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Atmospheric refraction and turbulence
in VLBI data analysis

Summary

The progress in further improving the quality of results derived by space-geodetic techniques observing
in the radio frequency domain, such as Very Long Baseline Interferometry (VLBI) or Global Navigation
Satellite Systems (GNSS), is limited by rapid changes in the neutral part of the atmosphere. In particular,
insufficient knowledge of the temporal and spatial refractivity variations restrict the attainable accuracy of
the derived VLBI and GNSS target parameters. In the current model describing the additional propagation
delay due to the neutral part of the atmosphere, only annual to hourly long periodic variations are taken
into account. In contrast, small-scale fluctuations mainly originating from turbulent motions are generally
neglected, although they form a serious error source for electromagnetic wave propagation. Dynamic processes
in the neutral atmosphere additionally induce physical correlations in space and time, which are also largely
ignored so far.

Particularly with regard to future requirements, as, for instance, defined within the framework of the Global
Geodetic Observing System established by the International Association of Geodesy, the current tropospheric
model is not sufficient and needs to be improved. High rate GNSS data of 1 Hz sampling and below, and
the VLBI Global Observing System with faster telescopes result in a better sampling of the atmosphere.
However, new challenges emerge with respect to improved and proper analysis strategies, in particular to
model the stochastic properties of atmospheric refraction, which represents a crucial issue in research and
the main objective of this thesis.

Quantifying and assessing the small-scale behavior of atmospheric refraction is extremely challenging, since
small-scale characteristics of atmospheric refraction cannot be analyzed without sufficient knowledge of the
stability of the VLBI observing system. An optimal experimental setup for both, investigations in atmospheric
refraction and system stability issues, emerges from the commissioning phase of the twin radio telescope at
the Wettzell Geodetic Observatory in Germany. Specially designed so-called WHISP sessions are scheduled,
observed and analyzed within this thesis allowing to quantify the individual components of the observing
system, in part for the first time. On this basis, refractivity fluctuations are quantified which are found to be
in the range of 1-3 millimeters. A number of noteworthy conclusions has been drawn which would not have
been possible without the novel observing approach.

Special emphasis is also given to the development of an atmospheric turbulence model, which stochastically
describes small-scale refractivity fluctuations due to turbulent motions in the neutral atmosphere. The results
have produced an important contribution to the modeling of refraction effects in the neutral atmosphere now
considering temporal and spatial correlations between the observations in a physical and meteorological way.
By analyzing 2700 VLBI sessions including traditional and local observing networks, it is demonstrated
that the incorporation of the newly devised model into the VLBI data analysis leads to an improvement
of the solutions compared to the standard strategies of the International VLBI Service for Geodesy and
Astrometry, or other strategies refining the stochastic model of VLBI observations. Compared to other
approaches addressing the issue of atmospheric turbulence, the model developed within this thesis has the
advantage to be operationally efficient for routine mass analysis of VLBI observing sessions.

Since the current atmospheric model reveals severe deficiencies with respect to the estimation of atmospheric
parameters, new modeling and adjustment strategies are introduced to better describe the behavior of the
neutral atmosphere. It is demonstrated that, in particular, the least squares collocation method ensures an
improved modeling of the stochastic properties of the neutral atmosphere, which allows a zenith wet delay
estimation in more meaningful and appropriate sense.

The main achievements of this thesis are the development of an atmospheric turbulence model to improve
the stochastic model of VLBI observations and the quantification of local atmospheric refraction variations in
space and time. Both allows for new interpretations and model improvements in a stochastic and deterministic
sense.



Atmosphärische Refraktion und Turbulenz
in der VLBI-Auswertung

Zusammenfassung

Die stetige Weiterentwicklung und Qualitätsverbesserung von Ergebnissen aus weltraum-geodätischen Ver-
fahren im Radiofrequenzbereich, wie beispielsweise VLBI (Very Long Baseline Interferometry) oder GNSS
(Global Navigation Satellite Systems), ist durch schnelle Veränderungen in der neutralen Atmosphäre limi-
tiert. Die zu erreichende Genauigkeit von Stationskoordinaten, Erdrotationsparametern oder anderen Zielpa-
rametern wird durch die unzureichende Kenntnis räumlicher oder zeitlicher Variationen in der Refraktivität
maßgeblich begrenzt. Das aktuelle Atmosphärenmodell in der Auswertung weltraum-geodätischer Verfahren
sieht ausschließlich die Berücksichtigung langperiodischer Signale vor. Kleinskalige, überwiegend durch tur-
bulentes Verhalten in der Atmosphäre hervorgerufene Fluktuationen werden hingegen weitestgehend ver-
nachlässigt, obwohl sie einen nicht unerheblichen Einfluss auf die Ausbreitung elektromagnetischer Wellen
haben. Des Weiteren induzieren dynamische Prozesse in der neutralen Atmosphäre sowohl räumliche als auch
zeitliche Korrelation zwischen den Beobachtungen, die ebenfalls weitestgehend ignoriert werden.
Insbesondere im Hinblick auf die von der IAG (International Association of Geodesy) formulierten GGOS
(Global Geodetic Observing System) Ziele genügt das aktuelle Atmosphärenmodell nicht den zukünftigen An-
forderungen. Zwar führen hoch aufgelöste GNSS-Daten mit Abtastfrequenzen von bis zu 1 Hz und eine neue
Generation von schnelleren und präziseren sogenannten VGOS (VLBI Global Observing System) Radiote-
leskopen zu einer besseren Abtastung der Atmosphäre, jedoch entstehen auch neue Herausforderungen hin-
sichtlich einer verbesserten und geeigneteren Modellierung der stochastischen Eigenschaften atmosphärischer
Refraktion, welche allgemein eine zentrale Fragestellung darstellt und folglich die wesentliche Aufgabe dieser
Arbeit repräsentiert.
Die Quantifizierung und Bewertung des Verhaltens der atmosphärischen Refraktion stellt eine große Her-
ausforderung dar. Da insbesondere das kleinskalige Verhalten der atmosphärischen Refraktion eng mit
den Stabilitätseigenschaften des VLBI-Beobachtungssystems zusammenhängt, müssen diese ausreichend gut
bekannt sein. Durch die Inbetriebnahme des weltweit ersten Twin-Teleskops am Geodätischen Observatorium
Wettzell in Deutschland entstanden optimale Voraussetzungen für die Detektion der Stabilitätseigenschaften
des Beobachtungssystems sowie der atmosphärischen Refraktion. In dieser Arbeit wurden spezielle WHISP-
Experimente entworfen, die es erlauben, einzelne Komponenten des Beobachtungssystems zum Teil erstmalig
zu quantifizieren. Auf dieser Grundlage wird auch der Einfluss von Variationen in der Refraktivität bestimmt,
dem eine Größenordnung von 1-3 Millimetern zugerechnet wird.
Ein besonderer Fokus liegt außerdem auf der Entwicklung eines Turbulenzmodells, welches zum einen zeitliche
und räumliche Korrelationen zwischen den Beobachtungen berücksichtigt und zum anderen kleinskalige Fluk-
tuationen in der Refraktivität stochastisch sowie physikalisch und meteorologisch sinnvoll beschreibt. Auf
Basis der Auswertung von 2700 VLBI-Beobachtungssessionen unterschiedlicher Netzwerkgröße wird gezeigt,
dass die Einführung des neuen Turbulenzmodells in die VLBI-Auswertung für die operationelle Auswertung
geeignet ist und zu Verbesserungen gegenüber der Standardlösung des IVS (International VLBI Service for
Geodesy and Astrometry) sowie alternativer Ansätze zur Verfeinerung des stochastischen Modells führt.
Da das routinemäßig verwendete Atmosphärenmodell einige Defizite hinsichtlich der Schätzung atmo-
sphärischer Parameter aufweist, werden in dieser Arbeit einige Modellierungs- und Ausgleichungsstrategien
eingeführt, um die neutrale Atmosphäre besser zu charakterisieren. Es wird gezeigt, dass insbesondere die
Kleinste-Quadrate-Kollokation eine verbesserte Modellierung der stochastischen Eigenschaften der neutralen
Atmosphäre erlaubt und somit zu einer aussagekräftigeren und geeigneteren Schätzung der Atmosphärenpa-
rameter führt.

Die Haupterrungenschaften dieser Arbeit sind die Entwicklung eines Turbulenzmodells zur Verbesserung des
stochastischen Modells sowie die verbesserte Quantifizierung lokaler Refraktionseigenschaften in Raum und
Zeit. Beides resultiert in neuen Interpretationsmöglichkeiten und Modellverbesserungen in deterministischer
und stochastischer Hinsicht.
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1

1. Introduction

1.1 General Aspects

The Earth is a continually changing planet. The variability of the entire system Earth can be divided
into three principle components: the figure of the Earth, the gravity field of the Earth, and Earth
rotation (Plag et al. 2009). In order to investigate these elements and to increase the knowledge
on the complexity of the Earth’s system, very precise geodetic measurements are required.

Space-geodetic techniques, such as Very Long Baseline Interferometry (VLBI), Global Navigation
Satellite Systems (GNSS), Satellite and Lunar Laser Ranging (SLR/LLR) or the French system
Doppler Orbitography by Radiopositioning Integrated on Satellite (DORIS), are generally able
to measure the figure of the Earth in terms of terrestrial reference frames (TRF) or the Earth’s
rotation. In the following, the term space geodesy refers to observations of signals transmitted or
received by natural or artificial sources in space.

VLBI is a technique based on radio interferometry. At least a pair of two radio telescopes simultane-
ously observes a radio signal emitted by extragalactic sources, preferably compact radio galaxies or
quasi-stellar radio sources. The fundamental observable, the group delay, is the difference in arrival
time between both telescopes obtained by cross-correlation (Schuh and Böhm 2013). VLBI is the
only technique to realize the celestial reference frame (CRF) and to determine all Earth orientation
parameters (EOP) without hypotheses.

GNSS encompasses the United States Global Positioning System (GPS), the Russian Globalnaja
Nawigazionnaja Sputnikowaja Sistema (GLONASS), the European GALILEO, and the Chinese
system BEIDOU. Microwave signals transmitted by satellites at orbital heights of about 20.000 km
are either received by GNSS antennas on the Earth or on board of other artificial objects such as
satellites in low Earth orbits (LEO).

The application fields of space-geodetic techniques are versatile. On the one hand, the demand for
space-geodetic products can be found in science and research, for instance, in Earth sciences such
as hydrology, meteorology, climatology or geophysics. On the other hand, space-geodetic products
are also highly relevant for societal issues, particularly in positioning or navigation applications,
but also for early warning systems for natural hazards or weather forecasts.

Due to the high requirements on the precision to measure the variability of the planet Earth, many
components have to be taken into account, including effects occurring on the way through the
solar system and the Earth’s atmosphere as well as geophysical phenomena or instrumental effects.
In particular, the Earth’s atmosphere plays a crucial role due to its highly dynamic nature, and
represents one of the major contributions to the error budget of space-geodetic observations in
state-of-the-art data analysis. In space-geodesy, the Earth’s atmosphere is generally divided into
two main compartments. First, the ionosphere includes the atmospheric layer with contributions
from charged electrons and ions, extending from about 60 to more than 1.000 km altitude with
the largest electron density between 300 and 400 km (Böhm et al. 2013). The ionosphere is a
dispersive (frequency-depending) medium for radio frequency techniques. Thus, the ionospheric
refraction due to the ionization by solar radiation can be accounted for, to first order, by observing
at two different frequencies. Second, the neutral part of the atmosphere up to 100 km altitude
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considers contributions from neutral (non-charged) molecules (Böhm et al. 2013). The troposphere
defines the lowest layer of the neutral atmosphere with a vertical thickness of 10-12 km. Due to the
highly variable water vapor content, the troposphere is responsible for the major contribution to
the variability of the propagation delay of microwave signals in the neutral atmosphere, although
about 25 % of the delay occurs above the troposphere (Davis et al. 1985). In contrast to the
ionosphere, the neutral atmosphere is a non-dispersive medium and the radio signal is subject to
an additional delay as well as to bending and attenuation effects relative to a theoretical path in
vacuum, which have to be modeled in data analysis.
In the routine VLBI data analysis of the International VLBI Service for Geodesy and Astrometry
(IVS, Nothnagel et al. 2016), the tropospheric propagation delay is generally divided into a
hydrostatic and a wet component, and both are modeled as a delay correction in zenith direction
and mapped to an arbitrary elevation angle by so-called mapping functions (Davis et al. 1985).
While the mapping functions and the hydrostatic delays are considered to be modeled accurately
enough, there are no sufficiently accurate models or direct measurements available for the wet
component, which is, thus, the most uncertain factor. Consequently, an additional atmospheric
zenith delay correction, also referred to as zenith wet delay (ZWD), is estimated within the geodetic
data correction and parameter estimation process.

1.2 Motivation

The motivation of this thesis is that the state-of-the-art tropospheric model reveals some serious
deficiencies. Without going into details here already, the areas of concern are briefly summarized.
The ZWD parameters are generally resolved in time by continuous piece-wise linear functions, i.e.,
linear splines (e.g., De Boor 1978), of suitable lengths between 30 minutes and 3 hours, and
estimated in a classical least squares solution (e.g., Koch 1999). The pseudo-stochastic character
of the piece-wise linear representation is, however, not optimal to model the highly dynamic nature
of the atmosphere. Moreover, additional soft constraints in the form of pseudo observations are often
needed to stabilize the solution due to missing observations in some piece-wise linear segments. In
order to consider azimuthal asymmetries of the neutral atmosphere around the station, an additional
model component of so-called atmospheric gradients is usually introduced, which is subject to
similar conditions. Since the estimation of the model coefficients heavily depends on observations
at low elevation angles, soft constraints are again necessary to stabilize the solution. Another issue
concerns the mapping functions relating the zenith delays to an arbitrary elevation angle. The
most accurate mapping functions are based on numerical weather models, which are, however, not
optimal due to the rather coarse temporal resolution of only six hours (Böhm et al. 2006b). In order
to completely avoid the mapping function as additional uncertainty source, it would be desirable to
obtain atmospheric delays directly in slant direction (i.e., the direction from the radio telescope to
the radio source), which, however, is only possible, if the number of observations is large enough.
Finally, several parameter groups, such as atmospheric and clock parameters as well as the vertical
component of the station coordinates, are assumed to be correlated and mutually influence each
other, in particular if the stochastic model of the observations is not complete. Consequently, the
ZWD estimates do not reflect meteorological and physical conditions in a plausible way in many
cases.
Another issue reveals severe deficits since only long-periodic effects in the range of years to hours
are considered routinely in the data analysis of space-geodetic observations. In contrast, small-
scale refractivity fluctuations of minutes to sub-seconds due to turbulent swirls are largely ignored.
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The refractivity variations induce phase fluctuations of wave fronts passing through the atmosphere,
which lead to a serious error source for electromagnetic wave propagation (Thompson et al. 2001).
Additionally, turbulence-induced processes in the troposphere induce spatial and temporal corre-
lations between the observations, which are also not accounted for in the routine data analysis of
the IVS and the IGS (International GNSS Service, Dow et al. 2009).

Actually, to go even further, atmospheric refraction is the limiting factor of any further improve-
ments of the accuracy of Earth orientation parameters or telescope positions (Petrachenko et al.
2008; Pany et al. 2011). Consequently, the current tropospheric model is not sufficient to ful-
fill future requirements, for instance, 1 mm accuracy of station positions on a global scale (e.g.,
Petrachenko et al. 2008) as defined within the framework of the Global Geodetic Observing
System (GGOS, Gross et al. 2009) established by the International Association of Geodesy (IAG,
Drewes et al. 2016). To meet the high demands of the GGOS requirements, the next generation
VLBI system, referred to as VLBI Global Observing System (VGOS, Niell et al. 2013), has been
designed by the IVS. In this context, faster and more precise VLBI telescopes lead to a clearly
increased observation density and a better sampling of the atmosphere. However, this also requires
an enhancement of the current data analysis and modeling strategy. In particular, an improved and
proper modeling of the stochastic properties of atmospheric refraction remains a crucial issue and
is the main objective of this thesis.

In addition, also the commissioning phase of so-called twin radio telescopes, two more or less iden-
tically constructed adjacent antennas, offers new opportunities. The potential and importance of
the twin telescopes is substantial to analyze atmospheric refraction effects. However, the behavior
of atmospheric refraction cannot be analyzed before the stability of the VLBI observing system
is understood sufficiently, since the estimation of atmospheric parameters and the interpretation
of the post-fit residuals in VLBI data analysis are closely linked to these stability issues. Conse-
quently, for an improved characterization of atmospheric refraction, it is indispensable to separate
the influence of different system stability effects and to assess their order of magnitude. Particular
attention should be paid to the hydrogen maser clocks feeding the local oscillators and other nec-
essary electronics, the uncertainties emerging from the correlation process, and the effect of phase
calibration which is necessary to compensate for dispersive instrumental phase shifts. An optimal
experimental setup for both, investigations in atmospheric refraction and system stability issues,
can however only be provided by close-range geodetic VLBI observations between two adjacent
radio telescopes, which have not been realized so far.

1.3 Scientific Context

The quality of space-geodetic observations for the determination of precise telescope and radio
source positions and monitoring Earth rotation is known to be hampered by insufficient knowledge
of the temporal and spatial variability of atmospheric refraction already for some time. However,
variability issues have been widely ignored. At the same time, the demand for high rate space-
geodetic products is steadily increasing in interdisciplinary fields, e.g., climatology or meteorology,
and atmospheric parameters derived by space-geodetic techniques in the radio frequency domain
become more and more important to understand dynamic processes in the Earth’s atmosphere. For
instance, atmospheric parameters derived from near real time Global Positioning System (GPS)
observations are used for data assimilation procedures in numerical weather models (e.g., Crewell
et al. 2008; Deng et al. 2011; Dousa and Bennitt 2013). Currently, VLBI observations are not
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yet used for such purposes, because the observations are not continuous and the global distribution
and spatial coverage lags behind GPS observations. However, the VLBI Global Observing System
leads to an increasing number of observations per unit of time as well as to a better sky coverage.
With a better sampling of the atmosphere a more valuable contribution to atmospheric sciences
will be possible. One conceivable option could be a multi-technique combination of atmospheric
parameters, or the VLBI observations could be particularly used for calibration purposes. Further,
an important advantage of VLBI over GPS is the very long time series of atmospheric parameters
of almost 40 years, which is particularly relevant for climate studies (e.g., Heinkelmann et al.
2007).

Currently, the total refraction effect is modeled by a tropospheric propagation delay which is divided
into a hydrostatic and a wet component (Davis et al. 1985). Both parts are represented as the
product of a zenith delay correction and a corresponding mapping function to relate an observation
from zenith to an arbitrary elevation angle. The order of magnitude of the hydrostatic component in
zenith direction is about 2.3 m extra path length, while the additional zenith wet delay ranges from
a few millimeters in dry regions up to 50 cm in the wet tropics. The hydrostatic component depends
only on the air pressure with only little variation proportional to the pressure variations and can
be modeled with sufficient precision (see, e.g., Saastamoinen 1972; Saastamoinen 1973; Davis
et al. 1985). The pressure can either be quantified using in-situ measurements at the antenna
site, numerical weather models or empirical so-called blind models (e.g., the Global Temperature
and Pressure model, GPT, Böhm et al. 2007b; GPT2, Lagler et al. 2013; GPT3, Landskron
and Böhm 2017). The mapping functions are also considered to be modeled accurately enough
and several models have been proposed by different authors (e.g., Chao 1971; Davis et al. 1985;
Herring 1992; Niell 1996; Böhm et al. 2006a; Böhm et al. 2006b). In contrast, the variations
of the wet component are unpredictable due to the high temporal and spatial variability of water
vapor in the atmosphere and cannot be modeled sufficiently (Elgered 1993). Generally, the
long-periodic variations of the water vapor content can either be directly measured by water vapor
radiometers, which however, do not meet the accuracy requirements of today, or estimated as zenith
wet delay. In the data analysis of the IVS, the long-periodic components of the zenith wet delays
are generally treated as pseudo-stochastic continuous piece-wise linear functions in a least squares
adjustment (e.g., Koch 1999), or alternatively, as a stochastic process in a filter estimation (e.g.,
Herring et al. 1990; Nilsson et al. 2015) or by a least squares collocation approach (e.g., Titov
2000). Additionally, atmospheric gradients due to horizontal refractivity variations are estimated,
which are necessary to consider the azimuthal asymmetry of the neutral atmosphere around the
station (Davis et al. 1993; MacMillan 1995; Chen and Herring 1997).

Micro-scale meteorological phenomena are still completely neglected, although they form a serious
error source for electromagnetic wave propagation. Further, dynamic processes in the troposphere,
particularly in the atmospheric boundary layer (the lowest part of the atmosphere; 0-2 km altitude)
and the free atmosphere (at heights greater than 1 km), induce spatial and temporal correlations
between the observations, which are also largely ignored so far. Since the stochastic model in the
routine VLBI data analysis of the IVS and IGS does not include any correlations, the derived target
parameters are not as accurate as indicated by the corresponding variance-covariance matrix, and
said to be too optimistic (Schön and Kermarrec 2015). This was confirmed in Halsig et al.
(2016a) by comparing the standard deviations to the average noise level of dedicated IVS sessions
in terms of weighted root mean squared error of single-session position estimates, computed by
Böckmann et al. (2010) after removing offset, rate and annual signal.

In order to fulfill the future GGOS requirements, and with regard to the high potential due to new
VGOS radio telescopes and high rate GNSS data of 1 Hz sampling and below, the situation has to
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be improved by proper modeling strategies. Consequently, both small-scale refractivity fluctuations
due to turbulent motions in the neutral part of the atmosphere and temporal and spatial correlations
between the observations have to be taken into account sufficiently.

To overcome the model deficiencies in the stochastic description, the standard deviations derived
from the VLBI cross-correlation process are mostly inflated artificially in the traditional VLBI data
analysis, for instance, by adding either a constant noise term to the variances of the observations or
performing a station- or baseline-dependent iterative re-weighting of the observations (e.g, Gipson
et al. 2008).

Over the last decades, more sophisticated concepts have been proposed to improve the stochastic
model of space-geodetic observations. Schön and Kutterer (2005) investigated the modeling
of uncertainties due to remaining systematic errors of GPS data processing. Refining the stan-
dard stochastic model of VLBI observations by estimating variance and covariance components
was investigated by Lucas and Dillinger (1998), Tesmer (2004) and Zubko et al. (2012).
Other authors suggested empirical models, which are either based on elevation-dependent weight-
ing methods (Euler and Goad 1991; Gipson 2006; Gipson 2007; Gipson et al. 2008) or
signal-to-noise models (Luo et al. 2011), generally resulting in an easy-to-implement diagonal
variance-covariance structure. For instance, Gipson et al. (2008) include station-depended delay
noise to the stochastic model to obtain more realistic standard deviations. Two different types of
delay noise are distinguished: a constant additional component to deal with the clock behavior and
an elevation-dependent noise term to consider atmospheric characteristics.

While the models presented above are generally of theoretical or mathematical nature not consider-
ing actual physical conditions, El-Rabbany (1994) suggested an empirical approach by analyzing
auto-correlation functions of phase residuals and proposed a simple exponential function with em-
pirically determined correlation time. This study was restricted to short GPS baselines (10-40 km)
but adapted for longer baselines up to 500 km by Howind et al. (1999).

Empirically derived models can however only describe the stochastic character of the atmosphere,
particularly the dominant contribution of tropospheric refraction, to a limited extent. In order to
go even further and to allow for a physically more reliable modeling of the stochastic properties
correlations due to high-frequency refractivity fluctuations have to be introduced, which can be
best described stochastically following the widely accepted Kolmogorov turbulence theory (Kol-
mogorov 1941a; Kolmogorov 1941b). Since fluctuations in the signal phase are assessed to
be non-stationary (see Sec. 4.2 for more details), the stochastic behavior of refractivity variations
is generally described in terms of so-called structure functions or power spectral densities. Kol-
mogorov (1941a) showed, that these structure functions, in general, follow specific power-law
processes. The prevailing turbulent regime is then characterized by the shape of the structure func-
tion, which leads to typical slopes in a log-log-plot of 5/3, 2/3 and 0, referring to 3D, 2D, and no
turbulence, respectively (e.g., Treuhaft and Lanyi 1987; Schön and Kermarrec 2015). In
the past, some authors analyzed the power law exponents and compared them with their theoretical
values (e.g., Armstrong and Sramek 1982; Stotskii et al. 1998; Schön and Brunner 2006;
Nilsson et al. 2009; Vennebusch et al. 2011).

Over the last decades, a few turbulence models have been developed, which make either use of the
structure function or a power spectrum representation (see Ch. 4 for more details). Treuhaft and
Lanyi (1987) have pioneered turbulence modeling for space-geodetic techniques. They determined
a turbulence-based variance-covariance matrix for tropospheric delays of VLBI observations based
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on refractivity structure functions. The model follows the Kolmogorov turbulence theory and de-
scribes the stochastic variations of the refractivity around its mean value. Many other authors used
the Treuhaft and Lanyi (1987) model for further investigations. For instance, Davis (1992)
studied the impact of turbulence on atmospheric gradients, and Romero-Wolf et al. (2012) pre-
sented a simplified modification of this model applied to observations of the VLBA (Very Long
Baseline Array) network. Pany et al. (2011) also used the turbulence model for extended simula-
tion studies to assess the impact of the most important stochastic error sources in VLBI, such as
uncertainties of the clocks or refractivity variations in the atmosphere. The impact of this model
on continuous VLBI campaigns (CONT) was investigated by Nilsson and Haas (2010) and par-
ticular consideration was given to the parametrization of specific station-dependent turbulence
parameters, e.g., the structure constant or the effective tropospheric height (see Sec. 4.2 for more
details).

Turbulence investigations have also been carried out for GNSS observations. Schön and Brunner
(2008a;B) developed the so-called SIGMA-C model for GPS carrier phases, a variance-covariance
model following the turbulence theory of Kolmogorov and based on the time-dependent distance
separating the ray paths of two signals. In contrast to other applications, where the turbulent
medium is generally assumed to be homogeneous and isotropic (Wheelon 2004, pp. 47ff), the
model has been generalized to allow for inhomogeneity and anisotropy. One main challenge of in-
troducing physical correlations is evident: due to the necessary volume of integrations, which can
only be solved numerically, turbulence models are mathematically difficult to handle and require
high computational effort. Using the so-called Matérn covariance family (Matérn 1960), Ker-
marrec and Schön (2014) proposed an extension of the SIGMA-C model to overcome this issue.

1.4 Main Objectives and Challenges of this Thesis

Temporal and spatial correlations between the observations and small-scale refractivity fluctuations
due to turbulent motions in the neutral atmosphere are widely ignored in the routine data analysis
of the IVS and the IGS. In order to allow for a physically more reliable modeling of the stochastic
properties of VLBI observations it is necessary to expand the tropospheric model to high-frequency
refractivity variations and physically induced correlations between the observations. Both can be
best described stochastically following the widely accepted Kolmogorov turbulence theory. In order
to overcome these severe deficiencies and to develop an operationally efficient method for turbulent
modeling in routine mass analysis of VLBI observing sessions, a VLBI-specific and modified version
of the Kermarrec and Schön (2014) model is developed in this thesis.

The main challenge is the development of a turbulence model, which can be applied in a meaningful
and appropriate sense and to both, traditional long baselines on global networks as well as short
baselines on a local or regional scale. The resulting variance-covariance matrix of observations
must comply with the requirements of providing realistic standard deviations of the derived target
parameters within the parameter model and estimation process. Consequently, the stochastic model
becomes far more complicated compared to the standard case of the IVS. The derived variance-
covariance matrix is always fully populated, since spatial and temporal correlations between the
observations due to the highly variable behavior of turbulent motions in the atmosphere are taken
into account. Despite the high requirements in the modeling domain it is of great importance to still
provide an approach for operational and not just for experimental purposes. Thus, one of the key
objectives of this thesis is to develop a suitable strategy to consider atmosphere-based correlations
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between VLBI observations in an operational way. In this context, it must be guaranteed that
the model is mathematically easy to handle and the use of a fully populated variance-covariance
matrix is feasible without excessive computational effort. In this context, the determination of
certain turbulence parameters, particularly the structure constant and the effective tropospheric
height, which behave as scaling parameters, but also the wind velocity and the so-called stretching
parameters describing the flattening of the turbulent eddies to consider anisotropy, can be very time
consuming, especially, if the turbulence parameters are aimed to be simultaneously estimated within
the parameter estimation process. Consequently, it is of utmost importance to validate the influence
of the different turbulence parameters on different modeling approaches to describe atmospheric
turbulence. Concluding, one major challenge of this thesis is the development of a turbulence model
providing reliable results for all fields of applications distinguishing between traditional and global
baselines on the one hand side and more local network geometries on the other hand, and at the
same time, allowing the turbulence parameters to be determined based on experience-related values.

Another key challenge occurs due to the missing “ground truth” (e.g., empirical evidence provided
by direct measurements) for the prevailing small-scale atmospheric conditions and turbulent
behavior, and the corresponding validation of the devised turbulence model. Turbulent motions
are highly variable, unpredictable and of stochastic nature, and, therefore, it is difficult to
generate a “reference solution”. Consequently, the turbulence model is applied to numerous VLBI
experiments of different temporal and spatial dimensions. The turbulence-based solutions including
the modified stochastic model are validated against other strategies refining the stochastic model
and the standard case of the IVS. This is achieved by diverse validation criteria, such as baseline
length repeatabilities, the weighted root mean square (WRMS) error of post-fit residuals for the
whole experiment or individual baselines, statistical tests, and, of course, the standard deviations
of the derived parameters.

Characterizing the behavior of the atmosphere is a crucial and extremely challenging task, not
only due to the highly variable properties of the neutral atmosphere, but also since the estimation
of atmospheric parameters and the interpretation of the post-fit residuals in VLBI data analysis
are closely linked to the stability of the observing system. Geodetic VLBI observations of radio
telescopes, which are located in an immediate neighborhood, provide an optimal experimental
setup for investigations in atmospheric refraction and system stability issues, but have never been
realized so far. Up to now, the impact of atmospheric refraction effects in geodetic and astrometric
VLBI applications has always been characterized through baselines of at least a few hundreds
of kilometers, while local refraction effects in space-geodetic techniques have generally not been
investigated by VLBI observations but by small scale GNSS networks (e.g., Bevis et al. 1992;
Elósegui et al. 1999; Schön and Brunner 2008a; Schön and Brunner 2008b; Nilsson
et al. 2009; Vennebusch et al. 2011), which are affected by the same refraction phenomena.

In this work, it is demonstrated, that geodetic close-range VLBI observations provide an optimal
experimental setup for both, investigations in atmospheric refraction and system stability issues.
Although observations on short baselines up to several hundred meters have been carried out
at several occasions beforehand, generally as part of standard network observations (Hase and
Petrov 1999; Herrera-Pinzon et al. 2017), the numbers of observations on the short baseline
were limited by the network observing schedules which always balance between radio telescopes of
different slew speeds. However, the commissioning phase of the worldwide first twin radio telescope
at the Geodetic Observatory Wettzell in the Bavarian Forest in Germany (Schüler et al. 2015)
allows investigations of atmospheric refraction and system stability in the context of geodetic
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VLBI observations with radio telescopes on a local scale. The completion of the first of the two
new telescopes at the Wettzell Geodetic Observatory already provides an ample opportunity to
carry out VLBI test observations on a baseline with a length of only about 120 m. This new
opportunity is exploited within this thesis work through dedicated observing sessions, which
are referred to as WHISP (Wettzell HIgh SPeed) experiments. The influence and the order of
magnitude of individual system stability effects is quantified. Special consideration is given to the
hydrogen maser clocks feeding the local oscillators and other necessary electronics, the uncertainties
emerged from the correlation process, and the effect of phase calibration which is necessary to
compensate for dispersive instrumental phase shifts. In order to evaluate the stability of the
observing system, the so-called Two Way Optical Time Transfer (TWOTT, Kodet et al. 2016a)
method is applied. New findings about the temporal and spatial behavior of refraction effects will
emerge by a reliable interpretation of (differential) zenith wet delay estimates and post-fit residuals.

Although the long-periodic tropospheric effects in the range of years to hours are routinely taken into
account by the current tropospheric model of VLBI observations, the implementation is not optimal
and reveals severe deficiencies. In order to allow for an improved characterization of atmospheric
refraction and for an optimal estimation of atmospheric parameters, the state-of-the-art approach
determining tropospheric delays has been modified in this thesis with alternative modeling and
adjustment strategies. First, an inequality constrained least squares approach of the field of convex
optimization has been used to overcome the deficiency, that occasionally zenith wet delay estimates
become negative. The zenith wet delays can be directly related to the water vapor content in the
atmosphere, and, from a meteorological point of view, negative values do not correspond to actual
meteorological conditions and physical properties. According to the Clausius-Clapeyron equation,
(see, e.g., Kraus 2004), there is very little water vapor content at temperatures below 0◦C, and
there is nothing like negative water vapor which could produce a negative delay contribution.
Deficiencies in the hydrostatic delays are generally compensated by the zenith wet delay estimates.
Since a constraining of specific atmospheric parameters would directly influence the result of the
least squares adjustment, the hydrostatic a priori calibrations have to be modeled sufficiently. A
strategy to homogenize the hydrostatic delays is presented in this thesis, and the influence of the
inequality constraints on other parameters is investigated in detail.

Alternatively to the application of inequality constraints, the parametrization of the tropospheric
propagation delays as piece-wise linear functions with a typical temporal resolution of 60 minutes
is critically examined. The pseudo-stochastic character of the piece-wise linear representation is
generally not optimal to model the highly dynamic nature of the atmosphere, and additional
soft constraints are often needed to stabilize the solution due to missing observations in some
piece-wise linear segments. The piece-wise linear model does not represent more than an auxiliary
construction to approximate the stochastic behavior of the neutral atmosphere. In order to replace
the piece-wise linear representation by a fully stochastic description of the atmospheric behavior, a
least squares collocation method is applied in this thesis. The stochastic properties of the neutral
atmosphere are reflected by suitable covariance functions. A covariance model which has been
already applied to VLBI observations was transferred to a second order Gauss Markov process and
appropriately modified. Several other covariance models are used for validation purposes. A case
study is performed to compare the least squares collocation approach fed by different covariance
functions to the classical least squares adjustment using piece-wise linear interval lengths of
30 and 60 minutes, respectively.
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In summary, the main objective of this thesis is to characterize and model turbulence-based refrac-
tivity fluctuations and propose new modeling and adjustment strategies for space-geodetic observing
techniques at radio frequency bands. In particular, this includes the following three key issues:
Objective 1: Modeling atmospheric turbulence.

Special emphasis is given to the development of an operationally efficient atmospheric turbu-
lence model describing small-scale refractivity fluctuations in a meaningful and appropriate
sense. From the model, a fully populated variance-covariance matrix will be derived resulting
in an enhanced stochastic model of VLBI observations now considering physical correlations in
space and time due to turbulent motions in the neutral atmosphere.

Objective 2: Improved characterization of atmospheric refraction.
Atmospheric refraction effects are closely linked to the stability issues of the VLBI observing
system. The individual components of the observing system will be quantified and assessed in
order to allow for an improved characterization of atmospheric refraction effects, particularly
on a local scale using a short baseline at Wettzell, Germany.

Objective 3: Enhanced modeling and adjustment strategies to determine atmospheric parameters.
The current tropospheric model reveals severe deficiencies with respect to the estimation of
atmospheric parameters. Enhanced modeling and adjustment strategies will be introduced to
better describe the behavior of the neutral atmosphere and to allow for the estimation of zenith
wet delays in a more meaningful and appropriate sense.

The contents of this thesis have been partly published in the following articles, ordered in chrono-
logical sequence of progress.
Halsig, S., Artz, T., Leek, J., Nothnagel, A. (2014) VLBI analyses using covariance infor-

mation from turbulence models. In: Behrend, D., K.D. Baver (eds) IVS 2014 General Meeting
Proceedings “VGOS: The New VLBI Network”, 2–7 March 2014, Shanghai, China, Science
Press (Beijing), 2014, 272 - 276, 2014

Halsig, S., Artz, T., Iddink, A., Nothnagel, A. (2015a) Augmenting the stochastic model
in VLBI data analysis by correlations from atmospheric turbulence models. In: Haas, R.,
Colomer, F. (eds) Proceedings of the 22th European VLBI Group for Geodesy and Astrometry
Working Meeting, 18–21 May 2015, Ponta Delgada, pp 167 - 171.

Halsig, S., Roese-Koerner. L., Artz, T., Nothnagel, A., Schuh, W.-D. (2015b) Improved
Parameter Estimation of Zenith Wet Delays Using an Inequality Constrained Least Squares
Method. In: International Association of Geodesy Symposia, Vol. 143, 69 - 74, Springer Inter-
national Publishing Berlin.

Halsig, S., Artz, T., Iddink, A., Nothnagel, A. (2016a) Using an atmospheric turbulence
model for the stochastic model of geodetic VLBI data analysis. Earth, Planets and Space, 68:106,
doi:10.1186/s40623-016-0482-5.

Halsig, S., Artz, T., Iddink, A., Nothnagel, A. (2016b) An Inequality Constrained Least-
Squares approach as an alternative estimation procedure for atmospheric parameters from VLBI
observations. In: Behrend, D., Baver, K.D., Armstrong, K. (eds) IVS 2016 General Meeting
Proceedings “New Horizons with VGOS”, Johannesburg, South Africa, March 13-19 2016, pp
326 - 330.
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1.5 Outline

The general structure of this thesis is as follows. The first part of the thesis consists of three
chapters and provides an introduction on the fundamentals necessary for a better understanding of
the objectives and achievements of this thesis, which are presented in the second part of the thesis
again including three chapters.

Chapter 2 (“Very Long Baseline Interferometry”) provides a short overview on the VLBI principle
with the focus on data analysis including the modeling component and the geodetic parameter
estimation procedure. Both the state-of-the-art functional and stochastic model of the International
VLBI Service for Geodesy and Astrometry are described.

Chapter 3 (“Modeling the Atmosphere”) provides the theoretical fundamentals on the neutral part
of the atmosphere. The propagation of electromagnetic waves is described and the propagation
delay of space-geodetic observations due to the troposphere is defined. In Chapter 4 (“Atmospheric
Turbulence”) the widely accepted Kolmogorov turbulence theory (Sec. 4.1) is represented. Since
turbulence can be best described stochastically, Sec. 4.2 provides an overview on statistical strate-
gies to characterize high-frequency refractivity fluctuations in a random medium. Finally, three
turbulence models relevant for this thesis are introduced in Sec. 4.3.

After providing fundamental insights relevant for this thesis, the main objectives and achievements
of this thesis are presented in the following three chapters. The general focus always lies on atmo-
spheric refraction and turbulence modeling.

In Chapter 5 (“Turbulence Modeling in VLBI”), the focus lies on improving the stochastic modeling
of space-geodetic observations, since physical correlations induced by refractivity fluctuations have
been largely ignored in the routine data analysis of the IVS and IGS. Therefore, an atmospheric
turbulence model describing small-scale refractivity variations is devised and presented in Sec. 5.1.
It is demonstrated that the turbulence model leads to improved results and is well suitable for
routine mass VLBI data analysis. This related to objective 1 of this thesis.

In Chapter 6 (“Case Study: The WHISP Project”), special emphasis is given to sophisticated
investigations and an enhanced characterization of refraction effects in the neutral atmosphere,
which is part of objective 2 of this thesis. For this purpose, specially dedicated VLBI sessions
providing close-range observations are used in the framework of the WHISP project to quantify
both system stability issues and local refraction effects with VLBI.

In Chapter 7 (“Alternative Strategies for Modeling Atmospheric Refraction”), new modeling and
adjustment methods have been applied to VLBI observations, which are related to objective 3 of this
thesis. First, an inequality constrained least squares approach is used to overcome the deficiency,
that sometimes zenith wet delay estimates become negative, which, of course, does not reflect
meteorological conditions in a plausible way (Sec. 7.1). Second, the pseudo-stochastic behavior
of the piece-wise linear representation for the atmospheric parameters, which only models the
stochastic character of the atmosphere to a limited extent, is replaced by a least squares collocation
method (Sec. 7.2).

Chapter 8 (“Conclusion and Outlook”) concludes the thesis and gives an outlook on possible further
research.
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2. Very Long Baseline Interferometry

The basic ideas of Very Long Baseline Interferometry (VLBI) were first introduced in the mid-1960s
(Matveenko et al. 1965, Broten et al. 1967, Moran et al. 1967; for more details, see, e.g.,
Sovers et al. 1998), although, the general principle is based on a classical interferometer in the
visible spectrum as already invented by Michelson (1890). However, long baseline interferom-
etry was only possible since atomic clocks were introduced in the 1970s providing a stable time
mark for the different receiving units and overcoming the issue of connecting the different devices
(Takahashi et al. 2000). According to Nothnagel et al. (2016), high-precision geodetic and
astrometric VLBI with precision in the centimeter or even few millimeter level started in 1979.

VLBI is a space-geodetic technique based on radio interferometry. The geodetic VLBI concept
consists of two or more VLBI radio telescopes and numerous extragalactic radio sources, preferably
compact radio galaxies or quasi-stellar radio sources (quasars) without proper motions. The radio
telescopes observe a radio signal at 8.4 GHz (X-band) and 2.3 GHz (S-band), which is emitted as
noise by the extragalactic sources. At each VLBI antenna, the received signal is recorded and, along
with highly precise time marks provided by a hydrogen maser, sent to particular correlation centers
for cross-correlation purpose to create so-called fringes and obtain the group delay and the delay
rate as the fundamental observables (Schuh and Böhm 2013). In this context, the correlation
process generally includes two steps. First, a cross-correlation of two signals is performed and
a Fourier transform is applied to the cross-correlation function resulting in the power spectrum
(or cross-spectral density). Second, in a process commonly known as fringe-fitting, the maximum
correlation amplitude is searched in the power spectrum to obtain the group delay. For a more
detailed description on the correlation and fringe-fitting process the reader is referred to, e.g.,
Whitney (2000).

VLBI contributes considerably to the International Terrestrial Reference Frame (ITRF), which
is realized by combining the results of different space-geodetic techniques, and is unique for the
realization and maintenance of the International Celestial Reference Frame (ICRF). A further key
objective is the determination of highly precise Earth orientation parameters (EOP) describing
the non-uniform rotational motion of the Earth (Petit and Luzum 2010). According to Schuh
and Böhm (2011), variations of the instantaneous position of the rotation axis with respect to
an Earth-fixed reference system, e.g, a terrestrial reference frame (TRF), are called polar motion,
while precession and nutation are the long-term and periodic variations of the position of the
instantaneous rotation axis with respect to a celestial reference frame (CRF). Finally, the rotational
phase is expressed as the difference between the Universal Time (UT1) and the uniform atomic
time (Universal Time Coordinated, UTC). VLBI is the only space-geodetic technique allowing the
measurement of the full set of EOP parameters without hypothesis (Artz 2011). A subset of the
EOP only including polar motion and UT1 is generally referred to as Earth rotation parameters
(ERP). For more details on Earth rotation, the reader is referred to Schuh and Böhm (2011).

The International VLBI Service for Geodesy and Astrometry (IVS, Nothnagel et al. 2016) is an
international collaboration of organizations which operate or support VLBI and has been accepted
as an official service of the International Association of Geodesy (IAG) in 1999. According to
Nothnagel et al. (2016), today an active global network of about 45-50 radio telescopes observing
4920 radio sources exists within the IVS. Depending on different target parameters, the network
configuration varies as well as the session duration. On the one hand, a standard 24 h VLBI
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experiment is usually performed two or three times a week and consists of 3 to 15 VLBI stations.
On the other hand, so-called Intensive sessions, that means single-baseline sessions of 1 h duration,
are almost observed daily for continued UT1 determinations.

In Sec. 2.1, the general VLBI principle and the delay model will be described. The geodetic data
analysis including the functional and stochastic model of VLBI observations as well as the parameter
estimation process are presented in Sec. 2.2.

2.1 The Basic Principle of VLBI

Although two or more VLBI radio telescopes and numerous extragalactic sources are used for a
VLBI session, the delay model can be formulated for a single baseline configuration without loss of
generality, since the correlator generates the observations independently (Sovers et al. 1998).

Figure 2.1: The VLBI basis principle.

The general configuration of a single VLBI observation consists of two stations separated by the
baseline b, which are simultaneously pointed at the same extragalactic source (see Fig. 2.1). From
this source radio waves are emitted as noise and travel along the unit vector k. Since the radio signals
originate from sources completely outside our galaxy, which are located 2-12 billion light years from
the Earth, a planar wave front can be assumed without any loss of generality (Takahashi et al.
2000). One wave front will reach both antennas at different times and, thus, the time of arrival
defines the so-called group delay, the fundamental VLBI observable. As depicted in Fig. 2.1, the
geometrical delay τgeom is obtained in a rectangular triangle as the scalar product between the
baseline b and source unit vector k,

τgeom = tB − tA = −1
c
b · k, (2.1)
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where c represents the velocity of light and ti=A,B defines the time of arrival for station A and B,
respectively. In the celestial reference frame the source unit vector k is defined by

k =

cosα · cos δ
sinα · cos δ

sin δ

 , (2.2)

with the source coordinates given in right ascension α and declination δ. The baseline vector b can
be computed from the position vectors of two VLBI antennas A and B,

b =

xB − xAyB − yA
zB − zA

 , (2.3)

and is referred to the time of arrival tA. The time-dependency of the baseline length is represented
by ∆b which includes corrections due to tectonic motions as well as periodic and non-periodic
deformations of the Earth’s crust, such as, e.g, Earth tides or loading effects. A more detailed
description on Earth deformation effects can be found in, e.g, Haas (1996) or Sovers et al.
(1998).

Equation (2.1) requires that the baseline and unit source vectors are given in the same reference
frame, which, in general, is not the case: the antenna positions are given in an Earth-fixed reference
frame, a TRF, while the radio sources are defined in a geocentric celestial reference frame (GCRF).
Thus, the station locations have to be transformed into the GCRF and Eq. (2.1) becomes

τgeom = tB − tA = −1
c

(b+ ∆b) ·W ·R ·Q · k, (2.4)

where W denotes the transformation matrix due to polar motion, R describes the rotation of the
Earth around the axis associated with the pole, and Q represents precession and nutation (Petit
and Luzum 2010). For a more detailed overview on the Earth orientation parameters including an
explicit form of the matrices described above, the reader is referred to, e.g., Sovers et al. (1998),
Schuh and Böhm (2011) or Schindelegger et al. (2013). Further, a Lorentz transformation
from the geocentric celestial system to the solar system barycentric (SSB), a frame at rest relative
to the center of mass of the solar system and rotationally aligned with the GCRF, is necessary to
account for relativistic effects, primarily caused by gravitational forces of the Sun and the planets
of the solar system (Takahashi et al. 2000, pp 134f). A more detailed explanation of the specific
transformations necessary to express the group delay in the barycentric system is given in, e.g.,
Schuh (1987), Sovers et al. (1998), or Takahashi et al. (2000).

Per definition, the (geometric) delay is the difference in arrival time of a radio signal received at
two telescopes, that would be measured using an ideal instrumentation, perfectly synchronized, and
assuming a vacuum between the extragalactic source and the radio telescopes. In reality, however,
several additional correction terms are required due to effects occurring on the way through the solar
system and the Earth’s atmosphere. In addition, geophysical phenomena and instrumental effects
have to be accounted for. Finally, the observational delay τobs for high accuracy VLBI measurements
is given by

τobs =τgeom + τinstr + τclock + τiono + τtropo + . . . . (2.5)

In Eq. (2.5), the term τinstr denotes the propagation delays due to on-site cable runs and other
instruments (Schuh and Behrend 2012) and τclock represents the correction term due to local
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oscillator instabilities and mis-synchronization of the reference clocks used for each radio telescope
(Campbell 1987). The correction terms τiono and τtropo correspond to the propagation delays due
to the ionosphere and the neutral atmosphere, respectively.

The ionosphere is a dispersive (frequency-independent) medium in the radio frequency domain.
Thus, the ionosphere delay correction can be corrected to first order by observing at two different
frequencies in X- and S-band. The model for the ionospheric contribution in X-band is given as the
ionosphere free linear combination:

τiono = f2
S(

f2
X − f2

S

) (τX − τS) , (2.6)

where fX = 8.4 GHz (X-band) and fS = 2.3 GHz (S-band) are the observing frequencies, and τX
and τS denote the group delay observable in X- and S-band, respectively. Currently, the maximum
effect of the second order ionosphere delay correction is in the sub-millimeter level and can therefore
be neglected (Hawarey et al. 2005).

The model for the propagation delay due the neutral atmosphere can be expressed by (cf. Eq. (3.65)
in Sec. 3.3)

τtropo = mfh(ε)∆Lzh +mfw(ε)∆Lzw +mfh(ε) [Gn cos(α) +Ge sin(α)] , (2.7)

where both the hydrostatic (index h) and the wet (index w) components consist of a prop-
agation delay in zenith direction (∆Lzh and ∆Lzw) and the corresponding mapping functions
(mfh(ε) and mfw(ε)) relating the zenith delay to an arbitrary elevation angle ε. The second term,
mfh(ε) [Gn cos(α) +Ge sin(α)], is due to horizontal refractivity variations and necessary to consider
the azimuthal asymmetry (α denotes the azimuth angle) of the neutral atmosphere around the sta-
tion. The gradients in north and east direction are denoted by Gn and Ge, respectively, and mfh(ε)
describes the mapping function used for the delay due to atmospheric gradients. Equation (2.7) is
derived in Sect. 3.3 of this thesis and further details on the individual variables are provided.

A more detailed description of the atmospheric modeling and the definition of the propagation
delay in the neutral atmosphere are given in Ch. 3.

2.2 Geodetic Data Analysis and Parameter Estimation Process

The progressing of geodetic VLBI data analysis can be generally divided into two main components
(see flow diagram in Fig. 2.2): on the one hand, the group delays as the actual observables are
corrected by instrumental and environmental effects leading to the reduced observed delays o (red
fields in Fig. 2.2); on the other hand, theoretical delays c (green fields in Fig. 2.2) are computed on
the basis of a priori parameters.

The reduced observation vector, in the following referred to as the “observed minus computed”
vector

l = o− c, (2.8)

is formed and entered in the parameter estimation process. The target parameters can either be es-
timated in a classic least squares adjustment (e.g., Koch 1999), a Kalman Filter (Kalman 1960),
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Figure 2.2: Geodetic VLBI data analysis - flow diagram; modified according to Schuh and Böhm
(2013).

least squares collocation methods (e.g., Krarup 1969; Moritz 1972) or a square root information
filter (e.g., Bierman 1977). The following description of both the functional and the stochastic
model always refers to the classical least squares adjustment, which is currently the standard pro-
cessing method in the data analysis of the IVS.

2.2.1 Functional Model

A more explicit form of the observational delay in Eq. (2.5) for a standard parameter setting in an
independent single session of 24 hour duration ignoring the detailed Lorentz transformation can be
expressed by
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τobs(t) =− 1
c

(b+ ∆b(t)) ·W (t) ·R(t) ·Q(t) · k

·
{

1− (vi + vBi ) · ki
c

+ (vi · ki)2 + 2(vi · ki)(vBi · ki)
c2 + (bi · vi)(vBi · ki)

c3 + (bi · vi)(vi · ki)
2c3

}
− (T A0 + T A1 · (t− t0) + T A2 · (t− t0)2)
+ (T B0 + T B1 · (t− t0) + T B2 · (t− t0)2)

− (TA(t0) + TA(t1)− TA(t0)
t1 − t0

(t− t0) + ...+ TA(ti)− TA(ti−1)
ti − ti−1

(t− ti))

+ (TB(t0) + TB(t1)− TB(t0)
t1 − t0

(t− t0) + ...+ TB(ti)− TB(ti−1)
ti − ti−1

(t− ti))

+MFaw · [AT A(t0) + AT
A(t1)−AT A(t0)

t1 − t0
(t− t0) + ...+ AT

A(ti)−AT A(ti−1)
ti − ti−1

(t− ti)]

+MFBw · [AT B(t0) + AT
B(t1)−AT B(t0)

t1 − t0
(t− t0) + ...+ AT

B(ti)−AT B(ti−1)
ti − ti−1

(t− ti)]

+MFAw(εA) · cot εA · [GBn cosαA + GAe sinαA]
+MFBw(εB) · cot εB · [GBn cosαB + GBe sinαB]
+ τother + ε

(2.9)

with

k source unit vector (see Eq. 2.2) with its three components ki
b baseline vector (see Eq. 2.3) with its three components bi
∆b(t) baseline vector corrections at epoch t for tectonic motions and geophysical effects
vi x-, y- or z-velocity component of the geocenter
vBi x-, y- or z-velocity of station B w.r.t. the geocenter
c velocity of light
W (t) transformation matrix due to polar motion (Petit and Luzum 2010, Ch. 5)
R(t) transformation matrix due to the rotation of the Earth (Petit and Luzum 2010,

Ch. 5)
Q(t) transformation matrix due to precession and nutation (Petit and Luzum 2010,

Ch. 5)
T ∗j parameters of the clock polynomial at station A or B
T ∗(ti) additional clock parameters at station A or B for a specific epoch ti parametrized as

continuous piece-wise linear functions (CPWLF), i.e., linear splines (e.g., De Boor
1978)

MF∗w mapping function of the wet part of the atmosphere at station A or B
AT ∗(ti) zenith wet delays parametrized as CPWLF at station A or B for a specific epoch

ti
G∗n/e atmospheric gradients in north or east direction at station A or B
τother remaining effects of Eq. (2.5)
ε measurement noise
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The VLBI target parameters, such as Earth orientation parameters and telescope or radio source
positions, are generally estimated in a classical least squares adjustment following the Gauss Markov
model of the form (e.g., Koch 1999)

l = Ax+ v,
Σll = σ0Qll

(2.10)

where l describes the n× 1 vector of observations, x is the m× 1 vector of unknown parameters to
be estimated (the vector of estimated parameters is denoted by x̃), and vector

v = Ax̃− l (2.11)

contains the post-fit residuals. In addition to the target parameters, x further contains clock and
tropospheric model parameter corrections. The matrix A is the n × m Jacobian matrix which
contains the partial derivatives of the observation equations with respect to the parameters. The
partial derivatives for the specific VLBI parameters are explicitly stated in, e.g., Schuh (1987),
Nothnagel (1991) and Haas (1996). The matrix Σll represents the variance covariance matrix of
the observations as the product of the a priori variance factor σ0 and the cofactor matrix Qll, which
is derived from the VLBI correlation process and an additional noise term to consider quasi-random
deficiencies in the stochastic model (see Sec. 2.2.2). Minimizing the sum of squared residuals

vTPv . . .min (2.12)

yields the vector of estimated parameters

x̃ =
(
ATΣ−1

ll A
)−1

ATΣ−1
ll l, (2.13)

or, described in form of the normal equation system

x̃ = N−1n, (2.14)

with

N = ATΣ−1
ll A (2.15)

representing the normal equation matrix and

n = ATΣ−1
ll l (2.16)

being the corresponding right-hand side. The matrix P in Eq (2.12) denotes the weight matrix as
the inverse of the variance-covariance matrix of the observations, that means P = Σ−1

ll .

In the following, the solution given in Eq. (2.13) is referred to as the classical or ordinary least
squares (OLS) adjustment, which is used in Chs. 5 and 6, and forms the basis for different alternative
modeling and adjustment strategies presented in Ch. 7 in order to overcome specific deficiencies in
the current tropospheric model of the IVS (see Sec. 3.3.6) and to estimate atmospheric parameters
in a more meaningful and appropriate way. In this context, an inequality constrained least squares
approach is developed to overcome the deficiency, that occasionally zenith wet delay estimates
become negative, which, of course, does not reflect meteorological conditions in a plausible way.
Additionally, the pseudo-stochastic behavior of the piece-wise linear representation (cf., Eq. 2.9)
for the zenith wet delays, which only describes the stochastic character of the atmosphere to a
limited extent, is replaced by a least squares collocation method and suitable covariance functions
to represent the stochastic properties of the neutral atmosphere.
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2.2.2 Stochastic Model

The stochastic model of VLBI observations is described by the variance-covariance matrix of the
observations Σll. In the traditional data analysis of the IVS, the variance-covariance matrix has
a diagonal structure and, thus, correlations between the observations are neglected. The variances
are directly obtained during the correlation process (Clark et al. 1985). According to Campbell
(1987), the standard deviations of the group delay can be determined by

στ = 1
2π · SNR ·Beff

. (2.17)

The effective bandwidth Beff is defined as the root mean square (RMS) of the n individual channel
frequencies νi about their mean value ν,

Beff =

√√√√√ n∑
i=1

(νi − ν)2

n
, (2.18)

and is therefore also called the RMS spanned bandwidth (e.g., Rogers 1970 or Whitney 2000).
The signal to noise ratio (SNR) is defined by

SNR = µ
√

2B · Tint
S

2k

√
A1 ·A2
Tn1 · Tn2

, (2.19)

and, thus, proportional to the flux density S, the area of both antennas A1 and A2, the recorded
total bandwidth B as well as the so-called coherent integration time Tint and inversely proportional
to the system noise temperature of the recording systems Tn1 and Tn2 , respectively. Finally, k =
1.38 × 10−23 J

K defines the Boltzmann constant and µ represents the so-called digital loss factor,
which describes the quality of the digitization and filtering of the signals.

Since the variances of the observations only depend on the correlation process and correlations
between observations are completely neglected, the standard deviations of the VLBI target param-
eters are generally too optimistic (e.g., Schön and Kermarrec 2015, Halsig et al. 2016a). To
overcome this deficiency, in traditional VLBI data analysis the standard deviations derived from the
VLBI cross correlation process are inflated artificially. For instance, this is achieved by adding either
a constant term to the variances of the observations, as done in the Vienna VLBI Software (VieVS,
Böhm et al. 2012), or doing an interactive baseline-dependent re-weighting (Petrov 1998), as
done in Calc/Solve (Ma et al. 1990).

Several investigations have been performed by different authors to improve the stochastic model
of space-geodetic observations, although neither of these approaches has become part of the op-
erational data analysis so far. In general, the strategies to optimize the stochastic model of VLBI
observations can be divided into four categories. The first concept depends on analyzing the post-
fit residuals, including, for instance, the work of Qian (1985) and Schuh and Wilkin (1989)
who obtained correlation coefficients from several VLBI sessions. Second, the general concept of
estimating variance and covariance components was used to refine the stochastic model of VLBI
observations (e.g., Lucas and Dillinger 1998; Tesmer 2004; Tesmer and Kutterer 2004;
Zubko et al. 2012). The third category includes empirical models predominately incorporating
station- or baseline-dependent noise components to the stochastic model of the observations. For
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instance, Gipson (2006), Gipson (2007) and Gipson et al. (2008) proposed a strategy to ac-
count for unmodeled variances and covariances by adding station-dependent delay noise to the
standard deviations of the observations. For this purpose, they have distinguished two different
types of delay noise: a constant additional component to deal with the clock-like behavior and an
elevation-dependent noise term to consider atmospheric characteristics. Finally, the stochastic prop-
erties of the observations are derived by atmospheric turbulence models (Treuhaft and Lanyi
1987; Treuhaft and Lowe 1991; Nilsson et al. 2010; Romero-Wolf et al. 2012) following
the widely accepted Kolmogorov turbulence theory (Kolmogorov 1941a, Kolmogorov 1941b).
Similar investigations have been performed for GPS (e.g., Euler and Goad 1991; Wang et al.
2002; Bischoff et al. 2006; Tiberius and Kenselaar 2003; Howind et al. 1999; Howind
2005; Schön and Brunner 2008a; Schön and Brunner 2008b; Luo et al. 2011; Kermarrec
and Schön 2014).

The concept of modeling atmospheric turbulence is, however, the only approach which allows for a
physically more reliable modeling of the stochastic properties, while most other strategies depend on
empirical findings or are based on iterative re-weighting procedures forcing certain statistic criteria
to specific numbers. Further, the turbulence description is the only method that enables the mod-
eling of physical correlations between the observations instead of only mathematical correlations,
if at all.

An improved and proper modeling of the stochastic properties, however, still remains a major
challenge and is the main objective in this thesis. Special consideration is given to the neutral at-
mosphere as the dominant error source of VLBI observations (cf. Petrachenko et al. 2008; Pany
et al. 2011). Chapter 3 provides the theoretical fundamentals on the neutral part of the atmosphere
including the tropospheric propagation delay of space-geodetic observations. A description of Kol-
mogorov’s turbulence theory (Sec. 4.1) and the turbulence models (Sec. 4.3) developed by different
authors in the last decades is given in Ch. 4. In particular, the model of the Kermarrec and
Schön (2014) has been chosen in this thesis to be further developed in order to provide an en-
hanced stochastic model of VLBI observations considering small-scale refractivity fluctuations in an
operational mass production, since no numerical integration is necessary, which reduces the compu-
tational effort compared to most other turbulence models. A detailed description of the turbulence
model developed in this thesis is given in Sec. 5.1.
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3. Modeling the Atmosphere

Electromagnetic waves emitted by natural or artificial sources, such as extragalactic radio sources
or satellites, pass through the atmosphere to an antenna on the Earth’s surface and are affected
by atmospheric conditions leading to attenuation, scintillation and delay of the signal. The atmo-
sphere generally consists of several layers, and the most relevant compartments for space-geodetic
techniques in the radio frequency domain are the neutral atmosphere up to 100 km altitude and
the ionosphere extending from about 60 to more than 1.000 km altitude (e.g., Böhm et al. 2013).

The iononization by solar radiation leads to ionospheric refraction. The ionosphere is a dispersive
(frequency-dependent) medium, and the effects of ionospheric refraction can be accounted for, to
first order, by observing at more than one frequency. In case of Very Long Baseline Interferometry
(VLBI), ionospheric effects are determined and eliminated by observing at two frequencies in X-
and S-band (frequencies at 8.4 GHz and 2.3 GHz, respectively). Since this strategy is deemed to
be sufficient in the current geodetic data analysis of VLBI observations, ionospheric refraction is
not discussed in this thesis. For a detailed overview on ionospheric effects the reader is referred to,
e.g., Alizadeh et al. (2013).

In contrast, the neutral atmosphere is a non-dispersive medium and sophisticated strategies are
necessary to model atmospheric refraction. In the following chapter, theoretical fundamentals on
the neutral atmosphere are presented. In Sec 3.1, the propagation delay for electromagnetic waves
is described. The terms refractivity and refractive index are introduced in Sec. 3.2, followed by
Sec. 3.3 on the propagation delay of space-geodetic observations due to the troposphere.

In addition, the diurnal heating of the atmosphere causes a time-varying atmospheric pressure
distribution, which can lead to displacements at the Earth’s surface (Sovers et al. 1998, pp
1413f). The corresponding effect is referred to as atmospheric pressure loading and several models
have been proposed to correct displacements at the observation level (e.g., Van Dam and Wahr
1987; Petrov and Boy 2004). The effect of atmospheric pressure loading is also not subject to
this thesis. A more detailed overview can be found in, e.g., Wijaya et al. (2013).

3.1 Propagation Delay for Electromagnetic Waves

Generally, the propagation of electromagnetic waves is described by Maxwell’s equations (Jackson
1998, pp 2f)

∇ ·D = ρ, (3.1)
∇ ·B = 0, (3.2)

∇×E = −∂B
∂t
, (3.3)

∇×H = J + ∂D
∂t

, (3.4)

where E and B denote the electric and magnetic field vectors, respectively, D is the electric displace-
ment vector, H describes the magnetic field intensity, and ρ and J are the volume charge density
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and the current density, respectively. Since the troposphere is assumed to be a non-conducting
(J = 0), neutral (ρ = 0) and non-dispersive medium, Maxwell’s equations can be simplified to

∇ · (εE) = 0, (3.5)
∇ ·B = 0, (3.6)

∇×E = −∂B
∂t
, (3.7)

∇×B = εµ
∂E
∂t
, (3.8)

with D = εE and B = µH, where ε and µ represent the (relative) permittivity (or dielectric
constant) and the permeability (Wheelon 2004, pp 6ff). Assuming that the temporal and spatial
variations of ε and µ are small and combining Maxwell’s equations yields the so-called wave equation
for the electric field (Nilsson et al. 2013)

∇2E = µε
∂2E
∂2t

= n2

c2
∂2E
∂2t

, (3.9)

where c is the velocity of light in vacuum and n represents the refractive index. From the wave
equation it is evident, that the propagation of electromagnetic waves depends on the refractivity
(Nilsson et al. 2013). The term refractivity is discussed in more detail in Sec. 3.2.

3.2 Refractivity for Microwaves

Refractivity causes a bending effect as well as a propagation delay of an electromagnetic signal.
The relationship between the refractivity N and the refractive index n is defined by

N = 106(n− 1), (3.10)

and it is common practice to use N , because n is very close to one in the neutral atmosphere
(n ≈ 1.0003). As a complex number, the refractivity can generally be divided into an imaginary part
iN ′′(ν) and a real part, consisting of a dispersive (frequency-dependent; ν denotes the frequency)
term N ′(ν) as well as a non-dispersive term N0 (e.g., Nilsson et al. 2013):

N = N0 +N ′(ν)− iN ′′(ν). (3.11)

While the real part of the refractivity is responsible for propagation delay and refraction, the
imaginary part quantifies the absorption (Liebe et al. 1993).

In the data analysis of space-geodetic techniques the absorption effect can be typically neglected,
since space-geodetic observations are measurements of the travel time of electromagnetic waves
and the propagation delay is not directly affected by absorption (Nilsson et al. 2013). Further,
using suitable models developed for the calculation of the refractivity (e.g, the Millimeter-wave
Propagation Model; Liebe 1985, Liebe 1989, and Liebe et al. 1993), it was shown, that the
influence of the dispersive term N ′(ν) in Eq. (3.11) is smaller than about 3 ps for frequencies up to
40 GHz (Liebe 1985). For space-geodetic techniques, such as GPS (L-band; frequencies of 1.2 GHz
and 1.5 GHz, respectively) and VLBI (X-band and S-band; frequencies at 2.3 GHz and 8.4 GHz,
respectively), the effect is even smaller (for more details, see, e.g., Liebe 1985 and Böhm 2004, p.
28).
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Based on these assumptions, the refractivity can be expressed as a function of meteorological
parameters, particularly temperature, pressure and humidity (Thayer 1974)

N ≈ N0 = k1
pd
T
Z−1
d︸ ︷︷ ︸

Nh

+ k2
e

T
Z−1
w + k3

e

T 2Z
−1
w︸ ︷︷ ︸

Nw

, (3.12)

and is generally divided into the hydrostatic and wet refractivity Nh and Nw, respectively. In
Eq. (3.12), k1, k2, k3 are constants (for more details, see, e.g., Bevis et al. 1994), pd and e represent
the partial pressure of dry air and water vapor, respectively, and T describes the temperature. The
inverse compression factors of dry air and water vapor, Z−1

d and Z−1
w , represent the deviating

behavior from an ideal gas, which, according to the ideal gas law, satisfies the condition

Z = PV

mRT
= 1, (3.13)

where P , V and T are the pressure, the volume and the temperature of the gas, respectively. R
represents the universal gas constant and m is the amount of substance of gas. Owens (1967)
found the following expressions for the inverse compression factors:

Z−1
d = 1 + pd

[
57.97× 10−8

(
1 + 0.52

T[K]

)
− 9.4611× 10−4T[◦C]

T 2
[K]

]
, (3.14)

Z−1
w = 1 + 1650 e

T 3
[K]

[
1− 0.01317T[◦C] + 1.75× 10−4T 2

[◦C] + 1.44× 10−6T 3
[◦C]

]
. (3.15)

The refractivity depends on the permanent and induced dipole moments of the individual molecular
constituents in the atmosphere. These dipole moments contribute on the refractivity as ∝ p

T in
case of the induced dipole moment and ∝ p

T 2 in case of the permanent dipole moment (Böhm
2004, p. 28). The first and second term in Eq. (3.12) represent the effect of the induced dipole
moment for the dry constituents and the water vapor, respectively, while the third term expresses
the permanent dipole moments of the water molecules (Nothnagel 2000). While none of the
principal constituents of dry air, nitrogen and oxygen, have a permanent dipole moment, and only
contribute due to their induced dipole moments, water vapor has a substantial dipole moment
(Davis et al. 1985).

3.3 Definition of the Propagation Delay in the Neutral Atmo-
sphere

Space-geodetic observations are generally based on a measurement of the travel time between a
natural or artificial source and the receiving antenna. However, the Earth’s atmosphere directly
affects the propagation path of the electromagnetic way (see Eq. 3.9) and consequently the travel
time measurement, because the propagation velocity in the atmosphere c0 differs from the speed
of light in vacuum c. To define the propagation delay in the neutral part of the atmosphere, the
geometric optics approximation is used, which allows to describe the electromagnetic wave as a ray
(Nilsson et al. 2013).
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Figure 3.1: Signal path through the atmosphere; modified according to Elgered (1993)
.

According to Fermat’s principle on wave propagation in geometrical optics, the signal follows the
path S through the atmosphere that minimizes the electric path length L (see Fig. 3.1)

L =
∫
S
n(S)ds. (3.16)

However, the electric path is longer than the geometric length G, the straight line the ray would take
if the atmosphere would be replaced by vacuum (Davis et al. 1985). Thus, the excess path length
∆L due to the neutral atmosphere, in the following referred to as atmospheric delay (ignoring the
scale factor 1

c ), can be described by

∆L = L−G (3.17)

or, reformulated to

∆L =
∫
S
n(s)ds−G =

∫
S

(n(s)− 1)ds+
∫
S
ds−G = [

∫
S

(n(s)− 1)ds]︸ ︷︷ ︸
∆Ln

+ [S −G]︸ ︷︷ ︸
∆Ls

(3.18)

to separate the excess path delay caused by troposphere relative to a vacuum ∆Ln and ∆Ls
describing the geometrical signal delay caused by bending effects. According to Nothnagel (2000),
the latter can be ignored, because assuming a horizontal layered atmosphere the path lengths S
and G are identical in zenith direction and the differences in path length at low elevations would
be modeled within the so-called mapping functions (see Sec. 3.3.4). Thus, the bending term is
neglected in the following, yielding

∆L =
∫
S

(n(s)− 1)ds = 10−6
∫
S
N(s)ds, (3.19)

and using Eq. (3.12) to solve the integral in Eq. (3.19) leads to

∆L = 10−6
[∫
S
k1
pd
T
Z−1
d ds+

∫
S

(
k2
e

T
Z−1
d + k3

e

T 2Z
−1
d

)
ds

]
. (3.20)

The integration of the refractivity in Eq. (3.20) requires the knowledge of the mixing ratio of the
wet and hydrostatic constituents, which is not subject to a physical law and highly variable (Davis
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et al. 1985). In contrast, the overall pressure is in hydrostatic equilibrium and, following Davis
et al. (1985), it is possible to obtain a term nearly independent of the mixing ratio. The first two
terms in Eq. (3.12) can be expressed with the equation of state as

k1
pd
T
Z−1
d + k2

e

T
Z−1
w = k1

R

Md
ρd + k2

R

Mw
ρw

= k1
R

Md
ρ+ k′2

e

T
Z−1
w ,

(3.21)

with the total mass density ρ = ρd + ρw and

k′2 =
(
k2 − k1

Mw

Md

)
, (3.22)

where Mw and Md denote the molar weights of the hydrostatic and wet constituents (Böhm 2004,
pp 33ff). Rewriting Eq. (3.12) leads to

N = k1
R

Md
ρ︸ ︷︷ ︸

Nh

+ k′2
e

T
Z−1
w + k3

e

T 2Z
−1
w︸ ︷︷ ︸

Nw

. (3.23)

Thus, the expression for the propagation delay in Eq. (3.20) becomes

∆L = 10−6
[∫
S
Nh(s)ds+

∫
S
Nw(s)ds

]
= 10−6

[∫
S
k1

R

Md
ρds+

∫
S

(
k′2
e

T
Z−1
w + k3

e

T 2Z
−1
w ds

)]
= ∆Lh + ∆Lw.

(3.24)

The first term of Eqs. (3.23) and (3.24), respectively, which is referred to as the hydrostatic re-
fractivity Nh, only depends on the total density of and not on the mixing ratio of the wet and
hydrostatic constituents. In contrast, the so-called wet refractivity Nw depends on the temperature
and the partial pressure of water vapor (Davis et al. 1985).

In space-geodesy, it is common practice to describe the propagation delay of both, the hydrostatic
and wet component, as a delay correction term in zenith direction, ∆Lzh and ∆Lzw, respectively, and
a corresponding mapping function, mfh(ε) and mfw(ε), relating the zenith delay to an arbitrary
elevation angle ε in vacuum (Davis et al. 1985):

∆L = ∆Lh + ∆Lw
= mfh(ε)∆Lzh +mfw(ε)∆Lzw,

(3.25)

with

∆Lzh = 10−6
∫ ∞
h0

Nh(h)dh, (3.26)

∆Lzw = 10−6
∫ ∞
h0

Nw(h)dh, (3.27)

where h0 represents the reference height, either defined as the height above ground or the intersec-
tion of the rotation axes of the radio telescope. In the following, both the hydrostatic (Sec. 3.3.1)
and wet (Sec. 3.3.2) part of the propagation delay as well as the mapping functions (Sec. 3.3.4) are
discussed in more detail.
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3.3.1 Hydrostatic Delay

According to Davis et al. (1985), the propagation delay due to the hydrostatic refractivity, from
here on referred to as zenith hydrostatic delay (ZHD), can be integrated if the condition of hydro-
static equilibrium

dp

dh
= −ρ(h)g(h), (3.28)

is satisfied, where g(h) denotes the gravitational acceleration and p(h) is the total pressure. Inte-
grating Eq. (3.28) yields the reference pressure p0 at height h0 (e.g., the height above ground or
the intersection of the rotation axes of the radio telescope)

p0 =
∫ ∞
h0

ρ(h)g(h)dh, (3.29)

or,

p0 = gm

∫ ∞
h0

ρ(h)dh, (3.30)

replacing the height-dependent gravitational acceleration by the mean gravitational acceleration
gm, which can be formulated as

gm =
∫∞
h0
ρ(h)g(h)dh∫∞
h0
ρ(h)dh . (3.31)

Saastamoinen (1972) proposed the following expression for the mean gravitational acceleration,

gm = 9.8062(1− 0.00265 cos(2φ)− 0.00031hc), (3.32)

where φ represents the geocentric latitude and hc is the height of the center of mass of the atmo-
sphere above the site, which can be strictly formulated as

hc =
∫∞
h0
ρ(h)hdh∫∞

h0
ρ(h)dh . (3.33)

However, for practical application, Saastamoinen (1972) suggested an approximation for the
effective height hc valid for all latitudes and seasons,

hc = (0.9h0 + 7300)± 400, (3.34)

and gm is simplified to

gm = 9.784(1− 0.00266 cos(2φ)− 0.00028h0)± 0.001. (3.35)

Using this approximation, the integral for the hydrostatic component in Eq. (3.24) can be solved,
and the hydrostatic delay becomes (Böhm 2004, p. 37)

∆Lzh = 10−6k1
R

Md gm

p0
1− 0.00266 cos(2φ)− 0.00028h0

. (3.36)
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Using all simplifications, the zenith hydrostatic delay can be defined by

∆Lzh = 0.0022768 p0
1− 0.00266 cos(2φ)− 0.00028h0

, (3.37)

which is referred to as the modified Saastamoinen model proposed by Davis et al. (1985). Given a
standard air pressure of p0 = 1000 hPa the magnitude of the zenith hydrostatic delay according to
Eq. (3.37) is 2.28 m (Nothnagel 2000). The accuracy of the zenith hydrostatic delay using this
approach is estimated to be < 3 mm (Herring et al. 1990) or even 0.5 mm, assuming that the
pressure can be observed with a sufficient accuracy (MacMillan and Ma 1998).

The initial equation of Saastamoinen (1972) was formulated as

∆Lzh = 1
sin(ε)0.002277

[
p0 +

(1255
T

+ 0.05
)
−B cot2(ε)

]
+ δR, (3.38)

already including a simple mapping function 1
sin(ε) . The parameters B and δR are correction quan-

tities obtained from tables provided in Saastamoinen (1972). Later, Saastamoinen (1973)
suggested a further correction factor

1 + 0.0026 cos(2φ)− 0.28 · 10−6h0, (3.39)

which is very similar to the denominator of the modified model in Eq. (3.37). Both models are used
frequently, but in the traditional VLBI data analysis it is common practice to use the modified
Saastamoinen model proposed by Davis et al. (1985).

3.3.2 Wet Delay

The propagation delay due to the wet refractivity, in the following referred to as zenith wet delay
(ZWD), consists of the remaining two terms in Eq. (3.23):

∆Lzw =
∫ ∞
h0

(
k′2
e

T
Z−1
w + k3

e

T 2Z
−1
w

)
ds. (3.40)

Compared to the hydrostatic delay, modeling the wet delay is by far more challenging since the
amount and the distribution of water vapor in the atmosphere underlies huge variations in both
spatial and temporal scales and is therefore unpredictable (Elgered 1982). Further, the partial
pressure e measured at the Earth’s surface is not representative for the overlying atmosphere.

Nonetheless, several models have been developed for the wet delay (e.g., Hopfield 1969, Saasta-
moinen 1972, Mendes 1999 or Thompson et al. 2001). Most of these models, however, require
information about the water vapor distribution in the atmosphere in any form, and consequently,
are not suitable for high accuracy applications. Thus, in general VLBI analysis, the wet delays are
estimated within the parameter estimation process (see Sec. 2.2).
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Wet Delay and Water Vapor Content

The description of the zenith wet delay can be directly related to the water vapor content in the
neutral part of the atmosphere. In order to quantify the water vapor content in the atmosphere, the
total amount of the water vapor in a vertical water column over a given unit of area (for instance,
one square meter) is used, which is referred to as integrated water vapor (IWV) in the following,

IWV =
∫
ρwvdh, (3.41)

where ρwv is the density of the water vapor. Scaling the IWV by the density of liquid water ρlw
leads to the so-called precipitable water (PW),

PW = IWV

ρlw
. (3.42)

Since ρlw ≈ 1 g
mm3 the integrated water vapor and the precipitable water are almost identical. Using

the ideal gas law the precipitable water can be directly related to the zenith wet delay by

PW = κ∆Lzw, (3.43)

with κ = Π
ρlw
≈ 0.16. The proportionality factor Π is given by

Π = 106Mw(
k′2 + k3

Tm

)
R
, (3.44)

with k′2 and k3 being constants. R is the general gas constant and Tm describes the weighted mean
temperature of the atmosphere. Although Tm is not known exactly, Bevis et al. (1992) proposed
a linear relation between the weighted mean temperature and the surface temperature Ts,

Tm = 70.2 + 0.72Ts, (3.45)

empirically derived from radiosonde profiles from 13 stations in the United States. The error intro-
duced by using this empirical formula is expected by the authors to be about 2%. A more detailed
description on the relation between the zenith wet delay and the water vapor content, including
the corresponding constants used in this section can be found in Bevis et al. (1992), Bevis et al.
(1994) and Böhm (2004, pp 41f).

3.3.3 Impact of Meteorological Data on the Zenith Delay Determination

As described in Sec. 3.3.1, the zenith hydrostatic can be modeled sufficiently using adequate models
mainly depending on the air pressure with only little variation proportional to the pressure vari-
ations. As a consequence, the quality of meteorological data is very important, because erroneous
values directly impact the quality of the geodetic VLBI data analysis. Deficiencies in the hydro-
static calibrations are absorbed by the zenith wet delay estimates to almost 100 %, which, in turn
influences the parameter estimation process in the data analysis.

Janes et al. (1991) investigated the influence of the uncertainty of meteorological data measure-
ments on the tropospheric delay model of GPS, which is identical to the VLBI case. Based on a
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ray-tracing algorithm they found that under nominal conditions (relative humidity of 75 %, tem-
perature of 0-30 ◦C) the zenith delay sensitivity to surface pressure is about 1 mm per 0.5 hPa.
According to Elgered (1992), a variation of 1 hPa in the surface pressure corresponds to a change
in the tropospheric propagation delay of VLBI observations of about 2.3 mm, which follows directly
from the hydrostatic delay model of Davis et al. (1985) and fits very well the results obtained
for GPS. Schüler et al. (2000) indicate the accuracy of a barometer sensor to be of the order of
magnitude of about 0.5 hPa or less, which would conversely corresponds to 1 mm in the hydrostatic
calibrations.

Consequently, the on-site meteorological data recorded in the vgosDB data files (the new data
format to store data obtained from VLBI observations; Bolotin et al. 2016) or the former Mark III
database format (see, e.g., Gipson 2012) needs to be homogeneous, which, however, is hardly true in
reality since outliers and data gaps may occur due to sensor failures during the in-situ measurements
at the VLBI sites. Comparing the pressure data found in the Mark III database format with pressure
values from a numerical weather model of the European Centre for Medium-Range Weather Forecast
(ECMWF) during the continuous VLBI campaign 2008 (CONT08), Le Bail and Gipson (2011)
found a maximum offset of about 10 hPa for the VLBI station in Svetloe, Russia, over this period.
Thus, an homogenization of the observed meteorological data is of utmost importance in order
to not distort the VLBI target parameters (cf., Heinkelmann et al. 2007). This includes the
detection of outliers using statistical tests and the identification of inhomogeneities compared to
other meteorological data sets on the one hand, and the correction of the affected measurements
by more appropriate data sources on the other hand.

In this context, it is also worth mentioning, that the so-called tropospheric ties between either the
VLBI or GNSS reference point and the barometer or two adjacent VLBI or GNSS antennas have to
be introduced to correct for the height differences between two co-located antennas (see, Sec. 6.4.1
or Teke et al. 2013). An incorrect height difference would directly influence the surface pressure
according to Eq. (6.2) and, consequently, lead to a change in the tropospheric propagation delay,
as discussed above.

3.3.4 Mapping Functions

As mentioned above, the total signal propagation delay is divided into a hydrostatic and a wet delay,
and both components consist of a zenith delay correction and a corresponding elevation-dependent
mapping function. This model is described by Eq. (3.25) under the assumption of azimuthal sym-
metry of the neutral atmosphere around a station. In other words, this means that for a constant
elevation angle the propagation delay is independent from the azimuth angle of the observation.
Since the bending effect in Eq. (3.18) is accounted for by the hydrostatic mapping function, the
(geometric) elevation angle in vacuum has to be used as input for the mapping functions instead
of the refracted elevation angle.

According to Niell (2000), the mapping functions are defined as the ratio between the electrical
path length L through the atmosphere at elevation ε and the electrical path length in zenith
direction. Comparing the mapping functions for the hydrostatic and wet component, respectively,
the hydrostatic mapping function is smaller than the wet mapping function, except for observations
at very low elevation angles, where the geometric bending effect attributed to the hydrostatic
mapping function is increasing considerably (Böhm 2004). The reason is the smaller scale height H
for the wet part of the atmosphere (H ≈ 2 km) compared to the hydrostatic component (H ≈ 8 km).
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Thus, the mapping functions can be interpreted as a measure for the thickness of the Earth’s
atmosphere compared to the Earth’s radius (Niell 2000). If the thickness of the atmosphere
decreases, the atmosphere appears to be flatter. Assuming the atmosphere to be planar and evenly
stratified, the mapping function can be formulated as

mf(ε) = 1
sin(ε) . (3.46)

This simple approach was used by Saastamoinen (1972), which, however, is only sufficient for
observations with high elevation (ε > 20◦). Marini (1972) found that the continued fraction form

mf(ε) = 1
sin(ε) + a

sin(ε)+ b
sin(ε)+c

(3.47)

could be used to consider corrections accounting for the Earth’s curvature, where a, b and c are
constants. During the last decades, many approaches were developed, which are generally slightly
modified versions of the continued fraction form using constants from analytic fits to ray-tracing
either for a defined standard atmosphere, for observed atmospheric profiles based on radiosonde
measurements, or numerical weather models. In the following, a short overview of the different
mapping function is given.

The first mapping function for space-geodetic applications with different coefficients for both map-
ping functions was published by Chao (1971) who truncated the continued fraction form to a
representation with two coefficients a and b and replaced the second sin(ε) by tan(ε) in order to
force mf(ε) = 1 at the zenith. Davis et al. (1985) developed the mapping function CfA-2.2 for
the hydrostatic delay down to 5◦ elevation. The three constants a, b, and c of the continued frac-
tion form were derived from a ray-tracing analysis through idealized model atmospheres. Herring
(1992) introduced the mapping function MTT, for which radiosonde data were used instead of
standard atmospheres to fit the coefficients of the slightly modified continued fraction form

mf(ε) =
1 + a

1+ b
1+c

sin(ε) + a
sin(ε)+ b

sin(ε)+c

. (3.48)

The coefficients in the mapping functions depend on the latitude and height of the site and the
surface temperature, and were determined by a least squares fitting performed separately for the
hydrostatic and wet component. The new mapping functions developed by Niell (1996) (often
called Niell mapping functions, NMF) are unique in that global weather variations are represented
analytically as a function of station latitude and height as well as the day of year instead of me-
teorological parameters at the sites. The coefficients in the mapping functions were derived from
profiles of standard atmosphere data down to 3◦ elevation angle using the continued fraction form
in Eq. (3.48). Further, sine functions are introduced to describe the temporal variation of the co-
efficients, and a height correction describing the increase of the mapping function with increasing
height was used for the hydrostatic mapping function. The first mapping functions based on numer-
ical weather models were the isobaric mapping functions (IMF) developed by Niell (2000). For
the coefficients b and c empirical functions are used, whereas the coefficient a is determined from
re-analysis data of the Data Assimilation Office (DAO) of the Goddard Space Flight Center. At
present the most accurate mapping functions that are available globally are the Vienna mapping
functions 1 (VMF1, Böhm et al. 2006b) which are based on a direct ray-tracing through the nu-
merical weather model to make use of the entire model information provided instead of calculating
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intermediate parameters as necessary in the IMF. The coefficients a and b for both the hydrostatic
and wet VMF1 are determined from empirical equations depending on the day of year and station
latitude, whereas the a coefficients for both components are obtained based on different pressure
level data sets from the ECMWF. The VMF1 is realized as discrete time series with 6 h resolution
either on a global grid or for specific VLBI sites. Further, Böhm et al. (2006b) introduced the
alternative approach of the so-called total Vienna Mapping Function 1 (VMF1-T) for a mapping
of the total delays instead of separating the delays into a hydrostatic and a wet component. The
principle idea was to introduce a mapping function which is not affected by poor a priori hydrostatic
delays, because errors in the a priori model would not be fully compensated by the estimated wet
part (cf. discussion in Sec. 3.3.3). However, this concept is not recommended since variations in the
wet delay are faster than they could be described by the coefficients with a 6 h resolution (Nilsson
et al. 2013). Böhm et al. (2006a) proposed the Global Mapping Function (GMF) to create, on
the one hand, an easy-to-handle mapping function depending only on the day of year and station
latitude, longitude and height, which, on the other hand, is consistent with VMF1 (Tesmer et al.
2007). The GMF is based on monthly mean profiles of meteorological data from the ECMWF
40-years reanalysis data (ERA-40).

For a more detailed description on mapping functions, the reader is referred to Mendes (1999),
Nothnagel (2000), Böhm (2004), Tesmer et al. (2007), Böhm et al. (2007a) or Nilsson et al.
(2013).

3.3.5 Atmospheric Gradients

In this chapter, the atmosphere has been assumed to satisfy the condition of azimuthal symmetry
around a station so far, which, however, is limited. On the one hand, this can be due to different
local weather phenomena and climatic conditions. On the other hand, the vertical thickness of the
neutral atmosphere is larger above the equator compared to the poles. Thus, it is recommended to
take azimuthal asymmetry into account (Davis et al. 1993; MacMillan 1995; MacMillan and
Ma 1997).

The gradient model described in the following was first proposed by Davis et al. (1993) and later
modified by MacMillan (1995). To model the azimuthal asymmetry of the neutral atmosphere
around a station, horizontal refractivity variations (i.e., the derivation of linear horizontal gradients)
are described. The first degree Taylor series approximation of the refractivity at a station is

N(x, z) = N0(z) + ξ(z)x, (3.49)

where N0(z) describes the refractivity above the station, x is the horizontal position vector and the
horizontal linear gradient of the refractivity can be expressed as

ξi(z) = ∂N(x, z)
∂xi=n,e

∣∣∣∣
x=0

(3.50)
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with xi=n,e being the north and east component of the position vector, respectively. Integrating
Eq. (3.49) along the path s yields the propagation delay in an arbitrary direction, which can be
described by elevation ε and azimuth angle α:

∆L(α, ε) = 10−6
∫ ∞

0
N(s)ds

= 10−6
[∫ ∞

0
N0(z)ds+

∫ ∞
0
ξ(z)xds

]
= ∆L(ε) + 10−6

∫ ∞
0
ξ(z)xds,

(3.51)

where ∆L(ε) is the propagation delay for azimuthal symmetry of the atmosphere as defined in
Eq. (3.25). It should be noted that the difference in the integration paths for the gradient and
no-gradient cases is neglected in Eq. (3.51). For a more detailed discussion about the influence of
this assumption, the reader is referred to Davis et al. (1993).

Similar to Eq. (3.25), the concept of a mapping function is introduced, and the path delay ∆L(α, ε)
can be again expressed as a combination of the zenith propagation delay ∆Lz and a corresponding
elevation- and azimuth-dependent mapping function mf(α, ε),

∆L(α, ε) = ∆Lzmf(α, ε), (3.52)

with

mf(α, ε) = mf0(α, ε) + δmf(α, ε)

= mf0(α, ε) + 10−6
∫ ∞

0
ζ(z)xds

(3.53)

and

ζ(z) = ξ(z)
∆Lz . (3.54)

Consequently, the gradients lead to a modification of the mapping function described in the addi-
tional term δmf(α, ε), which can be determined using the following relations (Davis et al. 1993)

x(α, ε) ≈ z cot(ε̂) [cos(α)n̂+ sin(α)ê] , (3.55)
ζ(z) = ζnn̂+ ζeê, (3.56)
ds ≈ dz mf0(ε), (3.57)

where ε̂, n̂ and ê denote the refracted elevation angle, the unit vectors in north and east direction,
respectively:

δmf(α, ε) ≈ 10−6mf0(ε) cot(ε̂)
[
cos(α)

∫ ∞
0

zζn(z)dz + sin(α)
∫ ∞

0
zζe(z)dz

]
= mf0(ε) cot(ε̂) [Zn cos(α) + Ze sin(α)]

(3.58)

with

Z = 10−6
∫ ∞

0
zζ(z)dz. (3.59)

As already discussed in Sec. 3.3.4, the general concept of mapping functions is related to the
elevation angle in vacuum. In the gradient case, the mapping function δmf(α, ε) also includes
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another term cot(ε̂) which depends on the refracted elevation angle ε̂. A general relation between
both elevation angles is defined by

ε̂ = ε+ δε, (3.60)

and Davis et al. (1993) suggested the approximation

δε ≈ ε10−6Nes cot(ε), (3.61)

where Nes defines the total refractivity at the Earth’s surface. Assuming δε to be small (δε ≈ 0.2◦
for Nes ≈ 300 and ε = 5◦; according to Davis et al. 1993), the term cot(ε̂) can be expanded into
a series, leading to

δmf(α, ε) ≈ mf0(ε) cot(ε)
(
1− 10−6Nes csc2(ε)

)
[Zn cos(α) + Ze sin(α)] . (3.62)

Finally, Eq. (3.51) becomes

∆L(α, ε) = ∆L(ε) +mf0(ε) cot(ε)
(
1− 10−6Nes csc2(ε)

)
[Gn cos(α) +Ge sin(α)] , (3.63)

where the gradients for the north and east direction, Gn and Ge, respectively, are given by

G = Z∆Lz. (3.64)

MacMillan (1995) uses the model of Davis et al. (1993) as in Eq. (3.63), but neglected the
difference between the geometrical elevation in vacuum ε and the refracted elevation angle ε̂ and
published the modified model for the propagation delay through an azimuthal asymmetric atmo-
sphere as

∆L(α, ε) = ∆L(ε) +mfh(ε) cot(ε) [Gn cos(α) +Ge sin(α)] ,
= mfh(ε)∆Lzh +mfw(ε)∆Lzw +mfh(ε) cot(ε) [Gn cos(α) +Ge sin(α)] ,

(3.65)

which is currently the standard in the data analysis of the International VLBI Service for Geodesy
and Astrometry (IVS).

As an alternative concept to describe atmospheric gradients, Chen and Herring (1997) proposed
the model

∆L(α, ε) = ∆L(ε) +mfG(ε)Gn cos(a) +mfG(ε)Ge sin(a), (3.66)

where

mfG = 1
sin(ε) tan(ε) + C

, (3.67)

C = 3
∫
ξh2dh

2
∫
ξh(h+Re)dh

, (3.68)

and Re is the radius of the Earth. The coefficient C can be determined to 0.0031 and 0.0007 for the
hydrostatic and wet part, respectively (Chen and Herring 1997). When applying this model, the
IVS community agreed to use C = 0.0032 as recommended by Herring (1992) for the estimation
of total gradients.
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Figure 3.2: Gradients interpreted by a tilting of the mapping function by the angle β, according to
Nilsson et al. (2013)

.

According to Rothacher et al. (1998), atmospheric gradients can be interpreted as a tilting
of the mapping function if the atmosphere is assumed to be evenly stratified, which yields to a
simple mapping function ( 1

sin(ε) , cf. Eq. 3.46), and the zenith propagation delay is independent of
the tilting of the mapping function. If G defines the deflection of the path delay caused by the
tilting angle β (see Fig. 3.2), it can be shown that the additional path delay at elevation ε due to
the gradient equals cot(ε) mf(ε) G, which leads to the relationship

∆L(ε− β) = ∆Lzmf(ε) + cot(ε)mf(ε)G. (3.69)

In general, it is recommended to estimate gradients within the VLBI parameter estimation process,
particularly when observing at low elevation angles (Nilsson et al. 2013). On local VLBI networks
consisting of baseline lengths of a few hundred meters, as is the case for the WHISP (Wettzell HIgh
SPeed) experiments (see Ch. 6), this is, however, not true since short baselines are not sensitive to
atmospheric gradients.

3.3.6 Discussion of the Current Atmosphere Model

In the current data analysis of the IVS, the model in Eq. (3.65) is used to consider the additional
propagation delay due to the neutral atmosphere. The hydrostatic component can be taken into
account with sufficient precision using suitable models and measured pressure values at the VLBI
sites as described in Sec. 3.3.1, while the wet component is more challenging due to the highly
variable water vapor content in the atmosphere. As already described in Sec. 3.3.2, the zenith wet
delays are routinely estimated as continuous piece-wise linear functions (CPWLF) in the geodetic
VLBI data analysis (see Sec. 2.2).

The tropospheric model, however, reveals some deficiencies. The mapping functions are not optimal
since the numerical weather models are rather coarse with a temporal resolution of only six hours
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(Böhm et al. 2006a). Of course, it would be desirable to obtain atmospheric delays directly in slant
direction, which would completely eliminate the mapping function as additional uncertainty source,
which, however, is only possible with a clearly increased number of observations. The piece-wise
linear representation is generally not optimal, since the highly dynamic nature of the atmosphere can
only be modeled to a limited extent. Further, constraints are often needed to stabilize the solution
due to missing observations in some piece-wise linear segments. A similar situation applies to the
atmospheric gradients, since the estimation of the model coefficients heavily depends on observations
at low elevation angles and constraints are often necessary to stabilize the solution. Additionally,
the results of the parameter estimation procedure are very sensitive to a priori gradients and may
lead to a tilt of the terrestrial reference frame estimates by up to a few millimeters (Tesmer et al.
2006).

In the current atmospheric propagation delay model only long-periodic variations are taken into
account, although micro-scale phenomena also play a very crucial role. Since turbulence-induced
variations in the refractivity induce phase fluctuations, they form a serious error source for electro-
magnetic wave propagation and represent a major deficiency in the current atmospheric model. At
the same time, physically-induced correlations in space and time occur between the observations,
which are generally neglected. Both issues will be addressed in more detail in Ch. 4 on atmospheric
turbulence.
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4. Atmospheric Turbulence

The propagation delay for electromagnetic waves in the neutral atmosphere is described in Sec. 3.1
and the tropospheric model for space-geodetic observations is defined by Eq. (3.65) in Sec. 3.3. Here,
only long-periodic from annual to hourly variations are taken into account, while short-periodic fluc-
tuations due to variations in the refractive index are largely ignored. However, with respect to the
steadily increasing requirements to the target parameters of space-geodetic techniques, such as
Earth orientation parameters and coordinates of telescopes or radio sources, it is not sufficient to
neglect refractivity fluctuations since they induce phase fluctuations and form a serious error source
for electromagnetic wave propagation. Refractivity variations are primarily induced by turbulent
motions or swirls in the neutral atmosphere and can be best described stochastically following the
widely accepted turbulence theory of Kolmogorov.
An introduction to Kolmogorov’s theory on atmospheric turbulence is given in Sec. 4.1, followed by
Sec. 4.2 providing an overview on statistical strategies to characterize high-frequency fluctuations in
a random medium. Finally, atmospheric turbulence models are outlined in Sec. 4.3, which stochasti-
cally describe refractivity fluctuations and introduce physical correlations between the observations
due to turbulent irregularities.

4.1 Turbulence Theory

Short-periodic refractivity fluctuations are induced by dynamic processes in the neutral atmo-
sphere and can be represented as the interaction or superposition of turbulent swirls, so-called
eddies, of different length scales ranging between millimeters and kilometers depending on the alti-
tude (Wheelon 2004; Kermarrec and Schön 2014). Since atmospheric turbulence has different
scales, which occur simultaneously, it is not possible to describe the behavior of each eddy individu-
ally. Consequently, turbulence-induced refractivity irregularities are generally regarded as randomly
varying in space and time and, thus, have to be described stochastically (Ishimaru 1991).

In order to receive a mathematical description of a random medium, such as the refractive index
n, it is separated into two components n = n̄+ ∆n (“Reynolds decomposition”, Tatarskii 1971).
On the one hand, n̄ defines a deterministic part and describes a slowly varying, mean component,
while, on the other hand, ∆n is characterized by rapid fluctuations assigned to turbulence. The
phenomena described by ∆n can be defined as an arbitrary flow pattern characterized by its size
(Batchelor 1950) and are, therefore, of stochastic nature. According to Wheelon (2004, p. 83),
the shape and size of the turbulent eddies depend on the altitude. While the eddies are assumed
to be small and almost symmetrical in the atmospheric boundary layer, the lowest part of the
atmosphere at heights between 0 and 2 km, they become more flattened in horizontal direction in
the free atmosphere at altitudes greater than 1 km, and thus, are highly anisotropic (see Fig. 4.1).
The isotropic microscale structures correspond to 3D turbulence. In contrast, the larger scales in
the free atmosphere are referred to as 2D turbulence (Schön and Kermarrec 2015, pp 1301ff),
which is more relevant in the context of this thesis, particularly in creating correlations between
VLBI observations.

Turbulent processes are often illustrated by the energy cascade theory (Kolmogorov 1941a),
depicted in Fig. 4.2, which describes the variability of the eddies and provides information on the
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Figure 4.1: Eddy size and flattening with height. The distance d denotes the separation of the ray
paths of the radio signal at height H, referred to as the effective tropospheric height. Both are
introduced the following sections (Halsig et al. 2016a).

amount of turbulent energy with respect to the eddy scale l and the size of the wavenumber κ,
respectively. Small eddies correspond to large wavenumbers and, consequently, large eddies are
represented by small wavenumbers, or mathematically,

κ = 2π
l
. (4.1)

The model consists of three regimes: the energy injection region, the inertial subrange and the
energy dissipation region. At large scales, atmospheric turbulence occurs when a small fraction of
the kinetic energy in the ambient wind field is converted into turbulent energy producing initial
inhomogeneities (energy injection). Large eddies with highly elongated shape and a considerable
amount of kinetic energy are created. The initial size of the eddies is called the outer scale length
L0. These eddies are not stable and immediately begin to break up and subsequently transfer their
energy to turbulent elements of smaller and smaller scale (energy cascade), although energy is
neither created nor dissipated. The size of the eddies reduces and their shape becomes more and
more symmetrical (inertial subrange). The redistribution during the decay cascade continues until
the eddy size is approximately equal to the inner length scale l0, at which their remaining energy
is dissipated into heat (energy dissipation). For more details, the reader is referred to Wheelon
(2004, pp 27ff) and Schön and Kermarrec (2015, pp 1306ff).
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Figure 4.2: The energy cascade model of Kolmogorov describes the process of turbulent decay. As
soon as the turbulent eddies are created with an initial size called the outer scale length L0, they
break up into smaller and more symmetric eddies until the eddy size is approximately equal to the
inner length scale l0 and their energy is dissipated into heat. The corresponding wavenumbers to
the outer and inner scale length L0 and l0 are represented by κ0 and κs, respectively (Halsig et al.
2016a).

4.2 Turbulence Description

Since high-frequency refractivity variations due to turbulence can be best described stochastically,
statistical approaches are necessary to characterize fluctuations in a random medium. First, the
temporal behavior of the random process is discussed. Generally, time series of quantities to describe
atmospheric turbulence, such as the refractive index n, are not stationary. A process is defined to
be stationary (Schön and Kermarrec 2015, p. 1311), if its properties do not vary with time.
Therefore, such a random process is separated into two components n = n̄+∆n, where ∆n defines a
turbulent or fluctuating component and n̄ represents a slowly varying mean component. Although
n̄ (t) is time dependent (with t denoting the time), the difference n̄ (t+ τ) − n̄ (t) satisfies the
conditions for a stationary process over a large range of time increments τ . Such a process is
referred to as a process with stationary increment (Schön and Kermarrec 2015, pp. 1311f), and
leads to the definition of the so-called structure function

Dn (τ) = 〈[∆n(t+ τ)−∆n(t)]2〉, (4.2)
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where 〈. . .〉 denotes the ensemble average. In this context, an ensemble is defined as all possible
configurations of the random medium. Alternatively, the structure function can also be written by
a time-shifted phase covariance expression

Cn (t, t+ τ) = 〈∆n(t)∆n(t+ τ)〉. (4.3)

Similar to the time domain, a random process can also be characterized in a spatial sense. Given
two antennas operating at two (adjacent) positions r1 and r2, which are separated by distance d
in a random medium, the similarity of a random process in a spatial sense can be described by the
spatial covariance function:

Cn (r1, r2) = 〈∆n(r1, t)∆n(r2, t)〉. (4.4)

In general, the atmosphere is assumed to be homogeneous and isotropic. A stochastic process is
defined to be homogeneous if the covariance function does not depend on the positions r1 and r2
but solely on the baseline d separating these positions (Wheelon 2004, pp 15ff). Consequently,
homogeneity can be interpreted as the spatial analogy of the stationarity in the time domain.
Further, a medium is also defined as isotropic, if the vertical scale is the same as both horizontal
scales, i.e., the covariance function only depends on the magnitude of the baseline, not on its
orientation (Wheelon 2004, p. 15ff). Including both assumptions, Eq. (4.4) becomes

Cn (d) = 〈∆n(r, t)∆n(r + d, t)〉. (4.5)

Equivalent to the time domain, Tatarskii (1971) defines the atmosphere to be a “locally homo-
geneous random medium with smoothly varying characteristics” leading again to a separation of
the random medium into a varying mean and a rapidly changing fluctuating component. Thus, the
slowly varying term is canceled out by taking the difference and assuming a sufficient similarity for
both positions r1 and r2, yielding the structure function description:

Dn (d) = 〈[∆n(r, t)−∆n(r + d, t)]2〉. (4.6)

By dimensional analysis, Kolmogorov (1941a) found a power law dependency for the structure
function

Dn (d) = C2
nd

2
3 , (4.7)

where C2
n represents the so-called structure constant as a general measure for the strength of

turbulence. The widely-spread two-third power law is successfully experimentally applicable to a
surprisingly wide range of conditions, and sometimes even works for cases in which the turbulent
medium cannot be expected to either be isotropic nor homogeneous (Wheelon 2004, p. 31).
Here, the power law process is used to describe spatial correlations, however, the same power law
dependency holds for the temporal case.

In Fig. 4.3, the general behavior of a temporal structure functions is illustrated as a typical log-
log-plot. Here, the structure functions can be represented as straight lines with different slopes,
which are equal to the specific exponents of the power law processes (Schön and Brunner 2006).
The general behavior of the structure function can be divided into three components. The curve
is flat with a corresponding power law exponent close to zero for very short time differences of a
few seconds (A). For slightly larger time differences turbulent fluctuations become the dominant
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Figure 4.3: General behavior of a (temporal) structure function illustrated as a typical log-log-plot.
The green and red dotted line correspond to the typical 2/3 and 5/3 power law exponents; modified
according to Schön and Brunner (2006).

effect (B). In the log-log-plot, the characteristic exponents of 2/3 (2D turbulence; green dotted line)
and 5/3 (3D turbulence; red dotted line) occur. Finally, the structure functions becomes flat again
with a power law exponent close of zero (C), indicating that the quantities describing atmospheric
turbulence, such as the refractive index n, are uncorrelated (Schön and Brunner 2006). For
a more detailed description on the power law relations for atmospheric turbulence, the reader is
referred to, e.g., Thompson et al. (2001).

Up to now, the structure and covariance function representation have been used in this section to
either describe temporal or spatial variations in the refractive index. Another possibility to describe
temporal variations in a random medium is given by the widely known frozen flow hypothesis of
Taylor (1938). It postulates that the entirety of turbulent air mass is frozen during the observing
period and transported horizontally at a constant wind velocity v without any deformation. As a
consequence, the motion of the entire turbulence mass is equivalent to a parallel shifting of the ray
path (see Fig. 4.4). Mathematically, it is assumed that

∆n(r, t+ τ) = ∆n(r − vτ, t). (4.8)

Thus, the temporal structure function at time t and t+ τ can be interpreted as a spatial structure
function between these rays separated by d = vτ (Wheelon 2004, pp 242ff).

The covariance function of refractivity fluctuations in a random medium can also be formulated as
a Fourier wavenumber integral of the turbulence spectrum (Wheelon 2004, p 21),

Cn (r1, r2) =
∞∫
0

∞∫
0

∞∫
0

Φn(κ)
{
eiκ(r1−r2)

}
d3κ. (4.9)
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Figure 4.4: Taylor’s frozen flow hypothesis assumes the entirety of turbulent medium to be frozen
during the observing period τ and traveling in the direction, in which the wind blows with a constant
velocity v. The motion of the entire turbulence mass is equivalent to a parallel shifting of the ray
path (Halsig et al. 2016a).

Using a three-dimensional Fourier transform, a similar expression can be found for the structure
function of refractivity fluctuations (Wheelon 2004, p 25f),

Dn (r1, r2) = 2
∞∫
0

∞∫
0

∞∫
0

Φn(κ)
{

1− eiκ(r1−r2)
}
d3κ. (4.10)

In the wavenumber-spectrum representation the random medium is completely described by the
turbulence spectrum Φn(κ) and the wavenumber vector κ = [κx, κy, κz]. Assuming the random
medium again to be homogeneous and isotropic, the structure function in Eq. (4.10) can be sim-
plified to

Dn(d) = 8π
∫ ∞

0
κ2Φn(κ)

(
1− sin(κd)

κd

)
dκ. (4.11)

Since the energy spectrum should also follow a power law process, Kolmogorov (1941a) proposed
the following turbulence spectrum

Φn(κ) = 0.033C2
n

κ
11
3

, (4.12)

which he found to be equivalent to his two-third power law (see Eq. 4.7) by solving the following
integral equation (Wheelon 2004, p. 26f):

C2
nd

2
3 = 8π

∫ ∞
0

κ2Φn(κ)
(

1− sin(κd)
κd

)
dκ. (4.13)
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However, the Kolmogorov model leads to infinite values for some quantities like the mean square
variations of the refractive index. To overcome this issue, the von Kármán spectrum (Von Kármán
1948)

Φn(κ) = 0.033C2
n(

κ2
x + κ2

y + κ2
z + κ2

0

) 11
6
, (4.14)

can be applied. Both models are valid for the inertial subrange (indicated by (B) in Fig. 4.5) and the
energy input region, 0 < κ < κs (where κ0 and κs denote the corresponding wavenumber to the outer
and inner scale length L0 and l0, respectively) and for a medium where isotropy and homogeneity
are justified. The general power law behavior of the power spectra of refractivity fluctuations as
proposed by Kolmogorov (black solid line) and von Kármán (dashed gray line) is shown in Fig. 4.5.
The green dotted line refers to the typical −11/3 power law exponent which is equivalent to the
two-third power law exponent for 2D turbulence in the structure function representation.

Figure 4.5: General power law behavior of the turbulent power spectrum of refractivity fluctuations.
It is distinguished between the spectra proposed by Kolmogorov (black solid line) and von Kármán
(dashed gray line). The green dotted line corresponds to the typical −11/3 power law exponent;
modified according to (Wheelon 2004, pp. 32f).

For a general case of an inhomogeneous medium, the von Kármán model has to be extended.
Since Tatarskii (1971) defined the atmosphere as a “locally homogeneous random medium with
smoothly varying characteristics”, we can again subdivide Φn(κ, r1+r2

2 ) into a slowly varying com-
ponent Φn(κ) and a rapidly fluctuating term C2

n(r1+r2
2 ) (Kermarrec and Schön 2014), yielding

Φn(κ, r1 + r2
2 ) = C2

n(r1 + r2
2 )Φn(κ). (4.15)
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To also take anisotropy into account, the so-called stretched wavenumber coordinates are introduced
according to Wheelon (2004, pp. 42ff). The anisotropic scaling factors a, b and c describe the
flattening of the eddies in both horizontal and the vertical direction, leading to

Φn(κ) = 0.033C2
nabc(

a2κ2
x + b2κ2

y + c2κ2
z + κ2

0

) 11
6
. (4.16)

Up to now, only fluctuations in the refractive index, particularly large horizontal flattened eddies
in the free atmosphere, have been taken into account, which distort the arriving plane wave front
of VLBI observations. Integrating these refractivity fluctuations along the line of sight leads to the
signal phase variations. According to Wheelon (2004, p. 206), the corresponding phase covariance
function can be formulated as

Cϕ = k2
∞∫
0

ds1

∞∫
0

ds2

∞∫
−∞

∞∫
−∞

∞∫
−∞

κΦn(κ, r1 + r2
2 )eiκ(r1+r2−d)d3κ. (4.17)

Based on Kolmogorov’s turbulence theory described above, a few covariance models have been
developed to model atmospheric turbulence, which will be briefly outlined in the following section.

4.3 Modeling Atmospheric Turbulence

Different modeling strategies have been developed following Kolmogorov’s turbulence theory to
either investigate and describe turbulent behavior of the neutral atmosphere or to simulate the
variations in the refractive index to assess the quantity of turbulent motion in the atmosphere.
In the following, three turbulent models are shortly described: first, the model of Treuhaft and
Lanyi (1987), which has been the basis for several other studies on turbulence theory; second, the
SIGMA-C approach (Schön and Brunner 2008a; Schön and Brunner 2008b) and, third, the
turbulence model of Kermarrec and Schön (2014), which forms the basis for the turbulence
model developed in the framework of this thesis (see Ch. 5).

4.3.1 The Treuhaft and Lanyi Model (1987)

The Treuhaft and Lanyi (1987) turbulence model was originally developed for VLBI observa-
tions and follows the general structure function description given in Eq. (4.6). The model is subject
to a few principal assumptions. First, a homogeneous and isotropic medium and the frozen flow hy-
pothesis of Taylor (1938) are required. Further, a “slab model” is assumed, which postulates the
turbulent behavior to be constant up to an effective height H and vanishing above. Treuhaft and
Lanyi (1987) formulated the spatial structure function of phase signals arriving at two antennas
separated by the distance d, and looking along a ray with an elevation ε and azimuth angle α, as

Dϕ(d) = 1
sin2(ε)

∫ H

0

∫ H

0Dn
[
d2 + 2 (s1 − s2)d cot(ε) cos(α) +

( |s1 − s2|
sin(ε)

)2] 1
2

−Dn
( |s1 − s2|

sin(ε)

) ds1ds2,

(4.18)
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where Dn is the structure function of the refractive index, which is directly integrated along the
line of sight, s1 and s2, respectively. Temporal correlations can be taken into account with the
frozen flow model of Taylor (1938) as described in Eq. (4.8). Further, the authors showed that
the structure function behaves as a 5

3 power law at small distances or 3D turbulence, and 2
3 for

larger separation distances or 2D turbulence.

Additionally, Treuhaft and Lanyi (1987) determined an expression for the covariance between
two tropospheric slant delays τi,

Cϕ(τ1, τ2) = 1
sin(ε1) sin(ε2)

(
H2σ2

wr −
1
2

∫ H

0

∫ H

0
Dn

( |s1(z)− s2(z′)− v∆t|
sin(ε)

)
dzdz′

)
, (4.19)

where v denotes the wind velocity and s1(z) and s2(z′) represent the points on the lines of sight at
heights z and z′, respectively. The variance of the wet refractivity fluctuations σwr is defined by

σwr = 1
2Dn(∞), (4.20)

assuming the troposphere to be completely uncorrelated at distances d→∞. Since Kolmogorov’s
two-third law in Eq. (4.7) does not converge at infinity, Treuhaft and Lanyi (1987) proposed
the modified expression

Dn (d) = C2
n

d
2
3

1 +
(
R
L

) 2
3

(4.21)

with L = 3000 km being the saturation scale length. In their study, Treuhaft and Lanyi (1987)
assumed the tropospheric effective height to be H ≈ 1000 m and used a mean value at average
mid-latitude for the structure constant C2

n = 5.8 · 10−14m−
2
3 and the geostrophic wind velocity of

v = 8 m
s .

4.3.2 The SIGMA-C Model of Schön and Brunner (2008A;B)

In contrast to the structure function representation in the Treuhaft and Lanyi (1987) model,
the model of Schön and Brunner (2008a) makes use of a three-dimensional power spectrum
expression to describe the covariance between observations induced by refractivity variations in the
atmosphere. The model was originally developed for GPS carrier phase data and allows to introduce
inhomogeneity and anisotropy.

The spatial covariance function of refractivity fluctuations can be formulated as a power spectral
density by using a three-dimensional Fourier transform (Wheelon 2004, p. 21)

〈[∆n(r, t)−∆n(r + d, t)]2〉 =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Φn(κ,x)eiκT d d3κ, (4.22)

where Φn(κ,x) represents the power spectrum and κ is the vector of wavenumbers. Again, the
frozen flow hypothesis of Taylor (1938) in Eq. (4.8) can be used to link spatial and temporal
correlations.



46 4. Atmospheric Turbulence

Integrating the refractivity variations along the line-of-sight leads to the most general case describing
the covariance between two phase observations from station A to satellite i at epoch ti and from
station B to satellite j at epoch tj ,

〈∆ϕiA(tA),∆ϕjB(tB)〉 =
∫ ∞

0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Φn

(
κ,
r1 + r2

2

)
eiκ

T d d3κ ds1 ds2. (4.23)

In order to represent the power spectrum, Schön and Brunner (2008a) chose the von Kármán
spectrum described in Eq. (4.14), which, in contrast to the initial formulation by Kolmogorov in
Eq. (4.12) has no singularity for κ = 0. The von Kármán model is extended for a general case of
inhomogeneity and anisotropy according to Eqs. (4.15) and (4.16).

Finally, Schön and Brunner (2008a) give the covariance of the GNSS carrier phase observations
as

〈∆ϕiA(tA),∆ϕjB(tB)〉 = 12
5

0.033
Γ
(

5
6

)√π3κ
− 2

3
0 2−

1
3

sin εi sin εj
C2
n

∫ H

0

∫ H

0
(κ0d)

1
3 K− 1

3
(κ0d) dz1dz2, (4.24)

where Γ(ν) denotes the gamma function (Abramowitz and Stegun 1964, pp. 253ff) and K the
modified Bessel function of second kind, also known as MacDonald function (Abramowitz and
Stegun 1964, pp. 355ff). It is worth noting that for the determination of the separation distance
d not only the wind velocity, but also the wind orientation, both parametrized as a wind vector, is
taken into account (see Schön and Brunner 2008a for more details), which is generally not the
case for most other turbulence models. Similarly, an expression for the variances is given as

〈∆ϕ(t)2〉 = 12
5

0.033
Γ
(

5
6

)√π3κ
− 2

3
0 2−

1
3

(sin ε)2 C2
nH

2

〈
π2

1
3

√
3Γ
(

2
3

)F 2
3

([1
2 , 1

]
,

[2
3 ,

3
2 , 1

]
,
z2

4

)
− 27

802
2
3 Γ
(2

3

)
z

2
3F 1

2

([5
6

]
,

[11
6 ,

7
3

]
,
z2

4

)〉
,

(4.25)

where F describes the hypergeometric function (Abramowitz and Stegun 1964, pp. 556ff),

F (a, b, c, z) = Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)
Γ(c+ n)

zn

n! . (4.26)

For the dimensionless argument z the expression z = pκ0H
sin ε can be used, where p gives the impact

of anisotropy on the variance. For instance, p = 1 describes an isotropic medium.

Schön and Brunner (2008b) extended this model by a receiver-antenna dependent white noise
component. Although the term SIGMA-C model initially refers to the combination of the variance-
covariance matrix due to refractivity fluctuations and the white noise component, it is equally used
to describe only the variance-covariance model due to atmospheric conditions in this thesis.

Although the turbulence model has been formulated for GNSS observations, it is appropriately
modified for the application of VLBI observations in Sec. 5.2. It should be pointed out here already,
that in this context any additional noise component is added to the variances of the observations.
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4.3.3 The Kermarrec and Schön Model (2014)

The turbulence model of Kermarrec and Schön (2014) is an extension of the SIGMA-C model
described in Sec. 4.3.2 and is, therefore, also based on the power spectrum representation.

Generally, the power spectrum Wϕ(ω) and the covariance function of the phase fluctuations are
intimately connected by the Wiener-Khinchine-theorem (Wheelon 2004, p. 257),

Wϕ(ω) =
∞∫
−∞

dτeiωτ 〈ϕ(t)ϕ(t+ τ)〉 dτ. (4.27)

A simplified expression for the spectrum of phase measurements can be formulated according to
Wheelon (2004, Sec. 6.5), as well as Kermarrec and Schön (2014),

Wϕ(ω) = 2.192Hk2C2
nca
− 5

3 v
5
3

sin2 (ε)
[
ω2 +

(κ0v
a

)2] 4
3
, (4.28)

which is valid for a so-called “slab model” using a few assumptions and the von Kármán spectrum.
The “slab model” postulates the wind velocity v and the structure constant C2

n to be non-varying
up to the tropospheric effective height H and no atmospheric turbulence above. However, it is worth
mentioning that anisotropy and inhomogeneity are taken into account in this model. Kermarrec
and Schön (2014) found, that the corresponding covariance,

C (t, t+ τ) = 0.7772 k2HC2
nc

sin (εi(t)) sin (εj(t+ τ)) × κ
− 5

3
0

(
κ0vτ

a

) 5
6
K 5

6

(
κ0vτ

a

)
, (4.29)

is a so-called Matérn covariance function (Matérn 1960) with a smoothness parameter ν = 5
6 and

a Matérn correlation time T = 1
α with α = κ0v

a and κ0 = 2π
L0

. Here, K 5
6
represents the modified

Bessel function of second kind (Abramowitz and Stegun 1964, pp. 355f). The corresponding
variance expression reads

C (t, t) = 0.782k
2HC2

ncκ
− 3

5
0

sin2 (εi(t))
. (4.30)

A major and very important advantage of the Kermarrec and Schön (2014) model over most
other turbulence models is the fact, that no numerical integration is necessary, which reduces the
computational effort.

This is one reason why the model has been chosen in this thesis to be further developed in order
to achieve an enhanced stochastic model of VLBI observations considering small-scale refractivity
fluctuations in an operational mass production. A detailed description and an extensive validation
of the modified and VLBI-specific version of the turbulence model developed in this thesis is given
in Sec. 5.1.
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Although atmospheric refractivity fluctuations restrict the attainable accuracy of VLBI target
parameters, variability issues have been largely ignored. To allow for a physically more reliable
modeling of the stochastic properties of VLBI observations it is necessary to expand the current
tropospheric model to high-frequency refractivity variations and physically induced correlations
between the observations. Both can be best described stochastically following the widely accepted
Kolmogorov turbulence theory. In the last decades, some authors proposed empirically derived
power law descriptions or turbulence-based covariance models (see Sec. 1.3 for more details), how-
ever, these models are either based on general assumptions, which are hardly true in reality, or are
not suitable in operational data analysis due to a very high computational effort.

In order to overcome these severe deficiencies and to develop an operationally efficient method for
turbulent modeling in routine mass analysis of VLBI observing sessions, a new atmospheric turbu-
lence model is devised in this thesis (Sec. 5.1). With the objective of developing a turbulence model
which is practicable for traditional long baselines as well as local VLBI networks, the model is eval-
uated for specially designed short baseline observations in the framework of the WHISP (Wettzell
HIgh SPeed) project (see Ch. 6), and routinely processed VLBI sessions provided by the Interna-
tional VLBI Service for Geodesy and Astrometry (IVS, Nothnagel et al. 2015; Nothnagel et al.
2016). The turbulence model is validated against different strategies to refine the stochastic model
of VLBI observations, which are common practice in current VLBI analysis software packages.

As an alternative strategy, the SIGMA-C model of Schön and Brunner (2008a;B, see Sec. 4.3),
which was originally developed for GNSS carrier phases, is modified for VLBI observations (see
Sec. 5.2). One focus is on the selection of appropriate turbulence parameters, particularly, the
structure constant C2

n and the effective tropospheric height H. The turbulence model is applied to
the continuous VLBI campaign 2002 and the results are again validated against standard analysis
strategies of the IVS community.

5.1 A VLBI-specific Turbulence Model

In the endeavor to develop an operationally efficient strategy to realize an appropriate stochastic
model in routine mass analysis of VLBI observing sessions, a VLBI-specific and modified version
of the Kermarrec and Schön (2014) model has been developed (see also Halsig et al. 2015a;
Halsig et al. 2016a). The turbulence model has to meet the requirements of generating a fully
populated variance-covariance matrix of the observations considering small-scale refractivity fluc-
tuations in the neutral atmosphere as well as physically induced spatial and temporal correlations
between the observations. As a consequence, the standard deviations of the derived target param-
eters are expected to become higher and therefore more realistic. One of the key objectives of this
thesis is to develop an appropriate strategy to describe refractivity variations in an operational way,
which ensures a model that can be mathematically easy handled, and allows for a fully populated
variance-covariance matrix without too much computational effort.
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5.1.1 Turbulence Description

Atmospheric turbulence is usually described stochastically by either structure or covariance func-
tions or a power spectrum representation. In general, the temporal covariance function of the phase
measurements Cϕ (t, t+ τ) = 〈ϕ(t)ϕ(t+ τ)〉 is intimately connected to the power spectrumWϕ(ω)
by the Wiener-Khinchine-theorem (Wheelon 2004, p. 257)

Wϕ(ω) =
∞∫
−∞

dτeiωτ 〈ϕ(t)ϕ(t+ τ)〉 dτ, (5.1)

where ϕ describes the phase fluctuation, t and τ denote the time and time increment, and ω is the
corresponding frequency. For a detailed explanation on how to describe atmospheric turbulence the
reader is referred to Sec. 4.2.

Following Wheelon (2004, Sec. 6.5), the expression

Wϕ(ω) = 2.192Hk2C2
nca
− 5

3 v
5
3

sin2 (ε)
[
ω2 +

(κ0v
a

)2] 4
3

(5.2)

can be used to formulate the spectrum of phase measurements in a slab model of the atmosphere.
In Eq. (5.2), a and c are the anisotropic scaling parameters in the horizontal and vertical direction,
k = 2π

λ denotes the electromagnetic wavenumber with the wavelength of electromagnetic radiation
λ, and κ0 = 2π

L0
represents the outer scale wavenumber to the corresponding outer scale length L0

(see Fig. 4.2 and Sec. 4.1 for more details). The term sin (ε) describes a simple mapping function
to relate the measurement from zenith to an arbitrary elevation angle ε (see Sec. 3.3.4). The
approximation in a slab model assumes the level of turbulent activity to be consistent up to a
certain effective tropospheric height H and zero above. This includes both, a non-varying structure
constant C2

n within the defined interval and a constant wind velocity v. The turbulence spectrum is
described by the von Kármán spectrum (Von Kármán 1948), and the general validity describing
the turbulence as an anisotropic and inhomogeneous medium is maintained. One advantage of
representing the atmosphere as a slab model is the fact that certain integrations can be expressed
in terms of hypergeometric functions (Abramowitz and Stegun 1964, pp. 556ff), and the model
can more easily be evaluated numerically (Wheelon 2004, Sec. 5.2), as demonstrated explicitly
in case of the SIGMA-C model (see Eqs. (4.23) - (4.25) in Sec. 4.3.2).

The covariance function and the power spectrum provide equivalent descriptions of the phase fluc-
tuations. If the phase spectrum is known, the covariance can be determined by the inverse Fourier
integral

〈ϕ(t)ϕ(t+ τ)〉 = 1
2π

∞∫
−∞

dωe−iωτWϕ(ω). (5.3)

Applied to Eq. (5.2), and following Kermarrec and Schön (2014), leads to the following expres-
sion for the covariance of phase measurements

Cϕ (t, t+ τ) = 0.7772 k2HC2
nc

sin (εi(t)) sin (εj(t+ τ))κ
− 5

3
0

(
κ0vτ

a

) 5
6
K 5

6

(
κ0vτ

a

)
, (5.4)
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where K 5
6
represents the modified Bessel function of second kind (Abramowitz and Stegun

1964, pp. 355ff).

Kermarrec and Schön (2014) found that the covariance description in Eq. (5.4) is a so-called
Matérn covariance function (Matérn 1960) of the general form

C (r) = φ (αr)ν Kν (αr) , (5.5)

with a smoothness parameter ν = 5
6 and a Matérn correlation time T = 1

α , where α = κ0v
a and

κ0 = 2π
L0

.

The covariance model in Eq. (5.4) can be expressed alternatively with respect to the distance
separating the paths of two satellites observed by two antennas (Kermarrec and Schön 2014).
More details on the separation distance for GNSS observations to satellites can be found in Schön
and Brunner (2008a) and Kermarrec and Schön (2014).

This concept is also used for VLBI observations, where the separation distance between the ray
paths of radio signals emitted by extragalactic sources to the two radio telescopes A and B of a
VLBI observation dH(t) is determined as follows. First, the local source vector k′ is determined in
terms of homogeneous coordinates

k′ =


cos(εA) · cos(αA)
cos(εA) · sin(αA)

sin(εA)
1

 , (5.6)

where αA and εA denote the azimuth and elevation angle of station A, and needs to be transformed
in a global system in order to derive the unit source vector

k = R−1
2 R−1

1 k′. (5.7)

The rotation matrices R1 and R2 are given by

R1 =


cos(β) 0 sin(β) 0

0 1 0 0
− sin(β) 0 cos(β) 0

0 0 0 1

 (5.8)

and

R2 =


cos(δ) − sin(δ) 0 0
sin(δ) cos(δ) 0 0

0 0 1 0
0 0 0 1

 , (5.9)

respectively, with the rotation angles

β = arccos
([

0 0 1
] rA
‖(rA)‖

)
(5.10)

and

δ = π − arccos

[1 0 0
] [

rxA ryA 0
]T

‖(
[
rxA ryA 0

]
)‖

 , (5.11)
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where rA denotes the position vector for station A and rj=X,YA the components therein. Second,
the baseline vector b can be generally computed from the position vectors of two VLBI antennas
rA and rB according to Eq. (2.3). In order to calculate the separation distance at a specific height
H, the positions vectors are modified by an additional term corresponding to the selected height,

r̂A = rA ·
(

1 + H

‖rA‖

)
, (5.12)

r̂B = rB ·
(

1 + H

‖rB‖

)
, (5.13)

and the corresponding modified baseline vector becomes

b̂ = r̂A − r̂B. (5.14)

Finally, the separation distance is determined according to the Pythagorean theorem (see Fig. 2.1),

dH =
√
b̂

2 − (τc)2, (5.15)

where τc is related to the unit source vector k and the modified baseline vector b̂ by Eq. (2.4).

The covariance model in Eq. (5.4) is modified in a way that the outer scale length L0 in κ0 = 2π
L0

is replaced by the separation distance dH(t), leading to

C (t, t+ τ) = 0.7772 k2HC2
nc

mf (εi(t))mf (εj(t+ τ))

( 2π
dH(t)

)− 5
3
( 2πvτ
dH(t)a

) 5
6
K 5

6

( 2πvτ
dH(t)a

)
. (5.16)

The corresponding variance expression to Eq. (5.16) reads

Cϕ (t, t) = 0.782k
2HC2

ncκ
− 3

5
0

[mf (εi(t))]2
. (5.17)

The wavelength of the radio signals λ, which is used for the determination of the electromagnetic
wavenumber

k = 2π
λ

(5.18)

in Eqs. (5.16) and (5.17), is 8.4 GHz (X-band) in case of VLBI. Please remember, that the radio
telescopes generally observe at two frequencies at 8.4 GHz (X-band) and 2.3 GHz (S-band), however,
the S-band data is only used to eliminate the effects of ionospheric refraction (see Chs. 2 and 3).

In case of VLBI observations, the very simple elevation-dependent scaling factor 1
sin(ε) in Eq. (5.4) is

also replaced by a more sophisticated model in Eqs. (5.16) and (5.17), such as the Vienna mapping
functions 1 (VMF1, Böhm et al. 2006b), mf (εi(t)). This is necessary, since the cutoff angle of
VLBI observations (up to 3 degrees) is lower than for GNSS observations (about 10 degrees), and
the simplified sine model becomes very inaccurate for observations with small elevation angles,
which are, however, needed to separate different parameter groups, particularly the zenith wet
delays (cf. Schuh and Böhm 2013).

Equations (5.16) and (5.17) are used to generate a variance-covariance matrix based on high-
frequency refractivity fluctuations in the neutral atmosphere, which is then, in a next step,
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incorporated in the VLBI estimation procedure. The turbulence-based variance-covariance matrix
is therefore added to the routine variance-covariance matrix of the Gauss Markov model, which is
currently a pure diagonal matrix and includes, almost exclusively, the uncertainties from the VLBI
correlation process.

One crucial aspect in turbulence modeling is the determination of the turbulence parameters,
particularly the “scaling parameters” C2

n, H and a, b, c as well as the wind parametrization.
Although the structure constant decreases with height from C2

n = 10−14 m−
2
3 at 1 km height

to C2
n = 10−18 m−

2
3 at 10 km height (Wheelon 2004, pp 62ff), C2

n can generally be assumed
to be constant up to the tropospheric height H ≈ 2000 m and zero above (cf., e.g., Treuhaft
and Lanyi 1987; Schön and Brunner 2008a). In principle, however, the height dependency
could be taken into account following Tatarskii (1971) or Nilsson et al. (2010). Generally,
there are different methods to estimate the structure constant at the specific VLBI site, e.g.,
from water vapor radiometer, radiosonde or GPS data (Nilsson and Haas 2010). However, for
a suitable description of the turbulent behavior over a VLBI station, such sensors have to be
available near to these radio telescopes, which is usually only the case for GPS sensors, if at all.
However, particularly with regard to the VLBI Global Observing System, which leads to a clear
increase of observations and a better sky coverage, the estimation of C2

n parameters using VLBI
observations may be possible in future. Here, especially short baselines in local networks, for
instance, by using so-called twin telescopes, should be used to determine turbulent motions in the
atmosphere assuming that other disturbing effects can be sufficiently quantified by observations on
short baselines. A detailed case study concerning close-range VLBI observation in a local network
is presented in Ch. 6. The parameters a, b and c describing the flattening of the turbulent medium
are chosen to a = b > c due to the increasing horizontal flattening with height up to a = b = 100 c
(Wheelon 2004). The wind is parametrized as a constant horizontal wind velocity and a wind
direction, which is defined by the separation distance dH(t) between the two radio signals at height
H. Assuming the so-called free atmosphere from 1000 m to 3000 m to be crucial inducing physical
correlations between the observations, a wind velocity v ≈ 8 m

s , which approximately corresponds
to the geostropic wind at that height, seems to be sufficient (cf. Kermarrec and Schön 2014).
Mostly, the same structure constants are applied for both stations of a baseline, although, of
course, for global VLBI networks, which are the standard case in VLBI, the meteorological
conditions may not be the same at the two VLBI stations. Ideally, the structure constant is chosen
or even estimated with respect to the current weather conditions, which, however, conflicts the
requirement of an operationally efficient modeling approach increasing the computational effort as
little as necessary. For this reason, it will be demonstrated that the turbulence model performs
very well, also only based on experience-based values.

Only when additionally considering 3D turbulence (see Sec. 4.1 for more details) in the atmo-
spheric boundary layer below 1000 m, which is easily possible with this model, the parametrization
described above must be specified accordingly. For instance, the anisotropic scaling parameters in
the horizontal and vertical direction are identical, a = b = c = 1, since the eddies become almost
symmetrical in the boundary layer. Of course, the tropospheric height reduces, H < 1000 m, and
the structure constant is assumed to be smaller (cf. Wheelon 2004, pp 62ff). The approximation
of using the geostropic wind velocity is also not sufficient any more, and the wind velocity v has to
be specified accordingly, e.g., by numerical weather models.
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5.1.2 Data Analysis Setup and Turbulence Parametrization

The model evaluation is performed on a basis of about 2700 traditional VLBI sessions between
1993 and 2014, provided by the IVS (Nothnagel et al. 2015), as well as a series of specially
designed experiments on a local scale. These so-called WHISP (Wettzell HIgh SPeed) sessions only
consist of one short baseline of about 120 m between the 20 m diameter radio telescope and the
north antenna of the twin telescope at the Wettzell Geodetic Observatory, and allow close-range
VLBI observations to characterize local refraction effects. For comparison purposes, another short
baseline between two adjacent VLBI stations located in Hobart, Tasmania (Australia) has been
analyzed for the period of the continuous VLBI campaign 2014. With only a few exceptions, all
sessions are generally intended to last 24 hours. The results of both the global and local scale are
presented in Sec. 5.1.3 and 5.1.4, respectively.

The data analysis setup for both the traditional baselines and local VLBI networks is performed
using the VLBI software package ivg::ASCOT (Artz et al. 2016; Halsig et al. 2017), developed
at the Institute of Geodesy and Geoinformation of the University of Bonn, and following the con-
ventions (2010) of the International Earth Rotation and Reference Systems Service (IERS, Petit
and Luzum 2010). The VLBI target parameters, such as telescope positions or Earth orientation
parameters (EOP), are estimated in a least squares adjustment using a Gauss Markov model (e.g.,
Koch 1999) as described in Sec. 2.2. The parametrization setup for single-session VLBI data anal-
ysis has been chosen with respect to the routine data analysis strategies of the IVS. The coordinates
of the radio telescopes are estimated with respect to the current version of the International Terres-
trial Reference Frame (ITRF2014, Altamimi et al. 2016). In order to eliminate the datum defect,
i.e., to remove the natural VLBI rank deficiency, additional no-net-rotation (NNR) and no-net-
translation (NNT) conditions (e.g., Angermann et al. 2004) have been applied. Polar motion and
UT1-UTC are parametrized with offsets and rates while radio source coordinates are not estimated,
but fixed to their positions in the current version of the International Celestial Reference Frame
(ICRF2, Fey et al. 2015).

In addition to the target parameters, further auxiliary quantities including clock and atmospheric
model correction parameters are estimated as well. The clock parameters are modeled by a sec-
ond order polynomial and additional continuous piece-wise linear functions (CPWLF), i.e., linear
splines (De Boor 1978), with a temporal resolution of 60 min. Finally, the wet component of the
atmospheric delay is estimated in zenith direction and parametrized as CPWLFs with a resolution
of 60 min. In order to map the tropospheric wet delay from zenith to the slant direction (i.e., the
line-of-sight) the mapping functions VMF1 are used, which are derived from a numerical weather
model of the European Centre for Medium-Range Weather Forecast (ECMWF). Further, azimuthal
gradients are estimated with a resolution of 6 hours. In order to stabilize the equation system, the
clock, zenith wet delay and gradient parameters are supplemented by additional constraints which
affect the equation system as weighted pseudo observations.

Concerning the stochastic model of the observations, in the current standard case, the weight matrix
of the Gauss Markov model is a pure diagonal matrix. The same applies for all concepts refining
the stochastic model of VLBI observations, which are introduced in the following sections, except
for the turbulence model. Here, a fully populated variance-covariance matrix is provided describing
the refractivity fluctuations due to turbulent motions in the atmosphere

The model parameters describing the state of the turbulent atmosphere have been kept very simple
and have been chosen to be the same for all stations. A constant structure constant C2

n = 1 ·
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10−14 m−
2
3 is used, the effective tropospheric height is set to H = 2000 m and a constant wind

velocity v = 8 m
s in horizontal direction is assumed. The stretching factors describing the flattening

of the turbulent eddies have been chosen to a, b = 1 and c = 0.01 to consider for anisotropy in the
free atmosphere.

5.1.3 Model Validation with Traditional VLBI Baselines

As already described in Sec. 2.2.2, the standard VLBI stochastic model includes, almost exclusively,
the uncertainties from the VLBI correlation process while correlations between the observations
are, in general, completely ignored. The derived target parameters are not as accurate as indicated
by the corresponding variance-covariance matrix, which is said to be too optimistic (Schön and
Kermarrec 2015).

An indicator to validate the quality of the observation model is given by the χ2 value, which is
defined as the quotient of the a posteriori σ̃2 and the a priori variance factor σ2

0,

χ2 = σ̃2

σ2
0
, (5.19)

and gives an information whether the global test for an adjustment is fulfilled or not. Assuming
χ2 ≈ 1 indicates that the global test is fulfilled, whereas χ2 6= 1 indicates an under- (χ2 > 1) or
overestimation (χ2 < 1) of the variances of the observations σ2

obs(t) or an incorrect modeling of the
system, or a combination of both. The term overestimation is referred to the fact, that the a priori
model is too idealistic in the sense of too enthusiastic initial weights, which is compensated for in the
estimation procedure. Conversely, underestimation would imply a too pessimistic a priori modeling
and too unpromising initial weights. For single VLBI experiments, typical values of χ2 ≈ 3−4 occur
(e.g., Gipson et al. 2008), indicating an underestimation and too optimistic variances. Expressed
in other words, the stochastic model of VLBI observations is not complete.

In the routine data analysis of the IVS, the derived variances are inflated artificially to satisfy
χ2 ≈ 1, leading to more realistic variances of the observations

σ2
obs(t) = σ2

init(t) + σ2
wgt(t), (5.20)

where σ2
init(t) and σ2

wgt(t) describe the initial variances from the correlation process and the ad-
ditional re-weighting term, respectively. Generally, σ2

wgt(t) could be chosen independently for each
observation (Gipson et al. 2008), however, in practice, either the same constant term is added
to the variances of the observations, or a station- or baseline-dependent re-weighting procedure
is applied. In the last decade, a few strategies have been developed for the re-weighting of the
observations. For instance, the most widely spread VLBI software package Calc/Solve (Ma et al.
1990) uses a baseline-dependent approach iteratively re-weighting the observations until χ2 ≈ 1
is fulfilled. A detailed description of the re-weighting algorithm used in Calc/Solve can be found in
Petrov (1998).

In order to evaluate the turbulence model, the derived standard deviations are quantified with
respect to some of the most widely applied concepts in the VLBI community, which are shortly
described in the following (see Tab. 5.1). First, a simple approach without using any kind of ad-
ditional noise term, referred to as reference solution (A) in the following, was defined. The most
simple approach (B) of re-weighting the observations is to add the same constant noise term for
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Table 5.1: Different solution setups including the reference solution and different strategies to refine
the stochastic model of VLBI observations. The mean χ2 and WRMS values over about 2700 VLBI
sessions between 1993 and 2014 are illustrated for all solution setups (Halsig et al. 2016a).

Solution type χ2 [-] WRMS [ps]

A reference solution 2.32 34.53

B constant additional noise: 1 cm 0.86 42.46

C Gipson et al. (2006-2008) 1.13 36.24

constant and elevation-dependent noise

D turbulence-based correlations 1.18 34.93

all observations and sessions, which is chosen to approximately 30 ps, or about 1 cm in metric
dimensions. In this case, the re-weighting term σ2

wgt(t) in Eq. (5.20) can be written as

σ2
wgt(t) = σ2

const.(t) (5.21)

However, this simple strategy is applied here not only for validation purposes, it is common practice
in some widely spread VLBI software packages, as for instance, the Vienna VLBI Software (VieVS,
Böhm et al. 2012). The third strategy (C) distinguishes between different sources of observational
noise: a constant and an elevation-dependent noise term are added to the standard deviations, which
correspond to the clock and troposphere model parameter, respectively (Gipson 2007; Gipson
et al. 2008). Mathematically, this yields

σ2
wgt(t) = σ2

clo(t) + σ2
atm(t) ·mf (ε) , (5.22)

where mf (ε) defines a mapping function, which, in this context, is simplified to 1/sin ε. The order of
magnitude of both components is related to the results presented by Gipson (2007) and Gipson
et al. (2008). There are two reasons why the baseline-dependent re-weighting method of Petrov
(1998) was turned off for all solutions. First, the observations are re-weighted iteratively until
χ2 ≈ 1, which, however, is supposed to serve as a suitability criteria for the stochastic model of
the corresponding refinement strategy. Second, Gipson et al. (2008) demonstrated that applying
the re-weighting option in addition to the elevation-dependent noise term degrades the solution.
Finally, the turbulence model developed in this thesis (D) is used according to Eqs. (5.16) and
(5.17) to modify the stochastic model of VLBI observations. In contrast to all the other strategies,
the observations are not weighted by any additional noise terms in case of the turbulence model.
In the following figures, the reference solution is always illustrated as black crosses, and purple
triangles are referred to the simple approach adding 1 cm constant noise terms for all observations.
The results corresponding to Gipson et al. (2008) are marked as green circles, and, finally, the
turbulence-based solution is represented by brown stars.

As already described, the derived target parameters are not as accurate as indicated by the corre-
sponding variance-covariance matrix. Refining the stochastic model should lead to larger standard
deviations, which are, however, more realistic. The traditional stochastic model is augmented by the
variance-covariance matrix based on the turbulence model describing high frequency refractivity
fluctuations in the atmosphere. Through this approach, the standard deviations of the estimated
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parameters become more realistic, as depicted exemplarily in Fig. 5.1 for the 15-day continuous
VLBI campaign in October 2002 (CONT02). Here, the standard deviations of the vertical com-
ponent of the station coordinates are illustrated as differences between the solutions refining the
stochastic model described above, including the routine data analysis strategy of the IVS. The situ-
ation looks very similar for both horizontal components (not shown here). According to Böckmann
et al. (2010), the average noise level of about 115 IVS sessions in terms of the weighted root mean
square (WRMS) error of single session position estimates, computed after removing the offset, rate
and annual signal is about 4.5 mm for the horizontal and about 6.5 mm for the vertical component.
Using a modified stochastic model, i.e., either the turbulence-based model or the Gipson et al.
(2008) model, the level of uncertainty is getting closer to these values with very few exceptions,
assuming that the noise level becomes more realistic (Halsig et al. 2016a).
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Figure 5.1: Differences in standard deviations of the vertical component of the station coordinates
between a simple solution with a constant additional noise term (purple triangles), the Gipson
et al. (2008) approach (green circles) and the turbulence-based solution (brown stars) with respect
to the reference solution (black crosses).

The atmospheric turbulence model is first evaluated for VLBI experiments on traditional baselines
between a few thousand kilometers. For this purpose, about 2700 VLBI sessions between 1993 and
2014, provided by the IVS, are used, which include several observation campaigns consisting of
different network geometries. For all available VLBI sessions, the different strategies have been
processed in order to evaluate the fully populated turbulence-based variance-covariance matrix.

The quality of the different solution setups is quantified by two statistical criteria. First, the χ2 value
defined in Eq. (5.19) gives an information whether the stochastic properties of VLBI observations
are modeled sufficiently, with χ2 ≈ 1 indicating that the deterministic and stochastic model
assumptions are valid. Second, the WRMS of post-fit residuals ri (where ri = −vi with the vi
defined in Eq. 2.11) can be formulated as

WRMS =

√√√√√∑i r
2
i

1
σ2
i∑

i
1
σ2
i

. (5.23)
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The χ2 values and WRMS of post-fit residuals are depicted in Fig. 5.2(a) and Fig. 5.2(b), respec-
tively. In addition, Tab. 5.1 shows the WRMS of post-fit residuals of the delay observables as well
as the χ2 values as mean values per solution setup over the 2700 VLBI sessions. Compared to the
reference solution (black, χ2 ≈ 2-5), the χ2 values are generally reduced as soon as an arbitrary re-
finement strategy is used. Although only a very simple model is used in case of the easiest approach
(purple), the χ2 values are quite close to one. However, considering the mean values in Tab. 5.1, it
becomes evident that here χ2 < 1, still indicating an overestimation in the data analysis. Positive
results can be obtained by the turbulence-based solution (brown) and the Gipson et al. (2008)
approach (green), where the χ2 values are approximately one indicating a realistic adjustment, but
they are still slightly too high. However, in case of the turbulence model, this is not surprising
when recalling the fact that only atmospheric effects are considered in the stochastic model, which
are the dominant but not sole error source in VLBI data analysis. For instance, the uncertainties
of clock behavior are neglected in the stochastic model. Additionally, the parameters describing
the atmospheric turbulence, C2

n, H, a, b, c, and v depend on a experience-based parametrization
and are not taken into account as station-dependent estimates (see the more detailed discussion in
Sec. 5.1.5).
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Figure 5.2: (a) χ2 values and (b) WRMS of post-fit residuals for about 2700 VLBI sessions be-
tween 1993 and 2014 and different solution setups including a reference solution (black crosses), a
simple solution with a constant additional noise term (purple triangles), the Gipson et al. (2008)
approach (green circles) and the turbulence-based solution (brown stars). The grey dashed line in
(a) represents χ2 = 1 (Halsig et al. 2016a).
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Considering the WRMS of post-fit residuals, it is apparent that, compared to the other refinement
strategies, the use of the new turbulent variance-covariance matrix produces the lowest WRMS of
post-fit residuals. Expressed in numbers and, for instance compared to the Gipson et al. (2008)
approach, the turbulence-based solution improves by 9.5 ps in quadrature. Nevertheless, both solu-
tions are much better than the solution adding constant noise terms only, where the mean WRMS
value is degraded by about 24 ps and 22 ps in quadrature with respect to the turbulence-based and
Gipson et al. (2008) approach, respectively. Surprisingly perhaps, the WRMS of post-fit residu-
als for the reference solution are on the same level as for the turbulence-based solution. However,
keeping in mind that the χ2 values are too high by the factor of two or even more, it should be
discouraged to use the different validation criteria separately.
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Figure 5.3: Baseline length repeatabilities for about 2700 VLBI sessions between 1993 and 2014
and different solution setups including a reference solution (black crosses), a simple solution with a
constant additional noise term (purple triangles), the Gipson et al. (2008) approach (green circles)
and the turbulence-based solution (brown stars) (Halsig et al. 2016a).

Finally, the baseline length repeatabilities are introduced, which can be regarded as the standard
deviation for an individual baseline after removing a linear trend from a time series of baseline
lengths (e.g., Schuh and Böhm 2013), and which is common practice in order to measure the
accuracy of baseline length determinations. Fig. 5.3(a) shows the baseline length repeatabilities for
all baselines, which occur in at least 30 sessions, for the same 2700 VLBI sessions and solution
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setups as used before. An exponential trend is fitted to the data, which is included as solid lines in
Fig. 5.3(a). Again, the turbulence-based solution and the approach by Gipson et al. (2008) lead to
the best results. For a better visualization, the baseline length repeatabilities shown in Fig. 5.3(a)
are calculated as differences with respect to the reference solution. The result is illustrated in
Fig. 5.3(b), where negative WRMS differences indicate an improvement, whereas positive values
show a degradation in baseline length repeatabilities. It is evident, that including only a constant
noise term to the variances of the observations, the results are getting better or worse to the same
extent. Contrary, using the turbulence-based model as well as the Gipson et al. 2008 model leads
to a clear improvement in (almost) all cases. Expressed in numbers: compared to the reference
solution, the baseline length repeatabilities improve for 50.3% of all baselines by at least 1 mm
when using a turbulence-based stochastic model, whereas no baselines lead to a degradation by
at least 1 mm. 49.7% of the baselines remain unchanged. A quite similar result is obtained when
comparing the turbulence-based solution to the solution at constant noise level (improvement of
35.6% of the baselines versus degradation of 3.4% of the baselines by at least 1 mm; 61% of the
baselines remain unchanged), which, as already stated, is not unusual in practice.

It was demonstrated, that incorporating refractivity fluctuations due to turbulent motions into
the stochastic model of VLBI observations, the solution improves substantially. The quality of the
estimated parameters increases sharply with respect to the baseline length repeatabilities. When
using the turbulence-based solution in contrast to the routine IVS solution or a solution based
on an empirical model, up to 50 % of all baselines are improved by at least 1 mm, whereas only
a few baselines are degraded. Concerning the WRMS of post-fit residuals, the turbulence-based
solution improves on average by 9.5 ps in quadrature compared to the empirical model, and even
24 ps in quadrature compared to the reference solution (cf. Tab. 5.1). Finally, the χ2 values are
almost always close to one indicating a realistic adjustment or, more precisely, an almost complete
stochastic model of the observations. Only in a few cases and individual experiments χ2 ≈ 1 is not
satisfied. This issue has to be investigated in more detail in the future, but nevertheless, possible
reasons will be briefly discussed in Sec. 5.3.

5.1.4 Model Validation in a Local VLBI Network

In addition to the traditional VLBI networks, the turbulence model was applied to two short
baselines in Hobart, Australia, and Wettzell, Germany. Since the initial turbulence model of Ker-
marrec and Schön (2014) was originally developed for small-scale GNSS networks, these sessions
provide an opportunity to validate the VLBI-specific turbulence model for local VLBI networks as
well.

The first two out of a total of seven specially designed WHISP sessions (WHISP1 and WHISP2;
see Ch. 6) observed on 27 August 2014 and 23 October 2014, respectively, were analyzed. Both
sessions only consist of one short baseline between the 20 m radio telescope and the north antenna
of the twin telescope at the Wettzell Geodetic Observatory. Tab. 5.2 lists the χ2 values and WRMS
of post-fit residuals for both sessions. The results vary from the findings of the global baselines.
The χ2 values derived from the reference solution are approximately 1.3 and 1.8, and, therefore,
much smaller than in the traditional case. Introducing a constant term to the variances of the
observations or following Gipson et al. (2008), the χ2 values are clearly too small, particularly
in case of the WHISP1 session (χ2 < 0.5), leading to an overestimation of the variances of the
observations in these solutions. In contrast, the turbulence model always leads to results with
χ2 ≈ 1. Regarding the WRMS of post-fit residuals, the situation appears similar to the global
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Table 5.2: Different solution setups including the reference solution and different strategies to refine
the stochastic model of VLBI observations. The χ2 and WRMS values for two specially designed
WHISP sessions on 27 August (WHISP1) and 23 October 2015 (WHISP2) are illustrated for all
solution setups (Halsig et al. 2016a).

Solution type χ2 [-] WRMS [ps]

WHISP1 WHISP2 WHISP1 WHISP2

A reference solution 1.27 1.76 14.23 22.26

B constant additional noise: 1 cm 0.32 0.48 15.01 23.29

C Gipson et al. (2006-2008) 0.47 0.79 13.61 23.51

constant and elevation-dependent noise

D turbulence-based correlations 0.96 1.02 11.55 22.53

case, at least for WHISP2. In contrast, the WRMS of post-fit residuals for WHISP1 are sharply
improved using the turbulence-based solution in comparison with all other approaches including
the reference solution. The turbulence model will also be used for a more detailed evaluation of the
WHISP sessions in Ch. 6.

The results obtained for the two WHISP sessions have been confirmed by analyzing a second short
baseline between the two adjacent VLBI stations in Hobart, Tasmania (Australia) observed during
the continuous VLBI campaign 2014 (CONT14). The χ2 values for the same set of solutions is
shown in Fig. 5.4(a). Concerning the global test, the results look similar to the findings obtained
for the WHISP sessions in case of the simple solution with a constant additional noise term (purple
triangles), where the solution leads to an overestimation of the variances of the observations, and
the turbulence model (brown stars), where χ2 ≈ 1 is satisfied. In contrast, the approach by Gipson
et al. (2008) acts different for the Hobart experiment, because the solution leads, in contrast to
the WHISP baseline, to an underestimation of the variances of the observations. The WRMS of
post-fit residuals, on the other hand, confirm the previous findings (see Fig. 5.4(b)).

It has been demonstrated that the turbulence-based stochastic information introduced in this thesis
leads to a clear improvement of the solution. For all short baselines, χ2 ≈ 1 is fulfilled indicating
a realistic adjustment and an almost complete stochastic model. In contrast, most of the other
refinement strategies either lead to an overestimation or underestimation, which is not even identical
for a certain strategy applied to different baselines. Concerning the WRMS of post-fit residuals, the
turbulence-based solution provides the best results for almost all cases. While in the global case
the Gipson et al. (2008) method and the turbulence based method show a similar performance,
here the application of the latter is clearly advantageous.
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Figure 5.4: (a) χ2 values and (b) WRMS of post-fit residuals for the short baseline in Hobart, Aus-
tralia, observed during the CONT14 campaign in May 2014 and different solution setups including
a reference solution (black crosses), a simple solution with a constant additional noise term (purple
triangles), the Gipson et al. (2008) approach (green circles) and the turbulence-based solution
(brown stars). The grey dashed line in (a) represents χ2 = 1 (Halsig et al. 2016a).
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5.1.5 Influence of the Turbulence Parametrization

As already stated in Sec. 5.1.2, the determination of the input parameters for the turbulence model
is challenging. Although it has been demonstrated that the turbulence model performs very well
only based on experience-based values for C2

n, H, v and a, b, c, the influence of the turbulence
parameters on the VLBI solution is briefly discussed in this section.
For this purpose, the experiments of the two-week continuous VLBI campaign 2002 (CONT02)
have been analyzed seven times with respect to the data analysis setup described in Sec. 5.1.2, only
differing in the determination of the turbulence parameters. The different data analysis settings
are summarized in Tab. 5.3. The experience-based parametrization used in the previous sections
is described by setup 1, which is referred to as the reference solution in the following. The other
parameter settings are chosen in a way that in each case one turbulence parameter is modified with
respect to the reference parametrization (highlighted in Tab. 5.3). In this context, setup 2 leads to a
modification of the structure constant, while a change of the effective tropospheric height is covered
by setup 3 and 4, respectively. The anisotropic scaling factors are changed in setup 5 and 6, and
finally, a change in the wind velocity is performed in setup 7. Additionally, a solution without using
the turbulence model (denoted by solution (A) in the previous sections) is provided as a general
reference (setup 0).

Table 5.3: Different data analysis settings with respect to the turbulence parameters: the structure
constant C2

n, the effective tropospheric height H, the anisotropic scaling factors a, b, c, and the
wind velocity v.

Setup: C2
n [m

2
3 ] H [m] a, b [−] c [−] v [m

s ]

0 - - - - -

1
(reference)

1 · 10−14 2000 1 0.01 8

2 2 · 10−14 2000 1 0.01 8

3 1 · 10−14 1000 1 0.01 8

4 1 · 10−14 3000 1 0.01 8

5 1 · 10−14 2000 1 1 8

6 1 · 10−14 2000 1 0.1 8

7 1 · 10−14 2000 1 0.01 4

In order to investigate the influence of the turbulence parameters on the individual VLBI session,
the χ2 values are determined for all experiments and parametrization settings and illustrated in
Fig. 5.5(a). The turbulence-based reference solution (setup 1) is depicted as red dots, while the
reference solution without using a turbulence model (setup 0) is represented in black. The solution
with respect to a modified structure constant (setup 2) is given by green dots, and a change of
the effective tropospheric height is visualized by light (setup 3) and dark blue (setup 4) dots.
Assuming more symmetric eddies as represented by the relation of the anisotropic scaling factors
is represented by purple (setup 5) and magenta (setup 6) dots. Finally, a reduction in the wind
velocity is visualized by orange dots.
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Figure 5.5: The influence of different turbulence parametrizations on the χ2 values and the VLBI
target parameters in terms of the baseline length repeatabilities, plotted as difference with respect
to the turbulence-based reference solution (setup 1; red). The black dots (setup 0) denote a solution
without using a turbulence model. The solution with a modified structure constant (setup 2) is given
by green dots, and a change of the effective tropospheric height is visualized by light (setup 3) and
dark blue (setup 4) dots. A modification of the anisotropic scaling factors is represented by purple
(setup 5) and magenta (setup 6) dots. Finally, a reduction in the wind velocity is visualized by
orange dots (almost fully covered by the red dots).
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The reference turbulence solution generally satisfies the condition χ2 ≈ 1, while the solution without
applying the turbulence model leads to χ2 ≈ 2− 3, which fits very well the findings summarized in
Tab. 5.1. Increasing the structure constant (2·10−14 instead of 1·10−14; green), the χ2 values become
smaller, indicating an underestimation of the variances of the observations. A change in the effective
tropospheric height results in a minor increase or decrease in the derived χ2 values, depending on
whether reduce (1000 m instead of 2000 m; dark blue) or increase the tropospheric height (3000 m
instead of 2000 m; light blue). Considering the turbulent eddies to be more symmetric, and therefore,
ignoring the requirement of anisotropy, leads to a degradation of the solution: the smaller the ratio
between the vertical anisotropic scaling parameters c to the horizontal ones a and b, the larger the
increase of the χ2 value. Finally, reducing the wind velocity from 8 to 4 m

s has hardly any effect
on the χ2 values (the orange dots are almost fully covered by the red dots). It is evident, that the
modification of the turbulence parameters seems to behave as a scaling effect in the χ2 values of
the individual VLBI sessions.

The influence of the turbulence parameters is also evaluated with respect to the VLBI target pa-
rameters in terms of the differences in baseline length repeatabilities with respect to the turbulence-
based reference solution (setup 1; red). Using the same color codes as defined above, the result is
illustrated in Fig. 5.5(b), where positive values denote a degradation while negative values repre-
sent an improvement. It is evident, that the different parametrization settings show a more random
behavior in contrast to the scaling effect observed in case of the χ2 values. Compared to the
turbulence-based reference solution, the baseline length repeatabilities decrease for the adjustment
without applying the turbulence model (black), which however could have been expected based on
the findings of the previous sections, but also for both solutions increasing the anisotropic scaling
factor c (purple and magenta). Again, this is clear proof that the turbulence medium can not be
assumed as an isotropic medium. In contrast, the modification of the structure constant leads to an
improvement in terms of baseline length repeatabilities. However, keeping in mind, that the solution
showed an underestimation of the variances of the observations, this parameter setting seems not
be optimal. The influence of the effective tropospheric height is comparatively small, and, finally,
the reduction of the wind velocity has again no considerable effect on the results.

In general, the order of magnitude in the differences of baseline length repeatabilities is comparably
small in all cases, expect for the modification of the anisotropic scaling factors, which leads to a clear
degradation, and the structure constants, which lead to an improvement in terms of baseline length
repeatabilities, but shows a worse behavior concerning the χ2 values. In conclusion, this analysis
confirms the assumption, that, first, the turbulence parameter is considerably less sensitive to the
turbulence parameters than other turbulence models, as for instance, the SIGMA-C model, which is
applied to VLBI observations in Sec. 5.2, and second, the experience-based model parametrization
is sufficient in case of VLBI observations.

5.1.6 Performance and Computational Costs

Usually, the use of a fully populated variance-covariance matrix in the stochastic model represents
the restrictive factor keeping the computational costs small. In this regard, several VLBI sessions
of different network volumes and, therefore, with different quantity of data are used to validate the
initial performance of the turbulence model.

For the single-baseline VLBI Intensive sessions of 1 hour duration, which are almost observed daily
for continued UT1 determinations, the computational effort is practically identical to the standard
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case of the IVS. This relates as well to small networks consisting of three stations and about
400 observations. Regarding for instance the WHISP sessions with over 1000 observations on one
baseline (e.g., WHISP1-3), there is hardly no difference between the solutions with and without
turbulent correlations. For the WHISP sessions observing in a triangular network (e.g., WHISP5-7),
the computational costs are already slightly increasing by a factor of approximately 1.5 to 2, if the
full parameter set (station positions, EOPs, atmosphere and clock correction parameters with piece-
wise linear intervals of 30 to 60 minutes, and atmospheric gradients) is estimated. When increasing
the number of observation (i.e., 5.000 and more), the additional computational time increases up
to the factor 5. In this case, the turbulence-based solution also requires a little more time than
the other strategies taken for validation purposes (i.e., the Gipson et al. (2008) model and the
approach with constant additional noise), which is of course due to the correlations only taken into
account by the turbulence-based model. However, the maximum computational effort is still not
higher than 60 seconds in these cases. Thus, the turbulence model is feasible for common VLBI
sessions without introducing too much additional computational effort.

However, for future applications, particularly in case of the new VGOS (VLBI Global Observing
System, Niell et al. 2013) networks providing tenfold increased number of observations, and there-
fore, a dramatically increased data volume, the performance of the initial strategy is not sufficient
anymore. VGOS-like experiments are given by, for instance, the continuous VLBI campaign in 2014
(CONT14), providing up to 20.000 observations and more per session. For such applications, further
optimization strategies have to be found to adapt the model to the new challenges. One very simple
possibility would be the use of finite variance-covariance matrices, when assuming that the spatial
and temporal correlations are restricted to certain distances and time periods, respectively. This
leads to a block diagonal structure instead of a fully populated variance covariance matrix. This
could be achieved without loss of generality, since the covariances of observations with very large
temporal or spatial distances are numerically zero anyway. This concept is already implemented in
ivg::ASCOT within this thesis allowing for a first reduction of the computational effort.
Further potential savings of computational costs could be achieved by introducing a parallel com-
puting system. For instance, the covariance matrices for the individual stations could be calculated
separately and subsequently merged into an overall variance covariance matrix for all observa-
tions. For this purpose, different functionalities for the structure of the turbulence model have been
already implemented in ivg::ASCOT in the context of this thesis. The turbulence-based variance-
covariance matrix can either be created together for all stations, or calculated separately for each
individual station in a first step and combined to one overall variance covariance matrix in a second
step. Both approaches deliver the same results. Although the computational effort is, of course,
increasing for the alternative implementation in a stand-alone-mode, the functionality already lays
the foundation for parallel computing, which is generally already possible with ivg::ASCOT.
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5.2 An Alternative Model Describing Turbulence in VLBI

As a first step towards the development of the turbulence model presented in Sec. 5.1, also an al-
ternative approach describing atmospheric turbulence in VLBI data analysis has been implemented
and evaluated. The SIGMA-C model (Schön and Brunner 2008a; Schön and Brunner 2008b,
see Sec. 4.3) initially developed for GNSS carrier phases was modified for VLBI observations to
describe atmospheric turbulence in a physically reliable sense and to include spatial and temporal
correlations between the observations, which are induced by turbulent motions in the neutral atmo-
sphere. The turbulence model is also based on the Kolmogorov turbulence theory and the distance
separating the two signal rays, and is formulated in a power spectrum representation. Similar to
the turbulence model presented in Sec. 5.1, the atmosphere can be described as an inhomogeneous
and anisotropic medium, which is not the case for most other approaches modeling atmospheric
turbulence.

5.2.1 Model Validation with Continuous VLBI Observations

In order to perform a first evaluation of the VLBI-specific SIGMA-C model, the turbulence model
is applied to the continuous VLBI campaign 2011 (CONT11), which provides continuous VLBI
observations over two weeks with an almost identical network over the whole period. CONT ses-
sions benefit from the high number of observations compared to the routine 24 h sessions and are
supposed to represent the next generation of VLBI observations (VGOS). For validation purposes,
two reference solutions are generated only differing in the application of the baseline-dependent
re-weighting procedure (Petrov 1998, see Sec. 5.1.1). The VLBI parameters are determined in a
classical least squares adjustment with standard modeling and parameter estimation settings fol-
lowing the IERS 2010 conventions (Petit and Luzum 2010). While the source positions are fixed
to their positions in the current version of the International Celestial Reference Frame (ICRF2, Fey
et al. 2015), telescope coordinates are estimated. A no-net-translation (NNT) and a no-net-rotation
(NNR) condition with three equations each are formulated as constraints to remove the natural
VLBI rank deficiency and to prevent the system of equations from singularities (e.g., Angermann
et al. 2004). The clock behavior is modeled by a quadratic polynomial and additional continuous
piece-wise linear functions (CPWLF) with a temporal resolution of 60 minutes, and the zenith wet
delays and troposphere gradients are parametrized as CPWLF with a temporal resolution of 60
minutes and 6 h, respectively. In order to stabilize the equation system, the clock and tropospheric
parameters are supplemented by further constraints in the form of pseudo observations. The map-
ping functions VMF1 are used to relate the atmospheric parameters from zenith to the line of
sight.

While the two reference solutions have to be supplemented by an arbitrary re-weighting procedure,
in case of turbulence modeling the re-weighting option is completely turned off, and the stochastic
model is purely derived from the initial correlator weights and the turbulence model, leading to a
fully populated variance-covariance matrix.

All solutions are compared in terms of baseline length repeatabilities measuring the accuracy of
baseline length determinations. The baseline length repeatabilities are calculated for the solution
re-weighting the observations (setup 1, black diamonds), the solution turning off the re-weighting op-
tion (setup 2, dark gray points), and the turbulence-based adjustment (setup 3, dark gray squares).
The results are depicted in Fig. 5.6(a). Both solutions using strategies to refine the stochastic model
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Figure 5.6: (a) Baseline length repeatabilities for a least squares adjustment with (setup 1, black
diamonds) and without (setup 2, dark gray points) re-weighting the observations as well as for a
least squares adjustment with turbulence modeling (setup 3, dark gray squares). (b) RMS differences
between setup 1 and 3, where black bars show an improvement, dark gray bars denote a degradation
and light gray bars indicate unchanged baseline lengths (Halsig et al. 2014).
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are quite similar and the root mean squared (RMS) error for the baseline length repeatabilities
decreases sharply compared to the solution without additional weights in any form.

In order to go into more detail, the RMS differences between the solution re-weighting the obser-
vations and the solution modeling turbulent conditions are presented in Fig. 5.6(b), where black
bars indicate an improvement, light gray bars denote a degradation and light gray bars indicate
unchanged baseline lengths. Expressed in figures, about 25% of the baselines are improved by at
least 1 mm, whereas 12% get worse by at least 1 mm and 63% remain unchained.

5.2.2 The Influence of Different Turbulence Parameters

In a second validation step, the configuration options of the turbulence model are analyzed
in more detail. Special consideration is given to the input turbulence parameters necessary
for the model, particularly the structure constant C2

n as a general measure for the strength of
turbulence and the effective tropospheric height H. Different solution setups have been processed
with the same analysis settings described above but a different turbulence parametrization,
and are summarized in Tab. 5.4. The structure constant is either assumed to be equal for each
station (setups 3 and 4) or estimated from radar measurements, radiosonde data or GNSS data
(setups 5, 6 and 7) as described by Nilsson et al. (2010). The station-dependent C2

n values used in
this study (cf., Halsig et al. 2014) are taken from Nilsson et al. (2010) or Nilsson et al. (2014).

Table 5.4: Solution setups w.r.t. the Calc/Solve re-weighting option (Petrov 1998) and the
parametrization of the structure constant (equal for all stations or station-dependent estimates)
and the tropospheric effective height (equal for all stations or station-dependent estimates). The
mean χ2 value and WRMS of post-fit residuals for the delay observables are given for the CONT11
interval (Halsig et al. 2014).

Setup re-weighted C2
n H χ2 [-] WRMS

[mm]

1 YES - - 0.93 25.07

2 NO - - 3.68 26.32

3 NO C2
n = 1 · 10−14 m−

2
3 1 km 3.25 17.22

4 NO C2
n = 1 · 10−14 m−

2
3 2 km 2.99 16.50

5 NO Nilsson et al.
(2014)

2 km 2.32 14.55

6 NO Nilsson et al.
(2010)

Nilsson et al.
(2010)

2.27 14.39

7 NO Nilsson et al.
(2014)

2.5 km 2.17 14.01

The quality of the different solution setups is again quantified by the χ2 value and the WRMS of
post-fit residuals. The χ2 value and the WRMS of post-fit residuals of the delay observables are
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depicted in Fig. 5.7(a) and Fig. 5.7(b), respectively, and the mean values over the period of the
CONT11 campaign are given in Tab. 5.4.

Since additional noise is iteratively added to the observations during the re-weighting strategy (black
diamonds), the χ2 are close to one, while turning off the re-weighting option (setup 2, dark gray
points) leads to typical values of χ2 ≈ 3− 4 as also reported by Gipson et al. (2008). Compared
to this reference value, the solutions with constant atmospheric parameters (setup 3, dark gray
squares and setup 4, light gray triangles, respectively) lead only to a little decrease in the χ2 value.
Using estimated structure constants (setup 5, black circles; setup 6, black triangles, setup 7, light
gray diamonds) sharply reduces the χ2 value. However, for all cases the χ2 values are still slightly
too high, concluding that the deterministic or stochastical model assumptions are not optimal. For
the same solution setup, Fig. 5.7(b) shows the weighted root mean squared scatter per solution
based on the post-fit residuals. It is obvious that for some solutions, particularly using the more
realistic C2

n values (setup 5, black circles; setup 6, black triangles; setup 7, light gray diamonds),
the WRMS of post-fit residuals decrease sharply compared to the reference solution defined above.
There are only small differences in the three solution types using estimated C2

n values.
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(a)

(b)

Figure 5.7: Validation of the different solution parametrizations for the CONT11 campaign: (a) χ2

values and (b) WRMS of post-fit residuals of the delay observables (Halsig et al. 2014).
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5.3 Discussion

One main objective of this thesis is to ensure an operationally sufficient method to deal with
correlations between the observations due to high-frequency refractivity variations in the neutral
atmosphere as the dominant source of uncertainty in the VLBI data analysis (objective 1). In order
to reconcile both objectives, an atmospheric turbulence model has been developed in this thesis.

As a first step towards the development of the final turbulence model presented in Sec. 5.1, the
SIGMA-C model has been implemented and evaluated as an alternative approach describing atmo-
spheric turbulence in VLBI data analysis.
It has been demonstrated that the WRMS of post-fit residuals have been reduced sharply compared
to two reference solutions with and without applying a method (Petrov 1998) to re-weight the
observations. This applies in particular when using appropriate estimates for the structure constant
and the effective tropospheric height, which can be determined, e.g., from GPS data. But even in
case of only using model or experience-based parameters for C2

n and H, the WRMS of post-fit
residuals still decreases compared to the reference solutions. In terms of baseline length repeatabil-
ities, the turbulence-derived solutions improve sharply compared to the least squares adjustment
without re-weighting the observations, but only minor improvements are observed with respect to
the solution turning on the re-weighting option. Although the χ2 values decrease for the new ap-
proach, they are still little too high (χ2 ≈ 2 − 3 compared to χ2 ≈ 3 − 4 for the case without any
re-weighting) indicating that the variances of the observations are still underestimated or there are
still some other terms that are not adequately modeled. Concluding, the SIGMA-C model might
not work as well as expected for VLBI data analysis, at least with respect to the statistical tests.
Due to the necessary volume of integrations the SIGMA-C model is also mathematically difficult
to handle and leads to large computational costs.

The two shortcomings have been already addressed by the preferred turbulence model introduced
in Sec. 5.1. Applied to VLBI observations, this model leads to a better overall performance in VLBI
data analysis.

It has been demonstrated that the turbulence-based model is generally suitable for different net-
work geometries and can be used for traditional long baselines as well as for local approaches. The
quality of the estimated parameters increases sharply with respect to the baseline length repeatabil-
ities, evaluated for over 2700 VLBI sessions provided by the IVS. When using the turbulence-based
solution in contrast to the routine IVS solution or a solution based on an empirical model, up to
50 % of all baselines are improved by at least 1 mm, whereas only a few baselines are degraded.
A clear solution improvement with respect to additional statistical validation criteria has been
demonstrated. The WRMS of post-fit residuals generally decreases for the majority of VLBI ex-
periments, in particular for observations on short baselines. The mean χ2 values are approximately
between 1 and 1.2 in all cases, indicating a complete or almost complete stochastic model of VLBI
observations.

This does not apply to the other approaches evaluated here, independent of using only a constant
additional noise term or empirical models as, for instance, provided by Gipson et al. (2008). It
is worth mentioning that, of course, the amount of re-weighting the observations in these models
could be varied individually to always guarantee χ2 ≈ 1. A similar approach was suggested by
Petrov (1998), who proposed a baseline-dependent procedure for an iterative re-weighting of the
observations until χ2 ≈ 1. However, it needs to be clearly pointed out that there is no general
validity on the amount of additional noise which needs to be added for the individual session,
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baseline, or station. Generally, the different models either lead to an over- or underestimation of
the variances of the observations. The behavior is not necessarily identical, or even similar for a
specific strategy applied to different VLBI experiments. Solely the turbulence-based solution is able
to generally allow χ2 ≈ 1 in global and local networks.

It is worthwhile to note that also for the turbulence case the results on local baselines are even bet-
ter than those for global applications. Keeping in mind, that of all strategies refining the stochastic
model of VLBI observations, only the turbulence model considers correlations between the obser-
vations in a proper way. Consequently, it becomes obvious that the differences between the results
of the solution setups are larger in local VLBI applications where high spatial and temporal corre-
lations are found. Contrary, traditional VLBI baselines between two stations are very large ranging
up to several hundreds of kilometers, and the spatial correlations disappear almost completely and
only temporal correlations between successive observations are present. Due to the fact that the
same turbulence parametrization is used at both stations of a baseline, it could be expected that
this assumption is valid in local but not in global applications. For instance, it is well known that
the weather conditions for the VLBI station Tsukuba, Japan, are quite severe (e.g., Pany et al.
2011), and a larger structure constant might be assumed. The consequence would however be, that
the structure constant has to be chosen or even estimated with respect to the current weather
conditions, which conflicts the requirement of an operationally efficient modeling approach. Al-
though the stochastic model might be further improved, it may be doubted that only modifying
the turbulence parametrization could completely explain this issue. Instead, it is presumed, that
refractivity fluctuations in the neutral atmosphere are known to be the dominant but not only
uncertainty sources in VLBI data analysis. Please note that, at this stage, the stochastic model of
VLBI observations now consists of uncertainties derived from the VLBI correlation process and the
atmospheric turbulence model. It might be worth to investigate the influence of other uncertainty
sources such as the stability of the VLBI system. This includes, first of all, the clock behavior, but
also addresses certain issues occurring during the signal recording and correlation process. Since,
however, stability issues can be better quantified by close-range VLBI observations, this topic will
be further discussed within the framework of the WHISP project in Ch. 6. Additionally, the influ-
ence of the atmospheric gradients, for which the short baselines are not sensitive, on the turbulence
model needs to be further investigated.

One major achievement is the fact that the application of the turbulence model is operationally
efficient and appropriate for routine mass analysis of VLBI sessions. The computational costs are
kept to a limited extent for common VLBI sessions, which is a not inconsiderable factor in the
data analysis. For future applications, such as the upcoming VGOS networks, further optimization
strategies have to be found to adapt the model to the new challenges. First measures have already
been initiated in ivg::ASCOT to address the identified issues in the context of this thesis..

In conclusion, incorporating the atmospheric turbulence model into the stochastic model of geode-
tic VLBI data analysis leads to an improvement of the solution with regard to the baseline length
repeatabilities, statistical tests, the WRMS of post-fit residuals, and more realistic standard de-
viations of the target parameters. The turbulence model is operationally efficient, particular for
current VLBI networks, and appropriate for routine mass analysis of VLBI sessions (objective 1).
The approach is now a standard component of ivg::ASCOT.
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6. Case Study: The WHISP Project
Geodetic VLBI observations with radio telescopes, which are located in an immediate neighborhood,
provide an optimal experimental setup for investigations on atmospheric refraction and system
stability issues, but have never been realized so far. Up to now, the stability of observing systems
and the impact of atmospheric refraction effects in geodetic and astrometric VLBI applications has
always been characterized through baselines with lengths of at least a few hundreds of kilometers.

The commissioning phase of the worldwide first twin radio telescope at the Geodetic Observatory
Wettzell in the Bavarian Forest in Germany (Schüler et al. 2015) now allows investigations of
atmospheric refraction and system stability issues in the context of geodetic VLBI observations with
radio telescopes on a local scale. Together with the 20 m diameter radio telescope, two identical
radio telescopes of 13.2 m diameter will form the first geodetic cluster of this type providing the
basis for such close-range VLBI observations. In particular, the extremely high slewing rates of
12 degrees per second in azimuth and 6 degrees per second in elevation of the twin telescope will
allow for a much improved sampling of the atmosphere. The completion of the first of the two new
telescopes at the Wettzell Geodetic Observatory already provides an ample opportunity to carry
out VLBI test observations on a baseline with a length of only about 120 m. This new opportunity
is exploited within this thesis work through dedicated observing sessions.

Before refraction studies can be approached, some investigations are necessary to characterize the
influence of the stability of the VLBI system. First of all, the estimation of zenith wet delay (ZWD)
parameters and the interpretation of the residuals in the VLBI data analysis are closely linked
to the stability of the hydrogen maser clocks feeding the local oscillators and other necessary
electronics. While the telescopes are generally separated too far from each other so that a direct
clock comparison is impossible, the favorable situation of co-located antennas now occurs at Wettzell
to overcome this limitation.

A series of dedicated local and European VLBI sessions, referred to as WHISP (Wettzell HIgh
SPeed) sessions, have been designed for quite different purposes (see Sec. 6.1 for more details). At
first, sessions employing only the short baseline between the two radio telescopes at Wettzell have
been observed. Those allow investigations on differential atmospheric parameters and, therefore,
on refractivity variations in the neutral atmosphere. Then, the scenario was augmented by another
VLBI station in Onsala, Sweden. The resulting European triangle is, on the one hand, used to
compare atmospheric time series derived by two adjacent baselines. On the other hand, the stability
of the observing system, in particular the clock system stability, is investigated in more detail. This
allows a separation and classification of the different uncertainty contributions.

6.1 Close-range VLBI Observations

Geodetic short baseline observations, i.e., of up to several hundred meters, have been carried out
at several occasions beforehand as part of standard network observations in the late 1990ies (Hase
and Petrov 1999) or more recently (Herrera-Pinzon et al. 2017). In these cases, the number
of observations on the short baseline was limited to not more than about 70-200 observations (IVS
Master files 2017), depending on the network observing schedules which always balance between
radio telescopes of different slew speeds.
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In an observing schedule, the slowest telescope defines the overall speed for changing from one radio
source to the next. On the baseline between the Wettzell 20 m telescope (Wz) and the new 13.2 m
telescope (Wn), the Wz antenna is, thus, the limiting instrument with 3 and 1.5 degrees per second
in azimuth and elevation, respectively (Tab. 6.1).

Table 6.1: Slewing rates of the three radio telescopes in the WHISP triangle, including the 20 m
antenna (Wz) and the north tower of the twin telescope (Wn) at Wettzell, Germany, and the Onsala
(On) radio telescope, Sweden).

Telescope azimuth elevation

[degrees per
second]

[degrees per
second]

Wz 3 1.5

Wn 12 6

On 2.4 1

At a later stage when the south tower of the twin telescopes (Ws) will be operating, local high
speed observations can be exploited with a triple of radio telescopes, and the potential of the
new generation VLBI telescopes can be fully exhausted. The high potential of the VGOS (VLBI
Global Observing System, Niell et al. 2013) telescopes has already been demonstrated for the
pair of prototype VGOS radio telescopes at the Goddard Geophysical and Astronomical Observa-
tory (GGAO) of the Goddard Space Flight Center, Maryland, USA, and the Westford antenna at
Haystack Observatory, Massachusetts, USA, which are separated by approximately 600 km. The
slewing rates in azimuth and elevation are 5 and 1.1 degrees per second for the GGAO telescope
and 3.3 and 2 degrees per second for the Westford antenna. An observing rate of approximately
45 observations per hour was obtained, which corresponds to about 1080 observations per 24 hour
experiment (Niell et al. 2014; Niell 2015; Niell et al. 2016).

In contrast to these tests, the emphasis of the WHISP project is the performance on a very short
baseline of less than 200 m rather than on a 600 km baseline or even longer. Further, the limiting
slewing rate of the 20 m diameter radio telescope is still comparatively high compared to other
IVS telescopes in operation today. This applies particularly on other sites with co-located VLBI
antennas as, for instance, Hobart, Australia, with a slewing rate of only 0.65 degrees per second in
both azimuth and elevation. In addition, the number of observations, even including Onsala (On)
in the schedule, is larger than most of the current routine data sets of the IVS, and twice to four
times larger than any existing VLBI data set on a local scale.

Another interesting fact of these short baseline observations is that the sky above the Wettzell
Geodetic Observatory is fully covered with observations in the short baseline case (Fig. 6.1(a)) and
with only a small obstruction on the baselines to Onsala (Fig. 6.1(b)). This is a very big advantage
compared to other network sessions where the horizon limits of distant telescopes produce rather
asymmetric sky coverage features. It is, therefore and due to the large number of observations per
unit of time, expected that the troposphere estimates are more reliable than in any other network
session.

In this project, the aim is to investigate atmospheric refraction and system stability effects in
geodetic and astrometic VLBI applications. A series of dedicated sessions has been designed and
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Figure 6.1: Sky plots of the 20 m radio telescope at Wettzell for the short baseline observations
(here, WHISP3, a) and on the baseline to Onsala (here, WHISP5, b).

observed for quite different purposes. Three WHISP sessions were performed only using the 20 m
diameter radio telescope and the north antenna of the twin telescopes, and therefore, consists of only
one short baseline. Since the two stations are only separated by about 123 m and both telescopes
always point in the same direction, it can be assumed that most systematic effects not stemming
from the atmosphere and from the frequency distribution system are canceled out in the differential
mode. These sessions are aimed to investigate local refractivity effects in a differential mode.

Table 6.2: Specially designed WHISP (Wettzell HIgh SPeed) sessions used in this study.

Name observation
time

# successful
observations

baselines comment

WHISP1 27 August 2014 658 Wn-Wz

WHISP2 23 October 2014 1015 Wn-Wz

WHISP3 18 February 2015 801 Wn-Wz

WHISP4 3 August 2016 - Wn-Wz-On failed

WHISP5 9 November 2016 1958 Wn-Wz-On

WHISP6 22 February 2017 1724 Wn-Wz-On

WHISP7 5 July 2017 1852 Wn-Wz-On

For three further WHISP sessions, also another VLBI radio telescope in Onsala (Sweden) is used in
order to obtain two different European baselines between Onsala and the two antennas in Wettzell.
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In the first place, these sessions are designed to estimate absolute atmospheric parameter series
for both European baselines and compare them to each other. Second, these sessions are also used
to investigate system stability effects. Unfortunately, one of these sessions (WHISP4) failed due to
technical reasons and could not be used in this case study. An overview of the observed WHISP
sessions is given in Tab. 6.2.

Generally, all WHISP sessions last 22 hours, and not, as is usually the case, 24 hours, since Wettzell
joins the daily routine Intensive sessions of the IVS of one-hour duration. One of the main advantages
of the WHISP sessions is the considerably increased number of observations compared to traditional
24h-sessions (Tab. 6.2).

6.2 Data Analysis

The geodetic data analysis is performed using the VLBI software package ivg::ASCOT (Artz et al.
2016; Halsig et al. 2017) following the Conventions (2010) of the International Earth Rotation
and Reference Systems Service (IERS, Petit and Luzum 2010). The modeling settings are chosen
with respect to the routine single-session data analysis strategies of the IVS. The VLBI target
parameters are estimated in a least squares method using a Gauss Markov model (e.g., Koch
1999).

In case of the differential application, only atmospheric and clock parameters are estimated. The
clock model parameter corrections are estimated as a second order polynomial and additional
continuous piece-wise linear functions (CPWLF), i.e., linear splines (De Boor 1978), with a
different resolution (see Sec. 6.4.2). The tropospheric model is described by Eq. (3.65) in Sec. 3.3,
and the zenith wet delays are parametrized as CPWLF with a resolution of 15 to 60 minutes.
Only differential zenith wet delays are estimated for well known reasons. In the least squares
adjustment, the partial derivatives of the zenith wet delays are equal to the mapping functions with
respect to the elevation angle of the respective observation. Under the assumption of estimating
atmospheric parameters in an absolute sense, the elevation angles would be very similar for both
stations only separated by about 120 m from each other. As a consequence, the partial derivatives are
approximately the same for both parameters leading to highly correlated columns in the Jacobian
matrix, which is, of course, not advisable. The Vienna mapping functions 1 (VMF1, Böhm et al.
2006a) are used to relate the atmospheric parameters from zenith to the line of sight. Azimuthal
gradients are not estimated, because the short baseline is not sensitive to them. On the short
baseline, the ionospheric correction term (see Sec. 2.1 for more details) has to be turned off, since
the S-band data would harm the solution due to a radio frequency interference (RFI) issue on the
Wettzell premises. The radio telescope coordinates are fixed with respect to an ivg::ASCOT multi-
session solution, while source positions from the International Celestial Reference Frame (ICRF2,
Fey et al. 2015) are used. Finally, the Earth orientation parameters are fixed to a priori values of
the IERS C04 series.

Performing the data analysis of the triangle observations, zenith wet delays are parametrized as
CPWLFs of different resolution (see Sec. 6.4.2), but now in absolute terms and not relative to
another VLBI radio telescope. In this case, azimuthal gradients are estimated with a temporal
resolution of 6 hours and the ionospheric correction was applied for the two baselines to Onsala,
but not for the short baseline in Wettzell.
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For the stochastic model, two approaches are distinguished. First, only a diagonal variance-
covariance matrix is used, which consists of observation uncertainties based on the observed signal-
to-noise ratio. In order to ensure χ2 ≈ 1, the variances are inflated artificially by a constant and
an elevation-dependent noise term according to Gipson (2007) and Gipson et al. (2008). Sec-
ond, the stochastic model is augmented by the atmospheric turbulence model devised in this thesis
and presented in Sec. 5.1, which automatically leads to χ2 ≈ 1 without any further re-weighting.
With the application of the turbulence model it is possible to routinely consider correlations due
to turbulence-induced processes in the atmosphere in a physical and meteorologically meaningful
sense, and stochastically describe small-scale refractivity variations in the neutral atmosphere. This
leads to a fully populated variance-covariance matrix and to more realistic estimates and standard
deviations. The successful application of the turbulence model has already been demonstrated in
Sec. 5.1, where it has been shown, that the turbulence model leads to an improvement of the
solution, in particular for local scale networks as used in this project.

6.3 System Stability

6.3.1 Behavior of Atomic Clocks

The estimation of zenith wet delay parameters and the interpretation of the residuals in the VLBI
data analysis are closely linked to the stability of the hydrogen maser clocks feeding the local
oscillators and other necessary electronics. In the case of the parameter estimation, the general
assumption is that there are non-negligible correlations between the estimates of the atmosphere and
the clock parameters. However, when studying the correlation matrix of the estimated parameters
the correlations are only around 0.3 (Nothnagel et al. 2002) which is still in the range of weak
correlations.

The relative clock behavior is generally estimated in the form of a clock polynomial plus continuous
piece-wise linear (CPWL) offsets while for the zenith path delays it is only the CPWL offsets. Both
have a time resolution of 60 minutes, normally. Clocks and atmosphere are not resolved any further
to keep the significance of the residuals. It should be emphasized that no soft constraints in the
form of pseudo observations are used for the clocks, which usually are necessary to stabilize the
equation system due to missing observations in some piece-wise linear segments. However, due to
the clearly increased number of observations in case of the WHISP sessions, these constraints are
omitted here. Consequently, we do not expect any adverse effects from that side on the estimates of
the zenith wet delays because any clock variations on a time scale beyond 1 hour are covered by the
CPWL estimates. Individual observations and the respective residuals within the one hour periods
are considered to be more affected by variations in the clock behavior at shorter time scales.

Usually, the telescopes are separated too far from each other so that a direct clock comparison is
impossible. However, at Wettzell we are in the favorable situation that the two telescopes are close
enough together that a two-way time transfer with a fiber-optics link (TWOTT) can be realized
(Kodet et al. 2016b). In the last years, a very precise two-way time transfer (TWTT) using a
coaxial cable as the transmission link (Pánek et al. 2013) was developed and implemented with
high effort in order to identify unaccounted system delays at the Geodetic Observatory Wettzell.
The general principle of the TWTT approach is depicted in Fig. 6.2. The system is divided into two
units, A and B, which are connected by a transmission link. Both units consist of a timing signal
generator (TSG) and an event timer (ET) measuring the arrival times of timing signals. The output
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Figure 6.2: The general setup of the Two-Way Time Transfer system, which is divided into two
units A und B connected by a transmission link, each consisting of a timing signal generator (TSG)
and an event timer (ET) measuring the arrival times of timing signals. The output of the TSG
and the input of the ET are connected to the transmission link by a network of five branches and
three splitters and couplers, providing feedback of the transmitted signals back to the ET and the
bidirectional use of the transmission line. The delays of the branches and the transmission link are
denoted by τAi=1...5 , τBi=1...5 and τL (Kodet et al. 2016a).

of the TSG and the input of the ET in both units are connected to the transmission link. Therefore,
a network of five branches connected with three splitters and couplers, is used, which provides
feedback of the transmitted signals back to the ET and the bidirectional use of the transmission
line. All branches and the transmission link have delays, which are referred to as τAi=1...5 , τBi=1...5

and τL, respectively (see Fig. 6.2). Analyzing the TWTT process provides the opportunity to
investigate the influence of the partial delays within the TWTT units on the resulting uncertainty
of the time transfer (Kodet et al. 2016a). The main disadvantage of this method results from
the substantial increase of the uncertainty of the time transfer with the length of the transmission
link due to the propagation loss at high frequencies (Kodet et al. 2016a). To overcome this issue,
the TWTT system was redesigned by using optical telecommunications technology. This results
in the two-way optical time transfer (TWOTT) system implementing standard small form-factor
pluggable optical transceivers, which leads to an increased area where the time transfer can be
guaranteed with picosecond accuracy (Kodet et al. 2016b).

Due to the rather involved evaluation process, this link had only been active during the WHISP7
experiment, but not for the other WHISP sessions. For this reason, the following arguments have
to be discussed on the basis of WHISP7 and two further routine IVS sessions (on 26 October and
21 December 2015, Nothnagel et al. 2015) where the 20 m (Wz) and the 13.2 m (Wn) telescopes
observed simultaneously.

The TWOTT provides clock offsets with sampling rates of 1 s between the two hydrogen masers
involved in the experiments, which supply the radio telescopes with a reference frequency. In Fig. 6.3,
the stability of the two involved H-Masers is compared, which is expressed as Allan deviation
(ADEV) during the two IVS sessions mentioned above. Concluding, the H-Masers have the same
stability of 8.3−13/τ for averaging times up to 300 s with dominant white phase modulation, and
for averaging times longer than 300 s the white frequency modulation is the dominant noise floor.

Since the frequency offset between the two H-Masers is ∆f
f0

= 2.1−13 (Jan Kodet, pers. comm.),
the linear trend was subtracted to allow for a better recognition of the small-scale variations (e.g.,
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Figure 6.3: The stability of the two H-Masers used in Wz and Wn expressed by Allan deviation
(ADEV) for 26 October 2015 (red) and 21 December 2015 (black); by courtesy of Jan Kodet
(Technical University of Munich, Geodetic Observatory Wettzell, Germany).

Fig. 6.4, red). Two phenomena can be identified, the one is a short-scale fluctuation of about 8 ps
within a few tenths of seconds and the other one are smooth variations of an hourly time-scale. While
the first group is essential for the characterization of the observation by observation variability, the
latter one is rather well behaved and should easily be compensated for by the hourly CPWL offsets.
At least, this is the expectation.

However, when plotting the estimates for the same periods (see also Fig. 6.4, black), these only
coincide very roughly with the TWOTT values (red). The differences at the level of 20-30 ps in
the better case (e.g., for the VLBI session on 21 December 2015; see Fig. 6.4(a)) or up to 60 ps
in the other extreme case (e.g., for the experiment on 26 October 2015; see Fig. 6.4(b)) cannot be
explained by additional effects caused by the cable links between the hydrogen maser clocks and
the VLBI electronics because these variations are expected to be rather smooth, mostly following
the daily temperature cycle.

Fortunately, the TWOTT system could be activated simultaneously to the last WHISP experiment.
The corresponding measurement (red) and the clock correction parameters derived from the VLBI
estimation process (brown) for the same period are depicted in Fig. 6.5. At first glance, the differ-
ences perform similar to the better case of the routine IVS sessions. Concerning the modeling of the
clock behavior, different parametrization settings have been used to allow for a better understand-
ing of the level of difference to the TWOTT measurements. First, the clocks are parametrized as
a quadratic polynomial and additional piece-wise linear functions with interval lengths of 60 min-
utes. As already mentioned, the clock parameters are supplemented by soft constraints in the form
of pseudo observations. In the standard data analysis, these pseudo observations are less heavily
weighted, e.g., by σclo = 2 · 10−14 s

s . The clock parameters referring to the standard case are repre-
sented by dark brown dots in Fig. 6.5. A second adjustment is performed turning off the additional
soft constraints, which leads to the clock parameters in light brown. Similarly, this procedure is
repeated for piece-wise linear segments of 30 and 20 minutes, respectively. The solution using a
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Figure 6.4: Two-way time transfer measurements (red) and VLBI estimates (CPWLF and quadratic
polynomial, black) for two VLBI sessions on 21 December 2015 (a) and 26 October 2015 (b).



6.3. System Stability 83

20:40:00 00:50:00 05:00:00 09:10:00 13:20:00 17:30:00
Time (UTC)

-90

-60

-30

0

30

60

90
C

lo
ck

s 
[p

s]
 

Figure 6.5: Two-way time transfer measurements (red) and VLBI estimates (CPWLF and quadratic
polynomial) for different parametrization settings for the clocks and WHISP7: CPWLF 60 min. with
(dark brown) and without (light brown) constraints; CPWLF 30 min. with (dark green) and without
(light green) constraints; CPWLF 20 min. with (dark blue) and without (light blue) constraints.

30 minute interval with and without constraints are depicted in dark and light green, while the
results of the adjustment with even shorter piece-wise linear intervals of 20 minutes are represented
in dark and light blue for the two settings applying and turning off the constraints.

First, it is noteworthy, that for solution intervals of 30 or 60 minutes, the effect of the pseudo
observations seems to be negligible, except for the first CPWL segment, and, therefore, the pseudo
observations could in principle be neglected. However, the situation looks worse when reducing the
piece-wise linear interval to 20 minutes. As soon as the soft constraints are turned off, the scatter of
the clock estimates is clearly increasing, while the performance of the solution applying constraints
is similar to the adjustment with CPWLF of 30 minutes. Most likely, the number of observations
in the respective intervals is sufficient in a segment of 30 to 60 minutes, but not for shorter interval
lengths below 30 minutes. However, also for the solutions showing a better clock behavior, the VLBI
estimates coincide only very roughly with the TWOTT values, and the differences for the WHISP7
experiment are assessed to be in the order of magnitude of 20-30 ps.

The unexpected differences between the clock parameter estimates and the TWOTT measurements
are in fact confirmed by the findings of Kodet et al. (2016a). They can only be explained by the
assumption that the clock estimates compensate for more than the clock effect but rather anything
else with an unmodeled clock-like behavior. With the CPWL estimates of one-hour long intervals
we should have caught all the clock-like variations within the one-hour periods. Taking this into
account, the 8 ps variations measured with the TWOTT is considered as the value to be taken for
characterizing the noise component induced by the relative clock behavior in the post-fit residuals
in Sec. 6.4.
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6.3.2 Contribution of the Correlation Process

A further component in the error budget is the contribution of the correlation process for determin-
ing the group delay observables. This is an independent process for each baseline (see, e.g., Sovers
et al. 1998) and, thus, produces three independent delay observables in a triangle. In order to assess
the group delay uncertainties, a so-called triangle or delay closure test is performed. It is postulated
that the sum of the so-called geocentric group delays for the three individual baselines τAB (tgeoc),
τBC (tgeoc) and τCA (tgeoc) is always zero in an ideal case (see Fig. 6.6),

τAB (tgeoc) + τBC (tgeoc) + τCA (tgeoc)
!= 0. (6.1)

In this context, the geocentric group delay is defined as the group delay, that would be obtained if
the station A would be located in the geocenter. In the triangle, Wn, Wz, On, the weighted root

Figure 6.6: Delay closure with respect to the geocenter.

mean square (WRMS) closure error is 7.2 ps. Assuming uncorrelated observations, the correlation
error level for each baseline is 4.2 ps (7.2 ps/

√
3). These results could already be confirmed by

Ray and Corey (1991). Together with the clock variations of 8 ps, it can be concluded that
the noise contribution within a few tens of seconds is not more than 10 ps while, except of the
unaccounted measurement noise, the rest of the observation to observation variations are purely
atmosphere-driven.

Finally, the effect of phase calibration in the framework of the VLBI correlation process is briefly
discussed. Generally, phase calibration is necessary to compensate for instrumental phase shifts. A
signal of known phase is generated, which is injected into the front end of the VLBI signal path.
After the signal has traversed the instrumentation, the phase of the signal is examined (Sovers
et al. 1998, pp 1395ff). This is important since such phase errors can corrupt the estimated phase
and hence the group delay of the incoming signal (Sovers et al. 1998). Sometimes this technique
can not be used and, instead, a procedure commonly known as “manual” phase calibration is applied
(see, e.g., Martí-Vidal et al. 2012 for further details). However, this method is restricted by the
assumption that the instrumental effects do not considerably change during the duration of the
VLBI session, which may not be the case in reality.
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However, on a short baseline the phase calibration signals of two closely-spaced VLBI antennas
produce spurious group delay determinations in the correlation process. As a consequence, the
phase calibration of one telescope has to be turned off, as was the case for the north tower of the
twin telescope in all sessions.

6.4 Local Refractivity Effects

6.4.1 Atmospheric Tie Consideration

The zenith wet delay estimates are directly influenced by the a priori hydrostatic calibrations, which
mainly depend on the pressure data observed at the VLBI site or derived from numerical weather
models (see Sec. 3.3.3). It is necessary that the data derived from meteorological sensors are always
related to the reference point, which is generally defined by the intersection of the rotation axes of
the VLBI telescope.

In order to determine the pressure p at the intersection of axes of a telescope at height H, the
following approximation can be used (see, e.g., Teke et al. 2013),

p = p0

(
1− γ (H −H0)

T0

) g
γRL

, (6.2)

with H0 referring to the reference height. The meteorological data, particularly the pressure p0
but also the temperature T0, is measured initially. Finally, γ = −0.0065 Km−1 represents the
average temperature lapse rate, g denotes the gravity at the site, and RL ≈ 287.058m2s−2K−1 is
the specific gas constant. Based on p and using the modified Saastamoinen model in Eq. (3.37), the
zenith hydrostatic delays are computed and incorporated in the VLBI parameter estimation process
to determine zenith wet delay parameters with respect to the corresponding reference height.

In order to analyze the difference between two sets of ZWD estimates (as done, e.g., for WHISP5,
WHISP6 and WHISP7) so-called tropospheric ties have to be introduced to correct for the height
differences between two co-located antennas. Tropospheric tie corrections are derived by the sum
of a wet δ∆Lzw and a hydrostatic component δ∆Lz

h
. First, the hydrostatic tie follows directly from

the modified Saastamoinen equation (Davis et al. 1985) in Eq. (3.37)

δ∆Lz
h

= ∆Lzh (p)−∆Lzh (p0) = 0.0022768 (p− p0)
1− 0.00266 cos (2Φ0)− 0.00028H0

, (6.3)

where ∆Lzh denotes the zenith hydrostatic delay according to Eq. (3.37) for a specific pressure
value p and p0, respectively. Second, the expression for the wet tie can be formulated according to
Brunner and Rüeger (1992) as

δ∆Lzw = −2.789e0
T 2

0

(5.383
T 2

0
− 0.7803

)
γ (H −H0) . (6.4)

Here, H0 and Φ0 denote the reference height and the latitude of one telescope, and p0, T0 and
e0 are the meteorological data at this height, while H and p represent the reference height and
pressure of the co-located site. In case of differential zenith wet delays estimated for Wz relative to
Wn, the tropospheric ties, at least for the hydrostatic calibrations, have to be taken into account
accordingly prior to the parameter estimation process.
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6.4.2 Parametrization of Zenith Wet Delays

The modeling and estimation settings for the WHISP experiments have been described in Sec. 6.2. In
the case, which is currently standard in the IVS data analysis, the resolution of the piece-wise linear
intervals is generally chosen to be 60 minutes. Due to the increased number of observations compared
to traditional 24h-sessions and the resulting shorter time intervals between the observations, it might
be worth to also reduce the solution interval of the piece-wise linear segments of the atmospheric
parameters. This is realized for all available WHISP experiments, and the interval lengths are
reduced to half (30 minutes) or even a forth (15 minutes) of the initial 60 minute time segments. In
Tab. 6.3, the session-dependent WRMS of post-fit residuals (see Eq. 5.23) are shown with respect
to the different CPWL interval lengths. In order to ensure χ2 ≈ 1, either a constant additional noise
term of approximately 15 ps is added to the standard deviations derived from the correlator output,
or the turbulence model without any re-weighting option is used. The results of both strategies are
also represented by Tab. 6.3.

Table 6.3: Session-dependent WRMS of post-fit residuals [ps] based on different data analysis set-
tings varying the interval lengths of the continuous piece-wise linear functions (CPWLF). In order
to ensure χ2 ≈ 1, either a constant additional noise term is added to the standard deviations from
the correlator process (Std. IVS data analysis) or the turbulence model is used. The overall best
solution for the individual sessions are highlighted in yellow, and the most promising results for the
standard IVS data analysis re-weighting the standard deviations of the observations are emphasized
by slightly highlighted areas.

Session Std. IVS data analysis Turbulence model

CPWLF interval
length

60 min. 30 min. 15 min. 60 min. 30 min. 15 min.

WHISP1 13.95 13.33 13.61 11.50 10.98 10.96

WHISP2 26.04 25.67 25.90 23.18 22.85 22.92

WHISP3 22.16 21.91 22.07 19.54 19.18 19.31

WHISP5 28.63 27.18 27.65 27.23 26.21 26.63

WHISP6 - - - - - -

WHISP7 27.04 25.74 27.53 20.60 19.68 20.77

Please remember, that the first three WHISP sessions (first block) consist of only a single local
baseline, while in the other three experiments (second block) the two radio telescopes in Wettzell
observe in a triangle network together with Onsala. The numbers given in Tab. 6.3 are always
related to the overall WRMS of post-fit residuals for all baselines, which is, of course, only relevant
for the WHISP sessions including Onsala and not for the single baseline observations. The impact
of the interval lengths on the VLBI solution with respect to individual baselines will be further
discussed in Sec. 6.4.4 for WHISP5 and WHISP7.

Immediately, it is evident, that for all WHISP sessions and both strategies refining the stochastic
model the best results are generally obtained with CPWL interval lengths of 30 minutes. Only in
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case of WHISP1 the smallest WRMS is obtained when using a resolution of 15 minutes, although
the difference to the solution based on the 30 minute time segment is negligible anyway. Further,
applying the turbulence model in the data analysis, the solution improves in all cases and inde-
pendent of the respective interval length, as already demonstrated in Sec. 5.1.4. The fact, that the
results generally improve when applying piece-wise linear segments of 30 minute interval lengths
compared to the standard case of the IVS with a resolution of the CPWLF of one hour, but in turn,
decrease with an even better temporal resolution of only 15 minutes, can be explained by the bal-
ance between pseudo observations and actual measurements within the individual time segments.
The impact of the pseudo observations, which are necessary to stabilize the solution due to missing
observations in some piece-wise linear segments, increases for the interval lengths of 15 minutes,
whereas the number of observations within the 30 minute segments are high enough to minimize
the influence of the constraints.

6.4.3 Single Baseline Studies

In order to investigate refractivity variations on a local scale, three WHISP sessions (WHISP1-
3, see Tab. 6.2) consisting of only a single baseline between the 20 m diameter radio telescope
(Wz) and the north antenna of the twin telescopes (Wn) are used. In a first solution, differential
zenith wet delay parameters are estimated for Wz relative to Wn. The results for the zenith wet
delays vary mostly between ±2 mm (red dots in Fig. 6.7). In a second independent least squares
adjustment, an offset parameter valid for the whole 22h session (red line) is estimated to identify
remaining systematics. Please note, that these are only relative changes of the zenith wet delays.
The behavior of the hydrostatic calibrations reduced by a constant term (about 2.15 m, blue dots)
gives some indication of the overall weather fluctuations within the sessions which is quite severe
in the last one (see Fig. 6.7(c)).

The temporal variations of the estimated relative atmospheric parameters over each 22h period with
only a few millimeters appear to be realistic estimates. This is supported by the fact that they are
not (anti-) correlated with the hydrostatic calibrations. Since the two stations are only separated
by about 120 m and both telescopes always point in the same direction, it can be assumed that
any systematic effect not stemming from the atmosphere is canceled out in the differential mode.
Tests with variations in the clock parametrization support this assumption (not shown here). The
non-zero estimates of the average ZWD offsets are presumably caused by differential paraboloid
deformation effects which have invariant sin (elevation) characteristics (Nothnagel et al. 2017).
As a consequence of these interpretations, the majority of the fluctuations within each hourly
segment are then attributed to the stochastic character of the neutral part of the atmosphere.

In order to validate this assumption, the effect of refractivity fluctuations due to turbulent motions
in the atmosphere are investigated. Here, the atmospheric turbulence model presented in Sec. 5.1 is
applied to describe the stochastic behavior of the small-scale refractivity variations and introduce
physical correlations between the observations. Again, differential zenith wet delays are estimated
for Wz relative to Wn (see red dots in Fig. 6.8), which, compared to the results in Fig. 6.7, only
differ in the application of the turbulence model. The 22h session offset parameter (red line) and
the reduced hydrostatic calibrations (blue dots) are plotted as well. Comparing these results to
the standard case of VLBI data analysis (Fig. 6.7), it is apparent, that, the scatter of the differen-
tial zenith wet delay estimates are considerably smoother, particularly for WHISP1 and WHISP3
(Fig. 6.8, (a) and (c)). Additionally, the standard deviations of the ZWD estimates become clearly
larger and more realistic, remembering the fact that the standard deviations of space-geodetic
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Figure 6.7: Differential zenith wet delay estimates (CPWFL, red) between the VLBI stations Wz
and Wn for WHISP1-3 (a-c). An offset parameter estimated over the 22h session length is plotted
as red line. The modeled zenith hydrostatic delays are represented in blue (reduced by a constant
offset).
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Figure 6.8: Differential zenith wet delay estimates (CPWFL, red) between the VLBI stations Wz
and Wn for WHISP1-3 (a-c) using the atmospheric turbulence model described in Sec. 5.1. An
offset parameter estimated over the 22h session length is plotted as red line.The modeled zenith
hydrostatic delays are represented in blue (reduced by a constant offset).
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techniques are generally too optimistic (see, e.g., Halsig et al. 2016a). Except for two to three data
points, the estimates for all differential zenith wet delays are not different from zero considering
their 1σ standard deviations. In the standard analysis, many more data points exceed this criterion.
Consequently, the atmospheric turbulence model is able to improve the solution and the assumption
that the majority of the variations from hour to hour can be assigned to the stochastic character
of the atmosphere is hereby confirmed.

Second, the results of the three WHISP sessions are examined whether there exists a dependency
on the observation geometry. It is generally known, that the extra signal path length through the
neutral atmosphere with respect to a theoretical path in vacuum depends on the elevation angle ε
of the observation: the lower the elevation angle, the larger the path length. Generally, mapping
functions are used to map an observation from an arbitrary elevation to the zenith direction (cf.
Sec. 3.3.4).

Figure 6.9: Separation distance (dashed red line) of the signal rays of two radio telescopes for (a)
an observation perpendicular to the baseline, and for (b) an observation in the direction of the
baseline.

For very short baselines such as the one used here, the separation distance of the two ray paths of
the radio signal (dashed red line, Fig. 6.9), referred to as ray distance in the following, also depends
on the azimuth and elevation angle of the observation. Assuming both radio telescopes pointing
into zenith direction, the separation distance would be maximal and equal to the baseline length
separating the telescopes, which is about 123 m in the Wettzell case. When moving to a radio
source with an arbitrary azimuth and elevation angle, the separation distance becomes smaller:
the lower the elevation angle, the lower the distance between the two rays. Fig. 6.9 shows two
different pointing directions and the corresponding separation distances illustrated as dashed red
lines. The colored triangles are supposed to emphasize, that for the determination of the separation
distance a two-dimensional problem (in azimuth and elevation) is taken into account instead of a
one-dimensional one only relating to the elevation angle. Mathematically, the ray distance can be
calculated following Eqs. (5.6) to (5.11) in Sec. 5.1. The separation distance is evaluated at a certain
height H = 2000 m representing the effective tropospheric height, which, however, results from
implementing the turbulence model and is not important for the determination of the separation
distance at this point. The ray distances are determined for each observation and a residual analysis
is performed with respect to the separation distance.
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Figure 6.10: Post-fit residuals of the WHISP1 (a), WHISP2 (b) and WHISP3 (c) experiment as a
function of the distance separating the ray path of the radio signals.
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Under the conditions set above that any remaining variations can be attributed to the wet atmo-
sphere, it is assumed that there should be a dependency of scatter of the post-fit residuals on the ray
distances. In Fig. 6.10, the post-fit residuals of the three WHISP-sessions are shown as a function
of the separation distance of the ray path of the radio signals. To eliminate the elevation-dependent
multiplication of the refraction errors implemented as mapping functions, the post-fit residuals have
to be scaled by an inverse mapping function, simply approximated by sin (ε). This ensures that only
the spatial dependency of the residuals due to the separation distance is analyzed, and not blended
by other effects necessary for the data analysis.

The assumption, that the post-fit residuals become larger for an increasing separation is doubtlessly
verified, particularly for WHISP2 and WHISP3 (Fig. 6.10, (b) and (c)). It may be assumed that
this is due to the fact that the turbulent refractivity variations lose their spatial correlations with
increasing ray separation. In order to see whether the turbulence model had any effect, two solutions
with and without applying the turbulence model are compared, but there is no a clear evidence,
that the post-fit residuals would become more randomly when introducing spatial correlations into
the data analysis.

Figure 6.11: The spatial structure function of the post-fit residuals Dr (d), illustrated as a typical
log-log-plot with respect to the separation distance d (the x-axis label is given in linear scale). The
green and red dotted line correspond to the typical 2/3 and 5/3 power law exponents according to
turbulence theory.

This issue is further investigated by calculating the spatial structure function of the post-fit residuals
Dr (d), which is plotted with respect to the separation distance d. As an example, the result
for WHISP1 is shown in Fig. 6.11. The findings for WHISP1 are consistent with the results of
WHISP2 and WHISP3 (not shown here). As already described in Sec. 4.2, the structure functions
can generally be represented as straight lines with different slopes, which are equal to the specific
exponents of the power law processes. According to turbulence theory, power law processes with
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two characteristic exponents of 2/3 (2D turbulence; green line) and 5/3 (3D turbulence; red line) are
predicted. A more detailed description on the power law relations for atmospheric turbulence can
be found in Sec. 4.2 or, e.g., Thompson et al. (2001). Compared to Fig. 4.3 in Sec. 4.2, which
describes the idealized general behavior of a structure function, the computed slopes from the post-
fit residuals do not clearly reflect the theoretical 2/3 and 5/3 power law exponents, but are still close
to the expected values. The initial slopes for short distances of 15 to 20 m follows approximately
the power law exponent of 5/3 and quickly decreases to a value close to, but slightly higher than the
expected 2/3. One explanation for the difference between the computed and the theoretical slopes
might the be fact, that the post-fit residuals are superimposed by other unmodeled effects. It is
also conceivable that the calculated slope would become even closer to the theoretical one when
further increasing the separation distance, at least up to a certain distance, where the structure
functions becomes flat again (with a power law exponent close of zero) and the post-fit residuals
are uncorrelated. Nonetheless, the separation distance is limited by the baseline length between the
two telescopes, and therefore the maximum distance is about 123 m when looking in the zenith
direction.

Finally, the solutions with shorter piece-wise linear segments of 15 or 30 minutes show only minor
effects in the dependency of the post-fit residuals on the separation distance, although in both
cases the solution itself improves (compare Tables 6.3 and 6.4).

6.4.4 Studies in a Triangle Network

As described in Sec. 6.1, three further WHISP sessions (WHISP5 to WHISP7) have been observed
successfully in a network consisting of the two VLBI antennas at Wettzell and a third radio telescope
at Onsala (Sweden), separated by 920 km. The two independent baselines between Onsala and the
two telescopes at Wettzell are now employed to also estimate absolute atmospheric parameters.
Again, the derived ZWD estimates are corrected for tropospheric ties to account for the height
difference between the two VLBI antennas as described in Sec. 6.4.1.

As already stated in Sec. 6.4.2, the impact of the piece-wise linear interval lengths on the two
baselines to Onsala (On-Wn and On-Wz) and the local short baseline in Wettzell (Wn-Wz) has been
investigated for WHISP5 and WHISP7. It should be already noted, that the WHISP6 experiment
will be declared as a special case and has, therefore, to be discussed separately. The baseline-
dependent WRMS of post-fit residuals are represented in Tab. 6.4. Again, two different strategies
have been used for the stochastic model in order to ensure χ2 ≈ 1: the standard IVS data analysis
re-weighting the observations (here, a constant additional noise term of 15 ps is used) and the
turbulence-based solution developed in this thesis.

Regarding Tab. 6.4, it is evident that the WRMS of post-fit residuals for the European baselines
are, as expected, always higher than for the local baselines (On-Wz and On-Wn: about 28-31 ps;
Wn-Wz: about 7-12 ps). In general, similar conclusions can be found compared to the session-based
analysis in Tab. 6.3. First, the solution always improves when reducing the solution time intervals of
the piece-wise linear segments from 60 to 30 minutes, except for the short baseline Wn-Wz analyzing
WHISP5 and the standard case of the IVS.

Second, for all baselines the WRMS of post-fit residuals decreases sharply when introducing stochas-
tical information due to turbulence modeling, and the overall best results are obtained for the
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Table 6.4: Baseline-dependent WRMS of post-fit residuals [ps] based on different data analysis
settings varying the interval lengths of the continuous piece-wise linear functions (CPWLF). In
order to ensure χ2 ≈ 1, either a constant additional noise term is added to the standard deviations
from the correlator process (Std. IVS data analysis) or the turbulence model is used. The overall
best solutions are highlighted in yellow, and the most promising results for the standard IVS
data analysis re-weighting the standard deviations of the observations are emphasized by slightly
highlighted areas.

WHISP5

Baseline Std. IVS data analysis Turbulence model

CPWLF interval
length

60 min. 30 min. 15 min. 60 min. 30 min. 15 min.

On-Wn 30.70 29.16 29.68 29.50 28.30 28.75

On-Wz 30.76 29.12 29.64 29.88 28.71 29.21

Wn-Wz 11.31 11.28 11.20 10.22 9.95 10.00

WHISP7

On-Wn 32.02 30.52 32.72 25.19 24.34 25.66

On-Wz 30.10 28.62 30.65 22.96 21.76 23.07

Wn-Wz 8.45 7.99 8.01 7.84 7.28 7.33

turbulence-based solution applying CPWL interval lengths of 30 minutes for the atmospheric pa-
rameters. It is conspicuous, that the level of improvement, when considering atmospheric turbulence
compared to the standard case, is considerably higher for WHISP7, particularly for the longer base-
lines. It is recalled that, most likely, the impact of the pseudo observations is responsible for the
fact, that the solution cannot be further improved by even shorter interval lengths of 15 minutes.

Table 6.5: (Pearson) correlation coefficient between the ZWD estimates of Wz and Wn for WHISP5,
WHISP6 and WHISP7.

WHISP5 WHISP6 WHISP7

Std. IVS data
analysis

0.97 0.94 0.99

Turbulence model 0.98 0.97 0.99

The zenith wet delay estimates for both Wettzell telescopes, represented as CPWLF with interval
lengths of 30 minutes, are shown in Fig. 6.12, where black and green dots represent the estimates
for Wz and Wn, respectively. Since the two antennas are only separated by about 120 m, the
resulting zenith wet delay parameter sets for both stations are expected to be almost identical.
This assumption may be affirmed by calculating the (Pearson) correlation coefficients between the
ZWD estimates of both stations (first row of Tab. 6.5), which varies between 0.94 and 0.99 for the
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Figure 6.12: Zenith wet delay estimates (CPWFL, 30 min.) for the VLBI stations Wz (black dots)
and Wn (green dots) for WHISP5 (a), WHISP6 (b) and WHISP7 (c). The difference between both
parameter sets is depicted as red dots. The gray dotted lines indicate the centimeter level.
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three experiments. The correlation even becomes marginally higher when using the atmospheric
turbulence model (correlation coefficients between 0.97 and 0.99, second row of Tab. 6.5).

Fig. 6.12 also depicts the differences between the ZWD estimates of both VLBI stations (red dots),
which are generally in the order of a few millimeters. Going further into detail, the differences do not
exceed ±3 mm in case of WHISP5 (Fig. 6.12(a)), which fits very well the analysis of the differential
zenith wet delays for WHISP1-3. Similar results have been found for the WHISP7 experiment
(Fig. 6.12(c)), while the results of WHISP6 have to be discussed separately (see Fig. 6.12(b)). Here,
the differences between the ZWD estimates of both VLBI stations generally vary in the range of
3-5 mm, but occasionally reach maximal differences of about one centimeter (indicated by gray
dotted lines in Fig. 6.12).

Initially this was surprising, since the correlation coefficient is only slightly lower for WHISP6
compared to WHISP5 or WHISP7. However, manual phase calibration had to be applied to the
Wz data instead of the routinely applied scan-by-scan system calibration (see Sec. 6.3.2) leading
to an increased noise level in the atmosphere estimates. Furthermore, when analyzing the post-fit
residuals of the baseline between Onsala and the 20 m antenna in Wettzell (Fig. 6.13), a clear signal
can be found, which is clearly due to the fact of only applying manual phase calibration for the
20 m telescope.
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Figure 6.13: Systematic effect in the post-fit residuals of the baseline On-Wz for WHISP6.

In order to quantify this effect, the fringe fitting process (i.e., searching the maximum correlation
amplitude in the power spectrum; see Sec. 2 or Whitney (2000) for more details) of the WHISP5
session is repeated analogous to the initial one, except for applying manual phase calibration for
both radio telescopes. In the following, this experiment is referred to as WHISP5-M. Recalling the
discussion in Sec. 6.3.2, the situation remains unchanged for Wn, where manual phase calibration
was applied anyway, while the regular scan-wise phase calibration for Wz was now turned off.
Regarding the post-fit residuals of the baseline between Onsala and the 20 m antenna in Wettzell
obtained by analyzing WHISP5-M, again a clear signal can be found (Fig. 6.14(a)). In order to
quantify the phase calibration effect, the WRMS of post-fit residuals for both experiments, WHISP5
and WHISP5-M, are calculated, which are 27.5 ps and 34.7 ps, respectively. The obtained WRMS
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Figure 6.14: Systematic effect in the post-fit residuals of the baseline On-Wz for WHISP5-M and
WHISP7-M when applying manual phase calibration for both radio telescopes.

is reduced by 10 ps in quadrature, which has been found to be the approximate noise contribution
mainly including the clock variations and the correlation error (Sec. 6.3). Finally, the effect of using
manual phase calibration instead of scan-by-scan system calibration is calculated as the difference
between WHISP5 and WHISP5-M, yielding a net difference of√[

(34.7 ps)2 − (10.0 ps)2
]
−
[
(27.5 ps)2 − (10.0 ps)2

]
≈ 21.2 ps. (6.5)

The same investigation was repeated for WHISP7: the initial experiment was re-fringed (WHISP7-
M in the following), and again manual phase calibration was applied to both radio telescopes. From
the data analysis WRMS of post-fit residuals of 27.0 ps and 34.2 ps are obtained for WHISP7
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and WHISP7-M, respectively. The effect of using manual phase calibration instead of scan-by-scan
system calibration is again computed as the net difference between WHISP7 and WHISP7-M,√[

(34.2 ps)2 − (10.0 ps)2
]
−
[
(27.0 ps)2 − (10.0 ps)2

]
≈ 21.0 ps, (6.6)

which is, compared to the WHISP5 experiment, almost identical. Further, a similar signal as found
for WHISP5-M is again visible in the post-fit residuals of WHISP7-M (see Fig. 6.14(b)).

For a further insight into this issue, a comparative residual analysis is performed based on the two
baselines to Onsala. In Fig. 6.15(a), the post-fit residuals of the baseline On-Wz are plotted against
the respective post-fit residuals of the baseline On-Wn for WHISP5. The resulting point cloud
shows the typical behavior of well correlated data sets with a slope close to one and a reasonable
noise belt reflecting the random errors. The correlation coefficient between both residual series
can be calculated to about 0.73 supporting the indication of a high correlation. As expected, the
results look worse when analyzing WHISP5-M and plotting the post-fit residuals of the baselines
On-Wz and On-Wn against each other (see Fig. 6.15(b)). It is apparent, that the pattern becomes
more randomly when applying manual phase calibration for both telescopes. The corresponding
correlation coefficient is about 0.48 indicating weak to medium correlation, which is still clearly
lower than for the experiment using the standard scan-by-scan system phase calibration. Again
this is very good evidence for the influence of the missing phase calibration of the Wz data in case
of WHISP6.

A similar situation occurs for WHISP7 which, in fact, leads to the best results. The resulting point
cloud after plotting the post-fit residuals of the baseline On-Wz is plotted against the respective
post-fit residuals of the baseline On-Wn shows again the typical behavior of well correlated data
sets. The corresponding correlation coefficient between both data sets is 0.84 which indicates a
high correlation. Analyzing WHISP7-M and plotting the post-fit residuals of the baselines On-Wz
and On-Wn against each other (see Fig. 6.16(b)), the results are clearly degraded as expected,
since the pattern again becomes more randomly when applying manual phase calibration for both
telescopes. However, the corresponding correlation coefficient of 0.69 is unexpectedly high compared
to the findings of the WHISP5(-M) session.

For WHISP6 manual phase calibration had to be applied for both telescopes. Plotting again the
post-fit residuals of the baselines On-Wz and On-Wn against each other (Fig. 6.17), the pattern
looks more random and the expected slope can be discerned only vaguely. This can also be confirmed
in the correlation coefficient of approximately 0.31, which is only in the range of weak correlations.
Based on these findings, and hypothetically speaking, appropriate results and more realistic ZWD
estimates would be expected if the fringe fitting process could be repeated using the regular scan-
wise phase calibration, which, unfortunately, cannot be realized since the phase calibration signal
has not been registered.
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Figure 6.15: Post-fit residuals of the baseline On-Wz versus post-fit residuals of the baseline On-Wn
for WHISP5 (a) and WHISP5-M (b).
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Figure 6.16: Post-fit residuals of the baseline On-Wz versus post-fit residuals of the baseline On-Wn
for WHISP7 (a) and WHISP7-M (b).
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Figure 6.17: Post-fit residuals of the baseline On-Wz versus post-fit residuals of the baseline On-Wn
for WHISP6.

Finally, the effect of applying scan-by-scan system calibration and manual phase calibration, respec-
tively, is also investigated with respect to the piece-wise linear segments. According to the findings
above, only interval lengths of 30 and 60 minutes are investigated, and the baseline-dependent
WRMS of post-fit residuals is shown in Tab. 6.6.

Table 6.6: Baseline-dependent WRMS of post-fit residuals [ps] with respect to different interval
lengths of the continuous piece-wise linear functions (CPWLF) for the zenith wet delays and ap-
plying scan-by-scan system calibration or manual phase calibration. The best solution is highlighted
in yellow.

WHISP5(-M)

Baseline Scan-by-Scan phase cal. manual phase cal.

CPWLF interval
length

60 min. 30 min. 60 min. 30 min.

On-Wn 30.70 29.16 31.32 29.42

On-Wz 30.76 29.12 39.91 37.19

Wn-Wz 11.31 11.28 27.38 22.84

WHISP7(-M)

On-Wn 32.02 30.52 35.43 33.32

On-Wz 30.10 28.62 39.30 37.44

Wn-Wz 8.45 7.99 20.82 18.46
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Using piece-wise linear segments of 30 minutes instead of 60 minutes leads to an improvement, but
the effect due to the different phase calibration methods is even more relevant in this analysis. As
expected, the WRMS of post-fit residuals increases sharply when applying manual phase calibration
instead of scan-by-scan phase calibration. However, it is striking that particularly the short baseline
gets considerably worse: in case of manual phase calibration the WRMS of post-fit residuals is more
than twice as high as for the normal scan-by-scan system calibration. But also the degradation for
the longer baselines is still considerable. When only considering the solutions with 30 minute piece-
wise linear intervals, the solution degrades at least for about 4 ps up to almost 25 ps in quadrature
(degradation of about 4 and 13 ps in quadrature for baseline On-Wn, and about 23 and 24 ps in
quadrature for baseline On-Wz, in each case for WHISP5 and WHISP7, respectively). Somehow
surprising, the effect of degradation is always higher for the baseline On-Wz compared to On-Wn,
but, of course, still much lower compared to the short baseline in Wettzell.

6.5 Discussion

In the experiments described in this chapter, local refraction phenomena and system stability is-
sues have been investigated and characterized using two adjacent VLBI radio telescopes at the
Wettzell Geodetic Observatory (objective 2). For this purpose, specially designed WHISP sessions
with a large number of observations per baseline (600-1000) were performed. A number of notewor-
thy conclusions has been drawn which would not have been possible without the novel observing
approach.

First, differential zenith wet delays were estimated for one station relative to the other station.
The relative variations are of the order of only 1-3 millimeters. While a non-zero offset is assumed
to be the result of relative paraboloid deformation effects, the remaining variations are assigned
to unmodeled random effects in the stochastic model of the observations, particularly refractivity
fluctuations in the neutral atmosphere. This has been confirmed by introducing the atmospheric
turbulence model developed in Sec. 5.1, since the scatter of differential ZWDs reduces and the
standard deviations become more realistic.
Additionally, a residual analysis has been performed taking into account the observation geometry,
in particular the separation distance of the signal paths. The post-fit residuals have been found to
become larger with increasing ray distance. One reason is the loss of spatial correlations between
observations of larger separations.

In order to assess the stability of the observing system, the two way optical time transfer method
was used and compared to the VLBI estimates for the clock correction parameters. We found that
the agreement is only at the tens of picosecond level (20-30 ps in the better case and up to 60 ps
in the worst case), and assume that the clock estimates compensate for more than the clock effect.
Since, however, it can be well assumed that all clock-like variations within the one-hour periods
are caught by the 60 minute CPWL estimates, the 8 ps variations measured with the TWOTT are
assigned to the value to be taken for characterizing the noise component induced by the relative
clock behavior. Based on a delay closure test, the correlation error level for each baseline are found
to be 4.2 ps, which fits very well the results obtained by Ray and Corey (1991). Together with
the clock variations, the noise contribution within a few tens of seconds is not more than 10 ps
while, except of the unaccounted measurement noise, the rest of the observation to observation
variations are purely atmosphere-driven.
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Second, two independent baselines between the two Wettzell antennas and a telescope in Onsala
have been observed to estimate (absolute) zenith wet delays for the two Wettzell stations. The
correlation between the zenith wet delay parameters of the two adjacent telescopes has been found
to be in the order of 0.94 to 0.99, e.g., when modeling small scale refractivity fluctuations with
the turbulence model. Although this should have been expected, it is the first proof that the VLBI
systems are capable to measure these effects reliably.
For WHISP5 and WHISP7, the differences between the ZWDs of both stations generally vary only
in the range of 1-3 millimeters, which fits very well the conclusions obtained for the single baseline
WHISP sessions. The situation looks worse for WHISP6, where the ZWD differences almost reach
the centimeter level. It can be assumed that the reason is due to the fact that “manual” phase
calibration had to be applied for both radio telescopes in Wettzell. This assumption could be
unequivocally established by analyzing the post-fit residuals of two further experiments, WHISP5-
M and WHISP7-M, where the fringe fitting process was repeated, but manual phase calibration was
applied for both Wettzell stations. For the first time, the effect of applying manual phase calibration
instead of scan-by-scan system calibration has been identified and quantified, which is in the order
of about 20 ps.

In all these investigations the large number of observations is necessary to guarantee a very stable
estimation of the parameters and warrants a reliable interpretation of the residuals.

Concluding, the individual components of the observing system, particularly the hydrogen maser
clocks feeding the local oscillators and other necessary electronics, the uncertainties emerging from
the VLBI correlation process, and the effect of phase calibration, have been quantified, in part
for the first time. Additionally, atmospheric refraction effects have been found to be in the range
of 1-3 millimeters, which has been validated with two different observing strategies pursued by
specially designed experiments. The investigations have also benefit from the turbulence model
developed in this thesis to characterize refractivity fluctuations in the neutral atmosphere. Finally,
the WHISP project has laid the basis for an improved characterization of atmospheric refraction
effects, particularly on a local scale (objective 2).
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7. Alternative Strategies for Modeling
Atmospheric Refraction

As has been explained in Sec. 3.3.6, certain deficiencies exist in treating the atmosphere in the
current tropospheric model of VLBI observations defined in Eq. (3.65). For instance, the pseudo-
stochastic character of the piece-wise linear representation, which is used to parametrize the zenith
wet delay parameters, is generally not optimal to model the highly dynamic nature of the atmo-
sphere. Additionally, soft constraints in the form of pseudo observations are often needed to stabilize
the solution due to missing observations in some piece-wise linear segments. A similar situation ap-
plies to the atmospheric gradients modeling azimuthal asymmetries of the neutral atmosphere.
Since the estimation of the model coefficients heavily depends on observations at low elevation
angles, soft constraints are again necessary to stabilize the solution. Also the mapping functions,
which are used to map the zenith delays to an arbitrary elevation angle, are also not optimal, even
in case of the Vienna mapping functions 1 as the currently most accurate mapping function. Here,
numerical weather models are necessary which are rather coarse with a temporal resolution of only
six hours (Böhm et al. 2006b). In order to avoid the mapping function as additional uncertainty
source, it would also be desirable to obtain atmospheric delays directly in slant direction, which,
however, is only possible, if the number of observations is large enough. Finally, several parameter
groups, such as atmospheric and clock parameters as well as the vertical component of the station
coordinates, are assumed to be correlated and mutually influence each other, in particular if the
stochastic model of the observations is not complete. Consequently, the ZWD estimates do not
reflect meteorological and physical conditions in a plausible way in many cases.

In this chapter, two of these issues will be addressed in more detail, leading to two alternative
modeling and adjustment strategies which help to estimate atmospheric parameters in a more
reliable way. First, an inequality constrained least squares approach (ICLS) has been developed
to overcome the deficiency, that occasionally zenith wet delay (ZWD) estimates become negative,
which, of course, does not reflect meteorological conditions in a plausible way (Sec. 7.1). Second, the
pseudo-stochastic behavior of the piece-wise linear representation for the zenith wet delays, which
only models the stochastic character of the atmosphere to a limited extent, was replaced by a least
squares collocation method and suitable covariance functions to describe the stochastic properties
of the troposphere (Sec. 7.2).

7.1 Constraining Tropospheric Delays in the VLBI Data Analysis

In the standard data analysis of the International VLBI Service for Geodesy and Astrometry (IVS,
Nothnagel et al. 2016), a classical or ordinary least squares (OLS) adjustment is used to de-
termine terrestrial coordinates, source positions, Earth orientation parameters as well as clock and
atmospheric model correction parameters. The tropospheric propagation delay is generally taken
into account by applying an adequate model (hydrostatic component) and by additionally estimat-
ing parameter corrections (wet component) in the parameter estimation process (see Chs. 2.1 and 3
for more details). Sometimes, the classical least squares adjustment may lead to negative zenith
wet delay estimates.
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However, from a meteorological point of view, negative values do not correspond to actual meteoro-
logical conditions and physical properties. As already described in Sec. 3.3.2, the zenith wet delays
can be directly related to the water vapor content in the atmosphere by a (positive) proportionality
factor. The amount of water vapor in the atmosphere is generally described by the partial pressure
of water vapor, which can increase up to the so-called saturated vapor pressure per unit of volume.
The saturated vapor pressure depends on the temperature as defined by the Clausius-Clapeyron-
equation for water vapor (see, e.g., Kraus (2004) for more details). From that equation, it follows
that the amount of water vapor in the atmosphere is smaller in locations where the temperature is
comparably low. Concluding, there is very little water vapor content at temperatures below 0◦C,
but there is nothing like negative water vapor which could produce a negative delay contribution.
Negative zenith wet delay estimates occur more frequently for stations located in cold regions,
where the wet component of the atmospheric delay is assumed to be comparably small. Assuming
a correct hydrostatic modeling, it seems reasonable that unmodeled non-tropospheric effects are
absorbed by the ZWD estimates. Of course, it is absolutely essential to avoid this absorption effect
as long as the zenith wet delay estimates are a parameter of interest - as is increasingly the case -
and allow for a reliable interpretation of the atmospheric estimates.

As a new method, an inequality constrained least squares adjustment from the field of convex op-
timization (Boyd and Vandenberghe 2004) is introduced as an alternative adjustment strategy
for the determination of tropospheric parameters from VLBI observations in this thesis (see also
Halsig et al. 2015b; Halsig et al. 2016b). The introduction of inequality constraints, which re-
strict quantities to a fixed interval instead of a fixed value, i.e. in this case, positive ZWD estimates,
allows for a more reliable modeling of physical properties and meteorological conditions.

However, deficiencies in the hydrostatic calibrations, for example due to missing or incomplete
pressure data (Heinkelmann et al. 2011), are absorbed by the ZWD estimates. According to
the hydrostatic delay model of Davis et al. (1985, Eq. 3.37), a wrong surface pressure of +1 hPa
corresponds to an overestimated hydrostatic delay of about 2.3 mm (see also Sec. 3.3.3). Since
the ZWDs compensate mis-modeling effects in the hydrostatic calibrations to almost 100%, the
corresponding estimated ZWD would be about -2 mm in this case. Constraining now a single ZWD
parameter to a positive value in the ICLS adjustment, mis-modeling effects in hydrostatic delays are
not compensated for any more. Consequently, not only the remaining ZWD estimates are affected
due to the piece-wise linear representation, but also correlated parameters, such as the vertical
component of the station coordinates or clock model corrections may be influenced directly. Thus,
homogeneous time series of meteorological data are of utmost importance in order to not distort
the VLBI target parameters. In addition to bad a priori information, wrong mapping functions
could also be compensated for by the ZWD estimates, although, the compensation of this effect is
negligible (Halsig et al. 2015b).

To guarantee adequately modeled a priori information, the hydrostatic calibrations are derived
from numerical weather models (e.g., of the European Centre for Medium-Range Weather Fore-
casts, ECMWF). Although the differences to meteorological in-situ observations could reach a few
millimeters (Snajdrova et al. 2006), homogeneous time series of meteorological data could be
guaranteed. However, numerical weather models are not optimal, since the time resolution of six
hours is still rather coarse and actual variability is not taken into account. To overcome this issue,
a new strategy is proposed in this thesis (cf. Halsig et al. 2016b), where the ECMWF model
is used to define the level of the meteorological data, while their variability is taken from in-situ
observations derived at the VLBI sites after removing outliers and filling data gaps.
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7.1.1 Inequality Constrained Least Squares Method

The classical or ordinary least squares model is described in Eq. (2.10). The optimal solution x̃ is
obtained by minimizing the objective function, defined as the (possibly weighted) sum of squared
residuals,

vTΣ−1
ll v . . . min, (7.1)

where Σll denotes the variance covariance matrix of the observations (see Sec. 2.2 for more details).
In case of the inequality constrained least squares method, this concept is extended by p linear
inequality constraints of the form

BTx ≤ b, (7.2)

which have to be fulfilled strictly. B is the m×p matrix of constraints and b the corresponding p×1
right-hand side. In the context of VLBI observations, the ICLS method can be used to restrict the
tropospheric parameters to positive and, therefore, more reliable estimates in a meteorological and
physical sense. Finally, the optimal solution x̃ICLS is now obtained by minimizing the objective
function in Eq. (7.1) under the constraint in Eq. (7.2).
In Fig. 7.1, the contour lines of the objective function of an example problem as well as the esti-
mates derived by the classical and inequality constrained least squares solution are illustrated. The
inequality constraints (x1 ≤ 3, x2 ≥ 2, x1 +x2 ≥ 2, red lines) limit the feasible region (yellow area).
In addition to the classical least squares solution x̃′ (blue cross), which lies in the infeasible region
of the ICLS problem, the initial solution x(0) (black dot), the interim solution x(1) (black dot) and
the final solution x̃ICLS (green cross) of the ICLS problem are depicted.

 

 

−4 −3 −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

5

6

50

100

150

200

250

300

350

400

(a) OLS

−4 −3 −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

5

6

 

 

x
(0)

qp

x
(1)

50

100

150

200

250

300

350

400

(b) ICLS

Figure 7.1: Contour lines of the objective function and OLS and ICLS estimates for an example
problem. The inequality constraints (x1 ≤ 3, x2 ≥ 2, x1 +x2 ≥ 2, red lines) limit the feasible region
(yellow area). The initial solution x(0), interim solution x(1) (black dots) and final solution (green
cross) of the Active Set method are shown as black dots. The OLS solution (blue cross) in the
infeasible region of the ICLS problem is shown for comparison (Halsig et al. 2015b).

Since it is not known in the beginning, which inequality constraints will influence the result, the
ICLS problem can only be solved iteratively. In the following, one of these iterative methods, the
so-called Active Set method, will be explained in some detail.
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Active Set Method

The Active Set method (Gill et al. 1981, pp. 167-173) is a simplex-type algorithm designed to
solve ICLS problems. The principle idea is to follow the boundary (red lines in Fig. 7.1(b)) of the
feasible set (yellow region), where all inequality constraints are fulfilled, until the optimal solution
x̃ (green cross) is reached. Following Roese-Koerner et al. (2012a), who introduced the Active
Set method to geodetic problems, the algorithm can be subdivided into four main steps which are
described briefly below.

Step 1. Choose an initial point and find active constraints: First, an initial point x(0) is chosen,
which fulfills all constraints. Subsequently, the set of constraints is subdivided into active con-
straints, which hold as equality constraints W Tx(i) = w, and inactive constraints, which hold as
strict inequalities V Tx(i) < v. In more detail, the jth inequality constraint xj ≤ 0 is called active at
point x if xj = 0. In contrast, the constraint xj ≤ 0 is assigned to be inactive if xj < 0. Otherwise,
if a constraint is neither active, nor inactive, xj > 0 is valid and the constraint is said to be
violated. This is crucial, because only active constraints have an influence on the estimation process.

Step 2. Compute the search direction: The gradient

g = Nx(i) − n (7.3)

in point x(i) is determined, where N and n describe the normal equation matrix and the corre-
sponding right-hand side (see Eq. 2.14). Subsequently, the negative gradient is projected in the
nullspace of the set of active constraints to ensure that the boundary of the feasible set is followed,
resulting in search direction

p(i) = −ΠN
S⊥(W ) g, (7.4)

where ΠN
S⊥(W ) denotes a projection matrix (Koch 1999, pp 64-66).

Step 3. Compute the step length: The distance to all inactive constraints in search direction is
computed to determine the maximal feasible step length q(i).

Step 4. Update parameters and active set: With the search direction p and the step length q at
hand, an update of the parameters can be computed,

x(i+1) = x(i) + q(i)p(i). (7.5)

The corresponding Lagrange multipliers of the extended objective function

Φ (x,k) = xTNx− 2nTx+ kT (BTx− b) (7.6)

are determined (iteration indices were neglected). If all Lagrange multipliers linked with active
constraints are non-negative, the optimal solution is found and the algorithm terminates. Otherwise
all constraints with negative Lagrange multipliers are removed from the set of active constraints
and the algorithm is repeated.
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Stochastic Description

In contrast to classic adjustment procedures, there exists no analytic relationship between parame-
ters and observation in the ICLS case. Therefore, variance propagation cannot be applied. In order
to derive a measure for the quality of the estimated quantities, Monte Carlo methods can be utilized
to derive a discrete approximation of the a posteriori probability density function (PDF, Roese-
Koerner et al. 2012b). As the introduction of inequality constraints often leads to asymmetric
PDFs, highest probability density (HPD) intervals are computed instead of (symmetric) standard
deviations (Roese-Koerner et al. 2012b).

7.1.2 Analysis Settings

In total, 2333 VLBI sessions from 1993 to 2010 provided by the IVS (Nothnagel et al. 2015)
are processed using both, the classical and inequality constrained least squares adjustment. All
observations are initially processed with the VLBI analysis software Calc/Solve (Ma et al. 1990)
which only implements the classical least squares adjustment. Calc/Solve was modified to export the
equation system, which is, in a second step, used to perform the classical least squares adjustment
and to implement and solve the ICLS problem in a C++ back-end. Later, the complete data analysis
chain was incorporated into the VLBI analysis software package ivg::ASCOT (Artz et al. 2016;
Halsig et al. 2017).

In the following, the VLBI modeling and estimation settings will be briefly described. A typical
parametrization for single session VLBI analysis has been chosen. The source positions are fixed to
their positions in the current version of the International Celestial Reference Frame (ICRF2, Fey
et al. 2015), while terrestrial station coordinates, Earth orientation parameters, the clock behavior
and tropospheric delays are determined during the parameter estimation procedure.

First, the clock correction parameters are modeled by a quadratic polynomial and additional contin-
uous piece-wise linear functions (CPWLF), i.e., linear splines (De Boor 1978), with a temporal
resolution of 60 minutes. The zenith wet delays and troposphere gradients are parametrized as
CPWLF with a temporal resolution of 60 minutes and 6 h, respectively. In order to stabilize the
equation system, the clock and tropospheric parameters are supplemented by soft constraints in
the form of pseudo observations, which are, compared to hard constraints, less heavily weighted
(e.g., σclock = 2 · 10−14 s

s , σZWD = 15 mm
h , σgrad1 = 2 mm

day , σgrad2 = 0.5 mm).

Further, additional equations of hard constraints, including a no-net-translation (NNT) and a no-
net-rotation (NNR) condition with three equations each, are needed to remove the natural VLBI
rank deficiency and to prevent the system of equations from singularities (Angermann et al.
2004). In the following of this section, the term constraint will always only refer to inequalities
concerning the ICLS method and not to the measures for the stabilization of the equation system.
The stabilizing pseudo observations are always applied, at least in the framework of the inequality
constraint least squares adjustment.

Concerning the estimation of ZWDs, the Vienna mapping functions 1 (VMF1, Böhm et al. 2006b)
are used. To receive homogeneous time series of meteorological data, the hydrostatic delay is also
modeled using reanalysis data of the numerical weather model of the European Centre for Medium-
Range Weather Forecasts (ECMWF). This has been done although in-situ surface pressure is in-
cluded in the vgosDB data files (the new data format to store data obtained from VLBI obser-
vations; Bolotin et al. 2016) or the former database format (see, e.g., Gipson 2012), which,
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however, could contain data gaps, outliers and incorrect meteorological data due to sensor failures.
As the ECMWF data contain information only in intervals of six hours, we loose precision (from
the pressure values at the epoch of each observation) but gain a higher accuracy.

In the following, an adequate a priori model is assumed and an inequality constrained least squares
adjustment is applied to the VLBI modeling procedure, complementing the classical least squares
solution described in Sec. 2.2. For this purpose, the constraint is imposed, that all ZWD estimates
must be greater than or equal to 0 mm (i.e., xi ≥ 0 mm).

7.1.3 Results

The new methodology is applied to 17 years of VLBI observations in order to investigate the influ-
ence of the inequality constraints on typical VLBI parameters in a long term study. In 454 out of
2333 VLBI sessions the method automatically applied inequality constraints, that means in about
20 percent of cases at least one constraint is active. Generally, the quality of the determination of
baseline lengths between different VLBI telescopes is assessed in terms of baseline length repeata-
bilities, which can be regarded as the standard deviation for an individual baseline after removing
a linear trend from a time series of baseline lengths. For both the OLS (black) and the ICLS (red)
adjustment, the baseline repeatabilities, which occur in at least 30 sessions, as well as the baseline
repeatabilities for only those sessions, for which, in addition, inequality constraints are applied, are
shown in Fig. 7.2(a) and Fig. 7.2(b), respectively. Further, a quadratic polynomial is fitted to the
data for a better visualization. The ICLS solution (red line, Fig. 7.2(b)) is slightly more precise than
the OLS solution (black line). The application of ICLS improves 9% of the baseline repeatabilities
for at least 1 mm (black bars in Fig. 7.2(c)) while 1% get worse for at least 1 mm (dark gray bars)
and 90% remain unchanged (light gray bars).

Concluding, the ICLS adjustment seems not to harm the estimation of the telescope positions,
provided that the a priori hydrostatic component is modeled sufficiently. It is worth mentioning,
that it was initially not intended to improve the determination of station coordinates, but to avoid
negative tropospheric estimates and, therefore, to allow for a physically more reliable description
of the atmospheric delays.
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Figure 7.2: Baseline length repeatabilities for (a) VLBI data from 1993 to 2010 and (b) those
sessions, for which constraints are active, w.r.t. the classical (black) and the ICLS (red) adjustment;
and (c) difference (OLS minus ICLS) in baseline length repeatabilities (Halsig et al. 2015b).
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In the following, the effect of the new methodology on zenith wet delay estimates of a single VLBI
session is investigated in more detail. Since negative ZWD estimates occur most frequently in cold
regions, a VLBI station in Gilmore Creek, Alaska, was selected as an example. In Fig. 7.3, the
zenith wet delay estimates are illustrated for a VLBI experiment in November 2001. The ZWD
parameters derived from the classical least squares adjustment are represented in black while the
ICLS estimates are depicted in red. Here, the parameter referring to the second piece-wise linear
segment is negative by about 3 to 4 mm and is shifted to a non-negative value in the ICLS approach.
Since continuous piece-wise linear functions are used for the parametrization of the atmospheric
parameters, all zenith wet delay estimates of the same VLBI station are correlated. Although many
of the ZWD estimates are also shifted, the ZWD differences between the classical and constrained
adjustment are negligible, except for the parameter where the inequality constraint is active.
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Figure 7.3: Zenith wet delay parameters for the VLBI station in Gilmore Creek, Alaska in November
2001. The classical least squares estimates are represented in black and the ICLS solution is depicted
in red (Halsig et al. 2016b).

Since different parameter types are possibly correlated, the influence of the single inequality con-
straint (blue) applied for one zenith wet delay on other parameter groups, such as station coordinates
(black), clock model correction parameters (light gray) and the zenith wet delays (dark gray) of the
same station, is shown in Fig. 7.4. While the maximum difference of about 1 mm can be found in
one of the ZWD estimates, the remaining part is evenly distributed between the other parameters,
although the differences are on the order of tenths of a millimeter and, consequently, negligible. The
effect of the same inequality constraint on the ZWD estimates of another station, as an example
for Matera in Italy, is depicted in Fig. 7.4(b). The differences between both solutions are again
marginal, which was confirmed by investigating other sessions, concluding that the use of the ICLS
method only leads to an effect on estimates of the same station for which inequality constraints are
applied.

However, this is only true if the a priori hydrostatic calibrations are modeled correctly. If the
assumption of an adequate a priori model is violated, the vertical component can change noticeably
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Figure 7.4: (a) The influence of a single ZWD inequality constraint (blue) on station coordinates
(black), clocks (light gray) and zenith wet delays (dark gray) of the same station (Gilmore Creek,
Alaska). (b) The influence of the same inequality constraint on zenith wet delay parameters (dark
gray) of another station in Matera, Italy (Halsig et al. 2016b).

in the order of several millimeters. In order to validate the influence of the meteorological data
on the results, two solutions have been determined for 125 VLBI sessions in 2002, which only
differ in the hydrostatic calibrations: a solution with meteorological data only derived from in-situ
observations is depicted in cyan, while a solution using the combined approach described above is
represented in red in Fig. 7.5. Both solutions are validated in terms of the differences in baseline
length repeatabilities with respect to the classical least squares adjustment.
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For about 20% of these sessions automatically inequality constraints are applied for at least one
station and one zenith wet delay parameter, and approximately the same number of inequality
constraints is needed for both ICLS realizations, although the constrained parameters and the or-
der of magnitude in the differences to the classical least squares solution can be different. Since
outliers and data gaps may occur due to sensor failures in the in-situ measurements, and inequality
constraints suppress the effect of compensating erroneous hydrostatic calibrations by the zenith
wet delay estimates, the baseline length repeatabilities are degraded in the case of purely in-situ
measurements compared to the classical least squares solution. The situation changes when intro-
ducing the strategy of combining model data and meteorological observations since the differences
in baseline length repeatabilities are now negligible, although inequality constraints are introduced
to allow for a more reliable estimation of tropospheric parameters.
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Figure 7.5: Baseline length repeatability differences with respect to the classical least squares so-
lution. The cyan dots represent an ICLS solution, where the meteorological data used for the
calculation of the hydrostatic delay only results from in-situ measurements, while red dots depict
an ICLS solution using atmospheric a priori data derived from a combination of in-situ observations
and a numerical weather model of the ECMWF (Halsig et al. 2016b).

In conclusion, the application of the ICLS adjustment is, in principle, possible without harming the
VLBI target parameters, provided that the a priori hydrostatic component is modeled sufficiently.
However, the negative zenith wet delay estimates result not only from a priori mis-modeling, but
could also be the result of several other issues, such as mis-modeling of geophysical effects as well as
a certain impact due to instrumental delays or the clock parametrization. A sophisticated analysis
on this topic, particularly on the stability of the hydrogen maser clocks feeding the local oscillators
and other necessary electronics, is performed using close-range VLBI observations in the framework
of the WHISP (Wettzell HIgh SPeed) project (see Ch. 6).
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7.2 A Stochastic Description of Tropospheric Delays

In standard VLBI data analysis the zenith wet delays are not modeled but determined within
the parameter estimation process, parametrized as continuous piece-wise linear functions in form of
linear splines with a specific time interval. Routinely, the resolution of the piece-wise linear segments
is 60 minutes, but can be reduced to 30 or even 15 to 20 minutes if the number of observations in the
individual time segments is adequately high (cf. the discussion in Ch. 6 on this issue). The piece-wise
linear representation is however not optimal, since the highly dynamic nature of the atmosphere,
in particular the wet troposphere, can only be modeled to a limited extent. Moreover, the piece-
wise linear functions represented as linear splines show a non-ideal characteristic in terms of their
transfer function (cf. Schubert 2017). Another deficit is the necessity of soft constraints in form of
pseudo observations which are generally needed to stabilize the solution due to missing observations
in some piece-wise linear segments. The pseudo-observations further distort the solution statistics
as the (W)RMS due to an increasing number of degrees of freedom. In order to overcome both
deficiencies and to allow for a fully stochastic description of the atmospheric behavior, a least
squares collocation method is suggested, where the stochastic properties of the neutral atmosphere
are reflected by suitable covariance functions.

In principle, the characteristics of the atmosphere could have also been described as a stochastic
process in a filter estimation (e.g., a Kalman filter or a square-root information filter). Although the
least squares collocation method lags behind the filter method concerning the computational effort,
it directly provides the normal equation matrices, which could be used for combination purposes on
the normal equation level in future VLBI global solutions. The covariance function used in the least
squares collocation method could be easily transferred to a stochastic process in a filter estimation
without loss of generality. The square-root information filter has already been implemented in the
analysis software ivg::ASCOT (cf. Schubert et al. 2017).

In Sec. 7.2.1, the theory of least squares collocation is presented, followed by Sec. 7.2.2 on the
definition and discussion of different covariance functions. A case study is performed and the results
are outlined in Sec. 7.2.3.

7.2.1 Least Squares Collocation Method

The general model of the least squares collocation (LSC, Krarup 1969; Moritz 1972) can be
formulated as a generalization of Eq. (2.10),

l︸︷︷︸
observation

= Ax︸︷︷︸
deterministic

+ s︸︷︷︸
stochastic

+ n︸︷︷︸
noise

, (7.7)

where l denotes the n × 1 observation vector, x represents the m × 1 vector of deterministic
parameters, and the n ×m Jacobian matrix is given by A. In addition to the noise component n
in Eq. (2.10), s denotes a second random quantity to describe the stochastic behavior of certain
quantities, referred to as signal in the following.

Following Schuh (2016), the estimates of x and s are supposed to comply with the requirements
to be best linear estimates in the statistical sense. The linear dependency on the observations can
be expressed by

x̂ = GT l and ŝ = HT l, (7.8)



116 7. Alternative Strategies for Modeling Atmospheric Refraction

assuming G and H to be independent of the observations and describing the coefficients of the
linear combination in order to receive the estimates directly from the observations. Second, the
requirement of unbiased estimates is fulfilled, if the expectation value of the estimation error (εx
and εs, respectively) is zero,

E {εx}
!= 0 and E {εs}

!= 0. (7.9)

According to Schuh (2016, pp 80ff) this is either fulfilled if the expectation value of the signal is
zero,

Es
!= 0, (7.10)

or, additional constraints,

GT IN
!= 0 and HT IN − IN

!= 0, (7.11)

with IN =
[
1 1 . . . 1

]T
[n×1]

needs to be included in the optimization task. Third, the estimates

of x and s are supposed to minimize the estimation error

Σ {εx} . . .Min. and Σ {εs} . . .Min. (7.12)

Finally, the optimal solution for the deterministic parameters can be written as

x̃ =
[
AT (Σss + Σnn)−1A

]−1
AT (Σss + Σnn)−1 l (7.13)

with the corresponding variance-covariance matrix

Σx̃x̃ =
[
AT (Σss + Σnn)−1A

]−1
, (7.14)

where Σss and Σnn are the variance-covariance matrices of the stochastic signal and the noise term,
respectively. The matrix Σss can be determined by suitable covariance functions (see Sec. 7.2.2). It
is evident that Eq. (7.13) is equivalent to the classical least squares solution in Eq. (2.13) with the
variance-covariance matrix Σ := Σll = Σss + Σnn. Consequently, Σ includes both the covariances
of the signal and the observation noise.

After determining the deterministic parameters, the stochastic signal prediction can be formulated
as

s̃ = Σsl (Σss + Σnn)−1 (l−Ax̃) (7.15)

with the corresponding variance-covariance matrix

Σs̃s̃ = Σss −Σsl (Σss + Σnn)−1 ΣT
sl + Σsl (Σss + Σnn)−1AΣx̃x̃A

T (Σss + Σnn)−1 ΣT
sl,

(7.16)

or

Σs̃s̃ = Σss −ΣslΣ−1ΠΣ−1

S⊥(A)Σ
−1ΣT

sl. (7.17)
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with Σ = Σss + Σnn and the projection matrix (Schuh 2016)

ΠΣ−1

S⊥(A) = Σ−A
(
ATΣ−1A

)−1
AT . (7.18)

In case of VLBI observations, two modifications are performed in Eq. (7.7). First, the stochastic
component is augmented by a second Jacobian matrix B consisting of the partial derivatives of the
observation equations with respect to the stochastic parameters, leading to

l = Ax+Bs+ n. (7.19)

More specifically, B contains the mapping functions as the partial derivatives with respect to the
zenith wet delays. The mapping functions, which can be generally approximated by 1

sin(ε) , are not
directly included in the signal component Σss in order to ensure the positive definiteness of the
covariance function and matrix, which generally may be violated with an additional sine term.

Second, the deterministic component of Eq. (7.19) is divided into

l = A1x1 +A2x2 +Bs+ n, (7.20)

to separate the atmospheric and non-atmospheric components. Hence, A1x1 contains the determin-
istic VLBI target parameters, such as station and source positions, Earth orientation parameters,
and the clock model correction parameters, while A2x2 only contains the parameters for the atmo-
sphere, which only include an deterministic offset parameter estimated for each telescope and the
duration of the complete session. This is necessary in order to guarantee that Es

!= 0.

In case of the slightly modified model in Eq. (7.19), Eqs. (7.13) and (7.14) become

x̃ =
[
AT

(
BΣssB

T + Σnn

)−1
A

]−1
AT

(
BΣssB

T + Σnn

)
l, (7.21)

Σx̃x̃ =
[
AT

(
BΣssB

T + Σnn

)−1
A

]−1
, (7.22)

and, defining Σ := BΣssB
T + Σnn and using the projection matrix in Eq. (7.18), yields

s̃ = ΣssB
T
(
BΣssB

T + Σnn

)−1
(l−Ax̃) , (7.23)

Σs̃s̃ = Σss −ΣssBΣ−1ΠΣ−1

S⊥(A)Σ
−1BΣT

ss, (7.24)

instead of Eqs. (7.15) and (7.16).

7.2.2 Covariance Functions

Least squares collocation depends essentially on a priori information in form of appropriate (auto-)
covariance functions used to describe the stochastic properties of the signal component in Σss.
According to Moritz (1976), the covariance functions are generally characterized by two param-
eters: the correlation length and the curvature or form parameter. While the correlation length
defines the value of the argument for which the covariance function has decreased to half of its
value, the form parameter is related to the curvature of the covariance function. In the following,
several covariance models are presented and discussed, starting with the approach suggested by
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Titov (2000), which has already been successfully applied to VLBI observations before (Titov
2000; Titov and Schuh 2000; Artz et al. 2012). It is demonstrated that this covariance function
can be transferred to a second order Gauss Markov process (SOGM, Maybeck 1979), which is
used to analyze the covariance model in more detail. Additionally, further covariance functions are
introduced (e.g., Matérn 1960; Sansò and Schuh 1987; Gaspari and Cohn 1999) and their
properties are described.

Second Order Gauss Markov Process

The general model proposed by Titov (2000) reads

γ (τ) = γ (0)
cos (ϕ)e

−a|τ | cos (b|τ |+ ϕ) , (7.25)

where γ (0) is the variance and γ (τ) denotes the covariance for time difference τ . Titov (2000)
suggests the coefficients to be

a = 6.24, b = 6.48, ϕ = 0.82

for the atmospheric parameters. In addition, the author also proposed coefficients for the clock
correction parameters with respect to the same covariance function, and a further covariance func-
tion and corresponding coefficients representing the behavior of the Earth orientation parameters.
In this thesis, however, only the behavior of the zenith wet delays is modeled stochastically. Due
to the highly dynamic character of the wet troposphere, the greatest potential in improving the
data analysis of VLBI observations is expected, while the behavior of the clocks is assessed to be
modeled sufficiently by piece-wise linear functions.
The covariance function in Eq. (7.25) consists of an oscillation part represented by a cosine term
and a descending exponential function describing the attenuation effect. Concerning the coefficients
in Eq. (7.25), a can be assigned to the attenuation while b defines the frequency in the cosine term,
shifted by a phase ϕ.
Investigating this model in more detail, the covariance function seems not to be positive definite (cf.
Schubert 2017), which, however, is highly advisable (see, e.g., discussion in Sansò and Schuh
1987). In order to verify this assumption, the initial model of Titov (2000) is transferred to a
second order Gauss Markov process (SOGM, Maybeck 1979, p. 185) of the type

γ (τ) = γ (0)
cos (η)e

−ζωn|τ | cos


√

1− ζ2ωn︸ ︷︷ ︸
!=ω̂

|τ | − η

 . (7.26)

Similar to the initial model, ζ represents the attenuation effect, ωn the frequency, and η the phase
shift. Comparing Eqs. (7.25) and (7.26) yields the following relationship between both covariance
functions:

a = ζωn, (7.27)

b = ω̂ =
√

1− ζ2ωn, (7.28)
η = −ϕ, (7.29)

ζ = a√
a2 + b2

, (7.30)

ωn =
√
a2 + b2. (7.31)
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Consequently, the covariance function provided by Titov (2000) could be reproduced by using a
second order Gauss Markov process with the following coefficients (cf. Schubert 2017):

η = −0.82, ζ = 0.6936, ωn = 8.9960.

In Fig. 7.6, the resulting covariance function is depicted in black.

According to Maybeck (1979, p 185f), the corresponding power spectral density of the covariance
function in Eq. (7.26) reads

F (ω) = ĉ2
1ω

2 + ĉ2
2

ω4 + 2ω2
n (2ζ2 − 1)ω2 + ω2

n

(7.32)

with

ĉ2
1 =

√( 2σ2

cos (η)

)
ωnsin (α− η),

ĉ2
2 =

√( 2σ2

cos (η)

)
ω3
nsin (α+ η)

(7.33)

and the damping angle

α = arctan
(

ζ√
1− ζ2

)
. (7.34)

The power spectral density needs to be non-negative, and, satisfying this condition, it follows
immediately from Eq. (7.33), that the argument of the sine may also not be negative, or, expressed
mathematically (cf. Schubert 2017),

α+ η ≥ 0,
α− η ≥ 0.

(7.35)

Using the coefficients suggested by Titov (2000, see above) leads to

η = −ϕ = −0.82, (7.36)

α = arctan
(

ζ√
1− ζ2

)
= arctan

(
a

b

)
= 0.7665, (7.37)

which violates the second condition in Eq. (7.35), and proves the assumption that the covariance
function presented by Titov (2000) is not positive definite (cf. Schubert 2017).

However, it is possible to fulfill α + η = 0 (positive (semi-) definiteness) by minor changes of the
initial parameter set by Titov (2000). According to Schubert (2017), there are in total three
possible alternatives, and the modified parameters are always marked by an asterisk (∗). First, the
coefficient for the phase η∗ can be modified to be at least as large as the negative damping angle α,

η∗ = −ϕ = −α. (7.38)

In Fig. 7.6, the corresponding covariance function is represented in blue.
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Figure 7.6: The second order Gauss Markov process reproducing the covariance function provided
by Titov (2000), referred to as the reference solution (black), and modifying the phase η∗ (blue),
the attenuation ζ∗ (green) and the frequency ω∗n (red).

Second, the attenuation ζ∗ needs to be modified in a way that α = −η fulfills the same condition as
before. Inverting Eq. (7.34) leads to ζ = sin (α) and b = ω̂ = cos (α)ωn, and the modified coefficient
of the attenuation can be expressed as

ζ∗ = sin (−η) = sin (ϕ) . (7.39)

In Fig. 7.6, the covariance function represented in green corresponds to the modification of the
attenuation ζ∗.

Finally, it is also possible to perform a change in the frequency,

ω∗n = ω̂

cos (η) , (7.40)

which also modifies ω̂∗ =
√

1− ζ2ω∗n. Formulated in the notation of Titov (2000), it follows

ω∗n = b

cos (ϕ) (7.41)

and

a∗ = ω̂ tan (−η) = b tan (ϕ) . (7.42)

Again, Fig. 7.6 shows the resulting covariance function (red).

In Tab. 7.1, the different coefficients of the initial covariance function by Titov (2000) (a, b, ϕ)
and the second order Gauss Markov process (η, ζ, ωn) by modifying the phase η∗ (3rd column),
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Table 7.1: Different coefficients (1st column) of the initial covariance function by Titov (2000)
and the second order Gauss Markov process (SOGM) by modifying the phase η∗ (3rd column), the
attenuation ζ∗ (4th column) and the frequency ω∗n (5th column). The 2nd column refers to initial
coefficients (a, b, ϕ) suggested by Titov (2000) for his covariance function, and the equivalent
coefficients (η, ζ, ωn) necessary to reproduce the covariance function by Titov (2000) with a
SOGM process (cf. Schubert 2017).

Coefficients Reference:
(Titov 2000)

change of
phase η∗

change of
attenuation ζ∗

change of
frequency ω∗n

SOGM

η -0.82 -0.7665 -0.82 -0.82

ζ 0.6939 0.6939 0.7311 0.7311

ωn 8.9960 8.9960 8.9960 9.4984

ω̂ 6.48 6.48 6.1373 6.48

α 0.7665 0.7665 0.82 0.82

TITOV
(2000)

a 6.24 6.24 6.5774 6.9447

b 6.48 6.48 6.1373 6.48

ϕ 0.82 0.7665 0.82 0.82

the attenuation ζ∗ (4th column) and the frequency ω∗n (5th column) are given. Further, a reference
parameter set is defined (2nd column) describing the coefficients, which are initially suggested by
Titov (2000), and the equivalent coefficients which are necessary to reproduce the covariance
function by Titov (2000) with a SOGM process.

It is worth mentioning that the frequency remains unchanged when modifying either the phase η∗
or the attenuation ζ∗, while a change in the frequency ω∗n has the special characteristic of keeping
the zeros of the covariance function, which is not true for the other cases. It is further recalled,
that, in contrast to the original reference set, all covariance functions which have been subject to
minor modifications in the selected coefficients are positive (semi-) definite.

Alternative Covariance functions

Additionally, further covariance functions have been used for validation purposes, which will be
briefly described in the following. First, the finite covariance function fGC(r, a,R) of Gaspari and
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Cohn (1999) represents a fifth order piece-wise rational function, which is mathematically obtained
by self-convolving the continuous piece-wise linear function

h(r, a,R) =


2 (a− 1) r

R + 1 : 0 ≤ r ≤ R
2

2a
(
1− r

R

)
: R2 ≤ r ≤ R

0 : R ≤ r.
(7.43)
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Figure 7.7: The covariance function fGC(r, a,R) proposed by Gaspari and Cohn (1999) for R = 1
and two modifications of the form parameter: a = 0.5 (brown, solid line) and a = −0.1 (brown,
dashed line).

The curvature or form parameter a determines the slope of the linear output function, r defines the
Euclidean distance between two points separated in space or time, and R represents finite support.
The extensive collection of equations for the resulting fifth order piece-wise polynomial is given in
Gaspari et al. (2006, Eq. (33) and Appendix C.1 and C.2). The covariance function for R = 1
and two modifications of the form parameter, a = 0.5 (brown, solid line) and a = −0.1 (brown,
dashed line), are depicted in Fig. 7.7.

Sansò and Schuh (1987) proposed a covariance function as a convolution of a paraboloid function

h(r,R) =
{
R2 − r2 : 0 ≤ r ≤ R
0 : R ≤ r

(7.44)

with itself, and obtained

fSS(r,R) =


1
3R

6π − 1
2R

4r2π + 1
3

(
R4r + 4

3R
2r3 − 1

12r
5
)

+√
R2 − r

2
2 +

(
R4r2 − 2

3R
6
)

arcsin
(
r

2R
)

: 0 ≤ r ≤ 2R
0 : 2R ≤ r.

(7.45)
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Since it is not possible to model negative correlations with the initial form in Eq. (7.45), a modified
covariance function

fS2(r,R) = 2R4π − 4R4 arcsin
(
r

2R

)
−
(
6R2r − r3

)√
R2 −

(
r

2
2)
, (7.46)

was defined, which allows the modeling of negative correlations, but does not have a form or
curvature parameter. Both the original (orange) and the modified (cyan) form of the covariance
function are shown in Fig. 7.8 for R = 1.
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Figure 7.8: The covariance function fSS(r,R) proposed by Sansò and Schuh (1987) in its original
(orange) and modified (cyan) form for R = 1.

Additionally, a covariance function based on the so-called Matérn covariance family (Matérn
1960) is used which has the general form

C (r) = φ (αr)ν Kν (αr) (7.47)

with the smoothness parameter ν and the correlation length r = 1
α . Here, φ > 0 and α > 0 are

constant values, and Kν represents the modified Bessel function of second kind (Abramowitz
and Stegun 1964, pp. 355ff). Special cases of the Matérn covariance function arise for specific
smoothness parameters: ν = 1

2 leads to an exponential covariance function, ν = 1 defines an
autoregressive process of first order (also called a Markov process of first order), and ν = ∞ is
the squared exponential function or so-called Gauss type (Kermarrec and Schön 2016). The
resulting covariance functions for a fixed correlation length of r = 0.2 and specific smoothness
parameters (ν = 1

2 , black; ν = 1, blue; ν =∞, green; ν = 5
6 , magenta) are depicted in Fig. 7.9.

Finally, the atmospheric turbulence model developed within this thesis (see Sec. 5.1 for more de-
tails) is used to generate a covariance function. In this case, the covariance function depends on
small-scale refractivity fluctuations due to turbulence-induced processes in the neutral atmosphere.
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Figure 7.9: The Matérn covariance function (Matérn 1960) for a fixed correlation length of r = 0.2
and specific smoothness parameters: ν = 1

2 (exponential function, black), ν = 1 (autoregressive
process of first order, blue), ν =∞ (squared exponential function, green) and ν = 5

6 (magenta).

From a theoretical point of view, this model has the advantage of directly describing actual physical
processes in the atmosphere, while the other functions presented here are related to empirical or
mathematical models, not reflecting actual meteorological and physical conditions. The turbulence
model follows a Matérn function with smoothness parameter ν = 5

6 and a correlation length de-
pending on parameters with regard to atmospheric turbulence (see Eq. (5.16) and the description
in the text).

7.2.3 Case Study: Least Squares Collocation in VLBI Data Analysis

In a case study, the classical least squares adjustment in the VLBI data analysis has been replaced
by the least squares collocation approach, evaluated for different covariance functions and two
specially designed VLBI sessions in the framework of the WHISP (Wettzell HIgh SPeed) project
(see Ch. 6 for more details). Both experiments have been chosen since they stand out against other
sessions, particularly in terms of the increased number of observations. Further, the sessions include
observations on the European continent as well as short baselines of only about one hundred meter
at the Wettzell Geodetic Observatory.

First, it should be clearly pointed out, that in the context of VLBI data analysis the least squares
collocation approach only produces appropriate results if the number of observations is high enough.
Remembering that, in case of the classical least squares adjustment, the lack of observations in
specific piece-wise linear segments are counteracted by the introduction of less heavily weighted soft
constraints in form of pseudo observations, and omitting these constraints would clearly degrade
the quality of the results. Due to the fact, that this remedy is not foreseen for the least squares
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collocation approach, the focus lies on future VGOS-like (VLBI Global Observing System, Niell
et al. 2013) VLBI sessions with an increased number of observations as is the case for the WHISP
sessions.

Data Analysis Settings

The data analysis of VLBI observations is performed using the VLBI software package ivg::ASCOT
(Artz et al. 2016; Halsig et al. 2017). The target parameters are estimated in a least squares
collocation adjustment according to Eq. (7.20), and the analysis of the observed group delays is
performed following the conventions of the International Earth Rotation and Reference Systems
Service (IERS, Petit and Luzum 2010).
The model and parametrization setup for single-session VLBI data analysis has been chosen with
respect to the routine data analysis strategies of the IVS. Therefore, the station coordinates are
estimated with respect to an ivg::ASCOT multi-session solution, and additional no-net-rotation
(NNR) and no-net-translation (NNT) conditions (e.g., Angermann et al. 2004) have been applied
to eliminate the datum defect. The Earth orientation parameters and radio source coordinates are
not estimated, but fixed to a priori values of the IERS C04 series and the International Celestial
Reference Frame (ICRF2, Fey et al. 2015), respectively.

Similar to the classical least squares adjustment, the clock parameters are modeled by a second
order polynomial and additional continuous piece-wise linear functions (CPWLF) with a temporal
resolution of 60 minutes. For the determination of the zenith wet delays, in contrast, the piece-
wise linear functions are fully replaced to allow for a stochastic representation of the atmospheric
parameters instead of the pseudo-stochastic behavior of the piece-wise linear functions. First, a
deterministic offset valid for the entire duration of the session is estimated, and additionally, zenith
wet delay corrections are predicted for each observation time period. Least squares collocation
depends essentially on a priori information in form of appropriate covariance functions, which are
needed to describe the stochastic properties of the signal component. In this case study, different
covariance models presented in Sec. 7.2.2 have been applied: the two functions by Sansò and
Schuh (1987), fSS(r,R) and fSS(r,R), with R = 1, the covariance function of Gaspari and
Cohn (1999), fGC(r, a,R) with R = 1 and a = −0.1, the Matérn model (Matérn 1960) with
a smoothness parameter ν = 1.6 and a correlation length of τ = 1, and finally, the second order
Gauss Markov process (e.g, Maybeck 1979) similar to the covariance function provided by Titov
(2000), but with modified attenuation parameter (see Eq. 7.39). The parameters characterizing
the covariance functions are empirically derived and chosen to approximate the curve of the initial
model by Titov (2000), which has already been applied to VLBI observations. Additionally, the
covariance functions related to the turbulence model presented in Sec. 5.1 (see Eqs. 5.16 and 5.17)
with C2

n = 1 · 10−14m−
2
3 , H = 2000 km, v = 8 m

s , and a = b = 1 < c was used to describe the
stochastic properties of the atmospheric parameters.

In order to provide a reference solution, an additional least squares adjustment is performed with the
traditional piece-wise linear representation for the atmospheric parameters using interval lengths
of 30 and 60 minutes, respectively, and soft constraints weighted by σZWD = 15mm

h . Here, both the
clock and atmospheric model corrections are supplemented by additional constraints formulated as
weighted pseudo observations to stabilize the equation system, whereas, in case of the least squares
collocation approach, the zenith wet delays are not constrained any more.

In both cases, the Vienna mapping functions 1 (VMF1, Böhm et al. 2006b) are used for the
mapping of the tropospheric wet delay from zenith to the slant direction.
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Concerning the stochastic model of the observations, the weight matrix of the Gauss Markov model
is a pure diagonal matrix only consisting of the pure observation weights derived from the correlation
process and an additional noise term of about 15 ps to ensure χ2 ≈ 1.

Results

Different covariance functions have been implemented and numerous adjustments based on the
collocation model have been performed for the two WHISP sessions in November 2016 and July
2017. In order to obtain a reference solution, two classical least squares adjustments have been
calculated, which only differ in the determination of the interval length of the piece-wise linear
segments (30 and 60 minutes, respectively). The results in terms of the weighted root mean square
(WRMS) error of post-fit residuals (see Eq. 5.23) are shown in Tab. 7.2. A distinction is made
between a baseline-dependent WRMS to evaluate the influence of the individual baseline length,
and an overall WRMS of post-fit residuals valid for the whole session. The covariance functions
are determined with respect to a second order Gauss Markov process according to Eq. (7.26), the
covariance function of Gaspari and Cohn (1999), the initial model of Sansò and Schuh (1987)
and its modification (see Eqs. (7.45) and (7.46), respectively), the covariance function according to
Matérn (1960, see Eq. 7.47), and, finally, the turbulence model presented in Sec. 5.1. Additionally,
the two solutions following the classical least squares adjustment are given as a reference.

First, it is worth noting, that the different solutions lead to clearly different results in terms of
WRMS of post-fit residuals, which are exclusively attributable to the corresponding covariance
function used to describe the stochastic behavior of the atmospheric parameters. Generally, it seems
that, compared to the classical least squares solutions (last two columns in Tab. 7.2), reasonable
solutions may be obtained with respect to the second order Gauss Markov process, the modified
function of Sansò and Schuh (1987) and the turbulence model, while the WRMS of post-fit
residuals already decreases for the Matérn (1960) case, and lead to unsatisfactory results using
the function of Gaspari and Cohn (1999) and the initial model of Sansò and Schuh (1987).
Possible reasons are given at a later stage, when directly looking at the zenith wet delay estimates
and predictions, respectively. Concerning the overall WRMS of post-fit residuals, the best least
squares collocation solution is obtained when modeling the stochastic properties by a second order
Gauss Markov process. For both sessions, the results are better than the classical least squares
solution with 60 minute piece-wise linear segments. Compared to the least squares solution reducing
the interval lengths to 30 minutes, the SOGM solution lies in the same order of magnitude for
WHISP5 and even leads to a slight improvement of about 8 ps in quadrature for WHISP7.

The analysis of the individual baselines reveals that the different strategies creating a covariance
function also lead to a different behavior with respect to the extension of the baseline. For the
adjacent European baselines between Onsala (On), Sweden, and the two radio telescopes (Wn and
Wz) in Wettzell, Germany, (On-Wn, and On-Wz, respectively), the overall best solution is obtained
by least squares collocation based on a second order Gauss Markov process, which is even slightly
better than the classical least squares adjustment. Using the turbulence model or the modification
of Sansò and Schuh (1987) also yields suitable results, which are slightly worse than the least
squares adjustment with a solution interval of 30 minutes, but are in the same order of magnitude
or perform even slightly better than the solution with piece-wise linear segments of a resolution of
60 minutes.
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Table 7.2: Overall and baseline-dependent WRMS of post-fit residuals [ps] based on different least
squares adjustment strategies: the least squares collocation method based on different covariance
functions (first row, from left to right: 2nd order Gauss Markov process; Gaspari and Cohn
1999; Sansò and Schuh 1987; second row, from left to right: Matérn 1960; turbulence model
of Halsig et al. 2016a), and the classical least squares adjustment using different interval lengths
for the CPWL representation (second row, last two columns). In order to ensure χ2 ≈ 1, a constant
additional noise term is added to the standard deviations from the correlator process.

WHISP5

Baseline 2nd order Gauss
process

Gaspari and
Cohn (1999)

Sansò and
Schuh (1987),

Eq. (7.45)

Sansò and
Schuh (1987),

Eq. (7.46)

Overall 27.52 35.69 47.89 28.15

On-Wn 30.02 37.74 50.26 30.21

On-Wz 28.80 38.94 53.08 30.03

Wn-Wz 12.42 12.89 12.26 12.19

Matérn (1960) Turbulence
model Halsig
et al. (2016a)

Classical Least Squares Adjustment

interval length CPWL, 60 min. CPWL, 30 min.

Overall 30.79 28.36 28.63 27.18

On-Wn 33,24 30.55 30.70 29.16

On-Wz 32.67 30.22 30.76 29.12

Wn-Wz 13.21 11.89 11.31 11.28

WHISP7

Baseline 2nd order Gauss
process

Gaspari and
Cohn (1999)

Sansò and
Schuh (1987),

Eq. (7.45)

Sansò and
Schuh (1987),

Eq. (7.46)

Overall 24.44 32.32 34.66 26.69

On-Wn 29.39 37.41 41.25 31.85

On-Wz 26.57 36.72 38.49 29.32

Wn-Wz 8.29 9.90 10.24 8.85

Matérn (1960) Turbulence
model Halsig
et al. (2016a)

Classical Least Squares Adjustment

interval length CPWL, 60 min. CPWL, 30 min.

Overall 28.29 27.52 27.04 25.74

On-Wn 34.26 32.64 32.02 30.52

On-Wz 31.81 30.61 30.10 28.62

Wn-Wz 9.97 8.42 8.45 7.99
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For the short baseline between the two Wettzell radio telescopes the assessment of the results is
different. First, the difference between the WRMS of post-fit residuals of the different solutions is
smaller compared to the traditional baseline lengths, and the turbulence model performs slightly
better on the short baselines. Surprisingly perhaps, the Matérn covariance function does not lead
to further improvements on the short baseline, although high-frequency variations, which are much
more relevant on a local scale, should be modeled better by this model. Most likely, the daily cycle
is however not ideally reflected by this function. Another explanation for the fact that the Matérn
function lags behind the turbulence model, which generally also follows a Matérn function, is the
capability to also consider spatial correlations with the turbulence model, which is not possible
with the pure Matérn covariance function.

Table 7.3: Overall and baseline-dependent WRMS of post-fit residuals [ps] for different least squares
adjustments with and without soft constraints/pseudo observations in the context of the piece-wise
linear segments of different interval lengths. In order to ensure χ2 ≈ 1, a constant additional noise
term is added to the standard deviations from the correlator process.

WHISP5

Baseline Classical Least Squares Adjustment

No pseudo observations/constraints constraints with σZWD = 15mmh
interval length CPWL, 60 min. CPWL, 30 min. CPWL, 60 min. CPWL, 30 min.

Overall 29.74 31.25 28.63 27.18

On-Wn 31.85 33.62 30.70 29.16

On-Wz 32.05 33.59 30.76 29.12

Wn-Wz 11.33 11.37 11.31 11.28

WHISP7

Baseline Classical Least Squares Adjustment

No pseudo observations/constraints constraints with σZWD = 15mmh
interval length CPWL, 60 min. CPWL, 30 min. CPWL, 60 min. CPWL, 30 min.

Overall 29.88 32.85 27.04 25.74

On-Wn 35.43 38.89 32.02 30.52

On-Wz 33.36 36.86 30.10 28.62

Wn-Wz 8.57 8.53 8.45 7.99

As mentioned before, the least squares collocation approach requires a sufficient number of ob-
servations to describe the behavior of the target parameters for a specific time interval, such as
the zenith wet delays within a 24 hour period. In case of the classical least squares adjustment,
the lack of observations in specific piece-wise linear segments are counteracted by the introduction
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of soft constraints in form of pseudo observations. Although the soft constraints are less heavily
weighted in contrast to the actual observations, they directly influence the obtained WRMS of
post-fit residuals as additional observations. Regardless of the number of observations per segment,
the quality of the results would decrease when omitting these constraints, either due to the lack
of observations in a piece-wise linear segment, or, in determining the degrees of freedom for the
WRMS values. The overall and baseline-dependent WRMS of post-fit residuals for different least
squares adjustments with and without soft constraints are given in Tab. 7.3 for the piece-wise lin-
ear segments of interval lengths of 30 or 60 minutes. As expected, the overall WRMS of post-fit
residuals decreases for both solution intervals by neglecting the soft constraints, however, a much
stronger effect occurs for the shorter piece-wise linear segment. One possible reason could be that in
case of the 30 minute interval the number of observations per segment is smaller than in case of the
hourly resolution, and the influence of the pseudo observations per time interval are considerably
higher. Contrary, in case of the 60 minute interval length the pseudo observations could almost be
neglected, at least for these WHISP sessions, where the observations are much higher compared to
traditional 24 hour sessions of the IVS. Of course, also in this case the pseudo-observations distort
the solution statistics as the (W)RMS due to an increasing number of degrees of freedom. Since the
least squares collocation method completely avoids soft constraints in any form, the corresponding
solutions should, strictly speaking, be compared to the classical adjustment without additional soft
constraints, clearly emerging least squares collocation in connection with the second order Gauss
Markov model as the best solution. In the following, however, soft constraints are always applied
for the piece-wise linear representation, since this approach is the standard case of the IVS and,
therefore, the reference solution.

Initially, the introduction of the least squares collocation approach was motivated by the idea of
replacing the pseudo-stochastic character of the piece-wise linear representation by a fully stochastic
description of the atmospheric behavior. In this context, it is justifiably assumed that also the
behavior of the zenith wet delays could be represented more accurately, which now is investigated
in more detail. For this purpose, the ZWD time series for both WHISP sessions and all solution
strategies presented here are shown in Fig. 7.10. The two solutions obtained by a classical least
squares adjustment with a CPWL interval length of 60 and 30 minutes are depicted as black and
blue dots, respectively, which form the reference for the different least squares collocation solutions
based on a second order Gauss Markov model (green), the model of Sansò and Schuh (1987) and
its modification (orange and cyan, respectively), the covariance function of Gaspari and Cohn
(1999, brown), the Matérn covariance function (magenta) and the turbulence model (red). From
Fig. 7.10, it is apparent why the covariance functions of Sansò and Schuh (1987) and Gaspari
and Cohn (1999) lead to worse results in terms of WRMS of post-fit residuals, compared to the
other covariance models as well as the traditional least squares approach (cf. Tab. 7.2): the zenith
wet delay time series for these functions are very smooth and follow only roughly the daily variations
visible in case of the reference solutions. The reason for the smooth character lies directly in the form
parameter of the covariance function, since the slope at the origin is almost zero, and the decrease
of covariance functions is responsible for high frequencies and small-scale variations. Assuming the
classical least squares solution with piece-wise linear segments of 30 minutes to be close to the
“truth” the time series obtained by the second order Gauss Markov model, the turbulence model
and the modified covariance model of Sansò and Schuh (1987) show a very similar characteristic.
The Matérn function generally follows a similar trend, however, for some peaks the deviation from
other time series becomes larger.
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Figure 7.10: Zenith wet delay estimates for Wettzell during the WHISP5 (a) and WHISP7 (b)
experiments obtained by a classical least squares adjustment with a CPWL interval length of
60 minutes (black dots) and 30 minutes (blue dots), and several least squares collocation solutions
based on a second order Gauss Markov model (green), the model of Sansò and Schuh (1987) and
its modification (orange and cyan, respectively), the covariance function of Gaspari and Cohn
(1999, brown), the Matérn covariance function (magenta) and the turbulence model (red). The
corresponding standard deviations are omitted for the sake of clarity.
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In conclusion, the second order Gauss Markov process seems to perform best compared to the other
covariance functions introduced here. For the longer baselines, this model even leads to better results
than the classical least squares adjustment, independent whether using a 30 or 60 minute interval
for the piece-wise linear representation.
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Figure 7.11: Zenith wet delay estimates for Wettzell during the WHISP5 (a) and WHISP7 (b)
experiments obtained by a classical least squares adjustment with a CPWL interval length of
60 minutes (black dots) and 30 minutes (blue dots), and a least squares collocation solution (green
dots).



132 7. Alternative Strategies for Modeling Atmospheric Refraction

For a better visualization, the ZWD estimates derived by the second order Gauss Markov model
(green) are again depicted in Fig. 7.11 with respect to the behavior of the piece-wise linear oriented
atmospheric parameters with different interval lengths (60 minutes, black dots and 30 minutes,
blue dots). At first glance, all solutions fit very well to each other, since the general behavior of
the atmospheric parameters is quite similar. However, a more detailed assessment reveals, that
the least squares collocation solution shows a higher correlation to the least squares adjustment
with a shorter solution interval, while the data set with a resolution of one hour results in a
higher scatter of the zenith wet delay estimates, and compared to both other solutions some ZWD
parameters can be assigned as outliers, in particular for certain peaks. It can be demonstrated
that this effect is even growing with increasing piece-wise linear intervals (e.g., 120 minutes; for
the sake of visibility not shown in Fig. 7.11). Consequently, the piece-wise linear representation
is not optimal if the resolution is too low that the characteristics of the zenith wet delays cannot
be represented accurately enough, but also if the solution interval is too small, that the influence
of the pseudo observations becomes predominant over the current observations. The deficiency
due to an inadequate number of observations cannot be healed by pseudo observations as long
as the observation weights are less heavily weighted, at least for the time series of zenith wet
delays. Another peculiarity occurs at the beginning and the end of the session, where either the
least squares collocation solution differs from the two classical solutions (e.g., the first four hours
of the WHISP5 session in Fig. 7.11(a)) or, more frequently, the hourly resolved ZWD estimates
deviate from both the collocation and the least squares adjustment with higher resolution (e.g.,
the last three to four hours of both WHISP sessions in Fig 7.11(a) and 7.11(b), respectively). In
this context, it should be pointed out, that also the standard deviations of some ZWD estimates at
the end of the sessions increase disproportionately in case of the classical adjustment. One possible
reason for this behavior could be the strength of the continuity condition in the framework of the
continuous piece-wise linear segments. Therefore and due to the dependency of the scatter of the
ZWD estimates on the solution interval of the piece-wise linear representation, the least squares
collocation method should be the preferred solution, assuming the underlying covariance function
to be suitable to reflect the behavior of the atmospheric parameters.

In this context, it should be emphasized, that on an overall basis, however, the least squares
adjustment with the turbulence model presented in Sec. 5.1 leads to even better results (compare,
for instance, Tab. 6.4 in Sec. 6.4.4 and Tab. 7.2 in Sec. 7.2.3), indicating the assumption that the
corresponding covariance functions are not yet ideal. One possibility would be a combination of the
second order Gauss Markov process with a turbulence-based approach to additionally model the
small-scale fluctuations more properly.

7.3 Discussion

The current tropospheric model reveals severe deficiencies with respect to the estimation of
atmospheric parameters, which are either reflected by the fact, that occasionally zenith wet
delay estimates become negative, which does not correspond to actual physical conditions, or
originate in the non-optimal pseudo-stochastic description of atmospheric parameters describing
the stochastic behavior of the neutral atmosphere. Enhanced modeling and adjustment strategies
have been introduced to address identified deficiencies of the tropospheric model and to allow for
the estimation of zenith wet delays in a more meaningful and appropriate sense (objective 3).
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First, an inequality constrained least squares (ICLS) approach of the field of convex optimization has
been used to overcome the deficiency, that sometimes zenith wet delay estimates become negative,
which, of course, does not reflect physical or meteorological conditions in a plausible way. However,
deficiencies in the a priori hydrostatic delay, for instance due to missing or incomplete pressure data,
are compensated by the zenith wet delay estimates to almost 100%. When constraining individual
ZWD parameters to a positive value in the ICLS adjustment, mis-modeling effects in hydrostatic
delays are not compensated for by the zenith wet delays anymore, but might affect correlated
parameter groups. Homogeneous time series of meteorological data are absolutely necessary, since
otherwise, the VLBI target parameters might be harmed. A first approach to ensure sufficiently
modeled hydrostatic calibrations was based on numerical weather models, such as the ECMWF.
Although the differences to meteorological in-situ observations could reach a few millimeters, which
are possibly caused by the rather coarse time resolution of six hours and, therefore, neglecting
actual variability, homogeneous time series of meteorological data are guaranteed. At a later stage,
a homogenization strategy has been proposed, where a numerical weather model of the ECMWF
is used to define the level of the meteorological data, while their variability is taken from in-situ
observations derived at the VLBI sites after removing outliers and filling data gaps.

In conclusion, the application of the ICLS adjustment is, in principle, possible without harming the
VLBI target parameters, provided that the a priori hydrostatic component is modeled sufficiently.
But it should nevertheless be pointed out that the negative zenith wet delay estimates result
not only from a priori mis-modeling, but could also be the result of several other issues, such as
mis-modeling of geophysical effects as well as certain impact due to instrumental delays or the
clock parametrization.
Due to the strong dependency on the a priori hydrostatic calibrations and the fact that some-
times an insufficient modeling of non-atmospheric quantities might be corrected by constraining
atmospheric parameters, the inequality constrained least squares approach is not recommended for
operational VLBI data analysis.

Alternatively to the application of inequality constraints, special emphasis was given to describe
the atmospheric parameters by their stochastic properties. Since the pseudo-stochastic behavior
of the piece-wise linear representation only models the stochastic character of the atmosphere to
a limited extent, the piece-wise linear functions have been replaced by a least squares collocation
method. Another benefit of least squares collocation over the classical least squares adjustment
using piece-wise linear functions is that additional soft constraints in form of pseudo observations,
which are generally needed to stabilize the solution due to missing observations in some piece-
wise linear segments, are not required anymore. The stochastic properties of the zenith wet delay
are completely described by appropriate covariance functions. In this chapter, different covariance
models have been introduced and discussed. This includes, in particular, a covariance model already
successfully applied to VLBI observations which has been transferred to a second order Gauss
Markov process and reasonably modified.

A case study has been performed to compare the least squares collocation approach fed by
different covariance functions to the classical least squares adjustment using piece-wise linear
interval lengths of 30 and 60 minutes. Compared to the other covariance functions introduced, the
second order Gauss Markov process seems to perform best in terms of the weighted root mean
square (WRMS) error of post-fit residuals. For the longer baselines, this model leads to better
results than the classical least squares adjustment, independent whether using a 30 or 60 minute
piece-wise linear interval. An extensive analysis of the ZWD estimates reveals, that the least
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squares collocation solution agrees better with the least squares adjustment with a shorter solution
interval, while the data set with a resolution of one hour (or even higher) results in a higher scatter
of the zenith wet delay estimates. The piece-wise linear representation is, thus, not optimal if
the resolution is too low that the characteristics of the zenith wet delays cannot be represented
accurately enough, but also if the solution interval is too small, that the influence of the pseudo
observations prevail over the current observations. The deficiency due to an inadequate number of
observations cannot be counteracted by pseudo observations as long as the observation weights are
less heavily weighted. The behavior of the piece-wise linear functions has proven to be not optimal,
particularly at the beginning and at the end of a session, where also the standard deviations of
some ZWD estimates increase disproportionately in case of the classical adjustment. One possible
reason for this behavior could be the strength of the continuity condition in the framework of the
continuous piece-wise linear segments.

Although the inequality constrained least squares adjustment is generally not recommended for
the routine data analysis of the IVS, the least squares collocation approach is very promising
and the preferred adjustment strategy for VLBI observations, assuming the underlying covariance
function to be suitable to reflect the behavior of the atmospheric parameters. First, it is possible
to counteract the pseudo-stochastic character of the piece-wise linear model and its limitations
in representing the stochastic behavior of the troposphere. Second, additional soft constraints are
avoided, which not only influences the estimated zenith wet delay parameters, but also the solution
statistic in terms of the WRMS, since the number of observations is artificially increased by the
pseudo observations. Nonetheless, it has been demonstrated that the WRMS of post-fit residuals
generally decreases in case of the collocation approach and the second order Gauss Markov process
compared to the standard model of the IVS. In conclusion, the least squares collocation method
ensures an improved modeling of the (stochastic) properties of the neutral atmosphere and allows
for the estimation of zenith wet delays in a more meaningful and appropriate sense (objective 3).
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8. Conclusions and Outlook

8.1 Conclusions

The main objective of this thesis is to characterize and model turbulence-based refractivity fluctua-
tions and propose new modeling and adjustment strategies for space-geodetic observing techniques
at radio frequency bands such as Very Long Baseline Interferometry (VLBI).

One main objective of this thesis was the development of an operationally efficient atmospheric
turbulence model to stochastically describe small-scale refractivity variations in the neutral atmo-
sphere in a meaningful and appropriate sense (objective 1). The results have produced an important
contribution to the modeling of refraction effects in the neutral atmosphere now considering tempo-
ral and spatial correlations between the observations in a physical and meteorological way. From the
turbulence model, a fully populated variance-covariance matrix is derived resulting in an enhanced
stochastic model of VLBI observations. The achievements made in this thesis contribute consider-
ably to an improvement of the stochastic modeling of VLBI observations. For validation purposes,
in total, 2700 sessions between 1993 and 2014 were analyzed, which were provided by the Interna-
tional VLBI Service for Geodesy and Astrometry (IVS, Nothnagel et al. 2015; Nothnagel et al.
2016). The solutions of different VLBI observing networks, such as intercontinental, continental,
local, and combinations thereof were generally improved by the new turbulence model compared to
the routine data analysis of the IVS, where only diagonal variance-covariance information is used in
the stochastic model, or other strategies refining the stochastic model of VLBI observations. This
has been demonstrated in particular by the baseline length repeatabilities as a general measure of
the accuracy of baseline length determinations, the WRMS of post-fit residuals, statistical tests, or
the standard deviations of the derived estimates. First, the baseline length repeatabilities increase
sharply. When using the turbulence-based solution in contrast to the routine IVS solution or a
solution based on an empirical model, up to 50 % of all baselines are improved by at least 1 mm,
whereas only a few baselines are degraded. The quality of the solutions also improves considerably
with respect to statistical validation criteria. Modeling the turbulent behavior in the neutral atmo-
sphere, the WRMS of post-fit residuals generally improves sharply by about 24 ps in quadrature
compared to the reference solution of the IVS (as a mean value over all 2700 sessions). Generally,
the turbulence model guarantees χ2 ≈ 1 for almost all VLBI sessions without any re-weighting,
confirming the stochastic model to be (almost) complete. It is worth mentioning that χ2 ≈ 1 holds
on both a global and local scale, while the other strategies evaluated here either lead to an over-
or underestimation of the variances of the observations. The behavior is not necessarily identical,
or even similar for a specific strategy applied to different VLBI experiments. Finally, the standard
deviations of the derived target parameters become more realistic, which was validated against the
average noise level of about 115 IVS sessions in terms of WRMS of single-session position estimates,
computed after removing offset, rate and annual signal. Compared to other approaches addressing
the issue of atmospheric turbulence, the model developed within this thesis has the advantage to
be operationally efficient for routine mass analysis of VLBI observing sessions.

Thus, objective 1 of this thesis has been successfully implemented considering all formulated
requirements: small-scale refractivity variations in the neutral atmosphere are stochastically
described by an atmospheric turbulence model, and it has been demonstrated that the resulting
fully populated variance-covariance matrix considering temporal and spatial correlations between
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the observations can be incorporated in the stochastic model of VLBI observations without
introducing too much additional computational effort. The turbulence model is now a standard
component of the VLBI analysis software package ivg::ASCOT (Artz et al. 2016; Halsig et al.
2017), which has been developed at the IGG.

In the near future, a clearly increased observation density will be achieved due to a new generation
of fast and more precise VLBI instruments and, in particular, the commissioning phase of so-called
twin radio telescopes, two more or less identically constructed adjacent antennas. The potential and
importance of the twin telescopes is substantial to analyze atmospheric refraction effects. However,
the behavior of atmospheric refraction cannot be analyzed before the stability of the VLBI observing
system is understood sufficiently. Consequently, for an improved characterization of atmospheric
refraction, the individual components of the observing system have to be carefully quantified, since
the estimation of atmospheric parameters and the interpretation of the post-fit residuals in VLBI
data analysis effects are closely linked to the stability issues of the VLBI observing system (objective
2). An optimal experimental setup for both, investigations of atmospheric refraction and system
stability issues, was provided by close-range geodetic VLBI observations between two adjacent radio
telescopes at the Wettzell Geodetic Observatory, where the completion of the first of the two new
telescopes has provided an ample opportunity to carry out VLBI test observations on a baseline with
a length of only about 120 m. This new opportunity was exploited within this thesis work through
dedicated so-called WHISP (Wettzell HIgh SPeed) sessions. Special consideration was given to the
so-called Two Way Optical Time Transfer method to evaluate the stability of the hydrogen maser
clocks feeding the local oscillators and other necessary electronics. It was found that the agreement
between the TWOTT measurements and the VLBI estimates of the same time interval is only at
the tens of picosecond level (20-30 ps in the better case and up to 60 ps in the worst case). It is
reasonable to assume that the clock estimates compensate for more than the clock effect. For the
first time it was possible to identify and quantify the effect of applying manual phase calibration
instead of scan-by-scan system calibration, which is on the order of about 20 ps, and therefore, not
negligible.
Atmospheric refraction has been investigated on different stages. Differential zenith wet delays were
estimated for one station relative to the other station, and the relative variations are found to be
of the order of only 1-3 millimeters. While a non-zero offset is assumed to be the result of relative
paraboloid deformation effects, the remaining variations are assigned to unmodeled random effects
in the stochastic model of the observations, particularly refractivity fluctuations in the neutral
atmosphere. This was confirmed by introducing the atmospheric turbulence model developed in
this thesis, since the scatter of differential ZWDs reduce and the standard deviations became
more realistic. Not only a temporal, but also a spatial relationship was found in the differential
data analysis. Performing a residual analysis with respect to the separation distance of the signal
paths, the post-fit residuals become larger with increasing ray distance. One reason is the loss of
spatial correlations between observations of larger separations. Additional WHISP sessions have
been designed with the purpose of having two independent baselines between the two Wettzell
antennas and a telescope in Onsala, Sweden, and estimating zenith wet delays for the two Wettzell
stations in an absolute sense. The correlation between the zenith wet delay parameters of the two
adjacent telescopes has been found to be on the order of 0.94 to 0.99, e.g., when modeling small
scale refractivity fluctuations with the turbulence model. Although this should have been expected,
it is the first proof that the VLBI systems are capable to measure these effects reliably. For WHISP5
and WHISP7, the differences between the ZWDs of both stations generally vary only in the range
of 1-3 millimeters, which fits very well the conclusions obtained for the single baseline WHISP
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sessions. The WHISP6 experiment was hampered by the fact that manual phase calibration had
to be applied for both Wettzell antennas, leading to much worse results compared to the other
sessions.

In conclusion, all requirements formulated in objective 2 of this thesis have been successfully
addressed and implemented. The individual components of the observing system, particularly
the hydrogen maser clocks feeding the local oscillators and other necessary electronics, the
uncertainties emerging from the VLBI correlation process, and the effect of phase calibration, have
been quantified and their order of magnitude was specified, in part for the first time. The noise
contribution of the clock variations and the correlation error level has been found to be within a
few tens of seconds, but not more than 10 ps while, except of the unaccounted measurement noise,
the rest of the observation to observation variations is purely atmosphere-driven. Atmospheric
refraction effects have been found to be in the range of 1-3 millimeters as demonstrated by two
different observing strategies pursued by independent specially designed experiments. In all these
investigations the large number of observations has been necessary to guarantee a very stable
estimation of the parameters and has warranted a reliable interpretation of the residuals. A number
of noteworthy conclusions has been drawn which would not have been possible without the novel
observing approach.

In order to better describe the behavior of the neutral atmosphere in the current tropospheric
model and to allow for an optimal estimation of zenith wet delays, another focus has been laid to
alternative modeling and adjustment strategies to address identified deficiencies of the tropospheric
model (objective 3).
As a first measure, an inequality constrained least squares (ICLS) approach of the field of convex
optimization has been used to overcome the deficiency, that occasionally zenith wet delay estimates
become negative, which, of course, does not reflect meteorological conditions in a plausible way.
However, deficiencies in the hydrostatic calibrations, for example due to missing or incomplete pres-
sure data, are compensated by the zenith wet delay (ZWD) estimates to almost 100%. Constraining
now individual ZWD parameters to a positive value in the ICLS adjustment, mis-modeling effects
in hydrostatic delays are not compensated for by the zenith wet delays anymore, but might affect
correlated parameter groups, such as the vertical component of the station coordinates or clock
model corrections. Thus, homogeneous time series of meteorological data are of utmost importance
in order to not distort the VLBI target parameters. To guarantee adequately modeled a priori in-
formation, the hydrostatic calibrations were first derived from numerical weather models. Although
the differences to meteorological in-situ observations could reach a few millimeters, homogeneous
time series of meteorological data could be guaranteed. Numerical weather models are, however,
not optimal, since the time resolution of six hours is still rather coarse and actual variability is not
taken into account. To overcome this issue, a homogenization strategy has been proposed, where a
numerical weather model of the European Centre for Medium-Range Weather Forecasts (ECMWF)
is used to define the level of the meteorological data, while their variability is taken from in-situ
observations derived at the VLBI sites after removing outliers and filling data gaps. In conclusion,
the application of the ICLS adjustment is, in principle, possible without harming the VLBI target
parameters, provided that the a priori hydrostatic component is modeled sufficiently. But it should
nevertheless be pointed out that the negative zenith wet delay estimates result not only from a priori
mis-modeling, but could also be the result of several other issues, such as mis-modeling of geophys-
ical effects as well as certain impact due to instrumental delays or the clock parametrization.
Due to the strong dependency on the a priori hydrostatic calibrations and the fact that some-
times an insufficient modeling of non-atmospheric quantities might be corrected by constraining
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atmospheric parameters, the inequality constrained least squares approach is not recommended for
operational VLBI data analysis.

Alternatively to the application of inequality constraints, special emphasis was given to describe the
atmospheric parameters by their stochastic properties. Since the pseudo-stochastic behavior of the
piece-wise linear representation only models the stochastic character of the atmosphere to a limited
extent, the piece-wise linear functions have been replaced by a least squares collocation method.
Another benefit of least squares collocation over the classical least squares adjustment using piece-
wise linear functions is that additional soft constraints in form of pseudo observations, which are
generally needed to stabilize the solution due to missing observations in some piece-wise linear seg-
ments, are not required anymore. The stochastic properties of the zenith wet delay are completely
described by appropriate covariance functions. A model already applied to VLBI observations was
transferred to a second order Gauss Markov process and reasonably modified. Several other covari-
ance models have been applied for validation purposes. A case study was performed to compare the
least squares collocation approach fed by different covariance functions to the classical least squares
adjustment using piece-wise linear interval lengths of 30 and 60 minutes, respectively. In terms of
the weighted root mean square (WRMS) error of post-fit residuals, the second order Gauss Markov
process seems to perform best compared to the other covariance functions introduced here. For the
longer baselines, this model even leads to better results than the classical least squares adjustment,
independent whether using a 30 or 60 minute piece-wise linear interval. A more detailed assessment
of the ZWD estimates reveals, that the least squares collocation solution agrees better with the
least squares adjustment with a shorter solution interval, while the data set with a resolution of one
hour (or even higher) results in a higher scatter of the zenith wet delay estimates. The piece-wise
linear representation is not optimal if the resolution is too low that the characteristics of the zenith
wet delays cannot be represented accurately enough, but also if the solution interval is too small,
that the influence of the pseudo observations prevail over the current observations. It could further
be demonstrated that the behavior of the piece-wise linear functions are particularly not optimal
at the beginning and at the end of a session, where also the standard deviations of some ZWD
estimates increase disproportionately in case of the classical adjustment. One possible reason for
this behavior could be the strength of the continuity condition in the framework of the continuous
piece-wise linear segments.
The least squares collocation approach is very promising and the preferred adjustment strategy
for VLBI observations, assuming the underlying covariance function to be suitable to reflect the
behavior of the atmospheric parameters. First, it is possible to counteract the pseudo-stochastic
character of the piece-wise linear model and its limitations in representing the stochastic behavior
of the troposphere. Second, additional soft constraints are avoided, which directly influence the
results of the parameter estimation procedure. Finally, the WRMS of post-fit residuals decrease,
when using the second order Gauss Markov process as the covariance model.

Although the inequality constrained least squares adjustment is generally not recommended for
the routine data analysis of the IVS, the least squares collocation method, in contrast, ensures
an improved modeling of the stochastic properties of the neutral atmosphere and allows for the
estimation of zenith wet delays in a more meaningful and appropriate sense, and thus, objective 3
of this thesis has been successfully achieved.
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8.2 Outlook

In the framework of this thesis, an atmospheric turbulence model has been developed to stochas-
tically describe small-scale refractivity variations in the neutral atmosphere in a meaningful and
appropriate sense, which are completely neglected in the current tropospheric model of the IVS. The
enhanced stochastic has produced an important contribution to the modeling of refraction effects in
the neutral atmosphere now considering temporal and spatial correlations between the observations
in a physical and meteorological way. Although it could be demonstrated that the turbulence-based
model is generally suitable for the different VLBI networks, not only for traditional long baselines,
but also for observations on local scales, the results on local baselines are even better than those for
global applications. In order to further improve the quality of the turbulence model on traditional
baselines, it is intended to consider actual weather conditions for the turbulence parameters of the
individual VLBI sites without harming the requirement for an operationally efficient modeling ap-
proach. The determination of the turbulence parameters from water vapor radiometers, radiosondes
or GNSS observations is very time consuming and such sensors have to be available near to the
radio telescope, which is generally only the case for GPS sensors, if at all. Instead, it will be possible
to determine the turbulence parameters directly within the VLBI parameter estimation procedure
due to the expected increase of observations and the better sky coverage with regard to the VLBI
Global Observing System.

One major achievement results from the fact that the application of the turbulence model is
operationally efficient, since the computational costs are kept to a limited extent for common
VLBI sessions. However, for future applications, particularly in case of the new VGOS (VLBI
Global Observing System, Niell et al. 2013) networks providing a tenfold increased number of
observations, and, therefore, a dramatically increased volume of data, the performance of the initial
strategy is not sufficient anymore, and further optimization strategies have to be found to adapt
the model to the new challenges. The most promising approach to reduce the computational costs
could be achieved by introducing a parallel computing system, enabling a separated determination
of the covariance matrices for the individual stations which will be merged into an overall variance
covariance matrix for all observations in a next step. The corresponding necessary measures
including different functionalities for the structure of the turbulence model have been already
implemented in ivg::ASCOT.

Concerning the current approach to model and implement the tropospheric propagation delay,
several deficiencies were identified. In particular, the concept of piece-wise linear functions is not
suitable to fully describe the stochastic character of the troposphere, and further needs additional
soft constraints in form of pseudo observations to stabilize the solution. The pseudo-stochastic
piece-wise linear representation was replaced by a least squares collocation approach capable to
model the stochastic properties of the neutral atmosphere. Generally, the least squares collocation
approach is very promising and assigned to be the preferred adjustment strategy for VLBI
observations, assuming the underlying covariance function to be suitable to reflect the behavior
of the atmospheric parameters. Best results were obtained on the basis of a second order Gauss
Markov process. On an overall basis, however, the least squares adjustment with turbulence
model leads to even better results, indicating the assumption that the corresponding covariance
functions need further investigations. One possibility would be a combination of the second order
Gauss Markov process with a turbulence-based approach to additionally model the small-scale
fluctuations more properly.
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