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Abstract

Hyperspectral remote sensing is an important topic for deriving high-level information about

the earth’s surface. Applications include land cover mapping, precision farming, and the

detection of environmental pollution. This is made possible by recording and evaluating

narrow-band features that are characteristic of individual materials. External effects, how-

ever, lead to nonlinearities in the data and complicate data analysis. These effects include

changes in illumination, hard and partial shadows, as well as transmission / multiple reflec-

tions by objects in the scene, and anisotropic effects for 3D objects.

Correcting these effects is required for robust data analysis. In particular, when compar-

ing multiple data sets a unified representation is required. Physically motivated models for

correcting atmospheric influences are generally used for the pre-processing of hyperspectral

data. However, these models do not consider local variations, such as shadows and object

geometry. Therefore, this thesis deals with data-driven approaches in the field of Manifold

Alignment (MA) and Feature Transfer (FT) to transfer several data sets to a common sys-

tem.

Previous research on these topics has focused primarily on learning the underlying geometry

of high-dimensional data and aligning multiple datasets by determining the minimum dis-

crepancy while preserving the individual data structure. Usually, a common domain with

very high dimensionality is chosen to facilitate the alignment. The transformation into an-

other domain, however, prevents physical interpretability. Also, inversion of one data set

from the common domain to the domain of a target data set is difficult due to the pre-image

problem.



12 Abstract

The contributions of this thesis can be divided into two categories. The Nonlinear Feature

Normalization (NFN) is a data-driven approach to mitigate nonlinear effects in hyperspec-

tral data. NFN is a supervised method and requires training samples for each class in the

scene. A new basis for data representation is defined, consisting of one spectral reference

signature per class. The training data are then used to individually shift all samples towards

the new basis. This significantly reduces the effects of nonlinearities, as shown by comparing

classification results before and after the NFN transformation.

The NFN is then used to derive the Nonlinear Feature Normalization for Data Alignment

(NFNalign). NFNalign transforms multiple data sets to the same basis in the common do-

main and then applies an inverse transformation to transfer data sets from the common

domain to a domain of another data set. Since the dimensionality of the data is not changed

during the transformation, it is possible to perform the inversion analytically. The function-

ality of NFNalign is demonstrated by transforming hyperspectral radiance data to reflec-

tion data. Thereby, the pre-processing step of the atmospheric correction can be replaced,

shadows and other nonlinearities are corrected, and characteristic features of the spectral

signatures are transferred. The quality of the alignment is demonstrated by applying an

SVM model trained on a reference data set to the aligned data set. Additional alignment

is assessed by applying a classification model trained on a reference data set to a test data

set after it has been transformed to the domain of the reference with NFNalign. Further

experiments investigate the robustness with regard to noise and errors in the training data

as well as the alignment of data with different dimensions. Also, a comparison with common

reference methods is performed.

Overall, NFN and NFNalign provide a complete framework for hyperspectral data alignment

and FT.
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Kurzfassung

Die hyperspektrale Fernerkundung ist ein leistungsfähiges Werkzeug, um komplexe Infor-

mationen über die Erdoberfläche abzuleiten. Anwendungen sind unter anderem Land-

bedeckungskartierung, Precision Farming und die Erkennung von Umweltverschmutzung.

Ermöglicht wird dies durch die Aufzeichnung und Auswertung schmalbandiger Merkmale,

die charakteristisch für einzelne Materialeien sind. Externe Effekte führen jedoch zu Nicht-

linearitäten in den Daten und erschweren die Datenanalyse. Zu diesen Effekten gehören

Änderungen in der Beleuchtung, Schlag- und Halbschatten und Transmission / Mehrfachre-

flexionen von Objekten in der Szene sowie anisotrope Effekte an 3D-Objekten.

Die Korrektur dieser Effekte ist für eine robuste Datenanalyse erforderlich. Insbesondere

beim Vergleich mehrerer Datensätze ist eine einheitliche Darstellung erforderlich. Physikalis-

che Modelle zur Korrektur atmosphärischer Einflüsse werden im Allgemeinen für die Vorver-

arbeitung von Hyperspektraldaten verwendet. Diese Modelle berücksichtigen jedoch keine

lokalen Variationen, wie z. B. Schatten und Objektgeometrie. Daher behandelt diese Arbeit

datengetriebene Ansätze aus dem Themengebiet Manifold Alignment und Merkmalsübertra-

gung, um mehrere Datensätze in ein gemeinsames System zu überführen.

Bisherige Untersuchungen zu diesen Themen konzentrieren sich hauptsächlich auf das Er-

lernen der zugrunde liegenden Geometrie der hochdimensionalen Daten und das Alignment

mehrerer Datensätze, indem die minimale Diskrepanz ermittelt wird und die individuelle

Datenstruktur erhalten bleibt. Normalerweise wird eine einheitliche Domäne mit sehr hoher

Dimension gewählt, um das Alignment zu erleichtern. Durch die Transformation in einen

anderen Wertebereich wird jedoch die physikalische Interpretierbarkeit verhindert. Außer-
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dem ist die Inversion eines Datensatzes aus der gemeinsamen Domäne in die Domäne eines

Zieldatensatzes nur unter bestimmten Voraussetzungen möglich. Beispielsweise muss gezeigt

werden, dass ein Urbild der Abbildung für alle Datenpunkte existiert.

Die Beiträge dieser Arbeit können in zwei Kategorien unterteilt werden. Die Nonlinear

Feature Normalization (NFN) ist ein datengesteuerter Ansatz zur Abschwächung nichtlin-

earer Effekte in hyperspektralen Daten. NFN ist eine überwachte Methode und erfordert

somit Trainingsdaten für jede Klasse in der Szene. Es wird eine neue Basis für die Da-

tendarstellung definiert, die aus einer spektralen Referenzsignatur pro Klasse besteht. Die

Trainingsdaten werden anschließend verwendet, um alle spektralen Signaturen individuell in

Richtung der neuen Basis zu verschieben. Dies reduziert die Auswirkungen von Nichtlin-

earitäten signifikant, was durch den Vergleich von Klassifikationsergebnissen vor und nach

der NFN-Transformation gezeigt wird.

Aus der NFN wird anschließend die Nonlinear Feature Normalization for Data Alignment

(NFNalign) abgeleitet. NFNalign transformiert mehrere Datensätze zur gleichen Basis und

wendet anschließend eine inverse Transformation an, um Datensätze aus der gemeinsamen

Domäne in die Domäne eines anderen Datensatzes zu übertragen. Da die Dimension-

alität der Daten während der Transformation nicht verändert wird, ist es möglich, die In-

vertierung analytisch durchzuführen. Die Funktionsweise von NFNalign wird demonstriert,

indem hyperspektrale Radianzen in Reflexionsdaten umgewandelt werden. Hierdurch kann

der Vorverarbeitungsschritt der Atmosphärenkorrektur ersetzt werden, Schatten und andere

Nichtlinearitäten werden korrigiert und charakteristische Merkmale der spektralen Signa-

turen übertragen. Die Qualität des Alignment wird beurteilt, indem ein auf einem Referenz-

datensatz trainiertes Klassifikationsmodell auf den Testdatensatz angewendet wird, nachdem

dieser mit NFNalign in die Domäne der Referenz transformiert wurde. Weitere Experimente

untersuchen die Robustheit im Bezug auf Rauschen und Fehler in den Trainingsdaten sowie

das Alignment von Daten mit unterschiedlicher Dimension. Außerdem wird ein Vergleich

mit gängigen Referenzmethoden durchgeführt.
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Insgesamt bilden NFN und NFNalign ein vollständiges System für das Alignment hyperspek-

traler Daten und die Übertragung von Merkmalen.
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Chapter 1

Introduction

This thesis investigates the task of data alignment and Feature Transfer (FT) for the joint

analysis of hyperspectral data sets. Data pre-processing and Manifold Alignment (MA)

techniques are discussed to mitigate especially local and nonlinear variations in the spectral

signatures between corresponding samples. These are caused by different ambient condi-

tions, sensor and object geometry, and reflective properties of different materials.

The contribution of this thesis can be divided into two main parts, namely the development

of an algorithm to perform feature normalization that mitigates nonlinear effects in a single

data set, and the combination of multiple such normalizations followed by an inversion to

transfer a data set from its original domain to the domain of another data set.

This chapter provides an overview of the motivation and context of this dissertation. Section

1.1 formulates the problem statement and the challenges of aligning multiple hyperspectral

data sets. Section 1.2 summarizes the contributions of this dissertation. The general struc-

ture of this thesis is provided in Section 1.3.

1.1 Problem Statement

The capability of hyperspectral sensors for sampling characteristic narrow-band features of

different materials allows robust analysis for many applications, such as classification and
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segmentation. The sensor developers constantly work to improve the sensor parameters,

e.g., the Signal-to-Noise Ratio (SNR), the spatial and spectral resolution, and the robust-

ness of the detectors, gratings, etc. The characterization of materials works extremely well

in controlled environments like laboratory settings with calibrated light sources and refer-

ence targets for constant quality control of the sensor performance [65, 26]. While valuable

information can be gained from these kinds of experiments, transferring this knowledge to

hyperspectral data recorded in the field or with the help of air- and spaceborne platforms

introduces new challenges.

Parameters that were known and controlled in the laboratory are then subject to changes

and need to be measured, or their influence on the data has to be known. These effects in-

clude illumination changes, either by solar angle, clouds, or atmospheric disturbances [109].

The geometry of an observed object also has wavelength-dependent reflection properties

[20, 111, 108]. Finally, the proximity of objects can lead to multiple reflections, which can

be observed in the measured spectra [93].

The effects mentioned above influence the characteristic reflection, absorption and trans-

mission properties of materials that can be exploited to deduce high-level information in

the form of maps for land cover [18], vegetation stress [140] or chlorophyll content [137].

Generating these products with consistent quality from multitemporal, and possibly multi-

sensor, hyperspectral data implies dealing with these environmental effects that introduce

nonlinearities to the data [125, 119, 52]. To compare a hyperspectral remote sensing data

set to a laboratory measurement or even other data sets from the same campaign requires

a framework for correcting these effects. In general, the correction and mitigation of these

nonlinear effects can happen on three different levels.

Data representation: The first step in data preprocessing is usually to perform radiomet-

ric and atmospheric correction. Radiometric correction of raw data to at-sensor radiance is

accurate to a level of 2-3 % in absolute radiance units [108]. For comparing multitemporal

remote sensing data, these values have to be further converted to bottom of atmosphere

reflectance values. That is mostly done by inversion of a radiative transfer model, using
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software like Atmospheric & Topographic Correction (ATCOR)-4 [103] or MODTRAN [8].

These codes produce reflectance values that are, on average, correct. However, they don’t

take per-pixel illumination changes [82] or anisotropy [135] into account. Furthermore, they

usually require additional parameters for water vapor and aerosol content, visibility, etc.

that need to be measured separately or estimated from the data. This process entails tuning

and optimizing of many parameters and can be very time-consuming [125]. Besides ap-

proaches based on a physically motivated model, there also exist purely data-driven ways to

find a common representation that allows FT for combined evaluation of multiple data sets

[92, 119, 121, 31, 125].

Other approaches entail one or more of the following techniques.

Adapt the classifier: When the data contains nonlinear effects analysis becomes more

difficult. One way deal with this is to adjust the classifier to be more robust towards these

effects. One popular example is the introduction of a nonlinear kernel to improve the Support

Vector Machine (SVM) classification. Other approaches include semi-supervised learning,

using unlabeled samples to adapt weights [40, 12, 63], by spatial regularization [62] or adding

few informative labeled samples [122, 80]. These approaches usually have several free pa-

rameters, require expertise in machine learning and are computationally expensive.

Encoding of invariances: Here, individual nonlinear effects are modeled, usually moti-

vated by a specific physical characteristic. Examples are the orientation and geometry of an

object [20], and signal attenuations for shadow correction [142, 11]. The correction requires

accurate models and usually auxiliary information, e.g., time of data acquisition, a 3D ele-

vation model or material specific parameters. It is also possible to use synthetic examples

to make a classifier invariant towards nonlinearities, e.g., by adding simulated instances of

rotated objects to the training data [60]. Comprehensive ground truth information includ-

ing local material properties and variations is generally difficult and expensive to acquire in

remote sensing. There exist some data-driven correction approaches for common materials,

but no global models are available [111, 108]. Other algorithms perform correction of mul-

tiple scattering [93] and illumination equalization [107]. While all these procedures correct



20 Contributions

certain aspects of nonlinearities in the data, a combination of all methods is time-consuming,

and interference between individual methods cannot be ruled out.

Encoding of variances and adaptation of classifiers can be useful to develop new classifiers or

to gain a better understanding of the underlying effects that cause nonlinearities, however,

finding a data representation that is universally useful for data evaluation and comparison is

a desirable goal. This thesis researches different approaches that allow comparison of hyper-

spectral data sets acquired under different conditions, including the transfer of characteristic

features from the domain of the original data to a reference domain, where it can be evalu-

ated with an established model. It also provides its own approach, which is an extension of

the work from [50, 52, 49]. With this, it is possible to align multiple data sets in a domain

with desirable properties where the features of the same materials are identified with each

other. Additionally, the proposed data transformation method mitigates nonlinearities in

the data as a byproduct during calculation. As the proposed method does not require addi-

tional information about physical properties of individual materials and instead uses labeled

ground truth information, it can be easily used to correct whole measurement campaigns

completely making large parts of the data preprocessing chain unnecessary.

A full description of all contributions of the proposed method is given in the next section.

1.2 Contributions

The contributions of this thesis can be divided into two main areas. The proposed Nonlinear

Feature Normalization (NFN) algorithm, introduced in Chapter 4, transforms a data set to

a new arbitrary basis and successfully mitigates nonlinearities in the process. The Nonlinear

Feature Normalization for Data Alignment (NFNalign) algorithm, discussed in Chapter 5

combines multiple NFN calculations and its inversion to transform whole data sets from

their original domain to a target domain.

The NFN is a data-driven approach for mitigating nonlinear effects in hyperspectral data

that only requires some training samples per class in the data set. It allows, but is not
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limited to, the mitigation of changes in illumination, hard and partial shadows, and trans-

mission/multiple reflections by objects in the scene as well as anisotropic effects for 3D

objects.

Usually, these effects are dealt with separately by using complex physical models that re-

quire additional information. Conversely, the proposed transformation is defined by a set of

training samples per class. If the training data represents a good sampling of the high di-

mensional manifold for each class, the transformation is invariant to the underlying physical

effects leading to the nonlinear behavior. The selection of basis vectors for the transformation

has little effect for further analysis, which opens up some interesting opportunities. It allows

for example dimensionality reduction by selecting the first p canonical unit vectors or to

transform a radiance data set to reflectance using spectrally subsampled laboratory spectra.

The successful mitigation of nonlinear effects can be evaluated by comparing a classifica-

tion with the Spectral Angle Mapper (SAM) before and after the NFN transformation. The

classification accuracy is drastically increased when applying SAM on the transformed data.

A major advantage over the correction of individual effects is the ease of use. Manually

selecting small training areas per class, including potential areas with nonlinearities, e.g.,

slanted roofs, objects in the shadow of a tree, etc., is enough to produce good results. Only

two parameters are required in the present form, one for the strictness of the penalty func-

tion and one for the robustness towards errors in the training data. It is shown in Chapter

6 that good results are achieved almost regardless of parameter selection and optimization

improves the outcome only by a few percents. The robustness of the NFN algorithm when

the training data is contaminated with samples from other classes is also tested, and even

errors of 20 % could be dealt with by increasing the neighborhood size. Additionally, NFN

can be computed very fast, scales linearly with image size and can potentially be used even

for real-time applications. Also, no global adjacency matrices calculation is required. This

requirement is a major downside of other MA algorithms which are limited to smaller data

sets or require specific memory management. While the NFN algorithm was able to improve

linear classification for all tested data sets, it remains to be analyzed if it also performs well
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when classes have very similar spectral signatures or classification relies on distinct features

that only constitute to a couple of bands.

The arbitrary basis selection and the mitigation of nonlinearities are the two important fea-

tures that triggered the development of the NFNalign algorithm. The former allows the

transformation of multiple data sets to the same basis in a common domain while the latter

guarantees that the data structure in the common domain is similar up to range for all data

sets, i.e., radiance data in [1, 16383] and reflectance data in [0, 1]. By calculating correspon-

dences between samples of different data sets, it is possible to directly apply the inverse

translation of a sample in one data set to its correspondence in another data set. The sam-

ple is transformed from the common domain to the original domain of its correspondence.

Practical approaches for calculating the correspondences between co-registered and between

spatially disconnected data sets are discussed and successfully applied. Since the dimension

of the domains is not changed during the transformation, everything can be calculated ana-

lytically. In contrast to other MA approaches, this has the benefit that no ill-posed problem

has to be solved for the inversion. This means that physical interpretability of the data

aligned by NFNalign is possible by using the features from the reference domain. NFNalign

can even be used to align radiance data to a reference reflectance data set, skipping the

atmospheric correction step completely. The quality of the alignment is shown by classi-

fying the aligned data with an SVM model learned on the reference data alone. Since the

results are comparable to classifying the data in their original domains, FT with NFNalign

can be considered successful. The Root Mean Squared Error (RMSE) before and after the

transformation with NFNalign are compared and show a highly improved conformity be-

tween the aligned data sets. Comparing NFNalign to MA approaches revealed that data

alignment in the reference domain was not possible without further consideration of the pre-

image problem. Thus, only FT to a common domain could be evaluated. However, physical

interpretability is completely lost by the transformation to a high-dimensional common do-

main for multiple data sets. The only other approach that produced acceptable results was

individual rescaling of the samples using the correspondences between samples. However,
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the results of NFNalign are superior. Finally, linear interpolation of a low-dimensional data

set to a high dimensional reference allows NFNalign to perform alignment of data sets with

different dimensionalities.

1.3 Organisation

The objective of this thesis is to develop a practical approach for mitigation of nonlinear

effects in high-dimensional data, the NFN. The method is then modified to allow data align-

ment and FT between multitemporal, multilocal and even multimodal data.

Chapter 2 introduces the background of hyperspectral imaging for remote sensing. Different

scenarios are given that require data alignment techniques. Additionally, the challenges of

data alignment and FT between data sets are discussed.

Chapter 3 provides an overview of significant tools for data alignment. It explains the

process of radiometric and atmospheric pre-processing of hyperspectral data using physi-

cal models. Other techniques that are not necessarily restricted to hyperspectral data, i.e.,

Manifold Learning (ML) and MA, are introduced. The process of FT, exploiting already

gained knowledge while analyzing one data set and applying it to another data set is also

discussed.

Chapter 4 introduces the requirements and mathematical notation to describe the proposed

NFN algorithm. The idea behind the method is emphasized by a set of simple examples.

The NFN algorithm is then deduced in the current setting, and essential properties like

fine-tuning, basis vector selection and computational complexity are discussed.

Chapter 5, then, expands on the properties of NFN to create the NFNalign. As NFNalign

requires additional information in the form of pixel correspondences between data sets, prac-

tical methods to calculate these correspondences in different settings are presented. This

chapter is concluded by a discussion of error propagation and alignment accuracy as well as

computational complexity.
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Chapter 6 is comprised of different experiments to evaluate NFN and NFNalign in different

settings. First, multiple commonly used hyperspectral remote sensing data sets are intro-

duced as well as a new data set prepared explicitly for this thesis. Then, suitable evaluation

metrics are presented. These are applied to the task of using NFN for mitigation of nonlinear

effects and then transferred to the evaluation of NFNalign for data alignment and FT.

Chapter 7 concludes this thesis by summarizing the contributions and discussing future

research opportunities based on the proposed methods.
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Chapter 2

Background

This chapter gives an overview of general hyperspectral imaging and related topics. Section

2.1 introduces the commonly used hyperspectral sensor design for remote sensing and gives

information about planning and conducting a successful measurement campaign. Section 2.2

discusses the necessary steps of preprocessing to compare the raw measurements to spectral

reflectance signatures. Since this is a complex process based on an incomplete physical model,

Section 2.3 gives examples where the preprocessing fails and how specific effects influence

the data.

2.1 Hyperspectral Remote Sensing

Remote sensing is defined as the process of gathering information, in the form of electro-

magnetic radiation, about an object or phenomenon without making physical contact [104].

In this thesis, remote sensing refers to the collection of information about the earth surface

with the use of air- or spaceborne systems. Sensors are generally categorized in active and

passive systems. Active sensors like Light Detection And Ranging (LiDAR) (Light Detec-

tion And Ranging) or Synthetic Aperture Radar (SAR) emit a specific signal and record the

reflection after the signal has interacted with an object. Passive sensors like photo cameras

and multi-/hyperspectral sensors use ambient radiation, e.g., sunlight or artificial illumina-
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tion sources. This requires an adjustment to signal source variations as the measured signal

cannot be directly compared to a known calibrated source. In this section, an introduction to

hyperspectral sensor design is given along with some guidelines for conducting measurement

campaigns.

Hyperspectral imaging is an important category in remote sensing. The sensors record a full

spectrum in hundreds of bands for each pixel, which theoretically allows mining of all avail-

able information from the data without prior knowledge. The spatial relationship between

neighboring spectra can also be exploited for more complex models in a spatial-spectral anal-

ysis, e.g., to improve accuracy and robustness for segmentation or classification tasks. While

neighboring bands usually show high correlation, it is possible for specific effects to manifest

in a feature only detectable in a small wavelength range. One example is the presence of

hydrocarbon for oil spill detection, which only affects the wavelength around 1.73 µm [68].

Compared to commercial broadband sensors, hyperspectral sensors are still costly. As pas-

sive sensors, they require good illumination conditions to produce high SNR. For airborne

hyperspectral remote sensing, the use of artificial light sources is not possible, which results

in the planning of a data acquisition campaign at dates with the best possible conditions.

The high spectral resolution usually comes at the cost of spatial resolution compared to

broadband RGB or panchromatic imaging sensors. Figure 2.1(a) shows the schematic sensor

design for a hyperspectral push broom sensor. These sensors record one line of spatial infor-

mation per frame, while the second dimension of the detector chip is used for the spectral

information. The sensor has to be moved relative to the scene to record a whole image,

e.g., the sensor is installed into an airplane, and every frame records the spatial information

perpendicular to the flight direction, while the forward movement of the plane ensures that

subsequent frames can be combined to a full image. Usually, the sensor is installed with a

nadir view.

The sensor works by collecting the reflected signal by the objects on the ground with a con-

verging lens. An entrance slit and a collimator are used to eliminate stray light and aligning

the signal onto a dispersive element, like a grating or a prism. This element spreads out
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(a) Schematic diagram of a hy-
perspectral pushbroom sensor

(b) Comparing the image record-
ing of an RGB camera (blue
cone) to a single frame of a
hyperspectral pushbroom sensor
(red cone).

(c) Spectral signature for a single
spectrum and example 2D im-
ages per band

Figure 2.1: Only one spatial line is recorded by hyperspectral pushbroom sensors each frame.
The second dimension of the detector chip gathers the spectral information. An image can
be constructed from consecutive frames by moving the sensor relative to the object. Each
pixel then contains the whole spectral information in the form of a spectral signature.

the signal in different wavelength intervals, and each interval is subsequently focused onto

a different line of the detector chip where the signal is recorded. Figure 2.1(b) visualizes

the difference between a single frame of a 2D camera (blue cone) and the push broom field

of view (red cone). Subsequent frames of push broom sensors on a moving platform can

be stitched together to a full 2D coverage of an area. However, combining the frames is

easier when the sensor is mounted on a stable platform or has at least some form of sensor

stabilization. Strong vibrations and strong yaw, roll, and pitch of the platform can lead to

gaps in the coverage.

Hyperspectral frame cameras that can record a full 2D image with complete hyperspec-

tral information in a single frame are already available but severely limited in spatial and

spectral resolution [6]. Since the sensor design is small and lightweight, they offer the great

advantage to be used on Unmanned Aerial Systems (UAS) without the use of stabilization.

However, push broom sensors are commonly used for remote sensing as they offer superior

SNR and spatial/spectral resolution. This allows faster coverage of larger areas as it is not
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limited to low altitudes or the battery life of UAVs.

Figure 2.1(c) gives an example of the spectral information at different wavelengths of the

spectral signature, e.g., vegetation has wavelength intervals with very high reflectivity com-

pared to inorganic materials.

Successfully acquiring hyperspectral remote sensing data of a defined area requires careful

planning. Several parameters need to be taken into consideration. This includes

1. The laws for flight operations generally limit the altitude. Additionally, campaigns in

no-flight zones, e.g., near airports or over military facilities require specific permits.

2. Weather and illumination conditions should be monitored in advance. Most campaigns

in Europe are scheduled in spring or summer to ensure good conditions.

3. Flight planning based on the sensor parameters is a requirement to generate coverage

of the area without gaps. To compensate for the movement of the platform due to

sudden winds etc. an overlap between recorded data stripes is useful.

4. The width of a single flight line can be calculated from the field of view of the sensor and

the altitude using the law of sines. The ground sampling distance is then determined

by the number of pixels on the detector chip along the covered ground segment.

5. The number of necessary flight lines depends on the altitude, which is inversely pro-

portional to the ground sampling distance.

6. The speed of the platform has to be synchronized with the frame rate and the exposure

time of a single frame of the sensor. The speed above ground has to be taken into

account to generate quadratic pixels in the recorded data.

For this thesis, data from a measurement campaign from 2014, conducted by the Fraunhofer

IOSB was used. The data was recorded with an aisaEAGLE II hyperspectral sensor over

the village of Greding, Germany. The sensor covers the wavelength range of 390 − 990 nm

with 127 bands. With an altitude of approximately 770 m above ground and a speed above
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ground of 240 km/h, a frame rate of 60 Hz was necessary to create square pixels with a ground

resolution of approximately 0.5× 0.5 m. Due to good weather conditions, the exposure time

was set to 5 ms for the whole campaign.

The following section schematically discusses the process of hyperspectral data preprocessing

that was performed to convert the measured raw data to radiance and reflectance values.

2.2 Data Preprocessing

Hyperspectral data are recorded with the use of a frame grabber to extract the measured sig-

nal from the detector. The raw data is saved as digital numbers and has to be preprocessed

to extract physical interpretability. While a lot of information can be extracted without

radiometric correction, using a physical model has advantages when dealing with multitem-

poral data or when data from multiple sensors are jointly analyzed. The ultimate goal would

be to transform all data sets to an absolute system where disturbance is eliminated. In the

case of hyperspectral data representing each sample measurement in the form of reflectance

brings many benefits. The reflectance of an object is defined as the effectiveness radiant

energy is reflected by its surface. The reflectance of an object is a directional property and

depends on multiple factors. This property is further discussed in Section 2.3.3, for now, it is

assumed that reflectance is the effectiveness of an object reflecting radiant energy. If all data

sets are corrected to reflectance, this enables direct comparison and allows the extraction of

meaningful features in a controlled setting and transferring the knowledge to remote sensing.

In other words, the transfer of features between data sets is possible.

Hyperspectral data preprocessing can be partitioned into sensor specific corrections and

correction of environmental effects.

1. A sensor specific effect is caused by small differences in the sensitivity of individual

detector elements. They are subject to an effect called Fixed-Pattern Noise (FPN)

[84]. It consists of two parameters, the Dark Signal Non-Uniformity (DSNU) and

the Photo Response Non-Uniformity (PRNU). DSNU describes the offset from the
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average signal at a given setting and varies with temperature and integration time. It

is independent of external illumination and can be estimated by calculating the mean

signal per detector element for multiple frames, while the detector is covered. This is

usually done by collecting multiple dark frames at the end of each recording, using a

mechanical shutter. The PRNU describes the gain, the ratio between incoming optical

power and a pixels electrical signal output. This can be measured in a controlled

environment using certified reference materials and artificial illumination sources. If

the detector has a linear photoresponse, calculating a single gain factor per pixel is

sufficient for correction. Otherwise, a look-up table with multiple values for different

levels of saturation is required. Other factors are the smile and keystone effect. The

smile effect is a wavelength shift in the spectral domain which takes on the form of a

smile or frown along the spatial position of the detector array [98]. The keystone effect

is the spatial equivalent to the smile effect. Both can be caused by misalignment of

the lens and gratings and are usually stronger along the edges of the detector chip [73].

Overall, these effects are generally corrected using a calibration file provided by the

sensor manufacturer. These files are only updated every couple of years depending on

the maintenance interval of the sensor. Since spaceborne sensors cannot be shipped in

for re-calibration, different approaches to estimate changes of these parameters based

on the measured data are employed [43]. Single dead pixels cause stripes in the data

due to the push broom recording. These can be corrected by interpolation of their

neighbors. Also, bad bands or bands where no useful information can be gathered,

e.g., due to atmospheric absorption are often deleted.

2. Correction of environmental effects is necessary to adjust for ever-changing atmospheric

and topographic conditions. In contrast to the sensor specific effects, environmental

effects can change with every new flight line or based on spatial location. The most

commonly addressed environmental variations are changes in the atmosphere, e.g., due

to different aerosol layers and water vapor content. This is usually done using a phys-

ical model to correct the whole data set [103]. Variation in illumination and shadows
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due to large buildings or clouds are local fluctuations of the spectral signatures and

can vary over time, e.g., they can be different between flight stripes. Another external

effect is the variation of reflectance as a function of viewing angle, solar illumination

geometry, and texture of the observed material [20]. Finally, multiple reflections be-

tween adjacent objects also affect the measured signal. Since these effects are usually

addressed individually, they are discussed in more detail in Section 2.3.

Figure 2.2 gives an overview of the preprocessing chain from the raw data to at-surface re-

flectance values. Initially, the frame grabber records raw digital numbers. Then, the data

is first corrected for dead pixels and bad bands. Provided a dark current measurement was

taken the noise can be reduced. The gain and offset can be corrected using a spectral cali-

bration file usually acquired by a previous sensor calibration by the manufacturer. At this

point, the data is already converted to at-sensor radiance values. The absorption between

the sensor and the target has to be taken into account to convert these values to at-surface

reflectance. Atmospheric models like ATCOR, Fast Line-of-sight Atmospheric Analysis of

Hypercubes (FLAASH) or MODerate resolution atmospheric TRANsmission (MODTRAN)

can be used to correct remote sensing data.

This thesis focuses on the correction of environmental-based nonlinearities. Sensor-specific

nonlinear effects are less likely to be a consumer problem, as manufacturers usually deliver

radiometric calibration files for conversion from digital numbers to radiance. Only the DSNU

has to be recorded (often automatically with a mechanical shutter) and subtracted from the

corresponding image lines. Additionally, it is advised to recalibrate hyperspectral systems

at least every two years to ensure stability and update calibration files [7]. The correction of

environmental effects instead is difficult due to a lot of possible variability for each param-

eter and the requirement for additional information or lengthy trial and error processes to

estimate the best parameters.

The next section introduces the individual environmental-based effects that need to be cor-

rected to compare multiple data sets. In the following chapters, the focus is shifted from
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Figure 2.2: Layout of the general hyperspectral preprocessing chain starting with raw data
in the form of digital numbers and progressing to at-surface reflectance.

(a) 3-band composite of a hyper-
spectral scene.

(b) The scatter plot of the whole
scene for three bands shows one
large clusters with multiple ex-
tensions.

(c) Scatter plot for the metal
dome spectra showing the non-
linear behavior of the point
cloud.

Figure 2.3: Hyperspectral data representation as a 3-band color image or scatter plots.
Nonlinear structures become visible when single classes are singled out.

the individual physical foundation of each effect to their manifestation in the data, and from

there to a unified approach to correct all effects simultaneously.

2.3 Challenges

To advance hyperspectral imaging from the scientific use to a consumer application, e.g.,

precision farming, change detection for land cover and cadaster updates, data preprocessing

has to be automatized or at least made possible for non-scientists. As mentioned in Section

2.2, to accurately perform the correction of environmental effects additional measurements

or at least the estimation of many external parameters is required. Generally, atmospheric
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compensation is done to transform the data from at-sensor radiance to at-surface reflectance.

This transformation is applied globally to the whole data set; local changes are not taken into

account. These must be addressed to allow comparison of multiple data sets in a common

setting.

The following sections give examples of common nonlinear effects in hyperspectral remote

sensing data and some approaches for correction are introduced. These methods only work

for a specific effect and are not suitable for correcting all effects simultaneously. The proposed

NFN and the other algorithms from state of the art in MA in Chapter 3 are general better.

2.3.1 Atmosphere

A significant challenge to transfering hyperspectral imaging from a laboratory setting to

a remote sensing environment is the atmosphere between the illumination source and the

sensor. This is often referred to as the sun-surface-sensor path [37]. The scattering and

absorption of the radiation due to interaction with gases, aerosols, and clouds on its way

from the sun to the sensor needs to be taken into account. Each form of interaction can

be explained with a physical model, and most effects only affect certain wavelength ranges.

The predominant effects are aerosol scattering and water vapor absorption. The general

absorption properties of the atmosphere are characterized by the optical window. Figure

2.4(a) gives an overview of the wavelength ranges that pass through the atmosphere. For

this thesis, only the wavelength range between 350-2500 nm plays a significant role. Here,

mainly the O2, H2O, and CO2 absorptions are relevant. A complete discussion of absorption

properties of certain molecules for different wavelength ranges can be found in [45].

The model for the measured radiance in the sensor is a combination of three individual ef-

fects. Figure 2.4(b) shows the main components. The path radiance L1 is caused by photons

scattered towards the sensor by molecules in the atmosphere without interacting with the

surface. L2 is the reflected radiation, which contains the desired information about surface

absorption features of the desired location. Finally, L3 is called the neighborhood reflected

radiation which is caused by scattering of radiation into the field of view of the sensor by
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areas close to the desired location. This means atmospheric correction has to eliminate L1

and L3 while simultaneously retrieve the ground reflectance from L2 [109]. These effects are

wavelength-dependent, e.g., the path radiance decreases with wavelength and is very small

for λ > 800 nm while the neighborhood radiation is negligible above λ > 1500 nm. A com-

prehensive guide on the properties and underlying physical models can be found in [104].

There exist numerous tools for atmospheric correction, e.g. ATCOR [103], MODTRAN [8],

and FLAASH [83]. Generally, they require additional measurements like visibility, water

vapor content and aerosol type for best possible performance.

Due to the complexity of properly using these commercially available solutions one approach

for atmospheric correction is introduced here, that can easily be computed without any aux-

iliary information: the Empirical Line Correction (ELC). The ELC uses a set of calibration

and validation targets directly from the acquired data set to transfer at-sensor radiance data

to at-surface reflectance values. The idea is to calculate the ratio between the reflected

radiation of a ground pixel and an ideal Lambertian standard surface under identical con-

ditions of illumination, reflection geometry, and wavelength interval [30]. Ground reference

measurements, e.g., with a field spectrometer to record accurate reflectance values for the

calibration and validation targets can be used to calculate a correction model for each spec-

tral band. In each band, the radiance and reflectance values of a dark and a bright object

are used to determine a linear dependency in the form of gain and offset. The idea behind

ELC is visualized in Figure 2.4(c) where the atmospheric path radiance equals the offset and

the slope of the line between the dark and the light target equals the gain for the correction

process. The accuracy of the correction can then be evaluated by how well the validation

targets are modeled. Experiments have shown that the range between 0− 70 % of at-sensor

radiance and at-surface reflectance has a linear dependency, essentially [116]. It is advised,

however, to carefully check the results for artifacts as the initial condition of a Lambertian

reflector in the scene is difficult to fulfill.

In practice, all of the above tools assume a constant atmosphere for the whole scene, which

can lead to errors in the corrected data due to fluctuations during data acquisition [82].



Background 35

(a) Atmospheric transmittance in
percent for the wavelength range
of 0− 2500 nm.

(b) Radiance components mea-
sured by the sensor. The area de-
noted by p stands for a single pixel
recorded by the sensor.

(c) Schematics of ELC using dark
and light reference targets.

Figure 2.4: Atmospheric transmittance, main components of measured radiance and ELC as
a simple alternative to using an atmospheric model for the calculation of reflectance values.

While atmospheric correction is often cited as the required step to perform quantitative re-

mote sensing, it is not the only external effect resulting in undesired spectral variability [37].

2.3.2 Shadows

Shadows or more general variations of illumination, e.g., by clouds or tall buildings and trees,

lead to an imbalance in the sun illumination [76]. Spectral signatures in shadow areas are

dominated by diffuse illumination and show increased radiance levels in shorter wavelength

ranges. This effect is caused by the Rayleigh scattering in the atmosphere and the higher

aerosol scattering [110]. This results in spectra exhibiting less spectral variation in the blue

spectral bands compared to a band of longer wavelengths. This phenomenon is depicted in

Figure 2.5. The red spectral signature comes from a tree under a cloud shadow; the blue

curve comes from a tree in a sunlit area. The tree blocks most of the incoming direct radia-

tion, but diffuse scattering in the atmosphere allows to still get a signal in the shadow area.

Since Rayleigh scattering is inversely proportional to the fourth power of the wavelength,
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blue wavelengths are scattered more often than other colors. This leads to nonlinear effects

when dealing with objects in and around shadows.

The first step in shadow correction is always to calculate a shadow mask, which gives the

exact locations of areas to be corrected. This can be done with shadow invariant features,

where the relationship between certain fixed wavelengths is used to transform the data to a

color space that is independent of the color temperature [78]. In this case, the exact shadow

borders can be manipulated with a threshold value. Another approach is based on a model

for the solar position together with ray tracing and a Digital Elevation Model (DEM) [11].

Thus, the borders of shadow areas based on projective geometry can be extracted. This

requires auxiliary information, which has to be recorded simultaneously, and high accuracy

of the co-registration.

After the shadow mask is determined, the correction process can be started. Due to the

nonlinear nature of the effect and the fact that shadows are not binary, i.e., either there

is no shadow or a 100 % shadow, a scalar rescaling of shadow areas to the level of sunlit

areas produces no accurate correction. A popular approach is to assume a linear mixing

model, which interprets spectra as compounds of so-called endmembers, spectrally pure

spectra characteristic for single materials. The decomposition of spectra into a matrix of

known endmembers and their abundances is called spectral unmixing. When unmixing is

calculated for both shadow and sunlit areas, it is possible to build a mapping between shad-

owed and unshadowed endmembers [94]. Other approaches use a decomposition based on

the Principal Component Analysis (PCA) [86] or a kernel machine [119] to build a shadow-

invariant transformation. One major drawback of these transformations is the difficulty in

interpreting the results physically. This is due to the transformation to a feature space of

different dimension [76].

Also, working with a binary shadow mask does not take the gradual transition between sun-

light and shadow into account. A good example is the linear correction using the algorithm

from [78] in Figure 2.6. Detecting the red and blue tarps after the correction is possible.

However, the border areas are particularly difficult to correct [112]. Overall, shadows in the
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Figure 2.5: Different physical effects influence the spectral signature. Occlusions mostly
block longer wavelengths and the area bind an object is illuminated by diffuse light. Multiple
reflections can be treated as a superposition of absorptions.

scene caused by clouds, buildings, and trees result in a relative shift towards the smaller

wavelength ranges (blue shift) due to dispersion [112]. The newest iteration of ATCOR-4

has an additional tool to estimate a shadow mask from one band in the visible and one

band in either near-infrared (0.8-1.0 µm) or ideally the shortwave infrared (around 1.6 and

2.2 µm). Unfortunately, this procedure requires multiple scene-dependent thresholds (core

shadow, transition area) and is sensitive to shadow distribution in the scene.

2.3.3 Geometry and Surface Texture

The reflectance is a directional property of the surface materials and depends on the viewing

and illumination geometry [103]. This effect can be described by the Bidirectional Reflectance

Distribution Function (BRDF). It is commonly observed when the viewing and solar angle

varies over a large angular range, e.g., due to object geometry or across-track brightness

gradients [20]. One example is the different color of double-pitched roofs, where the side

oriented towards the sun has higher reflectance compared to the surface facing away from
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(a) Original data with shadows (b) Data after linear shadow correction

Figure 2.6: Example of linear shadow correction using the method from [78] on hyperspectral
data. Targets (red and blue tarps) in the shadow can be detected after the correction.
However, color distortions in the shadow area can be seen and the algorithm has no model
to correctly transform the borders of the shadow areas.

the sun (and sensor).

For BRDF correction different physical models are required to balance specular and diffuse

reflection terms [111]. Figure 2.7(b) gives an example of how multiple instances of diffuse

and specular reflection add up. The requirement for correction of BRDF effects is especially

strong in rugged undulating terrain with slopes facing different directions and scenes with

geometric objects. An extreme example is depicted in Figure 2.3(a) with the metallic build-

ing resembling a half sphere. It shows dark areas on the backside but works essentially like

a retro-reflector in the bright area, even going into the sensor saturation. A scatter plot of

all pixels in the scene for three spectral bands is shown in Figure 2.3(b). Figure 2.3(c) shows

only the scatter plot for the pixels of the metallic dome. It clearly illustrates the nonlinear

behavior of reflectance for different viewing angles.

It is possible to eliminate some sources of this effect individually. The common across-track

brightness gradients are caused by the changing viewing angle. A method called nadir nor-

malization calculates the brightness as a function of scan angle to calculate an adjustment
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factor [107].

Correction is also required for areas with strong geometric variations. This leads to a varia-

tion in the solar zenith angle, the angle between the sun and the surface normal (see Figure

2.7(b), [104]). This can lead from areas of maximum solar irradiance to zero direct irradi-

ance, i.e., shadows. Correction of this effect is difficult as the usual assumption of diffuse

(Lambertian) reflection behavior can cause overcorrection in dimly lit areas [111] and are

not applicable to objects with more specular reflections like the dome in Figure 2.3(a). This

can lead to misclassification in bright areas. A simple way to address this problem is to use

the local solar zenith angle and a threshold parameter to apply a variable correction factor

depending on the incident angle. However, this approach does not take material dependent

reflection as a composite of diffuse and specular components into account and requires a

DEM to calculate the solar zenith angle.

A more sophisticated method is the BRDF Effects Correction (BREFCOR) [111, 108], which

comes as an addon to ATCOR-4. However, it requires a DEM, estimation of surface cover

classes and multiple training scenes with the same classes to calculate an anisotropy index

per pixel.

2.3.4 Multiple Reflections

The presence of multiple reflections is difficult to quantify in hyperspectral remote sensing

images. The effect is mostly considered together with nonlinear spectral unmixing [10].

Spectral unmixing derives mixture coefficients of different materials from measured spectra,

when the spatial resolution is insufficient or multiple materials are intimately mixed. In this

case, the model is based on bilinear interaction between two different components, e.g., the

reflection from a red brick wall onto the ground in Figure 2.5(b). The reasoning is that a

light ray is reflected multiple times while undergoing absorption at every interaction with

another material [58]. The change is defined by the reflectance of each material the light ray

interacts with.
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(a) Sketch of BRDF (green) as the sum of a diffuse
(orange) and multiple specular (blue) reflections.

(b) Sketch of BRDF depending on ob-
ject geometry and viewing angle, a slope
oriented away from the incident radia-
tion has significantly lower reflectance to-
wards the sensor. The BRDF has to be
adapted to the wavelength of the mea-
sured radiation to account for effects such
as iridescence and luminescence.

Figure 2.7: The measured reflection per band depends on the BRDF of an object. Different
geometries between incident angle and sensor also affect the measured radiance.

The effect is also present inside the canopy of vegetation [127]. Here, it is mixed with self-

shadowing and can lead to strong nonlinearities in the measured spectra. Only bilinear

interactions are considered here. Higher-order multi-linear interactions are not expected to

have a significant contribution to warrant their inclusion due to added complexity in the

model [58]. These effects are also only considered while modeling a classifier or unmixing

algorithm with a highly accurate physical model. Due to its complexity correction is only

done for two-class problems [21], for measurements in a controlled environment [90], and

within close range of the target [101].

Overall this effect only occurs on rare occasions it is mostly ignored due to its insignificance

and the complex correction approaches. Using a data driven approach that can correct any

of the effects mentioned in this chapter will also reduce the impact of multiple reflections.
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Chapter 3

Related Work

After the discussion of data preprocessing in Section 2.2 and methods for correcting indi-

vidual nonlinear effects in Section 2.3, this chapter focuses on data-driven approaches that

simultaneously address all nonlinear effects regardless of their source. These are generally

detached from physical models, but rather work based on a geometric framework to align

multiple data sets in a common domain that allows further analysis.

This chapter first introduces different approaches and terms to the general problem of data

alignment in Section 3.1. Section 3.2 discusses individual techniques for ML that can be used

to describe the data sets in a new system. Section 3.3 expands this approach to multiple

data sets by presenting methods for Domain Adaptation (DA) and MA. These approaches

generally use high-dimensional domains for the alignment process. The inversion to a ded-

icated target domain for physical interpretation, however, requires solving of the pre-image

problem, which is discussed in Section 3.4. Finally, Section 3.5 summarizes the examined

data alignment techniques and sets the proposed algorithm of this thesis in contrast.

3.1 Introduction to Data Alignment Techniques

Joint evaluation of multiple similar data sets is a common problem in machine learning.

High-dimensional data, such as hyperspectral data, is often much simpler than the dimen-



42 Introduction to Data Alignment Techniques

sionality would indicate [106]. In particular, a given high-dimensional data set may contain

multiple features that are caused by the same underlying effect. The stereotypical example

for this are pictures of the same object with a single moving light source. Treating each

image as a vector in high-dimensional space appears very complex at first. A way to sim-

plify the data representation is desirable. When the behavior of an effect, in this case the

moving light source, is known the corresponding components can be parametrized and the

underlying feature space is embedded in a two-dimensional manifold [89]. Modeling individ-

ual effects is often not possible due to data dimensionality, the number of different effects

or unknown sources. Thus, machine learning in the form of MA techniques is used in this

thesis to find suitable data representations.

Through MA, it is possible to formulate a framework for discovering a unified representa-

tion of multi-temporal and multi-source data sets [119]. The goal is to utilize the inherent

relationship between samples of each data set, and to derive a way to map all data sets to a

common space.

This section is dedicated to the different techniques and approaches to extract the necessary

information from the data sets.

Depending on the available information data alignment can be addressed as an unsupervised,

a semi-supervised, or a supervised problem. Each category exploits different information to

describe the inherent structure of the data [34].

Unsupervised learning tries to describe the inherent structure of an unlabeled input, gener-

ally without a set way to evaluate the results. The most iconic unsupervised approach is the

PCA [136], where a new representative orthogonal basis from the eigenvectors of the data

is calculated to reveal the essential data patterns. As the eigenvectors corresponding to the

largest eigenvalues encode the parts of the data with the highest variance, data reduction by

discarding those corresponding to smaller eigenvalues is a popular approach. PCA is a lin-

ear transformation that requires no parameters. Thus, it cannot deal with strong nonlinear

deformations. This problem is alleviated in [31] by introducing the kernel PCA, where the

data is transformed to a high-dimensional reproducing kernel Hilbert space, which facilitates
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a description of nonlinear manifolds with the use of linear operations. During recent years,

some unsupervised methods with interesting properties were introduced. A famous method,

originally introduced in [117], is the Isometric Mapping (ISOMAP). ISOMAP computes a

quasi-isometric, low-dimensional embedding for a set of high-dimensional data points by

approximating the manifold with a neighborhood graph, calculating the shortest paths in

the graph, and performing low-dimensional embedding. Contrary to the global approach of

ISOMAP, Locally Linear Embedding (LLE) aims at recovering a low-dimensional structure

of the data by analyzing its local interaction between samples. Starting with a neighborhood

graph, LLE determines a low-dimensional embedding that preserves the representation of

individual samples by linear combinations of its neighbors [2]. Both approaches are discussed

in more detail in Section 3.2.

The Canonical Correlation Analysis (CCA) [92] and its kernelized approach [71] draw in-

dependent and identically distributed samples from two data sets to form input pairs with

the goal to maximize the correlation. In [129] local neighborhoods are characterized by

weight matrices to find underlying structures. Since the computational cost is very high

even for small neighborhoods, another approach is introduced in [97] that tries to locally

fit a B-spline curve to the data to calculate matching scores between manifolds. Another

approach is Unsupervised Image Sets Alignment (UISA) [25], where a reference image that

is pre-structured into a set of locally linear models is used as a reference. Multiple linear

transformations are then learned to align new images with the reference. Other methods

exploit the local geometry of the data representation and optimize the geodesic flow between

subspaces to find a common representation in a high-dimensional space [44, 42].

In general, unsupervised approaches adapt to new data sets and can help to find underlying

structures, while introducing prior knowledge about the inherent structure is very complex

and often limits versatility.

Semi-supervised learning exploits labeled as well as unlabeled samples to model the inher-

ent structure. This approach is motivated by the fact that the labeling process is often

costly, while unlabeled information is available in abundance. Labeled samples can serve as
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a structure with high reliability while unlabeled samples are used to refine the model [16].

In MA, the common problem is to find a mapping between a data set of labeled samples and

a new unlabeled data set. Popular examples are the Semi-Supervised Manifold Alignment

(SSMA) [125], from which the Kernel Manifold Alignment (KEMA) [119] was derived. They

operate by calculating adjacency matrices to set up an undirected graph and optimize the

graph Laplacian for (dis-)similarities. This approach causes samples of the same class labels

to become closer, while simultaneously pushing those of different class labels apart. Other

approaches can be found in [63] and [139], where kernel machines are used to adapt a clas-

sifier to possible variances in subsequent data. Several unsupervised approaches can also be

adapted to work with existing labels in the target domain to guide the calculation [44, 42].

The semi-supervised approaches often suffer from high computational complexity and mem-

ory requirements, as most methods require some form of adjacency matrix that can get large,

considering the abundance of unlabeled data available.

Supervised learning calculates a model for input labels in all available domains. Labels in the

target domain guide the learning process [34]. In this category, the goal is to find projections

to a common latent space, where all data sets have similar statistical characteristics [119]. A

lot of unsupervised and semi-supervised learning approaches can be adjusted to incorporate

additional labeled samples in all domains [125, 119, 44, 42].

The underlying framework becomes less adaptive to new input data but is better tailored

to solving specific problems. For practical experiments, almost all of the former approaches

use labeled data in all domains and can, thus, be considered supervised.

However, each mentioned MA method has its caveats. ISOMAP computes a globally optimal

representation but suffers from high computational cost and memory requirements. In [2]

the authors propose a partitioning of the data to compute multiple solutions on a smaller

scale and fuse the resulting manifold representations with a series of linear transformations.

There exist alterations of ISOMAP that tackle the computational complexity and make it

applicable for MA of large data sets [4]. However, depending on the data structure and the

chosen neighborhood size, ISOMAP is prone to short-circuit errors when the folds of the



Related Work 45

manifold are small, or the data is noisy. It can also require careful preprocessing of the data

to guarantee topological stability [5]. LLE produces a locally optimal mapping, but since the

feature space has a much lower dimension multiple sources, e.g., different classes can become

mixed. As a consequence, the necessary features in the data can be lost. LLE works best on

data sets with uniform sampling density, but can produce distorted embeddings when the

manifold dimension is larger than one [106, 144].

Using kernel methods and transforming the data to a potentially infinite dimensional feature

space can circumvent the mixture of classes [81]. However, results obtained in such a feature

space do not permit interpretation in meaningful physical units, they can only be exploited

for decisional problems like classification [119].

If the physical interpretation of the aligned data is the goal, the data needs to be inverted

back to the source domain. The main problem is that methods based on kernel machines

have to deal with the pre-image problem [145, 69]. The pre-image problem is concerned with

finding corresponding patterns in the original domain for points in the potentially infinite

dimensional feature space. Existing methods require specific kernel methods together with

a particular kernel function to compute an approximate solution [69, 132, 77]. These are

often problem-specific, depend on fine-tuning of hyperparameters and are computationally

challenging [119].

The remainder of this chapter is divided into two parts.

Section 3.2 introduces commonly used approaches for finding the low-dimensional manifold

structure through ML. For hyperspectral data, the basic assumption is that the true dimen-

sionality of the data is much lower than the number of bands due to the high correlation

between neighboring bands. ML is an approach to (nonlinear) dimensionality reduction. Vi-

sualization of high-dimensional data is difficult and a simple approach is to project the data

on a lower-dimensional subspace. This allows better visualization of the data structure, but

it comes at the loss of information, depending on the projection. To mitigate this, a number

of approaches exist that help preserve the information while simultaneously finding a projec-

tion that reduces the dimensionality. Section 3.3 then deals with finding projections between
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data sets or their low-dimensional projections in the form of MA. This is based on the idea

in [3], where a manifold constraint to the problem of correlating sets of high-dimensional

vectors was first introduced. MA operates on the idea that disparate data generated by a

similar process has common features in terms of manifold representation [119].

3.2 Manifold Learning

ML is an approach to nonlinear dimensionality reduction. This is an interesting topic for

analysis and visualization of hyperspectral data with up to hundreds of bands. Generally,

hyperspectral data is visualized by selecting three bands and combining them to an RGB

image. Those bands are commonly selected to resemble broadband sensors like RGB cam-

eras. This is only a small part of the recorded information, but visual interpretation of

more than three bands simultaneously can be difficult. A common assumption is that the

high-dimensional data is comprised of structures with lower dimensionality [118]. This is

reasonable as neighboring bands are usually highly correlated.

By representing measurements in high-dimensional spaces in the form of low-dimensional

manifolds it is possible to generalize vector calculus to curved spaces [118]. An example for

a low-dimensional manifold is given in Figure 3.1. It shows the swiss roll data set in 3D, its

curvature, and its efficient 2D representation. The parameterization for the swiss roll can

be acquired by calculating the principal curvature, i.e. the eigenvalues of a shape operator

at different points. This allows mapping the data to a 2D Cartesian coordinate system.

In this section, the concept of ML is introduced by defining a mathematical framework to

describe these structures. After this, prominent examples are given.

3.2.1 Mathematical Framework

For the following chapters, a way to mathematically describe the procedures is required. In

this section, the important vocabulary is introduced.
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(a) The swiss roll data is a 2D
manifold in a 3D space; depicted
with color-coded curvature along
the manifold starting at (0, 0, z).

(b) Parameterization along princi-
pal curvature allows unrolling the
data set onto a plane, essentially
describing the data set with 2D co-
ordinates.

Figure 3.1: Example of parameterizing the swiss roll data set to map it to a lower-dimensional
space.

The first step is to define a suitable space where the calculation is carried out. For this a

topological space is chosen. The following definition uses open sets to define a topological

space [1].

Definition 3.2.1 (Topological space). A topological space is an ordered pair (X , τ),

where X is a set and τ is a collection of subsets of X , satisfying the following axioms:

1. The empty set and X itself belong to τ .

2. Any (finite or infinite) union of members of τ still belongs to τ .

3. The intersection of any finite number of members of τ still belongs to τ .

Definition 3.2.2 (Hausdorff space). A topological space X is called a Hausdorff space, if

it satisfies the third separation axiom, i.e., for any two distinct points x, y ∈ X there exists

a neighborhood U of x and a neighborhood V of y such that U ∩ V = ∅.

Additionally, the second axiom of countability is required.
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Definition 3.2.3 (Second axiom of countability). If X is a second-countable space there

exists some collection U = {U}∞i=1 of open subsets of X such that any open subset of X can

be written as a union of elements of some subfamily of U .

This means that a second-countable space is a topological space whose topology has a

countable base. For example, the Euclidean space Rd with its usual topology is second-

countable. A base of open balls comprised of all balls with rational radii and rational center

coordinates is countable and still forms a basis of Rd.

A manifold M can then be defined as follows.

Definition 3.2.4 (Manifold). Let M be a topological space. M is called d-dimensional

manifold or d-manifold, if

1. M is a Hausdorff space

2. M satisfies the second axiom of countability, i.e., M is a second-countable space

3. M is locally Euclidean, i.e., for any point x ∈ M there exists a neighborhood U that

is homeomorphic to the Euclidean space Rn.

From this definition, it follows that Rd is a manifold since it is trivially homeomorphic to

itself. Subsequently, this is also the space commonly used for hyperspectral and many other

data sets.

Calculating with manifolds requires a way to define a coordinate system on the manifold.

This is done in the form of combining individual charts to build an atlas. They are defined

as follows.

Definition 3.2.5 (Chart). A chart (U,ϕ) for a topological space M is a homeomorphism

ϕ from an open subset U of M to an open subset of a Euclidean space.

With charts, it is possible to locally define a metric on a manifold M to use, e.g., for

distance calculation without taking the curvature into account. A fitting analogy is the

measurement of interior angles in a triangle. In Euclidean geometry, the sum of all interior
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(a) A sphere in 3D space (b) One eighth of the sphere such
that the sum of interior angles of
the triangle are equal to 3π/2.

Figure 3.2: Example of parameterizing the segment of a sphere to map it to a lower-
dimensional space.

angles in a triangle is π. This works as long as the triangle is drawn on a level surface. When

curvature is introduced to the surface the total sum of interior angles changes. E.g., ifM is a

spherical manifold the sum of interior angles is > π in spherical geometry. A demonstrative

example is a triangle where one side is on the equator of a sphere with a length of πr/2,

where r is the radius of the sphere. If the remaining two sides are going north at an angle

of π/2, they will intersect in the north pole at an angle of π/2. Thus, a triangle with a

sum of interior angles of 3π/2 > π/2 was constructed. Figure 3.2 shows a sphere and the

corresponding triangle to illustrate that example. With this local definition it makes sense

to combine multiple charts to form an atlas such that the whole manifold can be described.

Definition 3.2.6 (Atlas). An atlas for a topological spaceM is a collection {(Uα, ϕα) |α ∈ A}

of charts onM, indexed by a set A, such that
⋃
α∈A Uα =M. If the codomain of each chart

is the d-dimensional Euclidean space, then M is a d-manifold.

In this thesis and for the example algorithms given hereafter and in Section 3.3, the

codomain or target set of the individual charts will always be a Euclidean space. They come

equipped with all required metric conditions and generalize well into higher dimensions [14].
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This makes them intuitive to work with. In practice, manifolds are used to generalize vector

calculus of Rd to curved spaces via local charts homeomorphic to an open subset of Rd.

Overall, ML is an approach to nonlinear dimensionality reduction. These are often derived

from linear methods, e.g., the extension of PCA with a kernel to deal with nonlinear struc-

tures.

Some prominent examples are introduced in the following sections.

3.2.2 Principal Component Analysis

The PCA is maybe the most prominent approach to data representation and dimensionality

reduction [136]. The PCA calculates a new orthogonal coordinate system which maximizes

the variance in the direction of each component in descending order. In the context of ML,

the principal components define a global (trivial) manifold as the new coordinate system. It

is a rotation of the original coordinate system. For dimensionality reduction, the components

corresponding to the largest eigenvalues encode the maximal variation. This means that a

truncated PCA using the k components corresponding to the k largest eigenvalues encodes

equal or more variance than any other combination of components. A truncated PCA with

k < d projects each data point onto a lower dimensional subspace which best approximates

the data X in the least squares sense.

The PCA is arguably the most popular ML algorithm due to its simplicity. The relationship

between data samples is not changed during the calculation as only the coordinate system

is adjusted. The data is centered at the origin of a new coordinate system. The rotated

basis given by the calculated principal component vectors can be considered individual 1-

manifolds. However, their union is neither a 1-manifold nor is it a d-manifold [31]. Reducing

the dimensionality by eliminating dimensions corresponding to small eigenvalues simplifies

the data at the cost of possible loss of information, e.g., features that are only present in a

few samples and are, thus, not significant in terms of total data variation [136].
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3.2.3 Graph-based Manifold Learning

When transitioning from a global model to a data-driven approach, adjacency between sam-

ples can be used to infer the data structure. Enforcing certain rules a k-Nearest Neighbor

(NN) graph or an ε-ball neighborhood graph can be used to approximate the distances be-

tween samples along the curvature of the manifold [121, 9]. Building approximate geodesics

on a graph is influenced by how well the graph samples the underlying manifold. This is

demonstrated on the peaks plot from MATLAB using different sampling sizes in Figure 3.3.

Only the immediate neighbors are used to build the graph.

With graph-based ML, the goal is to describe the distance between samples along connected

paths on the surface of the manifold — these paths approximate geodesics, which are the

generalization of a straight line to curved spaces in differential geometry, i.e., the shortest

path between two points on a curved surface [9]. Thus, an alternative description of the

data along its surface is possible. The Dijkstra’s algorithm can then be used to compute the

shortest paths in the calculated graph [64].

The construction of such graphs is straightforward. Each sample x ∈ X is connected by edges

to the k nearest (by some metric) neighbors or all neighbors within an ε-ball of a specified

radius ε, respectively. A weakness of the k-NN approach is the fact that the distance between

samples can be large, e.g., for outliers with few (< k) neighboring samples. When the goal

is to find the latent data structure, those edges are not contributing useful information. One

way to circumvent this is the symmetric k-NN graph. Consider two vertices xi, xj ∈ X with

i 6= j. xi and xj are connected, if xi is in the neighborhood of xj and vice versa.

For the ε-ball neighborhood graph two vertices are connected by an edge if the distance

between them is smaller or equal to ε. A completely connected graph can be obtained by

setting ε to the maximal distance between any two vertices in the data set. Problems with

this approach can occur with small ε or sparsely sampled data resulting in multiple disjointed

components. Then, the ε-ball neighborhood graph may not be able to properly recover the

geometry of highly curved manifolds.

The selection of suitable parameters k or ε can be crucial to solving a specific problem. A
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(c) Approximate geodesic on peaks
plot with 4000 nodes. The shortest
path from the global minimum to
the global maximum has a length
of 15.9.

Figure 3.3: Building approximate geodesics on a graph is influenced by how well the graph
samples the underlying manifold. Constructing the paths was done using only the eight
immediate neighbors per sample.

study of the influence of parameter selection on clustering results can be found in [79].

3.2.4 ISOMAP

ISOMAP stands for Isometric mapping and was first introduced in [117]. It computes a

quasi-isometric, low-dimensional embedding for a set of high-dimensional data points. The

pairwise adjacency matrix is exploited through approximating the geodesic distances along

the edges of a graph as introduced in Section 3.2.3. ISOMAP is performed in three steps.

1. Approximate the manifold with a neighborhood graph on the data set,

2. Compute pairwise shortest paths with the Dijkstra algorithm, and

3. Perform multidimensional scaling on the matrix of the shortest geodesic distances

ISOMAP has many desirable properties. It works well on developable (i.e., Gaussian cur-
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vature K = 0 everywhere, see [66]) and convex manifolds. Then, the geodesic distances

approximated by the graph are similar to the Euclidean distances in the reduced space after

multidimensional scaling is performed. Although ISOMAP has some theoretical conver-

gence guarantee, it requires a certain data quality for geodesic approximation. The following

drawbacks are discussed in [118, 5] in more detail:

1. Manifolds without boundary cannot be unfolded into the reduced space, e.g., a donut-

shaped manifold

2. The algorithm is topologically unstable and requires careful preprocessing of the data

3. Depending on the data structure and the chosen neighborhood size, it is prone to

short-circuit errors when the folds of the manifold are small, or the data is noisy. This

can be seen in Figure 3.4, where the mapping of different classes fails due to noise.

4. As a global method, ISOMAP scales badly for large data sets, as it requires the decom-

position of a dense matrix. A possible solution is the use of the Landmark ISOMAP al-

gorithm, where a set of n� N samples from the original data X are used as representa-

tives [115]. This reduces the computational complexity from O(kN2log(N)) for short-

est path estimation and O(N3) for the N ×N matrix factorization to O(knNlog(N))

and O(nN2), respectively. With this approach, only the distances from a sample to

all landmark points is calculated. Similar to a truncated PCA the transformation can

be expressed by computing a weighted linear combination of eigenvectors of the adja-

cency matrix. The weights are determined by the squared distance of a sample to the

landmark points.

If the neighborhood for graph calculation is too large, connectivity can change dramatically

even with a single short-circuit error [5]. Lowering the neighborhood, on the other hand,

can lead to many disconnected graphs and a fragmented manifold, which makes an accurate

estimation of geodesics impossible. A priori information about the global geometry of the

data is required to select the proper k or ε. According to [117], using an algorithm to
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Figure 3.4: Example of well performing ISOMAP algorithm. Classes are separated in the
final projection.
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Figure 3.5: Example of short circuiting ISOMAP algorithm. If neighboring samples of
different classes are too close together, ISOMAP representation leads to intimate mixtures
of classes.

find “meaningful low-dimensional structures hidden in high-dimensional observations” are

exactly the cases where this a priori information is unavailable.

An example of a proper ISOMAP calculation is shown in Figure 3.4. Figure 3.5 shows

an example where the ISOMAP calculation for two classes fails. In both cases, the data is

shaped like a ball, and one class is inside of the other, but with disjoint manifolds. When the

noise level increases in Figure 3.5 the disjoint manifolds grow closer, and the neighborhood

search is no longer able to separate the different classes. This leads to a mixture in the final

mapping as the result of a short-circuit error.
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3.2.5 Locally Linear Embedding

The LLE was first introduced in [106]. Contrary to the ISOMAP approach, this algorithm

aims at recovering the global low-dimensional structure of a data set by analyzing its local

interaction between samples. The calculation is done along the following pattern.

1. Calculate a neighborhood graph on X

2. For each sample x ∈ X calculate weights that characterize the sample as linear com-

binations from its neighbors

3. Find a low-dimensional representation of each sample based on the eigenvectors while

simultaneously preserving the linear combination in the embedded space for all samples

and their neighborhood

The reconstruction error is given as the quadratic function of the squared errors of the linear

combination. The weights are subject to a sum-to-one constraint. Together this makes

the transformation invariant to rotations, rescalings and translation [106]. A neighborhood

preserving map is then calculated by keeping the weights fixed and optimizing the coordinates

of a low-dimensional projection by solving a sparse n×n eigenvalue problem, where n is the

number of samples of the data set.

According to [106], LLE produces better results with many problems compared to ISOMAP,

and it is generally faster to compute when taking advantage of sparse matrix algorithms.

However, LLE shows poor performance when the sampling density of the data set varies

a lot. Another problem is the ambiguity of linear combinations when a neighborhood has

more than N points (only applies to ε-ball neighborhoods). For a data set with sufficiently

uniform sampling, it makes sense to determine the number of NNs per sample k ≤ N using

cross-validation [2].
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3.3 Manifold Alignment Algorithms

After reviewing different approaches to learn the latent manifold structure in Section 3.2,

an interesting concept is to align multiple manifolds with a certain correspondence from

different data sets. MA is also often interchanged or at least closely related to the terms

DA, covariate shift, and transfer learning. It exploits the assumption that different data sets

produced by similar procedures share a common underlying manifold representation. The

goal is to define a common space C and suitable projections to transform the data sets to

this space while preserving the corresponding structures or topology. If the alignment in the

common space is successful, it is possible to transfer information, e.g., labels for ground truth,

training data, etc. from one domain to another. The main objective according to [42] is to

adapt classifiers trained on one data set to another while maintaining a good performance.

While the concept of MA can be extended to arbitrarily many initial data sets, it makes

sense to restrict discussion to the alignment of only two data sets to simplify the notation.

In this section, the mathematical framework from Section 3.2.1 is extended. Instead of

aligning a single data set to a low-dimensional space homeomorphic to Rd, the goal is now

to align multiple data sets in a common space.

3.3.1 Mathematical Framework Extended

This section introduces the necessary terms and definitions for accurately describing the MA

framework. The idea of aligning two data sets is usually based on the following assumptions

and input data:

1. The source domain X ∗ with desirable properties, e.g., good pre-processing, illumination

conditions, and enough labeled samples to build a robust classifier.

2. The target domain X usually refers to a data set that is acquired by similar mechanics

but with different characteristics compared to the source domain.
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3. The common domain C where both data sets are aligned. C can have a different

dimensionality than X and X ∗.

Since the alignment of multiple data sets and the description of their inherent nonlinear

structure can be difficult in the same dimension, the kernel trick is often used to perform

the alignment in a possibly infinite dimensional space. This allows the separation of data

sets and the calculation of nonlinear decision planes by transforming the data into a higher

dimensional feature space, where a linear separation is possible.

Definition 3.3.1 (The Kernel Trick). Let x,x′ ∈ X be samples in a d-dimensional

domain. The function K : X×X → R is called a kernel. The explicit calculation of a possibly

infinite dimensional representation of individual samples with a feature map ϕ : X → C is

not necessary, if K satisfies

K(x,x′) = 〈ϕ(x), ϕ(x′)〉C, (3.1)

where 〈·, ·〉C is an inner product.

With the Kernel Trick, the explicit mapping of samples to a possibly infinite dimensional

feature space can be circumvented. Instead only the relationship of the samples in the

form of inner products needs to be computed. This is often computationally cheaper than

calculating the coordinates of the whole data set in the feature space explicitly [42].

Many algorithms apply this in the form of a kernel matrix K where Kij = K(xi,xj) =

〈ϕ(xi), ϕ(xj)〉C.

An example is given in Figure 3.6. Here, the two classes of the data set are not linearly

separable in the original space. Using the feature map ϕ(x1, x2) = (x1, x2, x
2
1 + x22), where

x1, x2 are the scalar entries of the sample vector x ∈ R2, the kernel becomes K(x,x′) =

xTx′ + x2x′2. With this the samples are mapped to a 3-dimensional space where a linear

decision boundary can easily be calculated.

For MA, this property is used to perform the necessary transformations linearly in the high-

dimensional feature space. The same transformation would be nonlinear with respect to the
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Figure 3.6: Scatter plot of a data set with two classes before and after the feature map was
applied. After the transformation to a higher dimensional space a linear decision plane can
be used to separate the classes.

original space [119]. With this, the basic idea behind most MA algorithms is introduced. In

the following, a few selected algorithms are shortly described.

3.3.2 Sampling Geodesic Flow

The idea of Sampling Geodesic Flow (SGF) was first introduced in [44]. This approach

was developed to align samples that are far apart on the underlying manifold due to drastic

changes, e.g. geometric variations. The idea is to use intermediate subspaces to learn domain-

invariant features, specifically in the form of interpolated features between the source and

the target domain. The goal of a subsequent learning algorithm is then to select the most

invariant features.

The algorithm performs the following steps:

1. Constructing a geodesic flow curve which connects the source and the target do-

main along the Grassmann manifold. A Grassmann manifold G(d,D) is a space that

parametrizes all d-dimensional subspaces of the D-dimensional vector space (d ≤ D).

2. Sampling a fixed number of subspaces from this curve
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3. Projecting original feature vectors onto these subspaces and concatenating the pro-

jected vectors into ”feature super-vectors”

4. Reducing the dimensionality of the ”super-vectors”

5. Using the resulting representation as new feature vectors to construct classifiers

While the original results are promising, [42] mainly criticizes the impracticality of parameter

optimization via cross-validation for the number of sampled subspaces and their dimension-

ality. Instead, the basic idea of SGF is extended using a kernel approach in the next section.

3.3.3 Geodesic Flow Kernel

The idea of the Geodesic Flow Kernel (GFK) approach is the explicit construction of an

infinite-dimensional feature space that assembles information for both the source domain X

and the target domain X ∗, which serves as a reference [42]. The geodesic flow parametrizes

the smooth change from the source to the target domain. Let Φ(t) be the subspace for

a t ∈ (0, 1). Φ(t)Tx defines the projection of a feature vector x onto this subspace. The

parameter t controls the appearance of the projection. A t close to 0 corresponds to a

projection more likely from the source domain. Conversely, a t close to 1 corresponds to a

projection closely related to the target domain. The goal is now to find a projection satisfying

this for a set of features that are characteristic for both domains. A classifier built on this

projection is likely to perform well on both data sets.

The selection of t (or a sampling of t) is made simple using the kernel trick (see Section

3.3.1). For two feature vectors xi, xj the projections Φ(t) for a continuous t from 0 to 1

are calculated. The results are concatenated into the infinite-dimensional feature vectors z∞i

and z∞j . The geodesic flow kernel can then be written as

〈z∞i , z∞j 〉 =

∫ 1

0

(
Φ(t)Txi

)T (
Φ(t)Txj

)
dt = xTi Gxj (3.2)
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where G ∈ RD×D is a positive semi-definite matrix. [42] shows how G can be calculated in

closed-form.

The only free parameter of this approach is the dimension d of the subspaces. To extend this

approach to an unsupervised technique, the authors propose an automatic way to estimate

the optimal dimension by using a subspace disagreement measure. The idea is to compute the

PCA of the source and target data individually, and the PCA of both data sets combined. All

three PCAs are similar when the two data sets are close to each other on the Grassmannian

manifold. The dimension d should be chosen high enough to encode the variances in the

source domain, but not so high that the two subspaces have orthogonal directions. The

reason for the last statement is that DA fails when variances captured in one subspace

cannot be transferred to the other subspace. Further information is available in [42, 41].

The supervised GFK approach is used in Section 6.5.3 to compare results to the proposed

method of this thesis. It is shown that GFK, FT of an SVM classifier trained on one data

set produces good results on another data set. However, inversion to a reference domain

where an original model could be used for interpretation was not successful. Additionally,

the alignment with GFK shows problems with strong nonlinearities like shadows and BRDF

effects that have no continuous representation, e.g., two-sided roofs where only the samples

of two different viewing angles are measured.

3.3.4 Semi-Supervised Manifold Alignment

The SSMA uses labeled information of different classes to encode knowledge about data

structure and geometry of the data [126]. Unlabeled data can be added to refine the struc-

tures. The relationship between labeled and unlabeled samples can be encoded with an

undirected graph in the form of the graph Laplacian matrix L. Let X ∈ Rd×n, where d is

the dimensionality and n the number of samples. L can then be defined as

L = D −W , (3.3)
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where D ∈ Rn×n is the degree matrix, a diagonal matrix counting the number of connections

for each sample. W ∈ Rn×n is the adjacency matrix which only contains non-zero entries

between neighboring samples which are determined by k-NN or an ε neighborhood. L

encodes the norm of derivatives for the decision function along the graph built upon the

samples [119].

The goal is then to transform the data sets to a latent domain C where samples of the same

class become closer while simultaneously increasing the inter-class distance. This is done by

using three different adjacency matrices:

1. W s is the similarity matrix with entries W ij
s = 1 if the corresponding samples belong

to the same class and 0 otherwise, including the unlabeled samples.

2. W d is the dissimilarity matrix with entries W ij
d = 1 if the corresponding samples

belong to different classes and 0 otherwise, including the unlabeled samples.

3. W represents the topology of the domains, e.g., by calculating adjacency matrices

with a Radial Basis Function (RBF) or a k-NN graph for each domain separately and

joined in a block-diagonal matrix.

This leads to three different graph Laplacian matrices Ls,Ld, and L, respectively. The

SSMA then minimizes the joint cost function by finding the smallest non-zero eigenvalues of

the following generalized eigenvalue problem

Z(L+ µLs)Z
TV = λZLdZ

TV , (3.4)

where Z contains the individual data matrices in block-diagonal form and V contains in the

columns the eigenvectors organized in rows per domain [119, 126].

The pseudo-inverse of the eigenvector of the target domain can be used to transfer any

data set from the latent domain C to the target domain according to [130]. It was tested

experimentally in [124].

The following section expands on SSMA to mitigate some of its caveats. The problem
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of SSMA to align data sets with strong nonlinearities is mitigated by introducing kernel

functions. SSMA only allows the use of the same kernel for all data sets. This limits the use

for the alignment of heterogeneous data.

3.3.5 Kernel Manifold Alignment

The KEMA approach is the extension of the SSMA [125] and uses the kernel trick (see Sec-

tion 3.3.1) to align multimodal data sets [119]. One benefit of KEMA over SSMA is that

strong nonlinear deformations can now be accurately modeled.

The kernelization of SSMA to generate the KEMA algorithm is done by exploiting the the-

orem about the direct sum of Hilbert spaces [102].

Theorem 3.3.1 (Direct sum of Hilbert spaces:). Given two Hilbert spaces H1 and H2,

the set of pairs {x,y} with x ∈ H1 and y ∈ H2 is a Hilbert space H with the inner product

〈{x1, y1}, {x2, y2}〉 = 〈x1, x2〉H1 + 〈y1, y2〉H2 (3.5)

This is called the direct sum of the spaces and is denoted as H = H1 ⊕H2. This property

extends to a finite summation of Hilbert spaces.

This allows the mapping of all data sets to possibly different Hilbert spaces using, again,

possibly different feature maps ϕi. This leads to the generalized eigenproblem

Φ (L+ µLs) ΦTU = λΦLdΦ
TU , (3.6)

where Φ is the block diagonal matrix containing the data matrices and U contains the

eigenvectors organized in rows for the particular Hilbert space. Since the eigenvectors can be

of infinite dimension the Riesz representation theorem [105] is used to express the eigenvectors

in the form of linear combinations of mapped samples. This leads to U = ΦΛ.
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By multiplying both sides of Equation (3.6) by ΦT and replacing the dot products with the

corresponding kernel matrices Ki = ΦT
i Φi, the final problem becomes

K (L+ µLs)KΛ = λKLdKΛ, (3.7)

where K is the block diagonal matrix containing the individual kernel matrices Ki.

Generally, KEMA has many desirable properties. It can align data sets with different di-

mensionalities by using a dedicated kernel for each domain, it performs well for manifolds

of a diverse structure while maintaining the individual topology, and it is robust to strong

nonlinearities and errors in graph estimation.

The corresponding publication (see [119]) also discusses the inversion of KEMA from the

latent domain C to a target domain. This is generally desirable to measure the accuracy of

the alignment in physical units. The exact pre-image does usually not exist when working

with kernel functions (see Section 3.4). This requires the use of approximate methods that

have ways to deal with discontinuities in the form of regularization [69, 132].

KEMA proposes to use a linear kernel for the inverse mapping. However, the inversion pro-

cedure is not part of the published Matlab code and implementation to compare KEMA to

the proposed method of this thesis (see Section 6.5.4) did not produce results useful results,

i.e., its use for mitigation of nonlinearities, physical interpretability, and data preprocessing

could not be verified.1.

However, alignment in a latent domain with KEMA and FT could successfully be tested.

Learning an SVM model on the transformed data from one domain and applying it to the

aligned data of another domain yielded good classification results.

3.4 The Pre-Image Problem

The main reason to give up kernel methods for the alignment of multiple data sets, is the

pre-image problem.

1The Matlab code can be found on https://github.com/dtuia/KEMA

https://github.com/dtuia/KEMA
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The pre-image problem is defined as follows [132]:

Given a sample x̃ in the possibly infinite dimensional common domain C, find a correspond-

ing sample x in the target domain X such that x̃ = ϕ(x).

When kernel functions are used for the alignment C is usually of higher dimensionality than

X . While each sample has an exact pre-image in its domain of origin, transforming one

sample to another domain is difficult.

Let x∗ ∈ X ∗ be a sample in the target domain and x ∈ X be a sample in another domain

to be aligned. Their projections to the common domain C are denoted by x̃∗ and x̃, re-

spectively. The inversion of x̃ ∈ C → x′ ∈ X ∗ is generally ill-posed, as the relationship

‖x̃∗ − x̃‖2 ≤ δ ‖x∗ − x′‖2 for some δ ∈ R. This means that a small distance between sam-

ples in the common domain does not necessarily translate to a small distance in the target

domain after the inversion.

An example would be the inversion close to a singularity of the kernel function. The inverse

solution is unbounded resulting in a projection far from the expected/desired solution.

Approaches to solving these problems are usually tied to specific assumptions about the data

structure and the domains. When the pre-image does not exist it is possible to calculate ap-

proximate solutions. A particular approach treats the inversion as a nonlinear optimization

problem and proposes a fixed-point iteration scheme to calculate a solution [113]. However,

this approach suffers from several issues. The nonlinearity of the optimization problem can

cause numerical instability, and the iterative solver can get stuck in local minima, requiring

multiple restarts with different initialization. The solution is also calculated individually for

each sample, which makes the whole process very time-consuming. Finally, simply using a

distance measure in the common domain might not be the best parameter to optimize, when

the goal is to minimize the classification error. This approach also only works for a specific

set of kernel functions, restricting the methods to particular, e.g., Gaussian, kernels. Other

approaches exploit a distance constraint to find the location of the pre-image [69] or learn

the inverse feature map from training samples [132].

Overall, the inversion of MA techniques based on kernel functions is a complex topic. Lit-
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erature research and the experiments in this thesis do not hint at a solution that is both

accessible and produces adequate results at the same time. Thus, the proposed method in

this thesis refrains from using kernel functions and instead focuses on a same-space data

representation for the alignment process without the requirement for higher dimensional

domains.

3.5 Summary

The recent demand in high resolution, large-scale multitemporal and multimodal remote

sensing data justifies the high interest in ML [18, 17, 117, 4] and DA [130, 119, 52] techniques.

They strive to combine all available data for analysis. ML techniques, such as ISOMAP [117]

or LLE [2] are essentially nonlinear dimensionality reduction methods to simplify the descrip-

tion of high-dimensional data sets. ML procedures are usually unsupervised approaches to

describe the latent data structure. The goal of MA is then to define projections between

data sets with similar underlying manifold structures [56, 119, 143]. These procedures usu-

ally require training data in both domains, but also unsupervised methods exist [129].

However, the ML and alignment methods have their caveats. ISOMAP and LLE produce

a locally optimal mapping. However, since the feature space has a much lower dimension

multiple sources, e.g., different classes, can become mixed. Without further constraints,

interesting structures in the data may be lost. this can be circumvented by using kernel

methods and transforming the data to a potentially infinite dimensional feature space [81].

However, results obtained in such a feature space do not permit interpretation in meaningful

physical units, they can only be exploited for decisional problems like classification [119]. If

a physical interpretation of the aligned data is the goal, the data needs to be inverted back to

the source domain. The main problem is that methods based on kernel machines have to deal

with the pre-image problem [145]. The pre-image problem deals with finding correspond-

ing patterns in the original domain for points in the potentially infinite dimensional feature

space. Existing methods require specific kernel methods together with a particular kernel
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function to compute an approximate solution [69, 132]. These are often problem-specific,

depend on fine-tuning of hyperparameters and are computationally challenging [119].

MA is generally defined as an approach to match corresponding data sets while simultane-

ously preserving the topology of each data set. DA, while encompassing the MA techniques

also includes methods that allow data transformation with the goal to transfer useful fea-

tures to a different but related problem. This also includes the correction of individual

effects from Section 2.3. On one side, the preservation of the original topology is not always

a necessary constraint. On the other side, individual correction of undesired effects can

be time-consuming, and interference between subsequent preprocessing steps is a common

problem.

This thesis proposes an approach without the requirement for kernel methods or physical

models. The idea is to find a simplified, physically meaningful data representation that does

not have the topology constraint, but still allows data alignment and FT from one data

set to another. Following, Chapter 4 introduces the NFN as a method for simplified data

representation and Chapter 5 expands on this idea to align multiple data sets in a chosen

reference domain.
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Chapter 4

Nonlinear Feature Normalization

This chapter, introduces the NFN. This algorithm aims at normalizing the spectral signa-

tures by reducing unwanted nonlinear effects and aligning the results to a pre-defined basis

for easy interpretation. The normalization is done by individual translations for each spec-

trum based on training data for each class in the scene [51].

This chapter is divided into four parts.

In Section 4.1 the general idea and the assumptions for training data selection, as well as

the necessary notation for a proper mathematical description, are introduced.

Section 4.2 describes the NFN algorithm.

Section 4.3 gives a numerical example to demonstrate the geometric process during trans-

formation. Additionally, the transformation is visualized for a problem with three bands.

At last, Section 4.4 discusses the selection of basis vectors, the penalty function, the preser-

vation of spectral features, and the computational complexity of NFN.

4.1 Assumptions and Notation

Let X ∈ Rd×n be a data set with n samples and d bands. Each sample xi, i = 1 . . . , n

belongs to one of p classes. Let Lj ∈ Rd×lj be the training data for class j = 1, . . . , p, with

Lj1 ∩ Lj2 = ∅ for j1 6= j2 and L =
⋃p
j=1 Lj the complete set of training data. Furthermore,
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let b1, . . . , bp ∈ Rd be the class reference spectra defining the new basis, represented by the

matrix B ∈ Rd×p. The manifolds containing all possible variations of samples per class (e.g.,

due to external effects) are the open subspaces Mj ⊆ Rd.

Training data and reference spectra can be part of the original data set X or come from

external sources, e.g., spectral libraries or a supervised selection process. The reference

spectra in B can theoretically be arbitrary vectors, e.g., Euclidean unit vectors or material

spectra from a spectral library. The training data need to represent the inherent data

structure to model the exact conditions of the data set. Overall, the following assumptions

about data structure and training data are used [128]:

1. Assumption 1: Class uniqueness For classes j1, j2 with j1 6= j2 ⇒Mj1 ∩Mj2 = ∅.

This means that two identical samples belong to the same class, which also implies that

even for data containing noise doesn’t lead to an overlap of different class manifolds.

This assumption also means that training data are purely chosen to distinguish between

iconic features, not semantic properties, i.e., discriminating between a hospital, and

the town hall with the same roof material is not possible.

2. Assumption 2: Training data selection Training samples represent the underlying

shape of class manifolds Mj. This means all possible variations of each class should

be included during training data selection, i.e., if samples of a class lie in shadow,

some need to be included in the training data to reduce the risk of projecting them to

another manifold.

3. Assumption 3: Closed world Class labels represent all occurring classes of interest

in the data set X. This means the data set contains no additional or hidden classes

for which nonlinear effects should be reduced.

These assumptions are commonly made for any classifier that tries to separate multiple

classes based on their characteristic features.

Proving that Assumption 1 is fulfilled is generally not possible, unless all the class labels are

already known in advance. Violations can occur between very similar classes, e.g., different
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vegetation species, and in dark areas where the signal is low compared to the noise level.

Contrary to the example of short-circuiting of ISOMAP in Section 3.2.4, where a violation of

this assumption results in a global change of manifold representation, NFN transformation

becomes only erroneous in the immediate area of the violation.

Casually speaking, Assumption 1 states that robust discrimination between different classes

is only possible if the classes have mutually distinct features. Geometrically, each of the

p different class manifolds M1, . . . ,Mp ⊆ Rp occupies a unique space in Rp, and for two

different manifolds Mi and Mj, Mi ∩Mj = ∅ for i 6= j holds. If there exist two samples

x1,x2 with x1 = x2 and x1 ∈Mi, then it automatically follows that x2 ∈Mi.

Assumption 2 states that a representative sampling of each class manifold structure is nec-

essary to perform NFN accurately. Contrary to unsupervised or semi-supervised approaches

NFN uses only labeled samples to learn the data structure and exploit it to refine the train-

ing data. This assumption can be used as a guide for human analysts to select training data

in a new data set.

Assumption 3 states that all occurring classes of a data set are known a priori. This assump-

tion is required only for classes that are required for further analysis. Additional classes that

are not included in the labels will be drawn closer to other classes during the subsequent

transformation and separation from the other classes becomes more difficult.

This concludes the necessary assumptions and notation to describe the NFN transformation.

4.2 NFN Algorithm

The NFN algorithm computes a translation vector for each spectrum xi in the data set. To

simplify the notation the index i is dropped. NFN transformation can then be computed as

follows.

Starting with a sample x ∈ Rd of the data set X, the first step is to calculate the NN distance

towards the training data per class as

δj = minxt∈Lj
‖x− xt‖2 . (4.1)



70 NFN Algorithm

In this thesis the Euclidean norm denoted by ‖·‖2 is used as the standard metric to measure

distances. The use of other metrics is permissible, but additional test are necessary to

balance the other parameters of the NFN transformation.

Additionally, the distance vector d̃j ∈ Rn between the sample x and the class references bj

is calculated according to

d̃j = bj − x. (4.2)

At this point p NN distances and p vectors identifying the sample x with the references bj

were calculated.

The final step is a vector addition of x with a convex combination of d̃j, weighted by

coefficients c̃j.

To calculate the coefficients, the NN distances δj from (4.1) are modified using a penalty

function g : Rp → Rp. The goal of g is to favor translation in directions where the distance

towards training data is small and simultaneously prevent translation when the distance to

the nearest training samples is big. Further discussion on penalty functions can be found in

4.4.1. In this thesis, the nonlinear penalty function

g(δ) = δ−t,with t ∈ N (4.3)

is used. δ−t stands for element by element operation of δ−tj for all j.

The coefficients c̃ for the convex combination of d̃j are given by

c̃j = g(δj)/

p∑
j=1

g(δj). (4.4)

The final translation is then calculated by

x̃ = x+

p∑
l=1

c̃jd̃j (4.5)
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Algorithm 1 NFN algorithm

1: procedure NFN(x, L,B, g) . Normalize x with respect to B
2: for j = 1, . . . , p do
3: δj ← minxt∈Lj

‖x− xt‖2 . NN distance

4: d̃j ← bj − x . Translation vector to reference
5: end for
6: if δj = 0 for one j then
7: x̃← bj . Prevent division by 0 if x ∈ L
8: else
9: for j = 1, . . . , p do

10: cj ← g(δj) . Penalty function on NN distance
11: end for
12: c̃j ← cj/

∑p
l=1 cl . Normalization for convex combination

13: x̃← x+
∑

j c̃jd̃j
14: end if
15: Optional x̃← x̃ · ‖x‖2 / ‖x̃‖2 . Re-normalization to improve visualization

16: Output x̃, c̃j, d̃j
17: end procedure

If x is among the training spectra, the distance δj = 0 for one j = 1, . . . , p and consequently

g(δj) → ∞ for this j. In this case, c̃ = ej, where ej are the canonical unit vectors of Rp.

Equation (4.5) then simplifies to x̃ = bj, if x ∈ Lj. This means every sample x ∈ X identical

to one of the training spectra is automatically identified with the reference spectrum bj of

the corresponding class j.

An optional step is to scale the transformed samples to their original norm by

x̃N = x̃ · ‖x‖2 / ‖x̃‖2 . (4.6)

This step preserves distinguishable illumination differences in the transformed data and

improves visualization. However, it is not necessary for mitigating nonlinear effects.

Pseudo-code for the NFN algorithm is given in Algorithm 1. It is often beneficial to change

the distance calculation from Equation (4.1) to a k-NN (k-NN) search by

δj =
1

k
mint1,...,tk

k∑
i=1

‖x− xti‖2 . (4.7)
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This reduces the effect of outliers in training data by taking the mean distance between x

and the k nearest elements. This helps when lots of training data per class are available,

but the labels are not completely reliable. This way, the impact of single mislabeled training

spectra becomes less severe. The effect is analyzed in Section 6.3.3.

The effects of different parameters t for the penalty function and k for the number of NNs

are analyzed in Section 6.3.2.

4.3 Simple Examples

4.3.1 Individual Sample in two bands

This section shows the step-by-step progression of the NFN transformation performed on

a single sample x with only two classes. Simple numeric values are used to illustrate the

effects of each step on the intermediate result.

The basis B =


5

0

 ,

0

5

 is chosen for the NFN algorithm and the transformation for

the sample x =

2

2

 is calculated. Assuming a set of training data L1 =


3

2

 , L2 =
2

4

, the distances δj from x to the closest point in Lj are calculated as

δ1 = minxk∈L1 ‖x− xk‖2 =

∥∥∥∥∥∥
2

2

−
3

2

∥∥∥∥∥∥
2

= 1, (4.8)

and

δ2 = minxk∈L2 ‖x− xk‖2 =

∥∥∥∥∥∥
2

2

−
2

4

∥∥∥∥∥∥
2

= 2. (4.9)
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The corresponding translation vectors for x towards the basis B are

d̃1 = b1 − x =

5

0

−
2

2

 =

 3

−2

 , (4.10)

and

d̃2 = b2 − x =

0

5

−
2

2

 =

−2

3

 . (4.11)

The penalty function is calculated element-wise as

g(δ) = δ−t. (4.12)

For t = 2, this results in

g(δ) =

1

2

−2 =

1

1
4

 (4.13)

Normalization of the coefficients to generate a convex combination is done by

c̃j = g(δj)/
2∑
l=1

g(δj) (4.14)

leads to

c̃1 = 1/
5

4
=

4

5
(4.15)

and

c̃2 =
1

4
/

5

4
=

1

5
, (4.16)
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respectively. This results in the transformed sample

x̃ = x+
2∑
j=1

c̃j d̃j

=

2

2

+

4

5
·

 3

−2

+
1

5

−2

3


=

2

2

+

12/5

−8/5

+

−2/5

3/5


=

2

2

+

 2

−1


=

4

1

 .

(4.17)

The resulting sample is considerably closer to the class 1 reference due to δ1 < δ2. Re-

normalizing x̃ to the norm of x yields

x̃ = x̃ · ‖x‖2 / ‖x̃‖2

=

4

1

 ·
∥∥∥∥∥∥
2

2

∥∥∥∥∥∥
2

/

∥∥∥∥∥∥
4

1

∥∥∥∥∥∥
2

=

4

1

 · (√8/
√

17
)

≈

2.74

0.69

 .

(4.18)

4.3.2 Simulated Data in three bands

To illustrate NFN computation Fig. 4.1 shows a step-by-step transformation performed

on a 3D toy example. The data consists of two different classes in the form of entangled

spirals. NFN transforms the data by aligning it to a new two-dimensional basis, each spiral
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Figure 4.1: Progression of NFN transformation from entangled spirals to linearly separable
data in the same space.
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corresponding to one of the basis vectors. Fig. 4.1a shows the intended sample labeling

for the red and blue source — a set of training data, depicted in Fig. 4.1b. The reference

spectra, given by the red and blue diamond in Figure 4.1c, are used to define a linear basis,

and all training spectra are identified with their respective reference. The unlabeled samples

individually gravitate towards the nearest training samples per source and are translated

to the new basis according to Equation (4.5). The resulting linearization is depicted in

Fig. 4.1c. Finally, the linearized data with original class colors are shown in Fig. 4.1d.

Most data points are drawn close to the new basis vectors; those in-between are points with

similar shortest distance to the training data of both classes in the original data set. The

inherent data structure after NFN transformation shows a linearized structure and can easily

be classified using a linear decision plane. The nonlinear effects were successfully mitigated

by the NFN algorithm.

4.3.3 Real Hyperspectral Data

An example of the performance of NFN on real hyperspectral data is shown in Fig. 4.2. The

images show scatter plots for three bands of a real hyperspectral data set. Each point in

the image corresponds to a spectral signature. The samples are color-coded according to the

corresponding class labels. Before the NFN transformation, the different classes are clustered

close together and finding separation planes appears difficult. After the NFN transformation,

the individual class structure is linearized according to the reference spectrum for each class.

For example, the gray and red class appeared to overlap in the original data but can be easily

separated after the transformation. This is also true for the other classes. The yellow, green

and dark green class seem to still overlap in the image, however, changing the visualization

by selecting a different band combination shows that linear separation is also possible here.
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Figure 4.2: Applying NFN to real hyperspectral data results in a linearized data structure.
Depicted are scatter plots for the original data and the NFN-transformed data. The samples
are color-coded according to their class labels.

4.4 Discussion and Properties of NFN

4.4.1 Penalty Function

The NFN algorithm aims at transforming individual samples towards a more linear data

representation, concerning the matrix of class reference spectra B. The NFN transformation

draws samples of the same class closer to the corresponding reference, while samples of dif-

ferent classes are simultaneously pulled apart. This can be done by weighting the translation

depending on the distance between the test and training samples. At this time only uniform

weighting for all classes and bands is used. Figure 4.3(a) shows the NFN transformation for

uniformly distributed training samples and two classes in the form of a vector field. The

arrows indicate the length and direction of the translation. Since the coefficient vectors c are

normalized to 1, the length of the translation is determined by the distance to the nearest

training samples. There are areas in the plot where the distance to both classes is almost

equal. This results in almost equal coefficients for each class. In the case of this 2D example,

the translations towards each class cancel each other out. When one distance is larger than

the other, the penalty function shifts the coefficients in favor of the closest class. If the
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Figure 4.3: Progression of NFN transformation from entangled spirals to linearly separable
data in the same space.

distance to that class is still relatively large, a great translation is beneficial to bring the

sample in line with the general structure. If the distance is already relatively small, a short

translation to prevent identifying the sample with the class reference is performed. If this was

permissible, the risk of losing important features during the NFN transformation increases.

Figure 4.3(b) shows the same experiment using contour lines to visualize the magnitude of

translation concerning the distance from the training samples. The large translation on the

outside of the two sets of training samples is due to collinearity of the classes. E.g., for a

sample in the upper left corner of the graph, the NNs per class are roughly in the same

direction. This means both individual translations are performed in the same direction. The

penalty function together with the normalization of coefficients has to make sure that a sam-

ple is not able to ’overshoot’ the associated nearest training samples. This is an important

property as it could potentially invert characteristic features. In hyperspectral data, the

number of classes p is usually much smaller than the dimensionality d, and collinearity is

not a problem.

The penalty function should be positive and monotonically decreasing with increasing dis-
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tance from the associated training samples per class considering the requirements above.

The coefficient c is then calculated according to Equation (4.4) by normalizing g(δj) for all

δj of one sample. This leads to large coefficients when one δj is significantly larger than the

rest.

In this thesis the penalty function

g(δ) = δ−t, (4.19)

with t ∈ N is used. This function was specifically chosen to make it impossible for a sample to

’overshoot’ the training samples of the nearest class for t > 1, even in the case of collinearity.

Alternatively, using the penalty function

g(δ) = e−λδ, (4.20)

with λ ∈ R+, produces similar results. A comparison of the two functions with different

parameter values is depicted in Figure 4.4. In practice, it was easier to fine-tune (4.19). Al-

ternatives based on sigmoid functions are also possible, but have not been tested extensively.

For this thesis, each class is considered to be equally important. It is theoretically possible

to apply individual penalty functions based on class membership of the training data. How-

ever, careful parameter selection, prior knowledge of class distribution, etc. are required to

produce optimal results. The risk of miscalculation increases with the number of classes in

the scene.

The topic of weighting can even be extended to the level of individual spectral bands. A

possible reason can be that hyperspectral data have different statistical properties per band.

Using Euclidean distance on Rd for the calculation of k-NN does not take individual vari-

ances per band into account. This topic is discussed further in Section 7.2 as it can be vital

to distinguish between wanted and unwanted features. However, only the general concept is

discussed as the number of possible approaches exceeds the scope of this thesis.
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4.4.2 Basis Selection

In this section, the selection of reference vectors per class to build the basis B is discussed.

Several theoretical examples are covered, and the most practical approach when NFN is used

for hyperspectral data is highlighted.

Every class must be represented by a single reference vector for NFN transformation. They

can be anything with the same dimension as the data set X, so bj ∈ Rd for j = 1, . . . , p.

When thinking about a new basis to represent the data, the first thing that comes to mind

is an orthonormal basis describing the standard basis with canonical unit vectors. As only p

vectors are required, assuming without loss of generality that the basis B consists of the unit

vectors e1, . . . , ep ∈ Rd is viable. This representation has the advantage that the distance

between classes is normalized. It has similarities with a nonlinear PCA in the form that

the most information is encoded in the first p components. This means it can also be used

for dimensionality reduction. The difference is that the classes are not sorted with regard

to their variance, but the first p components of a nonlinear PCA (e.g., kernel-PCA [31])
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(a) RGB color composite of
the Greding1 ref data set (see
Section 6.1).

(b) Band 1 of NFN trans-
formation for the class ’Red
roof’.

(c) Band 2 of NFN trans-
formation for the class ’As-
phalt’.

(d) Band 3 of NFN transfor-
mation for the class ’Soil’.

(e) Band 4 of NFN transfor-
mation for the class ’Grass’.

(f) Band 5 of NFN transfor-
mation for the class ’Tree’.

Figure 4.5: The first six bands after NFN transformation of a real hyperspectral data set
using the standard basis e1, . . . , e6 ∈ Rd.

would encode roughly the same amount of variance. However, this comes with the same

disadvantages as PCA. After the transformation, a physical interpretation of the samples is

no longer possible as the representation is shifted and rotated favoring an easy description.

Also, since the distance between all classes is now equal, there is no longer a context in the

form of similarity between classes. An RGB color composite of a hyperspectral data set and

the the first five bands after NFN transformation with the standard basis e1, . . . , e6 ∈ Rd

are depicted in Figure 4.5. It is apparent that each band encodes the associated class. Con-

sider the two different vegetation classes Tree and Grass and the class Asphalt. A classifier

would usually be able to discriminate between vegetation and non-vegetation in the original
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data. However, confusion between the two vegetation classes is a common occurrence due

to spectral similarity. The distance to the Asphalt class would be identical to the distance

between the two vegetation classes when using the standard basis for this example. During

classification, this can result in a higher amount of vegetation samples classified as Asphalt.

Whether this is a problem depends on the desired output. For generating landcover maps,

it makes more sense to accept mistakes during classification of similar classes. If a single

sample in a meadow is classified as Tree, for example, it is reasonable to assume that this

error is simply due to similar spectral characteristics of the vegetation classes. If instead

that sample is classified as Asphalt, it looks suspicious.

The goal of the NFN transformation is to identify all instances (including the nonlinear

variations) of a class with only one signature. This is similar to spectral libraries, e.g., the

spectral library of the United States Geological Survey (USGS) [65], where one signature per

material is deposited. To also maintain the physical interpretability after NFN transforma-

tion it is reasonable to compose the basis B of appropriate material spectra. These can be

drawn from spectral libraries, using measurements of laboratory or field spectrometers, or

simply computed as the mean spectrum per class from the training data. Using spectra from

a library or another instrument than the recording sensor usually requires interpolation to

match the spectral dimension d. It is shown in the following chapter that the data set X

and the basis B are not required to be from the same domain. This means using a basis

composed of reflectance vectors to transform a radiance data set with NFN is possible as in

both cases the relative distance between classes is similar.

For the experiments in this thesis, generally, the mean vector of all training samples per class

is used to build B. Using an artificially constructed basis B can be beneficial when the data

representation and a dimensionality reduction is desired (see Figure 4.5). However, it makes

sense to use realistic spectra as reference vectors to preserve the physical interpretability.

Also, most benchmark data sets have no assigned library or spectrometer measurements per

class. This is mostly attributed to cost and time efficiency, as data acquisition can take place

in rough terrain and over a large area.
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4.4.3 Computational Complexity of NFN

Considering the run time of the NFN transformation, calculating the NN distance in Step 3

is the most time-consuming operation [35]. For a data set with d dimensions and training

samples l� n, a k-NNs approach to calculating the translation vectors dj can be computed

in O(dlk) for one sample in our data set. This has to be performed for all n samples resulting

in a complexity of O(ndlk). Since the computation of the translation is independent for each

sample, this single for-loop can be parallelized without any changes to the procedure.

Currently, the NFN algorithm is implemented in MATLAB and the inherent k-NN function

is used to perform the transformation. In the case of d > 10, which is almost guaranteed for

hyperspectral data, the k-NN search of MATLAB defaults to an exhaustive search.

The practical runtime test on an office computer with Intel Core i7-6700, 32 GB RAM, and

NVIDIA Quadro K1200 performed NFN on a hyperspectral data set with 670 × 606 pixel

with 127 bands and a mean 2130 training samples for each of six classes in ∼ 140 seconds.

It is possible to further reduce the computational complexity by using the median of medians

approach [22] for the k-NN calculation. It operates by calculating an approximate median

of the distances per sample, which can be used to reduce the problem size by a factor

of 0.7. The approximate solution can deviate from the globally optimal solution, but the

computational complexity reduces O(nl). Further improvement of the runtime of NFN,

including optimization of the k-NN calculation, are possible with an implementation on

GPU [74]. This approach is promising for real-time calculation of NFN.
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Chapter 5

Nonlinear Feature Normalization for

Data Alignment

In this chapter, the NFN algorithm is modified first to align multiple data sets to the same

basis and then invert the transformation [51]. This enhancement effectively allows trans-

formation of one data set to the domain of another. For this, additional requirements and

notations are introduced in Section 5.1. In Section 5.2 multiple NFN transformations and

their inverse translations are concatenated to construct the NFNalign algorithm. Section 5.3

presents two practical approaches to calculate pixel correspondences between the data sets,

which are required for NFNalign to perform properly. A discussion of the approximate data

alignment error and the computational complexity of NFNalign can be found in Section 5.4.

5.1 Requirements and Notation continued

For this section the same notation as in chapter 4 is used. Additionally, new terms to ac-

curately describe the alignment of two or more data sets and the inversion to the original

domain are supplemented.

Mathematically, a domain is any connected open subset of a finite-dimensional vector space.

In this thesis, the term is mainly used to indicate the space occupied by the data including its
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possible variations due to nonlinear effects. For the following operations, it is not necessary

to further specify additional properties like the smoothness of the boundary, etc.

Let X ∈ Rd×n be a data set in the domain X ⊆ Rd with corresponding training data L,

and X∗ ∈ Rd×n∗
be a data set in the domain X ∗ ⊆ Rd with training data L∗. The domains

stand for feature spaces, e.g., different steps in the preprocessing chain or simply data from

different sensors.

At this stage, the dimensionality d of the two data sets are assumed to be equal. An ap-

proach on how to handle different dimensionalities is discussed in Section 6.5.5. The number

of samples n and n∗ are not required to be equal for both data sets.

Let the common domain C ⊆ Rd be the space both data sets are transformed to using the

NFN transformation. In the following, X is referred to as the test domain and X ∗ as the

reference domain. Reasons to choose a specific data set can be ideal illumination conditions,

an optimal viewing angle, and good atmospheric correction.

One important point is the calculation of correspondence between individual samples of dif-

ferent domains. This problem can be practically solved by either spatial or spectral similarity

and is discussed in Section 5.3, as it can be detached from the NFNalign algorithm. For the

description of the NFNalign algorithm in the next section, the correspondence between the

samples x and x∗ is simply inferred.

5.2 NFNalign Algorithm

With the notation from Sections 4.1 and 5.1 it is now possible to describe the process of FT

between domains based on the NFN transformation.

The first step is to perform NFN transformation on the reference sample x∗ and the test

sample x and align them with the same basis B. Further information about the selection of

suitable basis vectors can be found in Section 4.4.2. Let x̃∗, c̃∗j , d̃
∗
j be the NFN output of the

reference data X∗ and x̃, c̃j, d̃j the NFN output of the test data X.

At this stage, it makes sense to perform a re-scaling of x̃ to eliminate unwanted effects due
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to different illumination conditions between the data sets. The optimal re-scaling factor λ∗

minimizes satisfies

δ̃∗ = minλ>0 ‖λx̃− x̃∗‖2 . (5.1)

This means the distance δ̃∗ between the reference sample x̃∗ and the re-scaled test sample

λx̃ is minimal, which in turn transfers to the final alignment error of the data alignment in

the reference domain X . This is further discussed in Section 5.4.1. To calculate the optimal

re-scaling factor λ∗ the angle α between x̃ and x̃∗ can be used. α is calculated by

α = arccos

(
x̃T x̃∗

‖x̃‖2 , ‖x̃
∗‖2

)
. (5.2)

Together this results in

λ∗ = α
‖x̃∗‖2
‖x̃‖2

. (5.3)

With

x̃temp = λ∗x̃ (5.4)

the final alignment step is performed by applying the inverse translation from x∗ → x̃∗ to

the rescaled xtemp by

x̃align = x̃temp −
∑
j

c̃∗j d̃
∗
j , (5.5)

where c̃∗j are the coefficients and d̃
∗
j the translation vectors of NFN(x∗, L∗, B, g).

Overall, the sample x ∈ X was first transformed to x̃ ∈ C by the NFN transformation,

re-scaled to have minimal distance to x̃∗, and subsequently transferred to X ∗ by applying

the inverse of the original NFN transformation applied to x∗.

The pseudo-code for NFNalign is given in Algorithm 2. Step 4 in Algorithm 2 is equivalent

to the combination of Equations (5.2)-(5.4).

An alternative re-scaling approach is the calculation of x̃temp as

x̃temp = x̃
‖x̃∗‖2
‖x̃‖2

. (5.6)
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Algorithm 2 NFNalign algorithm

1: procedure NFNalign(x,x∗, L, L∗, B) . Align x and x∗

2: x̃, c̃j, d̃j ← NFN(x, L,B)

3: x̃∗, c̃∗j , d̃
∗
j ← NFN(x∗, L∗, B)

4: x̃temp ← ‖x̃∗‖2 cos(α) x̃
‖x̃‖2

. Rescaling, α is the angle between x̃ and x̃∗

5: xalign ← x̃temp −
∑

j c̃
∗
j d̃
∗
j . Perform inverse translation

6: Output xalign
7: end procedure

Thus, x̃ and x̃∗ have the same magnitude, which translates over to xalign and x∗. However,

this leads to big alignment errors δ̃∗ (and δ∗ in the domain §∗, respectively) when the pixel

correspondences are not reliable, e.g. on the border between two materials. It is shown in

Section 5.4.1 that Step 4 in Algorithm 2 produces the minimal alignment error.

An important fact is the existence of the inverse transformation. As discussed in Chapter

3 many FT methods have do deal with an ill-posed problem if they want to calculate an

alignment in one of the original domains. Otherwise, physical interpretation of the results is

generally not possible as the data sets are aligned in a high-dimensional space. There exist

methods for regression or to check for the existence of the pre-image [69, 132]. However,

most approaches are problem and data dependent and can not be generalized. Due to the

constant dimensionality of domains and the performed vector calculus, this is not an issue

with NFNalign. This directly translates to the property of error propagation, which is dis-

cussed in Section 5.4.1.

The NFNalign algorithm requires some form of correspondence between x and x∗. A pixel-

by-pixel mapping, e.g., concerning co-registration, would be ideal. However, perfect geo-

referencing or co-registration cannot always be guaranteed. Also, the aspect angle of data

acquisition can lead to samples in previously occluded areas for which no match exists.

Section 5.3 is dedicated to give practical tools for establishing these correspondences.
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5.3 Pixel Correspondence Calculation

The goal of NFNalign is to transform two or more data sets to a common domain C and

invert the transformation of a chosen reference data set X∗ ⊆ X ∗ to transform all other

data sets from C to X ∗. Since each sample of every data set is transformed individually,

the inverse transformation for each sample needs to be properly assigned individually. This

procedure is done using pixel correspondences that establish a relationship for each sample

of the test data to one or more samples of the reference data X∗. This requirement can be

treated as an extra step in the data alignment process and can be identified with the process

of minimizing the distances between point clouds via optimization.

In this section, two practical approaches to calculating pixel correspondences are discussed.

The first approach relies on geographic information and can be used to align multiple data

sets of the same area. The second approach is designed to also work on spatially disjoint

data sets by exploiting the spectral similarities in the common domain C. Even for data sets

of the same region, this approach can be better, e.g., scenes recorded months apart showing

substantial changes in construction or the phenological cycle.

5.3.1 Geographic Pixel Correspondence

Using the geographic information to construct the pixel correspondences is best applicable

to data sets recorded throughout several days in the same location. Geographic correspon-

dences exploit the fact that usually, large areas of a scene remain static throughout the day.

Only cars and other moving objects contribute to changes, which constitute only a small

fraction of the pixels. Ideally, the goal for geographic pixel correspondences is to use the

pixel coordinates in each data set directly. In the following, this is referred to as pixel-by-

pixel correspondence as corresponding samples have the same pixel location in both data

sets.

Geographic information is generally recorded simultaneously to other sensor data for air-
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and spaceborne imaging as it is required for georeferencing. For hyperspectral push-broom

sensors, a commercial Global Positioning System (GPS) / Inertial Navigation System (INS)

solution is installed next to the sensors. It consists of a GPS antenna, a data logging com-

puter, and an Inertial Measurement Unit (IMU) to compensate for the roll, pitch, and yaw

movement of the sensor during the flight. This additional hardware is required to attribute

the correct GPS coordinates to every pixel. The accuracy of this so-called georeferencing

process is important, especially when multiple data sets are evaluated together. Several

factors can influence the accuracy.

1. GPS accuracy depends on the number of satellites, atmospheric conditions, and receiver

design [85, 38]. It can be improved by using dual-frequency receivers [91], a second

antenna or nearby GPS base stations for differential GPS measurements [88], and

during post-processing [87].

2. It is important to accurately measure the alignment of the IMU regarding boresight

parameters and lever arms [75] during data acquisition. These parameters can be

optimized in post-processing. Boresight correction denotes the correction of angular

misalignments and displacement between the GPS antenna, the IMU, and the principal

points of each sensor. Especially the angular alignment is critical to the accuracy. Even

misalignments ≥ 0.7 mrad can result in huge displacements on the ground as the error

scales linearly with the altitude.

3. Also, the stability, drift, and noise of the IMU influence the accuracy.

In practice, when post-processing of GPS / INS data and boresight correction are optimized,

it is possible to perform direct georeferencing with an absolute accuracy of approximately

one pixel [75]. Small deviations from the optimal parameters can lead to big errors in georef-

erencing [53]. This effect is not immediately apparent when only analyzing a single image.

With multiple images of the same region, these errors can be observed by superposition and

comparison of linear structures like roads or buildings.

It is also important to note, that georeferencing uses the GPS / INS information together
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with a sensor model to assign geographical coordinates to each pixel in an image. The image

is projected onto the reference ellipsoid defined by the World Geodetic System from 1984

(WGS 84). For regions with significant height differences, the use of a DEM is required to

minimize projection errors.

One example of errors in the initial georeferencing is given in Figure 5.1(a) where a mosaic of

RGB color composites from hyperspectral data is shown. The geographical alignment errors

between the data sets are visible across tile borders.

If the georeferencing accuracy is insufficient for directly generating a pixel-by-pixel corre-

spondence, it is possible to use image warping techniques to improve the alignment. The

underlying problem can be treated as a mapping between two coordinate systems. Gener-

ally, a suitable geometric transformation is calculated to correctly modeling this mapping.

Depending on the application and the alignment strategy, the commonly used approaches

use affine [54, 36] or projective (homography, [39, 114]) transformations. In the next step,

an objective function that measures the displacement concerning pixel- or feature-based

techniques is constructed [96]. This objective function is then optimized for the optimal

transformation parameters.

The practical approach that generated the best results for the experiments in this thesis

was the optimization of an objective function based on the Enhanced Correlation Coefficient

(ECC) maximization [29]. It is important to note, that this approach is invariant to contrast

and brightness changes in the scene. This means ECC is robust to the effects NFNalign aims

to correct. If this were not the case, the results of ECC would vary with the different con-

ditions during data acquisition and ultimately interfere with the spectral alignment as well.

Also, while the function for parameter optimization of the ECC algorithm is nonlinear, the

iterative scheme to solve the optimization problem is linear and can be calculated quickly. 1

Figure 5.1 shows the improvement in co-registration accuracy between direct georeferencing

(using only the raw GPS / INS data) and georeferencing with post-processed GPS / INS,

and boresight correction followed by ECC maximization.

1The MATLAB code for ECC maximization is available on https://de.mathworks.com/

matlabcentral/fileexchange/27253-ecc-image-alignment-algorithm--image-registration-.

https://de.mathworks.com/matlabcentral/fileexchange/27253-ecc-image-alignment-algorithm--image-registration-
https://de.mathworks.com/matlabcentral/fileexchange/27253-ecc-image-alignment-algorithm--image-registration-
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(a) Mosaic of georeferencing from raw GPS
/ INS data

(b) Mosaic of georeferencing after GPS
/ INS post-processing, borsight correction
and ECC maximization

Figure 5.1: Mosaic with RGB composites of three different data sets from the Greding
measurement campaign. Comparison between georeferencing without optimization of GPS
/ INS data and corrected data after ECC maximization warping. The success of warping
can be seen by the perfect alignment of objects across tile borders.

The accuracy is sufficient to directly use the spatial pixel locations as correspondences for a

pixel-by-pixel mapping. It has to be noted, however, that it is not possible to correct effects

that result from different viewing angles like occlusions. One example is the visibility of

building facades in one image due to an oblique viewing angle, while they are not visible in

nadir view in the other images.

5.3.2 Pixel Correspondence by Spectral Similarity

Spatial correspondences may not always be possible. Either the time between data acquisi-

tion was so long that significant phenological or structural changes would negatively impact

the result or the data sets were recorded in entirely different regions. However, it is impor-

tant for NFNalign that all data sets share the same classes. Otherwise, it is not possible to

create a common basis in C that both data sets can be aligned to with NFN.
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During NFNalign both data sets are aligned to the same basis B in the common domain

C. At this point in the alignment process, the two data sets are already similar regarding

spectral similarity, but the range may be different. Radiance data, for example, is normally

saved as 14-bit integers, which results in values ∈ [1, 16383] per band, while reflectance data

∈ [0, 1] is usually multiplied by 10000 and converted to integer values to reduce storage space.

Thus, Step 4 of Algorithm 2 is executed to adjust the individual sample norm according to

the pixel correspondences.

The spectral alignment in C is exploited to calculate a suitable match between samples of

different data sets when a pixel-by-pixel mapping is not possible, e.g., geographical coordi-

nates are not available, or the depicted regions of both data sets do not overlap. The angle

between two samples (see Equation (5.8)) of different data sets is a good indicator of spectral

similarity. This measure is invariant to the magnitude of the individual samples.

To establish pixel correspondences for the whole data set X̃ ⊆ C the first step is to calculate

the angle α between all individual samples of X̃ and all samples in X̃∗. Subsequently, the

minimal angle α∗ (i.e., the maximum of cos(α)) between a sample x̃ ∈ X̃ and the samples

in X̃∗ determines the correspondence.

It can be shown that NFNalign with this correspondence produces the smallest alignment er-

ror. For this, let δ̃∗ be the distance between x̃temp and x̃∗ and α∗ the corresponding smallest

angle. Assuming there exists a sample x̃† for which α† > α while simultaneously δ̃† < δ̃∗ is a

contradiction to the laws of sine, provided that α∗ ∈ [0, π/2]. The last statement is usually

not problematic as the goal is to find the smallest angle and hyperspectral data are usually

represented by positive values, resulting in all spectra being located in the first quadrant

X ∈ Rd
+.

However, there are some things to consider with this approach. One is the re-scaling in Step

4 from Algorithm 2. Since the SNR changes with illumination, it is possible that the maximal

spectral similarity occurs between a x̃ with a small magnitude and x̃∗ with a high magni-

tude. The re-scaling then results in a large alignment error. This predominantly happens

when data from different domains are aligned, e.g., alignment of radiance to reflectance data,
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as they operate on different ranges. This is also the reason why other similarity metrics,

e.g., based on Euclidean distance are not viable. Another problem is related to neighboring

samples corresponding to pixels with different illumination resulting in an unnatural inho-

mogeneous brightness distribution after NFNalign. This can be rectified using spatial filters

on the aligned data Xalign to correct abrupt jumps in magnitude between similar signatures

spatially close to each other.

Also, computing the spectral angle between all samples of X̃ and X̃∗ requires nn∗ individual

operations and can in practice be too time-consuming for average to large data sets. In this

case, a reduction of the samples in X̃∗ will speed up the process. Possible approaches are

a systematic or random selection of a set percentage of samples. More complicated tech-

niques based on clustering or segmentation can also reduce the samples to a smaller but still

representative subset [61, 138].

5.4 Properties of NFNalign

This section shows the relationship between the sample differences in the common and the

reference domain. The propagation of the alignment error before and after Step 5 of Algo-

rithm 2 is discussed in Section 5.4.1. Section 5.4.2 discusses the computational complexity

of NFNalign together with the different approaches to establish pixel correspondences.

5.4.1 Calculating the alignment error

In this section, the performance of Step 4 in Algorithm 2 to minimize the alignment error

via re-scaling of the transformed sample x̃ is discussed.

It is shown that the alignment error is non-increasing under this algorithm and that the

calculated scaling factor λ∗ is optimal with respect to the length of x̃. Additionally, it is

shown that the final alignment error δ̃∗ = ‖λ∗x̃− x̃∗‖2 in the common domain C is identical

to the alignment error δ∗ in the original reference domain X ∗.

The scaling factor λ∗ minimizes the distance between the sample x̃ and the reference x̃∗ in
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Figure 5.2: Vector presentation of two corresponding samples in their 2D projective plane.
This graph illustrates the minimization of the optimal alignment error δ∗ through re-scaling
of x̃.

the least squares sense. The possible transformations are limited to a single scalar re-scaling

of the vector x̃. This is done to preserve the spectral features of x̃.

To calculate the error progression during NFNalign, consider two corresponding samples

x ∈ X, x∗ ∈ X∗. The transformed samples x̃ and x̃∗ in the common space C are calculated

to the same basis B with Algorithm 1. Without loss of generality, the problem can be

reduced to a 2D projection of the high-dimensional space. Thus, the following calculations

are carried out in the 2-dimensional plane spanned by the vectors x̃ and x̃∗. This does not

affect the angle between the samples. The re-scaling only adjusts the length of the sample

vector x̃, but not the direction.

To find the scaling λ∗ ∈ R of x̃ that minimizes the distance δ̃∗ in the least squares sense,

the following optimization problem is considered.

arg min
λ>0

‖λx̃− x̃∗‖2 (5.7)
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For the optimal scaling factor λ∗ the angle γ in Figure 5.2 is π/2.

With this, the first step is to calculate the angle α by

α = arccos

(
x̃T x̃∗

‖x̃‖2 ‖x̃
∗‖2

)
. (5.8)

This results in

λ∗ = α
‖x̃∗‖2
‖x̃‖2

. (5.9)

The minimal distance δ̃∗ between x̃∗ and x̃temp = λ∗x̃ is then

δ̃∗ = ‖λ∗x̃− x̃∗‖2 . (5.10)

The propagation of the alignment error during the inverse transformation can then be

calculated by applying the inverse transformation originally performed on x∗ to x̃temp. Then,

xalign is calculated by

xalign = x̃temp −
p∑
j=1

c̃∗j d̃
∗
j , (5.11)

where c̃∗j and d̃
∗
j are the translation vectors and coefficients for transforming x∗ to x̃∗ (see

Step 5 of Algorithm 2).

To calculate the alignment error in the reference domain X ∗ consider the following

δ∗ = ‖x̃temp − x̃∗‖2 (5.12)

=

∥∥∥∥∥x̃temp −
(
x∗ +

p∑
j=1

c̃∗j d̃
∗
j

)∥∥∥∥∥
2

(5.13)

=

∥∥∥∥∥
(
x̃temp −

p∑
j=1

c̃∗j d̃
∗
j

)
− x∗

∥∥∥∥∥
2

(5.14)

= ‖xalign − x∗‖2 (5.15)

The inversion from x̃temp → X ∗ is a concatenation of vector additions. It employs the same
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translation vectors that were used to calculate x̃∗ from x∗. Together with the changed sign

of the translation this simply results in a parallel shift with inverted direction, thus, the

alignment error δ̃∗ is invariant under this transformation and is carried over to X ∗.

The relationship between the original error δ̃ = ‖x̃− x̃∗‖2 and the minimized error δ̃∗ is

given by

cos(β) =
δ̃∗

δ̃
⇒ δ̃∗ = cos(β)δ̃ (5.16)

Since γ = π/2, it automatically follows that β ∈ [0, π/2]. This translates to cos(β2) ∈ [0, 1],

and thus δ̃∗ ≤ δ̃.

This means in conclusion that the alignment error is non-increasing with the proposed re-

scaling and is carried over from the common domain C to the reference domain X ∗.

5.4.2 Computational Complexity of NFNalign

NFNalign is mainly composed of two or more individual NFN calculations. Each individual

transformation can be calculated in O(ndlk) (see 4.4.3). When assuming only two data sets

with the same number of samples, the number of operations for the initial transformation

can simply be doubled. The re-scaling of the test sample x∗ with Step 4 of Algorithm 2

is required. This can be done in O(d) and does not change the asymptotic complexity of

O(ndlk). This also holds for the inverse translation, as it is only in O(Nd).

Additional operations are required to calculate the pixel correspondences. Depending on the

kind of correspondence, spatial or spectral, the computational complexity changes.

Using the ECC algorithm to spatially align two data sets of the same location with the

same number of pixels n additionally depends on the number of parameters q for the desired

transformation, e.g., q = 2 for translation, q = 6 for an affine transformation and q = 8

parameters for a homography. The MATLAB code from Section 5.3.1 can then be computed

in O(qn2) per iteration. Restricting the procedure to specific classes of parametric models

can reduce the computational complexity to O(qn) per iteration.
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The practical runtime test for ECC alignment of two data sets with n = 670∗606 samples was

performed on an office computer with Intel Core i7-6700, 32 GB RAM, and NVIDIA Quadro

K1200. After 20 iterations the results were good enough for pixel-by-pixel correspondence.

The calculation was completed in ∼ 50 seconds.

Calculating the pixel correspondences via spectral similarity is performed by computing

the spectral angle between one sample and an image with n samples. This requires O(nd)

operations according to Equation (5.8). To find all the spectral correspondences between

two images of n samples each increases this to O(n2d).

In practice, this is very time-consuming. An approach to reduce this calculation is to only

compute the spectral similarities between the test data X̃ and a subset of the reference

data X̃∗ in the common domain C. A systematic or random selection of a set percentage

of samples, segmentation [61] or active learning [138] can reduce the reference samples to a

suitable subset.

Per definition, the transformed training samples L̃∗ can be ignored, as they are identical in

C up to the norm.

Overall, NFN can be implemented as a very fast and computationally efficient way for MA.

ECC maximization for co-registration is only required once per data set (reference excluded)

making subsequent optimization of different parameter combinations for t and k even faster.

This is not true for correspondences based on spectral similarity, as parameter variations

can affect spectral similarities.
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Chapter 6

Experiments

In this chapter, the performance of the proposed NFN algorithm (see Chapter 4) and NF-

Nalign algorithm (see Chapter 5) is evaluated. This is done by applying the NFN to com-

monly used hyperspectral benchmark data and comparing classification results with and

without the transformation. Additionally, specific data sets were prepared to show the ca-

pability of NFNalign for MA and transfer learning. NFNalign is also tested for transfer

learning in a multimodal setting. The algorithms robustness and their sensitivity towards

the amount of training data and parameter variations are tested.

The chapter is structured as follows. In Section 6.1 the data sets used for the evaluation are

introduced. Section 6.2 explains the training data selection and evaluation metrics for the

following sections. Section 6.3 contains the experiments analyzing the mitigation of nonlinear

effects by a single application of the NFN algorithm. Consequently, section 6.4 deals with

the evaluation of NFNalign for data alignment and FT, including multimodal alignment.

6.1 Data Sets

In this section, the data sets used for evaluation are introduced. The focus lies on the new

benchmark for data alignment and FT in Subsection 6.1.1. It was specifically created for
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Table 6.1: Quick reference guide with important parameters of all used data sets and their
use in different experiments.

Greding1-3
rad/ refl

Zurich’02
Zurich’06

Montelly
Prilly

Pavia
Pavia University

KSC

Size in pixel 670× 606
(each)

329× 347
(each)

1064× 1248
1040× 1032

1096× 715
610× 340

512× 614

# bands 127 4 8 102
103

176

Labeled
pixel

127688
104273
105655

13240
(each)

727534
596975

148142
42776

927

# classes 6 8 6 9 13
Alignment
method

spatial spatial spectral no no

Multi-modal
alignment

yes no no no no

this thesis and was approved for sharing with the scientific community1. The data sets used

for the evaluation of the NFN algorithm are common benchmark data sets for classification.

They are introduced in Subsection 6.1.3. Additional multitemporal and multilocal data,

which are used in the data alignment experiment with NFNalign are also introduced here.

These data sets are currently not openly available. They were acquired through Professor

Devis Tuia of the University of the Wageningen University, Netherlands.

Table 6.1 gives a summary of the most important parameters of all used data sets as well as

their applicability for each algorithm. All data sets are at least analyzed for mitigation of

nonlinear effects with NFN. A full list of parameters including images, ground truth masks,

and label information for each data set can be found in Appendix A.

1To get a copy of the data set; please contact the author of this thesis at wolfgang.gross@iosb.fraunhofer.de
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6.1.1 New Feature Transfer Benchmark Data Set

Evaluation of MA and FT is difficult due to a lack of suitable benchmark data. Ideally,

such a benchmark data set consists of multiple images recorded at different times over the

same region. It should contain the same classes, but with natural variations, e.g., caused by

varying illumination, viewing angles and object geometry. Another interesting aspect that

results in an enormous challenge to MA procedures is data sets from different sensors or

at different levels in the data pre-processing chain. Unfortunately, commonly used hyper-

spectral benchmark data sets usually consist of a single image with a corresponding ground

truth mask of labeled areas. As these data sets can still be useful to evaluate the mitigation

of nonlinear effects of the proposed NFN transformation, they are introduced in subsection

6.1.3.

Here, the focus is on creating a suitable benchmark data set to evaluate MA and FT with

NFNalign. For this, three images from a measurement campaign conducted in 2014 over the

village of Greding, Germany, were selected [46, 47]. The Greding data was recorded with an

aisaEAGLE II hyperspectral sensor. The sensor covers the wavelength range of 390 − 990

nm with up to 488 bands. With an altitude of approximately 770 m above ground, a frame

rate of 60 Hz was necessary to create square pixels with a ground resolution of 0.5×0.5 m. It

is possible to perform hardware-based spectral binning to allow high frame rates. Thus, the

data was only recorded with 127 bands, where each band is an average of up to 4 neighboring

bands. The binning has the added benefit of effectively increasing the SNR by a factor of 2

for bands comprised of 4 neighboring detector elements in the spectral direction.

The selected images all depict approximately the same rural area, consisting mostly of single-

family homes, single-lane roads, meadows, trees, and some agricultural fields. A comparison

of the respective Colored Infrared (CIR) composites calculated from the reflectance data can

be seen in Figure 6.1. All images were cut to 670× 606 pixels to match the Greding1 data

set. Small black areas on the borders of Greding2 and Greding3 data are a result of ECC

image warping, which was done to establish the spatial pixel correspondence (see Section

5.3.1,[29]). The areas without spectral signatures are ignored in the evaluation process.
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The data sets were extracted from longer flight lines and radiometrically and geometrically

preprocessed. Radiometric preprocessing included dark current removal and sensor-specific

correction using calibration data from the manufacturer and their proprietary software Cali-

Geo. This procedure translates the raw digital numbers in the data to at-sensor radiance

values. Subsequently, the atmospheric correction was performed using ATCOR [103] to cal-

culate ground reflectance values for each sample. This process was performed multiple times

with varying parameters until a satisfactory match between corrected samples and ground

measurements of multiple references, e.g., asphalt, bitumen, spectralon, was achieved. The

evaluation was done by comparing single sample spectra in the atmospherically corrected

data to reflectance spectra from an ASD FieldSpec4 [26], that were recorded during this

campaign. Since atmospheric correction is performed for the whole data set, local effects

like cloud shadows and nonlinearities due to object geometry are not corrected.

Spatial co-registration between all data sets was achieved through georeferencing. For this,

GPS / INS information was used to project the data to a simultaneously recorded LiDAR

DEM. Boresight correction [75] followed by image-based warping using the ECC algorithm

(see 5.3.1, [29]) lead to almost pixel-perfect co-registration. However, this does not take oc-

clusions due to different viewing angles into account. One example is visible walls of houses

in the Greding1 and Greding3 data, while the Greding2 data was recorded with an almost

perfect nadir view. A mosaic of the co-registered data is depicted in Figure 6.3.

For each image, the ground truth for the six dominant land cover classes, Dark roof (ocher),

Red roof (red), Asphalt (gray), Soil (brown), Grass (green), and Tree (dark green) was man-

ually selected. A comparison of the individual ground truth masks can be seen in Figure

6.2. The ground truth was selected with the following rationale:

1. The same area should be select in all three images, if possible. It can dramatically

reduce the amount of manual work if the co-registration by GPS / INS measurement

and image warping is good enough for pixel-by-pixel correspondence.

2. Selected areas of a single class should encompass all featured spectral variations in the

scene, e.g., grass in direct sunlight and the shade of a tree/building.
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(a) CIR composite of Greding1 re-
flectance data

(b) CIR composite of Greding2
reflectance data

(c) CIR composite of Greding3 re-
flectance data

Figure 6.1: Comparison of the Greding reflectance data set scaled individually for best
visualization. The differences between Greding1 and Greding2 is a small change in viewing
angle and solar position resulting in an alteration in the direction shadows are cast. Greding3
data was recorded with areas affected by cloud shadows.

3. Selected areas should be as large as possible without selecting samples from another

class or background clutter. This point is mentioned to enforce an exhaustive ground

truth map allowing for variable partitioning into training and test areas.

Each image is now available in at-sensor radiance and ground reflectance values, allowing the

evaluation of FT across domains. Reflectance data of Greding1 was chosen as the reference

X∗ for all experiments involving MA due to optimal illumination conditions. Since no spatial

distortion happens during the atmospheric correction, ground truth masks can be used for

either domain. A complete list of data set parameters, including label information for each

class, can be found in Appendix A.

6.1.2 Additional Benchmark for NFNalign

Additional data sets were acquired to supplement the specifically prepared Greding data

and to further demonstrate the usefulness of NFNalign.The following data sets are used in

addition to the Greding data for the evaluation of NFNalign.

1. Zurich’02 and Zurich’06 data [81]: The Zurich’02/’06 data consists of two images
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(a) Ground truth mask for Gred-
ing1

(b) Ground truth mask for Gred-
ing2

(c) Ground truth mask for Gred-
ing3

Figure 6.2: Comparison of Greding ground truth masks. The same areas were selected in all
images.

(a) Mosaic of RGB composites (b) Mosaic of CIR composites (c) Mosaic of ground truth

Figure 6.3: Greding mosaics; ground truth masks. The same areas were selected in all
images.
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recorded by the QuickBird satellite. The first image was recorded in August 2002,

the second in October 2006 over the residential neighborhood of Brüttisellen, Zurich.

The sensor provides only four bands, three in the visible and one in the near infrared.

The data sets are well co-registered so that pixel-by-pixel correspondence can be used

for NFNalign. The spatial resolution of both data sets is 2.6 m. Different acquisition

conditions, e.g., variations in off-nadir angles and seasonal effects of the vegetation

cycle complicate data synthesis and make adaptation necessary according to [121]. A

large number of pixels were labeled into nine classes by accurate photo-interpretation

and manual selection.

2. Prilly/Montelly data [120]: The data set was recorded over the city of Lausanne,

Switzerland, in 2011 and consists of two spatially separate scenes from the neighbor-

hoods of Prilly and Montelly, respectively. The WorldView-2 data was pansharpened

with the Gram-Schmidt method [70] to reach a spatial resolution of 0.6 m. The sen-

sor records eight bands with bandwidths between 40 − 125 nm. Since the original

ground truth information of the Montelly data set consists of 10 classes, only the six

classes common to both data sets are used for evaluation. The spatial offset between

the depicted areas makes the use of pixel-by-pixel correspondences impossible. In this

case, spectral similarities in the common domain C are used to perform NFNalign and

evaluate the success of FT (see Section 5.3.2).

The Zurich and Montelly/Prilly data were courtesy of Devis Tuia from the Wageningen

University, Netherlands. The Zurich and Montelly/Prilly data sets are not commonly used

as classification benchmarks but are a great asset for MA and FT in this thesis. The CIR

images and ground truth are depicted in Figure 6.4 and Figure 6.5.

6.1.3 Common Benchmark Data

There also exist multiple openly available hyperspectral benchmark data sets. They are

generally georeferenced and radiometrically and atmospherically corrected. The chosen data
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(a) CIR composite of
Zurich’02 data set

(b) CIR composite of
Zurich’02 data set with
superimposed mask

(c) CIR composite of
Zurich’06 data set

(d) CIR composite of
Zurich’06 with superim-
posed mask

Figure 6.4: CIR composites of Zurich data from 2002 and 2006, and overlay with respective
ground truth masks.
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(a) CIR composite of Prilly data
set

(b) CIR composite of Prilly data
set with superimposed mask

(c) CIR composite of Montelly
data set

(d) CIR composite of Montelly
with superimposed mask

Figure 6.5: CIR composites of Prilly/Montelly data and overlay with respective ground truth
masks.
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sets come with ground truth masks. Those data sets only consist of a single image with

corresponding ground truth. This means only the performance of the NFN algorithm for

mitigating nonlinear effects can be evaluated. The following data sets are used.

1. Pavia and Pavia University data [100]: The Pavia data set consists of two different

scenes acquired by the ROSIS sensor over Pavia, Italy. The sensor covers the wave-

length range of 430-860 nm with a ground resolution of 1.3 m. The Pavia Center data

consists of 1097 × 715 samples with 102 bands each. The Pavia University data has

610 × 340 samples at 103 bands. Both data sets were previously corrected for pixels

that contained erroneous information. Ground truth of both data sets is partitioned

into nine different classes. Unfortunately, only 4 of the classes are present in both

scenes, which prevents direct data alignment with NFNalign using a pixel correspon-

dence map built from spectral similarity (see 5.3). Also, a shadow class is present in

both images. For the proposed method, these areas would ideally be labeled as one of

the other classes as shadow is one effect NFN can mitigate.

2. Kennedy Space Center (KSC) data [55]: The KSC data was acquired by the NASA

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in 1996. The AVIRIS sensor

collects data from 400− 2500 nm in 224 bands of 10 nm width. The ground resolution

is 18 m due to the high altitude of approximately 20 km. Bands with water absorption

features or low SNR were removed, and 176 bands remained for analysis. The resulting

image is a scene with 512 × 614 pixel. Ground truth was partitioned into 13 classes

by using landcover maps from color infrared photography from the Landsat Thematic

Mapper imagery. [55] states the difficulty of discriminating between the classes due

to spectral similarity for certain vegetation types. Due to the low spatial resolution

mixtures of multiple class spectra among the labeled pixels are possible.

The Pavia and KSC data can be downloaded from http://www.ehu.eus/ccwintco/index.

php/Hyperspectral_Remote_Sensing_Scenes. Together with the Greding, Zurich, and

Montelly/Prilly data, this list of data sets allows comprehensive evaluation of NFN and

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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NFNalign.

6.2 Preparation and Evaluation Metrics

This section is dedicated to the data set and ground truth data preparation. The goal is

to evaluate NFN and NFNalign in a realistic setting. Different strategies for training data

selection are discussed. All commonly used benchmark data sets from Section 6.1.3 are

already corrected for bad bands. All available bands for the Zurich, Montelly/Prilly and

Greding data are used to demonstrate the easy accessibility of NFN.

6.2.1 Training Data Selection

All data sets come with labeled masks containing the ground truth information per image

pixel. In this thesis, two different approaches for dividing the ground truth into disjoint

training and test data sets are compared.

Systematic Sampling: For Systematic Sampling a fixed fraction α of spectra from each

class are selected by searching for the indices of a given class j in the ground truth map.

Assuming Nj pixel are labeled as class j every bα−1c-th entry, beginning with the first, are

selected as training data.

This approach aims to give a uniform distribution of training data over the scene and was

chosen in favor of random training sample selection for its reproducibility. One drawback of

this approach is that test and training samples can be spatially next to each other. Because

similar objects are usually close to each other, this can artificially improve the evaluation, as

the likelihood of neighboring pixels being classified as the same label as the training sample

is very high. This approach is used nonetheless to evaluate the effects of different parameter

variations for k and t. This approach also has the highest likelihood of satisfying Assumption

2, the assumption that the training data contains all possible variations per class, without

manual interaction.
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Cluster Sampling: This approach aims to keep training data spatially separate from the

test data to eliminate correlation and neighborhood effects. However, it is important to

note that without manual interaction Assumption 2 cannot be guaranteed. The algorithm

to divide the ground truth according to Cluster Sampling can be found in [57]. The basic

idea is to perform a k-NN clustering on the ground truth mask while using the spatial

pixel coordinates as additional features. This process ensures that the likelihood of two

neighboring pixels ending up in the same set (either training or test) is higher compared to

two pixels on opposite sides of the scene. The set percentage of training data is enforced by

setting the maximum number of training samples per class. The test samples are simply the

ground truth samples that were not selected to be training samples.

Using Cluster Sampling as it was introduced in [57] produces bad results due to the non-

representative training data selection. It generally violates Assumption 2 from section 4.1 as

it only selects training data from a small area. Without modification, this algorithm covers

only a small amount of the nonlinear effects as hyperspectral data generally suffers from

across-track illumination variation, which interferes with classification and spectral matching

[95]. Thus, selection of training areas from different sides of the data set is mandatory. For

this, the Cluster Sampling algorithm is modified to Rotation Invariant Cluster Sampling

(RICS). The goal of RICS is to select training data near the corners and along the edges of

the data set.

The following adjusted algorithm has to be performed for every class j = 1, . . . , p. The class

index is dropped here to simplify the notation. Let I ∈ Nnx×ny be the ground truth mask of

a scene and τ ∈ N the number of samples of class j. Let s = (sx, sy) be the tuple of spatial

coordinates for all samples with the same class label j. Assuming without loss of generality

that S = (s1, . . . , sτ ) is ordered according to

‖s‖2 =
(√

s2x + s2y

)
(6.1)

in ascending order, it is possible to select the first half of the training data directly. If τ is

the number of samples in S, the training data are the first ατ/4 entries of S as well as the
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last ατ/4 entries. With this, the selected training data clusters are located in the upper left

and the lower right corner of I. The samples in the other two corners can be selected by

simply rotating I by π/2 and repeating the process.

Depending on the spatial class distribution and α the same location may be selected twice,

once before and once after rotation. This effect reduces the effective amount of training

samples as the inclusion of multiple instances of the same sample would skew the k-NN step

of the proposed transformation.

If S is not sorted from the start, resorting and index transfer is required to perform the same

operations.

The corresponding results using the different selection methods are marked by S for Sys-

tematic Sampling and C for Cluster Sampling, respectively. A comparison of training and

test masks for Systematic Sampling and RICS is depicted in Figure 6.6 for an amount of 10

% training spectra per class.

Additional training sets are used to evaluate the robustness of the proposed algorithms.

These are generated by randomly assigning wrong class labels to a specified fraction of

training data. The goal is to evaluate the properties of NFN and NFNalign when the train-

ing data contains outliers. This setup was chosen to simulate errors in the ground truth

selection process. The corresponding results are marked by, e.g., 0.1swap for a 10 % swap

of training data per class. For NFNalign flawless training data is assumed for the reference

data, and only a certain amount of training data in the test images is swapped. This experi-

ment was designed to simulate a well-curated reference data, where labels and training data

were carefully selected, compared to the test data where the labels were quickly produced

to perform FT as quickly as possible for a new data set.

6.2.2 Spectral Angle Mapper

The goal of NFN transformation is to reduce the effect of nonlinearities in the data. This is

done by individually calculating a translation for each sample, that aligns the data set with

a new basis. Each of the basis vectors is related with one class of the data set. The training
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(a) Systematic Sampling of
Greding1 ground truth with 10
% training data

(b) Complementary test data
sampling for Systematic Sam-
pling

(c) RICS of Greding1 ground
truth with 10 % training data

(d) Complementary test data
sampling for RICS

Figure 6.6: Comparison of training and test locations for Systematic Sampling and RICS.
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samples, when chosen directly from the image, are identified with the corresponding basis

vector up to norm. Assuming mostly complete training data with regards to encountered

nonlinear effects, NFN performs data transformation such that individual samples are drawn

more closely towards the basis vector with the closest training data. This means that radial

distance between samples of different classes increases, while simultaneously radial intra-class

distance is reduced. To measure the improvement of radial separability, the SAM classifier is

used [67]. Treating each sample as a vector from the origin to the coordinates of the sample,

the angle α between two samples x, y ∈ Rd is calculated as

α(x,y) = arccos

(
xTy

‖x‖2 ‖y‖2

)
. (6.2)

The SAM classifier computes the index of minimal spectral angle between a test sample x

and the class reference spectra bj for j = 1, . . . , p. This means a sample x belongs to class

j∗, if α(x, b∗j) < α(x, bj)∀j 6= j∗. A smaller angle α represents a closer match between the

sample x and the reference bj.

The denominator of Equation (6.2) makes the result invariant to the length of the vectors,

thus, making the SAM relatively robust against illumination changes [134]. However, it was

shown in [72] that SAM is sensitive to nonlinearities like shadows, changes in viewing angle

and object geometry. This property makes the SAM classifier a perfect fit to evaluate the

mitigation of nonlinearities by NFN. If the theory behind the NFN algorithm is correct,

SAM classification should improve after NFN transformation compared to its application on

the original data.

6.2.3 Support Vector Machine

The SAM classifier can be used to evaluate the property of the NFN algorithm to mitigate

nonlinearities in the data. To evaluate NFNalign, however, a nonlinear classifier is required,

as the algorithm transforms a test data set X into the domain of the reference data X∗. The

transformation from the common domain C to X ∗ introduces the characteristic nonlinearities



114 Preparation and Evaluation Metrics

of X∗ to X.

To evaluate the performance of NFNalign regarding data alignment and FT a nonlinear clas-

sifier trained on the training data L∗ is required. When the data alignment by NFNalign is

successful, classification of the aligned data Xalign should be comparable to the classification

of X with the same classifier trained on the original training data L.

For this task, the SVM classification is selected. The SVM is a binary classifier defined by a

separating hyperplane, also called decision plane [131]. For a given set of training samples,

the algorithm calculates a decision function represented by an optimal hyperplane to cate-

gorize new samples [24]. The decision function is defined by a relatively small set of training

samples; the so-called support vectors, that maximize the margin around the hyperplane.

This problem can be formulated as a quadratic optimization problem for which efficient

solvers exist [23]. For the modeling of nonlinear class structures, SVM can be adapted to

calculate the decision plane in a high-dimensional space using the kernel trick (see Section

3.3.1). The transformation improves classification results even for strong nonlinearities in

the data [141, 119].

The decision whether a sample belongs to class 1 or class 2 is determined by calculating

the dot product between the sample and all support vectors. To adapt SVM for nonlinear

decision boundaries, the dot product can be replaced with an inner product in the form

K(x,x′) = 〈ϕ(x), ϕ(x′)〉V , (6.3)

where x is the test sample, x′ is a support vector, ϕ : X → V the feature map, and V the

high-dimensional space.

The kernel trick can now be used to replace explicit computation of varphi(x) and varphi(x′)

by simply calculating K(x,x′) instead. In this case, explicitly calculating or even knowing

the feature map ϕ is not necessary [28].
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For the experiments in this thesis, the RBF kernel is used, which is based on a Gaussian

function. It is defined as

K((x,x′)) = exp
(
−γ ‖x− x′‖22

)
, (6.4)

where γ = 1/(2σ2) is a free parameter to control the similarity between x and x′. γ is the

inverse of the standard deviation of the RBF kernel. A small γ defines a Gaussian function

with a large variance. In this case two points x and x′ can be considered similar even if they

are far apart from each other. Conversely, for large γ the points x and x′ have to be close to

each other to be considered similar. Finding the optimal parameter γ is usually done with

a grid search.

Since SVM is a binary classifier (p=2) and the data sets in this thesis have more than two

classes, the general approach is to decompose the classification problem with p > 2 into

multiple binary problems [133, 131]. The practical calculation for the experiments uses the

libSVM MATLAB package as a multi-class SVM where each class is in turn separated from

all others (one-against-all classification) with optimized step size selection[15].2

6.2.4 Evaluation metrics

The proposed NFN and NFNalign algorithms are applied to different scenarios (see Sections

6.3 and 6.4). The quality of NFN for mitigating nonlinear effects is measured using the

linear SAM classifier (see Section 6.2.2 and comparing the results before and after NFN

transformation. If the NFN successfully mitigates nonlinear effects, the classification results

are expected to improve on the transformed data.

NFNalign is evaluated by comparing classification results of a nonlinear SVM using an RBF

kernel (see Section 6.2.3) on the aligned data, using only the training data L∗ from the

reference X∗.

To measure the quality of the classification in a single value the Cohen’s Kappa coefficient

2The libSVM package can be downloaded here: https://www.csie.ntu.edu.tw/~cjlin/libsvm/

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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κ is utilized [19]. This coefficient is a statistic to measure inter-rater reliability. It can be

written as

κ =
p0 − pe
1− pe

, (6.5)

where p0 is the relative observed agreement among raters and pe is the probability of acciden-

tal agreement. This measure is more reliable than overall accuracy due to the fact that class

imbalances are incorporated. Example: Consider the following problem with two classes

and a ground truth of

GT =

 98 0

0 2

 (6.6)

and the two different classification results

C1 =

 98 1

0 1

 andC2 =

 97 0

1 2

 . (6.7)

The overall accuracy for C1 is 0.99 %, while κ(C1) ≈ 0.66. For C2 the accuracy is 0.99 %,

while κ(C2) ≈ 0.80. This means that a single mislabeled sample has no influence on the

overall accuracy regardless of representation. For κ, however, it is a big difference if half of

the samples in one class are categorized differently, regardless of the total number of samples

in that class. Some data sets have dominant classes, e.g. Pavia where almost half of the

labeled samples are water. Not differentiating between individual class performances would

skew the results.

Additionally, measuring the spectral match between corresponding samples can also be used

as a lead to determine the quality of NFNalign since it aims at transforming one data set

to the domain of another. For two corresponding samples x and x∗ the RMSE can be

calculated as

RMSE(x,x∗) =

√√√√1

d

d∑
i=1

(xi − x∗i )2. (6.8)

Here, d is again the dimension of the data sets and the xi, x
∗
i are the scalar entries of x and

x∗, respectively.
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For an image X ∈ Rd×n there exist n correspondences with X∗ ∈ Rd×n∗
. To produce a

single value from the n RMSEs the mean value of all corresponding RMSEs is calculated.

For simplicity this value is denoted as τ .

A small τ is a good indicator that an SVM classification trained on the reference training

data L∗ will produce good results, as the space the aligned data Xalign occupies in X ∗ is

close the X∗.

6.3 Evaluation of NFN

This section analyzes the performance of NFN for reducing nonlinear effects. This is done

by comparing the classification results of the linear SAM classifier (see Section 6.2.2) before

and after NFN transformation. Section 6.3.1 shows the capabilities of NFN for mitigating

nonlinearities. Section 6.3.2 discusses the performance for various amounts of training data,

the power t of the penalty function, and the number of NNs k. Additionally, the robustness

of NFN is analyzed in Section 6.3.3 when the training data is contaminated by spectra from

other classes.

6.3.1 NFN for Mitigation of Nonlinear Effects

In this section, NFN transformation is performed on the data sets from 6.1. The Cohen’s

Kappa[32] statistic for SAM classification (see Section 6.2.2) on the original and the NFN

transformed data are compared. This is done to illustrate the classification improvement of

linear SAM on NFN transformed data over the original data. The SAM is a classifier that

measures the similarity between a reference and a test spectrum by calculating the cosine of

the angle between the two d-dimensional vectors. Small angles correspond to high similarity.

The SAM is a linear classifier which makes it vulnerable to nonlinear data structures. To-

gether with the NFN transformation, SAM can be considered a nonlinear classifier, and

direct comparison appears improper at first. However, the goal to show the successful mit-

igation of nonlinearities is best evaluated by comparing the performance of the same linear
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classifier before and after the transformation.

Table 6.2 contains the Cohen’s kappa results for the different data sets. For the Greding

data, only the mean result over all six data sets (three radiance and three reflectance images)

is listed. The reference vector for each class was calculated as the mean value per band of

the corresponding training spectra. 10 % of the labeled spectra per class were selected as

training data; the remaining spectra were used for the evaluation. The parameters were set

to t = 4 and k = 5. Other parameter combinations are discussed in Section 6.3.2 to evaluate

the sensitivity of NFN concerning parameter tuning.

The first column of Table 6.2 shows the performance of SAM on the original data. The

second column lists the SAM results after NFN transformation for Systematic Sampling,

and the third for RICS (see Section 6.2.1).

The classification performed on NFN transformed data is better in all test cases, often with a

difference of more than κ = 0.1. Results derived from training data selected with Systematic

Sampling are the best overall. However, those results have a purely theoretical value. Neigh-

borhood effects and an even distribution of training samples over the whole image artificially

enhance the completeness of the training set. There is no practical way to acquire that form

of ground truth for large areas or even whole campaigns. The results in the third column

of Table 6.2 were calculated using training samples selected with RICS. While the results

are much worse compared to NFN with Systematic Sampling, i.e., KSC, PaviaU, Montelly,

Prilly, and Zurich data, this shows that RICS is not ideal for training data selection. There

are possibly more nonlinear effects in the image, and an automatic selection of training data

along the image borders may not necessarily satisfy Assumption 2 of Section 4.1. Human

interaction, active or guided learning [138] etc. can help to improve the results.

The performance difference in the form of classification images for all three cases are de-

picted in Figure 6.7 for the PaviaU data and in Figure 6.8 for the Zurich’02 data. A detailed

description of the colormap and the corresponding classes for all data sets can be found in

Appendix A.

Overall, these results show that NFN successfully mitigates nonlinearities in the data. The
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Table 6.2: κ statistics of SAM classification on original and NFN transformed data. SAM
results of NFN transformed data are separated into Systematic Sampling and RICS for
training data selection.

κSAM
κSAM−NFN

Systematic Sampling
κSAM−NFN

RICS

KSC 0.340 0.787 0.645
Pavia 0.868 0.970 0.922
PaviaU 0.479 0.824 0.608
Greding 0.871 0.984 0.935
Montelly 0.420 0.664 0.566
Prilly 0.519 0.741 0.657
Zurich’02 0.396 0.775 0.683
Zurich’06 0.360 0.707 0.592

next sections analyze the impact of parameter variations and the robustness when dealing

with flawed training data.

6.3.2 Parameter Optimization

This section is dedicated to analyzing different parameter combinations for the power t of

the penalty function and the number of NNs k. The sensitivity of an algorithm when it

comes to parameter selection and optimization is important for its practical applicability.

NFN was developed for quick mitigation of nonlinearities mostly relying on user-generated

ground truth. The reason for this is that a human analyst can easily decide from context

whether a shadow area is the same class as one of the adjacent classes. The brain is generally

much better at understanding contextual information compared to a computer.

The values t = 1, . . . , 5 and k = [1251020] are tested in all possible combinations for all data

sets from Section 6.1. Since results are stable across all available data, only the results on

the PaviaU and Zurich’02 data are shown by way of example.

Figure 6.9 shows the dependency of the SAM results after NFN transformation based on dif-

ferent parameters. The x-axis gives the number of NNs k. Each curve stands for a different

power t of the penalty function g(δ) = δ−t. Additionally, the SAM result on the original
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(a) SAM classification map of the
original PaviaU data, κ = 0.479

(b) SAM-NFN classification map
of the PaviaU data using System-
atic Sampling for training data se-
lection, κ = 0.824

(c) SAM-NFN classification map of
the PaviaU data using RICS for
training data selection, κ = 0.608

Figure 6.7: Classification maps for SAM, SAM-NFN with Systematic Sampling and SAM-
NFN with RICS. Comparison shows that mitigation of nonlinear effects by NFN transfor-
mation followed by SAM classification is successful.
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(a) SAM classification map of the
original Zurich’02 data, κ = 0.396

(b) SAM-NFN classification map
of the Zurich’02 data using Sys-
tematic Sampling for training data
selection, κ = 0.775

(c) SAM-NFN classification map of
the Zurich’02 data using RICS for
training data selection, κ = 0.683

Figure 6.8: Classification maps for SAM, SAM-NFN with Systematic Sampling and SAM-
NFN with RICS. Comparison shows that mitigation of nonlinear effects by NFN transfor-
mation followed by SAM classification is successful.

data is given as a baseline in green. All individual images show similar behavior. κ increases

with increasing t, however, the improvement for consecutive values of t slowly decreases and

eventually converges. Also, each plot shows similar behavior.

SAM on the original data is only better for the Pavia, Greding and Montelly data sets, and

only for t = 2. For the Pavia data, this can be explained with a large number of water

samples. The samples have a low magnitude and relatively high noise, which causes other

samples with a similar magnitude to be drawn closer. An explanation for the Greding data

are the strong nonlinearities, especially of the ’Tree’ class due to the high spatial resolution.

In the Montelly data set, the number of classes exceeds the number of bands, which causes

false classification among all classes. These effects are all alleviated by larger t as the samples

are drawn comparatively closer to their real classes during NFN transformation. In all other

cases, SAM on NFN transformed data is superior for all parameter combinations.

The optimal number of NNs k, however, depends on the data set and the available ground

truth for training. The variations of κ for a fixed t are especially noticeable for the KSC

data. Here, using more neighbors results in a worse result. Since KSC has only 927 labeled
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samples divided among 13 classes, it is evident that for an amount of 10 % training samples

almost all the selected training data per class is used for every single test sample. This pre-

vents correct sampling of nonlinearities and results in worse results compared to only using

a few neighbors. The Pavia data shows the best result for k = 2. It is a small improvement

over k = 1 due to the added robustness. The classification results decrease for larger k as the

confusion with the dominant water class starts to affect more test samples in the neighbor-

hood selection process. All other data sets have much more labeled samples which results in

better results for larger k. This can be explained by a large number of training samples per

class and their good representation of the underlying nonlinearities. Also, using more than

one training samples for each individual transformation of a sample mitigates the effect of

single mislabeled samples. This effect is analyzed in the next section by using manipulated

ground truth with a certain amount of wrong labels per class.

Figure 6.10 shows the progression of the κ statistic for larger values of t. Geometrically, the

samples are translated to be identical to the nearest reference sample bj up to norm. The

progression indicates that the classification results improve with increasing t. However, phys-

ical interpretability of the resulting spectra after NFN transformation becomes trivial as all

spectra are identified with their closest class while simultaneously all features of the original

spectra are lost in the process. The NFN transformation aims to serve as a nonlinear data

transformation that mitigates unwanted effects. The tuning of t to mitigate nonlinearities

while simultaneously preserving desirable spectral characteristics is an important topic that

requires further research. This includes individual band weights for each sample depending

on its neighborhood. An idea how to mitigate unwanted effects while simultaneously pre-

serving other features is discussed in 7.2.1. The drop off at the end of the Pavia data can

again be explained by the dominant water class. The same effect with a smaller impact is

also observed in the PaviaU and the Greding data due to strong nonlinearities. For all other

results, the monotonous behavior indicates a good selection of training samples that obey

all necessary assumptions. The number of NNs k has the same effect already discussed for

Figure 6.9. When a certain value of k was superior, it also transfers to the test of large t.
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The constant green line stands again for the SAM classification result on the original data.

For k = 1 letting t → ∞ makes NFN default to a NN clustering as the coefficient vector c

(see Equation 4.4) normalizes the largest entry to one while all others approach zero. For

other values of k, the result consequently defaults to a k-NN classification.

Overall, this section shows that the parameter selection process is simple, e.g., an NFN with

t = 4 and k = 5 followed by a SAM classification produced results that are within 95 %

of the optimal result for all data sets. Larger k should only be chosen when the training

samples per class are large as well. For simple classification purposes setting t = 50 makes

sense. However, this eliminates all features other than those of the nearest class in the

transformed spectrum. Since this completely eliminates the purpose of NFNalign t is set to

values between [1, 5] for the data alignment experiments in Section 6.4.

When directly comparing the variation in the results for each data set, we can conclude

that small values for k are better for classification, while higher values can help to mitigate

effects of mislabeled ground truth. Overall, the effects of t for t > 2 are insignificant and

accidentally choosing k bigger than necessary resulted in a decrease of κ by approximately

0.02, compared to the best test result.

6.3.3 Robustness

Until now the ground truth was considered flawless. Since ground truth masks are usually

generated by human operators errors and wrong labels cannot be ruled out. In this section,

varying percentages of the training samples are artificially assigned a false class label to

simulate a rushed ground truth selection. This is done to analyze the impact of errors in the

training data on the NFN transformation.

To calculate the flawed training samples per class the first step is to extract a set amount of

samples per class with the RICS method from the ground truth mask. Then, a set amount

of samples, e.g., 10 % of the training samples per class are selected and assigned a different

class label at random. The other class labels are assumed to be uniformly distributed to not

favor a specific class. After that, the training sets L1, . . . , Lp are adjusted accordingly. All
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(a) KSC parameter eval-
uation for NFN

1 2 5 10 20

k

0.82

0.84

0.86

0.88

0.9

0.92

0.94

t=2

t=3

t=4

t=5

SAM_orig

(b) Pavia parameter
evaluation for NFN
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(c) PaviaU parameter
evaluation for NFN
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(d) Greding parameter
evaluation for NFN
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(e) Montelly parameter
evaluation for NFN
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(f) Prilly parameter eval-
uation for NFN
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(g) Zurich’02 parameter
evaluation for NFN
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(h) Zurich’06 parameter
evaluation for NFN

Figure 6.9: κ statistics for SAM classification on NFN transformed data for different param-
eter combinations.
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(b) Pavia NFN perfor-
mance for t
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(c) PaviaU NFN perfor-
mance for t
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(d) Greding NFN perfor-
mance for t
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(e) Montelly NFN per-
formance for t
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(f) Prilly NFN perfor-
mance for t
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(g) Zurich’02 NFN per-
formance for t
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Figure 6.10: κ statistics for SAM classification on NFN transformed data for large power t
of the penalty function.
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results were calculated using 10 % of labeled samples for training and the remaining 90 %

for the evaluation. Figure 6.11 shows the progression of the κ statistics for variable amounts

of swapped training labels per class. All results were calculated using t = 4. The different

plots are the result of a variable amount of NNs k. The general progression is very similar

between the plots for different k. The monotonically decreasing behavior for an increasing

number of swapped labels is expected. Here, the classification results strongly depend on

the number of NNs k. Using more neighbors can mitigate the influence of a few wrong

labels. Thus, k = 10 or k = 20 generally produce the best results. Only the KSC data

favors smaller values for k. This can be explained by the small number of labeled samples

per class. With only 10 % of the labeled samples for training, few classes have more than

20 training samples. This circumstance leads to the inclusion of wrong neighbors even with

flawless training data as demonstrated in Section 6.3.2. Adding samples from other classes

due to wrong labels further decreases the performance. The results on the Greding data are

very stable even for high percentages of swapped labels. This fact can be attributed to the

large number of available labeled samples per class. The same is true for the Zurich data

to a lesser extent. The small number of d = 8 bands with p = 6 classes is responsible for

the drop-off in the Montelly/Prilly results. The worst progression among the tested data

is exhibited by the Pavia data set. This is again the result of the large number of water

samples that account for almost 50 % of all labeled samples. This leads to large water areas

being classified as another class and consequently in a decrease of κ even for small amounts

of swapped labels.

The green curve in each plot is the result of a SAM classification on the original data. In

contrast to the results in Section 6.3.2, the κ value changes with the variation of the swap

percentage. The reference spectra per class for the SAM classification are calculated from

the mean spectrum of all class labels, including the swapped labels. The results show only

minor changes. Surprisingly, the κ values can even increase with higher swap percentages.

This makes sense when looking at the geometry of the SAM classifier and the assembly of

reference spectra in Rd. The decision boundary of a single class for the SAM classifier is a
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Figure 6.11: κ statistics for SAM classification on NFN transformed data for variable
amounts of swapped training labels.

cone centered around the reference spectrum. With correct training samples, the center of

the cone is defined by the mean value of all samples. With a certain amount of swapped

labels, the reference spectra are drawn closer to each other due to spectra of other classes

skewing the calculation of the mean vector. Depending on the (randomly) assigned wrong

labels per class there exist reference spectra that improve the classification with SAM.

Overall, NFN with SAM classification also works for training data contaminated with wrong

samples. A strong decrease in classification accuracy can only be observed for ≥ 10 %

swapped samples in most cases. Depending on the availability of training samples per class,

a bigger neighborhood, e.g., k ≥ 10, successfully mitigates a translation into the wrong

direction.
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6.4 NFNalign for Data Alignment and Feature Trans-

fer

This section analyzes the performance of NFNalign for data alignment and FT. This is done

by performing NFN for two different data sets, the reference X∗ and the test data to be

aligned X to the same basis B. After the NFN transformation the transformed data sets

X̃∗ and X̃ are aligned in the common domain C. NFNalign then applies the inverse NFN

transformation of X∗ to X̃ to transform it to the original domain of X∗. The individual

transformation for each sample is determined through establishing geographic or spectral

pixel correspondences (see Section 5.3).

Similar to the evaluation of NFN in Section 6.3 the performance of NFNalign for different

parameter variations is discussed. Since NFNalign effectively adds nonlinearities during the

inverse transformation from C to X ∗ an SVM classification (see Section 6.2.3) trained on the

reference training data L∗ is used to evaluate the successful FT. Additionally, the RMSE is

calculated for corresponding samples to measure the quality of the alignment. NFNalign is

also evaluated when the training data L of X contains wrong samples while L∗ is assumed

flawless. This simulates a well-curated reference data and a hastily generated ground truth

for additional test data. Finally, subsampling and interpolation of the Greding data are

done to evaluate the performance of NFNalign for multimodal data alignment, i.e., when the

reference and test data have different dimensionality.

6.4.1 Parameter Optimization

The goal of NFNalign is to transform the data set X from its domain X to the domain X ∗

where physical interpretation and further analysis is possible. Desirable properties of X ∗

can be tied to its corresponding data set X∗. The Greding1 ref data was chosen to be the

reference data set for the whole Grading data set as it is atmospherically corrected to ground

reflectance and has the best illumination conditions, i.e., no haze or cloud shadows. Each of

the Montelly/Prilly and the Zurich images is used in turn as the reference to evaluate the
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FT from their counterpart.

The results are calculated using 10 % of the available ground truth for the reference data set

X∗ (for the NFN transformation and training of the SVM model) and only 1 % of the ground

truth in the test data sets. The training data was determined using the RICS method (see

Section 6.2.1).

The discrepancy between the amounts of training data was chosen to simulate the process of

aligning multiple newly acquired data sets with scarce ground truth to a well-curated refer-

ence, e.g., to compute fast results directly after a new campaign. The evaluation compares

the quality of the data alignment in the form of the RMSE for all corresponding samples

after alignment. The FT is analyzed by applying a multi-class SVM classification trained on

the reference data set to the aligned data.

Table 6.3 contains the RMSE and κ statistics for each data set. It shows the mean RMSE

for all corresponding samples before and after NFNalign was computed. The reflectance

data set Greding1 ref was used as a reference, and the radiance data of the other data sets

were aligned. Since the range is different between the levels of pre-processing, RMSE was

calculated from the atmospherically corrected reflectance data to warrant a fair comparison.

The results indicate a reduction of RMSE by factors between 4-10. An exception is the Mon-

telly/Prilly results. This can be explained by the calculation of the pixel correspondences.

The data sets come from different areas. Thus, correspondences based on geographic location

had to be replaced by spectral similarities in the common domain (see Section 5.3.2). This

results in the minimal possible alignment error after inversion. However, it is not advised to

use this method for data sets where geographical correspondences are possible as comparing

two spectra from the same object can give further information about possible changes in

spectral features between the data sets.

The SVM results are generally slightly worse when the data is classified in the new domain

with its native model. However, the goal was not to improve the classification accuracy,

but to successfully transfer data between domains. SVM is only used to evaluate how well

NFNalign can transfer characteristic features necessary for classification from one domain
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to another, even if the underlying data sets come from different stages in the pre-processing

chain like the Greding data. The reduction in κ can be explained by using a model for

SVM that was calculated on a reference with good illumination conditions. Thus, the cloud

shadow statistics are not well represented in the model. This explains the drop-off for the

Greding3 rad data classification for example. Additionally, this effect is also a sign that some

spectral features are preserved during NFNalign. An idea of how to improve the preservation

of important features is given in Section 7.2.1.

Figure 6.12 shows the progression of NFNalign for different t and k for all tested combina-

tions of data sets. Looking at the ranges of κ reveals that the results are robust in the face

of parameter variations. It makes sense that higher values of t produce better results as the

data set becomes more similar to the reference. However, especially the Zurich’06 data has

the best result for t = 1. When looking at the corresponding RMSE progression in Fig-

ure 6.13(f) the correlation between small RMSE and high κ values can be seen. Regarding

neighborhood size these results are not conclusive, e.g., the Greding data works best using

only a single neighbor, while the Zurich’06 data has the best result for k = 10.

Figure 6.13 shows the RMSE for the same parameter combinations. Compared to the orig-

inal RMSE in Table refTab:NFNalign the variations are insignificant as they are orders of

magnitude lower. For k = 1 the inverse transformation is based on the transformation of the

closest pixel. For k > 1, the inverse transformation is based on the mean distance between x̃

and the k closest samples of X̃∗ in the common space. This distance is by definition greater

or equal to the distance to the closest point. When evaluating the SVM classification using

the reference training data L∗ on the aligned data set Xalign, values for k ≥ 5 generally gave

better results. For bigger k one sample x becomes more similar to multiple other samples

(and not necessarily its assigned correspondence) during the transformation process. How-

ever, larger k reduces the effect of noise and outliers.

The power of the penalty function t, however, is difficult to optimize. Besides the results

given here, it is important to keep in mind that higher t also reduce the individual features

per sample. For t → ∞ the data set X will be identified with the basis B in the common
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domain. The inversion then maps each sample to its correspondence. This leads to higher

κ for larger t simply because the test data set becomes identical to the reference in the

common domain. In this case, all individual characteristic features are lost in the process.

Thus, small t are preferred for preserving characteristic features during NFNalign. If the

result using the SVM trained on the reference is worse, it is a sign that the training data

does not encompass all necessary features.

Overall, the results show that NFNalign successfully performs data alignment and FT. It

allows the use of an already trained SVM model to classify data sets from different (but

related) domains. This is especially impressive when considering the Greding data, where

radiance data were aligned to reflectance data without any additional information about

an underlying physical model, e.g., for atmospheric correction. NFNalign also improves the

RMSE in all test cases. To visualize the initial situation and the results of the NFNalign

calculation Figure 6.14 shows mosaics built from the original Greding1-3 reflectance data in

Figure 6.14(a) and the Greding1 ref data aligned to Greding2-3 rad data in Figure 6.14(b).

The original data depict strong illumination differences on top of the individual effects like

cloud shadows and angular effects. After NFNalign was executed, the borders between the

data sets are only visible in areas where the co-registration is not perfect, e.g., at the border

between the grass and soil area in the bottom left corner. Figure 6.14(c) shows the RMSE

per pixel for the original Greding reflectance data while Figure 6.14(d) shows the results

after NFNalign on the same scale. The biggest errors appear in areas between two classes

and when objects like cars etc. were present in one scene, but not in another.

6.4.2 Robustness

In this section, the robustness of NFNalign is evaluated. Two experiments are performed on

the Greding data set.

Increase of the noise level: To simulate a sensor with a smaller SNR or worse overall

illumination conditions varying degrees of Gaussian white noise are added to the test data

sets before alignment.
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Table 6.3: Comparison of RMSE and SVM classification results. The RMSE is calculated
as the mean RMSE of all corresponding samples. SVMNFNalign is computed using the
SVM model trained exclusively on the training data in the reference domain. NFNalign was
calculated with 10 % available ground truth per class for L∗ and 1 % for L. SVMorig is
computed on the original test data X with the specified amount of training data.

RMSEorig
RMSEalign

10 % L∗, 1% L
κ SVM orig

1 % training Lc
κ SVMNFNalign

10 % L∗, 1% L

Gred-
ing2 rad

273.4 79.2 0.883 0.874

Gred-
ing3 rad

583.6 88.6 0.926 0.793

Montelly 95.1 2.1 0.629 0.647
Prilly 114.2 0.7 0.671 0.654
Zurich’02 139.8 28.1 0.578 0.564
Zurich’06 139.8 37.4 0.572 0.510

Wrong labels: Similar to Section 6.3.3 varying percentages of the training samples in the

test data per class are randomly assigned a different class label.

These experiments again follow the assumption that the reference data represents the ideal

condition and has been extensively preprocessed to reach this status. Thus, only the test

data and its ground truth are degraded.

To evaluate the robustness of NFNalign when the data is compromised by noise the following

model is used for artificially degrading the test data set X. The amount of Gaussian noise

is determined by the standard deviation per band over the whole scene. Each sample x of

the test data is then modified by

xnoise = x+ α

√∑n
i=1(xi − µ)2

n− 1
, (6.9)

where µ ∈ Rd stands for the vector of mean values per band and α = 0.02, 0.04 . . . , 0.2 is

the noise scaling factor. Fig. 6.15 shows the influence of noise in Greding2/3 rad data for

NFNalign.

The original variance in each band is already high as the scene depicts multiple classes
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(a) RGB mosaic of Gred-
ing reflectance data

(b) RGB mosaic of Gred-
ing1 ref and NFNalign
Greding2 rad & Gred-
ing3 rad

(c) RMSE mosaic of
Greding reflectance data,
scaled to RMSE values
∈ [0, 400].

(d) RMSE mosaic of
Greding1 ref and NF-
Nalign Greding2 rad &
Greding3 rad, scaled to
RMSE values ∈ [0, 400].

Figure 6.14: Mosaics of original and NFNalign transformed Greding data allow visual eval-
uation of improvement of illumination and feature adjustment. Most notable errors after
NFNalign transformation can be found in areas between two classes and on moving objects.
Residual errors from cloud correction are not noticeable.
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Figure 6.15: Results after the test data was contaminated by varying degrees of Gaussian
noise. The noise variance was calculated as the standard deviation per band and adjusted
with a factor for different noise levels.
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containing dark materials like Residential and Road, but also bright areas like Meadow

and Residential (red). The RMSE increases and the classification accuracy drops with the

increasing noise level. NFNalign can handle small amounts of noise, but it appears that

for higher noise the training data becomes insufficient. Also, the risk of violating the class

uniqueness assumption from Section 4.1 increases.

The other aspect of this section deals with the difficulties in ground truth data selection.

Generating accurate ground truth can be very time-consuming. Thus, the performance of

NFNalign is evaluated when the training data contains wrong labels similar to Section 6.3.3.

For this, NFNalign is performed using 10 % labeled samples in reference and test data,

a power of t = 4 of the penalty function, and a varying amount of training samples are

randomly swapped to another training set in the test data. The reference ground truth is

again considered flawless.

The results are given in Table 6.4. The experiments were carried out for swap percentages of

1, 2, 5, 10, and 20 percent per class. Larger neighborhoods can mitigate the effect of wrong

labels for the alignment of Greding2 rad almost completely and with only a minor decrease

in κ for Greding3 rad data. This makes sense as on average most of the neighbors belong to

the correct class. A few wrong labels are easier to compensate with a larger neighborhood.

The same holds for the RMSE. The results here don’t show the characteristic drop-off for

higher swap percentages that could be observed for the similar experiment regarding NFN in

Section 6.3.3. This can be explained by the accurate correspondences between the data sets.

This means that the inversion to the reference domain with a sample of the correct label is

sufficient for FT. This emphasizes the requirement of carefully calculated correspondences

and requires further investigation in the future.

6.5 Comparison to other approaches

Comparing transfer learning with NFNalign to other methods is difficult, as neither of the

commonly available codes offers a functioning inversion to the reference domain. For that
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Table 6.4: RMS and κ of SVM classification after NFNalign transformation for variable
amount of swapped training labels per class.

Greding2 rad Greding3 rad
swap
%

RMSE κ SVM RMSE κ SVM

1 94.3 0.858 95.7 0.767
2 98.8 0.856 98.9 0.761
5 92.5 0.854 100.2 0.748
10 87.0 0.846 106.8 0.726
20 90.3 0.841 120.3 0.689
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Figure 6.16: SVM results and RMSE for NFNalign with variable amounts of swapped train-
ing labels.
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reason, it is only possible to compare the performance of different methods in the common

domain. NFNalign is compared to the GFK [42]) algorithm and the KEMA [119]). Addi-

tionally, two other approaches were tested that are not directly related to MA or FT, namely

Histogram Matching (HM) and Individual Pixel Re-scaling (IPR).

These approaches produce good results but have their limitations. Only NFNalign was capa-

ble of transforming radiance to reflectance data while maintaining physical interpretability

of the results.

6.5.1 Histogram Matching

HM between corresponding bands of reference and test data can be used to equalize the

image statistics [99]. The reflectance data is used as the reference to adjust the radiance

statistics. This is performed for each band individually. Mean value and variance of the test

and the reference data are equalized allowing the transfer of the SVM model. This approach

does not differentiate locally, meaning that shadow areas before HM will still be darker than

their surrounding areas after the procedure.

The results for different bin numbers are printed in Table 6.5. Increasing the number of bins

refines the alignment until it converges for the given test case around 10000 bins. Surprisingly,

the RMSE becomes worse after HM is applied. Even for a large number of bins, the original

RMSE of 273.4 for Greding2 ref and 583.6 for Greding3 ref is slightly better than the HM

result. Classification of Greding2-3 ref data using the SVM model of the Greding1 ref data

does not work. After HM the SVM classification results are considerably worse than the

results after applying NFNalign. Overall, HM can be used for FT, but data alignment is not

improved in that process.

6.5.2 Individual Pixel Re-scaling

When two data sets show different effects after correction to reflectance, like the Greding

data including cloud shadows, adjusting the magnitude of individual samples can be done

by multiplying the spectrum with a scalar value. This was done in Section 2.3.2 to mitigate
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Table 6.5: RMSE and κ of SVM classification after performing HM for different number of
bins.

# bins
original 200 500 1000 10000 50000

Greding2 ref
RMSE 273.4 309.7 289.1 285.8 284.7 284.7

κ SVM10% 0.002 0.337 0.662 0.696 0.705 0.704

Greding3 ref
RMSE 583.6 603.4 592.3 590.6 590.1 590.1

κ SVM10% 0.003 0.388 0.592 0.611 0.640 0.640

the effect of shadows. Instead of applying a constant scaling factor to a set number of

samples given by the shadow mask, it is possible to exploit the pixel correspondences to

calculate individual scaling factors for corresponding samples. Two things are important

to remember. First, the linear scaling of radiance to reflectance is not possible due to

atmospheric absorptions. This means the experiment had to be restricted to data from the

same domain. In this case, the Greding reflectance data was used. For other data sets the

assumption that at least a crude pre-processing was performed. The second problem is that

linear re-scaling does not correct nonlinearities. This can lead to re-scaled samples outside

the trained model that can not be classified correctly.

Table 6.6 shows the RMSE and the κ of the SVM classification for IPR and NFNalign.

Compared to the original RMSE the alignment by IPR is better by a factor of≈ 3− 5. The

SVM classification using a model learned on the training data of the reference data set is

very similar to the classification of the NFNaligned data. The results are almost identical

for Greding2 and a little worse for Greding3. This can be explained by the large shadow

area that is not accurately classified in the IPR case due to its nonlinear distribution.

Overall, it is important to remember that IPR had to be calculated on the Greding2-3 ref

reflectance data. This means for IPR to be viable at least a crude pre-processing of all

data sets to the same domain is required. The NFNalign results were calculated by aligning

radiance to reflectance data. This requires only the reference to be from the desired domain.
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Table 6.6: RMSE and κ of SVM classification after IPR of Greding reflectance data and
comparison to NFNalign using radiance data.

RMSE of
IPR

RMSE of
NFNalign

κ SVM10%

of IPR
κ SVM10%

of NFNalign
Greding2 98.0 51.7 0.901 0.920
Greding3 119.9 77.8 0.833 0.875

6.5.3 Geodesic Flow Kernel

The GFK approach for MA uses the kernel trick to align multiple data sets in a high-

dimensional space with explicitly defined dimensionality. It is described in Section 3.3.3 and

more details can be found in [42, 41]. An advantage of GFK is that no pixel correspondences

are required to calculate the alignment. Unfortunately, it is not possible to invert the results

back to the domain of the reference data set. There exists no universally valid framework

for the inversion and applying a simple approach based on the pseudo-inverse of the trans-

formation matrix does not produce results resembling spectral signatures. This is likely due

to the pre-image problem (see Section 3.4, [69, 132]). Therefore, physical interpretation of

spectral features in the common domain is not possible.

The MATLAB code used for this experiment is part of the ’A domain adaptation toolbox’,

which also contains kernel-PCA and other useful methods introduced in Chapter 3.3.

Table 6.7 shows the results of GFK alignment for the Greding2-3 rad data to Greding1 ref

and its comparison to NFNalign. Since the alignment happens in a space of different dimen-

sionality, it is not possible to compare the alignment error in terms of RMSE. The results of

the SVM classification are slightly better than the IPR approach. This is especially valuable

since radiance data was used as test data in the GFK calculation. Although it was mentioned

in [119] that GFK has problems with nonlinear effects, this is not represented in the results

here. However, NFNalign results are still superior regarding κ while simultaneously allowing

the physical interpretation of the aligned samples.

Overall, GFK is useful for classification, especially when no pixel correspondences are avail-

3The toolbox can be downloaded at https://de.mathworks.com/matlabcentral/fileexchange/

56704-a-domain-adaptation-toolbox

https://de.mathworks.com/matlabcentral/fileexchange/56704-a-domain-adaptation-toolbox
https://de.mathworks.com/matlabcentral/fileexchange/56704-a-domain-adaptation-toolbox
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Table 6.7: RMSE and κ of SVM classification after GFK alignment of Greding radiance and
reflectance data, and comparison to NFNalign.

RMSE of
GFK

RMSE of
NFNalign

κ SVM10%

of GFK
κ SVM10%

of NFNalign
Greding2 - 51.7 0.861 0.920
Greding3 - 77.8 0.861 0.875

able, e.g., for data sets of different areas. In this case, NFNalign requires the calculation of

spectral correspondences which can be very time-consuming.

6.5.4 Kernel Manifold Alignment

The KEMA is the extension of the Semi-Supervised MA with a suitable kernel. This method

allows data of different dimensionalities and from different domains to be aligned in a high-

dimensional common space. This approach was shortly introduced in Section 3.3.5, further

information can be found in the corresponding papers [119, 125]. Similar to GFK this

approach does not require pixel correspondences. An advantage over GFK is the automatic

calculation of a suitable dimensionality for the common space and the ability to deal with

strong nonlinearities. Additionally, KEMA can align data from different domains, regardless

of their dimensionality. It also works well even when the data contain strong nonlinearities.4

The inversion from the common domain to the target domain is not included. Following the

approach from the paper to calculate the inverse projection matrix and applying it to the

aligned source data does not yield results that can be physically interpreted. Thus, similar

to the GFK experiment, no valid RMSE can be given.

Table 6.8 shows the results of GFK alignment for the Greding2-3 rad data to Greding1 ref

and its comparison to NFNalign. The SVM classification results are slightly superior to the

results calculated on NFNaligned data. However, no physical interpretation of the aligned

spectra in the common domain is possible, and inversion of the projection did not produce

acceptable results.

4The MATLAB code used for this experiment can be downloaded at https://github.com/dtuia/KEMA.

https://github.com/dtuia/KEMA
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Table 6.8: RMSE and κ of SVM classification after KEMA alignment of Greding radiance
and reflectance data, and comparison to NFNalign.

RMSE of
KEMA

RMSE of
NFNalign

κ SVM10%

of KEMA
κ SVM10%

of NFNalign
Greding2 - 51.7 0.921 0.920
Greding3 - 77.8 0.882 0.875

6.5.5 Multimodal Data Alignment

The capability of KEMA to align data sets of different dimensionalities is a powerful asset

when different sensors are used in conjunction. NFNalign is not inherently capable of han-

dling data sets with different dimensions due to the alignment in the common space of the

same dimensionality. Otherwise, it would have to deal with an ill-posed problem during the

inversion procedure as the other MA approaches from Chapter 3. In this section, the adapt-

ability of NFNalign to data sets of different dimensionality via interpolation is evaluated.

This approach can be applied to data recorded with two sensors that have different param-

eters like spatial and spectral resolution, different SNR, etc. However, this experiment is

limited to simulated spectral subsets calculated via binning of neighboring bands. The Gred-

ing data set was selected for this purpose as the available data sets from different sensors

neither share the same class labels nor recording location.

Greding1 ref is used as the reference X∗ and remains unchanged. Greding2 rad and Gred-

ing3 rad are spectrally binned by a factor of 2, 4, . . . , 30 to compute the test data X. The

first step to perform NFNalign on lower dimensional data X,L is to increase the dimension-

ality reasonably. For this, the test data X and its corresponding training data L are linearly

interpolated. The center wavelengths of X∗ are used as sampling points to generate the test

data X̂ and training data L̂ with the same dimension as X∗. After that, NFNalign is calcu-

lated on X̂ and RMSE, as well as SVM classification results, are computed on the aligned

data. Again, only the reference training data L∗ is used to train the SVM model. RMSE and

κ statistics for the SVM are plotted as a function of the binning factor in Figure 6.17. Both

RMSE and κ follow the expected progression after the initial drop-off in performance going
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Figure 6.17: Spectral binning followed by linear interpolation affects neither RMSE nor κ
significantly for the Greding data.

from the original data to a binning by 2. With increasing binning factor RMSE increases and

κ decreases. However, the absolute difference in classification accuracy between a binning

factor of 2 and 30 is less than 0.02, and for RMSE it is approximately 6.

This result indicates that the alignment of multimodal data is theoretically possible when

NFNalign is combined with linear interpolation. However, it is difficult to estimate the

practical performance on real multimodal data, e.g., recorded by different sensors over the

same area without actual data. A likely situation where this approach will fail is when the

training data of the reference hyperspectral data set contains several very similar classes.

If the dimensionality of the test data is too low to sample the required features inherently,

interpolation will not work to generate them. However, this poses more of a mathematical

limitation than a flaw of the method.
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Chapter 7

Conclusion and Future Work

This thesis has investigated different approaches for data alignment and FT between do-

mains. Researched methods include ML and MA algorithms, reduction of individual non-

linear effects and data pre-processing to convert multiple data sets to a common domain

for evaluation. The main contribution is the NFNalign method. It constitutes a complete

framework for data alignment and FT that uses training data affiliated with different classes

to first align the data sets to a common basis and then invert the translation to the target do-

main using pixel correspondences. The NFNalign algorithm calculates an alignment of data

sets in a domain that allows physical interpretation. The quality of the FT could be shown

by applying SVM classification trained on one data set to another after alignment without

loss of accuracy. This chapter summarizes the contributions of this thesis and suggests future

research topics based on the lessons learned.

7.1 Summary of Contributions

The contributions of this thesis can be divided into two main areas. The NFN algorithm,

introduced in Chapter 4, transforms a data set to a new arbitrary basis and successfully

mitigates nonlinearities in the process. The NFNalign algorithm, discussed in Chapter 5,

combines multiple NFN calculations and its inversion to transform whole data sets from
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their original domain to a target domain.

The NFN is a data-driven approach for mitigating nonlinear effects in hyperspectral data

that only requires some training samples per class in the data set. This algorithm allows the

correction of nonlinear effects including changes in illumination, hard and partial shadows,

and transmission/multiple reflections by objects in the scene as well as anisotropic effects

for 3D objects.

Usually, these effects are dealt with separately by using complex physical models that re-

quire additional information. The transformation is defined by a set of training samples per

class. If the training data represents a good sampling of the high dimensional manifold for

each class, the transformation is invariant to the underlying physical effects leading to the

nonlinear behavior. It has been shown that the new basis defined by one reference vector

per class can be arbitrarily chosen. This approach can be used for dimensionality reduc-

tion by selecting the first p canonical unit vectors or to transform a radiance data set to

reflectance using spectrally subsampled laboratory spectra. The successful mitigation was

shown by comparing SAM classification before and after NFN transformation with a con-

siderable increase in classification accuracy for the transformed data. A major advantage

over the correction of individual effects is the ease of use. Manually selecting small training

areas per class including potential areas with nonlinearities, e.g., slanted roofs, objects in the

shadow of a tree, etc., is enough to produce good results. Only two parameters are required

in the present form, one for the strictness of the penalty function and one for the robust-

ness towards errors in the training data. The experiments have shown that good results are

achieved almost regardless of parameter selection and optimization improves the outcome

only by a few percents. The robustness of the NFN algorithm when the training data is

contaminated with samples from other classes was tested, and even errors of 20 % could be

dealt with by increasing the neighborhood size. Additionally, NFN can be computed very

fast, scales linearly with image size and could even be optimized for the real-time application.

In contrast to other MA approaches no global adjacency matrices are calculated alleviating

the restriction to smaller data sets or specific memory management techniques. It could be
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shown that NFN successfully mitigates nonlinearities for all tested data sets by comparing

the SAM classification results before and after the transformation. While the NFN algorithm

was able to improve linear classification for all tested data sets, it remains to be analyzed if

it also performs well when classes have very similar spectral signatures or classification relies

on distinct features that only constitute to a couple of bands.

The arbitrary basis selection and the mitigation of nonlinearities are the two important

features that have lead to the development of the NFNalign algorithm. The former allows

the transformation of multiple data sets to the same basis in a common domain while the

latter guarantees that the data structure in the common domain is similar up to range for

all data sets, i.e., radiance data in [116383] and reflectance data in [01]. By calculating

correspondences between samples of different data sets, it is possible to directly apply the

inverse translation of a sample in one data set to its correspondence in another data set.

This inversion transforms the samples from the common domain to the original domain of

its correspondence. Practical approaches for calculating the correspondences between co-

registered and between spatially disconnected data sets are discussed in Section 5.3. They

were evaluated successfully on data sets of the same geographic location as well as spatially

disjoint data sets. Since the dimension of the domains is not changed during the transfor-

mation, everything is calculated analytically. In contrast to other MA approaches, this has

the benefit that no ill-posed problem has to be solved for the inversion. Since the dimen-

sionality of the data is not changed by NFNalign, physical interpretability of the aligned

data is possible by using the features from the reference domain. The algorithm was suc-

cessfully applied to data pre-processing by aligning radiance data to a reference reflectance

data set, skipping the model-based atmospheric correction completely. The quality of the

alignment was evaluated by classifying the aligned data with an SVM model learned on

the reference data alone. The results are comparable to classifying the data in their origi-

nal domains, meaning FT was successful. The RMSE before and after the transformation

with NFNalign were compared and show a highly improved conformity between the aligned

data sets. Comparing NFNalign to MA approaches revealed that data alignment in the
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reference domain was not possible without further consideration of the pre-image problem.

Thus, only FT to a common domain could be evaluated. The results were similar to the

results from NFNalign. However, physical interpretability was completely lost. The only

other approach that produced acceptable results was an individual rescaling of the samples

using the correspondences between samples. The results were slightly worse compared to

NFNalign. Finally, the alignment of data sets with different dimensionalities was tested by

linearly interpolating the missing bands from their neighbors. The results show that even

an interpolation from a five-band image to a 127 band image is possible.

7.2 Future Works

Although NFN and NFNalign produce very good results for all tested data sets, there are

still some characteristics that need further research or improvement. The most important

characteristic is the preservation of features during the alignment process. Spectral features

can be specific for a given material, caused by unwanted effects or be a sign of a physical pro-

cess that can be analyzed to gain new insight. Usually, only the unwanted effects should be

removed during the transformation. Another important topic is the training data selection.

Some methods can simplify the selection or at least support the researcher in the process.

Finally, one interesting property of the NFN algorithm is the calculation of the weights for

each individual translation step. This intermediate result can potentially be used to compute

a nonlinear spectral unmixing of the data set.

7.2.1 Specific Feature Preservation

This topic is not discussed in any of the MA papers as the goal is usually to minimize the

alignment error under specific deformations. However, certain effects may not be caused by

unwanted nonlinear effects but rather by natural changes. An example for these changes are

vegetation parameters that can hint at plant stress due to malnutrition or pest infestation.

The preservation of these features is an important topic for precision farming. Losing them
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during the alignment must be prevented.

The results form Chapter 6 indicate that NFN and NFNalign at least reduce the spectral

features to mitigate the nonlinearities or to align the test data to a given reference. However,

finding ways to determine whether a feature is simply caused by nonlinearities or if it could

be useful to preserve during the transformation can boost the usefulness of NFNalign.

Using the Euclidean distance between a sample and the training data per class during the

NFN transformation mitigates the discrepancy evenly for all bands. In theory, while the

nonlinearities in the data are multidimensional, it is generally assumed that they each have

a low-dimensional embedding in the original domain of the data set [125, 123, 119].

A possible approach to feature preservation is to change the penalty function and the trans-

lation of the samples from uniform operations to a band- or feature-dependent operation,

e.g., by customizable band weights. Thus, specific features can be targeted and preserved

during the computation.

A specific known feature can be preserved by simply reducing the translation in the bands

where the feature is present to zero. If this is done, it will affect all other translations as

well, even if that feature is not present. Since it is unlikely that all important features are

known a priori, a less absolute approach is required.

Another idea is to compute the PCA of the training data. By definition, the magnitude

of the eigenvalues determines the encoded variance in that specific direction. These vectors

point in the direction of highest variance as a sample that can be encoded by the eigenvectors

belonging to the largest eigenvalues is collinear to the nonlinear training data. Such a vector

has a high likelihood of containing only redundant information. Thus, little information is

lost during the NFN transformation. If a sample cannot be encoded by the largest eigenvec-

tors, this means that it has at least some components orthogonal to the principal direction

of the variance of the training data. By performing NFN with a too strict penalty function,

this sample would collapse into one of the classes and the orthogonal part would be lost, or

at least severely diminished.

During the transformation, the goal is then to perform the translation only along the di-
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rection of encoded variances while simultaneously suppress the translation in an orthogonal

direction. The exact procedure has to be researched and contains many different com-

ponents, e.g., choosing the correct number of significant eigenvectors, introducing another

penalty function based on the orthogonal distance, etc.

If the feature preservation works for the NFN transformation, it will automatically transition

to the NFNalign algorithm as well. It was already shown in Section 5.4.1 that the inversion

in NFNalign retains the distance (and direction) to the corresponding reference sample in

the common domain after the inversion due to parallel shift.

7.2.2 Active Learning for Training Data Selection

Manual selection of comprehensive ground truth is time-consuming and error-prone. Using

automatic approaches for training data selection can be beneficial. Possible solutions include

segmentation followed by manual refinement or (semi-)supervised learning algorithms [33,

13]. A simple approach is to perform segmentation with a high number of classes. A common

effect is that the same material is assigned different labels based on its location and state

due to nonlinearities, e.g., meadow in the sun and meadow in the shadow of a tree. This

intermediate results can be used to switch from a pixel-based ground truth selection to

a region based selection by identifying multiple labels with a single material. Supervised

Learning approaches can be used to do this iteratively. They have the benefit that they

usually give out a hint about image regions that are not yet represented properly in the

labeled data by comparing the discrepancy between individual regions and a selected model.

Thus, selection of proper training data can be supported.

7.2.3 Spectral Unmixing with NFN

Spectral Unmixing is a technique that assumes all spectra in a hyperspectral data set are

composed of mixtures by pure materials, so-called endmembers. These endmembers are the

components that are mixed following a specific model to build the spectral signatures. For
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most data sets the linear mixture model, which tries to reconstruct the data with linear

combinations of endmembers and corresponding weights, is used [10]. Data sets with strong

nonlinearities, however, require more complex models. One approach is to use multiple

endmembers per pure material to encode the nonlinearities [59]. This is similar to the idea

behind NFN to use training samples per class for the transformation. During the calculation

of the NFN, one step is to determine the distance to the nearest training sample(s) per class.

Normalizing these distances with ‖·‖1 gives a ratio of the distance to the classes. This can

also be understood as material similarity. It is difficult to determine whether this hypothesis

holds as no established benchmark data is available at the moment.

If this theory holds, it can lead to a refined version of the NFN algorithm where the penalty

function is adapted to the abundances, i.e., only transform samples where the number of

significant abundances is high. Small abundances are usually a sign that an endmember

was included to minimize the error function of the unmixing model and large abundances in

more than three endmembers are geometrically unlikely [146].

Similar to the requirements for the NFN transformation gaps in the training data can lead

to errors in the unmixing result. A first test was performed on a data set of mixed rock

and mineral mixtures with known abundances [48]. However, only the pure materials were

available for training, and consequently, abundances between, e.g., the dark basalt and the

bright rhyolite were not representative of the actual mixture coefficients. To alleviate this

problem where the training data does not contain a lot of nonlinear variations principal

curves [27] could be used to model the assumed trend. This is, however, a difficult topic as

the general behavior of different nonlinear effects are not known. Using it to bridge small

gaps might be possible, but completely model the behavior from only a few samples that are

close to each other is ambitious.
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Appendix A

Comprehensive Listing of Data Set

Information

Table A.1: Ground truth information of Greding1 rad and Greding1 ref data

class samples color
Dark roof 21307 ocher
Red roof 2749 red
Asphalt 21386 gray
Soil 23978 brown
Grass 25870 green
Tree 32398 dark green
Total 127688
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Table A.2: Ground truth information of Greding2 rad and Greding2 ref data

class samples color
Dark roof 18421 ocher
Red roof 2193 red
Asphalt 17110 gray
Soil 19841 brown
Grass 21636 green
Tree 25072 dark green
Total 104273

Table A.3: Ground truth information of Greding3 rad and Greding3 ref data

class samples color
Dark roof 18015 ocher
Red roof 2543 red
Asphalt 17008 gray
Soil 20235 brown
Grass 21877 green
Tree 25977 dark green
Total 105655

Table A.4: Ground truth information of Pavia City Center data

class samples color
Water 65971 blue
Tree 7598 dark green
Asphalt 3090 gray
Self-blocking
bricks

2685 ocher

Bitumen 6584 red
Tiles 9248 pink
Shadow 7287 light blue
Meadow 42826 green
Bare soil 2863 brown
Total 148152
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Table A.5: Ground truth information of Pavia University data

class samples color
Asphalt 6631 gray
Meadow 18649 green
Gravel 2099 yellow
Tree 3064 dark green
Painted metal
sheets

1345 pink

Bare soil 5029 brown
Bitumen 1330 red
Self-blocking
bricks

3682 ocher

Shadow 947 light blue
Total 42776

Table A.6: Ground truth information of Kennedy Space Center data

class samples color
Scrub 761 ocher
Willow swamp 243 medium blue
Cabbage palm
hammock

256 green

Cabbage palm /
oak hammock

252 light green

Slash pine 161 dark green
Oak / broadleaf
hammock

229 yellow

Hardwood swamp 105 light blue
Graminoid marsh 431 pink
Spartina marsh 520 medium pink
Cattail marsh 404 light pink
Salt marsh 419 red
Mud flats 503 brown
Water 927 blue
Total 5211
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Table A.7: Ground truth information of Montelly/Prilly data; only classes common to both
images are used.

class Montelly samples Prilly samples color
Residential 38725 29907 ocher
Meadow 47865 148604 green
Tree 177203 116343 darkgreen
Road 104582 141353 gray
Shadow 218189 39404 light blue
Commercial 140970 121364 red
Total 727534 596975

Table A.8: Ground truth information of Zurich’02/Zurich’06 data

class Zurich’02 samples Zurich’06 samples color
Residential 6746 3837 ocher
Commercial 5277 4992 red
Vegetation 13123 7642 green
Harvested
Vegetation

2523 2883 brown

Gravel 3822 1408 light pink
Road 6158 4365 gray
Sand 269 165 yellow
Parking lot 1749 1671 medium pink
Water 1095 1812 blue
Total 40762 28775
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Appendix B

Linearization results with accurate

training data

In this section the classification results of the linear SAM with and without SIMA transfor-

mation to get rid of nonlinear effects are compared. Additionally, linear ACE and nonlinear

SVM results are given. The range for the power of the penalty function was 1, . . . , 5, while

the tested numbers of nearest neighbors were k = [1, 2, 5, 10, 20]. Only the best result in

terms of Cohen’s κ is printed with the corresponding parameter combination for training

percentages pct = [1, 2, 5, 10, 20, 50].

Table B.1: Greding1 rad

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.928 0.744 0.968 0.966
2 5 2 0.921 0.790 0.974 0.966
5 5 2 0.925 0.809 0.983 0.974
10 5 2 0.924 0.820 0.986 0.978
20 5 2 0.925 0.823 0.989 0.981
50 5 2 0.924 0.824 0.994 0.988
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Table B.2: Greding1 refl

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.907 0.803 0.960 0.962
2 5 5 0.903 0.840 0.965 0.963
5 5 5 0.906 0.859 0.973 0.969
10 5 2 0.905 0.868 0.978 0.974
20 5 2 0.905 0.871 0.982 0.977
50 5 2 0.905 0.872 0.986 0.985

Table B.3: Greding2 rad

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.924 0.782 0.976 0.969
2 5 2 0.926 0.814 0.978 0.972
5 5 2 0.922 0.827 0.985 0.978
10 5 2 0.923 0.838 0.988 0.981
20 5 2 0.921 0.840 0.991 0.984
50 5 2 0.922 0.842 0.995 0.990

Table B.4: Greding2 refl

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.912 0.836 0.966 0.963
2 5 2 0.913 0.859 0.963 0.967
5 5 2 0.911 0.881 0.977 0.974
10 5 2 0.911 0.894 0.981 0.977
20 5 2 0.910 0.898 0.985 0.980
50 5 2 0.911 0.899 0.989 0.986
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Table B.5: Greding3 rad

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.893 0.798 0.979 0.966
2 5 1 0.899 0.811 0.981 0.970
5 5 2 0.895 0.826 0.988 0.978
10 5 2 0.895 0.829 0.991 0.981
20 5 2 0.895 0.829 0.994 0.985
50 5 2 0.895 0.831 0.996 0.990

Table B.6: Greding3 refl

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.891 0.787 0.972 0.959
2 5 2 0.896 0.833 0.976 0.965
5 5 2 0.893 0.857 0.982 0.974
10 5 2 0.893 0.864 0.984 0.977
20 5 2 0.892 0.867 0.987 0.981
50 5 2 0.893 0.870 0.991 0.988

Table B.7: Kennedy Space Center

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 1 0.567 0.430 0.675 0.604
2 5 1 0.636 0.520 0.768 0.683
5 5 1 0.591 0.679 0.843 0.760
10 5 2 0.479 0.748 0.871 0.787
20 5 2 0.420 0.798 0.906 0.828
50 5 2 0.376 0.828 0.930 0.827
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Table B.8: Pavia City

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.887 0.800 0.946 0.955
2 5 2 0.877 0.831 0.952 0.961
5 5 2 0.881 0.859 0.965 0.965
10 5 2 0.883 0.875 0.972 0.970
20 5 5 0.882 0.886 0.975 0.973
50 5 5 0.881 0.888 0.981 0.975

Table B.9: Pavia University

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.435 0.318 0.763 0.713
2 5 2 0.475 0.396 0.787 0.776
5 5 2 0.479 0.470 0.831 0.807
10 5 2 0.479 0.510 0.852 0.830
20 5 5 0.478 0.525 0.870 0.845
50 5 2 0.482 0.548 0.885 0.866

Table B.10: Montelly

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 20 0.429 0.459 0.722 0.651
2 5 20 0.418 0.457 0.727 0.654
5 5 20 0.420 0.463 0.736 0.657
10 5 10 0.425 0.467 0.739 0.664
20 5 10 0.424 0.465 0.742 0.669
50 5 5 0.424 0.465 0.746 0.682
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Table B.11: Prilly

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 10 0.581 0.419 0.764 0.711
2 5 10 0.571 0.412 0.769 0.734
5 5 10 0.575 0.413 0.773 0.734
10 5 5 0.574 0.415 0.775 0.741
20 5 5 0.575 0.415 0.777 0.751
50 5 5 0.575 0.415 0.779 0.767

Table B.12: Zurich’02

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.574 0.429 0.687 0.739
2 5 5 0.517 0.437 0.723 0.767
5 5 10 0.526 0.437 0.725 0.773
10 5 5 0.524 0.438 0.730 0.782
20 5 10 0.537 0.432 0.738 0.791
50 5 10 0.534 0.429 0.736 0.798

Table B.13: Zurich’06

pct t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.444 0.405 0.628 0.659
2 5 5 0.470 0.396 0.627 0.679
5 5 5 0.424 0.397 0.649 0.696
10 5 10 0.435 0.405 0.645 0.707
20 5 20 0.433 0.407 0.648 0.711
50 5 20 0.437 0.403 0.650 0.715
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Appendix C

Linearization results with inaccurate

training data

In this section the classification results of the linear SAM with and without SIMA transfor-

mation are compared when the training data contains a percentage of swap = [1, 2, 5, 10, 20]

wrong labels. Additionally, linear ACE and nonlinear SVM results are given. The range for

the power of the penalty function was 1, . . . , 5, while the tested numbers of nearest neigh-

bors were k = [1, 2, 5, 10, 20]. Only the best result in terms of Cohen’s κ is printed with the

corresponding parameter combination for a training percentage of pct = 10.

Table C.1: Greding1 rad

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 5 0.920 0.819 0.984 0.976
2 5 10 0.912 0.819 0.984 0.974
5 5 10 0.893 0.817 0.984 0.974
10 5 20 0.860 0.813 0.983 0.969
20 5 20 0.779 0.801 0.978 0.646
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Table C.2: Greding1 refl

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 5 0.902 0.867 0.978 0.973
2 5 5 0.896 0.868 0.978 0.972
5 5 10 0.881 0.865 0.976 0.971
10 5 20 0.855 0.860 0.974 0.966
20 5 20 0.796 0.850 0.972 0.857

Table C.3: Greding2 rad

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 5 0.917 0.838 0.988 0.979
2 5 5 0.912 0.837 0.987 0.979
5 5 10 0.893 0.836 0.984 0.976
10 5 20 0.863 0.831 0.984 0.973
20 5 20 0.781 0.818 0.981 0.758

Table C.4: Greding2 refl

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 5 0.906 0.893 0.981 0.975
2 5 5 0.901 0.894 0.981 0.975
5 5 10 0.884 0.893 0.981 0.973
10 5 20 0.858 0.888 0.979 0.970
20 5 20 0.788 0.873 0.973 0.910

Table C.5: Greding3 rad

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.891 0.829 0.991 0.981
2 4 5 0.888 0.829 0.991 0.981
5 5 5 0.874 0.826 0.987 0.980
10 5 10 0.851 0.822 0.987 0.978
20 5 20 0.793 0.813 0.984 0.952
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Table C.6: Greding3 refl

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.889 0.863 0.984 0.978
2 3 5 0.884 0.863 0.983 0.978
5 5 5 0.870 0.860 0.982 0.979
10 5 10 0.847 0.856 0.980 0.975
20 5 20 0.797 0.845 0.976 0.970

Table C.7: Kennedy Space Center

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.360 0.745 0.858 0.760
2 5 2 0.356 0.746 0.857 0.756
5 5 2 0.343 0.740 0.849 0.766
10 5 2 0.316 0.733 0.848 0.740
20 5 2 0.265 0.709 0.834 0.714

Table C.8: Pavia City

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 10 0.885 0.875 0.970 0.964
2 5 20 0.886 0.874 0.970 0.964
5 5 10 0.881 0.871 0.968 0.492
10 5 20 0.872 0.862 0.967 0.488
20 5 20 0.837 0.827 0.964 0.480

Table C.9: Pavia University

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 5 0.461 0.510 0.851 0.822
2 5 5 0.455 0.506 0.849 0.823
5 5 10 0.449 0.501 0.846 0.801
10 5 20 0.421 0.495 0.838 0.774
20 5 20 0.384 0.468 0.812 0.755
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Table C.10: Montelly

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 20 0.417 0.468 0.738 0.658
2 5 20 0.420 0.467 0.737 0.648
5 5 20 0.455 0.473 0.736 0.622
10 5 20 0.466 0.477 0.733 0.565
20 5 20 0.504 0.472 0.729 0.415

Table C.11: Prilly

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 10 0.581 0.419 0.764 0.711
2 5 10 0.571 0.412 0.769 0.734
5 5 10 0.575 0.413 0.773 0.734
10 5 5 0.574 0.415 0.775 0.741
20 5 5 0.575 0.415 0.777 0.751
50 5 5 0.575 0.415 0.779 0.767

Table C.12: Zurich’02

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.574 0.429 0.687 0.739
2 5 5 0.517 0.437 0.723 0.767
5 5 10 0.526 0.437 0.725 0.773
10 5 5 0.524 0.438 0.730 0.782
20 5 10 0.537 0.432 0.738 0.791
50 5 10 0.534 0.429 0.736 0.798
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Table C.13: Zurich’06

swap t k κSAM κACE κSVM κSAM−SIMA

1 5 2 0.444 0.405 0.628 0.659
2 5 5 0.470 0.396 0.627 0.679
5 5 5 0.424 0.397 0.649 0.696
10 5 10 0.435 0.405 0.645 0.707
20 5 20 0.433 0.407 0.648 0.711
50 5 20 0.437 0.403 0.650 0.715
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Appendix D

Data alignment

This chapter contains the combined results of all data alignment experiments.

D.1 Greding

The Greding alignment is performed using Greding1 refl data as a reference and aligning

the Greding2 rad and Greding3 rad data using a spatial correspondence map. The results

are given in terms of RMS per pixel and band, and as Cohen’s κ of the SVM classification

of the aligned data sets. The SVM was trained only on the original Greding1 refl training

data. The selection of training data was performed using different sampling techniques.

Systematic sampling selects evenly spaced training samples from the ground truth per class

according to the training percentage. Cluster sampling select spatially close training samples

per class, according to the training percentage. Horizontal sampling selects spatially close

training samples in horizontal direction per class. This is done to include spectral variations

across track.
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Table D.3: Performance evaluation of Greding data alignment with variable amounts of
incorrect training data swap = [1, 2, 5, 10, 20] using systematic sampling. Training data was
set to 10 % per class.

Greding2 rad Greding3 rad
swap t k RMS SVM t k RMS SVM

1 5 10 43.6 0.969 5 5 42.5 0.959
2 5 10 44.1 0.968 5 5 45.9 0.958
5 5 20 45.8 0.965 5 10 49.5 0.956
10 5 20 54.5 0.958 5 20 54.5 0.949
20 5 20 82.3 0.876 5 20 82.3 0.922

Table D.1: Alignment of Greding radiance data to Greding1 refl data using systematic sam-
pling

Greding2 rad Greding3 rad

pct t k RMS SVM t k RMS SVM

1 4 2 50.3 0.951 2 2 48.4 0.944

2 2 5 46.5 0.961 2 2 47.4 0.950

5 4 10 44.5 0.966 4 5 45.3 0.956

10 4 5 42.7 0.969 4 2 45.7 0.959

20 4 5 43.6 0.971 4 5 43.6 0.961

Table D.2: Comparing sampling strategies for alignment of Greding radiance data to Gred-
ing1 refl data using 10 % ground truth data for training per class and data set.

Greding2 rad Greding3 rad

sampling t k RMS SVM t k RMS SVM

system-

atic
4 5 42.7 0.969 4 2 45.7 0.959

cluster 4 20 47.8 0.810 1 1 50.1 0.715

horizon-

tal
4 20 55.2 0.865 4 1 65.8 0.710
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Table D.4: Performance evaluation of Greding data alignment with variable amounts of
incorrect training data swap = [1, 2, 5, 10, 20] using cluster sampling. Training data was set
to 10 % per class.

Greding2 rad Greding3 rad
swap t k RMS SVM t k RMS SVM

1 5 20 47.4 0.809 5 5 54.1 0.679
2 5 20 47.4 0.804 5 2 80.3 0.670
5 5 20 49.0 0.786 5 10 59.9 0.665
10 5 20 61.9 0.761 5 20 61.9 0.641
20 5 20 89.9 0.680 5 20 89.9 0.593

Table D.5: Performance evaluation of Greding data alignment with variable amounts of
incorrect training data swap = [1, 2, 5, 10, 20] using horizontal sampling. Training data was
set to 10 % per class.

Greding2 rad Greding3 rad
swap t k RMS SVM t k RMS SVM

1 4 20 55.3 0.865 5 10 57.7 0.706
2 4 20 55.4 0.864 5 10 57.7 0.705
5 3 20 65.2 0.867 5 20 57.5 0.692
10 5 20 70.6 0.836 5 20 70.6 0.686
20 5 20 100.6 0.702 5 20 100.6 0.617

Table D.6: Performance evaluation of Greding data alignment using 10 % training data
in the reference and pct = [0.5, 1.0, 1.5, 2.0] in the test data set selected with systematic
sampling.

Greding2 rad Greding3 rad
pct t k RMS SVM t k RMS SVM

0.5 4 2 65.1 0.946 4 1 68.2 0.942
1.0 4 2 60.3 0.956 4 2 60.3 0.946
1.5 4 2 47.9 0.957 4 2 47.9 0.950
2.0 4 2 49.1 0.960 4 2 49.1 0.951
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Table D.7: Performance evaluation of Greding data alignment using 10 % training data in the
reference and pct = [0.5, 1.0, 1.5, 2.0] in the test data set selected with horizontal sampling.

Greding2 rad Greding3 rad
pct t k RMS SVM t k RMS SVM

0.5 4 10 64.4 0.847 4 1 70.4 0.602
1.0 3 10 61.1 0.861 4 10 59.7 0.584
1.5 3 10 60.0 0.858 4 1 63.6 0.599
2.0 3 20 60.3 0.861 4 1 63.4 0.603
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D.2 Montelly / Prilly

This section lists the results of the Montelly and Prilly data sets.

Table D.8: Alignment evaluation of Montelly and Prilly data using spectral similarity to
calculate the correspondence map in the common domain. The associated reference data set
is stated in the table.

Montelly Prilly

pct t k RMS SVM t k RMS SVM

1 4 5 186.3 0.539 4 20 135.2 0.548

2 4 20 190.3 0.489 4 10 160.3 0.545

5 4 2 185.2 0.501 3 2 138.1 0.462

10 4 2 190.6 0.509 4 5 138.2 0.570

20 4 2 189.2 0.527 4 20 135.6 0.569



176 Zurich’02 / Zurich’06

D.3 Zurich’02 / Zurich’06

This section lists the results of the Zurich’02 and Zurich’06 data sets.

Table D.9: Alignment evaluation of Zurich’02 and Zurich’06 data. The associated reference
data set is stated in the table.

Zurich’02 Zurich’06

pct t k RMS SVM t k RMS SVM

1 1 5 35.8 0.622 1 10 22.2 0.609

2 1 20 31.4 0.674 1 2 29.1 0.612

5 1 10 39.4 0.664 1 20 26.4 0.623

10 1 20 39.3 0.680 1 10 28.6 0.635

20 1 10 41.7 0.685 1 20 28.8 0.649

Table D.10: Alignment evaluation of Zurich’02 and Zurich’06 data with variable amounts of
incorrect training data swap = [1, 2, 5, 10, 20]. Training data was set to 10 % per class. The
associated reference data set is stated in the table.

Zurich’02 Zurich’06

swap t k RMS SVM t k RMS SVM

1 1 20 38.8 0.679 1 20 27.4 0.633

2 1 5 38.5 0.683 1 20 26.8 0.649

5 1 20 36.0 0.696 1 20 25.6 0.641

10 1 10 30.6 0.699 1 20 22.9 0.636

20 1 10 21.2 0.707 1 20 18.1 0.632
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[47] W. Gross, J. Böhler, K. Twizer, B. Kedem, A. Lenz, M. Kneubuehler, P. Wellig, R. Oechslin,

H. Schilling, S. Rotman, et al. Determination of target detection limits in hyperspectral data



182 Bibliography

using band selection and dimensionality reduction. In Target and Background Signatures II,

volume 9997, page 99970H. International Society for Optics and Photonics, 2016.

[48] W. Gross, S. Borchardt, and W. Middelmann. Evaluation of spectral unmixing using nonneg-

ative matrix factorization on stationary hyperspectral sensor data of specifically prepared rock

and mineral mixtures. In Proc. OCM 2013–Optical Characterization of Materials, volume 1,

pages 169–178, 2013.

[49] W. Gross, N. Espinosa, M. Becker, S. Schreiner, and W. Middelmann. Improving linear

classification using semi-supervised invertible manifold alignment. In IGARSS 2018-2018

IEEE International Geoscience and Remote Sensing Symposium, pages 3551–3554. IEEE,

2018.

[50] W. Gross, G. Keskin, H. Schilling, A. Lenz, and W. Middelmann. Automatic modeling of

nonlinear signal source variations in hyperspectral data. In Geoscience and Remote Sensing

Symposium (IGARSS), 2014 IEEE International, pages 2965–2968. IEEE, 2014.

[51] W. Gross, D. Tuia, U. Soergel, and W. Middelmann. Nonlinear feature normalization for

hyperspectral domain adaptation and mitigation of nonlinear effects. IEEE Transactions on

Geoscience and Remote Sensing, 2019.

[52] W. Gross, S. Wuttke, and W. Middelmann. Transformation of hyperspectral data to improve

classification by mitigating nonlinear effects. In 7th Workshop on Hyperspectral Image and

Signal Processing: Evolution in Remote Sensing, WHISPERS, 2015.

[53] N. Haala, D. Fritsch, D. Stallmann, and M. Cramer. On the performance of digital airborne

pushbroom cameras for photogrammetric data processing-a case study. International Archives

of Photogrammetry and Remote Sensing, 33(B4/1; PART 4):324–331, 2000.

[54] G. D. Hager and P. N. Belhumeur. Efficient region tracking with parametric models of

geometry and illumination. IEEE transactions on pattern analysis and machine intelligence,

20(10):1025–1039, 1998.



Bibliography 183

[55] J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh. Investigation of the random forest frame-

work for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote

Sensing, 43(3):492–501, 2005.

[56] J. Ham, D. D. Lee, and L. K. Saul. Semisupervised alignment of manifolds. In AISTATS,

pages 120–127, 2005.
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[68] F. Kühn, K. Oppermann, and B. Hörig. Hydrocarbon index–an algorithm for hyperspectral

detection of hydrocarbons. International Journal of Remote Sensing, 25(12):2467–2473, 2004.

[69] J.-Y. Kwok and I.-H. Tsang. The pre-image problem in kernel methods. IEEE transactions

on neural networks, 15(6):1517–1525, 2004.

[70] C. A. Laben and B. V. Brower. Process for enhancing the spatial resolution of multispectral

imagery using pan-sharpening, Jan. 4 2000. US Patent 6,011,875.

[71] P. L. Lai and C. Fyfe. Kernel and nonlinear canonical correlation analysis. International

Journal of Neural Systems, 10(05):365–377, 2000.

[72] M. Langhans, S. van der Linden, A. Damm, and P. Hostert. The influence of bidirectional

reflectance in airborne hyperspectral data on spectral angle mapping and linear spectral

mixture analysis. 2007.

[73] K. C. Lawrence, B. Park, W. R. Windham, and C. Mao. Calibration of a pushbroom hyper-

spectral imaging system for agricultural inspection. Transactions of the ASAE, 46(2):513,

2003.

[74] P. Leite, J. M. Teixeira, T. Farias, B. Reis, V. Teichrieb, and J. Kelner. Nearest neighbor

searches on the gpu. International Journal of Parallel Programming, 40(3):313–330, 2012.

[75] A. Lenz, H. Schilling, D. Perpeet, S. Wuttke, W. Gross, and W. Middelmann. Automatic

in-flight boresight calibration considering topography for hyperspectral pushbroom sensors.



Bibliography 185

In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, pages

2981–2984. IEEE, 2014.

[76] Y. Liu, J. Bioucas-Dias, J. Li, and A. Plaza. Hyperspectral cloud shadow removal based

on linear unmixing. In Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE

International, pages 1000–1003. IEEE, 2017.

[77] X. Ma and N. Zabaras. Kernel principal component analysis for stochastic input model

generation. Journal of Computational Physics, 230(19):7311–7331, 2011.

[78] W. Maddern, A. Stewart, C. McManus, B. Upcroft, W. Churchill, and P. Newman. Illumi-

nation invariant imaging: Applications in robust vision-based localisation, mapping and clas-

sification for autonomous vehicles. In Proceedings of the Visual Place Recognition in Chang-

ing Environments Workshop, IEEE International Conference on Robotics and Automation

(ICRA), Hong Kong, China, volume 2, page 3, 2014.

[79] M. Maier, U. V. Luxburg, and M. Hein. Influence of graph construction on graph-based

clustering measures. In Advances in neural information processing systems, pages 1025–1032,

2009.

[80] G. Matasci, D. Tuia, and M. Kanevski. Svm-based boosting of active learning strategies for

efficient domain adaptation. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 5(5):1335–1343, 2012.

[81] G. Matasci, M. Volpi, M. Kanevski, L. Bruzzone, and D. Tuia. Semisupervised transfer

component analysis for domain adaptation in remote sensing image classification. IEEE

Transactions on Geoscience and Remote Sensing, 53(7):3550–3564, 2015.

[82] S. Matteoli, E. J. Ientilucci, and J. P. Kerekes. Operational and performance considera-

tions of radiative-transfer modeling in hyperspectral target detection. IEEE Transactions on

Geoscience and Remote Sensing, 49(4):1343–1355, 2011.

[83] M. W. Matthew, S. M. Adler-Golden, A. Berk, G. Felde, G. P. Anderson, D. Gorodetzky,

S. Paswaters, and M. Shippert. Atmospheric correction of spectral imagery: evaluation of the



186 Bibliography

flaash algorithm with aviris data. In Applied Imagery Pattern Recognition Workshop, 2002.

Proceedings. 31st, pages 157–163. IEEE, 2002.

[84] G. J. Michon. Fixed-pattern noise correction circuitry for solid-state imager, May 31 1994.

US Patent 5,317,407.

[85] P. Misra and P. Enge. Global positioning system: Signals, measurements and performance

second edition. Massachusetts: Ganga-Jamuna Press, 2006.

[86] T. Mori, R. Taketa, S. Hiura, and K. Sato. Photometric linearization by robust pca for shadow

and specular removal. In Computer Vision, Imaging and Computer Graphics. Theory and

Application, pages 211–224. Springer, 2013.

[87] M. Mostafa, J. Hutton, B. Reid, et al. Gps/imu products–the applanix approach. In Pho-

togrammetric Week, volume 1, pages 63–83, 2001.

[88] K. T. Mueller, P. V. Loomis, R. M. Kalafus, and L. Sheynblat. Networked differential gps

system, June 21 1994. US Patent 5,323,322.

[89] H. Murase and S. K. Nayar. Visual learning and recognition of 3-d objects from appearance.

International journal of computer vision, 14(1):5–24, 1995.

[90] O. Mutanga and A. K. Skidmore. Hyperspectral band depth analysis for a better estima-

tion of grass biomass (cenchrus ciliaris) measured under controlled laboratory conditions.

International journal of applied earth observation and geoinformation, 5(2):87–96, 2004.

[91] E. Naesset. Effects of differential single-and dual-frequency gps and glonass observations on

point accuracy under forest canopies. Photogrammetric Engineering and Remote Sensing,

67(9):1021–1026, 2001.

[92] A. A. Nielsen. Multiset canonical correlations analysis and multispectral, truly multitemporal

remote sensing data. IEEE transactions on image processing, 11(3):293–305, 2002.

[93] C. W. O’Dell. Acceleration of multiple-scattering, hyperspectral radiative transfer calcula-

tions via low-streams interpolation. Journal of Geophysical Research: Atmospheres, 115(D10),

2010.



Bibliography 187

[94] F. Omruuzun, D. O. Baskurt, H. Daglayan, and Y. Y. Cetin. Shadow removal from vnir hy-

perspectral remote sensing imagery with endmember signature analysis. In Next-Generation

Spectroscopic Technologies VIII, volume 9482, page 94821F. International Society for Optics

and Photonics, 2015.

[95] M. K. Pal and A. Porwal. Evaluation and modelling across-track illumination variation

in hyperion images using quadratic regression. International Journal of Remote Sensing,

38(23):6790–6815, 2017.

[96] N. Paragios, Y. Chen, and O. D. Faugeras. Handbook of mathematical models in computer

vision. Springer Science & Business Media, 2006.

[97] Y. Pei, F. Huang, F. Shi, and H. Zha. Unsupervised image matching based on manifold

alignment. IEEE transactions on pattern analysis and machine intelligence, 34(8):1658–1664,

2012.

[98] T. Perkins, S. M. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and

M. Fox. Speed and accuracy improvements in flaash atmospheric correction of hyperspectral

imagery. Optical Engineering, 51(11):111707, 2012.

[99] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter

Haar Romeny, J. B. Zimmerman, and K. Zuiderveld. Adaptive histogram equalization and

its variations. Computer vision, graphics, and image processing, 39(3):355–368, 1987.

[100] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls,

J. Chanussot, M. Fauvel, P. Gamba, A. Gaultieri, et al. Advanced processing of hyperspec-

tral images. In Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE

International Conference on, pages 1974–1978. IEEE, 2006.

[101] G. Rabatel, N. Al Makdessi, M. Ecarnot, and P. Roumet. A spectral correction method for

multi-scattering effects in close range hyperspectral imagery of vegetation scenes: application

to nitrogen content assessment in wheat. Advances in Animal Biosciences, 8(2):353–358,

2017.



188 Bibliography

[102] M. Reed and B. Simon. Methods of Modern Mathematical Physics: Functional Analysis.-

1972.-(RU-idnr: M103448034). Academic Press, 1972.
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