom row corresponds to

parcel numbers 49, 8, and 11 respectively as shown in Figure 5.12. White areas

correspond to misclassifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.14. Percentage F1-score accuracy of each crop in Kitale from different ensemble methods. 71

5.15. Coffee as mapped by MLC-stack and DCRF max F1-score. The white regions indic-

ate misclassifications mainly maize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.16. Wheat as mapped by MLC-stack and DCRF max F1-score. The white regions are

misclassifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.17. Grassland, rose flower (in greenhouses), sugarcane and sugarcane as mapped by

MLC-stack and DCRFs max F1-score compared to high resolution image ©RapidEye. 73

5.18. Maize parcel mapped by MLC-stack and DCRF max F1-score. The white regions

indicate misclassifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.19. Classification accuracy of the new version of contrast sensitive model using Sen-

tinel 1 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.20. Standard contrast sensitive model classification accuracy using Sentinel 1 data. . . 75

5.21. Pearson correlation model classification accuracy based on Sentinel 1 data. . . . . . 75

5.22. Sentinel 1 epoch-wise classification results, overall accuracy and kappa, from dif-

ferent approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.23. Percentage F1-score accuracy measure of each crop from different ensemble meth-

ods. S. barley and W. barley correspond to summer and winter barley respectively. 77

5.24. Grassland parcel mapped by DCRF max F1-score and MLC-stack; false positives

(white areas) correspond to true ground changes as shown in photos (c) and (d). . 79

xv



5.25. A potato parcel as mapped in DCRF max F1-score and MLC-stack; false positives

(white regions) consist of maize and sugar beet. Photos (c) and (d) illustrate the

parcel in June and July respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.26. Rye, summer and winter barley parcels mapped by DCRF max F1-score and MLC-

stack. False positives (white areas) are dominantly grass and wheat in parcel (b),

rye and wheat in parcel (d) and wheat in parcel (f). . . . . . . . . . . . . . . . . . . . 80

5.27. A subset of an area covered by summer barley and other crops as mapped by DCRF

max F1-score (a) and MLC-stack (b). Crop legend derived from Ebinger (2012). . . 81

5.28. Percentage F1-score of each crop from different ensemble methods using category

II data. S. barley and W. barley correspond to summer and winter barley respectively. 82

5.29. A grassland parcel as mapped by MLC-stack and DCRF max F1-score with corres-

ponding ground referencing photos taken at position 1 in May and July 2015. . . . 83

5.30. Wheat as classified by DCRF max F1-score and MLC-stack. False positive pixels,

white pixels, are rye mostly detected by DCRFs due to destruction by wind in (a)–

(f) and dug trenches as shown by parcels (g)–(i). . . . . . . . . . . . . . . . . . . . . . 84

5.31. Potato parcel as mapped by DCRF max F1-score and MLC-stack with corresponding

ground reference photos. False positives (white region) consist of maize and sugar

beet in parcel (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.32. Summer barley as mapped by DCRF max F1-score and MLC-stack with correspond-

ing ground reference photos. False positive pixels (white region) are wheat in parcel

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1. Stooking method of harvesting maize which may result in distinguishable backscat-

ter due to clustered maize stalk. Photo credit (One Acre Fund, 2016). . . . . . . . . 96

A.1. Crop map of Fuhrberg, Germany, as classified by 5th order DCRFs Max F1-score

ensemble method. Crop legend adopted from Ebinger (2012). . . . . . . . . . . . . . A-3

A.2. Crop map of Fuhrberg, Germany, as classified by standard first order DCRFs Max

F1-score ensemble method. Crop legend adopted from Ebinger (2012). . . . . . . . A-4

A.3. Crop map of Fuhrberg, Germany, as classified by MLC-stack method. Crop legend

adopted from Ebinger (2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5

xvi



List of Tables

3.1. Determination of pixel-wise conditional probability matrix between two sites

i and k in two different epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1. TerraSAR-X image acquisitions captured in ascending mode over the study area. . . 49

4.2. Distribution of training and validation data. . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3. Expert weights in different epochs determined using crop phenology. . . . . . . . . . 51

4.4. TerraSAR-X image acquisitions in Kitale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5. Distribution of training and validation data in hectares (ha) used in Kitale. . . . . . 53

4.6. Sentinel one data acquisitions over the study area. . . . . . . . . . . . . . . . . . . . . 56

4.7. Distribution of training and validation data in terms of size in hectares (ha)

and number of parcels (count) per crop. Proportions of reference data (training

set/validation set) is: category I (50%/50%) and category II (20%/80%). . . . . . . 56

5.1. Results from max F1-score ensemble methods versus stacking multitemporal images

together as input bands for classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2. Crop producer and user accuracy from first and higher order DCRFs max F1-score

including CRF and MLC using stacked image features. . . . . . . . . . . . . . . . . . . 65

5.3. Accuracy of different strategies of integrating DCRFs posterior probabilities. . . . . 70

5.4. Comparison of DCRF max F1-score to stacking multitemporal images for classifica-

tion using RF, MLC and CRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5. Producer and user accuracy of each crop from DCRF max F1-score and MLC stack

classifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6. Overall accuracies and kappa from different ensemble methods. . . . . . . . . . . . . 77

5.7. Comparison of DCRF max F1-score to stacking multitemporal images together as

input bands for classification using MLC and CRF. . . . . . . . . . . . . . . . . . . . . . 78

5.8. Producer and user accuracy of each crop based on DCRF max F1-score and MLC

stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.9. Overall accuracies and kappa from different ensemble techniques and MLC-stack

approach based on category II data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.10. Producer and user accuracy of each crop based on DCRF max F1-score and MLC

stack using 20% training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1. Higher order DCRFs max F1-score confusion matrix. . . . . . . . . . . . . . . . . . . . A-1

A.2. DCRF max F1-score confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

xvii



A.3. Confusion matrix of CRFs crop classification using stacked TerraSAR-X multitem-

poral images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

A.4. Confusion matrix of MLC crop mapping using stacked TerraSAR-X multitemporal

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

A.5. Confusion matrix of DCRF max F1-score classification in Kitale. . . . . . . . . . . . . A-6

A.6. Confusion matrix of MLC-stack classification in Kitale . . . . . . . . . . . . . . . . . . A-6

A.7. Sentinel 1 DCRF max F1-score confusion matrix using category I training data. . . . A-7

A.8. Sentinel 1 MLC-stack confusion matrix using category I training data. . . . . . . . . A-7

xviii



Acrynomns, abbreviations and symbols
Acronyms

Radar Radio detection and ranging

RAR Real Aperture Radar

SAR Synthetic Aperture Radar

Abbreviations

A association potential

CRF(s) Conditional Random Field(s)

DCRF(s) Dynamic Conditional Random Field(s)

EM electromagnetic

GMs Graphical Models

HMM Hidden Markov Models

I interaction potential

LBP Loopy Belief Propagation

MLC maximum likelihood classification

MRF(s) Markov Random Field(s)

OA Overall Accuracy

RF Random Forests

SVM Support Vector Machines

TP temporal potential

Symbols Units

α aperture angle rad

β spatial interaction parameter

xix



κ kappa statistic

λ wavelength of an electromagnetic wave m

φ expert based phenology weight vector

ψ higher order DCRFs potential weights

ρ Pearson correlation coefficient

τ pulse duration s

θi incident angle deg

θl sensor look angle deg

B bandwidth Hz

D beamwidth m

f frequency of an electromagnetic wave Hz

H sensor elevation above ground scene m

R slant range distance m

r spatial resolution at nadir m

ra azimuth resolution m

rr range resolution m

v velocity of light (in vacuum) m/s

xx



1 Introduction

1.1 Background

Agriculture sustains livelihoods worldwide and thus bears an economic and a social value. With

the current world’s population approaching six billion and expected to increase by three billion in

the next five decades, the global food scenario is changing rapidly. Pressure exerted on the already

limited arable land resource is greater than ever before (Seelan et al., 2003). This, coupled with

challenges of balancing modern competing land-use interests, has resulted to a decline in food.

Foresight by World-Bank (2011) estimates that food demand since 2010 has increased resulting

into extreme poverty of about 44 million people. Currently, about a billion people face severe

malnourishment (see Figure 1.1) while agricultural systems are subjected to concurrent degrading

land, water, biodiversity and climate on a global scale (Foley et al., 2011). Ironically, a third of

the food harvested is lost or wasted each year (FAO, 2013). This can be minimized if governments

and related stakeholders are updated on expected food outputs so that they can make advanced

consumption and storage plans especially for perishable crops. Therefore, mitigation measures

are necessary in order to counter this trend. An alternative is to craft sound policies and risk

management strategies to monitor and estimate food production.

Figure 1.1.: Percentage distribution of undernourished population; source World Food Programme
(2013).
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To monitor and estimate food production, up-to-date precise crop type spatial information is

required. Crops occupy roughly 38% of the Earth’s surface which is the largest use to date

(Ramankutty et al., 2008). So far only 62% of crops produce is for human consumption viz-a-

vis 35% used as animal feed (which may end up as human food indirectly as meat and dairy

products) and 3% for bioenergy, seed and other industrial products (Figure 1.2). Governments

and related stakeholders must thus confront the challenge of feeding a growing world population

while ensuring a more environmentally sustainable path is maintained despite existing stress on

land resources. Such critical competing interests can be monitored spatially and temporally using

remote sensing. Recent Earth observing satellites have undergone improved spatial, spectral and

temporal resolutions. It is now possible to acquire frequent images within crop growing season.

Optical images are able to distinguish different crop types. However, their applicability is limited to

daylight and cloud free weather conditions. Therefore, crop monitoring can benefit from Synthetic

Aperture Radar (SAR) images which are daylight and weather independent.

Figure 1.2.:Map depicting proportion of agricultural area adopted for food production (Foley
et al., 2011).

Synthetic Aperture Radar images provide an alternative to breach the gap of crop spatial inform-

ation update. The information can enhance land-use controls, development of commercial plans,

regulation of agricultural products, compensation and subsidy decisions to farmers by governments

and insurance companies amongst other applications. Moreover, stakeholders can monitor com-
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peting demands for instance shelter and food or impact of bio-fuel policies on cropping practices.

Annual updating of agricultural land-cover is necessary but requires an effective and efficient in-

formation gathering approach. So far compared to ground acquisition methods, remote sensing

is a practical and cost-effective way of automatically obtaining up-to-date spatial information. Al-

though optical satellite data are suitable for crop classification, they are weather dependent which

impacts their reliability for crop monitoring. Therefore, efforts to acquire crop spatial informa-

tion using optical satellites can be supplemented by relatively inexpensive SAR data recently made

available for civil applications.

1.2 Motivation and problem statement

Information on agricultural activities is important to governments and related stakeholders both

locally and internationally. Nevertheless, crops span over large geographic space within unique

times of the year. This requires timely and effective information gathering approaches. Annual

crop activity information harnessing with ground surveying is prohibitive in terms of cost and time

and thus, remote sensing is a viable alternative. Remote sensing satellites capture spectral, spatial

and temporal attributes of phenomena on the earth surface. This is attributed to their specific

electromagnetic spectrum sensitivity, synoptic view and temporal capability. Therefore, remote

sensing provides a platform where quick crop acreage information can be computed and used to

estimate regional productivity. Such information can be useful for emergency applications like

validating crop insurance claims.

Recent increase in imaging satellites has improved data acquisition frequency making it possible

to regularly monitor phenomena on the Earth surface. Changes in an area can now be monitored

regularly and also on demand. Such trend favours development of novel image classification

methods which can handle temporal data (Jianya et al., 2008). The high temporal resolution also

provides more chances for optical satellites to capture high quality images in temperate regions.

In occasions where quality images can not be obtained, radar images are an alternative. Radar

sensors overcome limitations of optical sensors since their signals can penetrate clouds and are

independent of daylight (Gomez-Chova et al., 2006; Tupin, 2010). Radar signals can also penet-

rate vegetation canopy and dry soil thus bearing volumetric and subsurface information. These

attributes render SAR a good medium to deliver a sequence of images of highest temporal density

suitable for crop classification regardless of climatic zones. Though, objects on the earth surface

appear differently to optical and radar sensors, they provide complementary information (Tupin,

2010). In contrast, complexity such as speckle interference, accompanying SAR data challenges

conventional pixel based approaches. Object oriented classification concept minimizes this effect

by classifying a block of pixels (object) instead of individual ones. Despite that, the technique does

not explicitly model spatial interactions between image objects and thus speckle effect is merely

averaged out within image blocks. Methods that model spatial context explicitly can be employed

to overcome speckle as demonstrated in Kenduiywo et al. (2014).
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Spatial interactions can improve crop classification from SAR images. However, sometimes crops

in the same phenology can exhibit correlated SAR backscatter. This means spatial information

alone is not enough for optimal crop discrimination. Therefore, initiatives to map agriculture

activities require insights on crop dynamics such as phenology states and seasonal growth. Most

crops spent a dominant part of their life cycle in vegetation period. In this period, their pheno-

logy varies strongly till harvest. Furthermore, their life cycles have different beginning and ending

times such as in Figure 4.2. Dynamic changes also occur before seeding (preparation) and after

harvest (post harvest). During these phases, farms are affected by deviating management, which

is not necessarily unique to the types of crops to be planted or harvested. Basically, there are two

types of short term changes: the crop-type specific dynamic changes occurring inside their life cycle

and non crop specific changes outside the life cycle influenced by farmers management such as in

Figure 1.3. These dynamics cause SAR backscatter variation in agricultural parcels as shown in

Figures 2.5 and 3.3. Coincidentally, sometimes crops may at a given time be in the same phenolo-

gical state, depicting similar spectral attributes, but differ significantly in another time (Siachalou

et al., 2015). Therefore, according to Siachalou et al. (2015), crop mapping using single-date

remote sensing images, even if acquired in critical growth stages, can not offer optimal results

in case of crops with similar growing cycle. This is because it may not be possible to find one

common critical growth stage in which the crops have distinguishable radar backscatter. Likewise,

pixel based approaches that stack multitemporal images as bands for classification, for example

Bargiel and Herrmann (2011); Forkuor et al. (2014); Sonobe et al. (2015), under exploit tem-

poral information. This is because significant temporal information from satellite observed crop

phenology is limited to a single feature space vector. Discrimination in such a high dimensional

feature space can suffer from overlapping class boundaries due to large class variance from spec-

tral/backscatter variation. Hidden Markov Models (HMM) technique has been used by studies like

Leite et al. (2011); Siachalou et al. (2015) to incorporate crop temporal phenological information.

The disadvantage of HMM is that it lacks a proper spatial context modelling framework. Therefore

in addition to spatial context, integration of temporal context in a principled manner can help re-

solve classes over time. The synergy of spatial and temporal context including radar multitemporal

data properties can form a robust crop classification method.

Use of context (spatial and temporal) for image segmentation and classification has recently

gained popularity. Spatial context accounts for similarities among pixels in regard to distance from

each other. It determines probability of a pixel or a group of pixels occurring at a given location

based on the nature of its/their neighbours in the image (Tso and Mather, 2009). Analyzing a

pixel with respect to its neighbours improves classification accuracy. Additionally, use of images

acquired at different times has shown significant improvement in classification for example, in

classification of crops and vegetation, see a review by Lu and Weng (2007). However, complexity

accompanying multitemporal data requires approaches that can efficiently exploit such data. This

needs a method that can model land-cover backscatter changes with respect to time and spatial
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(a) (b) (c)

Figure 1.3.: Parcels of sugar beet before seeding under different managements in (a), (b) and (c).

neighbourhood of a pixel. Furthermore, continuous increase in high temporal resolution satellites

has led to a "Tsunami" of data in archives. The consequence of such phenomena is increased data

dimensionality which demands novel image classification techniques. Spatial-temporal automated

classification methods are therefore necessary to bridge the gap between expensive data acquisition

efforts and actual beneficial data consumption.

Conventionally, Markov Random Field(s) (MRF(s))(Geman and Geman, 1984) has widely been

used to integrate spatial-temporal context in image classification. Introduction of Bayesian concept

by Swain (1978) to classification of multitemporal images motivated several MRFs temporal stud-

ies. Examples include: a general MRFs approach allowing unidirectional passing of temporal

information from a classified image at a given date to a subsequent image of the same area at

a later date proposed by Jeon and Landgrebe (1992); Solberg et al. (1996) and later extended

in Melgani and Serpico (2003) to allow bidirectional exchange of temporal information. Liu et al.

(2006) used temporal correlation and temporal exclusion to control certain changes in forest dis-

ease spread monitoring. In Moser and Serpico (2011) MRF is applied for multi-scale multitemporal

high resolution image classification with class global transitional matrix determined using expect-

ation maximization algorithm. These studies, except Moser and Serpico (2011), adopted a general

class conditional probability matrix in MRFs determined heuristically for bidirectional temporal

information transfer. While it is an easier alternative, the generalized matrix globally assumes sta-

tionarity over all pixels neglecting spatial changes that may exist in the image. This prompted Liu

et al. (2008) earlier to develop a locally adjusted global matrix and a pixel-wise joint class probab-

ility matrix to represent temporal transitions in MRFs forest change detection. The pixel-wise joint

class probability gave better results compared to the locally adjusted global matrix. This illustrates

the significance of considering spatial heterogeneity when designing temporal models. Despite

this development, MRFs’ assumption of conditional independence in observed data adopted for

computational tractability neglects spatial context inherent in image data (Lafferty et al., 2001;

Kumar, 2006; Zhong and Wang, 2007a; Parikh and Batra, 2008; Hoberg and Rottensteiner, 2010).

Remotely sensed images exhibit a coherent scene because neighbouring sites are spatially correl-
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ated (Figure 2.6). This concept is modelled by Conditional Random Field(s) (CRF(s))(Lafferty

et al., 2001) introduced for one-dimensional (1-D) text classification and extended to 2-D image

classification by Kumar (2006). The framework provided by CRFs integrates spatial context both

in class labels and data.

Conditional Random Fields ability to model context in class labels and data has triggered studies

in several applications. So far CRFs has been used for: classification of settlements and urban

areas (Zhong and Wang, 2007a,b; Hoberg and Rottensteiner, 2010; Niemeyer et al., 2011, 2013;

Kenduiywo et al., 2014), estimation of ground heights from LiDAR data (Lu et al., 2009), building

extraction (He et al., 2008; Wegner et al., 2011a,b) and interpretation of terrestrial images (He

et al., 2004; Korc and Förstner, 2008; Gould et al., 2008). However, these are mono-temporal CRF

studies. Despite the benefits of multitemporal images, a few temporal CRF studies exist: crop type

classification using RapidEye images by Hoberg and Müller (2011), land-cover classification from

IKONOS and RapidEye images (Hoberg et al., 2010) and multi-scale multitemporal study using

IKONOS, RapidEye and Landsat images (Hoberg et al., 2011, 2015). The studies incorporate tem-

poral context by passing temporal information through empirically determined global transition

matrix of class conditional probability. This is an easier way of determining class transitions. How-

ever, the transition probability matrix does not optimally capture local class transitions between

epochs1. Hoberg et al. (2015) noted that incorrect determination of transition matrix leads to

erroneous transfer of information into other epochs subsequently reducing classification accuracy.

Developing an approach of determining transition probabilities locally can minimize such errors.

More also, according to our knowledge no studies have used multitemporal radar data for CRF

classification of crops. This study develops a spatial-temporal dynamic classification framework

by introducing Dynamic CRFs (DCRFs) — proposed by Sutton et al. (2007) for 1-D text sequence

classification — to standard CRF as a temporal sequence classifier template. The approach is built

to exploit pixel-wise crop evolution in multitemporal SAR images. We also extend the framework

of Sutton et al. (2007) to accommodate higher order temporal crop phenological information

exchange. The design establishes a robust spatial-temporal sequence classifier termed as DCRF

because:

1. of a changing probabilistic relational model between nodes in the sequence,

2. the model captures time-changing phenomena, encodes complex interactions over the set of

all possible classes and data and uncertainty in a principled manner,

3. of scalability, that is, it allows higher order temporal node interactions, and

4. the model is a conditional distribution that factorizes according to an undirected graphical

model whose structure and parameters are repeated over a sequence (Sutton et al., 2007).

1 An epoch is an image date within a sequence of acquired images.
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In summary, we anticipate that harnessing of multitemporal SAR images in a given season will

improve crop type classification. Crops show varied backscatter radar signals in time (at different

phenological instances). We intend to maximize feature separation by exploiting this temporal phe-

nomena. For instance, features that may not be resolved in one epoch spectrally, can be resolved

in another epoch. Notably crops undergo phenological changes between epochs but spectral prop-

erties of a crop type remain similar. Integrating spatial-temporal information from different image

epochs by considering pixel-wise spectral transitions, using DCRFs, is the contribution of this thesis.

1.3 Research identification

The main aim of this research is to develop a DCRF based approach for crop type classification

exploiting spatial-temporal information between epochs and crop phenology. This is achievable

through the following specific objectives:

1.3.1 Research objectives

1. Design a CRF spatial interaction term that considers all adjacent label scenarios given data

evidence for crop classification.

2. To design a DCRFs template into standard CRFs to incorporate pixel-wise temporal phenolo-

gical information exchange inherent in SAR image sequence.

3. Extend the DCRFs template to accommodate higher order pixel-wise image based temporal

phenological information exchange.

4. Incorporate expert based crop phenology knowledge in multitemporal crop classification.

5. To propose an optimal seasonal crop type spatial-temporal classification approach.

6. Evaluate performance of designed approach(es).

1.3.2 Research questions

The following questions are formulated with respect to aforementioned objectives:

1. How can spatial context considering all label scenarios and data evidence be introduced to

CRFs for crop classification?

2. Can site-/pixel-wise crop evolutions due to phenology be determined from SAR images using

DCRFs?

3. How can the pixel-wise DCRFs model be extended to incorporate higher order temporal

interactions?
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4. Is it possible to introduce expert phenology knowledge to multitemporal crop classification?

5. Which is the best way to obtain one optimal seasonal crop land-cover map?

6. What is the performance of designed approach(es)?

1.3.3 State-of-the-art

This study uses SAR images and DCRFs for crop classification. This section reviews related state-

of-the-art studies and reinstates the research novelty.

Crop classification from radar

Radar has been used to map and monitor crops. For instance Kuenzer and Knauer (2013) carried

out a comprehensive review of studies using radar and optical images in rice mapping and mon-

itoring. From the review most studies found maximum likelihood classification (MLC) unsuitable

for mapping rice from radar and thus applied state-of-the-art approaches like neural networks and

Support Vector Machines (SVM). Another review by Mosleh et al. (2015) illustrates examples of

studies used to map rice areas from C- and L-band microwave images using MLC, SVM and neural

networks. Random Forests (RF) state-of-art classifier is also used for crop type mapping (Sonobe

et al., 2015, 2014). Sonobe et al. (2014) found that RF performed well compared to classification

and regression trees (CART) in classifying five crop types from TerraSAR-X strip map dual polari-

metric data. The authors later in Sonobe et al. (2015) compared the two approaches to SVM which

gave the best performance. McNairn et al. (2009, 2014) used decision trees for crop classification

from ALOS PALSAR and TerraSAR-X with RADARSAT-2 images respectively. Generally, in most of

these studies SAR images are filtered to minimize the effect of speckle followed by pixel based clas-

sification. Filtering reduces speckle but comes with a cost of data modification and subsequent loss

of some details. In addition, the studies stack several images as input for classification thereby lim-

iting class discrimination to one feature space vector. Another disadvantage is that discrimination

capability at each image acquisition is not perceived.

Object-oriented classification has been adopted as a shift from pixel based classification. The

approach partitions pixels into segments. Each segment bears quantitative attributes, for example

mean, area or shape, which are subsequently used for classification. The shift from pixels to seg-

ments is advocated in Blaschke and Strobl (2001). This technique reduces speckle effect when used

in radar leading to improved crop classification results as shown by Jiao et al. (2014). However,

a multitemporal study by Long et al. (2013) using optical images established that RF performed

better than object-oriented classification in the presence of data gaps in Landsat images. The

low accuracy might be driven by the fact that object-oriented approaches do not model explicitly

temporal interactions but instead rely on features computed from the multitemporal images. To

incorporate spatial interactions a CRF model can be applied to initial object-oriented segmentation
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results like in Wang and Yung (2015). A recent in-depth review of object-oriented classification

is covered by Blaschke (2010); Blaschke et al. (2014). In this thesis a probabilistic approach that

models context in form of pixel’s spatial and temporal neighbours is used. The approach provides

a unified framework for modelling spatial-temporal context in a statistical principled manner. We

review in the next section related spatial-temporal classification studies.

Spatial-temporal context classification

Spatial-temporal land-cover mapping approaches integrate spatial and temporal information dur-

ing classification. So far, MRFs and CRFs have been widely used for this purpose. Exceptions

include HMM which directly model temporal interactions but has been used in some studies to

include spatial context indirectly via image segments. For instance, Leite et al. (2011) used HMM

and Landsat optical data for multitemporal crop classification using image segments as opposed

to pixels. However, this is not a principled approach of modelling spatial interactions since spec-

tral variability is minimized within a segment hence yielding a smoother appearance perceived

as context. The study includes temporal interactions between nodes via a global state transition

conditional probability matrix. Another study by Siachalou et al. (2015) used HMM and RapidEye

and Landsat data for crop classification. The main limitation of HMM is that it ignores spatial

interactions. Structurally, MRFs and CRFs are built to consider spatial interactions. Efforts have

been made to include temporal data interactions as earlier illustrated.

Our study is inspired by the works of Liu et al. (2008) and Hoberg and Müller (2011). Liu et al.

(2008) used MRFs framework to compare global, locally adjusted and pixel-wise temporal inter-

action models in forest change detection from two Landsat image dates. The study was motivated

by the limitation of the global temporal interaction model to represent local spatial heterogen-

eity. Generally, the global class conditional probability matrix represents temporal information

exchange between all nodes in two epochs. Therefore, the authors developed pixel-wise interac-

tions using joint probability of classes. Class joint probabilities were estimated by Gaussian models

of the two images via maximum likelihood estimation based on training data. The joint probability

estimates were then marginalized to conditional probabilities which formed elements of a mat-

rix representing temporal transitions for each node. Best results were obtained with pixel-wise

temporal interaction. This emphasized the significance of considering spatial heterogeneity when

designing temporal models. In this study, we exploit temporal class conditional independence

assumption – since evolution of a crop is temporally unique to radar – to design a pixel-wise condi-

tional temporal interaction matrix. This assumption enables us to estimate initial class probabilities

in different epochs independently. We then subsequently use the probabilities to compute condi-

tional probability matrix between a node and each of its defined temporal neighbours via Bayesian

formula. This is beneficial in terms of discrimination compared to joint classification which limits

discrimination of considered epoch data to one feature space vector.
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In Hoberg and Müller (2011), CRFs is used for spatial-temporal crop classification. Here the

temporal model is designed using a site-wise feature difference of an image site in two epochs

modified to consider mean of features of each class in those epochs. The modification was done

in order to consider prevailing atmospheric and lighting condition during acquisition of optical

images. Thus, without considering mean of features in each class the function would be similar to

absolute difference function used in interaction potential of CRFs. Our study uses class probability

which is a soft decision function that does not directly suffer from prevailing conditions during

image acquisition. Moreover, radar sensors are not affected by weather and lighting conditions.

A later CRFs study by Hoberg et al. (2015) defines temporal interactions via a global matrix us-

ing expert knowledge. As already mentioned, representing temporal interactions with a single

matrix globally assumes stationarity in the image, which is not the case because images represent

heterogenous scenes.

Dynamic conditional random fields introduced by Sutton et al. (2007) for 1-D text classification,

also operate within similar concepts to model temporal interactions. The DCRFs adopt first order

Markov assumption in a sequence of nodes to model interdependencies between the node’s word

and the previous one. So far DCRFs has been used for spatial-temporal event detection from a

sequence of sensor measurements in Yin et al. (2009). In the study, temporal interactions were de-

termined using site-wise Euclidean distance of features based on an indicator function (Kronecker

delta). The indicator function considers a set of conditions which if met, Euclidean distance of a

pair sites in different epochs is computed from their features as a temporal potential. This set-up is

similar to the Euclidean distance model commonly used in CRFs for spatial interaction. A similar

design is used by Wang et al. (2006); Yang et al. (2008) for foreground video scenes segmenta-

tion and by Zhang et al. (2014) with an additional Gaussian kernel in temporal potential to track

deformable parts from video sequences. Another study by Zhang and Qiang (2008) used site-wise

absolute difference of features to model temporal interactions in segmentation of video sequences.

Most studies have used DCRFs for object detection from video frame sequences and event detection

from sensor networks. For the first time this study introduces the design of DCRFs for crop clas-

sification using SAR multitemporal image sequences. In addition, we introduce a novel pixel-wise

temporal interaction model based on conditional probability concept.

1.3.4 Research novelty

Research objectives, corresponding questions and state-of-the-art studies in crop mapping and

CRFs classification have been described. Therefore, this section reinstates the main research con-

tribution and hence novelty.

The research aims at developing a new spatial-temporal crop type classification from SAR image

time series using DCRFs technique. Spatial-temporal DCRFs classification involves spatial and tem-

poral context modelling. The study develops two suitable spatial data interaction models based

on modified contrast sensitive model and Pearson correlation. Here the Pearson correlation is in-
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troduced for data dependent interactions in CRFs classification for the first time. On the other

hand, the new modified contrast sensitive model is expanded from the existing contrast sensit-

ive model as suggested in Shotton et al. (2009). As for temporal interactions, we design a new

approach for bidirectional information exchange between defined temporal neighbouring nodes

using conditional probability. Here, conditional probability is computed using initial class probab-

ility estimates in each temporal node. A classifier is used to estimate the initial probabilities from

SAR images using training data.

The spatial-temporal model is adopted for the first time to classify crops from SAR images

(TerraSAR-X and Sentinel 1). In addition, a further effort is made to design a technique that

generates an optimal seasonal crop map from a sequence of multitemporal images. A weighting

strategy using class probabilities with maximum F1-score from a classification sequence is de-

signed. This set-up establishes a configuration where epoch-wise DCRFs node probabilities are

considered as part of the final class decision. In this case, the epoch-wise DCRFs decisions can be

regarded as hidden hence, a hidden DCRFs model. It is a new method that benefits from temporal

class conditional independence assumption.

1.4 Thesis outline

This thesis is organized into seven chapters. Chapter 2 discusses the basic theoretical concepts

of SAR data acquisition and probabilistic reasoning via context based graphical models. Radar is

selected as a data acquisition platform in this study, hence, its basic image acquisition concepts

is described. Different mechanism of radar that influence backscatter of agricultural landscapes

are discussed including target properties like phenology. Crop phenology is then linked to context

to illustrate a modelling aspect using graphical models. Types of graphical models are discussed

with emphasis on undirected graphs mainly adopted in this study. Chapter 3 explains developed

methodology. This includes parameter estimation by training and final inference including val-

idation of results. Experiments and data used to implement and test the developed methods for

crop mapping are described in Chapter 4. Results from the implemented methods are presented

in chapter 5 leading to a discussion in chapter 6 and conclusions of the study in chapter 7. Future

prospects are also noted in chapter 7.
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2 Theoretical concepts
Agriculture is both a spatial and temporal phenomenon as it spans over geographical space within

some period. To map crops, a data collection medium and a subsequent map production method,

from collected data, is necessary. In this study, remote sensing by radar and a probabilistic clas-

sification technique are chosen for data collection and mapping respectively. Thus, this chapter

provides basic concepts of the adopted approaches. Fundamental principles of image acquisition

by microwave remote sensing and crop backscatter mechanism are discussed with reference to

Henderson and Lewis (1998); Woodhouse (2006); Richards (2009); Lillesand et al. (2015). The-

oretical discussions on probabilistic reasoning using graphs is done with reference to Bishop (2006)

and Barber (2012) and other sources which shall be cited.

2.1 Microwave remote sensing

Microwave sensing encompasses active and passive sensors mounted on distant elevated platforms

– for instance, on ground, aircraft or satellite – used to derive information from the earth. Such

sensors utilize microwave portion of the electromagnetic (EM) spectrum, hence the term microwave

remote sensing. The EM spectrum represents a range of all possible wavelength λ and correspond-

ing frequency f of EM radiation. For instance, microwaves have wavelengths in the range of

approximately 1 cm – 1 m; examples of past and current microwave remote sensing programs with

operating λ and f is shown in Figure 2.1. Hence compared to optical sensors, which operate in

visible and infrared portion of EM spectrum, microwaves wavelengths are longer to the order of

105. This difference makes microwave remote sensing a unique medium. On this account, objects

on the earth surface would appear differently to optical and microwave sensors. However, their

information complement each other.

Active microwave imaging sensors generate their own energy to illuminate a target in an area

of interest. The sensor then measures intensity of energy reflected back, known as backscatter.

Consequently, active sensors are daylight independent. Their microwave wavelengths can also be

chosen such that weather effects such as haze or clouds, are negligible on backscattered signal.

Thus, SAR satellites guarantee the highest possible temporal density of images regardless of cli-

matic zones. This particularly benefits crop monitoring and seasonal mapping. Wavelengths in

microwave region can also penetrate vegetation and even dry soils compared to those in visible

portion of EM spectrum. So in addition, volumetric and sub-surface information is conveyed. This

essentially means different crop canopies and their underlying soil properties can be discriminated

from microwave signals. Another benefit of active sensors is that properties of incident energy

(e.g., λ and f ) can be controlled. As a result, specific application data can be acquired. However,
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Figure 2.1.: Past and current operating microwave remote sensing satellites with their frequencies
and corresponding wavelengths; modified from (Richards, 2009).

sensors operating on long wavelengths require very long antenna in order to attain sufficient spa-

tial resolution even in regional studies. Side looking geometry and synthetic antenna, as discussed

in Section 2.1.1, are used to overcome such shortcomings.

2.1.1 Imaging with synthetic aperture radar

Radio detection and ranging (radar) is a concept introduced by military and civil air traffic con-

trollers to detect presence of objects in terms of their distance and sometimes direction. As an

active sensor, it transmits short bursts (pulses) of microwave energy in direction of interest and

subsequently receive "echoes" or "reflection" from objects within field of view. The system con-

sist of a transmitter and a receiver antenna which can be located separately (bistatic) or co-located

(monostatic). The later is a common mode for satellite sensors except in Shuttle Radar Topography

Mission (SRTM) and TanDEM-X missions. Radar sensors transmit and/or receive microwave sig-

nals in different polarization modes. Polarization refers to the orientation of electric field in an

EM wave. In remote sensing, radar signals are either transmitted with electric field plane parallel

(horizontal polarization) or perpendicular (vertical polarization) to the Earth surface. Likewise,

a receiver can be configured to receive particular polarized signals. For instance, in TerraSAR-X

Stripmap Mode (SM), the antenna can transmit and receive in either horizontal (H) or vertical (V)

single polarizations (HH2 or VV) or cross-polarization (HV or VH). In addition, it is able to trans-

mit dual polarized signals, that is almost simultaneous horizontal and vertical transmit and receive

2 The first letter indicate transmit and second receive.
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respectively (HH/VV) or with cross-polarization (HH/HV or VV/VH). Such polarization techniques

result in different image types.

An image can simply be acquired by scanning a narrow beam of EM radiation across the earth’s

surface normal to spacecraft motion. However, due to wave diffraction, spatial resolution r of any

imaging sensor (optical or Real Aperture Radar (RAR)) is limited by angular field of view α of

antenna’s aperture or beamwidth D, i.e. α = λ
D . The resolution linearly decreases with increase in

sensor elevation H above the scene:

r ≈ λ
D
·H m. (2.1)

This means sufficient spatial resolution can only be attained at low altitude platforms when ima-

ging with long wavelengths at nadir.

A side looking geometry, Figure 2.2, is used by imaging radar sensors to attain better spatial

resolution. In this setup, radar pulses illuminate a surface at an oblique look angle θl with an

incident angle θi on earth’s surface. An image is recorded parallel to sensor motion (azimuth) and

also orthogonal to its motion (range). The image ground spatial resolution is controlled by pulse

duration τ and D. Pulse duration determines minimum possible distance for two objects to be

distinguished in range direction known as range resolution rr :

rr =
vτ

2sinθi
m (2.2)

where v is velocity of light (in vacuum) (≈ 3× 108 m/s). Basically, the shorter the pulse duration

the better the range resolution. However, the pulses have to be transmitted at higher energy to

attain a short duration. This requires high power. In practice it is not possible to design transmitters

that can produce short rectangular pulses with high peak power. To counter this, a linear frequency

modulated pulse, termed chirp, is used. Here, the signal is send over a small range of frequencies

known as bandwidth B. As a result a collection of overlapping backscattered signals are received

and resolved in time to an resolution better than pulse duration. This is because of an inverse

relationship between B and τ:

rr =
v

2B sinθi
m. (2.3)

In azimuth direction, resolution of a cell is constrained by beamwidth (in azimuth direction)

Da and distance from the sensor to a target (slant range) R. The width of the beam in azimuth

direction is in turn limited by the length of the antenna. This is a limitation caused by diffraction
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Figure 2.2.: Components of SAR imaging.

which also faces optical systems as shown in Equation (2.1). The azimuth resolution ra deteriorates

with increase in R because the antenna beam "fans out" to a target:

ra =
λ

Da
R m. (2.4)

Azimuth resolution in RAR can be improved by increasing length of the antenna. This option

poses practical limitations in space platforms. However, using SAR principle a long antenna is

synthesized to improve resolution. It is achieved using any of these two ways: 1) using Doppler

frequency shift due to sensor motion and 2) by coherently combining low resolution antennas,

for details see (Woodhouse, 2006, chap. 10.5). From either of the two processing concepts, a

resolution half the antenna beamwidth is obtained, that is,

ra =
Da

2
. (2.5)

So far radar principles that determine resolution of a radar image cell have been reviewed. The

cell stores backscatter information corresponding to the cell area on ground scene. The backscatter

is a ratio of energy received by a sensor and that incident on a target or surface. Since radar systems
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Figure 2.3: Sources of radar backscatter from
crops:

a direct scattering from crop parts such as
leaves, stems and heads,

b double bounce scattering from soil surface
and crop canopy, and

c direct backscatter from crop undergrowth.

observe extended targets, (i.e. Earth surface), the backscattered energy comes from a portion

of a distributed area (e.g., area of a pixel) as opposed to a discrete target. Thus, backscatter

measured from a target area in SAR is usually normalized per unit geometric cell area known as

normalized backscatter coefficient σ0 (sigma nought) as shown in Equation (2.6). Magnitude of

backscatter is influenced by: system parameters (frequency/wavelenght, polarization and incident

angle) and target parameters (dielectric and and geometric properties of target) (Henderson and

Lewis, 1998).

σ0 = Pr
(4π)3R3

APt G2λ2
(2.6)

From Equation (2.6) Pr refers to received energy, G is antenna gain, λ is wavelength, Pt is trans-

mitted energy, R corresponds to the range from the sensor to the object and A is the area over

which the measurement is made. This formulation expresses the so-called SAR equation.

Frequency (or wavelength) affects crop backscatter magnitude because of: (1) differences in

dielectric constant as a function of frequency, and (2) relationship between wavelength and crop

size (or leave size) and/or canopy penetration. For example, TerraSAR-X operates in high fre-

quency (small wavelength) thus, it is dominated by canopy scattering. This is because signals with

small wavelengths have less canopy penetration and vice versa. Therefore, TerraSAR-X backscatter

is dominated by canopy scattering and multiple scattering from canopy and soil (i.e., case a and b

in Figure 2.3). Such attributes supports its choice for crop type mapping though, this is subject to

crop mix and phenology. Polarization also influences crop discrimination in SAR images. Le Toan

et al. (1984); Ulaby and Wilson (1985) notes that stems of vertically oriented grain crops couple

effectively with VV polarized signals resulting in increased attenuation. Such crops can be dis-

cerned in VV polarized images because their signals interact more with crop structure. In contrast,

HH polarization penetrates crops and captures underlying soil roughness and moisture content.

For example, potatoes are normally planted in ridges and can have significant backscatter in HH

polarization especially when looking perpendicular to row direction (Ulaby and Bare, 1979; Brisco
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et al., 1991; McNairn and Brisco, 2004). Cross polarized images (HV or VH) have also been found

to improve crop separability (Brisco et al., 1992). In summary, knowledge of crop scattering mech-

anism including understanding of crop growth dynamics can enhance crop mapping. Section 2.1.2

explores how crop phenology affects backscatter changes and hence context in SAR images.

2.1.2 Phenology and Context in SAR images

Phenology studies annual rhythm of biological phenomena with respect to climate parameters.

In agriculture, phenology refers to evolution of crops with reference to beginning and end of

season. For instance, maize phenology (Figure 2.4) encompass: germination, leaf development,

stem elongation, heading, flowering, development of fruit, ripening and senescence (plant dies)

as defined by Meier (2001). In remote sensing we can consider phenology as the appearance of a

crop at a particular instance in its life cycle. Such crop stages are dependent on the type of crop,

climatic factors and farm management practices. Therefore, different crops may be at different

phenological stages at a given instant. Economic factors also influence crop management and

direct choice of certain crops. Government incentives and other forms of support drive farmers to

maximize outputs within short periods. These factors introduce a complex dynamic challenge to

an already evolving cropping system. Mapping such a dynamic phenomenon driven by evolving

factors requires dynamic models. In contrast, these inherent factors can also aid discrimination of

crops at different instances. This is possible using imaging SAR images as introduced earlier.

Phenology governs crop’s water content and consequently its dielectric properties. A dielectric

object/surface is "one that can withstand high electric stress without appreciable conduction" (Bar-

ton and Leonov, 1998). Materials with high dielectric constant have strong reflective surfaces.

Water has a high dielectric constant and thus influences radar backscatter. During crop matur-

ity, water content reduces proportionally decreasing backscatter contribution from plants while

increasing penetration of transmitted radiation into vegetation which increases backscatter from

undergrowth (Ulaby and Wilson, 1985). Generally, with support from Figure 2.3, early stages of

a crop growth are dominated with backscatter from bare soil and in later stages volume scattering

from plant canopy increases. For instance, broad leaved crops like corn and sugar beet return high

backscatter in C- or X-band during early stages of their development with little change in the rest of

the growing season (Brisco and Protz, 1980; Bouman, 1988; Tso and Mather, 1999). In contrast,

grain crops like wheat and barley have temporal backscatter variation throughout growing season

as portrayed by Brisco et al. (1992) results. Therefore, the correlation between plant growth stage

and backscatter magnitude implies that knowledge of crop phenology is important in classification

(Brisco et al., 1984).

It is evident that there are gradual or rapid backscatter changes from crop parcels. Different

crops may be in the same phenology state at an instant in time and thus exhibit similar backscat-

ter. Similarly the same crops may depict varying backscatter attributes in a different phenology

state (Siachalou et al., 2015). These variations can be detected by SAR sensors because they are

18



(a) Germination (b) Leaf development

(c) Stem elongation (d) Flowering and fruit development

Figure 2.4.: Illustration of some phenology stages of maize.

sensitive to dielectric properties (e.g., moisture) and geometric attributes (e.g., roughness and can-

opy structure). Figure 2.5 illustrate variations of SAR amplitude as depicted by some parcels over

time. Classification of such parcels using single date images will not be sufficient. Equally, using

several images acquired at critical phenological stages as a stacked layer in per pixel classification

neglects context (temporal and spatial).

Goodchild (1992) defines spatial context as "the propensity for nearby locations to influence each

other and to possess similar attributes". Two types of context exist (Kittler and Föglein, 1984): class

dependency context and data/pixel dependency context, all which have spatial-temporal existence.

Class dependency context supports the existence of pixels of certain land-cover type(s) near each
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(a) March (b) April (c) May

(d) June (e) July (f) October

Figure 2.5.: An illustration of radar amplitude variation from crop parcels in different months of
2009 as captured by TerraSAR-X in VV polarization (©DLR). Blue and red parcel line
boundaries represent rye and canola crops respectively. The variations depict strong
correlations within a class in time, hence temporal dependency.

other. For instance, some land-cover classes are more likely to be neighbours than others, or

some classes may rarely be neighbours, for example a maize field in the middle of an ocean or

forest. Pixel dependency context demonstrates underlying correlation in remote sensing data.

For example, an image is made up of a coherent scene consisting of pixel regions as opposed to

independent ones. Therefore, considering pixels or image segments as independent like in per

pixel and segmentation approaches under-exploits context (see Figure 2.6). Additionally, in most

cases land-cover classes cover a larger area than a pixel size in an image such that neighbouring

pixels form a homogenous region that is more likely to be in one class. Spectrally, an area in an

image varies at different times due to physical changes in phenomena (Figure 2.5). Essentially,

spectral attributes at different moments in time representing the same area are correlated. This

gives rise to temporal context which covers both class and pixel dependency. In this case, temporal

context may be defined as class and pixel dependency in images acquired at successive times.
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Spatial-temporal context supports the idea that, given a sequence of images of an area captured

consecutively by a satellite, the points in space and time close to each other are likely to represent

the same land-cover class and the pixels are correlated. More also, in crop classification classes

undergo spectral changes as opposed to transitions to other classes thus, pixels are correlated over

the entire season. Therefore, an image contains strong dependencies among its pixels, between

preceding and consecutive images. Modelling this spatial-temporal dynamic context in a principled

manner can help improve class discrimination.

(a) (b) (c)

Figure 2.6.: An illustration of the fact that radar remotely sensed images contain strong context
– that represent spatial heterogeneity – rather than being a random collection of in-
dependent pixels or blocks/segments (Kumar, 2005). (a) Normal image scene. Image
(b) is obtained by randomly combining pixel values in (a). Image (c) is obtained by
randomly combining the original image blocks, ©DLR.

Probabilistic models provide a good framework of modelling spatial-temporal dynamic context.

Their framework are ideal for reasoning – where many possible outcomes exist – using probability

and graph theory as discussed in Section 2.2.

2.2 Reasoning with probabilistic models

Remotely sensed images represent earth phenomena at varying scales. They give and overview of

relationships and pattern of objects. Earth surface phenomena form contiguous scenes with trans-

itions between boundaries. As discussed in Section 2.1.2, such organized pattern structure support

the concept of spatial-temporal context. It is the objective of image classification algorithms to

capture such relationships. Probabilistic models give a framework on which such relationships can

be logically build and inferred to reach sensible conclusions under uncertainty.

Reasoning under uncertainty using probabilistic models is possible with mathematical rules of

probability. Specifically, Bayes’ theorem with conditional probability provides a basic framework in

image classification since empirical observations are available. Through them, prior information

and conditions can be expressed. This allows available factors that quantify a certain belief to
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be injected into a solution finding process of any given problem. For instance, crop phenology

knowledge, spatial and temporal context can quantify belief of existence of a certain crop type at a

given instance. These factors provide a basis for reasoning (inference) over a set of classes (crops)

in order to determine an optimal class during supervised image classification.

Supervised image classification objective is to find the most probable class label3 y from training

set4 given image data x. This can be determined via Bayes’ theorem:

P(y|x) = P(x |y)P(y)
P(x)

(2.7)

In Equation (2.7), P(y|x) is the conditional probability of y given x known as posterior probability,

P(x |y) is the likelihood function, P(y) is referred to as prior probability and P(x) is the probab-

ility of x and is referred to as a normalizing constant. Bayes’ theorem plays a key role in image

classification because it makes reasoning possible via probabilistic relationships. The probabilistic

relationships are built from two fundamental rules:

Sum rule: P(x) =
∑

y

P(x , y) (2.8)

where P(x) is marginal probability of the joint distribution P(x , y) of x and y . It is computed by

summing the joint probability over all possible states of y , a process called marginalization.

Product rule: P(x , y) = P(y |x)P(x) (2.9)

The product rule and symmetric property of joint probability P(x , y) = P(y, x) give rise to Bayes’

theorem. Substituting Equation (2.8) into Equation (2.7) gives the following relationship between

conditional probabilities

P(y|x) = P(x |y)P(y)∑
y P(x , y)

(2.10)

which is referred to as Bayes’ theorem. Revisiting the objective of modelling time series, consider a

sequence of images x = x t to be modelled over corresponding labels y = y t acquired at different

3 Bold face symbols illustrate a random variable while normal font symbols are realizations of the random variable
4 A training set is a subset of data, with a given label, used as an example to predict particular class from the entire

data set.
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times t where t = 1, . . . T (see Figure 2.7). Then, time series image classification challenge is to

determine the optimal label y for a given image pixel from a sequence of labels given data:

max
y

�
P(y t=1, . . . , y t=T |x t=1, . . . , x t=T )

�
(2.11)

Time t

Images x

Crop label y

t=1 t=T

Figure 2.7.: Illustration of classification over a sequence of images.

Solution to Equation (2.11) is complicated as it involves a joint distribution over label and data

sequences. Therefore, an alternative approach to modelling time series exploiting probabilistic

reasoning benefits is necessary. Probabilistic reasoning framework introduces valuable tools for

simplification and for minimizing of computational complexity. For instance, independency as-

sumptions can be incorporated leading to compromise solutions. This eliminates the trade-off

between computational efficiency and models that are still rich enough to provide the required

discriminating power (Hornegger et al., 2000). Other benefits that justify choice of probabilistic

reasoning according to Hornegger et al. (2000) include:

1. Sensor signals and associated features show a probabilistic behavior due to sensor noise,

varying illumination conditions or segmentation errors.

2. Image classification tasks should use all available sources of information including prior

knowledge and empirical data. A unified mathematical formulation incorporating all mod-

ules is given by probabilistic models.

3. Decision theory guarantees the optimality of Bayesian classifiers, which maximize posterior

probabilities, if a correct model is chosen for the underlying probability distribution function.

4. The design of learning algorithms can utilize comprehensive results in statistics and statistical

learning theory.
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5. The success of probabilistic models in different areas of applied pattern recognition (e.g.,

speech recognition and handwritten character recognition) motivate the use of statistical

methods.

The discussed fundamentals on probabilistic reasoning will be used throughout this text. It is

now clear that probabilistic reasoning can be expressed using two basic equations of probability:

Equations (2.8) and (2.9). More details on probabilistic reasoning can be found in (Bishop, 2006,

chap. 1.2 ) and (Barber, 2012, chap. 1). Machine learning and inference tasks in image classifica-

tion are an application of the two equations. Probabilistic reasoning as regards image classification

problems can be expressed better using graphical models. Graphical models augment solution

finding process using diagrammatic representations of probability. Their framework offer suitable

properties for spatial-temporal crop classification with phenology as discussed in Section 2.2.1.

2.2.1 Graphical models

Before reasoning precedes any real-world problem, assumptions about the structure of the problem

are necessary. Such structural abstractions encompasses relevant variables and their interrelation-

ships. Graphical models provides a formal representation of these assumptions. A Graphical Model

(GM) is a family of probability distributions that depicts their independence/dependence relation-

ships diagrammatically using graphs. Graphical models (GMs) are a union of probability and graph

theory. Their structure is suitable for modelling with several useful properties:

1. They provide a visual representation of probabilistic models useful in design and motivation

of new models.

2. Graphs helps deduce properties of a model being designed, e.g. independence/dependence

assumptions.

3. Provide a framework for studying probabilistic models.

4. They provide a unified framework in which learning and inference algorithms in different

disciplines can be related.

Types of GMs include and not limited to: Bayesian networks, Markov networks (Markov random

fields and conditional random fields), factor graphs amongst others see (Barber, 2012, chap. 4)

and (Sutton and McCallum, 2011). Since GMs rely on graphs to illustrate probabilistic reasoning,

we review basics of Graphs.

Graphs

A graph G consists of a set of nodes S and edges E connecting the nodes. An edge may be directed,

Figure 2.8a, which is illustrated with an arrow in a single direction or with no particular direction,

i.e. undirected, as shown in Figure 2.8b. Directed edges form directed graphical models known as
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Bayesian Networks and undirected edges establishes undirected graphical models called random

fields. These models encode conditional dependency/independence relationships between nodes

in a graph. On the other hand, nodes represent random variables in reference to a modelling

environment or problem such as an image pixel or segment in classification or image site5. So if two

nodes are not linked then they are independent while if they are linked they have a dependency.

d

ih

e

b c

g

f

a

(a) Directed graph

d

ih

e

b c

g

f

a

(b) Undirected graph

Figure 2.8.: Directed and undirected graphs modelled over pixels of an image. Nodes are repres-
ented by green circles while edges have blue lines. Each node has a spatial extent of
corresponding pixel.

Directed and undirected graphs are used by graphical models to express probabilistic operations.

For instance, probabilistic mathematical operations like sums of conditional and marginal probab-

ilities and multiplication, see Equations (2.8) and (2.9), can be deduced from a given graph. This

makes it possible to decompose the joint distribution over the entire image x and class labels y as

a product of conditional and marginal probabilities of adjacent nodes within a graph. The pro-

cess is referred to as factorization and are expressed by factor graphs mainly used by inference

algorithms.

To illustrate further how reasoning is done using graphs we refer to a directed graphical model

in Figure 2.8a. Here, the joint distribution P(a, b, c, d, e, f , g, h, i) in the directed graph can be

expressed as:

P(a, b, c, d, e, f , g, h, i) = P(a)P(b|a, c)P(c|d)P(d)P(e|b, d, f )P( f |a)P(g| f )P(h|e, g)P(i|h, d)

(2.12)

5 The terms node, site and pixel are synonymous and will be used interchangeably.
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From Equation (2.12), probability of nodes a and d are independent from other nodes hence mar-

ginal probabilities P(a) and P(d). In this case, a is a parent of nodes b and f and similarly nodes

b and f are its children. Apart from nodes a and d, probability of other nodes have a dependency

as illustrated by edges, i.e. conditional probability. This structure in the graph reduces the solution

to a product of factors. In this way, the graph presents a modelling and/or reasoning environment

where probabilities are used to express relationships/conditions in a solution finding process. In

principle, directed graphical models assume that the observed random variables, in this case nodes,

are generated by a causal latent process. The graph structure indicates direct dependencies among

nodes. Here the general conditional independence assumption is stated as; "a node is condition-

ally independent of all other nodes given the values of its parents, its children and its children’s

parents".

Undirected graphical models on the contrary, model random variables that do not have explicit

causal dependence. For example an image grid structure can be intuitively illustrated as an un-

directed graph as depicted in Figure 2.8b. In this case, the conditional independence assumption

encoded by the graph can be stated as; "a node is conditionally independent of all the nodes in the

graph given its neighbours N ". This graph structure is exploited to represent global context in an

image via local dependencies. Normally, relationships in a given neighbourhood set is expressed

via cliques. This helps maintain the idea of a coherent image scene (see Figure 2.6) by factorizing

global pixel dependency via potential functions defined on cliques. We utilize this set up in this

study to encode context (spatial and temporal) because it is suitable for images.

Neighbourhood structure on image graphs

Spatial dependency of a set of sites6 S in an image is defined by a neighbourhood system. A guiding

principle is that information contained in the local neighbourhood of a site i is sufficient to obtain

a good global image representation. This is attributed to equivalence of markovianity and Gibbs

Random Field (GRF) properties as per Hammersley and Clifford (1971) theorem. Markovianity

indicates that a label of a site i is only dependent on its neighbours Ni, while in GRF the label

given to a specific site is affected by labels given to all other sites.

Common neighbourhood structures used in image analysis are the first and second order neigh-

bourhood systems see (Tso and Mather, 2009, chap. 8). First order neighbors of a site/pixel

are the four pixels sharing a side with the given pixel, as shown in Figure 2.9a. Second order

neighbours are the four pixels having corner boundaries with the pixel of interest, as depicted by

Figure 2.9b. Higher order neighbours can be extended in a similar fashion. Basically, the neigh-

bourhood systems are used to define relationship between nodes via clique potential functions.

In an undirected graph, a clique is a subset of nodes C ∈ S which are fully connected as illus-

trated in Figure 2.10. All members of a clique are mutual neighbours. Cliques play a central role
6 Site refers to a pixel at a given location in the image.
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ii

(a) First order four neighbours of pixel i

ii

(b) Second order eight neighbours of pixel i

Figure 2.9.: Neighbourhood systems as defined in (Tso and Mather, 2009, chap. 8). Higher-order
can be extended in a similar fashion.

in graphical modelling and inference. They are the framework in which potentials are built. A

potential such as φ(x , y), is a non-negative function of the variable x and y , φ(x , y) ≥ 0. Poten-

tials are expressed by exponential functions because they have the property of never being zero.

Thus, cliques are exploited to express spatial dependency via potentials. In addition, since cliques

express relationships, they can also be adopted to model temporal dependency in a sequence of

images. For instance, a site i in time t can depend on a site k in a subsequent or previous, i.e. t±1,

as shall be discussed in Section 3.1.3.

It has been demonstrated that GMs captures context (spatial and/or temporal) via graphs by

representing the entire pixel dependency as a product of local ones. This reduces complexity of

the model because distribution over a large number of random variables is factorized to a product

of local functions that each depend on only a small number of variables. Such a robust framework

supports the first law of Geography that "everything is related to everything else, but near things

are more related than distant things" by Tobler (1970). In the next sections we discuss the two

types of undirected GMs.

2.2.2 Markov random fields

Markov random fields are popular undirected graphical models as a result of earlier works by

Geman and Geman (1984); Besag (1986). MRFs offer a generative structure where the posterior

distribution over the labels y = yi∈S given the data x = xi∈S is modelled from prior and likelihood

of Bayesian formula in Equation (2.7). For computation tractability data features/pixels in the
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1-site clique

2-site cliques

3-site cliques

4-site cliques

Figure 2.10.: Configuration of cliques in a second order neighbourhood system.

likelihood are assumed to be conditionally independent given the class labels (Figure 2.11a). This

simplifies the model as:

P(y|x)∝∏
i∈S

P(xi|yi)P(y). (2.13)

The prior P(y) is modelled as a MRF over labels only with the following properties:

1. Positivity: P(y)> 0 ∀ possible configurations of y,

2. Markovianity: P(yi|y\i) = P(yi|yNi
), and

3. Homogeneity : P(yi|yNi
) is the same ∀ sites i.

where y\i is the set of all pixels in S excluding i and Ni are the neighbours of site i. Markovianity

property shows that labelling of a site i is dependent on its neighbours (local neighbourhood

property). Homogeneity property defines the likelihood for a label at site i given its neighbourhood

regardless of the relative position of i in S (Figure 2.9).

With reference to the three properties, MRF classification considers the prior model to be homo-

geneous and isotropic Potts model with only pairwise clique potentials, that is,

P(y) = β(yi, yj)≡
⎧⎨
⎩β if yi = yj

0 otherwise
(2.14)
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where i and j are adjacent sites and β is the spatial interaction parameter that regulates smoothness

of land-cover based on similarity of adjacent labels. Therefore, posterior distribution as per MRF

formulation can be written as:

P(y|x) = 1
Z(x)

exp


∑
i∈S

log P(xi|yi) +
∑
i∈S

∑
j∈Ni

β(yi, yj)

�
(2.15)

where Z(x) is a data normalizing constant known as the partition function computed as:

Z(x) =
∑

∀ forms of y

exp


∑
i∈S

log P(xi|yi) +
∑
i∈S

∑
j∈Ni

β(yi, yj)

�
. (2.16)

As depicted in Equation (2.13) the likelihood model of MRFs is assumed to be a fully factor-

ized form for computational tractability. The assumption is too restrictive as it ignores spatial

dependencies inherent in images when assigning labels to classes (Hoberg and Rottensteiner,

2010; Zhong and Wang, 2007b). In addition, when the observations are conditioned on the labels,

they are not independent from each other as assumed by MRF (Parikh and Batra, 2008). While it

is essential to have a model that attains a tractable inference, it is also desirable that it represents

the data without making unwarranted independence assumption. To fulfil both requirements, the

conditional distribution over the labels given the observed data is modelled by CRFs instead of the

joint probability distribution over both labels and the observations (Sutton and McCallum, 2006).

This avoids modelling a complicated probability distribution function over the data, P(x), that can

lead to intractable models. The difference between MRFs and CRFs is attributed to modelling

approaches adopted for them, that is generative and discriminative respectively.

Generative methods learn a model of the joint probability, P(x , y), of data x and label y . Pos-

terior probability estimates, P(y|x), are then made using Bayes’ rules in Equation (2.10) and the

most likely label y selected. This requires learning the prior and the class conditional densities

using likelihood function in order to compute posterior probabilities. In contrast, discriminative

approaches model the posterior probability directly, or determine a suitable direct mapping of data

x to labels y . Basically, the motivation is to directly address the classification problem as opposed

to an intermediate problem of solving the likelihood function. For sure it simplifies the model but,

as noted in (Ulusoy and Bishop, 2005) generative approaches have some benefits:

1. They can handle missing data or partially labelled data, and can augment small quantities of

expensive labelled data with large quantities of cheap unlabelled data.

2. A new class can be added incrementally by learning its likelihood function independently of

all the previous classes.
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3. Generative models can readily handle diverse class composition whereas standard discrimin-

ative models need to see all possible class combinations during training.

In summary, Bradski and Kaehler (2008) notes that discriminative models are good for yielding

predictions given the data while generative models are good for giving more powerful representa-

tions of data or for conditionally synthesizing new data. Therefore, this means that MRF performs

better when it meets new data distribution such as not represented in the training site and can

allocate it to nearest class something discriminative models may be weaker in. On the contrary,

discriminative approaches like CRFs are good for making predictions. Generally, discriminative

classifiers are often preferred to generative ones. In Section 2.2.3 we discuss the discriminative

approach adopted by CRFs.

2.2.3 Conditional random fields

Conditional random fields were introduced by Lafferty et al. (2001) for one-dimensional text clas-

sification and extended to two-dimensional image classification by Kumar (2006). They are undir-

ected graphs that represent conditional probability distribution over a set of data/data sequence.

The conditional probabilities are represented in potentials functions defined over cliques. In CRFs,

posterior probability of a distribution is computed directly, unlike in MRF, as a product of potentials

through inference techniques.

Definition Consider a sequence of images x = xt modelled over corresponding discrete labels

y = yt , from a given set of class labels l ∈ m, acquired at different times t where t = 1, . . . , T

(see Figure 2.7). Let G = {S, E} be a graph with spatial edges E defined over a pair of cliques i and j

in a neighbourhood set N such that y = (yi)i∈S so that y is indexed by nodes S of the Graph G.

In mono-temporal classification, the random variable (y, x) is a CRF only if, when conditioned on

x, the random variable yi obeys the Markov property with respect to G: P(yi|x,y\i) = P(yi|x,yNi
),

where y\i is the set of all nodes in the G except node i and Ni is a set of neighbours of node i in G.

Following Hammersley and Clifford (1971) basic theorem, the joint distribution over the labels

y given the data x can be written as:

P(y|x) = 1
Z(x)

exp


∑
i∈S

A(yi,x) +
∑
i∈S

∑
j∈Ni

I(yi, yj,x)

�
(2.17)

where A and I are known as association (unary) and interaction (pairwise) potentials respectively.

In CRF, the partition function can be expressed as:

Z(x) =
∑

∀ forms of y

exp


∑
i∈S

A(yi,x) +
∑
i∈S

∑
j∈Ni

I(yi, yj,x)

�
. (2.18)
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The association and interaction potentials can be regraded as arbitrary local classifiers. This

property enables use of domain specific discriminative classifiers in structured data rather than

restricting the potentials to a certain form (Zhong and Wang, 2007b). The association potential

determines how likely a site i takes a label yi given the observed data x. It can be determined in

several ways, for instance Kumar and Hebert (2003); Zhong and Wang (2007b,a); Korc and Först-

ner (2008) use a general logistic function as a local discriminative classifier and in (Hoberg et al.,

2015) a multivariate Gaussian model is used. On the other hand, interaction potential quantifies

the influence of data and neighbouring labels on site i. It ensures that site i, as initially determined

by A, is labelled to its corresponding "true class" given data evidence x and neighbourhood depend-

ency N where j ∈ Ni. By so doing, it imposes spatial interaction and can be seen as a label and

data dependent smoothing function. The homogenous and isotropic Potts model, I = β yi yj, in

MRF framework does not permit data dependent interaction due to the assumption of conditional

independence in observed data. This ignores existing spatial dependencies in data. The MRF in-

teraction model penalizes each dissimilar pair of labels by a constant smoothness parameter (β).

Such a model gives preference to piecewise constant smoothing without explicitly accounting for

discontinuities in the data (Kumar and Hebert, 2003). In contrast, I in CRF is a function of all

the observed data x see Figure 2.11b. Different models of data dependent spatial interactions are

used to design I in CRF, e.g. concatenation of features (Zhong and Wang, 2007a,b; Li et al., 2009),

absolute difference of features (He et al., 2008; Wegner et al., 2011a), contrast sensitive model

(Shotton et al., 2009; Schindler, 2012) and inverse/transformed euclidean distance (Kenduiywo

et al., 2014).

The CRF model is normally used for classification after determining interaction and association

potentials. This requires determination of posterior probability P(y|x) in Equation (2.17) and the

optimal label ŷ of each node i. Computation of posterior probability involves evaluation of parti-

tion function Z(x). Solution of Equation (2.18) is computationally intractable because it involves

determination of marginal probability over m label configurations by a sum-product operation

over the set of nodes S, which is exponential in the number of nodes, i.e. mS. Thus, sampling

techniques or approximations such as pseudo-likelihood, mean field or Loopy Belief Propagation

(LBP) are normally used to infer a solution. This study adopts sum-product LBP which is a stand-

ard approximate inference algorithm in undirected graphs (Murphy et al., 1999). Loopy belief

propagation applies belief propagation, an inference technique originally developed for trees in

Pearl (1988) but recently modified for "loopy" (cyclic) graphs such as MRFs or CRFs. It works by

passing messages (called marginals) from variable nodes to neighbouring nodes via edges using

factor graphs. This is a specific form of sum-product algorithm (Bishop, 2006, chap. 8.4.4) used

for exact inference on trees. However, for cyclic graphs LBP is not guaranteed to converge, that is,

it may end up in a local extremum. Nonetheless, experimental results have demonstrated that LBP

gives good estimates of marginal probability (Murphy et al., 1999). For detail description of LBP

inference the reader is referred to Bishop (2006) and Barber (2012).
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(a) Labelling of nodes in MRF

(b) Labelling of nodes in CRF

Figure 2.11.: Comparison of how spatial context is incorporated to labelling of nodes in; (a) MRF
and (b) CRF (Wegner, 2011).

After posterior probabilities of nodes are computed through inference, image labelling is per-

formed by determining optimal class label ŷ . This is determined by Maximum A Posterior (MAP)

estimate:

ŷ = arg max
l∈m

[P(yl |x , i)] (2.19)

where arg max denotes maximum value of the argument.

In summary, it is important to note the following distinct properties of CRF:

1. It is a discriminative model,
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2. the conditional independence of data adopted in MRF (Equation (2.13)) for tractability is

relaxed,

3. global data interactions may be incorporated in the association potential,

4. the interaction potential models interactions in both labels and observations unlike in MRF

where only labels are considered as shown in Figure 2.11,

5. through markov and Gibbs equivalence, labels and observations in the interaction potential

are not limited to the local neighbours, but factorizes globally.

These properties guided the choice of CRF to model temporal interactions and phenology on crops.

On the other hand, radar sensors are daylight and weather independent. These renders them a

good medium to deliver a sequence of images of highest temporal density suitable for crop classi-

fication regardless of climatic zones. The next chapter describes study area, data and methodology

used for crop classification.
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3 Methodology
Techniques implemented in this research including new contributions are described in this chapter.

Dynamic conditional random fields classification framework is designed in order to model spatial

and temporal dependencies. The DCRFs framework was designed for supervised spatial-temporal

classification of a sequence of images; where class labels were predicted from temporal data using a

sample of pre-labelled data instances. This involved design of association, interaction and temporal

potentials that determined spectral, spatial and temporal information respectively. First order and

higher temporal interactions were modelled.

3.1 Dynamic conditional random fields

Sequence classification requires determination of posterior probability P(y1,...,T |x1,...,T ). The com-

putation is intractable and exponential in time as it involves computation of ST functions in a 2-D

space. Since satellite observation of crops is unique and discrete in each instance, we assumed

that their evolution is independent. In this way, the conventional class conditional independence

(Swain, 1978) was attained: P(y1,...,T |x1,...,T ) = P(y1|x1), . . . , P(yT |xT ). This simplified the classi-

fication problem to an independent estimation of class posterior probabilities P(yi) for each node

i in t. Spatial interactions are also considered at each epoch by I in Equation (2.17).

To exploit crop phenology information, we extended DCRFs proposed by Sutton et al. (2007)

for 1-D text sequence classification to 3-D image sequence classification. A DCRF is a conditionally

trained undirected graphical model whose structure and parameters are repeated over a sequence.

The DCRF can be designed using a template that defines graphical structure, features, and weights

for any two epochs. The same set of features and weights are used at each epoch so that the

parameters are tied across the network. Therefore, the study developed an undirected DCRF graph

template that factorizes according to first order Markov assumption as depicted in Figures 3.1

and 3.2. In the design, each node i at time t can depend on node data from the previous (if t 	= 0)

and subsequent (if t 	= T) epochs. The objective is to connect a set of all possible temporal cliques

C of nodes S using a conditional probability matrix distribution P(y|yt−1,x,xt−1). This set-up gives

a DCRF sequence template model, considering crop phenological information captured by radar,

such that a node can have at least one or two temporal neighbours (Figure 3.2).

Definition Let c, c ∈ C , be a temporal clique index of a node k in epoch Δt = t ± 1 of a label

vector yΔt which corresponds to another node i in label vector yt at time t such that c = {k,Δt}
as illustrated by Figure 3.2. In this case, a set of random variables yi,t,c ≡ {yi,t |y(k,Δt)∈c} is the

set of variables of the evolving clique index c at time t in the sequence of T images. Then, our

spatial-temporal DCRF template can be expressed as illustrated by Equation (3.1).
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yt=1 yt=2 yt=T

Image (x)

Node (y)

Figure 3.1.: First order DCRF sequence graph showing a subset of temporal nodes and image data
in a sequence. First order spatial (N=4) and temporal interactions are illustrated by blue
and black lines respectively while red lines depict node potentials.

k

i

k

t 

Δt=t+1

Δt=t-1

Figure 3.2.: First order temporal (k) and second order spatial (N=8) neighbours of node i in a se-
quence of T images (see Figure 3.1). Spatial and temporal edges are indicated by solid
and dashed lines respectively.
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P(y|x) = 1
Z(x)

exp


∑
i∈S

A(yi,x) +
∑
i∈S

∑
j∈Ni

I(yi, yj,x) +
∑
t∈T

∑
i∈S

∑
c∈C

TP(yi,t,c,x,xΔt)

�
(3.1)

In Equation (3.1), TP denotes temporal potential. The association, interaction and temporal poten-

tials can be considered as local domain specific classifiers which were implemented as described in

Sections 3.1.1 to 3.1.3.

3.1.1 Association Potential

The association potential determines how likely an image site i takes a label yi given the data x:

A(yi,x) = P(yi|fi(x)) (3.2)

where fi(x) is a site-wise feature vector (Kumar, 2006). We used random forests (Breiman, 2001)

to determine A by independent classification of different epochs assuming that evolution of a crop

is unique over the sequence. RF consists of several decision tree classifiers DT where each tree is

generated using a random vector sampled independently from the training set of input vectors.

Each tree then casts a placement vote for the most popular class given an input vector x. For

instance, if the number of votes cast for a given class label y by RF is Vy , then our A at site i is:

P(yi = y |fi(x)) =
� Vy

DT



. (3.3)

We set DT = 350 because over 200 trees RF stabilizes (Hastie et al., 2011, chap. 15) and defined

tree depth as 25.

The decision trees presents a hierarchical categorization of data by splitting (e.g. using Gini

impurity index). Basically, RF is an ensemble technique that applies a combination of bagging and

random subspace methods (Tso and Mather, 2009). The principle of bagging (Breiman, 1996) is

to average many noisy but approximately unbiased classifiers, hence reduce the variance. This

improves classification accuracy and avoids overfitting. Trees are ideal candidates for bagging,

because they can capture complex relationships in data, and if grown sufficiently deep, have relat-

ively low bias. Since trees are noisy, they benefit greatly from the averaging (Hastie et al., 2011,

chap. 15) which reduces variance. For more details on RF the reader is referred to (Breiman, 2001;

Tso and Mather, 2009; Hastie et al., 2011). In summary, Breiman (2001) observes the following

benefits that made us select RF for determining A:

1. its accuracy is as good as Adaboost and sometimes better,
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2. it is relatively robust to outliers and noise,

3. it is faster than bagging or boosting, and

4. it shows useful internal error estimates and variable importance.

3.1.2 Interaction Potential

Remote sensing images of the physical world portray a coherent and spatially smooth scene be-

cause of strong spatial context among neighbouring pixels (Figure 2.6). Moreover, the first law

of Geography "everything is related to everything else, but near things are more related than dis-

tant things" by Tobler (1970), supports the premise. This elementary piece of prior knowledge is

modelled by the interaction potential. It measures the influence of data and neighbouring labels

on site i. It ensures that site i, as initially determined by association potential, is labelled to its

corresponding "true class" given data evidence x and neighbourhood dependency N where j ∈ Ni.

We set N = 8, second order neighbourhood structure, as shown in Figure 2.9b, in order to include

more spatial interactions to node i. In principle the I imposes context using pairwise node cliques

to penalize local changes in class labels if data (image features) are similar and also penalize

identical class labels when the features are different. So far the proposed contrast sensitive model

(Shotton et al., 2009; Schindler, 2012) prefers to enforce a higher smoothness penalty to a pair of

similar labels than to dissimilar ones as shown in Equation (3.4).

I(yi, yj,x) =

⎧⎨
⎩β · exp
�−η · di j

�
if yi = yj

0 if yi 	= yj

(3.4)

In Equation (3.4), β is a spatial interaction parameter that regulates smoothness and parameter η

controls inclusion (η = 1) or exclusion (η = 0) of data interactions di j of adjacent node features fi

and f j, that is:

di j =

�∑R
i=1 | fi(x)− f j(x) |2

R
(3.5)

where R is the number of features/elements in vectors fi and f j. Division by R ensures identical

influence of I in all images (Hoberg et al., 2015) because it converts the sum of Euclidean distance

of features from adjacent sites to mean which is a better estimate of central tendency.

This study introduced two designs of I that enforce context by considering scenarios when ad-

jacent labels are either similar or dissimilar given data evidence. The two models are based on a

new version of contrast sensitive Potts model and Pearson correlation.
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New version of contrast sensitive Potts model

This model of I is modified from Equation (3.4) as:

I(yi, yj,x) =

⎧⎨
⎩β · exp
�−η · di j

�
if yi = yj

β · �Max[1− exp(−η · di j),ε]
�−1

if yi 	= yj

(3.6)

where Max is a function that returns a maximum between two values and ε is a value close to

zero (it prevents division by zero). Therefore, the model is different from contrast sensitive Potts

model because transitions of adjacent labels are now moderated based on data evidence both when

initial labels from A are similar or dissimilar. In this manner, the model regulates smoothing while

preserving edges.

Pearson correlation coefficient model

In statistics, Pearson product-moment correlation coefficient ρ or simply the correlation coeffi-

cient, is a measure of the linear correlation between two variables, in this case node xi and xj

(Webster and Oliver, 2007). It is a dimensionless value between +1 and -1, where 1 refers to total

positive correlation, 0 is no correlation, and -1 is total negative correlation. Correlation quantifies

interdependence of variables hence, the reason we used it to quantify context in adjacent nodes

i and j as:

I(yi, yj,x) =

⎧⎨
⎩β · exp
�
η ·ρi j

�
if yi = yj

β · �exp(−η ·ρi j)
�−1

if yi 	= yj

(3.7)

where ρi j is the Pearson correlation coefficient of two adjacent nodes i and j. Pearson correlation

coefficient is computed as:

ρi j =

∑q=R
q=1

�
(xi − x̄ i)(x j − x̄ j)

�
�∑q=R

q=1{(xi − x̄ i)2
�∑q=R

q=1(x j − x̄ j)2
(3.8)

where R, as earlier mentioned, is the number of elements in vectors xi and x j.

3.1.3 Temporal Potential

Multitemporal mapping techniques exploit temporal context to improve classification. Temporal

context describes inter-class and/or intra-class transitions in time. Changes during crop growth

are largely due to phenology and other external dynamics such as farm management, artificial or
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natural activities. We modelled these aspects using the temporal potential. It captures interactions

between nodes in the sequence of images T . This potential can be considered as a classifier that

ensures mutual information exchange between nodes i and k in epochs t and Δt. Since the

posterior probabilities P(yi = l) and P(yk = l) are determined by A, our TP can be expressed as:

TP(yi,t,c,x,xΔt) = P(yi = l|yk = l). (3.9)

To solve Equation (3.9), Bayesian formula was used to estimate the probability of a node i being

assigned a class label l given a corresponding temporal node k in the sequence:

P(yi = l|yk = l) =
P(yi = l, yk = l)

P(yk = l)
≡ P(yi = l, yk = l)∑

yi
P(yi = l, yk = l)

. (3.10)

Equation (3.10) determines the probability of a crop label l, where l = {1, . . . , m}, being assigned

to a node i given data from the two epochs t and Δt. It is used to compute a pixel-wise m × m

conditional probability matrix representing temporal interactions in m classes between a pair of

epochs as illustrated by Table 3.1 and earlier proposed in Kenduiywo et al. (2015).

Table 3.1.: Determination of pixel-wise conditional probability matrix between two sites i and k in
two different epochs.

yi ⇒ yk

yk⇒ yi yk = 1 yk = 2 . . . yk = m Sum

yi = 1 P(yi = 1, yk = 1) P(yi = 1, yk = 2) P(yi = 1, yk = m) P(yi = 1)
yi = 2 P(yi = 2, yk = 1) P(yi = 2, yk = 2) P(yi = 2, yk = m) P(yi = 2)

...
yi = m P(yi = m, yk = 1) P(yi = m, yk = 2) P(yi = m, yk = m) P(yi = m)

Sum P(yk = 1) P(yk = 2) P(yk = m) 1

3.2 Higher order DCRFs with expert phenology

The standard DCRFs model introduced in Section 3.1 considers first order temporal interactions.

This is based on the belief that neighbouring nodes in a time sequence are more dependent than

nodes further away. However, phenological information varies across the life cycle of a crop and

this is captured by radar images as depicted by Figure 3.3. Hence, it is necessary to include tem-

poral dependencies from the entire sequence of images to a node in a given epoch. Nonetheless,

there exist different instances in the life cycle where backscatter information of a crop is high as

highlighted in Section 2.1.2. The backscatter may also be low or completely from undergrowth

or crops left over after harvesting. In each case, the backscatter information is useful for discrim-

inating that particular crop parcel. This means that temporal nodes have varying magnitude of
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phenological information. We thus used expert phenology knowledge to assign weights to each

crop type in each epoch in the sequence. The weights are estimated based on anticipated pro-

portion of crop backscatter given its phenology knowledge at the instance of image acquisition.

Therefore, the temporal interaction model in Section 3.1.3 was redesigned to accommodate expert

weighted temporal phenological information in the entire sequence as depicted in Figure 3.4. In

this configuration, each node has temporal interactions up to nth order (where n = T − 1) in the

sequence of T images. Therefore, higher order DCRFs can also be termed as nth order DCRFs.
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Figure 3.3.:Mean backscatter variation of crops as captured in different TerraSAR-X HH polarized
image acquisitions in the year 2009.

Now, let k be an index of a set of temporal nodes K in all other epochs 1 : T \ t (the set of all

other epochs except t) that corresponds to node i in epoch t. Then, the temporal potential can be

redefined as:

TP (yi, yk∈K ,x1:T , t) = P (yi|yk∈K) (3.11)

where 1 : T refers to the sequence of epochs from 1 to T.

41



yt=1

Image (x)

Node (y) yt=2 yt=3 yt=T

Figure 3.4.: Higher order DCRFs sequence graph showing a subset of nodes and image data in a
sequence. First order spatial and higher (3rd) order temporal interactions are illustrated
by blue and black lines respectively while red lines are node potentials.

Since class conditional independence is already adopted (see Section 3.1) then Equation (3.11)

can be simplified as:

P (yi|yk∈K) = P (yi|yk=1) P (yi|yk=2) . . . P (yi|yk=K) (3.12)

A weights vector φ representing prior expert phenological information of each crop type was then

introduced to a vector of probabilities determined in each epoch by A. This means phenological

information exchange between all temporal nodes now include expert knowledge. Therefore,

Equation (3.12) can further be simplified and expert phenology integrated by:

P (yi|yk∈K) =
K∏

k=1

P (φi · yi|φk · yk) . (3.13)

where φi and φk are vectors of expert phenology weights corresponding to each crop type l at

nodes i and k in different epochs respectively. Each of the conditional probability terms in Equa-

tion (3.13) were used to compute the conditional probability matrix between pairwise temporal

node cliques i and k as earlier demonstrated in Equation (3.10) and Table 3.1 but, now the prob-

abilities are weighted. These matrices capture inherent image and expert phenological information
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which enhance bidirectional temporal information exchange between node i and all other K tem-

poral nodes. To sum up, the designed higher order DCRFs model can now be expressed as:

P(y|x) = 1
Z(x)

exp


∑
i∈S

A(yi,x)
ψ1 +
∑
i∈S

∑
j∈Ni

I(yi, yj,x)
ψ2 +
∑
t∈T

∑
i∈S

∑
k∈K

TP (yi, yk,x1:T , t)ψ3

�

(3.14)

where ψ1, . . . ,ψ3 are weights corresponding to A, I and TP which are association, interaction and

temporal potentials respectively applied at each node. We set N = 4 as defined in Figure 2.9a in

order to reduce computational complexity. The spatial interaction potential was given a weight

ψ2 = 2 which is double that of temporal and association potentials. This acted as a compensation

that ensured spatial interactions are not dominated by temporal ones.

3.3 Optimal crop mapping with DCRF

Farmers, governments, insurers, agricultural stock markets and traders and other stakeholders

are mostly interested in the quantity of a certain crop in a given season. The proposed DCRFs

approaches incorporates temporal information exchange between epochs. However, at each epoch

we obtain posterior class probabilities incorporating phenology information inherent in images

and expert knowledge in the case of higher order DCRFs. In order to generate an optimal seasonal

crop map, an ensemble classifier was necessary. For this reason, an ensemble classifier using

maximum F1-score to select the best posterior probability of each class from a sequence of epochs

was developed. Selected posterior probabilities were then weighted using user accuracy measure.

To generate an optimal seasonal crop map the posteriori probabilities were maximized.

Consider our classification problem where each node i ∈ S is to be assigned a discrete class

label y from l ∈ m possible classes (y1, . . . , ym) in each epoch t from the sequence of T images.

Now given that posterior probabilities P(yl |x , t) have been determined, then for each class l we

selected a probability with maximum F1-score from the sequence and weighted them with user

accuracy. A discrete class for node i was determined by maximizing over probabilities selected

from the sequence. Since the same training sites are used throughout the sequence (crop season),

prior probability in each epoch was assumed equal:

ŷi =
m

arg max
l=1

�
T

max
t=1
(F1 [P(yl |x), t]) ·User accuracy

�
(3.15)
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where F1 [P(yl |x), t] is a probability corresponding to class l with maximum F1-score (F1) at time

t and ŷi is the estimated class label for node i. Sokolova et al. (2006) defines F1-score as:

F1-score=
2(Producer accuracy ·User accuracy)
Producer accuracy+User accuracy

. (3.16)

Figure 3.5 illustrates the approach used to design ensemble classifiers for optimal labelling. For

instance, Figure 3.5a depicts optimal labelling using first order DCRFs while labelling based on

higher order (2nd order) DCRFs is shown in Figure 3.5b.

The approach in Equation (3.15) was compared to the following classifier combinations rules in

(Kittler et al., 1998):

Max rule: ŷi =
m

arg max
l=1

�
T

max
t=1

P(yl |x, t)
�

(3.17)

Majority vote: ŷi =
m

arg max
l=1

�
T∑

t=1

Δl t

�
(3.18)

Median rule: ŷi =
m

arg max
l=1

�
medT

t=1P(yl |x, t)
�

(3.19)

Product rule: ŷi =
m

argmax
l=1

�
T∏

t=1

P(yl |x, t)

�
(3.20)

where med is the median estimate and Δ is the frequency of occurrence of a class label l in the

sequence.

Equation (3.17) finds the maximum probability of a class from the sequence. The selected

posterior probabilities are then maximized to get the final label of a node. Majority vote simply

counts the votes received for a class in the sequence. The class which receives the largest number

of votes is chosen as the consensus (majority) label. Median rule in Equation (3.19) simply finds

the mid probability of class from the sequence. It is preferred to sum rule because if any of the

epoch classifiers outputs a posteriori probability for some class which is an outlier, it will affect

the average which could lead to an incorrect labelling. Moreover, it is established that a robust

estimate of the mean is the median. Therefore, it is more appropriate to base the combined decision

on the median of the a posteriori probabilities. On the other hand, the design in Equation (3.20)

quantifies the likelihood of a label by combining the a posteriori probabilities generated by the

individual classifiers using the product rule. It can be a severe rule of fusing classifier outputs as

it is sufficient for a single epoch to assign a close to zero probability to a class. In such a case, the

combined output will also be a value close to zero due to reduction effect of multiplication. This

effectively undermines the decision of any correctly predicted class in the sequence and denies it

an opportunity for its identity to be finally accepted or rejected.
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(a) Optimal labelling in first order DCRFs.
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(b) Optimal labelling in 2nd order DCRFs.

Figure 3.5.: Illustration of optimal node labelling using class posterior probabilities estimated by
first and higher order DCRFs.
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3.4 Training

Solutions to Equations (3.1) and (3.14) are obtained by maximizing probabilities, spectral (A),

spatial (I) and temporal (TP) using Bayes’ MAP estimate as earlier mentioned in Section 2.2.3.

This requires an inference algorithm to determine posterior probabilities P(y|x) and a maximiza-

tion algorithm to estimate optimum labels ŷ . We apply sum-product LBP (Murphy et al., 1999), a

standard inference algorithm in graphs with cycles. To estimate class labels, we design a maximiz-

ation algorithm. The association potential probabilities used in both I and TP are estimated from

training data using RF implemented in OpenCV (OpenCV, 2014).

3.5 Accuracy assessment

Users of classification maps derived from remote sensing data need to know credibility of the

results. Accuracy assessment is thus necessary in order to ascribe confidence limits to the derived

classification products. In addition, quality assessment is also key in evaluating the performance of

a classification approach. It places a degree of confidence to results and implicitly the classification

approach. In remote sensing, confusion matrix/error matrix, is mostly used for this purpose. It

shows proportions of correctly classified and misclassified sites in a table. From the table more

accuracy measures can derived (see ITC, 2010, chap. 6.2.4). The most direct measure is the

Overall Accuracy (OA). It is represents the proportion of correctly classified pixels in a classified

map with respect to ground reference data used for verification.

Other measures derived from the error matrix such as error of omission and commission are

computed per class. Error of omission also known as Type I error or false positive, refers to those

sample pixels that are omitted in the interpretation result. In contrast, the error of commission

also called Type II error or false negative refers to incorrectly classified pixels. Omission error is

the corollary of producer accuracy, while user accuracy is the corollary of commission error. The

user accuracy determines the probability that a pixel labelled as a certain land-cover class in the

map indeed corresponds to the initial defined class in training data. Similarly, producer accuracy

measure is the probability that a sampled pixel on the map is indeed that particular class on the

ground. An additional accuracy measure is the kappa statistic κ. This measure estimates the

coefficient of agreement κ by taking into account omission and commission errors in addition to

the values of the main diagonal in the confusion matrix. Kappa statistic is a measure of agreement

after chance agreement is eliminated. So it can be used to determine whether a classified map is

significantly better than chance or random. It has value between 0 and 1. If κ= 0 then there is no

agreement between the classified output and reference data while κ= 1 indicates a perfect match.

Based on kappa, one can test if two classification results, have different levels of accuracy. This

type of testing is used to evaluate different techniques of remote sensing classification (ITC, 2010).
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4 Experiments
This chapter describes data used and experiments conducted using the designed techniques in

Chapter 3 for crop type classification. The tests were conducted in three sites Hannover (Sec-

tion 4.2) and Fuhrberg (Section 4.1.1) in Germany and Kitale (Section 4.1.2) in Kenya. These

sites are in different continents, that is Germany in Europe and Kenya in Africa. TerraSAR-X data

acquisition were used in Fuhrberg and Kitale while Sentinel 1 was adopted for Hannover region.

4.1 Crop type mapping using TerraSAR-X images

Fuhrberg and Kitale areas were selected to conduct crop classification experiments from a sequence

of TerraSAR-X images.

4.1.1 Fuhrberg

Study site location and data

This experiment site is located in Northern Germany approximately 52.56◦N, 9.84◦E as illustrated

in Figure 4.1. The average annual precipitation and temperature are 656 mm and 8.9◦C respect-

ively (Deutscher Wetterdienst, 2012). The region is characterized by intensive agriculture with

large farms. Area under active farming is approximately 50%.

Crops grown in Fuhrberg region include: 1) barley, 2) canola, 3) grassland, 4) maize, 5) oat,

6) potato, 7) rye 8) sugar beet and, 9) wheat. These crops go through different phenological

stages within a season, a fact that can enhance discrimination. Five general phenology phases

from farm activity point of view — preparation, seeding, growing, harvesting and post harvest

— were defined (Figure 4.2). Preparation phase involves ploughing and soil grooming processes

before seeding. In seeding phase, crop seeds are placed in the soil. Growing phase includes the

period between crop germination to ripening. After ripening, harvesting starts by gathering mature

crops from the fields. The last stage is post harvest phase, where the field could be fallow or with

some remaining ripe crops.

Data acquisitions from TerraSAR-X satellite were used. The temporal sequence consists of six

dual polarized (HH and VV) TerraSAR-X High Resolution Spotlight images (see Table 4.1). These

images were delivered as ground range products with equidistant pixel spacing. They are ra-

diometrically calibrated to σ0 according to Equation (2.6) in Envi SARscape 5.2. All images are

co-registered to an extent of (7.1 × 11.8) km2 using WGS 1984 datum on UTM zone 32N coordin-

ate projection system. Selected experiment site covers an extent of (5.4 × 5.4) km2 as highlighted

in Figure 4.1.
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Figure 4.1.: Fuhrberg study area located in Northern Germany.
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Figure 4.2.: Phenology stages of crops considered for classification in Fuhrberg.

Reference data campaign was conducted during the same year of image acquisition. Table 4.2

illustrates distribution of training and validation data for various crops in the study area. All parcel

boundaries were buffered inward by 10 m. The buffers were used to avoid selecting training pixels

from the edge of a field, which would create a mixed signal and affect classification accuracy.
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Acquisition date Incidence angle Resolution (m)

Range Azimuth
11th March 2009 34.75◦ 2.1 2.4
13th April 2009 34.75◦ 2.1 2.4
22nd May 2009 43.65◦ 3.4 2.9
18th June 2009 34.75◦ 2.1 2.4
10th July 2009 34.75◦ 2.1 2.4
17th October 2009 34.75◦ 2.1 2.4

Table 4.1.: TerraSAR-X image acquisitions captured in ascending mode over the study area.

The parcels were then separated into approximately 50% training and validation sets, for each

crop type, using stratified random sampling design tool in ArcGIS 10.0 (Buja and Menza, 2013). A

minimum spatial threshold of 100 m between parcels was used. The spatial threshold and stratified

random sampling ensured that samples were spread over the study area and have some form of

randomness with representation of unpopular classes as advocated by Stehman (2009).

Crop Training set (ha) Validation set (ha)

Barley 38.54 41.30
Canola 38.60 40.87
Grassland 69.97 55.10
Maize 27.63 33.10
Oat 10.11 17.39
Potato 55.76 66.45
Rye 97.23 79.04
Sugar beet 52.49 47.51
Wheat 34.88 34.84

Table 4.2.: Distribution of training and validation data.

Feature selection

Image features were computed from TerraSAR-X data of Furhberg in order to mine more inform-

ation as only fewer images were available in each epoch. The features are image input variables

that are pre-processed into some new space of variables where it is intended to make image clas-

sification easier (see Bishop, 2006, p. 2). Therefore, Gray Level Co-occurrence Measures (GLCM)

were computed using a 3× 3 matrix. Eight features — mean, variance, correlation, homogeneity,

contrast, dissimilarity, entropy and 2nd moment — were computed in directions 0◦, 45◦, 90◦, and

135◦ giving rise to a total of 32 features in each polarization. RF variance of importance was used

to select 4 significant features from the 8 GLCM features in each direction and polarization (a total

of 32 features per epoch). Important GLCM features as per RF include: correlation, homogeneity,

variance and mean. For each selected feature, a super pixel/block was generated from a mean of

49



3× 3 pixels. All block features were normalized between 0 and 1 to minimize undue influence by

features with high values during classification. Block size selection was done in consideration to

the minimum mappable unit. The shift from pixels to block segments classification is advocated in

(Blaschke and Strobl, 2001).

Spatial interaction parameters and model selection

The DCRFs techniques proposed in Equations (3.1) and (3.14) have a spatial interaction model.

Normally a suitable model should be selected or designed and its parameters determined in a given

classification task. Two spatial interaction models in Equations (3.6) and (3.7) were designed.

These models were compared to the commonly used contrast sensitive model in Equation (3.4)

over a series of classifications tests. During the tests, a range of possible β and η parameter values

in 2-D logarithmic scale were utilized. In each test, average overall classification accuracy and

kappa of two epochs in growing season (June and July) were computed as an evaluation for each

set of parameters. These epochs were chosen because within the period, returned radar backscatter

are dominantly from crops. Finally, a suitable model of I including β and η parameters were

selected using initial 2-D parameter search results.

DCRFs crop type mapping

After determining suitable I model and corresponding parameters, the technique in Equation (3.1)

was adopted for sequence crop type classification. The approach classifies each epoch integrating

first order temporal information and spatial information from 8 neighbouring nodes. We compare

this approach to MLC and mono-temporal CRF, Equation (2.17), in single epoch classifications us-

ing 3×3 amplitude pixel blocks. This was done in order to test the impact of temporal interactions

in DCRFs.

Posterior probabilities from each epoch were combined to generate an optimal map. Differ-

ent methods introduced in Section 3.3 were tested and compared to our new approach in Equa-

tion (3.15). Moreover, studies like Bargiel and Herrmann (2011); Forkuor et al. (2014); Sonobe

et al. (2015) stacked temporal images/features as bands for multitemporal classification. There-

fore, we also stacked a sequence of amplitude images for classification using MLC (MLC-stack)

and CRF (CRF-stack). This technique of stacking images was compared to optimal sequence clas-

sification method introduced in Equation (3.15). The approach introduced is referred to as DCRF

max F1-score. This approach is compared to higher order DCRFs also developed in this study as

discussed in the next section.

Crop type mapping with higher (nth) order DCRFs

The capability of higher order temporal phenological information exchange with expert know-

ledge in Section 3.2 was tested for crop classification compared to first order DCRFs in Section 3.1.
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Here, image based and expert temporal phenological information from the entire sequence was

adopted for classification. Expert weights φ in Equation (3.13) were determined using crop phen-

ology calendar (Figure 4.2) as shown in Table 4.3. The weights range between 1 ≤ φ ≤ 10.

A weight of 5 was chosen if the anticipated backscatter is mainly contributed by the crop and

2.5 otherwise. This form of weighting emphasizes both unique crop and corresponding parcel

characteristics respectively in all epochs.

Table 4.3.: Expert weights in different epochs determined using crop phenology.

Crop
Epoch

March April May June July October

Barley 2.5 2.5 2.5 5.0 5.0 2.5
Canola 2.5 2.5 5.0 5.0 5.0 2.5
Grassland 5.0 5.0 5.0 5.0 5.0 5.0
Maize 2.5 2.5 2.5 5.0 5.0 2.5
Oat 2.5 2.5 2.5 5.0 5.0 2.5
Potato 2.5 2.5 2.5 5.0 5.0 2.5
Rye 2.5 2.5 2.5 5.0 5.0 2.5
Sugar beet 2.5 2.5 2.5 5.0 5.0 2.5
Wheat 2.5 2.5 2.5 5.0 5.0 2.5

4.1.2 Kitale

Study site location and data

This experiment site is located west of Kenya approximately 1.01◦N, 34.87◦E as illustrated in Fig-

ure 4.3. Average annual precipitation and temperature in the area are 1600–1800 mm and 18.0◦C,

for more information see Jaetzold and Schmidt (1982); Kenya Meteorological Department (2015).

The region is characterized by intensive small scale and large agriculture activities. Several crops

are grown in Kitale. This study focused on crops grown in large scale within the area of interest.

They include: 1) coffee, 2) grass, 3) maize, 4) rose flower, 5) sugarcane, and, 6) wheat. Cof-

fee, rose flower and sugarcane are perennial crops while maize is annual. Rose flower is mainly

grown in greenhouse controlled environment. The greenhouse structures are perceivable in satel-

lite images. All these crops go through different phenological stages within a season as defined in

Figure 4.4. Similar phenology phases defined in Section 4.1.1 are also used here.

Radar data from TerraSAR-X strip map were acquired for crop classification. The temporal se-

quence consists of 18 dual polarized images with range and azimuth resolutions of 2.6 m and 6.6

m in ascending and 2.1 m and 6.6 m in descending mode respectively (see Table 4.4). All dates

have VH and VV polarized images except 6th May which has HH and VV. The images were acquired

at average incidence angles of 43◦ and 35◦ in ascending and descending modes respectively. These

images were delivered as Single Look Slant Range Complex (SSC) with equidistant pixel spacing.
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Figure 4.3.: Study area in Kitale, Kenya.
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Figure 4.4.: Phenology stages of crops considered for classification in Kitale.

They were radiometrically calibrated to σ0 according to Equation (2.6) and co-registered to an

extent of (31 × 66) km2 using WGS 1984 datum on UTM zone 36N coordinate projection system.

Selected experiment site covers an extent of (15 × 25) km2 as highlighted in Figure 4.3. Super

pixels/blocks were computed for all images in the site using a mean of 2 × 2 pixels. Reference
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Table 4.4.: TerraSAR-X image acquisitions in Kitale.

Year Month Date

2015

May 6, 8, 17, 28 & 30
June 8, 19, 21 & 30
July 11, 13 & 22
August 2, 4, 13, 24 & 26
November 9

data used for classification is illustrated in Table 4.5. The data was separated into training and

validation sets using the procedure described in Section 4.1.1.

Table 4.5.: Distribution of training and validation data in hectares (ha) used in Kitale.

Crop type Training set (ha) Validation set (ha)

Coffee 93.17 78.11
Grassland 147.78 203.04
Maize 2038.28 1993.26
Rose flower 16.03 19.21
Sugarcane 113.94 138.56
Wheat 133.76 123.76

DCRFs crop type mapping

A predefined image sequence is required for DCRFs classification. Therefore, the images in

Table 4.4 were divided into a sequence of 12 epochs. The sequence include the following image

dates: 1) 6th – 8th May, 2) 17th May, 3) 28th – 30th May, 4) 8th June, 5) 19th – 21st June, 6) 30th

June, 7) 11th – 13th July, 8) 22nd July, 9) 2nd – 4th August, 10) 13th August, 11) 24th – 26th, and

12) 9th November. Crops in this sequence were classified using the method in Equation (3.1).

Parameters, β = 10 and η = 1.0, were used following prior knowledge from experiments in

Section 4.1.1. Similarly, posterior probabilities from each epoch were combined to generate an

optimal map. Different methods introduced in Section 3.3 were again tested and compared to our

new approach in Equation (3.15). Likewise, we also stacked a sequence of amplitude images for

classification using MLC, RF and CRFs as done by Bargiel and Herrmann (2011); Forkuor et al.

(2014); Sonobe et al. (2014, 2015). This technique is compared to optimal sequence classification

method introduced in Equation (3.15).

4.2 Crop type mapping from Sentinel 1 images

A study area covering Hannover region was selected to conduct crop classification experiments

using Sentinel 1 images.
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Figure 4.5.: Hannover study area.

The study area covers Hannover region and is located in Northern Germany (52.26◦N, 9.84◦E)

(see Figure 4.5). The average annual precipitation and temperature are 656 mm and 8.9◦C re-

spectively (Deutscher Wetterdienst, 2012). The region is characterized by intensive agriculture

with large farms. Crops in the area include: 1) summer barley, 2) winter barley, 3) canola,

4) grassland, 5) maize, 6) potato, 7) rye and, 8) sugar beet. These crops go through differ-

ent phenological stages within a season, a fact that can enhance discrimination. Five phenology

phases described in Section 4.1.1 are considered as shown in Figure 4.6.

Data used consists of a sequence of 45 dual polarized (VH and VV) Sentinel 1 C-band images

(Table 4.6) acquired using Interferometric Wide (IW) swath mode at incidence angles between

31◦ to 46◦ with range and azimuth resolutions of 5 m and 20 m respectively (Torres et al., 2012).

The images were delivered as Ground Range Detected (GRD) products. GRD products consist of

SAR data which has been detected, multi-looked and projected to ground range using an ellipsoid

such as WGS84 with equidistant pixel spacing. We radiometrically calibrated and co-registered the

images to σ0 and WGS 1984 datum on UTM Zone 32N coordinate projection system respectively
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Figure 4.6.: Crop phenology stages. Seeding and growing phases are within plant life cycle and
the rest are outside. S. Barley and W. Barley correspond to summer and winter barley
respectively.

in Envi SARscape 5.2. Our experiment site covers an extent of (36 × 48) km2 as highlighted in

Figure 4.5.

Similar to Fuhrberg, reference data campaign was conducted during the same year the images

were acquired. Table 4.7 illustrates distribution of training and validation parcel samples for vari-

ous crops in the study area. The samples were prepared in the same procedure described in

Section 4.1.1. However, to test the demand for larger training samples by classification algorithms

when subjected to high dimensional data sets, the samples were divided into two categories of

training and validation sets using stratified random sampling design tool in ArcGIS 10.0 (Buja and

Menza, 2013). First category had approximately 50% training and 50% validation parcels per crop

type while the second contained 20% and 80% respectively.

Spatial interaction parameters and model selection

A similar procedure of parameter estimation used for TerraSAR-X images in Section 4.1.1 was

adopted. However, since Sentinel 1 images have a lower spatial resolution than TerraSAR-X, the

parameter search range was restricted to between 0.1 and 25 for both β and η. This was done

because intra- and inter-class backscatter variability is less in lower resolution images. For this

reason, parameters with lower smoothness magnitude are anticipated to give better classification

accuracy. Category I training and validation data in table 4.7 in conjunction with epochs in growing
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Table 4.6.: Sentinel one data acquisitions over the study area.

Year Month Date

2014

October 13 & 22
November 15 & 27
December 09 & 21

2015

January 02, 14, 29
February 07, 10, 19, & 22
March 03, 06, 15, & 27
April 08, 11, 20, & 23
May 02, 05, 14, 17, & 26
June 07, 10, 19, & 22
July 01, 04, 13, 16, & 25
August 06, 09, 18, 21, & 30
September 02, 11, 14, 23, & 26

Training set Validation set

Category I Category II Category I Category II
Count ha Count ha Count ha Count ha

Summer Barley 3 9.97 2 4.91 3 14.64 4 19.70
Winter Barley 3 20.38 2 14.04 3 24.83 4 31.17
Canola 7 35.01 2 10.43 8 51.23 13 75.81
Grassland 15 41.96 6 19.42 15 43.84 24 66.38
Maize 14 67.07 6 26.71 16 78.51 24 118.87
Potato 6 36.37 3 19.78 6 34.43 9 51.02
Rye 14 81.72 5 23.62 14 80.47 23 138.56
Sugar beet 21 124.13 8 44.76 21 113.1 34 192.47
Wheat 19 113.88 7 44.76 19 123.88 31 193.00

Table 4.7.: Distribution of training and validation data in terms of size in hectares (ha) and number
of parcels (count) per crop. Proportions of reference data (training set/validation set)
is: category I (50%/50%) and category II (20%/80%).

season (June and July) were used for parameter search experiments. These epochs were selected

because within the period, returned radar backscatter are dominantly from crops.

4.2.2 DCRFs crop type mapping

The images in Table 4.6 were divided into 7 epoch categories, that is, epoch 0 consist of winter

images between October to March, while epoch 1–6 correspond to images in April–September

respectively. We adopt the technique in Equation (3.1) for pixel-wise crop classification in the

epoch sequence. The approach classifies each epoch integrating first order temporal information

and spatial information from 8 neighbouring nodes. We compare this approach to MLC, RF and
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mono-temporal CRF, Equation (2.17), in single epoch classification. These comparison was done

using category I training and validation data in Table 4.7.

All classifications were done using a core i7 3.6 GHz computer with 64 gigabytes memory. For

DCRFs, a tile based classification with an overlap of 1 pixel around a tile was implemented to

minimize memory demands. The overlaps were reflected (copied) to form a complete tile in the

outermost borders of an image. Thus, the algorithm is scalable, that is, it can be used in any

computer only that the processing time will vary. For instance, DCRFs classifications over the study

area in all the 7 epochs using 12 tiles took approximately 27 hours.

Similar to experiment in Section 4.1.1, posterior probabilities from each epoch were combined

to generate an optimal map. Different methods introduced in Section 3.3 were again tested and

compared to our new approach in Equation (3.15). Likewise, we also stacked a sequence of

amplitude images for classification using MLC, RF and CRF as done by Bargiel and Herrmann

(2011); Forkuor et al. (2014); Sonobe et al. (2014, 2015). This technique is compared to optimal

sequence classification method introduced in Equation (3.15).

Finally, we tested the robustness of DCRF max F1-score and MLC-stack techniques by subjecting

them to high dimensional data and less training data in category II of Table 4.7. An ideal remote

sensing land-cover mapping method should be able to use less training data even in high dimen-

sional feature space and still deliver high classification accuracy thus, the motivation to conduct

the experiment.
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5 Results
Results from experiments conducted in three different regions using first order and higher order

DCRFs compared to MLC, RF and standard CRFs are presented in this chapter.

5.1 Results of crop type mapping using TerraSAR-X images

Results of crop mapping using TerraSAR-X data are presented in this section part of which appear

in Kenduiywo et al. (2016). The results are based on experiments conducted from two different

regions, Fuhrberg and Kitale, in Europe and Africa respectively.

5.1.1 Fuhrberg

Feature selection results

Results of GLCM features selection are described here. Four features were selected using RF vari-

able importance criteria. Figure 5.1 shows RF importance computed from an average of four

directions, 0◦, 45◦, 90◦, and 135◦, for each feature and subsequently their average over all the

six epochs. Generally with the exception of HH-polarized correlation features, features computed

from VV-polarization backscatter have a higher importance compared to features computed from

HH-polarization.
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Figure 5.1.: Random forest variable importance of different GLCM features based on a mean of
four directions, 0◦, 45◦, 90◦, and 135◦, and subsequently their average over all epochs.
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Parameter determination results

Choice of a data interaction model for I and corresponding parameters was guided by results

in Figures 5.2 to 5.4. The new version of contrast sensitive model, Equation (3.6), outperforms

standard contrast sensitive, Equation (3.4), in OA and κ over most parameters. The new model

returns high OA for 101 ≤ β ≤ 103 and 10−2 ≤ η ≤ 100 (Figure 5.2a). A high κ is observed over the

same range of parameter values indicating that the classifications are not by chance (Figure 5.2b).

In contrast, OA and κ for contrast sensitive Potts model reduces if β > 10−1 in combination with

any η parameter values as depicted by Figures 5.3a and 5.3b respectively. Another novel model
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Figure 5.2.: Classification accuracy of the new expanded version of contrast sensitive model; (a) is
overall accuracy and (b) is kappa coefficient in percentage.

designed and tested in this study is the Pearson correlation coefficient in Equation (3.8). This

model outperforms standard contrast sensitive model in OA and κ 101 ≤ β ≤ 103 and 10−2 ≤
η ≤ 100 (Figure 5.4). However, for η > 102 parameter values the model over-smoothens the

entire image allocating all pixels to one class as indicated by κ in Figure 5.4b. Therefore, this

data interaction function requires a careful parameter search because it is very sensitive to high

values. Nonetheless, the model performs competitively and comparable to the expanded version

of contrast sensitive model as shown by both results in Figures 5.2 and 5.4 respectively.
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Figure 5.3.: Standard contrast sensitive model classification accuracy; (a) is overall accuracy and (b)
is kappa coefficient in percentage.

In summary, the new contrast sensitive model in Equation (3.6) was selected since it is robust

over a range of parameter values. Parameter search results from the model, with a comprom-

ise between high accuracy and over-smoothing, informed the choice of β = 10 and η = 1 for

classification. These parameter values are used across the sequence for comparability.

Classification results

Results from 5th order DCRFs and standard first order DCRFs epoch classification compared to

other approaches are illustrated in Figure 5.5. The results show that DCRFs approach outperforms

CRF, RF and MLC in both OA and κ. In all epochs MLC has the least accuracy followed by RF

and CRF respectively. The addition of temporal information also improved classification accuracy

in each epoch since DCRFs outperforms CRF which considers only spatial information. Spatial

information also improved classification as demonstrated by CRF performance compared to RF

and MLC which have lower accuracy. Moreover, 5th order DCRFs including expert knowledge gave

even higher classification accuracy in each epoch compared to standard DCRFs. This proves that

image based and expert temporal phenological information from the entire sequence of images are

significant in classification.
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Figure 5.4.: Proposed Pearson correlation interaction data dependent function classification accur-
acy; (a) is overall accuracy and (b) is kappa coefficient in percentage.

An optimal crop map is generated from epoch-wise DCRFs posterior probabilities using different

classifier combination strategies as depicted by results in Figure 5.6a. The first technique we

introduce, DCRF max F1-score, surpasses max rule, majority vote, product rule and median rule

by 33.54%/0.37, 9.89%/0.11, 7.76%/0.09 and 7.71%/0.09 in OA/κ respectively. Thus, max rule

has the least accuracy followed by majority vote, product rule and median rule respectively. On the

other hand, when higher order expert weighted temporal interactions are considered, classification

accuracy of all ensemble approaches improves except product rule. From Figure 5.6b OA/κ of

max rule, majority vote, median rule and max F1-score improve by 18.51%/0.20, 2.39%/0.04,

0.34%/0.1, and 1.31%/0.02 respectively while product rule drops by 5.75%/0.06. As observed

the product rule is unstable and severe classifier combination rule as mentioned in Section 3.3.

These outcomes justified the use of max F1-score for determination of an optimal seasonal crop

map in both DCRFs and 5th order DCRFs.

The developed max F1-score classifier ensemble based on 5th and first order DCRFs is com-

pared to the conventional approach of stacking multitemporal images as input bands to a classifier.

Table 5.1 illustrates that first order DCRF max F1-score outperforms MLC and CRF methods adopt-

ing stacked images by OA/κ of 6.46%/0.08 and 5.90%/0.07 respectively. Moreover, higher order
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Figure 5.5.: Fuhrberg epoch-wise classification results from different approaches; HDCRF refers to
5th order DCRF. Overall accuracy and kappa coefficient are shown by bars and lines in
percentage respectively.
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Figure 5.6.: Comparison of different strategies of integrating DCRFs posterior probabilities to pro-
duce an optimal seasonal crop map. Methods in (a) and (b) are based on estimated
class probabilities from standard and higher order DCRFs respectively.
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DCRFs surpasses DCRFs by 1.31%/0.02 in OA/κ. Therefore, it can be observed that classifying

stacked images even using spatial context methods does not lead to higher accuracy.

Table 5.1.: Results from max F1-score ensemble methods versus stacking multitemporal images to-
gether as input bands for classification.

Method OA κ

MLC-stack 67.51% 0.62%
CRF-stack 68.07% 0.63%
DCRFs max F1-score 73.97% 0.70%
Higher order DCRFs max F1-score 75.28% 0.72%

Examination of standard first order DCRFs based on max F1-score and MLC-stack 3 × 3 pixel

blocks classifications using producer and user accuracy of each class is made in Table 5.2. This

exposes in detail how each crop is recognized by the classifiers as opposed to a limited view on

overall accuracy in Table 5.1. It is only grassland that has a lower classification accuracy in our

approach (user accuracy -11.60% / producer accuracy -2.3%) compared to MLC-stack approach.

All other classes were classified better or comparable to MLC-stack approach. This is especially

true for barley (+3.71% / +14.21%), maize (+13.04% / +24.56%), sugar beet (+15.99% /

+46.68%) and wheat (+0.99% / +7.90%). The producer accuracy of rye and potato decreased

by 6.67% and 15.52% while their user accuracy increased by 12.08% and 21.03% respectively. In

contrast, user accuracy of canola and oat dropped by 4.60% and 25.92% while producer accuracy

increased by 0.19% and 47.78% respectively.

Introduction of higher order temporal interactions increased crop discrimination accuracy. Dis-

crimination accuracy of potato and barley slightly decreased in 5th order DCRFs compared to

DCRFs. However, recognition of wheat, oat and maize significantly improved. For instance, Fig-

ure 5.7 shows a maize parcel well detected by 5th order DCRFs compared to DCRFs and MLC-stack.

Most maize pixels in the parcel are misclassified to potato and sugar beet which are all broad leaved

crops. Oats are well classified by 5th order DCRFs and DCRFs max F1-score techniques as opposed

to MLC-stack which completely misclassified a parcel as rye (see Figure 5.8). Oat and rye belong

to the same family (cereals) thus, MLC fails to effectively discriminate them. To sum up, the pro-

ducer accuracy of rye and sugar beet decreased while user accuracy decreased in grassland and

maize. For example, Figure 5.9 illustrates a sugar beet parcel which is well recognized by DCRFs

max-F1 in contrast to 5th order DCRFs max F1-score and MLC-stack approaches. The MLC-stack

performs the poorest by misclassifying a bigger region of the parcel as potato and partly as maize.

Sugar beet, maize and potato are broad leaved crops. For an in-depth view, confusion matrices of

MLC-stack, 5th order DCRFs and DCRFs based on max F1-score can be referred to in Appendix A.1

Tables A.1, A.2 and A.4 respectively.

Contribution of spatial interactions in classification of stacked images can also be observed in

Table 5.2. This is illustrated by CRFs classification where, the producer accuracy of canola, grass-
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Table 5.2.: Crop producer and user accuracy from first and higher order DCRFs max F1-score includ-
ing CRF and MLC using stacked image features.

Crop type
Producer accuracy User accuracy

DCRFs
5th order
DCRFs

CRF
stack

MLC
stack DCRFs

5th order
DCRFs

CRF
stack

MLC
stack

Barley 69.66% 63.57% 52.07% 55.45% 73.32% 72.71% 76.69% 69.61%
Canola 97.33% 97.45% 97.97% 97.14% 90.23% 88.89% 95.17% 94.83%
Grassland 85.93% 92.71% 97.91% 94.62% 77.30% 75.88% 87.18% 88.90%
Maize 49.81% 60.74% 17.28% 25.25% 47.30% 53.06% 22.01% 34.26%
Oat 88.93% 84.30% 94.29% 41.15% 59.06% 90.14% 98.97% 84.98%
Potato 63.19% 73.17% 71.08% 78.71% 74.15% 67.41% 51.08% 53.12%
Rye 64.38% 62.92% 67.34% 71.05% 74.93% 75.77% 67.69% 62.85%
Sugar beet 89.35% 77.17% 42.03% 42.67% 86.59% 93.51% 71.30% 70.60%
Wheat 69.66% 74.46% 71.20% 61.76% 66.60% 71.53% 59.14% 65.61%

land, oat and wheat increased by 0.83%, 3.28%, 53.15% and 9.45% respectively compared to

classification of pixel blocks by MLC. However, it is interesting that the producer accuracy of bar-

ley, maize, potato, rye and sugar beet dropped by -3.38%, -7.97%, -7.63%, -3.71% and -0.64%

respectively compared to MLC. Thus, for these crops spatial interactions did not improve their

discrimination compared to pixel block classification by MLC. This is because the CRFs interaction

potential averaged the temporal features hence suppressed changes that might have occurred. In

general, CRFs performed poorly in mapping barley, maize and sugar beet compared to all other

approaches (MLC, first and higher order DCRFs). Since most crop mapping studies use pixel based

classification methods based on stacked images, maps of MLC and the novel DCRFs are analyzed

in the next paragraph. The confusion matrix of CRFs is available in Table A.3 for an in-dept view.

±

(a) 5th order DCRFs.

±

(b) DCRFs.

±

(c) MLC-stack.

Figure 5.7.: A Maize parcel well discriminated by 5th order DCRFs max F1-score compared to MLC-
stack and first order DCRFs max F1-score methods. False positives (white areas) are
potato and sugar beet crops.
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Figure 5.8.: An oat parcel well detected by 5th and first order DCRFs max F1-score methods but
dominantly misclassified as rye by MLC-stack. In all maps false positives are white re-
gions.
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(a) 5th order DCRFs.

±

(b) DCRFs.

±

(c) MLC-stack.

Figure 5.9.: A sugar beet parcel well detected by 5th and first order DCRFs max F1-score methods
but dominantly misclassified as potato and partly as maize by MLC-stack. In all maps
false positives are white regions.

An analysis of crop maps highlights challenges faced by MLC-stack, 5th order DCRFs and DCRFs

classification methods. For instance, potato producer accuracy decreased in both DCRFs ap-

proaches compared to MLC-stack mainly due to false positives which were probably caused by

the influence of row direction on SAR backscatter. However, DCRFs experiences lower discrim-

ination in comparison to higher order DCRFs as seen in Figures 5.10a and 5.10b. It can also be

observed from Figure 5.10, that the potato parcel with rows in the direction South East to North

West had the lowest accuracy. This is the approximate direction of TerraSAR-X satellite in ascend-

ing mode. Rye is also a challenge to all the three methods as illustrated in Figure 5.11. This is

because rye had earlier been planted (Figure 5.11d) and after harvesting (Figure 5.11e), straw-
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berry was planted (Figure 5.11f). This dynamic change was not incorporated into validation data

set. Thus, the false positives are actually true. Nonetheless, MLC-stack detected these changes the

least as shown in Figure 5.11c.

±

1
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(a) 5th order DCRFs.

±

1

2

(b) DCRFs.

±

1

2

(c) MLC-stack.

(d) Photo taken at position 1 in (a)–(c). (e) Photo taken at position 2 in (a)–(c).

Figure 5.10.: A potato parcel as mapped in MLC-stack and 5th and first order DCRFs max F1-score
techniques. The arrows indicate row directions which possibly influenced radar signal
and hence false positives (white areas) in the maps.

A further analysis of standard first order DCRFs is made to establish why it has difficulty in dis-

criminating grassland. Figure 5.12 depicts scatterplot of first order DCRFs max F1-score against

MLC-stack producer accuracy computed from each grassland validation parcel. Parcel numbers 8,

43, 49, and 51 have higher accuracy in MLC-stack compared to DCRF max F1-score. However, ob-

servations from ground referencing photos in Figure 5.13 demonstrate that errors encountered by

DCRF max F1-score in those parcels are true positives. For instance, parcel number 49 was used as

storage which exposed the top soil. Likewise parcel number 8 has inhomogeneous grass because of

weeds infestation. Hence, inhomogeneous grassland maps from DCRF max F1-score technique re-

flect true changes on ground not anticipated in ground reference data (see Figure 5.13). Remaining

parcels have comparable producer accuracy in both methods.

67



±
1

2
(a) 5th order

DCRFs.
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(b) DCRFs.

±
1
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(c) MLC-stack.

(d) Photo taken in April at position
1 of figures (a)–(c).

(e) Photo taken in August at posi-
tion 2 of figures (a)–(c).

(f) Photo taken in October at posi-
tion 1 of figures (a)–(c).

Figure 5.11.: A rye parcel as mapped in MLC-stack and 5th and first order DCRFs max F1-score tech-
niques. False positives (white areas) caused by harvested rye in photo (e) and planting
of strawberry in photo (f).

Despite the challenges faced by DCRFs it still delivers results better than MLC-stack and com-

parable to 5th order DCRFs. This is demonstrated in Table 5.2 and by maps in Figures 5.8 and 5.9

as classified by both MLC and DCRF max F1-score. It can be seen from the maps that DCRF max

F1-score technique produces homogenous parcels compared to MLC-stack. This emphasizes the

contribution of temporal phenological information inherent in images and spatial context in crop

classification. The final map generated from 5th order DCRFs and DCRFs max F1-score ensemble

classifications including MLC-stack are shown in Appendix A.1 Figures A.1 to A.3.
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Figure 5.12.: Scatterplot of first order DCRFs max F1-score against MLC-stack producer accuracy
computed from each grassland validation parcel.

Figure 5.13.: Grassland parcels as classified by MLC-stack and first order DCRF max F1-score and
corresponding ground referencing photos. Top to bottom row corresponds to parcel
numbers 49, 8, and 11 respectively as shown in Figure 5.12. White areas correspond
to misclassifications.
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5.1.2 Kitale

Classification results

The outcome from different ensemble mapping strategies are presented in Table 5.3. Our classifier

combination strategy, DCRF max F1-score, surpasses max rule, majority vote, median rule and

product rule by 49.94%/0.57, 3.73%/0.06, 3.09%/0.05 and 5.08%/0.08 in OA/κ respectively.

Thus, max rule has the least overall accuracy followed by majority vote, median rule and product

rule respectively. It can be observed that max F1-score is robust and accurate compared to the

Table 5.3.: Accuracy of different strategies of integrating DCRFs posterior probabilities.

Method OA κ

Max F1-score 90.27% 0.76
Product rule 85.19% 0.68
Median rule 87.18% 0.71
Majority vote 86.54% 0.70
Max rule 40.33% 0.19

other classifier ensemble strategies. Max rule is the poorest while product rule, median rule and

majority vote are competitively comparable. An examination of how accurate these methods map

each crop is depicted in Figure 5.14. Max F1-score approach still has the highest mapping accuracy

in all crop types except sugarcane. Median rule has the highest accuracy in mapping sugarcane

followed closely by majority vote, product rule, max F1-score and max rule.

The designed DCRF max-F1 score framework is compared to RF, MLC and CRF classifiers based

on stacked multitemporal images (Table 5.4). In this setup, DCRF max-F1 score outperforms RF,

MLC and CRF by 13.47%/0.23, 13.03%/0.22 and 1.07%/0.01 in OA/κ respectively. These results

also demonstrate the contribution of temporal information since DCRF max-F1 score performs

better than CRF. In contrast, MLC surpasses RF classifier while CRF performs better than both

methods. Thus, spatial interactions improve classification accuracy. An assessment of performance

Table 5.4.: Comparison of DCRF max F1-score to stacking multitemporal images for classification
using RF, MLC and CRF.

Method OA κ

Max F1-score 90.27% 0.76
RF-stack 76.80% 0.53
MLC-stack 77.24% 0.54
CRF-stack 89.20% 0.75

of DCRF max F1-score and MLC-stack in mapping each crop type is depicted in Table 5.5. Producer

and user accuracy of each crop type presents an expounded view of how each method performs as
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Figure 5.14.: Percentage F1-score accuracy of each crop in Kitale from different ensemble methods.

opposed to OA and κ. The producer accuracy of all crops mapped by DCRF max F1-score surpasses

MLC-stack except sugarcane which dropped by -3.65%. In contrast, the user accuracy of all crops

mapped by the technique outperforms MLC-stack. Complete confusion matrices for DCRF max

F1-score and MLC-stack classifications are available in Tables A.5 and A.6 respectively.

Table 5.5.: Producer and user accuracy of each crop from DCRF max F1-score and MLC stack classi-
fications.

Crop type
DCRF max F1-score MLC-stack
Producer User Producer User

Coffee 85.44% 51.69% 64.80% 13.63%
Grassland 93.43% 73.62% 73.89% 63.72%
Maize 92.44% 97.97% 79.17% 97.78%
Rose flower 81.88% 48.45% 69.97% 33.33%
Sugarcane 67.43% 79.54% 71.08% 64.34%
Wheat 80.37% 72.14% 67.77% 59.34%

It can be noted that coffee and rose flower have low user accuracy in both methods. Basically,

coffee is intercropped with trees as shown in Figure 5.15. This phenomenon challenged MLC-stack

as depicted in Figure 5.15b. Coffee was mainly misclassified as maize and partly sugarcane all

of which are broad leaved crops. Consequently, false negatives increased conversely decreasing
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the user accuracy. Examination of confusion matrices of both techniques in Tables A.5 and A.6,

indicate that most of rose flower training pixels were mapped as maize. Therefore, this indicates

the difficulty of the approaches to clearly discriminate rose flower in greenhouses and maize. Some

crops like sugarcane, maize and rose flower in Figure 5.17 are classified by DCRFs max F1-score

better than MLC-stack. However, regions mapped as wheat by DCRFs max F1-score are false

positives which caused producer accuracy of sugarcane to drop below that of MLC-stack. Some

±

(a) DCRF max F1-score.

±

(b) MLC-stack. (c) Coffee intercropped with trees.

Figure 5.15.: Coffee as mapped by MLC-stack and DCRF max F1-score. The white regions indicate
misclassifications mainly maize.

±

(a) DCRF max F1-
score.

±

(b) MLC-stack.

Figure 5.16.:Wheat as mapped by MLC-stack and DCRF max F1-score. The white regions are mis-
classifications.

farmers also intercrop maize and beans (Figure 5.18). This fact is a problem to MLC-stack as

demonstrated in Figure 5.18b. On the contrary, DCRFs max F1-score manages to map the parcel

better than MLC-stack (Figure 5.18a).
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Figure 5.17.: Grassland, rose flower (in greenhouses), sugarcane and sugarcane as mapped byMLC-
stack and DCRFs max F1-score compared to high resolution image ©RapidEye.

±
(a) DCRF max F1-score.

±
(b) MLC-stack. (c) Maize intercropped with beans.

Figure 5.18.:Maize parcel mapped by MLC-stack and DCRF max F1-score. The white regions indic-
ate misclassifications.

5.2 Results of crop type mapping from Sentinel 1 images

5.2.1 Parameter determination results

Selection of a data interaction model for I and its suitable parameters was guided by results in

Figures 5.19 to 5.21. The expanded version of contrast sensitive model, Equation (3.6), surpasses

standard contrast sensitive, Equation (3.4), in OA and κ over most parameters. This model gives

high classification accuracy for 2.5 ≤ β ≤ 25 and 0.5 ≤ η ≤ 12.5. In contrast, accuracy for

contrast sensitive Potts model reduces if β > 0.5 in combination with any η parameter values

(Figure 5.20). Pearson correlation model in Equation (3.7) also performs better than conventional

contrast sensitive model as depicted by Figure 5.21. It gives high classification accuracy if 2.5 ≤
β ≤ 25 and 0.5≤ η ≤ 12.5 like the new contrast sensitive model. These results are comparable to

the new version of contrast sensitive model. However, the new version of contrast sensitive model

outperforms it by a very small margin of OA.

Classification results of the three data designs (Figures 5.19 to 5.21), formed the basis for choos-

ing a suitable interaction potential. So far, Pearson correlation and new version of contrast sensitive
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(b) Kappa coefficient in percentage.

Figure 5.19.: Classification accuracy of the new version of contrast sensitive model using Sentinel 1
data.

models have similar accuracy. However, new contrast sensitive model was used for all crop clas-

sification tasks. This is because it has less computation demands than Pearson correlation. Thus,

from the parameter search, we set β = 5 and η = 1 for the model. The parameters were selected

as compromise between high accuracy and over-smoothing. We use these parameter values across

the sequence for comparability.
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Figure 5.20.: Standard contrast sensitive model classification accuracy using Sentinel 1 data.
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Figure 5.21.: Pearson correlation model classification accuracy based on Sentinel 1 data.
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5.2.2 Classification results

Category I classification results

This section presents results from experiments conducted based on high dimensional data in

Table 4.6 and 50% training data in category I of Table 4.7. Designed DCRF epoch classifica-

tion results compared to other approaches are illustrated in Figure 5.22. The results show that

DCRF approach outperforms CRF, RF and MLC. In all epochs MLC has the least accuracy followed

by RF and CRF respectively. The addition of temporal information also improved classification

accuracy in each epoch since DCRF outperformed CRF which considers only spatial information.

Spatial information also improved classification as demonstrated by CRF performance compared

to RF and MLC which have lower accuracy.
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Epoch 0 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6

DCRF OA CRF OA RF OA MLC OA

DCRF Kappa CRF Kappa RF Kappa MLC Kappa

Figure 5.22.: Sentinel 1 epoch-wise classification results, overall accuracy and kappa, from different
approaches.

An optimal crop map from epoch-wise DCRF posterior probabilities using different classifier

combination strategies as depicted by results in Table 5.6 was generated. The technique we intro-

duce, DCRF max F1-score, performs equal to median rule but outperforms max rule and majority

vote by 27.3% and 0.98% in OA respectively. However, the product rule outperforms it by 0.21%.

Nonetheless, evaluating a method based on OA and κ is limiting. Observations of each crop type

F1-score accuracy measure in Figure 5.23 shows that DCRF max F1-score provides a balanced ac-
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curacy in most cases. This is especially true for grassland, rye, wheat, summer and winter barley

that challenged all the other techniques. Thus, the ensemble approach we introduced has stable

performance in all classes.

Table 5.6.: Overall accuracies and kappa from different ensemble methods.

Method OA Kappa

Max F1-score 92.81% 0.92
Product rule 93.02% 0.92
Median rule 92.82% 0.92
Majority vote 91.83% 0.90
Max rule 65.51% 0.61
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Max F1-score Product rule Median rule Majority vote Max rule

Figure 5.23.: Percentage F1-score accuracy measure of each crop from different ensemble methods.
S. barley and W. barley correspond to summer and winter barley respectively.

Designed DCRF max F1-score classifier ensemble is compared to the conventional approach of

stacking multitemporal images as input bands to a classifier. An additional term "stack" is added

to classifiers using this approach for distinction. Table 5.7 illustrates that DCRF max F1-score

outperforms MLC-stack, RF-stack and CRF-stack methods adopting stacked images by OA/κ of

4.81%/0.06, 4.43%/0.06 and 4.22%/0.05 respectively.
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Table 5.7.: Comparison of DCRF max F1-score to stacking multitemporal images together as input
bands for classification using MLC and CRF.

Method OA κ

MLC-stack 88.00% 0.86
RF-stack 88.38% 0.86
CRF-stack 88.59% 0.87
DCRF Max-F1 score 92.81% 0.92

Further comparison of DCRF max F1-score and MLC-stack, which has the lowest accuracy, using

producer and user accuracy of each class is made in Table 5.8. This exposes in detail how each crop

is recognized by the classifiers as opposed to a limited view on overall accuracy in Table 5.7. Pro-

ducer accuracy of grassland and wheat drops in our approach by -2.03% and -2.89% respectively

compared to MLC-stack. In addition user accuracy of summer barley and potato drops by -16.68%

and 0.83% respectively. Most of the other classes were classified better or comparable to MLC-stack

approach. This is especially true for canola (producer +0.66% / user +0.38%), maize (+0.90%

/ +5.21%) and rye (+14.91% / +0.32%). The biggest gainers in terms of precision (producer

accuracy) are potato, summer barley, winter barley and rye which increased by 15.16%, 57.3%,

21.24% and 14.91% respectively. Moreover, the capability of our approach to identify grassland

and wheat based on training data improved by 15.02% and 14.01% subsequently as illustrated by

user accuracy. For a complete view, confusion matrices of DCRF max-F1 score and MLC-stack are

provided in Appendix A.1.3 Tables A.7 and A.8.

Table 5.8.: Producer and user accuracy of each crop based on DCRF max F1-score and MLC stack.

Crop type
DCRF max F1-score MLC-stack
Producer User Producer User

Summer barley 80.36% 79.78% 23.09% 96.46%
Winter barley 93.05% 95.43% 71.81% 95.80%
Canola 98.77% 97.63% 98.11% 97.25%
Grassland 93.94% 94.11% 95.97% 79.09%
Maize 93.74% 90.04% 92.84% 84.83%
Potato 91.90% 88.39% 76.74% 89.22%
Rye 96.64% 86.05% 81.73% 85.73%
Sugar beet 91.76% 94.58% 91.96% 94.73%
Wheat 89.44% 98.42% 92.33% 84.41%

An assessment of some mapped crop parcels highlights the strength of DCRF max F1-score com-

pared to MLC-stack. The DCRFs spatial data interaction term captures ground changes better than

MLC-stack. This is illustrated in Figure 5.24 where false positives in grassland parcel are due to

inhomogeneity. Photos in Figures 5.24c and 5.24d shows that there are shrubs, some boundary

trees and different varieties of grass which are detected in our approach as opposed to MLC-stack.
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Thus, the false positives in DCRF max F1-score correspond to true ground changes. Moreover,

DCRF max F1-score has a high recall rate in grassland compared to MLC-stack. This is captured

in Figure 5.27 where MLC-stack (Figure 5.27b) over classified grassland compared to DCRF max

F1-score (Figure 5.27a). This over classification also affected accuracy of some classes like summer

barley because grass pixels dominated their parcel (see Figure 5.26b). Basically, grassland has a

large variance due to inhomogeneity among most of its parcels. Consequently, it is over classified

since MLC uses variance and mean during classification. Potato parcels are also mapped well com-

±

(a) DCRF max F1-
score.

±

(b) MLC-stack. (c) (d)

Figure 5.24.: Grassland parcel mapped by DCRF max F1-score and MLC-stack; false positives (white
areas) correspond to true ground changes as shown in photos (c) and (d).

pared to MLC-stack which dominantly misclassifies them to maize and sugar beet as demonstrated

in Figure 5.25. Summer barley is recognized very well in Figure 5.26a by DCRF max F1-score com-

pared to MLC-stack approach as depicted by Figure 5.26b. MLC-stack dominantly misclassifies the

parcel as wheat and grass which are similar in appearance. Equally, DCRF max F1-score correctly

detected winter barley in Figure 5.26c as opposed to MLC-stack in Figure 5.26d. Here MLC-stack

incorrectly classifies parts of the winter barley parcel as wheat and rye. Similarly, MLC-stack mostly

misclassified rye as wheat as depicted in Figure 5.26f due to its inability to delineate the two crops.

These are crops of the same family; cereals.

±

(a) DCRF max F1-score.

±

(b) MLC-stack. (c) June. (d) July.

Figure 5.25.: A potato parcel as mapped in DCRF max F1-score andMLC-stack; false positives (white
regions) consist of maize and sugar beet. Photos (c) and (d) illustrate the parcel in
June and July respectively.
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±
(a) Summer barley in DCRF max F1-score.

±
(b) Summer barley in MLC-stack.

±

(c) Winter barley in DCRF max F1-score.

±

(d) Winter barley in MLC-stack.

±

(e) Rye in DCRF max F1-score.

±

(f) Rye in MLC-stack.

Figure 5.26.: Rye, summer and winter barley parcels mapped by DCRF max F1-score and MLC-stack.
False positives (white areas) are dominantly grass and wheat in parcel (b), rye and
wheat in parcel (d) and wheat in parcel (f).
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(b)

Figure 5.27.: A subset of an area covered by summer barley and other crops as mapped by DCRF
max F1-score (a) and MLC-stack (b). Crop legend derived from Ebinger (2012).

Category II classification results

This section describes outcomes from experiments based on the high dimensional data in Table 4.6

and 20% training data in category II of Table 4.7. Basically, the designed DCRF Max F1-score

is tested against MLC-stack and different ensemble techniques. From the experiments max F1-

score ensemble approach based on DCRFs posterior probabilities maintains a high stable accuracy

compared to other ensemble methods including MLC-stack as shown by Table 5.9. In this case,

it surpasses product rule, median rule, majority vote, max rule and MLC-stack by 1.43%/0.02,

2.04%/0.03, 2.76%/0.04, 17.00%/0.20 and 7.73%/0.10 in OA/κ respectively. More also, a look

Table 5.9.: Overall accuracies and kappa from different ensemble techniques and MLC-stack ap-
proach based on category II data.

Method OA κ

Max F1-score 91.42% 0.90
Product rule 89.99% 0.88
Median rule 89.38% 0.87
Majority vote 88.66% 0.86
Max rule 74.42% 0.70
MLC-stack 83.69% 0.80

81



at F1-score accuracy of each class in Figure 5.28 reveals that Max F1-score supersedes the other

ensemble methods in crop discrimination. For instance, it outperforms all the other approaches in

all crops except for canola where its has the same F1-score with product rule and median rule. The

results demonstrates the stability of max F1-score probability combination strategy.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Max F1-score Product rule Median rule Majority vote Max rule

Figure 5.28.: Percentage F1-score of each crop from different ensemble methods using category II
data. S. barley and W. barley correspond to summer and winter barley respectively.

An evaluation of crop mapping experiment results using DCRF max F1-score and MLC-stack is

made based on producer and user accuracies and maps. Table 5.10 depicts performance of the

two methods in classifying each crop when subjected to 20% training data and high dimensional

data. Producer accuracy of our approach in grassland, sugar beet and wheat slightly declines by

-3.14%, -2.57% and -3.21% respectively compared to MLC-stack. Grassland precision is lower than

MLC-stack because of inhomogeneous parcels as highlighted by Figure 5.29. Similar observations

were made using category I training data.

Most results demonstrate that DCRFs detects any inhomogeneity or abrupt changes within the

crop parcels. For instance, the reason for the low producer accuracy in wheat is due to abrupt

changes in some parcels (Figure 5.30). For instance, Figures 5.30a to 5.30f illustrates wheat crop

felled by strong winds. This parcel is misclassified as rye because at this critical growth period,

when the wheat is fallen, its head structure looks similar to rye. More also, trenches that are dug
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Table 5.10.: Producer and user accuracy of each crop based on DCRF max F1-score and MLC stack
using 20% training data.

Crop type
DCRF max F1-score MLC-stack
Producer User Producer User

Summer barley 59.77% 71.31% 1.56% 85.37%
Winter barley 86.45% 94.10% 65.13% 97.36%
Canola 97.63% 98.72% 91.90% 99.45%
Grassland 92.85% 89.32% 95.99% 74.91%
Maize 96.21% 83.32% 78.98% 87.64%
Potato 85.21% 90.86% 47.28% 88.15%
Rye 91.60% 89.86% 77.66% 84.86%
Sugar beet 93.70% 94.26% 96.27% 82.54%
Wheat 88.77% 95.30% 91.98% 79.00%

±

1

(a) DCRF.

±

1

(b) MLC-stack.

(c) May. (d) July

Figure 5.29.: A grassland parcel as mapped by MLC-stack and DCRF max F1-score with correspond-
ing ground referencing photos taken at position 1 in May and July 2015.

within wheat parcels probably due to farm management activities are detected by DCRFs as seen

in Figures 5.30g to 5.30i. Hence, these are indeed true changes captured by DCRFs max F1-score

as opposed to MLC-stack. Equally due to high MLC-stack false positives in summer barley, winter
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barley, canola and maize by MLC-stack, its user accuracy increased by 14.06%, 3.26%, 0.73% and

4.32% respectively.

±

(a) DCRF.

±

(b) MLC-stack. (c) Fallen wheat.

±

(d) DCRF.

±

(e) MLC-stack. (f) Fallen wheat.

±

(g) DCRF.

±

(h) MLC-stack (i) Trenches in wheat.

Figure 5.30.:Wheat as classified by DCRF max F1-score and MLC-stack. False positive pixels, white
pixels, are rye mostly detected by DCRFs due to destruction by wind in (a)–(f) and dug
trenches as shown by parcels (g)–(i).

Despite the aforementioned challenges, DCRF max F1-score producer accuracies in summer bar-

ley, winter barley, canola, maize, potato and rye increased by 58.21%, 21.32%, 5.73%, 17.23%,

37.93% and 13.94% respectively compared to MLC-stack. Producer accuracies of summer barley

and potato are the poorest in MLC-stack. This is highlighted by Figures 5.31 and 5.32 which shows

how it discriminates potato and summer barley respectively compared to our technique. In con-

trast, DCRF max F1-score user accuracy surpasses MLC-stack in grassland, potato, rye, sugar beet

and wheat.
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±

(a) DCRF max F1-score.

±

(b) MLC-stack.

(c) June. (d) July.

Figure 5.31.: Potato parcel as mapped by DCRF max F1-score and MLC-stack with corresponding
ground reference photos. False positives (white region) consist of maize and sugar
beet in parcel (b).

±

(a) DCRF max F1-
score.

±

(b) MLC-stack. (c) May. (d) July.

Figure 5.32.: Summer barley as mapped by DCRF max F1-score and MLC-stack with corresponding
ground reference photos. False positive pixels (white region) are wheat in parcel (b).
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6 Discussion
This chapter gives a comprehensive analysis of experiment results and review of techniques intro-

duced in light of performance in crop mapping. Results of experiments conducted in Fuhrberg,

Kitale and Hannover region are discussed in Sections 6.1.1, 6.1.2 and 6.2 respectively. Sec-

tions 6.3 to 6.5 reviews the designed crop classification techniques highlighting their strengths

and challenges.

6.1 Analysis of crop type mapping using TerraSAR-X images

6.1.1 Fuhrberg

This experiment adopted DCRFs for crop type classification using a sequence of TerraSAR-X im-

ages. In any classification, feature selection reduces computation demands. We selected four

important features according to RF for crop classification. Features from VV-polarization were

found important in crop discrimination compared to HH-polarization as also established in Bargiel

and Herrmann (2011). We exploited their synergy for crop classification. Our DCRF framework in-

troduces spatial and temporal interactions. To enhance better data dependent spatial interactions

we designed Pearson correlation and a new version of contrast sensitive data dependent models.

Experimental results established that the new version of contrast sensitive model is stable over a

wide range of parameters compared to Pearson. Therefore, we chose it and set β = 10 and η = 1

based on a trade off between high classification accuracy and over-smoothing. Nonetheless, the

two models gave comparable classification accuracy within selected parameters. As for temporal

interactions, site-wise conditional probability matrix computed by association potential were used.

In higher order DCRFs, probabilities used to generate the matrix were weighted using expert phen-

ological knowledge.

The novel spatial-temporal interaction models were adopted for crop mapping using a sequence

of TerraSAR-X images. We established that including spatial and temporal phenological inform-

ation using first order DCRFs improved classification accuracy in all epochs. It was also evident

that integration of expert phenological knowledge via higher order DCRFs gave the best accuracy

in each epoch. Moreover, both techniques based on max F1-score ensemble outperformed MLC

and CRF classification methods utilizing merged multitemporal images as bands for classification

(Table 5.1). More captivating is that spatial information from stacked images in CRF classification

still delivered an accuracy less than max F1-score ensemble approach. This is because like MLC,

CRF association potential based its discrimination on one feature space vector which might have

impacted separation of some classes. In addition, the interaction potential used a mean Euclidean
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distance value computed from a vector of temporal features of adjacent nodes. This may have av-

eraged some temporal changes in the entire sequence of a given pixel hence under-/over-classify

some classes leading to lower overall accuracy. For instance, CRF over-classified barley and sugar

beet resulting to lower precision than DCRFs and MLC as illustrated in Table 5.2. Hence the pro-

posed max F1-score classifier combination scheme proved robust and accurate. Consequently, it

was adopted to generate optimal crop maps using first and higher order DCRFs posterior probab-

ilities.

Optimal maps generated from first and higher order DCRFs were compared to MLC using stacked

images. An examination of user and producer accuracies exposed a detailed distribution of how

each crop is recognized. The map produced by first order DCRFs has some grassland parcels poorly

classified compared to MLC-stack. Inclusion of expert phenology improved precision of grassland,

but is still lower than MLC-stack. However, the errors encountered by the methods correspond

to true ground changes that were not detected by MLC-stack for two reasons. First, MLC-stack

classification places all features in the sequence in one feature space vector from which patterns

should be recognized. This may lead to a large variance that dominates small variations in a class

which impact discrimination. Two, DCRF max F1-score considers data and label dependent spatial

interactions. This is supported by the fact that in a homogenous parcel, e.g. parcel number 11 in

Figure 5.13, DCRF max F1-score completely recognizes the parcel with higher accuracy than MLC-

stack method (see Figure 5.12). In addition, artificial changes or natural changes, for example due

to different variety of grassland and changes in farm management as depicted by parcel number

49 and 8 in Figure 5.13 respectively, are detected in DCRF max F1-score. In contrast, MLC-stack is

a pixel based approach that ignores context hence classification results from it are accompanied by

"salt and pepper" effect (Figure A.3). All other grassland parcels were classified comparably well

in MLC-stack and DCRF max F1-score because they are managed in a common and unique way,

and driven by economic preconditions.

Cultivation practices common to some crops can also influence discrimination ability. This was

observed in two potato parcels, where row direction could have affected mapping accuracy (Fig-

ure 5.10). One of the parcels is mapped poorly by MLC-stack and first order DCRFs. Higher

order expert and image phenological information in DCRFs improved recognition of the parcel. It

was established that potato rows in the parcel were approximately parallel to ascending mode of

TerraSAR-X path. On the contrary, the second parcel with rows perpendicular to TerraSAR-X path

was detected very well by DCRFs classifiers. Ulaby and Bare (1979); Brisco et al. (1991); McNairn

and Brisco (2004) highlighted that potatoes planted in ridges have significant backscatter in HH

polarization especially when looking perpendicular to row direction. Generally, this phenomenon

decreases from the time potato leaves cover the ridges entirely. Nonetheless, phenological inform-

ation injected via higher order DCRFs minimized this assumed effect. Classification of maize also

benefitted from phenological information unlike first order DCRFs and MLC-stack (Figure 5.7).

Dynamic practices like early harvesting and planting of a new crop (Figure 5.11) degraded clas-
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sification accuracy in all methods. Solving such challenges may require integration of advanced

phenological models to crop classification tasks. In addition to cultivation practices, nature and

structure of crop categories played a role in classifier performance. For instance, discrimination

within broad leaved and cereals crops was a challenge. This problem affected MLC-stack technique

the most compared to first order and higher order DCRFs max-F1 score ensemble.

From this experiment, it can be deduced that stacking images as bands for classification limits

significant temporal phenological information inherent in images. Another disadvantage of staking

images for classification is that, discrimination at each available image epoch is not perceived. In

contrast, first order DCRFs incorporates temporal information at a given epoch only from the

previous and the next epochs in the sequence T if t 	= 0 and t 	= T . In that case, temporal

information from the entire sequence is not incorporated. Higher order DCRFs is intended for this

purpose. It includes expert and image based crop phenology from the entire sequence. As already

demonstrated by the results, this method has the best accuracy which is attributed to a novel,

robust and accurate ensemble method; max F1-score.

6.1.2 Kitale

A total of six crops were mapped in Kitale using a sequence of TerraSAR-X strip map images. Clas-

sification tests were conducted using different designed (DCRFs max F1-score) and existing (MLC

and CRF based on stacked images) techniques. The designed max F1-score technique of com-

bining DCRFs posterior probabilities to produce an optimal map had the highest overall accuracy

(Table 5.3). Product rule, median rule and majority vote have comparable accuracy while max

rule was the poorest. Max F1-score classifier combination scheme still maintains high accuracy in

mapping each crop (Figure 5.14). In principle, max F1-score introduced a weighting strategy to

max rule. It was established that the design improved classifier combination accuracy significantly.

Thus, it was adopted for optimal crop type classification based on DCRFs.

The designed DCRFs max F1-score framework was compared to RF, CRF and MLC based on

stacked images. Our approach gave the highest accuracy. It was established that spatial inter-

actions improved classification results. This is because CRF based on stacked images performed

better than RF and MLC. Furthermore, MLC surpassed CRF association potential (RF) but inclusion

of spatial interaction improved the accuracy beyond that of MLC. Therefore, despite using pixel

blocks in MLC, spatial and temporal context are still necessary.

Analysis of MLC-stack and DCRFs max-F1 score maps highlighted challenges faced by both meth-

ods. This also exposed strengths and weaknesses of the classifiers. Some modern farming practices

are a challenge to classification. For example, shade grown coffee challenged MLC-stack classific-

ation as demonstrated in Figure 5.15b. Growing coffee with trees is advocated for productive

and sustainable agro-ecosystems among other benefits (Jaetzold and Schmidt, 1982). From re-

mote sensing point of view, mixed signals are recorded from such a scene. Consequently, this

impacted delineation of coffee from other crops. Despite the challenge, the designed technique
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produced better maps. However, both methods had low user accuracy because maize and sugar-

cane were misclassified as coffee. This highlights the fact that natural structure of some crops such

as broadleaves impacts classification. Maize intercropped with beans also challenged MLC-stack

(Figure 5.18). Basically, farmers are encouraged to intercrop maize and legumes for soil fertility

management. Despite this campaign, farmers still have their individual preferences and practices.

Consequently, some farmers may intercrop legumes with maize and some prefer to plant them

separately. Such sceneries definitely have mixed backscatter that challenge classification. Since

our technique is based on spatial and temporal information, it minimized misclassification of crops

unlike MLC-stack. However, delineation of intercropped parcels from others with individual crops

was not considered. Therefore, future studies should consider classifying intercropped crops from

similar crops planted individually.

6.2 Analysis of Crop type mapping from Sentinel 1 images

In this experiment, DCRF was used to map crops in Hannover region using a sequence of Sentinel 1

images. We used medium spatial resolution images compared to high resolution TerraSAR-X used

in previous experiments. Difference in resolutions necessitated selection and estimation of spatial

interaction model and corresponding parameters. Images with medium spatial resolution nor-

mally have small within class backscatter variations compared to ones acquired at high resolution.

Therefore, high valued spatial interaction parameters tend to over-smoothen such images during

classification. Consequently, our parameter search was constrained to values between 0.1 and 25

after an initial logarithmic search. Classification tests illustrated that Pearson correlation and mod-

ified version of contrast sensitive models have similar accuracy. They only differ by a small margin

in overall accuracy but both performed better than contrast sensitive Potts model. However, ex-

panded contrast sensitive model was selected for classification because it has less computation

demands than Pearson correlation. We set its parameters β = 5 and η = 1 based on a trade off

between high classification accuracy and over-smoothing.

The novel interaction potential model is adopted in CRF to design a DCRF sequence template

classifier that considers inherent phenology in images. This framework was used in two classific-

ation test setups. The first setup was based on 50% training and 50% validation data (category I

in Table 4.7). This is considered an ordinary classification with stratified random training samples

generated as recommended by Stehman (2009). We established from the experiment that includ-

ing spatial and temporal phenological information improved classification accuracy in all epochs

as can be deduced from Figure 5.22. Max F1-score method was designed to fuse DCRFs epoch

class posterior probabilities into a single optimal classification map. F1-score is used as a form

of weighting in selecting optimum probabilities of each class from the sequence. This novel tech-

nique is compared to existing classifier ensemble approaches: product rule, median rule, majority

vote and max rule. Thus far, it gives a stable and balanced accuracy in each crop unlike the other
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ensemble approaches which fluctuate. Moreover, the method still outperformed MLC and CRF clas-

sification methods utilizing stacked multitemporal images as bands for classification (Table 5.7).

To avoid a limited judgement using overall accuracy and kappa statistic, we further compared

DCRF max F1-score with MLC using stacked images. Analysis of producer and user accuracies

reveals an in-depth distribution of how each crop is recognized. The designed DCRF max F1-score

has slightly lower accuracy in grassland and wheat parcels compared to MLC-stack. However, the

false positive errors detected by the method probably correspond to true ground changes that are

not detected by MLC-stack for two reasons. First, MLC-stack classification places pixel values of

all epochs in one vector which can lead to a large variance that dominates small variations in a

class. Two, DCRF max F1-score considers data and label dependent spatial interactions. This is

supported by the fact that DCRF max F1-score completely recognizes homogenous grass regions

in Figure 5.24. For example, inhomogeneous areas of the parcels with shrubs and some boundary

trees are detected by the method unlike MLC-stack which missed them (Figures 5.24c and 5.24d).

Overall, DCRF max F1-score mapped most crops (see Figure 5.27a) with high classification accur-

acy and less "salt and pepper" common in MLC-stack (see Figure 5.27b). In particular summer

barley, winter barley and rye cereal crops are discriminated with no confusion as opposed to MLC-

stack as depicted in Figure 5.26. The MLC-stack could not delineate the crops. It also encounters

the same challenge in broad leaved crops (Figure 5.25b).

The second experiment set up used 20% training and 80% validation data (category II in

Table 4.7). This experiment aimed at testing our approach’s robustness to deal with high di-

mensional data and less training data. It can be noted that the method still maintains high crop

classification accuracy compared to other ensemble approaches and MLC-stack. More captivating,

is that the product rule ensemble approach that had the highest overall accuracy in category I,

dropped significantly below that of max F1-score in category II experiment. Product rule is known

to be a severe rule of fusing classifier outputs because it is sufficient for a single epoch to assign

a close to zero probability to a class. In such a case, the combined output will also be a value

close to zero due to reduction effect of multiplication. This effectively undermines the decision

of any correctly predicted class in the sequence and denies it an opportunity for its identity to

be finally accepted or rejected (Kittler et al., 1998). The designed max F1-score maintains high

and stable accuracy in each crop amongst other ensemble methods (Figure 5.28). Moreover, an

evaluation of MLC-stack classification results still demonstrates that DCRF max-F1 score has high

classification accuracy. It was observed that precision of grassland, sugar beet and wheat slightly

declined compared to MLC-stack because of false positives. However, most of the false positives

corresponded to true changes on the ground. Basically, DCRFs detected any inhomogeneity or

abrupt changes within the crop parcels. Similar to category I, shrubs, boundary trees and differ-

ent varieties in grassland were detected as demonstrated in Figure 5.29. As for wheat, abrupt

changes due to destruction by strong winds were captured as demonstrated by photo evidence in

Figures 5.30a to 5.30f. It is interesting that this phenomena posed a new challenge to DCRFs to de-
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lineate the wheat parcel. This is because wheat head structure was altered by wind which probably

changed radar backscatter. The altered head structure of wheat looks similar to rye. Therefore,

their radar backscatter may subsequently be similar hence DCRFs can not delineate them. More

also, changes due to, for example farm management, was detected in some wheat fields (Fig-

ures 5.30g to 5.30i). Capability of DCRFs to detect these changes is important for monitoring

agricultural fields and farming practices such as early harvesting e.t.c. Such ability is a subject

of future exploration. The lack of spatial-temporal phenological information inherent in images

constrained MLC-stack from detecting such changes. In addition, MLC-stack could not delineate

between some broad leaved crops. For instance, it misclassified almost an entire potato parcel as

maize and sugar beet (Figure 5.31). It still faces the same discrimination problem with some cereal

crops such as in Figure 5.32b where it classifies summer barley as wheat. These challenges were

also observed using category I training data. However, DCRF max F1-score is able to delineate

within broad leaved and cereal crops with high precision.

In retrospect, this experiment aimed at introducing a new method of crop classification from

a sequence of Sentinel 1 radar images. Several observations can be made from the experiment.

For instance, it can be deduced that stacking of multitemporal images for classification poses two

major problems. First, it increases dimensionality in the feature space. This requires more training

samples especially in statistical methods in order to be able to estimate parameters. Such para-

meters are in turn exponential with increase in data dimensionality and, for a fixed sample size,

their precision reduces leading to loss of classifier efficiency (Tso and Mather, 2009, chap. 2.6).

In MLC, these parameters are the mean vector and the variance-covariance matrix for each class.

On the contrary, RF used in the designed technique is non-parametric because it does not involve

estimation of statistical parameters. However, RF requires large enough training data to repres-

ent the characteristics of each class and should have minimal spatial autocorrelation (Millard and

Richardson, 2015). The framework advocated by Stehman (2009) was used in generating training

samples. Thus, requirements for both methods were adhered to. The spatial threshold of 100

m used during sampling is proposed by Van der Meer et al. (2000) to minimize spatial autocor-

related samples in vegetation related land-cover mapping. Secondly, stacking images, that bear

backscattered phenological information from different periods for classification, constraints dis-

crimination to a single feature space vector. Now, the first problem, requires more resources in

terms of time and money in order to gather enough training samples such as through ground ref-

erencing campaigns. Consequently, this pushes the cost of land-cover mapping efforts using MLC

higher. In contrast, the second challenge may cause overlapping of classes hence jeopardize de-

lineation of classes from the feature space. Our approach is robust to both challenges. More also,

the approach can detect any abrupt changes in crop parcels, for example due to disasters or farm

management. Thus, the technique is promising for use in monitoring changes caused by disasters,

early grass mowing and early crop harvesting e.t.c. in agricultural regions.
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This far, the potential of Sentinel 1 radar data for crop classification by exploiting spatial-

temporal information has been demonstrated. It opens up opportunities for future crop monitoring

unimpeded by weather conditions. However, the high temporal resolution of Sentinel 1 introduces

data dimensionality problem. Our method is robust to this problem because of class conditional in-

dependence which minimizes dimensionality while enhancing high information mining via spatial-

temporal interactions. This feature also makes the framework flexible to additional information

useful for classification via conditional probability matrix. In addition, our ensemble classifier can

be used with any number of available images at any time of a season to get an estimate of crop

coverage.

6.3 Spatial interaction potential review

One of the objectives of this research was to design a suitable spatial interaction model for DCRF

crop classification. Spatial interaction potential enforces neighbourhood correlation of image sites

using data and labels. This is based on the premise portrayed by intrinsic coherent and spatially

connected structure of land-cover in the physical world. The same principle is well upheld by the

first law of geography as defined by Tobler (1970) (see also Section 3.1.2) and spatial context

(Goodchild, 1992). In CRFs, a data dependent model is commonly used to enforce data and label

correlation via neighbourhood cliques. Several data dependent designs of I exist, for example con-

catenation of features (Zhong and Wang, 2007a,b; Li et al., 2009), absolute difference of features

(He et al., 2008; Wegner et al., 2011a), contrast sensitive model (Shotton et al., 2009; Schindler,

2012) and inverse/transformed euclidean distance (Kenduiywo et al., 2014).

To enhance better spatial interactions, two data dependent models were developed and com-

pared to commonly used contrast sensitive model (Shotton et al., 2009; Schindler, 2012). The

first design is a modified version of the contrast sensitive model while the second one is based

on Pearson correlation. Both models have two parameters; β and η. The role of β is to regulate

smoothness while η weighs and controls inclusion (η > 0) or exclusion (η = 0) of data inter-

actions. These two parameters were determined via empirical classification tests. The tests also

served to illustrate and verify the strength of each data dependent design.

Experimental outcomes in Sections 5.1.1 and 5.2.1 demonstrate the performance of the designed

models. Classification results using TerraSAR-X in Section 5.1.1 and Sentinel 1 in Section 5.2.1

shows that Pearson correlation and new version of contrast sensitive models perform comparably.

However, it was established in Section 5.1.1 that Pearson correlation function is sensitive for eta >

102 parameter values. When such eta values were used, the model smoothens the entire image.

Therefore, it requires a careful parameter search. For this reason, the expanded version of the

contrast sensitive model was adopted for all classifications because it is robust over a range of

parameters. In any case, this model outperformed Pearson correlation by a very small margin of

classification accuracy. It also has less computation demands compared to Pearson model.
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Both expanded version of contrast sensitive model and Pearson correlation outperforms stand-

ard contrast sensitive model. This is because, compared to contrast sensitive model, the two new

designs moderated smoothing given data evidence in two scenarios. First scenario, when adjacent

labels are similar and data evidence support it, smoothness weight is increased. If data evidence

does not support label similarity, smoothness weight is reduced proportional to difference and

dissimilarity in data respectively. The second scenario considers dissimilar adjacent labels by redu-

cing smoothness weight if supported by data evidence. When label dissimilarity is contrary to data

evidence, smoothness weight is increased inversely proportional to the magnitude of data evid-

ence. This design realized a discontinuity adaptive model that moderates smoothing considering

data evidence as suggested by Li (1995). These models are different from contrast sensitive model

which only favours smoothing similar adjacent labels. Generally, the designs establishes a novel

framework for including spatial context. Moreover, Pearson correlation model has been introduced

for the first time in this study. It quantifies context by using correlation of adjacent image sites as

opposed to Euclidean distance in contrast sensitive technique.

6.4 Temporal interaction potential and expert phenology review

This study targeted to use expert and image based crop phenology for classification. Crop phen-

ology is a temporal phenomena. The structure and appearance of crops varies throughout its life

cycle. Evolution of a crop is to a great extent unique and independent from others as its driven

by natural and artificial factors. This aspect led this study to adopt conditional class independence

assumption to design temporal interactions from a sequence of radar images. A temporal potential

was introduced based on conditional probability matrix as a link between two temporal nodes.

Bayes’ conditional probability formula was applied to compute the matrix using estimated class

probabilities from association potential. The use of conditional probabilities to represent temporal

interactions between a pair of epochs was deemed a robust approach as opposed to feature differ-

ence function used in Hoberg and Müller (2011). This is because the epoch-wise estimated class

probabilities are soft decisions that represent statistical beliefs/opinions based on prior field-work

knowledge and captured images. Therefore, they do not directly suffer from prevailing image

acquisition conditions like in feature difference functions which directly compares two pixels ac-

quired in different epochs. The probabilities thus allow further higher level reasoning in order to

attain acceptable class inference. Moreover, it has already been demonstrated using MLC and CRFs,

that joint classification of features or images limits discrimination of classes to one feature space

vector which may consequently lead to low classification accuracy. Hence the matrix of conditional

probabilities directly estimated from node potentials of each epoch, was used to express pixel-wise

temporal interactions instead of joint class probabilities marginalized to conditional probabilities

as proposed by Liu et al. (2008). This structure was adopted to capture expert and/or image based

crop phenology using two designs: first order and higher order DCRFs.
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First order DCRFs only integrated image based crop phenology from a given sequence of multi-

temporal images. Here, conditional probability matrix was used to capture bi-directional pheno-

logical information in images between two nodes in the sequence. For example, temporal inform-

ation is added to a node at a given epoch only using nodes in the previous and the next epochs

in the sequence T if t 	= 0 and t 	= T . In principle, temporal interactions are considered only

from neighbouring nodes in time. This technique improved classification accuracy in all epochs

compared to mono-temporal approaches as demonstrated by Figures 5.5 and 5.22. It signifies that

temporal information from neighbouring nodes in time play an important role in classification.

However, more temporal information could still be mined from the sequence. Basically, phenology

varies throughout a crop’s lifetime causing structural and canopy moisture content changes. As a

result radar backscatter from crops fluctuates providing different opportune times to distinguish

them (Figures 2.5 and 3.3). For that matter, temporal phenological information from the entire

sequence should be incorporated. To integrate phenology information covering the lifetime of a

crop we built high order DCRFs.

The developed higher order DCRFs allow n nodes (n=T) to exchange expert and image based

temporal phenological information. Image based temporal interactions were still computed using

conditional probability matrices like in first order DCRFs. The only difference is that probabilities

used in Bayes’ formula (Equation (3.10)) were weighted using expert phenology knowledge. This

ensured that knowledge on crop phenology in the entire sequence is incorporated at each node.

Non zero constant weights, that is 2.5, were used in epochs where the backscatter is not directly

from the crops (Table 4.3). This is because epochs outside the growing phase of a crop still contain

unique characteristics that can aid discrimination of a parcel. For instance, remaining stalks of

maize based on different harvesting methods such as by machine or manual stooking in Figure 6.1

may return distinguishable backscatter. Moreover, certain cultivating mechanism recommended

for specific crops such as ridges in potato parcels can aid classification (Figure 5.10). Such aspects

were considered in designing phenology weights. The expert weights and inherent image pheno-

logy established positive contribution in higher order DCRFS compared to first order (Figure 5.5).

The improved classification accuracy can be attributed to more temporal information added to

each node in the sequence. To sum up, passing temporal information via conditional probability

matrix produced better classification accuracy. Higher mapping accuracy was obtained especially

using higher order DCRFs though computational demands increased.

6.5 Comments on optimal map generation from a sequence

Stakeholders and policy makers are interested in annual or seasonal crop statistics. The study

developed a spatial-temporal sequence crop classification framework that generated maps at each

epoch. This enables crop discrimination capability to be perceived at every stage. However, an

optimal season crop map is more desirable to end users. Therefore, our next aim was to design

an ensemble classifier. The ensemble classifier fuses crop classification information from each
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Figure 6.1.: Stooking method of harvesting maize which may result in distinguishable backscatter
due to clustered maize stalk. Photo credit (One Acre Fund, 2016).

epoch to produce an optimal map. Our study introduced max F1-score ensemble technique. The

approach adopted F1-score weighting strategy in selecting the final probability of each crop type

at a given node in the sequence. This method was investigated against four classifier combination

rules namely: product rule, median rule, majority vote and max rule in (Kittler et al., 1998). Thus

far, max F1-score was established as the most accurate and robust ensemble method. It is mostly

followed by median rule and majority vote which have comparable accuracy while max rule is the

poorest. The accuracy of product rule is in most cases below max F1-score but rapidly fluctuates

in all experiments compared to the other methods.

Outcomes from two experiments in Section 5.2.2 established that product rule is a severe clas-

sifier combination strategy. In one experiment product rule ensemble approach had the highest

overall accuracy which subsequently dropped significantly below that of max F1-score in a later

experiment. A similar trend is observed in two experiments using standard DCRFs and higher or-

der DCRFs in Section 5.1.1 where, the accuracy of product rule dropped in the later experiment

despite increased temporal interactions. As earlier mentioned, product rule is a severe rule of fus-

ing classifier outputs because it is sufficient for a single epoch to assign a close to zero probability

to a class. In such a case, the combined output will also be a value close to zero due to reduction

effect of multiplication. This effectively undermines the decision of any correctly predicted class in

the sequence and denies it an opportunity for its identity to be finally accepted or rejected (Kittler

et al., 1998). The other classifier ensembles also have their cons. To begin with, despite median

rule being a robust estimate of mean, it can to some extent be affected by outlier probabilities.

Secondly, the majority vote relies on counts from already established label decisions. This may

propagate errors from initial decisions. More also, it is prone to an error if counts of two or more

classes in the sequence tie. Lastly, max rule is susceptible to select a wrong probability if there
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are two maximum and equal probabilities in the sequence. In addition, sometimes the highest

probability in the sequence of a node is not necessarily correct. It is possible for DCRFs to make

a wrong estimate for a node in the sequence which apparently ends up being the highest. The

two observations motivated this study to introduce a weighting scheme in max rule. Indeed, the

F1-score weighting strategy overcame these challenges because max rule accuracy improved from

the lowest to the highest in all the ensemble methods. This bearing in mind the experiments were

conducted in different regions with different crops hence, different challenges. It thus establishes

that max F1-score technique is robust and accurate.

The designed ensemble classifier can be used with any number of available images at any time of

a season to get an estimate of crop coverage. It performs better than techniques using stacked mul-

titemporal images for classification. Moreover, compared to other classifier combination strategies,

the weighting we introduced to the ensemble improved classification. Therefore, it guarantees an

optimal map in terms of accuracy. This is essentially beneficial to policy makers and stakeholders in

food security policy formulations and seeking alternative preventive measures to ensure balanced

ecosystem services. In addition, agricultural stock market and traders can anticipate good years

while insurers can accurately compute premiums and determine compensations where necessary.

6.6 Summary

In summary, this study implemented a flexible and scalable DCRFs max F1-score framework for

crop mapping. The structure was designed to accommodate image tile based classification if com-

puter memory demands are limited. Image tiles and corresponding overlaps can be adjusted by

user to desired sizes. This framework mapped crops with high accuracy. Success of the design

is founded on the principle that each crop has a unique period in time when their backscatter is

distinguishable. For example, corn and sugar beet return high backscatter in C- or X-band during

early stages of their development with little change in the rest of the growing season (Brisco and

Protz, 1980; Bouman, 1988; Tso and Mather, 1999). In contrast, grains like wheat and barley

have temporal backscatter variation throughout growing season (Brisco et al., 1992). This fact is

not well exploited by conventional approaches that stack multitemporal images for classification.

For instance, MLC-stack could not effectively discriminate broad leaved crops and cereals/grains.

A study by Bargiel and Herrmann (2011) encountered the same challenge. Therefore, this study

recommends integration of spatial context, expert- and image-based temporal phenological in-

formation for crop classification. The designed higher order DCRFs is well suited for this task. This

is because first order DCRFs lacks expert based crop phenological information but produces results

with slightly lower accuracy than higher order. Choice between the two models thus depends on

availability of crop phenology knowledge.
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7 Conclusion and outlook
The main goal of this study was to design a crop mapping technique that exploits spatial-temporal

backscatter variation caused by plant phenology. To achieve this, a statistical framework that

models spatial and temporal dynamics in a principled manner was designed. So far, such existing

framework was proposed for first order DCRFs 1-D text sequence classification by Sutton et al.

(2007). Therefore, our task was to extend the design for 3-D optimal crop classification from a

sequence of radar images. This was accomplished through five objectives.

Our DCRFs template consist of association, spatial, and temporal potentials. The potentials can

be considered as independent classifiers hence domain specific ones can be used. Therefore, our

first objective was to develop a suitable spatial interaction model. Two models, namely, new ver-

sion of contrast sensitive Potts model and Pearson correlation were introduced. The first design

is a modification of conventional contrast sensitive Potts model to include label and data inter-

action both when adjacent labels are similar or dissimilar. Data interactions are incorporated via

Euclidean distance function. Pearson correlation model uses the same principle except that data

interactions are integrated using correlation function. We established that the two models per-

form comparably and better than contrast sensitive model. However, Pearson correlation model is

sensitive to very high parameter values and has slightly more computation demands. Nonetheless,

Pearson correlation was introduced in this study for the first time. Its performance is encouraging

for future use. Furthermore, this study recommends that spatially weighted Pearson correlation

coefficient from higher order neighbours of a pixel be incorporated by subsequent studies. This

will enable inclusion of more spatial dependency to a given pixel as opposed to the current use of

pairwise pixel dependency.

The second, third and fourth objectives saw the introduction of pixel-wise temporal interactions

using DCRFs. Here, bi-directional pixel-wise temporal information was represented in matrices

computed using Bayes’ conditional probability formula. The approach proved to be an effective

means of capturing expert and image based temporal crop phenological information. This was

established using first and higher order DCRFs classification results. Only image based crop phen-

ological information was used in first order DCRFs while higher order used both expert and image

based phenological information. Basically, a weight was allocated to each crop type in each epoch

based on expert phenology knowledge. These weights gave varying importance to phenological

information captured by radar images. In effect, it enhanced discrimination across all nodes in

the sequence as observed in classification results. However, the global weights assume similar

phenology for each crop type at a given epoch. Essentially, crops in neighbouring parcels, even if

similar, may at a given point in time, be in different phenology phases. This is influenced by farm
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management practices, soil and weather conditions amongst other factors. Therefore, it is clear

that phenology varies spatially too. Prospective studies should consider this phenomenon.

Parameter tuning and inference is a task that still requires further investigation. A weighting

strategy for the three potentials (association, spatial and temporal) should be investigated. In

addition, a suitable inference technique for higher order DCRFs should be adopted instead of

LBP. Loopy belief propagation infers a node’s probability by computing the sum product of all

incoming edges (in this case spatial and temporal interactions). Due to continuous multiplication

of incoming messages (probabilities) at a node during inference, reduction effect of multiplication

may be encountered. Therefore, an alternative inference algorithm should be implemented in

future for example tree re-weighting message passing schedule.

Finally, an optimal mapping ensemble was designed. The max F1-score performed better than

other existing ensembles and also compared to stacking multitemporal images for classification. In

principle, merging multitemporal images for classification increases feature space dimensionality.

This reduces classifier accuracy because more training samples are required to obtain reasonable

estimates from increased data dimensionality. More also, pattern recognition is constrained to an

already high dimensional feature space and any errors can be costly. Some classes may overlap in

a high dimensional multitemporal feature space due to large variance. This in turn affects delin-

eation of classes. We recommend our technique which can already handle high dimensional data

with less training data without a significant compromise in classification accuracy. This means that

land-cover mapping applications can benefit from reduced cost of ground reference data collec-

tion and the increasing remote sensing data. In addition, the designed technique detected rapid

changes in crop parcels. This presents the possibility of using it to monitor changes in agricultural

areas, i.e due to farm management or natural disasters like wind destruction of crops. Another

potential that should be explored in future is the delineation of intercropped parcels from parcels

with similar individual crops. For instance, experiments can be conducted to discriminate maize

parcels intercropped with beans from parcels with either maize or beans only.
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A Appendix: Part one

A.1 Complimentary results

A.1.1 Crop type classification in Fuhrberg

Table A.1.: Higher order DCRFs max F1-score confusion matrix.

Map
Ref.7

Barley Canola Grassland Maize Oat Potato Rye Sugar beet Wheat Total
User
accuracy

Barley 29521 8 418 58 22 8 10486 0 81 40602 72.71%
Canola 509 44593 860 181 455 1268 1560 214 526 50166 88.89%
Grassland 4951 133 57506 471 400 374 10290 734 924 75783 75.88%
Maize 225 171 1352 22527 175 16097 564 1338 8 42457 53.06%
Oat 184 75 39 53 16453 716 504 132 97 18253 90.14%
Potato 342 658 253 13361 899 54600 1179 9625 75 80992 67.41%
Rye 7732 91 562 86 1045 112 55960 20 8246 73854 75.77%
Sugar beet 42 24 707 291 34 1429 321 41146 6 44000 93.51%
Wheat 2931 9 334 60 35 14 8071 109 29054 40617 71.53%
Total 46437 45762 62031 37088 19518 74618 88935 53318 39017 466724
Producer
accuracy 63.57% 97.45% 92.71% 60.74% 84.30% 73.17% 62.92% 77.17% 74.46%

OA 75.28%
Kappa 71.73%

Table A.2.: DCRF max F1-score confusion matrix.

Map
Ref.

Barley Canola Grassland Maize Oat Potato Rye Sugar beet Wheat Total
User
accuracy

Barley 32350 2 687 10 4 3 10919 26 118 44119 73.32%
Canola 240 44541 536 170 781 1834 852 190 218 49362 90.23%
Grassland 2001 57 53304 6824 110 741 5350 359 209 68955 77.30%
Maize 56 294 201 18473 185 18656 132 1053 7 39057 47.30%
Oat 1283 312 3250 424 17357 1192 2958 1658 957 29391 59.06%
Potato 301 347 1518 10720 373 47154 930 2165 89 63597 74.15%
Rye 6673 159 1415 97 270 225 57259 143 10178 76419 74.93%
Sugar beet 215 45 623 307 378 4744 1005 47637 60 55014 86.59%
Wheat 3318 5 497 63 60 69 9530 87 27181 40810 66.60%
Total 46437 45762 62031 37088 19518 74618 88935 53318 39017 466724
Producer
accuracy 69.66% 97.33% 85.93% 49.81% 88.93% 63.19% 64.38% 89.35% 69.66%

OA 73.97%
Kappa 70.34%

7 Ref. is short form for ground reference data.
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Table A.3.: Confusion matrix of CRFs crop classification using stacked TerraSAR-X multitemporal
images.

Map
Ref.

Barley Canola Grassland Maize Oat Potato Rye Sugar beet Wheat Total
User
accuracy

Barley 24179 0 60 0 0 0 7264 27 0 31530 76.69%
Canola 192 44834 220 19 324 119 999 136 266 47109 95.17%
Grassland 2279 454 60732 294 131 301 4409 1036 27 69663 87.18%
Maize 0 71 15 6409 65 20944 29 1587 0 29120 22.01%
Oat 0 0 0 0 18404 0 0 191 0 18595 98.97%
Potato 219 248 176 21471 279 53037 508 27852 35 103825 51.08%
Rye 16721 135 329 61 315 38 59892 78 10908 88477 67.69%
Sugar beet 51 0 0 8692 0 156 122 22410 0 31431 71.30%
Wheat 2796 20 499 142 0 23 15712 1 27781 46974 59.14%
Total 46437 45762 62031 37088 19518 74618 88935 53318 39017 466724
Producer
accuracy 52.07% 97.97% 97.91% 17.28% 9429.24% 71.08% 67.34% 42.03% 71.20%

OA 68.07%
Kappa 63.26%

Table A.4.: Confusion matrix of MLC crop mapping using stacked TerraSAR-X multitemporal im-
ages.

Map
Ref.

Barley Canola Grassland Maize Oats Potato Rye Sugar beet Wheat Total
User
accuracy

Barley 25747 1 95 3 1 2 10958 64 114 36985 69.61%
Canola 132 44455 414 70 160 235 839 233 341 46879 94.83%
Grassland 1505 398 58695 310 148 275 3928 696 66 66021 88.90%
Maize 29 70 991 9366 478 13968 90 2345 0 27337 34.26%
Oats 115 1 2 5 8031 3 387 52 854 9450 84.98%
Potato 336 668 523 19096 3707 58732 595 26813 89 110559 53.12%
Rye 15175 161 840 211 6989 161 63190 359 13458 100544 62.85%
Sugar beet 18 0 39 8014 0 1213 189 22753 0 32226 70.60%
Wheat 3380 8 432 13 4 29 8759 3 24095 36723 65.61%
Total 46437 45762 62031 37088 19518 74618 88935 53318 39017 466724
Producer
accuracy 55.45% 97.14% 94.62% 25.25% 41.15% 78.71% 71.05% 42.67% 61.76%

OA 67.51%
Kappa 62.42%
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Figure A.1.: Crop map of Fuhrberg, Germany, as classified by 5th order DCRFs Max F1-score en-
semble method. Crop legend adopted from Ebinger (2012).

A-3



±
Datum:        WGS84
Projecttion:  UTM
Zone:          32N

1 0 10.5
km

Legend

Validation set

Training set

Barley

Canola

Grassland

Maize

Oat

Potato

Rye

Sugarbeet

Wheat

Non Agricultural Area

Figure A.2.: Crop map of Fuhrberg, Germany, as classified by standard first order DCRFs Max F1-
score ensemble method. Crop legend adopted from Ebinger (2012).

A-4



±
Datum:        WGS84
Projecttion:  UTM
Zone:          32N

1 0 10.5
km

Legend

Validation set

Training set

Barley

Canola

Grassland

Maize

Oat

Potato

Rye

Sugarbeet

Wheat

Non Agricultural Areas

Figure A.3.: Crop map of Fuhrberg, Germany, as classified by MLC-stack method. Crop legend ad-
opted from Ebinger (2012).
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A.1.2 Crop type classification in Kitale

Table A.5.: Confusion matrix of DCRF max F1-score classification in Kitale.

Map
Ref.

Coffee Grassland Maize Rose flower Sugarcane Wheat Total
User
accuracy

Coffee 6903 266 5422 11 551 202 13355 51.69%
Grassland 88 19798 5133 24 103 1746 26892 73.62%
Maize 45 467 190925 0 3359 81 194877 97.97%
Rose flower 31 75 1551 1677 94 33 3461 48.45%
Sugarcane 39 73 1906 4 9737 482 12241 79.54%
Wheat 973 511 1611 332 597 10419 14443 72.14%
Total 8079 21190 206548 2048 14441 12963 265269
Producer
accuracy 85.44% 93.43% 92.44% 81.88% 67.43% 80.37%

OA 90.27%
Kappa 76.45%

Table A.6.: Confusion matrix of MLC-stack classification in Kitale

Map
Ref.

Coffee Grassland Maize Rose flower Sugarcane Wheat Total
User
accuracy

Coffee 5235 2456 28445 215 897 1156 38404 13.63%
Grassland 554 15658 6051 141 179 1989 24572 63.72%
Maize 1069 513 163531 13 2069 41 167236 97.78%
Rose flower 149 612 1926 1433 96 83 4299 33.33%
Sugarcane 324 180 4247 29 10264 909 15953 64.34%
Wheat 748 1771 2348 217 936 8785 14805 59.34%
Total 8079 21190 206548 2048 14441 12963 265269
Producer
accuracy 64.80% 73.89% 79.17% 69.97% 71.08% 67.77%

OA 77.24%
Kappa 53.67%

A.1.3 Crop type mapping using Sentinel 1 images
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Table A.7.: Sentinel 1 DCRF max F1-score confusion matrix using category I training data.

Map
Ref. Summer

barley
Winter
barley Canola Grassland Maize Potato Rye Sugar beet Wheat Total

User
accuracy

Summer
barley 1326 1 1 14 14 1 20 4 281 1662 79.78%

Winter
barley 0 2545 0 0 46 2 3 31 40 2667 95.43%

Canola 0 48 5691 2 6 0 0 81 1 5829 97.63%
Grassland 64 1 1 4824 64 2 50 9 111 5126 94.11%
Maize 9 4 12 122 8352 71 115 385 206 9276 90.04%
Potato 8 37 5 20 28 3587 59 252 62 4058 88.39%
Rye 233 87 21 109 190 61 8704 201 509 10115 86.05%
Sugar beet 10 11 15 41 132 179 37 11611 240 12276 94.58%
Wheat 0 1 16 3 78 0 19 80 12287 12484 98.42%
Total 1650 2735 5762 5135 8910 3903 9007 12654 13737 63493
Producer
accuracy 80.36% 93.05% 98.77% 93.94% 93.74% 91.90% 96.64% 91.76% 89.44%

OA 92.81%
Kappa 91.58%

Table A.8.: Sentinel 1 MLC-stack confusion matrix using category I training data.

Class
Summer
barley

Winter
barley Canola Grassland Maize Potato Rye Sugar beet Wheat Total

User
accuracy

Summer
barley 381 0 1 0 0 1 6 0 6 395 96.46%

Winter
barley 0 1964 8 0 12 0 1 45 20 2050 95.80%

Canola 3 42 5653 0 0 1 12 98 4 5813 97.25%
Grassland 171 61 32 4928 273 23 367 110 266 6231 79.09%
Maize 28 49 5 144 8272 460 128 487 178 9751 84.83%
Potato 6 32 2 23 76 2995 15 188 20 3357 89.22%
Rye 137 428 41 32 94 36 7361 42 415 8586 85.73%
Sugar beet 2 20 1 0 96 383 1 11636 144 12283 94.73%
Wheat 922 139 19 8 87 4 1116 48 12684 15027 84.41%
Total 1650 2735 5762 5135 8910 3903 9007 12654 13737 63493
Producer
accuracy 23.09% 71.81% 98.11% 95.97% 92.84% 76.74% 81.73% 91.96% 92.33%

OA 88.00%
Kappa 85.86%
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