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Zusammenfassung
Durch die Modernisierung der Satellitenkonstellationen von GPS und GLONASS sowie die
Inbetriebnahme von Galileo und BeiDou steht zivilen Nutzern eine deutlich erhöhte Anzahl an
Navigationssatelliten mit nutzbaren Signalen auf mehreren Trägerfrequenzen zur Verfügung.
Gleichzeitig steigen die Qualitätsanforderungen an Lokalisierungsalgorithmen, die im Bereich
der Kraftfahrzeugtechnik Verwendung finden, da diese Algorithmen nicht mehr ausschließlich
zu Navigationszwecken eingesetzt werden. Stattdessen kommt ihnen eine tragende Rolle bei
der Entwicklung autonomer Fahrzeuge zu. Diese gestiegenen Anforderungen sind durch GNSS
alleine nicht zu erfüllen, sondern erfordern die Fusion von Daten mehrerer Sensortypen.

In dieser Arbeit werden daher Messgrößen von drei verschiedenen Sensortypen mit Hilfe
eines erweiterten Kalman-Filters miteinander fusioniert. Bei diesen drei Sensortypen handelt
es sich um einen Mehrfrequenz-GNSS-Empfänger, eine inertiale Messeinheit sowie fahrzeug-
eigene Odometriesensoren. Der Schwerpunkt der Arbeit liegt in der optimalen Verarbeitung
von Pseudostrecken, die zu Satelliten unterschiedlicher Konstellationen auf jeweils mehreren
Trägerfrequenzen gemessen werden. In diesem Rahmen werden ionosphärenfreie Linearkom-
binationen eingesetzt, wodurch der größte Fehlereinfluss, der bei der Verwendung von Einfre-
quenzmessungen vorliegt, eliminiert wird. Durch den gleichzeitigen Einsatz verschiedener Sa-
tellitengenerationen und die wechselnden Empfangsbedingungen entsteht hierbei der Bedarf,
zu jeder Messepoche gleichzeitig Pseudostrecken oder deren Linearkombinationen auf mehre-
ren Trägerfrequenzen zu berücksichtigen. Dies setzt eine Kalibrierung der signalabhängigen
differenziellen Codebiase voraus, die bei der Pseudostreckenmessung auftreten. Eine solche
Kalibrierung wird für den verwendeten Mehrfrequenz-GNSS-Empfänger für die GPS-Signale
L1 C/A, L2C und L5 sowie für die Galileo-Signale E1, E5a und E5b durchgeführt, wodurch
die entsprechenden Pseudostrecken und deren Linearkombinationen im Integrationsfilter ein-
setzbar sind. Außerdem wird ein Modell zur quantitativen Beschreibung des Messrauschens
entwickelt und parametriert, was eine optimale Gewichtung der verschiedenen Beobachtungs-
größen ermöglicht. Als weitere GNSS-Messgrößen kommen zeitlich differenzierte Trägerpha-
senmessungen auf GPS L1 C/A und Galileo E1 zum Einsatz.

Die fahrzeugeigenen Odometriesensoren stellen die Drehraten der vier Räder sowie den
Lenkradwinkel zur Verfügung. Aus diesen Größen werden die horizontalen Geschwindigkeits-
vektoren an den Radaufstandspunkten ermittelt, wobei unterschiedliche Reifenmodelle zur
Kompensation von Längsschlupf und Schräglauf verwendet werden. Ein wesentlicher Ent-
wicklungsaspekt ist die Einbeziehung von Korrelationen in die Kovarianzmatrix des Mess-
rauschens. Diese Korrelationen sind in Fahrzeugquerrichtung so stark ausgeprägt, dass die
Quergeschwindigkeiten der vier Räder letztlich zu je einem Messwert pro Achse zusammen-
gefasst werden.

Nachdem die Beobachtungen aus GNSS-Empfänger und Odometriesensorik in dieser Wei-
se vorverarbeitet wurden, werden sie mit den Messgrößen einer MEMS-IMU in enger Kopp-
lung fusioniert. Die Modellierung der IMU-Messfehler zählt nicht zum Kern der Forschung in
dieser Arbeit und erfolgt daher mit konventionellen Modellen.

Zur Qualitätsbeurteilung der vom Lokalisierungsalgorithmus bereitgestellten Fusionslö-
sung werden Metriken aus den Bereichen Genauigkeit und Integrität ausgewählt. Diese Me-
triken werden anhand von Testszenarien, die unterschiedlichste GNSS-Empfangsbedingungen
abdecken, ausgewertet. Die Referenzlösung wird durch die Integration eines RTK-fähigen
GNSS-Empfängers mit einer Ringlaserkreisel-IMU generiert. Hierdurch wird der Nachweis
erbracht, dass die Verwendung von Mehrfrequenzmessungen zu einer deutlichen Genauig-
keitssteigerung bei allen betrachteten Szenarien führt. Bei ungestörtem GNSS-Empfang wird
ein horizontaler Positionsfehler von 0,5m oder besser in 95% der Zeit erreicht.





Abstract
The modernization of the satellite constellations of GPS and GLONASS as well as the com-
missioning of Galileo and BeiDou provide civil users with a significantly increased amount of
navigation satellites broadcasting usable signals on multiple carrier frequencies. Simultane-
ously, the quality requirements for automotive localization algorithms increase, because these
algorithms are no longer used exclusively for navigation. Instead, they play an important
role in the development of autonomous vehicles. These increased requirements cannot be met
with GNSS alone, but necessitate the fusion of data from multiple sensor types.

This thesis describes the fusion of measurements from three different sensor types with
an extended Kalman filter. These three sensor types are a multi-frequency GNSS receiver,
an inertial measurement unit and the vehicle’s built-in odometry sensors. The focus lies
on the optimal processing of pseudoranges obtained from satellites of various constellations
on multiple carrier frequencies. This is achieved by forming ionosphere-free linear combina-
tions, which eliminate the largest error source of single-frequency observations. The current
deployment of different active satellite generations and the varying reception conditions cre-
ate the necessity to process pseudoranges or linear combinations thereof on multiple carrier
frequencies simultaneously in each epoch. This requires the calibration of signal-dependent
differential code biases occurring in pseudorange measurements. A suitable calibration is
performed for the employed multi-frequency GNSS receiver for the GPS signals L1 C/A,
L2C and L5 as well as for the Galileo signals E1, E5a and E5b. This enables the utilization
of the respective pseudoranges and their linear combinations within the integration filter.
In addition, a quantitative model of the measurement noise is developed and parametrized,
permitting the optimal weighting of the different observations. Additional GNSS observables
are time-differenced carrier phase measurements on GPS L1 C/A and Galileo E1.

The vehicle’s built-in odometry sensors provide the rotation rates of the four wheels and
the steering wheel angle. From these quantities, the horizontal velocity vectors at the wheel
contact patches are computed. During this computation, the compensation of longitudinal
and lateral slip is carried out with various tire models. A major development aspect is the
inclusion of correlation into the measurement noise covariance matrix. The magnitude of
these correlations in lateral direction is so large that the lateral velocities of the four wheels
are subsumed into a single observation per axle.

After the observations from GNSS receiver and odometry sensors have been preprocessed
in this way, they are fused with the measurements of a MEMS IMU in a tightly coupled
integration filter. IMU error modeling is not a key aspect of this thesis and is therefore
performed with conventional models.

In order to assess the quality of the integrated solution supplied by the localization al-
gorithm, performance metrics concerning accuracy and integrity are chosen. These metrics
are evaluated with the help of test scenarios covering different GNSS reception conditions.
The reference solution is obtained by integrating data from a ring laser gyroscope IMU and
from a GNSS receiver capable of RTK positioning. The results verify that the utilization of
multi-frequency observations leads to a significant accuracy improvement in all considered
test scenarios. During unobstructed GNSS reception, a horizontal position error of 0.5m or
better is achieved in 95% of epochs.





Contents

Notation v

List of Symbols vii

List of Acronyms xi

List of Figures xvi

List of Tables xviii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and State of the Art 7
2.1 Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Notation for Quantities Within Coordinate Frames . . . . . . . . . . . 7
2.1.2 Earth-Centered Inertial Frame . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Earth-Centered Earth-Fixed Frame . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Body Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Navigation Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 GNSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 GNSS/INS Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 State of Current Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 GNSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 GNSS/INS Integration for Automotive Applications . . . . . . . . . . 22

3 GNSS Preprocessing 25
3.1 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Multi-Constellation GNSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Multi-Frequency GNSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Pseudorange Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Precise Satellite Orbits and Clocks . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Measurement Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Satellite Position and Clock Bias . . . . . . . . . . . . . . . . . . . . . 40
3.6.2 Unmodeled Ionospheric Delay . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.3 Unmodeled Tropospheric Delay . . . . . . . . . . . . . . . . . . . . . . 43
3.6.4 Code Multipath and Code Tracking Noise . . . . . . . . . . . . . . . . 44
3.6.5 Total Pseudorange Error . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.6 Range Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i



Contents

4 Odometry Preprocessing 53
4.1 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Tire Slip Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Linear Tire Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Magic Formula Tire Model . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Side Slip Estimation Based on Gyroscope Measurements . . . . . . . . 61

4.3 Measurement Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Noise Determination for Individual Wheels . . . . . . . . . . . . . . . 63
4.3.2 Correlation in Between the Wheels . . . . . . . . . . . . . . . . . . . . 68

5 Quality Assessment 73
5.1 Performance Metrics for Localization Algorithms . . . . . . . . . . . . . . . . 73

5.1.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.2 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.3 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.5 Control Engineering Metrics for Closed-Loop Systems . . . . . . . . . 76

5.2 Internal Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 External Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Integration Filter 85
6.1 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 System Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Measurement Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.1 Pseudorange Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.2 Range Rate Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.3 Odometry Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.4 Delayed Availability of Measurement Data . . . . . . . . . . . . . . . . 94

6.4 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4.1 Innovation Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4.2 Residual Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Results 99
7.1 Test Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1 Reference Solution Quality . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.2 Improvements Through Multi-Frequency/Multi-Constellation GNSS . 101
7.2.3 Improvements Through Enhanced Odometry Processing . . . . . . . . 106

7.3 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Conclusion and Outlook 121
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

References 130

Own Publications 131

ii



Contents

Appendix 133

A Test Scenario Details 133
A.1 Maps of the Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.2 GNSS Reception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2.1 PDOP and Number of Available Satellites . . . . . . . . . . . . . . . . 138
A.2.2 Code Multipath Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.2.3 Range Rate Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.2.4 Single-Epoch Position Solution Accuracy . . . . . . . . . . . . . . . . 148
A.2.5 Reference Solution Quality . . . . . . . . . . . . . . . . . . . . . . . . 154

B Additional Results 157
B.1 Differential Code Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.2 GNSS Measurement Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B.3 Odometry Measurement Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.4 Test Scenario Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.4.1 Position Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.4.2 Velocity Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.4.3 Yaw Angle Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.4.4 Dynamic Tire Radius Accuracy . . . . . . . . . . . . . . . . . . . . . . 186
B.4.5 Position Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.4.6 Velocity Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.4.7 Yaw Angle Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

C Additional Equations 201
C.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
C.2 Kalman Filter Residual Covariance . . . . . . . . . . . . . . . . . . . . . . . . 202

iii



Contents

iv



Notation

Notation
a a vector
ao a vector a, resolved in the o-frame
aopq vector quantity a of q w. r. t. p, resolved in the o-frame

A a matrix
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A−1 matrix inverse
0 zero matrix
I identity matrix
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a × b cross product
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A B
C D
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ã a measured quantity
â an estimated quantity
δã = ã− ă a measurement error
δâ = â− ă an estimation error
ā arithmetic mean of a
a− an a-priori quantity
a+ an a-posteriori quantity
ac a corrected quantity
ak a quantity a, given at a discrete time epoch k

ȧ,ä,...a time derivatives of a

∂a
∂b

∣∣∣∣
c

partial derivative of a w. r. t. b, evaluated at c
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Chapter 1

Introduction

This thesis details the elements of a localization algorithm that inputs data from global nav-
igation satellite systems (GNSS), an inertial navigation system (INS) and odometry sensors.
New GNSS signals are available to civil users, offering many new possibilities and challenges
regarding their processing. This chapter gives an introduction by first laying out the motives
behind the underlying research and potential application areas in Section 1.1. Afterwards,
the aim of the thesis is presented in Section 1.2. Main aspects of that section are the thesis’
design novelties in comparison to already existing designs and a basic outline of how the
improvements brought forth by these novelties are evaluated. The chapter closes with an
outlook on the remaining chapters in Section 1.3.

1.1 Motivation
In the wake of the advent of autonomously driving cars, the role of localization algorithms
for automotive applications changes. They are no longer used exclusively for navigation, but
provide input for the control of the vehicle’s movement, as well. Therefore, the requirements
that these localization algorithms have to meet increase drastically. Moreover, localization
algorithms become safety-critical systems, so new requirements in addition to the ones con-
cerning accuracy are necessary. The integration of data stemming from a GNSS receiver on
the one hand and an inertial measurement unit (IMU) on the other hand is common prac-
tice for navigation systems, because these two sensor types offer complementary benefits and
drawbacks [Groves, 2013, p. 559]. Traditionally, a single-frequency GNSS receiver tracking
signals only in the L1 band is applied, with the Global Positioning System (GPS) as only
employed constellation and its coarse/acquisition (C/A) code on L1 as the only employed
signal. This approach is suitable for navigation purposes, but it is limited in terms of accu-
racy and satellite availability. The modernized satellite constellations of GPS and its Russian
counterpart, the Global’naya Navigatsionnaya Sputnikova Sistema (GLONASS), offer multi-
ple carrier frequencies modulated with signals designated for civilian use. The same is true
for the European Galileo and the Chinese BeiDou constellations, both of which are currently
under commissioning, but feature active and usable satellites already. Due to these devel-
opments, the classical single-frequency/single-constellation approach can be replaced with a
multi-frequency/multi-constellation architecture, offering increased performance but posing
new challenges, as well.

Most of the research concerning processing techniques for multi-frequency/multi-constel-
lation GNSS observations addresses geodetic applications, because the equipment cost of
the corresponding receivers made them infeasible for automotive applications in the past.
This is no longer the case since multi-frequency/multi-constellation GNSS receivers are now
available for mass-market applications down to smartphone level [Mongrédien et al., 2018;
Warnant et al., 2018]. The optimal fusion of GNSS observations from several constellations
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on multiple frequencies, IMU measurements and data from additional sensors is therefore a
research area with outstanding relevance for future automotive localization algorithms. An
obvious choice for such additional data are odometry sensors that are standard equipment in
any modern car anyway, namely wheel rotation rate and steering wheel angle sensors. For
an optimal sensor fusion, detailed information about the underlying measurement models of
all employed sensors and their associated errors is necessary.

Current research in the field of automotive localization algorithms deals with positioning
techniques based on carrier phase measurements, mainly real time kinematic (RTK) posi-
tioning and precise point positioning (PPP). While a lot of effort is put into making these
techniques more robust to imperfect GNSS reception conditions, they are still unable to
work reliably in a substantial percentage of surroundings that occur in everyday road traffic.
Moreover, they require a steady stream of external data such as observations from a reference
station or precise satellite orbits and clocks. These data are typically distributed via mobile
internet connection, which cannot be guaranteed in all areas. In order to remain operational,
localization algorithms for automotive applications have to be able to work without external
input data and without techniques that require the constant availability of high-quality car-
rier phase measurements. Depending on the desired application scenario, this ability might
be sufficient to fulfill all requirements, or it might be designed to function as a backup for
time periods during which the more accurate techniques do not work properly due to dif-
ficult surrounding conditions or unavailability of external input data streams. A decision
on whether a system consisting of a multi-frequency/multi-constellation GNSS receiver, an
IMU and odometry sensors is able to achieve the performance necessary for an envisioned
application without the help of additional sensors or external input data is only possible if
that system’s behavior is examined thoroughly and quantified via suitable metrics.

1.2 Aim of the Thesis
This thesis’ main goal is the development and evaluation of an automotive localization algo-
rithm that inputs data from a multi-frequency/multi-constellation GNSS receiver, a micro-
electromechanical systems (MEMS) IMU and the vehicle’s built-in odometry sensors. The
envisioned algorithm works without a steady stream of external input data, therefore it does
not utilize carrier phase positioning techniques such as RTK and PPP. The only input data
that do not stem from the sensors themselves or from the broadcast satellite signals are pre-
dicted precise satellite orbits and clocks. These are downloaded once at the beginning of each
measurement scenario. They can be replaced by data from the satellites’ navigation data
messages if this download fails for some reason, however. Due to its intended employment
in the automotive sector, the localization algorithm is required to work in real time, i. e. it
needs to output a navigation solution based solely on data that are available at the current
point in time.

One aim is to identify the limitations of this setup, i. e. to find out what performance can be
achieved without carrier phase positioning techniques or supplementary sensors (e. g. cameras,
lidar, radar, etc.) and under which circumstances some form of additional aiding is necessary.
In order to facilitate the later inclusion of such data sources, the developed algorithm has a
modular architecture, allowing easy replacement and addition of components for maximum
flexibility regarding the sensor setup.

This thesis’ most important contribution is the inclusion of pseudorange measurements
from two constellations (GPS and Galileo) on multiple carrier frequencies into a tightly cou-
pled integration filter. Additional constellations increase the number of available satellites,
which is especially relevant when a large portion of the sky is invisible due to surround-
ing buildings, trees, etc. Pseudoranges from multiple frequencies allow for the formation
of ionosphere-free (IF) linear combinations, thereby eliminating the largest individual con-
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tributor to the overall pseudorange error budget. Because the signals beyond GPS L1 C/A
feature a more modern design, they also offer benefits in terms of multipath characteristics
and received signal power due to properties like higher code chipping rate, pilot signals free
of navigation data and advanced modulation techniques. Due to their dissimilar design and
their different frequencies, a receiver can acquire and track some satellite signals easier than
others. Because signal propagation properties depend on the surroundings, the acquisition
and tracking abilities of a particular receiver vary over time. Consequently, amount and type
of available pseudorange observations from a specific satellite are not constant. Due to the
stepwise modernization of the GPS constellation, there are currently active GPS satellites
from four different generations in orbit [Navigation Center , 2019]. Satellites from newer
generations broadcast more signals than the older ones, which increases the variation in the
amount and type of available pseudoranges even further. Therefore, the localization algo-
rithm needs to be able to process different types of pseudorange observations simultaneously
in order to maximize the number of available satellites in each measurement epoch.

Each type of pseudorange observation exhibits a different error characteristic, so a dedi-
cated error model that takes these varying characteristics into account is required to obtain
an optimal integrated navigation solution. Therefore, another major aspect of this thesis is to
develop and parametrize error models for all observations that are processed in the localiza-
tion algorithm. For GNSS processing, this applies to pseudoranges and linear combinations
of them as well as range rates, which are derived from carrier phase observations at consecu-
tive measurement epochs. For odometry processing, it applies to the velocity vectors at the
wheel contact patches, which are derived from the steering wheel angle and wheel rotation
rate measurements. An important aspect of the odometry error model is the inclusion of
correlation in between the velocity errors at different wheels, which is typically neglected in
existing models. The error model for the IMU measurements is comparatively basic, because
the developed localization algorithm applies established techniques for the processing of IMU
observations, enabling the utilization of an established error model, as well.

The performance improvements provided by the novelties developed in this thesis need
to be evaluated and compared with the existing techniques in order to characterize the en-
visioned algorithm’s potential as well as its limitations. This evaluation process requires the
identification of suitable metrics to quantify the algorithm’s capabilities. Part of this thesis
therefore focuses on the determination of a proper set of metrics to achieve this task. While
the concept of accuracy remains relevant, other classes of metrics such as integrity, availabil-
ity and continuity are also crucial for safety-critical systems. Of all quantities that are output
by an automotive localization algorithm, the position is currently the one that exhibits the
largest gap between demanded and achievable performance in terms of both accuracy and
integrity. Positioning performance is thus the most relevant metric for quality assessment in
this field. Besides position, horizontal velocity and yaw angle are important quantities, as
well, because they are typical inputs for an autonomous car’s motion controller. All afore-
mentioned contributions regarding multi-frequency/multi-constellation GNSS and advanced
error models aim to achieve an integration filter that is optimal in the sense of accuracy,
i. e. they try to minimize the estimation error. Integrity monitoring aims to overbound the
remaining error and provide information about the output solution’s trustworthiness. The
localization algorithm presented in this thesis does not include a dedicated integrity monitor-
ing feature. However, it employs measurement consistency checks and dedicated procedures
to check the agreement between the parametrized error models and the actual errors of the
input quantities. The aim of these techniques is to estimate the current error of the output
solution as good as possible. In the end, a conclusion is drawn about whether the combination
of these procedures is able to achieve a useful degree of integrity or if a dedicated integrity
monitoring feature is necessary to accomplish this task.

3



Introduction

1.3 Thesis Outline
The thesis consist of eight chapters in total. After this introduction, Chapter 2 lays out
the groundwork by defining the necessary nomenclature and the utilized coordinate frames.
Afterwards, the relevant principles of GNSS, odometry and GNSS/INS integration are ex-
plained before the chapter closes with an overview about the current research in the fields of
GNSS in general and GNSS/INS integration for automotive applications in particular. The
partitioning into GNSS, odometry and GNSS/INS integration originates from the localiza-
tion algorithm’s architecture as depicted in Figure 1.1. The three sensor groups on the left
provide the input data, which get preprocessed by the modules in the middle column before
they are fused by the integration filter. The same structure is applied to the chapters of this
thesis, as well. There is one chapter dedicated to GNSS preprocessing, odometry prepro-
cessing and the integration filter, respectively. No chapter dedicated to INS exists because
the IMU measurements are processed with established methods without novel aspects. The
application of these methods is part of Chapter 6. All results regarding the processing of
data within a particular module are featured in that module’s chapter. The results achieved
through the collaboration of all modules are presented in the dedicated Chapter 7.

GNSS
receiver

IMU
Strapdown
algorithm

Integration
filter

Odometry
sensors

Odometry
preprocessing

GNSS
preprocessing

Integrated
navigation
solution

Figure 1.1: Overall localization algorithm architecture.

Chapter 3 details how the GNSS receiver’s measurements get preprocessed on their
way to the integration filter. This encompasses the calculation of range rates from car-
rier phase measurements, the compensation of a-priori known errors and the calculation of
the measurement noise covariance matrix. Due to the inclusion of multi-frequency/multi-
constellation pseudoranges, some effects have to be considered that do not play a role for
single-frequency/single-constellation schemes, with pseudorange biases being the most promi-
nent example of such effects.

The analogous steps for the odometry observations are described in Chapter 4. Central
parts of this preprocessing module are measurement noise variance computation as well as
the estimation of longitudinal and lateral tire slip. The latter is performed with tire models
of varying complexity to examine the effect that these models have on the overall accuracy of
the integrated navigation solution. During measurement noise variance computation, special
emphasis is placed on the correlation of errors in between the wheels.
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Chapter 5 deals with methods concerning quality assessment. After reviewing existing
metrics for performance assessment of localization algorithms, a suitable set of metrics for the
algorithm designed in this thesis is chosen based on previously defined criteria. An important
part of that chapter are techniques employed by the localization algorithm to estimate the
error magnitude of its own output quantities.

The fusion of all measurement data in the central integration filter is the topic of Chap-
ter 6. It encompasses a description of the strapdown algorithm, which is responsible for
the preprocessing of IMU data, as well as details about the integration filter’s system and
measurement models. To prevent contamination of the integrated navigation solution by
faulty observations, methods for the detection and elimination of outliers are featured in that
chapter, too.

Chapter 7 presents the results achieved with the developed algorithm in numerous test
scenarios. These test scenarios reflect the range of operating conditions faced by automotive
localization algorithms, especially in terms of GNSS reception conditions. The improvements
brought forth by the design novelties from the previous chapters are highlighted through
comparison with the existing techniques. These improvements are quantified with the help
of the relevant metrics identified in Chapter 5.

The thesis ends by drawing conclusions about its achievements and giving an outlook on
potential further developments in Chapter 8.
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Chapter 2

Background and State of the Art

This chapter introduces the basic principles concerning the work presented in this thesis.
These basics include coordinate frames (Section 2.1), GNSS (Section 2.2), odometry (Sec-
tion 2.3) and GNSS/INS integration (Section 2.4). The focus lies on the aspects of the
respective topics that are relevant to the following chapters. As the main novelties of this
thesis regard GNSS processing and integrated navigation systems for automotive applica-
tions, an overview of the research that is currently done in these fields and relevant to this
thesis is provided in Section 2.5.

2.1 Coordinate Frames
As this thesis deals with the estimation of an object’s position, attitude and movement,
different coordinate frames are necessary to express these quantities quantitatively. This
section defines the most important coordinates frames that appear within this thesis in its
Sections 2.1.2-2.1.5. Before introducing the coordinate frames, the notation to describe quan-
tities within these frames is defined in a generalized way in Section 2.1.1. The content of this
section is based on Groves [2013, Chapter 2].

2.1.1 Notation for Quantities Within Coordinate Frames

Quantities such as position or velocity describe the spatial relationship of coordinate frames
w. r. t. each other. Each such quantity y usually involves three (not necessarily distinct)
coordinate frames:

1. The reference frame p, w. r. t. which the quantity y is described.

2. The object frame q, whose kinematics are described.

3. The resolving frame o, in which the quantity y is expressed.

In order to specify a quantity y, the symbols for reference and object frame are notated as
subscripts, while the symbol for the resolving frame is notated as superscript:

yopq. (2.1)

Position p, velocity v, acceleration a and rotation rate ω require the specification of all
three frames. For attitude ψ, only reference frame p and object frame q are meaningful
specifications. Hence, the resolving frame o is omitted. In case any of the involved coordinate
frames is irrelevant, it may be omitted, as well. While this notation is defined here for
quantities that describe spatial relationships, it is applied in a generalized way to include
other vector quantities, e. g. forces, in the course of this thesis.
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2.1.2 Earth-Centered Inertial Frame

An inertial coordinate frame is defined as having zero acceleration and zero rotation w. r. t.
the rest of the Universe. An approximation of this concept is the Earth-centered inertial (ECI)
frame, denoted by the letter i. Its origin lies in the Earth’s center of mass. The zi-axis points
along the Earth’s mean axis of rotation toward the north pole, implying that the other two
axes lie in the equatorial plane. The xi-axis is defined as pointing toward the Sun at the
vernal equinox. Finally, the yi-axis completes the right-handed set. Due to the movement
of the Earth around the Sun, the slow variations of the Earth’s axis of rotation and other
effects, the ECI frame is not strictly an inertial frame. It is treated as an inertial frame in
this thesis because the deviations from a true inertial frame are well below the measurement
noise level exhibited by the employed navigation sensors. This frame is primarily important
due to two aspects: On the one hand, the measurements of an IMU are made relative to this
frame. On the other hand, the orbital plane of a satellite does not change its orientation
w. r. t. the ECI frame in a two-body Kepler problem.

2.1.3 Earth-Centered Earth-Fixed Frame

The Earth-centered Earth-fixed (ECEF) frame has the same origin and the same z-axis as
the ECI frame. In contrast to the ECI frame, the axes of the ECEF frame are fixed w. r. t.
the Earth. That’s why it is denoted by the letter e. The xe-axis points to the intersection
of the equator with the prime meridian, which is taken to be the reference meridian of the
International Earth Rotation and Reference Systems Service (IERS). The ye-axis completes
the right-handed set and points toward the 90◦ east meridian. The ECEF frame rotates
w. r. t. the ECI frame along the common z-axis with the rotation rate ωie.

To get a more descriptive depiction of navigation problems than with Cartesian coordi-
nates, an approximation to the Earth’s surface called reference ellipsoid is defined. As IS-
GPS-200 [2018] dictates, the reference ellipsoid to be used by GPS users is the one of the
World Geodetic System (WGS) 84. Figure 2.1 depicts how positions are specified relative
to the ellipsoid by ellipsoidal longitude λe ∈ (−π, π], ellipsoidal latitude ϕe ∈ [− π

2 ,
π

2 ] and
ellipsoidal height he. Sign conventions in this thesis are: λe > 0 in the eastern hemisphere,
ϕe > 0 in the northern hemisphere and he > 0 for points above the surface of the reference
ellipsoid. Together, these three quantities form the position vector pe in the ECEF frame:

pe =


λe

ϕe

he

 . (2.2)

2.1.4 Body Frame

The origin of the body frame is the object whose motion is described by the navigation
solution. In this thesis, the body frame’s origin is placed in the IMU’s reference point and
the moving object is a vehicle. The body frame’s axes are fixed w. r. t. this vehicle and the
frame is denoted by the letter b. The xb-axis points forward, the yb-axis to the left and the zb-
axis upward. Consequently, the body frame defined in this way is called a front-left-up (FLU)
frame. The IMU’s sensor axes are assumed to be aligned with the vehicle’s body axes. The
three components of a vector ybpq are denoted by ybpq,F , ybpq,L and ybpq,U .

In addition to the main body frame, special frames for specific objects may be defined,
e. g. an individual wheel, one of the vehicle’s axles or the GNSS antenna. These special
frames are defined whenever necessary and they are described in the respective chapters.
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Figure 2.1: ECEF frame and ellipsoidal coordinates.

2.1.5 Navigation Frame

The navigation frame’s origin coincides with the one of the body frame, i. e. the IMU’s ref-
erence point. This frame is denoted by the letter n. As shown in Figure 2.2, the navigation
frame’s zn-axis is defined as the normal to the reference ellipsoid’s surface, pointing away
from the center of the Earth. The yn-axis points north, the xn-completes the right-handed
set and points east. This definition of the navigation frame is called an east-north-up (ENU)
frame. The three components of a vector ynpq are denoted by ynpq,E , ynpq,N and ynpq,U .

The specific force f ib measured by an IMU w. r. t. the ECI frame is the sum of acceleration
of the body frame w. r. t. to the ECI frame aib and a gravitational component ǧib:

f ib = aib + ǧib. (2.3)

When stationary w. r. t. the ECEF frame, the specific force sensed by the IMU stems from
the reaction force due to gravity. Gravity comprises both a gravitational and a centrifugal
component. In order to determine the navigation solution, the reaction force due to gravity
needs to be compensated by a gravity model. The gravity model utilized in this thesis assumes
that the gravity vector gib is parallel to the zn-axis.

gnib =


0
0

gnib,U

 (2.4)

The value for gnib,U is given by the Geodetic Reference System (GRS) 80 [Moritz, 1980] and
includes a height correction term according to Li and Götze [2001]:

gnib,U = gϕ − (ch1 − cϕh sin2 ϕe)he + ch2h
2
e (2.5)

gϕ = ge(1 + cϕ2 sin2 ϕe + cϕ4 sin4 ϕe + cϕ6 sin6 ϕe + cϕ8 sin8 ϕe), (2.6)

where ge is the normal gravity at the equator.
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Figure 2.2: ENU navigation coordinate frame.

Body and navigation frame share a common origin, but are oriented differently. These
different orientations are described by a set of three Euler angles: roll angle ηnb ∈ (−π, π],
pitch angle ϑnb ∈ [− π

2 ,
π

2 ] and yaw angle ψnb ∈ (−π, π]. Together, these three angles form the
attitude vector ψnb:

ψnb =


ηnb

ϑnb

ψnb

 . (2.7)

In order to be utilized for coordinate frame rotation, the direction-cosine matrix Cn
b is con-

structed from ψnb. With Cn
b , the representation of any vector y in the b-frame is transformed

into the representation of the identical vector y in the n-frame and vice versa:

yn = Cn
b yb (2.8)

yb = Cb
nyn = Cn

b
Tyn. (2.9)

The concept of Euler angles is generalized to apply to any two coordinate frames p and q
by replacing the indices n and b to form the attitude vector ψpq and the direction-cosine
matrix Cp

q .
Figure 2.3 depicts the process of transforming the n-frame into the b-frame. Because

rotations do not commute, their order is important. First, the n-frame is rotated around the
zn-axis by the yaw angle ψnb, forming an intermediate ′-frame. In the second step, the ′-frame
is rotated around the y′-axis by the pitch angle ϑnb, forming another intermediate ′′-frame.
Finally, the ′′-frame is rotated around the x′′-axis by the roll angle ηnb to form the b-frame.
Due to the way body and navigation frame are defined, the following sign conventions hold:

• ηnb > 0 indicates that the vehicle is tilted to the right.

• ϑnb > 0 indicates that the vehicle’s front is tilted down, e. g. when driving downhill.

• ψnb > 0 indicates that the vehicle’s front is turned toward north.
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Figure 2.3: Euler angles: roll ηnb, pitch ϑnb and yaw ψnb.

2.2 GNSS
GNSS satellites orbit the Earth and broadcast navigation signals. These signals feature a
spreading code modulated on a carrier wave with frequency fca. All GNSS satellites relevant
to this thesis utilize multiple different carrier frequencies in the L band (1GHz to 2GHz)
simultaneously. The spreading code is a pseudo-random noise (PRN) sequence with chipping
rate fco. For current GNSS signals, fco is in the range of 511.5 kHz to 10.23MHz [Teu-
nissen and Montenbruck, 2017, Part B]. Some GNSS signals feature binary phase-shift key-
ing (BPSK), while others include additional subcarrier sequences with frequency fsca, result-
ing in a modulation known as binary offset carrier (BOC). Other components that may be
modulated onto a signal are so-called secondary codes and navigation data messages with
their respective frequencies fsco and fnav. The relevant aspects of the signals utilized in this
thesis are detailed in Chapter 3.

By synchronizing an internal replica of the spreading code with the received satellite
signal, a GNSS receiver is able to determine the signal’s transmission time tStx unambiguously.
The superscript S indicates that this time is measured by the satellite’s on-board clock. The
transmission time is subtracted from the reception time tRrx (measured by the receiver clock)
to form the pseudorange ρ:

ρ =
(
tRrx − tStx

)
c, (2.10)

where c is the speed of light. ρ is called a pseudorange because it differs from the true range
between transmitting and receiving antenna, mainly due to synchronization errors between
the satellite and receiver clocks. To synchronize them, the errors of both clocks w. r. t. a
common clock Γ are formed:

δtR = tR − tΓ δtS = tS − tΓ. (2.11)

δtR is the receiver clock bias, δtS is the satellite clock bias. The common clock Γ is usually a
GNSS system time, maintained by the respective constellation’s control segment. While δtR
needs to be estimated as part of the navigation solution, δtS is provided to the navigation
algorithm for each satellite, usually via the navigation data message broadcast by the satellite
or via precise orbit and clock files, computed by a GNSS analysis center (see Section 3.5).
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While pseudorange measurements are based on the spreading code, carrier phase mea-
surements φ are based on the signal’s carrier wave. In this work, φ is an angle and therefore
expressed in radians or degrees. To get a length expressed in meters, φ is multiplied by the
respective carrier wavelength λca and divided by 2π or 360◦. Due to the higher frequency,
carrier phase measurements are more precise than pseudorange measurements: While the
code tracking noise standard deviation of modern receivers is in the order of decimeters, the
carrier tracking noise standard deviation is typically less than a millimeter [Teunissen and
Montenbruck, 2017, p. 579]. But while pseudorange measurements are unambiguous, car-
rier phase measurements suffer from an ambiguity of an integer multiple of 2π, because the
receiver cannot distinguish between different cycles of the carrier wave.

Both pseudorange and carrier phase are range measurements. In order to obtain velocity
observations from GNSS signals, different possibilities exist:

1. Forming time derivatives of carrier phase measurements. This eliminates the carrier
phase ambiguity as long as no cycle slips occur.

2. Forming time derivatives of code measurements. These are comparatively noisy due to
the higher standard deviation of the code tracking noise.

3. Measuring the Doppler shift of the incoming signal.

Independently of the method used to obtain velocity observations, the resulting measurement
is the range rate ρ̇. It represents the line-of-sight velocity between transmitting and receiving
antenna. Range rate measurements utilized in this thesis are based on time derivatives of
carrier phase measurements.

Besides pseudorange, carrier phase and range rate measurements, GNSS receivers output
the estimated signal power of each tracked signal. This power is expressed in terms of carrier-
to-noise ratio. It is either expressed in W

W/Hz or in decibel form with the unit dB-Hz. For
clarity, the former is denoted by c/n0 and the latter by the upper case version C/N0 in this
thesis. Conversion between the two is done according to (2.12) [Groves, 2013, p. 363].

C/N0 = 10 log10 (c/n0) c/n0 = 10
C/N0

10 (2.12)

Pseudorange, carrier phase and range rate measurements are modeled according to (2.13)-
(2.15). Because all three are scalars, it does not matter in which coordinate frame the vectors
on the right hand side are resolved, as long as all vectors in one equation are resolved in the
same coordinate frame. For simplification, the same resolving frames as in Chapter 6 are
chosen here. Both ECEF frame and navigation frame rotate. Consequently, the orienta-
tion of their axes at tΓrx differs from the one at tΓtx. This has to be accounted for when
evaluating (2.13)-(2.15).

ρ =
∥∥∥pees(tΓtx)− peea(tΓrx)

∥∥∥+ cδtR − cδtS + δρI + δρT + δρM + B + δρN (2.13)

φ = 2π

λca

(∥∥∥pees(tΓtx)− peea(tΓrx)
∥∥∥+ cδtR − cδtS − δρI + δρT

)
+ δφM + 2πNca + δφN (2.14)

ρ̇ = unasT
(
vnes(tΓtx)− vnea(tΓrx)

)
+ cδṫR − cδṫS + δρ̇N (2.15)

pees(tΓtx) is the satellite’s position w. r. t. the ECEF frame at the time of signal transmission.
peea(tΓrx) is the receiver antenna’s position w. r. t. the ECEF frame at the time of signal
reception. δρI and δρT are ionospheric and tropospheric delay. The sign of the ionospheric
delay is reversed for carrier phase measurements. ρM and φM are the multipath errors for
pseudorange and carrier phase. B is the code bias. The corresponding bias term for carrier
phase measurements is neglected. Nca ∈ Z is the integer wavelength ambiguity. The terms
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δρN and δφN for the code and carrier tracking noise subsume all error terms that have not
been listed explicitly. In the range rate model (2.15), unas is the unit vector pointing from
receiver to satellite antenna. vnes(tΓtx) is the satellite’s velocity w. r. t. the ECEF frame at
the time of signal transmission. vnea(tΓrx) is the receiver antenna’s velocity w. r. t. the ECEF
frame at the time of signal reception. δṫR is the receiver clock drift, δṫR is the satellite clock
drift. As before, the range rate noise term δρ̇N subsumes all error terms not listed explicitly.

A satellite’s position relative to the receiver antenna is described by elevation θ and
azimuth ζ. These are related to the unit vector unas by (2.16)-(2.18) [Groves, 2013, p. 344].

θ = arcsin unas,U (2.16)

ζ = arctan2
(
unas,E , u

n
as,N

)
(2.17)

unas =


cos θ sin ζ
cos θ cos ζ

sin θ

 (2.18)

Another important quantity related to unas is the dilution of precision (DOP). DOP is solely
based on the geometric distribution of the received satellites. In order to obtain the DOP,
the unit vectors pointing from the receiver antenna to the j received satellites are arranged
in the geometry matrix G:

Gn =


−unas,1T 1
−unas,2T 1

...
...

−unas,jT 1

 . (2.19)

Each row of G is the partial derivative of the respective pseudorange measurement (2.13)
w. r. t. the four unknowns: 3-D receiver antenna position and the receiver clock bias. It
is commonly resolved in either the e- or the n-frame, depending on the resolving frame of
the unit vectors. The DOP values are extracted from the cofactor matrix

(
GTG

)−1
of the

navigation solution:

(
GnTGn

)−1
=


EDOP2 · · ·
· NDOP2 · ·
· · VDOP2 ·
· · · TDOP2

 (2.20)

HDOP2 = EDOP2 + NDOP2 (2.21)
PDOP2 = EDOP2 + NDOP2 + VDOP2 (2.22)
GDOP2 = EDOP2 + NDOP2 + VDOP2 + TDOP2. (2.23)

The first letters stand for east, north, vertical, time, horizontal, position and geometric,
respectively. The other matrix entries are omitted for simplicity. The DOP values relate the
uncertainty of a single pseudorange measurement, expressed by the standard deviation σρ,
to the uncertainty of the navigation solution [Groves, 2013, pp. 424-427].

The Receiver Independent Exchange Format (RINEX) enables the storage of GNSS obser-
vations and navigation message data for post-processing. It defines unambiguous identifiers
for GNSS signals. These identifiers consist of a three-character code for the satellite and an-
other three-character code for the observation. The satellite codes are of type SNN, where
S identifies the constellation (e. g. G for GPS, E for Galileo) and NN identifies the satellite’s
PRN or slot number. The observation codes are of type tna, where t identifies the observation
type (C for pseudorange, L for carrier phase, D for Doppler, S for signal strength), n identi-
fies the frequency band (e. g. 1 for L1/E1, 5 for L5/E5a) and a identifies the tracking mode
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or channel (e. g. I for tracking of the in-phase component, Q for tracking of the quadra-phase
component). In this thesis, RINEX-style codes of type Sna are used as indices to identify the
GNSS signals and the observation type is specified by the symbols ρ, φ and C/N0. The full
format specification of the current RINEX version 3.04 is IGS [2018]. Because this version
does not yet cover the navigation message data broadcast on the GPS L2C and L5 signals, an
extension format 4.00 including these data was developed [Montenbruck and Langley, 2013].
GNSS observations are stored in RINEX 3.03 or 3.04 before they are input into the algorithm.
Navigation message data in RINEX 3.03/3.04 and 4.00 serve as backup to the precise orbit
and clock products as explained in Section 3.5.

2.3 Odometry
"Odometry is the determination of a land vehicle’s speed and distance traveled by mea-
suring the rotation of its wheels" [Groves, 2013, p. 233]. Modern vehicles equipped with
electronic stability control (ESC) typically employ one wheel speed sensor on each wheel
to measure the wheel’s rotation rate ωw. To get information about the driver’s input, a
steering wheel angle sensor is installed. These data are output onto a data bus, usually a
Controller Area Network (CAN).

In order to transform the information about the wheels’ rotation into information about
the vehicle’s speed and distance traveled, odometry models are used. The complexity of
these models covers a large range. Simple models utilize only one wheel speed sensor of a
non-driven axle and assume that the vehicle’s velocity vector is parallel to the xb-axis [Gao
et al., 2006; Li et al., 2010], neglecting longitudinal and lateral tire slip. Complex multi-body
models account for nonlinearities within the vehicle’s springs, dampers and tires [Schramm
et al., 2013]. In this thesis, a single-track model is applied to model the vehicle’s dynamics.

l

lflr

αr

αf
δf

βCG

ver

vef

vec

Figure 2.4: Single-track model.

Figure 2.4 depicts the single-track model. The forces necessary to generate lateral acceler-
ation abeb,L stem from the tires. They are proportional to the side slip angles αf and αr in the
classical single-track model. The vehicle’s center of gravity (CG) is located on the line con-
necting the two wheels. Its velocity vec and the xb-axis encompass the vehicle side slip angle β.
The front wheel is turned by the steering angle δf , the rear wheel is unsteered and therefore
parallel to the xb-axis. This idealized single-track model is suited to model the vehicle’s lateral
dynamics up to a lateral acceleration of |abeb,L| = 4 m s−2 [Schramm et al., 2013, p. 224].

One of the reasons for this limitation to moderate accelerations are nonlinear tire charac-
teristics. The tires transfer force from the road to the vehicle, thereby creating longitudinal
and lateral acceleration. According to Coulomb’s Law of Friction, longitudinal tire force Fwew,x
and lateral tire force Fwew,y are proportional to the tire force normal to the road surface Fwew,z.

14



2.4 GNSS/INS Integration

The respective ratios are called friction coefficients µx and µy:

µx =
Fwew,x
Fwew,z

µy =
Fwew,y
Fwew,z

. (2.24)

The index w denotes the wheel coordinate frame. This frame has its origin in the center of
the tire contact patch. The zw-axis is normal to the road, pointing upward. The yw-axis is
parallel to the wheel hub’s rotation axis and points to the left. The xw-axis completes the
right-handed set and points forward, i. e. it is parallel to the xb-axis if the wheel’s steering
angle is zero. A tire’s friction coefficient is not constant. It varies due to temperature, road
surface, tire pressure and tire slip, among others. To model the dependency on tire slip, the
longitudinal slip λx and the side slip angle α are defined [Rajamani, 2006, pp. 29, 100]:

λx =


ωwrd−vwew,x

vwew,x
for ωwrd ≤ vwew,x (braking)

ωwrd−vwew,x
ωwrd

for ωwrd > vwew,x (acceleration)
(2.25)

α = − arctan
vwew,y
vwew,x

. (2.26)

rd is the wheel’s dynamic tire radius, vwew,x and vwew,y are the components of the wheel’s
velocity w. r. t. the ECEF frame along the xw- and yw-axis. The discontinuity for a wheel at
rest (ωw = vwew,x = vwew,y = 0) is resolved by defining λx = α = 0 for this condition. Linear
tire models assume µx ∝ λx and µy ∝ α. The proportionality constants are longitudinal slip
stiffness cλ and side slip stiffness cα:

µx = cλλx µy = cαα. (2.27)

In reality, the dependencies of µx on λx and of µy on α are degressive. Figure 2.5 depicts
some exemplary curves. They are obtained with Pacejka’s Magic Formula tire model [Pacejka,
2006, Section 4.3]:

µx = Dλ sin {Cλ arctan [Bλλx − Eλ (Bλλx − arctanBλλx)]}+Gλ

µy = Dα sin {Cα arctan [Bαα − Eα (Bαα − arctanBα α )]}+Gα,
(2.28)

with stiffness factor Bλ/α, shape factor Cλ/α, peak value Dλ/α, curvature factor Eλ/α and
a potential vertical shift Gλ/α. These factors are determined empirically and depend on
conditions such as weather, road surface and tire wear.

2.4 GNSS/INS Integration
According to the definitions in Groves [2013, Section 1.2], an IMU is a set of inertial sensors
providing measurements of specific force f ib and rotation rate ωib. An INS on the other hand is
the combination of an IMU with a navigation processor, which integrates these measurements
over time and outputs a navigation solution comprising position, velocity and attitude. The
navigation solution provided by an INS offers a high update rate (typically 50Hz or more)
and exhibits only small short-term errors. INS require no external input apart from an initial
navigation solution and are hence invulnerable to interference, jamming and weather condi-
tions. However, the long-term accuracy of their stand-alone navigation solution is poor due
to the IMU’s sensor errors. Since these errors are integrated over time, they cause the naviga-
tion solution to drift away from the truth more and more as time progresses. GNSS receivers
on the other hand feature a low update rate of typically 10Hz or less. Single-epoch positions
computed from pseudoranges exhibit comparatively large errors of several meters, even un-
der optimal reception conditions. Moreover, the navigation solution’s accuracy is susceptible
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Figure 2.5: Pacejka’s Magic Formula tire model.

to interference and signal obstructions, yielding poor continuity. However, the long-term
accuracy of GNSS receivers is excellent and they are capable of providing a stand-alone navi-
gation solution without the need for initialization from external sources. The combination of
GNSS receivers with IMUs in a sensor data fusion algorithm profits from these complemen-
tary characteristics and is capable of combining the advantages of the two sensor types while
simultaneously reducing the effects of their respective shortcomings [Groves, 2013, p. 559].

GNSS/INS integration algorithms differ in the types of GNSS observables that are input
into the fusion filter. Loosely coupled algorithms input the 3-D position and velocity solution
from the GNSS receiver and therefore perform position domain integration. Tightly coupled
algorithms input GNSS pseudoranges and range rates, therefore performing range domain
integration. Deeply coupled algorithms input the correlator outputs from the GNSS receiver,
combining GNSS signal tracking and navigation solution in a common fusion filter and there-
fore perform tracking domain integration [Groves, 2013, p. 561]. The integration algorithm
developed in this thesis is a tightly coupled one.

GNSS
receiver

IMU
Strapdown
algorithm

Corrections Fusion
filter

Integrated
navigation
solution

Corrections

Figure 2.6: Closed-loop GNSS/INS integration architecture.

The integrated navigation solution is obtained via a closed-loop integration architecture
as shown in Figure 2.6. IMU measurements are processed in a strapdown algorithm, resulting
in the a-priori navigation solution. This navigation solution is fed into a fusion filter, which
in this thesis is an extended Kalman filter (EKF), working in discrete time. Based on the
a-priori navigation solution and the input from the GNSS receiver, the fusion filter calculates
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corrections that are applied to the a-priori solution to form the integrated navigation solution.
In addition, correction values obtained by the fusion filter are fed back to the strapdown
algorithm, forming the eponymous closed correction loop.

Since the EKF in a closed-loop architecture does not estimate the full navigation solution,
but the errors of the externally computed a-priori solution, it is known as an error state filter.
Consequently, the error state vector δx is estimated instead of the total state vector x. δx is
the difference between the estimated value of the total state vector x̂ and its true value x̆:

δx = x̂− x̆. (2.29)

x̆ and thereby δx are usually unknown. The EKF’s task is to determine δx̂, an estimate
of δx, and its error covariance matrix P via predictions and measurement updates.

The EKF’s prediction step is:

δx̂−k = 0 (2.30)
P−k = ΦkP+

k−1Φ
T
k + Qk, (2.31)

where ˆ indicates an estimated quantity, the superscript − denotes an a-priori quantity and
the superscript + denotes an a-posteriori quantity. Φ is the state transition matrix and
Q is the covariance matrix of the system noise vector ws. The subscript k denotes that
the respective quantity is given at a discrete time epoch k. In case of a nonlinear system
model (2.32), the matrix Φk is obtained via a partial derivative of the state function n w. r. t.
the total state vector x [Groves, 2013, Section 3.4.1]:

ẋ = n(x) + w̌s (2.32)

Nk = ∂n
∂x

∣∣∣∣
x̂−
k

(2.33)

Φk = eNkτs,k . (2.34)

w̌s is the system noise vector in continuous time, N is the system matrix and τs,k = tk−tk−1 is
the state propagation interval at epoch k. For the evaluation of (2.34), the matrix exponential
function has to be used. The integration filter described in Chapter 6 features nonlinear
system and measurement models.

The EKF’s measurement update is:

Kk = P−k HT
k

(
HkP−k HT

k + Rk

)−1
(2.35)

δx̂+
k = δx̂−k + Kk

(
zk −Hkδx̂−k

)
(2.36)

P+
k = (I−KkHk) P−k (I−KkHk)T + KkRkKT

k , (2.37)

with the Kalman gain matrix K, the measurement matrix H, the measurement vector z and
the covariance matrix R of the measurement noise vector wm. Equation (2.37) is known as
Joseph’s form of the covariance update and is utilized because it is numerically more robust
than the mathematically equivalent formulation given by (2.38) [Wendel, 2007, p. 133].

P+
k = (I−KkHk) P−k (2.38)

In the error state formulation, zk is the difference between ẑk and z̃k, where z̃k is the total
measurement vector and ẑk is a prediction of that measurement vector, obtained from x̂−k ,
the a-priori estimate of the total state:

zk = ẑk − z̃k (2.39)
= h(x̂−k )− z̃k. (2.40)
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h is called the measurement function. The partial derivative of h w. r. t. x, evaluated at x̂−k ,
forms the measurement matrix H:

Hk = ∂h
∂x

∣∣∣∣
x̂−
k

. (2.41)

The difference between total measurement vector and measurement vector prediction is
called measurement innovation δz− if the prediction is based on the a-priori state vector. It
is called measurement residual δz+ if the prediction is based on the a-posteriori state vector.

δz− = z̃− h(x̂−) (2.42)
δz+ = z̃− h(x̂+) (2.43)

In the error state formulation, δz−k is the negative of the measurement vector zk unless a
sequential measurement update is performed [Groves, 2013, Section 3.2.7].

2.5 State of Current Research
The purpose of this section is to provide an overview of the research currently done in the
fields relevant to this thesis. Due to the abundance of research results, especially in the
context of GNSS, only some of the most relevant contributions are mentioned. The section
is divided into two parts, dealing with recent contributions in the fields of GNSS in general
and GNSS/INS integration for automotive applications in particular, respectively.

2.5.1 GNSS

Due to the new possibilities put forth by new satellite constellations and signals, a lot of
research has been carried out in this field over the last years. This research still continues
as a variety of approaches for different applications is developed, refined and tested. Most
contributions focus on accuracy, integrity and/or robustness and how these quantities can be
enhanced with the help of multi-frequency/multi-constellation GNSS.

The groundwork for applications with multiple GNSS constellations is performed by the
Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS). Many authors
have contributed to this experiment. The work done until October 2016 is summarized
in Montenbruck et al. [2017]. MGEX employs a large network of reference stations (≈ 170
in October 2016) around the Earth and receives contributions from all IGS analysis centers.
Some of the main achievements are: collection and storage of observation data and navigation
messages, investigation of various modeling aspects for the computation of precise orbit and
clock products, quality assessment of the computed orbit and clock products, analysis of
signal biases that become relevant when multiple signals are utilized as well as introduction
of standards and conventions for the exchange of all these data. The MGEX results are
important for this thesis because they detail the effects that need to be considered for multi-
frequency/multi-constellation GNSS and provide input data such as navigation messages,
precise orbit and clock files, satellite biases as well as atmospheric data. They also show the
achievable performance when high-quality geodetic equipment is employed, GNSS reception
conditions are ideal and the antenna is static. As the requirements for automotive localization
algorithms are quite different in terms of equipment cost and GNSS reception conditions,
these performance achievements have very limited significance for the application of multi-
frequency/multi-constellation GNSS in automotive applications.

Two main techniques are applied to reach the accuracy required by autonomous cars via
GNSS: RTK and PPP. The main conceptual difference between these two approaches is that
RTK requires a continuous stream of data from a nearby reference station, while PPP does
not. PPP’s major drawback are long convergence times (≥ 10 min), which have rendered
it infeasible for automotive applications so far. However, utilizing more constellations and
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signals offers the potential to decrease convergence times, so PPP might be a valid option
for automotive applications in the future. Current research regarding PPP is presented first,
followed by recent advances concerning RTK.

Duong et al. [2019] employ multi-frequency/multi-constellation GNSS measurements to
accelerate PPP convergence. Dual- and triple-frequency combinations for GPS, Galileo and
BeiDou are formed to facilitate ambiguity resolution. The test data consist of static obser-
vations from five reference stations in Australia. Precise orbit and clock data are taken from
a stream broadcast by the Centre National d’Etudes Spatiales (CNES) in real time. The
solutions require at least 6min to converge to within 10 cm horizontally and at least 10min
to reach this threshold vertically. The average time to first fix is 6min for the best of the
examined models.

Similar performance is reached by Laurichesse and Blot [2016] with triple-frequency ob-
servations on GPS, Galileo and BeiDou in static data sets. Convergence to 20 cm is achieved
in 2min instead of 5min with dual-frequency observations. With the utilization of external
tropospheric correction data, the 20 cm threshold is reached almost instantly. These results
show that although convergence times for PPP are improved, they are still too high for auto-
motive applications, even when triple-frequency observations from static data sets are used.

Besides convergence times, the distribution of precise orbit and clock data to the PPP user
has to be addressed. The IGS real time service provides products for GPS and GLONASS
[Teunissen and Montenbruck, 2017, Section 33.4.1], intended for usage with dual-frequency
IF combinations. An extension to multi-frequency/multi-constellation GNSS is planned for
the future. Some of the IGS analysis centers already provide corresponding real time streams.

The quality of one of these streams is evaluated in Kazmierski et al. [2018] by compar-
ing the computed satellite positions and clock biases to the ones computed with final IGS
products. The study obtains 3-D standard deviations of 4.8 cm, 9.8 cm, 18.3 cm and 28.2 cm
for GPS, GLONASS, Galileo and BeiDou, respectively. This indicates that some work still
has to be done before PPP with real time products can be considered a viable alternative to
RTK in terms of accuracy.

Another method of distributing the precise orbit and clock data to the users is outlined
in Fernández Hernández [2018]: The Galileo High Accuracy Service (HAS) will deliver these
data via the Galileo E6-B signal with a target accuracy of less than 20 cm. The design is
not finalized yet, but due to the utilization of an additional frequency band, the inclusion
into automotive localization algorithms in the near future is unlikely because every additional
frequency increases hardware costs.

Pullen et al. [2018] propose to distribute precise orbit and clock data via satellite, as well.
In this case, the satellites are either geostationary or in low Earth orbit. The utilization of
geostationary satellites is an established technique, known from satellite-based augmentation
systems (SBAS) such as the European Geostationary Navigation Overlay Service (EGNOS) in
Europe or the Wide Area Augmentation System (WAAS) in North America. The low Earth
orbit satellites are provided by the Globalstar network. This approach is specifically designed
with autonomous cars in mind and also addresses the important issue of integrity. One of
the main conclusions is that while obtaining a horizontal position error of less than 25 cm
for at least 95% of epochs is possible with established techniques, extending this nominal
accuracy to useful protection levels of several meters or less is very challenging and requires
additional input data. Another conclusion is that multipath and non-line-of-sight (NLOS)
reception pose the largest threat to accuracy and integrity in dense urban environments. To
meet autonomous driving requirements, ionospheric errors have to be corrected via a dense
network of reference stations (distance in between stations < 20 km) instead of dual-frequency
IF combinations, because linear combinations further amplify multipath and NLOS errors,
which are already critically large. As a long-term solution for reducing the PPP convergence
time, additional ranging augmentation to low Earth orbit satellites is proposed. While Pullen
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et al. [2018] treat the challenges faced by localization algorithms for autonomous cars very
thoroughly and give an overview of the state of currently available techniques as well as
proposals to overcome their shortcomings, these proposals require additional ground and
space segment infrastructure. Consequently, they do not offer a short-term solution.

In the context of RTK positioning for automotive applications, Humphreys et al. [2018] of-
fer a similar level of completeness as Pullen et al. [2018] do for PPP. A GNSS positioning
system consisting of a software receiver (GPS L1 C/A, GPS L2C, Galileo E1, WAAS L1) and
an RTK positioning engine is designed and tested. The software receiver employs a vector
tracking architecture for robust and fast carrier phase recovery after signal degradation, e. g.
when the vehicle is passing under an overpass. A variety of design details is discussed and
evaluated with regard to their influence on the localization algorithm’s capability to perform
successful ambiguity fixing. Prediction of the navigation message data bits and a very dense
network of reference stations turn out to be the most important aspects in urban surround-
ings. One major conclusion is that a distance of 10 km in between rover and reference station
is already too large and increases the probability of large errors, presumably due to incor-
rectly fixed ambiguities. The best of all studied configurations is able to provide a solution
with fixed carrier ambiguities in 98.9% of epochs with a probability of an incorrect fix of
approx. 1% in an urban environment which "is not an especially challenging one". The as-
signment of an accurate value for the false fix probability is complicated by the fact that the
reference system cannot deliver a solution with the required accuracy in all epochs due to
the urban setting, so the lower and upper bounds for the false fix probability are calculated
as 0.5% and 2.3%, respectively. These results are achieved with RTK and a single GNSS
antenna alone. The proposed setup for autonomous vehicles also includes an IMU, stereo
cameras, a radar unit and a second GNSS antenna.

Another area of current research aims to make positioning algorithms based on pseudo-
ranges more robust to the presence of multipath and NLOS reception, thereby increasing
position accuracy in urban areas. Multipath mitigation may happen in all stages of signal
processing within GNSS equipment, prompting its classification into antenna-based, receiver-
based and navigation-processor-based techniques [Groves, 2013, Section 10.4]. Due to the
abundance of existing techniques, only a limited selection can be presented here.

Hsu et al. [2015] employ a vector tracking loop for code tracking to achieve the goal of
multipath and NLOS mitigation. This approach aims to reduce the multipath error already
in the tracking domain to limit its influence on pseudorange observations. To evaluate the
performance increase, a kinematic data set featuring urban canyons in Tokyo is recorded.
The vector tracking loop reduces the mean of the 3-D position error from 11.6m to 8.7m and
its standard deviation from 9.4m to 4.3m.

A technique that tries to detect and mitigate multipath errors at the observation level is
proposed in Strode and Groves [2016]. It leverages the fact that interference from multipath
can be destructive or constructive, depending on the phase lag. Because this lag varies
with the carrier frequency, multi-frequency observations can be utilized to identify multipath
errors. In this case, the carrier-to-noise ratios of three frequencies are subtracted from each
other pairwise and these differences are compared to an elevation-dependent threshold. Static
and kinematic data sets are recorded. The results verify the method’s capability to detect
multipath and NLOS reception. The authors recommend deploying the method "as part of
a portfolio of multipath and NLOS mitigation techniques".

While all aforementioned techniques for the detection and mitigation of multipath and
NLOS reception work autonomously, recent efforts have examined the utilization of external
information, e. g. 3-D maps, for this purpose. Because autonomous cars need to monitor
their surroundings, it can safely be assumed that localization algorithms for these cars have a
detailed 3-D map available, either from previously mapped databases or generated from their
own sensor data. The two-part paper Groves and Adjrad [2019]; Adjrad et al. [2019] reviews
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various algorithms and the effects that user equipment, the surrounding environment and the
map’s level of detail have on the achievable performance. The best performance is achieved
by combining several of the discussed techniques, bringing down the horizontal root mean
square (RMS) position error from 23.6m to 3.5m for a geodetic receiver and from 26.4m
to 4.7m for a single-frequency mass market receiver. These results stem from single-epoch
processing, so they are likely to improve when the navigation solution is filtered in time.

The last topic to be mentioned in this section is integrity, which characterizes the amount
of trust that can be placed in the output of a localization algorithm (see Section 5.1 for a
formal definition). The concept of integrity originates from the aviation industry. In order
to quantify the risk of unusually large errors, dedicated error models for all input quantities
need to be derived first. These error models have to encompass both the nominal case, when
all components work within their specified error bounds and GNSS reception conditions are
good, as well as the performance under faulty conditions, when at least one of the components
operates outside its specified error bounds and/or GNSS measurement errors are unusually
large due to poor reception conditions.

Pseudorange errors under nominal conditions are analyzed in Cohenour and van Graas
[2011], Perea et al. [2016], Salos et al. [2010] and Khanafseh et al. [2018]. The latter two
focus especially on error models for automotive applications, which differ significantly from
the existing models for aviation due to the higher impact of multipath and NLOS errors. All
mentioned authors use overbounding techniques in order to derive parameters of a Gaussian
error distribution function that estimates the actual errors in a conservative way.

While analysis of the nominal errors is an important step in integrity monitoring, it is
not sufficient for safety-critical systems, e. g. autonomous cars, because real measurements
"exhibit large errors with a much higher probability than even a conservative Gaussian model
would predict" [Humphreys et al., 2018, p. 462]. To achieve the high levels of integrity that are
necessary for safety-critical systems, a dedicated analysis of the tails of the error distributions
needs to be performed. These analyses focus on GNSS performance under faulty conditions
and its impact on the navigation solution.

Gunning et al. [2017] examine anomalies in the broadcast navigation messages of all four
GNSS constellations. Because these anomalies occur very seldom, a large amount of data has
to be analyzed in order to obtain a statistically substantiated error model.

Medina et al. [2018] focus on the other end of the signal transmission chain, where large
multipath and NLOS errors are the main threat to integrity. In that paper, different multipath
models are parametrized and compared to each other, taking observables such as elevation
and carrier-to-noise ratio into account. The four parametrized models lead to availability
percentages between 91.9% and 96.4%, with empirically assessed integrity risks between 0%
and 0.2%. Clearly, this technique alone is insufficient to fulfill the availability and integrity
requirements of autonomous cars. Dedicated integrity monitoring algorithms are required
instead, some of which are summarized subsequently.

As a preliminary remark for the upcoming paragraphs, it should be noted that the pro-
vided numerical values for protection levels cannot be compared to each other directly. In
order to do so, the corresponding integrity risk would have to be identical in all publica-
tions. Moreover, matching quantiles or the complete empirical distribution function of the
protection level would need to be provided. While some authors use very conservative val-
ues (e. g. the horizontal protection level for an integrity risk of 10−7 per minute is ≤ 150 m
in 99.9% of epochs), others provide rather optimistic ones (e. g. the horizontal protection
level for an integrity risk of 10−4 per epoch is ≤ 5 m in 95% of epochs). The matter is
further complicated by the fact that some authors account for the possible exclusion of one
satellite, while others assume nominal conditions. Finally, the test scenarios can either stem
from simulations regarding the number of available satellites or from real measurement data,
making valid comparisons impossible.
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One of the most common techniques concerning integrity in the field of GNSS is
receiver autonomous integrity monitoring (RAIM). In very brief terms, RAIM performs con-
sistency checks on the pseudorange measurements in order to detect and exclude faulty ob-
servations. RAIM is widely used in aviation applications, but is designed to work with single-
frequency/single-constellation receivers. Its extension to multi-frequency/multi-constellation
GNSS is called advanced receiver autonomous integrity monitoring (ARAIM). The potential
and importance of ARAIM are large enough to justify the establishment of a dedicated tech-
nical subgroup for ARAIM within the GPS-Galileo Agreement Working Group C (Design
and Development of the Next Generation of Systems) [Working Group C - ARAIM Techni-
cal Subgroup, 2016]. Some of the most recent scientific publications regarding ARAIM are:
Blanch et al. [2018], Gunning et al. [2018], Pullen et al. [2018] and Rippl et al. [2018].

Blanch et al. [2018] focus on the concept of the integrity support message (ISM). Because
the performance characteristics of GNSS constellations are expected to change over time, the
most important parameters regarding their quality are provided by this ISM. These changes
are slow, so providing a new set of ISM parameters once a year should be sufficient. With the
current ARAIM performance, a horizontal protection level of below 185m can be achieved
"almost always". While this is a major improvement compared to RAIM, where the horizontal
protection level "often exceeds 556m", it is still not in an acceptable range for automotive
applications. Moreover, these protection levels are computed for aircraft, so they assume
unimpaired sky view.

This issue is addressed in Gunning et al. [2018]: By designing an integrity monitoring
algorithm specifically tailored to be used in conjunction with PPP in kinematic applications,
horizontal and vertical protection levels of less than 5m are achieved in kinematic suburban
scenarios. The algorithm requires a convergence time in the order of a few minutes, however.

Both Pullen et al. [2018] and Rippl et al. [2018] propose the inclusion of SBAS data for
integrity monitoring. While Rippl et al. [2018] mainly examine modernized SBAS constella-
tions with multi-frequency/multi-constellation support for aviation applications, Pullen et al.
[2018] is specifically geared toward autonomous cars. The accuracy aspect of this paper is
discussed earlier in this section when recent publications concerning PPP are summarized.
The outlined integrity monitoring algorithm is set to achieve typical along-track and cross-
track protection levels of 2m to 3m when used with PPP and SBAS corrections in good
reception conditions. Additional corrections from a dense network of reference stations are
required to achieve these protection levels in urban areas due to the detrimental effects of
multipath and signal blockage.

Additional noteworthy contributions dealing with integrity are Tijero et al. [2017, 2018].
Because these papers address integrity monitoring specifically for GNSS/INS integration
algorithms that are based on a Kalman filter, they are included in Section 2.5.2.

2.5.2 GNSS/INS Integration for Automotive Applications

This section summarizes some of the recent contributions in the field of GNSS/INS integra-
tion, as far as they concern automotive applications. Because this is a very active field, an
abundance of material exist. Therefore, all publications that focus on the inclusion of addi-
tional sensors beyond GNSS, INS and odometry without providing substantial innovations for
GNSS/INS/odometry integration itself are disregarded. The same applies to contributions
that investigate various types of integration filters, e. g. unscented Kalman filters, cubature
Kalman filters or particle filters. Just as for stand-alone GNSS, major trends are to increase
accuracy, robustness and integrity. An additional aspect is the utilization of low-cost equip-
ment, so research regarding single-frequency receivers is common and receivers tracking three
or more carrier frequencies are virtually non-existent.
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The work of Arribas et al. [2017] is one example of such a low-cost implementation. Data
from a single-frequency/multi-constellation GNSS receiver, a MEMS IMU and the vehicle’s
speedometer are fused in real time on a Raspberry PI. Non-holonomic constraints are utilized
based on the assumption that vbeb,L and vbeb,U are normally distributed zero-mean random
variables. The designed algorithm also features dynamic noise covariance matrices, which
adapt the measurement noise based on the EKF’s innovation sequence. A loosely and a tightly
coupled version of the algorithm are compared to each other, with the tightly coupled version
outperforming the loosely coupled one. No numerical values for the accuracy are provided
because the employed reference system was unable to provide a satisfactory reference solution
in the tested urban scenario. This publication features the most basic versions of algorithm
and measurement equipment that are discussed in current research activities.

Another low-cost approach is developed by Elsheikh et al. [2018]. A single-frequency PPP
algorithm for GPS and GLONASS observations is designed and integrated loosely coupled
with a MEMS IMU. Once again, non-holonomic constraints are included for vbeb,L and vbeb,U ,
but this time without any odometry input data. The algorithm achieves a horizontal RMS
error of 0.8m in suburban areas and 0.7m on a highway while passing under several over-
passes. The reconvergence time to sub-meter accuracy after these overpasses is specified as
a few seconds.

With the help of a dual-frequency receiver for GPS and GLONASS, Liu et al. [2016]
integrate PPP with fixed ambiguities in a tightly coupled GNSS/INS architecture. The
fixing strategy aims to resolve the ambiguities for IF linear combinations. The tight coupling
with INS reduces the time for refixing the ambiguities after a fix is lost from 4min to 1min.
In this scenario, a tactical grade IMU is used and GNSS reception conditions are good,
demonstrating that current PPP techniques still have insufficiently long reconvergence times
as far as autonomous cars are concerned.

By implementing an ultra-tightly coupled GNSS/INS integration scheme, Li et al. [2010]
aim to increase the robustness of the localization algorithm against signal obstructions. Data
from all four wheel speed sensors in conjunction with non-holonomic constraints are applied
to improve the performance of the vector tracking loop, which is limited to GPS L1 C/A
signals. The results show that performance in open sky scenarios is only improved slightly,
but that the ultra-tightly coupling increases signal tracking performance in surroundings with
signal obstructions significantly.

The book of Bevly and Cobb [2010] offers an overview of both vehicle state estimation
and vehicle control on the basis of GNSS/INS integration, including dedicated sections about
side slip angle estimation and tire parameter identification. The presented concept of online
tire parameter estimation is especially interesting, because these parameters change due to
road surface, weather and tire wear, limiting the usefulness of parameters that are estimated
a-priori. This concept is similar to the one in Bevly et al. [2006] and only able to estimate
lateral tire parameters, because dynamic tire radius and longitudinal tire parameters are not
simultaneously observable with the available sensors. An approach similar to the one in this
thesis is then taken in Salmon and Bevly [2014]: A tightly coupled GNSS/INS algorithm is
developed and the steering wheel angle as well as wheel rotation rates from all four wheels
in conjunction with Pacejka’s Magic Formula are used as additional aiding. However, the
GNSS receiver only tracks signals on a single frequency and all tire parameters, including rd,
are considered to be known and invariant with time.

The same types of sensors are also employed in Steinhardt [2014], upon which the devel-
opments in this thesis are built. Pseudoranges and range rates on GPS L1 C/A as well as the
3-D velocity vector vbew from each wheel are utilized to aid the inertial navigation solution
provided by a MEMS IMU. Besides the lack of multi-frequency/multi-constellation GNSS ob-
servations, the odometry preprocessing is limited to a linear tire model and no investigation
of potential correlation between observations stemming from different wheels is performed.
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Katriniok [2014] includes Pacejka’s Magic Formula model in a similar algorithm. The
main differences to Steinhardt [2014] are that a loosely coupled architecture is used and that
a second filter exists, which inputs the results from the GNSS/INS integration as well as the
odometry observations and estimates vbeb,F , vbeb,L and ψ̇nb as well as two "adaption states"
for the scaling of longitudinal and lateral tire forces. These adaption states allow the second
filter to account for uncertainties and changes in the tire parameters, e. g. due to road surface
variations. Any potential correlation between observations stemming from different wheels is
disregarded in this publication, as well.

Most contributions dealing with integrity mainly focus on GNSS and are therefore men-
tioned in Section 2.5.1. In contrast, Hewitson and Wang [2010] and Tijero et al. [2017, 2018]
specifically address integrity in the context of GNSS/INS integration. The former express
the EKF measurement update in terms of a Gauss-Markov model before examining its capa-
bilities in terms of outlier detection, reliability and separability. For this purpose, simulated
data are input into a tightly coupled single-frequency/multi-constellation integration filter.
The results show that the inclusion of additional constellations reduces the lower bound for
detectable outliers and stabilizes the test statistics for outlier detection, especially during
low satellite visibility. The authors call the adaption of RAIM techniques to GNSS/INS
integration algorithms extended receiver autonomous integrity monitoring (eRAIM).

Tijero et al. [2017, 2018] discuss the results of the ESCAPE project, funded by the Euro-
pean GNSS Agency. ESCAPE stands for European Safety Critical Applications Positioning
Engine and aims at providing an integrity monitoring algorithm for autonomous vehicles from
the fusion of multi-frequency/multi-constellation GNSS, PPP corrections, cameras, maps and
vehicle sensors in a tightly coupled algorithm. The developed integrity monitoring technique is
specifically tailored toward localization algorithms that are based on a Kalman filter. The pre-
liminary algorithm version with GNSS and IMU as only sensors and without PPP corrections
achieves a horizontal position error of 11.7m or less in 95% of epochs in a challenging scenario
in the urban canyons of Madrid. The horizontal protection level is 45.6m or less in 95% of
epochs. These values drop to 4.5m for the horizontal error and 32.2m for the horizontal pro-
tection level in open-sky conditions, which is still insufficient for the use in autonomous cars.
Moreover, the targeted integrity risk for these values is 10−4 per epoch, which is several orders
of magnitude more relaxed than the 10−7 per minute employed by Pullen et al. [2018].
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Chapter 3

GNSS Preprocessing

This chapter presents the way GNSS measurements originating from the GNSS receiver are
preprocessed before they are fed into the Kalman filter. The Kalman filter input consists
of the observables described in Section 3.1 and their associated measurement noise, modeled
according to Section 3.6. Section 3.2 depicts how observations from multiple GNSS constella-
tions are used to increase the number of received satellites. Position accuracy is improved by
exploiting the potential of civil signals on multiple carrier frequencies according to Section 3.3.
Multiple constellations and frequencies introduce additional biases into the navigation algo-
rithm. These biases need to be handled properly in order to limit their negative effect on the
quality of the navigation solution. This process is depicted in Section 3.4. Another option to
enhance the accuracy of the resulting navigation solution is the application of precise satellite
orbits and clocks. These products are generated and published by different GNSS analysis
centers and replace the information contained in the satellites’ navigation data messages.
Section 3.5 describes the usage of such products in this thesis.

3.1 Observables
The GNSS receiver provides four types of observations to the navigation algorithm: pseudo-
ranges ρ, carrier phases φ, carrier-to-noise ratios C/N0 and the signal reception time tRrx. The
latter is identical for all tracked signals at a given measurement epoch. The time interval in
between two epochs is τg,k = tRrx,k− tRrx,k−1. Because the measurement epochs are determined
by the receiver clock, its errors need to be considered in order to apply the observations with
the correct timestamp.

The GNSS preprocessing inputs the data from the receiver and provides four types of
observations to the integration filter: pseudoranges ρc, range rates ρ̇c and their respective
timestamps tΓρ and tΓρ̇ . These quantities are corrected for all known a-priori values.

The corrected pseudoranges ρc are computed from the measured pseudoranges ρ̃ by ap-
plying correction terms for receiver and satellite clock bias as well as atmospheric delays:

ρc = ρ̃− cδt̂−R + cδt̂−S − δρ̂I − δρ̂T . (3.1)

δt̂−R is obtained by propagating the EKF’s a-posteriori estimate forward in time, using the
corrected GNSS measurement interval τ cg defined in (3.6):

δt̂−R,k = δt̂+R,k−1 + τ cg,kδ
ˆ̇t+R,k−1. (3.2)

δt̂−S is obtained from the navigation data message or precise orbit and clock files (see Sec-
tion 3.5). δρ̂I is estimated by the GPS Klobuchar model [IS-GPS-200 , 2018, pp. 127-129], δρ̂T
by the modified Hopfield model [Hopfield, 1972] in the formulation given in Xu [2007, p. 58].
Input parameters for the Klobuchar model are taken from the GPS navigation data message,

25



GNSS Preprocessing

input parameters for the modified Hopfield model are taken from daily weather data for the
measurement area (if available) or the Global Pressure and Temperature Model (GPT) [Boehm
et al., 2007].

To get the corrected range rates ρ̇c, the corrected carrier phases φc have to be calculated
first. φc is computed from the measured carrier phases φ̃ by applying correction terms for
the satellite clock bias and the atmospheric delays:

φc = φ̃+ 2π

λca

(
cδt̂−S + δρ̂I − δρ̂T

)
. (3.3)

ρ̇c is the numerical time derivative of φc, converted to the range domain and corrected for
the receiver clock drift:

ρ̇ck = λca
2π

φck − φck−1
τ cg,k

− cδˆ̇t−R,k. (3.4)

The satellite clock drift is compensated implicitly due to the change in the satellite clock bias
correction term from epoch k − 1 to epoch k. δˆ̇t−R is obtained by propagating the EKF’s a-
posteriori estimate forward in time. Because δṫR is modeled as random walk, the propagation
simplifies to:

δˆ̇t−R,k = δˆ̇t+R,k−1. (3.5)

To account for the effect of the receiver clock drift on the measurement interval, τ cg has to be
used instead of τg in (3.4):

τ cg,k = tΓrx,k − tΓrx,k−1 = τg,k

1 + δˆ̇t+R,k−1
. (3.6)

The corrected timestamps tΓρ and tΓρ̇ are computed from the signal reception time tRrx by
subtracting the a-priori estimate of the receiver clock bias. tΓρ̇,k is then placed in the middle
of the two epochs that have been used for the calculation of ρ̇c:

tΓρ,k = tRrx,k − δt̂−R,k (3.7)

tΓρ̇,k = tRrx,k − δt̂−R,k −
τ cg,k
2 . (3.8)

The tightly coupled measurement models derived in Section 6.3 input the satellites’ posi-
tions pees and velocities vees. To account for the rotation of the ECEF frame during the signal
travel time, these quantities are evaluated at the time of signal transmission, but resolved in
the ECEF frame at the time of signal reception. For pseudorange observations at epoch k,
the transmission time is tΓtx,k and the reception time is tΓρ,k. For range rate observations at
epoch k, the transmission time is (tΓtx,k + tΓtx,k−1)/2 and the reception time is tΓρ̇,k.

If only single-frequency signals from a single constellation are input to the integration
filter, the steps specified so far are sufficient. For multi-frequency/multi-constellation GNSS
input, additional steps are necessary. These are explained in detail in the following sections.

3.2 Multi-Constellation GNSS
Galileo and GPS are chosen as the two constellations to develop a multi-constellation al-
gorithm for several reasons: Galileo implements the same ephemeris representation as GPS
[Galileo OS-SIS-ICD, 2016; IS-GPS-200 , 2018]. Both are code-division multiple access
(CDMA) systems and share two common carrier frequencies: L1/E1 at 1575.42MHz and
L5/E5a at 1176.45MHz. All Galileo satellites and the newer generation GPS satellites broad-
cast civil signals on multiple frequencies. These characteristics make Galileo and GPS an ideal
choice for multi-constellation GNSS in automotive positioning.
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GPS currently employs 31 active satellites [Navigation Center , 2019]. Twelve are from
block IIR or older and transmit L1 C/A as their only civil signal. Seven are from block IIR-M
and transmit the civil signals L1 C/A and L2C. The remaining twelve are from block IIF
and transmit the civil signals L1 C/A, L2C and L5. Galileo currently employs 22 active
satellites [European GNSS Service Center , 2019], all of which transmit the civil signals
E1, E5a and E5b.

GPS satellites broadcast the Legacy Navigation Message (LNAV) on L1 C/A and the
Civil Navigation Message (CNAV) on L2C and L5. Compared to LNAV, CNAV has a more
modern error correction algorithm and some additional terms for clock and ephemeris rep-
resentation, allowing for more precise information about the satellites’ position [Teunissen
and Montenbruck, 2017, Section 7.4]. Galileo satellites broadcast the Free Navigation Mes-
sage (F/NAV) on E5a and the Integrity Navigation Message (I/NAV) on E1 and E5b. F/NAV
is intended for single-frequency E5a and dual-frequency E1/E5a users. I/NAV is intended
for single-frequency E1 or E5b and dual-frequency E1/E5b users. Single-frequency E1 users
may also use F/NAV data if available [Teunissen and Montenbruck, 2017, Section 9.2.2]. In
this thesis, LNAV data for GPS and F/NAV data for Galileo are used for all signals as a
backup to precise orbit information (see Section 3.5).

With the introduction of GNSS signals from multiple constellations, multiple choices for
the common reference time tΓ exist. GPS system time is different from Galileo system time.
The difference is the GPS to Galileo Time Offset (GGTO) [Hahn and Powers, 2005]:

GGTO = tG − tE , (3.9)
where the superscript G denotes GPS and the superscript E (for European) denotes Galileo.
The GGTO is one part of the inter-system bias (ISB) between GPS and Galileo observa-
tions. In this thesis, an ISB between the constellations p and q is denoted by Dp,q. As
GPS and Galileo are the only two constellations considered, DE,G is the only ISB that ap-
pears. It sums up all constellation-dependent differences in pseudorange measurements and
also includes receiver-specific parts as detailed in Section 3.4. As a consequence of the ISB,
observations belonging to different constellations have to be treated differently. One alterna-
tive is to consider observations from different constellations to have different receiver clock
biases. Thus, two receiver clock biases are estimated by the integration filter: δtGR for GPS
observations and δtER for Galileo observations. The other alternative is to define one common
receiver clock bias δtΓR for all observations taken by a receiver at a specific epoch, independent
of constellation. Nonetheless, the integration filter estimates two clock bias quantities: δtΓR
on the one hand and (δtΓR +DE,G) on the other hand. Both alternatives are mathematically
equivalent [Odijk and Teunissen, 2013; Paziewski and Wielgosz, 2015]. In both cases, the
geometry matrix G (2.19) is appended with a fifth column. In this thesis, the former variant
is implemented. Pseudorange corrections involving the receiver clock bias apply δtGR to GPS
pseudoranges and δtER to Galileo pseudoranges. The variation of the ISB with time is assumed
to be negligible, resulting in a common receiver clock drift δṫR for all range rate observations
independent of constellation. The reference time tΓ is defined to be the GPS system time tG.
The time quantities tΓρ , tΓρ̇ and τ cg are identical for GPS and Galileo. This reflects the fact
that the receiver takes all measurements simultaneously, independent of constellation.

3.3 Multi-Frequency GNSS
The total pseudorange error, or user equivalent range error (UERE), is decomposed into two
parts considered statistically independent: Errors originating from space and control segment
are summed up in the signal-in-space ranging error (SISRE), errors depending on the receiver
and its environment are included in the user equipment error (UEE) [Betz, 2016, p. 140].

UERE =
√

SISRE2 + UEE2 (3.10)
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Table 3.1 lists the key contributions to the pseudorange error budget and their typical values.
The range of 0.2m to 1.0m for the multipath error assumes that the direct signal path is
present. Otherwise, the multipath error could be tens or hundreds of meters. Betz [2016,
Section 6.1] lists the unmodeled ionospheric delay of modern single-frequency receivers (circa
2016 and later) with 5.0m, making it the largest contributor to the UERE. In comparison,
modern dual-frequency receivers provide a typical ionospheric error of 0.4m, resulting in
a UEE of 0.5m and a UERE of 0.7m. Hence, multi-frequency signals accessible to civil
users provide the potential to drastically increase measurement accuracy. The second largest
contributor to the error budget are the broadcast satellite orbits and clocks. These are
addressed with the utilization of precise orbit and clock products in Section 3.5.

Modernized signals offer additional advantages over GPS L1 C/A beyond removing the
ionospheric error: higher code chipping rate for improved tracking precision and more robust-
ness against multipath, data-free pilot components allowing longer correlation times and more
robust carrier tracking discriminator functions, secondary codes for reduced cross-correlation
in between signals from different satellites as well as an increased signal transmission power
for higher carrier-to-noise ratios [Teunissen and Montenbruck, 2017, Chapters 4,7,9].

Table 3.1: Contributions to the GNSS UERE [Teunissen and Montenbruck, 2017, p. 9]

Error Source Contribution 1σ (in m)

SISRE
Broadcast satellite orbit 0.2 - 1.0
Broadcast satellite clock 0.3 - 1.9
Broadcast group delays 0.0 - 0.2

UEE
Unmodeled ionospheric delay 0.0 - 5.0
Unmodeled tropospheric delay 0.2
Multipath 0.2 - 1.0
Receiver noise 0.1 - 1.0

UERE 0.5 - 6.0

Multi-frequency observations reduce the ionospheric error because this error varies with
the signal’s carrier frequency. Three approaches are considered to model this frequency
dependency when processing pseudorange measurements from multiple carrier frequencies in
the integration filter:

1. Treat measurements stemming from the same satellite as a batch, i. e. assign similar
variances to each pseudorange measurement from the same satellite but assume that
pseudorange measurements on different frequencies, but from the same satellite, are
highly correlated. Pseudoranges from different satellites are considered uncorrelated.

2. Introduce additional variables into the EKF’s state vector to estimate the ionospheric
delay. The simplest version of this alternative adds a single additional state representing
the zenith ionospheric delay on a reference carrier frequency. The ionospheric delay’s
dependency on carrier frequency and elevation is represented in the EKF’s pseudorange
measurement model. More complex versions add one state for each satellite in view,
resulting in a variable-length state vector.

3. Work with IF linear combinations of pseudoranges.
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The decision on which approach is implemented is based on the following criteria:

A. Ensure high flexibility w. r. t. the GNSS receiver. The goal is that in order to work
with another GNSS receiver providing observations for other signals than the previous
receiver, the least possible amount of changes has to be made to the integration filter.
In the best-case scenario, all changes are limited to the GNSS preprocessing and the
integration filter stays the same.

B. The EKF assumes zero-mean Gaussian white measurement noise. The goal is to make
the observations forwarded to the EKF satisfy these assumptions as closely as possible.

C. Keep the increase in the algorithm’s complexity low.

While approach 1 takes the ionospheric delay’s dependency on the carrier frequency into
account, this is done implicitly via the off-diagonal elements in the measurement noise co-
variance matrix. Each pseudorange observation is still single-frequency and therefore cor-
rupted by the unmodeled ionospheric delay. This violates criterion B because the remaining
error after applying a ionospheric delay model is highly correlated in time and not zero-mean
[Kaplan and Hegarty, 2017, Section 10.2.4]. Approach 2 increases the algorithm’s complexity
due to the additional variables in the EKF’s state vector. The additional states are not ob-
servable for a single-frequency receiver, hence limiting the flexibility. Approach 3 matches all
three criteria: No changes to the integration filter are necessary if the measurement noise for
IF combinations is modeled properly. This is addressed in Section 3.6. After calibration of
differential code biases (DCBs) in Section 3.4, the measurement noise of the IF pseudoranges
has a mean close to zero. Because no additional entries are introduced into the state vector
and only one pseudorange observation per satellite is forwarded to the integration filter, the
increase in complexity is minimal. Consequently, approach 3 is implemented. This leads to
two main drawbacks: Firstly, IF combinations only support two pseudorange measurements
per satellite and not three or even more. Secondly, they suffer from increased code track-
ing noise. The first drawback is not a significant issue, as the inclusion of more than two
frequencies offers diminishing improvements in terms of position accuracy when compared
to the improvement achieved by including a second frequency. Furthermore, each additional
frequency band increases the GNSS receiver’s cost, rendering the widespread use of more than
two carrier frequencies in automotive positioning applications in the near future unlikely. The
effect of increased measurement noise is attenuated by the Kalman filter’s inherent smoothing
ability, especially if the resulting measurement noise has a mean close to zero.

To formulate IF combinations, the squared ratio of two carrier frequencies fp and fq is
introduced:

γp,q =
(
fp
fq

)2

. (3.11)

The IF pseudorange ρp/q is defined as:

ρp/q = ρq − γp,qρp
1− γp,q

=
∥∥∥pees(tΓtx)− peea(tΓrx)

∥∥∥+ cδtR − cδtS + δρT

+ (δρM,q + δρN,q +Bq)− γp,q (δρM,p + δρN,p +Bp)
1− γp,q

.

(3.12)

Range, clock errors and tropospheric delay are the same as in the basic pseudorange
model (2.13). The ionospheric delay has been eliminated due to its frequency dependency.
However, ρp/q is contaminated by multipath errors, code tracking noise and code biases from
both signals. For a given receiver/antenna combination, the multipath error on a specific
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satellite signal depends on the motion of satellite, receiving antenna and surrounding re-
flective surfaces w. r. t. each other. In general, code multipath errors have non-zero mean
values [Teunissen and Montenbruck, 2017, p. 453]. Their magnitude varies over time and
is unknown to the localization algorithm. Therefore, they cannot be calibrated a-priori and
have to be accounted for via the measurement noise model. The code tracking noise is mod-
eled as zero-mean in accordance with Groves [2013, p. 396], causing its effect to be smoothed
out over time as long as the measurement noise model reflects (3.12). Code biases on the
other hand are time-invariant quantities whose a-priori calibration is possible [Montenbruck
et al., 2014]. They can only be neglected if just a single type of pseudorange per constellation
is utilized. This single type may be a specific IF combination or a specific single-frequency
pseudorange. If this is the case, the receiver-specific parts of the biases Bp and Bq are ab-
sorbed by the receiver clock bias δtR, leaving the positioning performance unaffected. The
satellite-specific parts of Bp and Bq can be considered as part of the satellite clock bias δtS .
They need to be taken into account anyway unless the same signal pair that is defined
as reference by the respective constellation’s control center is used to form ρp/q. This is
impossible for civil GPS users because the reference pair consists of the encrypted signals
L1 P(Y) and L2 P(Y) [IS-GPS-200 , 2018].

Table 3.2: RINEX-Style Codes for the GNSS Signals Utilized in This Thesis

Signal Code Constellation Frequency Band Tracking Mode
or Channel

G1C GPS L1 C/A
G2X GPS L2 L2C-(M+L)
G5X GPS L5 I+Q

E1X Galileo E1 B+C
E5X Galileo E5a I+Q
E7X Galileo E5b I+Q

The results in this thesis were generated with a JAVAD Triumph-LS. This GNSS receiver
provides measurements on GPS L1 C/A, L2C and L5 as well as on Galileo E1, E5a and E5b
(among others). Combined tracking of data and pilot channels is employed wherever possible,
so the RINEX identifiers for the pseudoranges are C1C, C2X and C5X for GPS as well as C1X,
C5X and C7X for Galileo. According to the notation defined for this thesis in Section 2.2,
the identifiers G1C, G2X and G5X denote the GPS signals, while the identifiers E1X, E5X
and E7X denote the Galileo signals. These codes and their explanation are summarized in
Table 3.2. The GNSS preprocessing inputs pseudoranges, carrier phases and carrier-to-noise
ratios of these signals. It decides which observation types are forwarded to the integration
filter based on the available measurements per satellite. Measurements on a specific signal
are defined to be available if the respective C/N0 is at least 30 dB-Hz. GPS satellites are
defined to be available if measurements on L1 are available, Galileo satellites if measurements
on E1 are available. For each GNSS measurement epoch, the GNSS preprocessing forwards
one pseudorange per available satellite to the integration filter. IF combinations are preferred
if they are available: ρG1C/G5X or ρG1C/G2X for GPS, ρE1X/E5X or ρE1X/E7X for Galileo. In
case all three signals of a satellite are received in a specific epoch, ρG1C/G5X is favored over
ρG1C/G2X and ρE1X/E5X is favored over ρE1X/E7X . Higher preference is given to L5 and E5a
compared to L2C and E5b for two reasons: On the one hand, the frequency separation to
the L1 band is higher for L5 and E5a. This causes the amplification of multipath error and
code tracking noise to be less severe for the IF combinations involving L5 and E5a compared
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with the IF combinations involving L2C and E5b. On the other hand, L5 and E5a share
the same carrier frequency, code chipping rate and spreading code length. This causes their
multipath and tracking noise characteristics to be similar to each other. From most to least
favorable, the pseudorange hierarchy hence is ρG1C/G5X > ρG1C/G2X > ρG1C for GPS and
ρE1X/E5X > ρE1X/E7X > ρE1X for Galileo. Being able to work with more than one type of
pseudorange observation is more important for GPS than it is for Galileo, because all Galileo
satellites broadcast the same signals while only the GPS block IIF satellites broadcast the
L5 signal and only the block IIF and block IIR-M satellites broadcast the L2C signal.

Out of the three carrier phase inputs per constellation, only the ones in the L1 band (φG1C
for GPS and φE1X for Galileo) are processed to form range rates. Due to the forming of time
derivatives with τ cg < 1 s, the ionospheric error is already eliminated since its correlation time
is in the order of half an hour, making its change with time negligible compared to the other
error sources in ρ̇c [Olynik et al., 2002]. As the ionospheric delay is the only error source
depending on carrier frequency, the increase in accuracy gained from including carrier phase
measurements on multiple frequencies is expected to be small.

3.4 Pseudorange Biases
Pseudorange observations ρ are affected by different types of biases. If these biases need to be
addressed specifically or not depends on the utilized signal types and the desired accuracy. In
a single-signal, single-constellation algorithm, these code biases are absorbed by the receiver
and satellite clock biases. However, in any mixed-signal/mixed-constellation algorithm that
aims to achieve high accuracy, the DCBs need to be addressed. Typical DCB values range
from 0ns to ±60 ns (0m to ±18m), so they need to be accounted for if the desired accuracy
is higher than this [Montenbruck et al., 2014, p. 199].

To account for code biases, the bias term B in the pseudorange model (2.13) is split into
a satellite-specific part BS and a receiver-specific part BR:

B = BS +BR. (3.13)

BS and BR depend on the navigation signal. This dependency is represented by an appropri-
ate subscript, specifying the navigation signal in question (e. g. BR

E5X is the receiver-specific
code bias for the combined data and pilot tracking of the Galileo E5a signal). The absolute
values of BS and BR do not affect positioning performance because they are absorbed by
the receiver and satellite clock biases. Consequently, only the DCBs between the employed
navigation signals are of interest. The DCB between the signals p and q is denoted as dp,q:

dp,q = Bp −Bq. (3.14)

Analogous to the absolute bias B, the DCB is split into a satellite-specific part dSp,q and a
receiver-specific part dRp,q:

dp,q = dSp,q + dRp,q (3.15)
dSp,q = BS

p −BS
q (3.16)

dRp,q = BR
p −BR

q . (3.17)

The satellite clock errors distributed via the navigation data message or via precise orbits
and clock files refer to a specific IF combination of pseudorange measurements. For GPS,
P(Y) code measurements on L1 and L2 are employed [IS-GPS-200 , 2018]. Galileo satellite
clock errors refer to the IF combination of E1 and E5a if broadcast via F/NAV or to the IF
combination of E1 and E5b if broadcast via I/NAV [Galileo OS-SIS-ICD, 2016]. The precise
orbit and clock files employed in this thesis refer to P(Y) code measurements on L1/L2 for
GPS and to E1/E5a code measurements for Galileo [Deng et al., 2016]. Consequently, the
following reference signals for the satellite clock bias are defined in this thesis:
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• IF combination of P(Y) code measurements on L1/L2 for GPS: ρG1W/G2W .

• IF combination of combined data and pilot tracking code measurements on E1/E5a for
Galileo: ρE1X/E5X .

For these observations, the satellite-specific code bias is therefore zero:

BS
G1W/G2W = BS

E1X/E5X = 0. (3.18)

All other code observations have to be provided with an appropriate satellite-specific DCB.
In this thesis, the satellite-specific DCBs provided by Deutsches Zentrum für Luft- und
Raumfahrt (DLR) are used in combination with precise orbit and clock files. If the backup
ephemeris data from the navigation data messages via RINEX files are employed, no ad-
ditional satellite-specific DCBs are necessary because this information is provided as part
of the navigation data messages: Timing Group Delay (TGD) and Inter-Signal Correction
Terms (ISCs) for GPS, Broadcast Group Delay (BGD) for Galileo. While the satellite-
specific DCBs from the navigation data messages can be used directly to get the satellite
clock error for all desired navigation signals (G1C, G2X and G5X for GPS; E1X, E5X
and E7X for Galileo), the values from DLR need to be transformed because only a sub-
set of DCBs is provided. This set however is sufficient to construct any desired satellite-
specific DCB [Montenbruck and Hauschild, 2013]. The provided subset for GPS is dSG1C,G1W ,
dSG1C,G2W , dSG2W,G2S , dSG2W,G2L, dSG2W,G2X , dSG1C,G5Q, dSG1C,G5X ; the provided subset for
Galileo is dSE1C,E5Q, dSE1X,E5X , dSE1C,E7Q, dSE1X,E7X , dSE1C,E8Q, dSE1X,E8X , dSE1C,E6C . From
this subset, the relevant DCBs are constructed as follows:

dSG1C,G1W/G2W =
dSG1C,G2W − γG1,G2d

S
G1C,G1W

1− γG1,G2
(3.19)

dSG2X,G1W/G2W = γG1,G2
1− γG1,G2

(
dSG1C,G2W − dSG1C,G1W

)
− dSG2W,G2X (3.20)

dSG5X,G1W/G2W =
dSG1C,G2W − γG1,G2d

S
G1C,G1W

1− γG1,G2
− dSG1C,G5X (3.21)

dSE1X,E1X/E5X =
dSE1X,E5X
1− γE1,E5

(3.22)

dSE5X,E1X/E5X = γE1,E5
1− γE1,E5

dSE1X,E5X (3.23)

dSE7X,E1X/E5X =
dSE1X,E5X
1− γE1,E5

− dSE1X,E7X . (3.24)

All DCBs in (3.19)-(3.24) are referenced to the respective reference IF combination for the
satellite clock bias. To get the DCBs for the employed IF combinations, the IF combination
of these DCBs is formed:

dSG1C/G2X,G1W/G2W =
dSG2X,G1W/G2W − γG1,G2d

S
G1C,G1W/G2W

1− γG1,G2
(3.25)

dSG1C/G5X,G1W/G2W =
dSG5X,G1W/G2W − γG1,G5d

S
G1C,G1W/G2W

1− γG1,G5
(3.26)

dSE1X/E5X,E1X/E5X =
dSE5X,E1X/E5X − γE1,E5d

S
E1X,E1X/E5X

1− γE1,E5
= 0 (3.27)

dSE1X/E7X,E1X/E5X =
dSE7X,E1X/E5X − γE1,E7d

S
E1X,E1X/E5X

1− γE1,E7
. (3.28)
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In analogy to the satellite-specific part, the receiver-specific code bias of one signal per
constellation is set to zero by defining a reference signal. Because the L1 band is the only
frequency band in which all satellites broadcast civil signals, the following reference signals
for the receiver clock bias are defined in this thesis:
• C/A code measurements on L1 for GPS: ρG1C .

• Combined data and pilot tracking code measurements on E1 for Galileo: ρE1X .
For these observations, the receiver-specific code bias is therefore zero:

BR
G1C = BR

E1X = 0. (3.29)

All other code observations have to be provided with an appropriate receiver-specific DCB.
These DCBs need to be calibrated for the employed receiver. To do this, the method described
in Montenbruck et al. [2014] is adopted for a single receiver. The receiver is connected to
a roof antenna and three consecutive data sets, each spanning 24 h with a measurement
interval of 30 s, are collected. To eliminate potential impact on the DCBs caused by antenna
and signal splitter, the same antenna and splitter models that are utilized to generate the
results in Chapter 7 are employed and the receiver is connected to the same splitter output.
Data collection was performed on day of year (DOY) 64, 65 and 66 of 2019. To calibrate
the DCBs, the difference between two pseudorange observations to the same satellite at the
same epoch, but based on different signals p and q, is formed:

ρp − ρq = δρI,p + δρM,p +Bp + δρN,p − δρI,q − δρM,q −Bq − δρN,q
= (1− γp,q) δρI,p + dSp,q + dRp,q + δρM,p − δρM,q + δρN,p − δρN,q.

(3.30)

The geometric range from satellite to receiver antenna, the clock biases and the tropospheric
delay are eliminated because they are independent of signal frequency. The ionospheric delay
for a signal p is inversely proportional to its carrier frequency fp, yielding

δρI,q = γp,qδρI,p. (3.31)

Montenbruck et al. [2014] assume that multipath and code tracking noise terms for both
signals have a mean of zero. Therefore, these terms are filtered out by averaging. While this
assumption is valid for the tracking noise [Groves, 2013, p. 396], it is not generally valid for
the multipath error. In order to minimize the mean multipath error’s magnitude, the roof
antenna is supplied with a ground plate to shield it from signal reflections stemming from
below. Furthermore, the antenna is placed as high up and as far away from any surrounding
reflective surfaces as possible. For the purpose of calibrating dRp,q, the terms δρI,p and dSp,q
need to be known. The ionospheric delay is obtained from the final Ionosphere Map Exchange
Format (IONEX) files provided by the IGS. The satellite-specific DCBs are obtained from
the files provided by DLR in combination with precise orbit and clock files and from the
navigation data messages in combination with broadcast ephemeris data. An elevation cutoff
angle of 20◦ is used in accordance with Montenbruck et al. [2014]. The advantage of this
method for DCB calibration is its simplicity: Neither a GNSS signal simulator nor a GNSS
receiver network are necessary. The calibration is performed with only one receiver and some
data files provided by the IGS.

Figure 3.1 displays the progression of the receiver-specific DCBs during DOY 64. The
plots on the left hand side are noisy due to the presence of multipath and code tracking noise
from both respective signals. On the right hand side, these effects are removed with the help
of the multipath combination ρMC,p, consisting of one pseudorange observation on frequency p
and two carrier phase observations on frequencies p and q [Teunissen and Montenbruck, 2017,
Section 20.2.4]:

ρMC,p = ρp −
λca,p
2π

φp + 2
1− γp,q

(
λca,p
2π

φp −
λca,q
2π

φq

)
. (3.32)
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Figure 3.1: Receiver-specific DCBs on DOY 64, computed with satellite-specific DCBs from
DLR. The plots on the left hand side contain multipath and code noise, while these effects
have been removed on the right hand side via the multipath combination. Different colors
indicate different satellites.

ρMC,p is geometry-free and ionosphere-free. It is biased due to the carrier phase ambiguities
on both frequencies. This bias is removed by subtracting the mean of ρMC,p for each satel-
lite pass. Because multipath and tracking noise for carrier phase measurements are small
compared to their counterparts for code measurements, the remaining time series is domi-
nated by code multipath and code tracking noise. Forming ρMC on both signals p and q and
subtracting them from the code observations before differencing those yields with (3.30):

(ρp − ρMC,p)− (ρq − ρMC,q) ≈ (1− γp,q) δρI,p + dSp,q + dRp,q. (3.33)

As the right hand side of Figure 3.1 shows, this technique reduces the noise of the receiver-
specific DCB estimation drastically. Some variation over time remains, indicating that iono-
spheric delay, code multipath and code tracking noise have not been eliminated completely.
The graphical depiction of the progression of dR for the remaining days looks very similar to
Figure 3.1 and is included in the appendix (Section B.1). The same holds for the results of
all three days, calculated with navigation message data.

The numerical evaluation of the receiver-specific DCB calibration is presented in Table 3.3
and Table 3.4. The difference between the two tables is the origin of the satellite-specific
DCBs: While the values from DLR are utilized to get the results in Table 3.3, navigation
message data are used for Table 3.4. The different values for dS change the arithmetic
mean of dR by the following margins: 1.40m for dRG2X,G1C , 1.55m for dRG5X,G1C , 0.25m for
dRE5X,E1X and 0.43m for dRE7X,E1X . This disparity is caused by the dissimilar estimation
strategies for dS employed by DLR on the one hand and the respective constellation’s control
segment on the other hand. DLR employs a zero-mean constraint for each type of satellite-
specific DCB [Montenbruck et al., 2014, p. 195], while the methods employed by the control
segments are not publicly documented. The magnitude of the differences between the two
approaches justifies the introduction of two different sets of receiver-specific DCBs: One for
the use with precise orbits and clocks and the values for dS from DLR, one for the use
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Table 3.3: Receiver-Specific DCBs, Averaged Over all Three Days, Computed With Satellite-
Specific DCBs From DLR

Quantity Unit dRG2X,G1C dRG5X,G1C dRE5X,E1X dRE7X,E1X

Arith. mean d̄R m −3.93 0.08 1.94 −3.07

Arith. mean d̄R, m −3.93 0.06 1.92 −3.07
ρMC applied

Std. dev. σdR m 0.60 0.50 0.41 0.42

Std. dev. σdR , m 0.25 0.32 0.18 0.21
ρMC applied

Std. dev. of mean σd̄R mm 3.4 3.6 2.1 2.1

Std. dev. of mean σd̄R , mm 1.4 2.4 0.9 1.1
ρMC applied

Table 3.4: Receiver-Specific DCBs, Averaged Over all Three Days, Computed With Satellite-
Specific DCBs From the Navigation Data Messages

Quantity Unit dRG2X,G1C dRG5X,G1C dRE5X,E1X dRE7X,E1X

Arith. mean d̄R m −2.53 1.63 2.19 −2.63

Arith. mean d̄R, m −2.53 1.62 2.18 −2.63
ρMC applied

Std. dev. σdR m 0.60 0.54 0.41 0.45

Std. dev. σdR , m 0.26 0.38 0.19 0.27
ρMC applied

Std. dev. of mean σd̄R mm 3.4 3.9 2.1 2.3

Std. dev. of mean σd̄R , mm 1.5 2.8 0.9 1.4
ρMC applied

with broadcast ephemeris and the values for dS from the navigation data messages. The
zero-mean constraint employed by DLR induces changes to all satellite-specific DCBs of a
constellation each time a new satellite is deployed, causing changes to the calibration values
for dR. In order to prevent negative effects on the position accuracy, the results presented in
Chapter 7 are generated with the same set of values for dS that are used for calibration of dR:
The weekly IGS DCB solution for satellites from GPS week 2043 (March 3rd to March 9th

2019), the same week during which the calibration data for dR were recorded. This means
that no satellite-specific DCBs are available for satellites that are newly deployed in between
calibration of dR and execution of the measurements described in Chapter 7. Consequently,
observations regarding such satellites must not be used in the navigation algorithm when
processing the measurement data. In this particular case, the number of newly deployed
satellites is zero for both GPS and Galileo. However, for applications beyond prototyping
level, a way of dealing with new satellites that does not affect the calibration values for dS
and, in consequence, dR is necessary.
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Apart from the arithmetic mean, the values in Table 3.3 and Table 3.4 are in good agree-
ment. The standard deviation of a single observation varies from 41 cm for dRE5X,E1X to 60 cm
for dRG2X,G1C without the application of the multipath combination. The comparatively high
standard deviation for dRG2X,G1C is in agreement with the low code chipping rate of the GPS
L2C signal (511.5 kHz compared to 10.23MHz for GPS L5, Galileo E5a and Galileo E5b),
making pseudorange measurements on GPS L2C more susceptible to multipath and causing
increased code tracking noise compared to the signals with higher code chipping rate. After
removing multipath error and code tracking noise via the multipath combination, the stan-
dard deviation of a single observation is reduced and now in the range of 18 cm for dRE5X,E1X
to 32 cm for dRG5X,G1C when using DLR values for dS and in the range of 19 cm for dRE5X,E1X
to 38 cm for dRG5X,G1C when using navigation data message values. All satellite-specific DCBs
in the navigation data messages stay constant throughout the three days, so the slightly in-
creased standard deviation when using navigation message data cannot be attributed to a
change of these values. However, the data in the IGS IONEX files are derived with a certain
set of satellite-specific DCBs and the application of a zero-mean constraint is common IGS
practice [Montenbruck et al., 2014, p. 195], implying that the IONEX data are in agreement
with the DLR values for dS . Consequently, the remaining ionospheric delay after applying
the IONEX data is slightly higher for the calibration method with navigation data message
values for dS , resulting in an increased standard deviation. The magnitude of this effect de-
pends on the specific values for dS . In this case, the effect is more pronounced for dRG5X,G1C
and dRE7X,E1X (+6 cm standard deviation each) than it is for dRG2X,G1C and dRE5X,E1X (+1 cm
standard deviation each). Assuming uncorrelated observations of a quantity q, the standard
deviation σq̄ of the arithmetic mean q̄ is obtained by dividing the standard deviation σq of a
single observation by the square root of the number of observations n:

σq̄ = σq√
n
. (3.34)

Application of (3.34) to the results for dR leads to the values presented in the last two rows
of Tables 3.3 and 3.4. The theoretical standard deviations of the arithmetic means are in
the range of 2.1mm to 3.9mm without application of the multipath combination and in the
range of 0.9mm to 2.8mm with application of the multipath combination. However, the
assumption of uncorrelated observations is unsubstantiated in this case because pseudorange
measurement errors are correlated in time, so these values only provide a lower bound for σd̄R .

The GNSS preprocessing outputs three different types of pseudoranges per constellation:
two different IF combinations and single-frequency observations in the L1 band. The latter
serve as reference signal on the receiver side, so their receiver-specific code bias is zero.
Analogous to the satellite-specific DCBs in (3.25)-(3.28), the receiver-specific DCBs of the
IF combinations are formed from the IF combination of their individual parts:

dRG1C/G2X,G1C =
dRG2X,G1C − γG1,G2d

R
G1C,G1C

1− γG1,G2
=

dRG2X,G1C
1− γG1,G2

(3.35)

dRG1C/G5X,G1C =
dRG5X,G1C − γG1,G5d

R
G1C,G1C

1− γG1,G5
=

dRG5X,G1C
1− γG1,G5

(3.36)

dRE1X/E5X,E1X =
dRE5X,E1X − γE1,E5d

R
E1X,E1X

1− γE1,E5
=

dRE5X,E1X
1− γE1,E5

(3.37)

dRE1X/E7X,E1X =
dRE7X,E1X − γE1,E7d

R
E1X,E1X

1− γE1,E7
=

dRE7X,E1X
1− γE1,E7

. (3.38)

With the content presented so far, all available GPS pseudoranges and their combinations
can be applied consistently. The same holds for Galileo pseudoranges and their combina-
tions. The satellite clock bias for GPS is referenced to ρG1W/G2W , for Galileo it is referenced
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to ρE1X/E5X . The receiver clock bias is referenced to ρG1C for GPS and to ρE1X for Galileo,
respectively. This leaves a potential ISB DE,G between GPS pseudoranges on the one hand
and Galileo pseudoranges on the other hand, as mentioned in Section 3.2. In analogy to the
DCBs, it consists of a receiver-specific part DR and a satellite-specific part DS . Both parts
are defined based on the respective reference signals for satellite and receiver clock bias. The
satellite-specific part accounts for the different reference times of the satellite clock biases
and is equivalent to the negative GGTO, transformed into the range domain. The receiver-
specific part accounts for the different group delays of the reference signals G1C and E1X
inside the receiver, caused by different signal paths from the antenna to the correlator.

DE,G = DS
E,G +DR

E,G

= DS
E1X/E5X,G1W/G2W +DR

E1X,G1C

= c(tE − tG) +DR
E1X,G1C

= −cGGTO +DR
E1X,G1C

(3.39)

Treating the term DR
E1X,G1C as a DCB is also possible. In this case, only one of the biases

(BR
G1C or BR

E1X) in (3.29) is set to zero and dRE1X,G1C is applied instead of DR
E1X,G1C . Both

approaches are mathematically equivalent. In contrast to the DCBs, DE,G cannot be cali-
brated due to two reasons: On the one hand, DE,G is time-dependent because it includes the
time-dependent GGTO. On the other hand, no matching pseudorange observations to the
same satellite exist to calibrate DR

E1X,G1C because the two relevant signals belong to different
constellations. Consequently, one additional parameter has to be estimated for each added
constellation. In this thesis, that is accomplished by the addition of an additional receiver
clock bias state δtER to the state vector (see Section 3.2).

3.5 Precise Satellite Orbits and Clocks
Next to the unmodeled ionospheric delay, the errors of broadcast satellite orbits and clocks are
the second largest contributor to the UERE (see Table 3.1). The magnitude of these errors
is reduced by the application of precise satellite orbits and clocks. These orbit and clock
products are estimated by several GNSS analysis centers and provided via the respective
analysis center’s server or via the IGS. Multiple types of orbit and clock products exist.
Table 3.5 lists the available products for GPS in combination with their accuracy and latency.
Orbit accuracy is increased by a factor of 20 when comparing broadcast ephemeris with the
predicted half of the ultra-rapid orbits. Clock accuracy is only improved slightly in this case.
An accuracy increase of factor 20 occurs when comparing the predicted and the observed half
of the ultra-rapid clocks, demonstrating the fact that orbits can be predicted significantly
better than satellite clock behavior.

As one of the requirements for the navigation algorithm designed in this thesis is to base
all output values solely on information available in real time, only the predicted half of ultra-
rapid products and the real time products have to be considered as a potential replacement
for broadcast ephemeris. Since the IGS real time service currently only supports GPS and
GLONASS, but not Galileo [Teunissen and Montenbruck, 2017, p. 977], the predicted half of
the ultra-rapid products remains as only alternative. The GNSS analysis center Deutsches
GeoForschungsZentrum (GFZ) offers combined ultra-rapid products covering five active con-
stellations: GPS, GLONASS, Galileo, BeiDou and the Quasi-Zenith Satellite System (QZSS).
Orbit and clock products are provided every three hours with a nominal latency of two hours
after the last observation and with a sliding 48 h window, consisting of the previous 24 h of ob-
servations and the upcoming 24 h of predictions. The nominal epoch interval is 15min accord-
ing to Deng et al. [2016]. However, all products used in this thesis feature an epoch interval
of 5min. In order to apply the products, the following steps are necessary [Kouba, 2009]:
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Table 3.5: Accuracy and Latency of GPS Satellite Orbits and Clocks [Teunissen and Mon-
tenbruck, 2017, p. 972]

Orbit and Clock Type Approx. Accuracy Latency

Broadcast 100 cm Real time
5 ns

Ultra-rapid 5 cm Predicted
(predicted half) 3 ns

Ultra-rapid 3 cm 3h to 9 h
(observed half) 150 ps

Rapid 2.5 cm 17 h to 41 h
75 ps

Final 2 cm 12 d to 18 d
75 ps

Real time 5 cm 25 s
300 ps

1. Interpolate the satellite orbits. Based on the recommendations in Feng and Zheng
[2005], a Lagrangian interpolation with eleven sampling points is performed. The cen-
tral sampling point is the product epoch closest to the desired interpolation time.

2. Apply satellite antenna phase center (APC) offset. This step is necessary because
the precise orbits are referenced to the satellite’s CG, while the broadcast orbits are
referenced to the satellite’s APC [Montenbruck et al., 2015, p. 324]. The APC values
are taken from the IGS Antenna Exchange Format (ANTEX) file published in GPS
week 2061. Only phase center offsets are applied, no phase center variations. The
phase center offset for each satellite is computed for the reference IF combination of
the satellite clock bias (ρG1W/G2W for GPS, ρE1X/E5X for Galileo).

3. Interpolate the satellite clocks. Because the clock data are not as smooth as the orbit
data, a Lagrangian interpolation with only three sampling points is performed, as rec-
ommended in Zumberge and Gendt [2001]. The central sampling point is the product
epoch closest to the desired interpolation time.

4. Apply relativistic clock correction term δtS,rel [Groves, 2013, p. 390]:

δtS,rel = −2peesTvees
c2 . (3.40)

The satellite’s position pees is already known from step 1. The satellite’s velocity vees
is computed via numerical differentiation of pees in between two epochs spaced ±0.1 s
around the desired interpolation time.

In order to achieve the highest accuracy possible, the product file that was published as
close as possible prior to the start of a measurement scenario is utilized. During a specific
measurement scenario, the product file is kept fixed to avoid possible discontinuities, even if
a more recent one becomes available.

Timing information distributed via navigation data messages generally refers to the re-
spective constellation’s system time. In contrast, all information in precise product files
refers to the same reference time. In case of the GFZ ultra-rapid products, this reference
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time is the GPS system time. Consequently, all satellite clock biases are referenced to the
same time scale when using precise orbits and clocks. This influences the ISB apparent to
the navigation algorithm, because the satellite-specific part of (3.39) is eliminated. On the
other hand, another term is added to the ISB apparent to the navigation algorithm due to
the process of aligning the satellite clock biases to a common reference time performed by
the GNSS analysis center. Different strategies to accomplish this exist [Steigenberger et al.,
2015, Section 2.3]. The most common ones are to either fix DE,G of a selected reference
station to zero or to apply a zero-mean constraint for the ensemble of all station ISBs. In
either way, an additional term depending on the station network used to generate the precise
orbit files appears in (3.39). GFZ estimates one ISB between GPS and Galileo per station
per day [Uhlemann et al., 2014]. This additional term is constant for each product file, but
changes from file to file. In terms of the navigation algorithm’s accuracy, this change is ab-
sorbed by the degree of freedom provided by the two receiver clock bias parameters δtGR and
δtER and therefore does not impact position accuracy negatively.

3.6 Measurement Noise
In addition to the GNSS observables, the integration filter inputs their corresponding mea-
surement noise covariance matrix R. The two types of GNSS observables (pseudorange ρc
and range rates ρ̇c) are considered to be uncorrelated to each other, so two distinct matrices
Rρc and Rρ̇c are output by the GNSS preprocessing. In addition, observations to different
satellites are considered to be uncorrelated to each other, so both Rρc and Rρ̇c are diagonal
matrices. The non-zero elements of Rρc are computed as the sum of the individual error
sources in the pseudorange measurement model (2.13), as suggested by Salos et al. [2010]:

σ2
ρc = σ2

ρc,S + σ2
ρc,I + σ2

ρc,T + σ2
ρc,M + σ2

ρc,N , (3.41)

where the terms on the right hand side are the pseudorange errors stemming from satellite
position and clock bias (σ2

ρc,S), unmodeled ionospheric delay (σ2
ρc,I), unmodeled tropospheric

delay (σ2
ρc,T ), multipath (σ2

ρc,M ) and code tracking noise (σ2
ρc,N ). Since the range rate mea-

surement model is a lot simpler, the corresponding error model only consists of the single
term σ2

ρ̇c which accounts for all measurement errors combined. Salos et al. [2010] apply over-
bounding techniques according to DeCleene [2000] in order to obtain the standard deviation
of a zero-mean normal distribution whose cumulative distribution function (CDF) is always
greater than the CDF of the empirical data for negative errors and always smaller than the
CDF of the empirical data for positive errors. This parametrization assures that the error
model accounts for the tails of the empirical data’s distribution function, which are typically
much thicker than the ones of a normal distribution. Overbounding techniques are common
practice for integrity monitoring, since they lead to very conservative error estimates. How-
ever, they are not ideal for the purpose of measurement noise parametrization in this thesis,
because such conservative error models are not suited for outlier detection. Moreover, they
do not represent nominal GNSS performance, therefore impeding the optimal weighting of
GNSS, IMU and odometry data relative to one another in the integration filter. Instead, an
error magnitude is assigned to each of the six individual error terms (five for ρc, one for ρ̇c)
according to a model described in Prieto-Cerdeira et al. [2014]:

σq(x) = aq + bq e−
x
xq . (3.42)

The subscript q denotes any of the six error terms. x is a quantity that the error depends
on (e. g. elevation, carrier-to-noise ratio, etc.). The constants aq, bq and xq are fitted for
each error term based on measurement data. To do so, GNSS observations from 16 data sets
are used: twelve static data sets with a total of approx. 200 000 epochs and four kinematic
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data sets with a total of approx. 210 000 epochs. The static data sets were collected with a
roof antenna and demonstrate good GNSS reception conditions. Their measurement intervals
range from 0.2 s to 30 s. The kinematic data sets were collected with measurement intervals
of 0.1 s or 0.2 s and demonstrate GNSS reception conditions varying from good over poor to
unavailable. The driven trajectories feature similar characteristics to the routes driven to
collect the data for the results presented in Chapter 7 and contain among others open sky,
rural roads, forests, inner city with multi-story buildings and tunnels. The results for each of
the error terms are presented in the following sections. Unless noted otherwise, an elevation
mask of 5◦ is applied. The same cutoff angle is used for all the results in Chapter 7.

3.6.1 Satellite Position and Clock Bias

Due to the inaccuracy of each satellite’s position and clock bias data, the corresponding terms
in the pseudorange measurement model (2.13) cannot be eliminated completely. Both error
terms are indistinguishable from the receiver’s point of view, so they are summed up into one
error term δρ̃cS according to Perea et al. [2016, p. 1728]:

δρ̃cS = ueasTδp̃ees − δ
(
c̃δtS

)
, (3.43)

where δp̃ees denotes the error in satellite position and δ
(
c̃δtS

)
denotes the error in satellite

clock bias. To evaluate (3.43), both the predicted half of the ultra-rapid precise orbits and
the broadcast orbits are compared to a set of final precise orbits. The unit vector ueas is
computed based on the antenna’s position as estimated by reference equipment, consisting of
a geodetic GNSS receiver for RTK positioning and a navigation grade IMU (see Chapter 7
for details). The IMU is only necessary for the kinematic data sets.

Figure 3.2: Satellite position and clock bias error for GPS and Galileo satellites. (a),(b) Pre-
dicted half of ultra-rapid precise data. (c),(d) Navigation message data. Different colors
indicate different satellites.

The results from one of the static data sets are depicted in Figure 3.2. The set’s duration
is 24 h, the measurement interval is 30 s. Both the ultra-rapid precise (Figure 3.2a) and
the broadcast orbits (Figure 3.2c) are close to zero-mean for GPS. This is not the case for
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Galileo, where the ultra-rapid orbits (Figure 3.2b) have a mean error of approx. −4.5m,
while the broadcast orbits (Figure 3.2d) have a mean error of approx. −16m, demonstrating
the ISBs occurring in the precise and broadcast orbits. This mean error will be absorbed
by the integration filter’s two states for the receiver clock bias and not influence positioning
performance negatively. Throughout the data set’s duration, only one set of ultra-rapid
precise orbits is employed, while the broadcast data are updated as recommended by the
respective constellation’s interface control document (ICD): every two hours for GPS, every
ten minutes for Galileo. This update process is responsible for the discontinuities in the
errors of the broadcast data. It also prevents the errors of the broadcast data from growing
over time, because actual measurement data are incorporated in the predictions with every
new update. In contrast, the errors of the predicted ultra-rapid orbits grow over time. The
main contributor to this growth is the clock bias error, because the satellites’ positions can
be predicted significantly better than the satellite clock behavior. Galileo satellites feature
passive hydrogen masers as their most stable on-board clock. The performance of the GPS
satellite clocks depends on the satellite generation, with the rubidium atomic clocks of the
block IIF satellites achieving similar stability levels as Galileo’s hydrogen masers [Teunissen
and Montenbruck, 2017, Section 5.3.6]. Previous generations employ less stable clocks, whose
behavior is more difficult to predict. Consequently, clock prediction quality for the whole
constellation is better for Galileo than it is for GPS. This is demonstrated by the fact that
the error difference of the two worst GPS satellites grows to approx. 4m after 24 h, while
the corresponding value for Galileo is only 1m. As described in Section 3.5, the ultra-rapid
file that was published as close as possible prior to the start of a measurement scenario is
utilized. Therefore, the measurement noise covariance is only estimated based on ultra-rapid
data no older than six hours (files are provided every three hours with a nominal latency
of two hours after the last observation). For the satellite position and clock bias error, no
quantity that this error depends on is apparent other than time. With the reduction to a
maximum prediction age of six hours, this dependency is minimized as well. That’s why the
measurement noise model (3.42) is reduced to a single constant term for this type or error:

σρc,S = aρc,S . (3.44)

Based on all evaluated data, aρc,S takes values of 0.5m for GPS satellites (for both ultra-
rapid and navigation message data). For Galileo satellites, a value of 0.15m is obtained for
ultra-rapid products and a value of 0.25m for navigation message data.

3.6.2 Unmodeled Ionospheric Delay

To determine the magnitude of the unmodeled ionospheric delay, δρI is determined in three
different ways. Values obtained from final IONEX files provided by the IGS serve as refer-
ence to evaluate the two methods utilized in the GNSS preprocessing: the Klobuchar model
for single-frequency pseudoranges and the formation of IF combinations for multi-frequency
observations. In order to get smoother data, the multipath combination is applied to the
multi-frequency observations. The corresponding DCB needs to be removed, too. Conse-
quently, the ionospheric delay on signal p as estimated via multi-frequency observations is:

δρ̂I,p = (ρp − ρMC,p)− (ρq − ρMC,q)− dp,q
1− γp,q

. (3.45)

All three values for δρI are calculated for the L1 band. The difference between the reference
from IONEX and the two methods employed by the GNSS preprocessing as a function of the
elevation θ is depicted in Figure 3.3. The fitted error magnitude function (explained in detail
in the next paragraph) is shown in the same plot as the error for single-frequency pseudoranges
to visualize the relation between the raw data and the model fit. For the IF combinations,
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only ρE1X/E5X is displayed since it features the largest number of observations. The plots
for the other IF combinations look very similar and appear in the appendix (Section B.2).
Due to the large amount of observations, the individual data points are unrecognizable. The
dependency of the remaining ionospheric delay on the elevation after applying the Klobuchar
model is clearly visible. The remaining ionospheric delay after applying the IF combination is
significantly smaller: While the RMS of the remaining error is 2.5m for the Klobuchar model,
it is only 0.5m for the IF combination. Because this value of 0.5m incorporates contributions
from the remaining multipath and code noise, the uncertainty of the DCBs and the errors in
the IONEX reference file, the term σρc,I is set to zero for all IF combinations. The subsumed
contributions of the mentioned error sources are accounted for by the other terms of (3.41).

Figure 3.3: Difference between reference value from IONEX and estimated value for iono-
spheric delay in the L1 band. (a) Estimated value obtained via Klobuchar model. (b) Esti-
mated value obtained from multi-frequency pseudoranges on E1X and E5X.

To account for the unmodeled ionospheric delay of single-frequency pseudoranges, a func-
tion according to (3.42) is fitted. To do so, the elevation range from 5◦ to 90◦ is split into
17 bins of 5◦ each. In each bin, the following three empirical quantities of the remaining
ionospheric delay are calculated: standard deviation, RMS and 68.3% quantile. The latter
one is the percentage of sample points in the ±1σ interval around the mean, if the sample’s
underlying distribution is the normal distribution. It is computed based on the error’s ab-
solute value. This process is done to check how well the remaining error corresponds to the
Kalman filter’s assumptions of normally distributed zero-mean errors. If the remaining error
fulfills the assumptions, all quantities are identical for each bin. As expected, this is not the
case. The RMS is approx. twice as large as the standard deviation, indicating a non-zero
mean. The 68.3% quantile is approx. 10% larger than the RMS in each bin, indicating that
fewer sample points are close to the mean than is to be expected from a normal distribution.
In order to get a conservative estimate of the measurement noise, the largest of the three
quantities in each bin (i. e. the 68.3% quantile) is used as data basis to fit the error magnitude
function (3.46) for σρc,I . The data points and the fitted function (as well as the negative of
them) are displayed in Figure 3.3a. The numerical representation of σρc,I is:

σρc,I (θ) = 1.17 m + 4.47 m e−
θ

28.2◦ . (3.46)
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3.6.3 Unmodeled Tropospheric Delay

The magnitude of the unmodeled tropospheric delay is determined similarly to the one of
the unmodeled ionospheric delay. The reference data are tropospheric estimates from an IGS
station in Frankfurt am Main (station identifier FFMJ, approx. 25 km away from the roof
antenna used to collect the static data for the results in this section). These estimates stem
from files in the Solution Independent Exchange Format (SINEX) troposphere format. The
reference is compared to two different versions of the modified Hopfield model: the first one in-
puts temperature and air pressure values from the GPT and assumes the relative humidity to
be 50%, the second one inputs measured weather data for temperature, air pressure and rela-
tive humidity. These measurements are performed at the beginning of each scenario. The in-
put values for the modified Hopfield model are then kept constant during the entire scenario.

Figure 3.4: Difference between reference value from SINEX and estimated value for
tropospheric delay. (a) Estimated value obtained via modified Hopfield model with GPT
weather data. (b) Estimated value obtained from modified Hopfield model with measured
weather data.

The difference between reference and model data as a function of the elevation θ is depicted
in Figure 3.4 for both of the two model versions. Again, the fitted error magnitude functions
(as well as their negatives) are shown in the same plot as the remaining error to visualize
the relation between the raw data and the model fit. Compared to the ionospheric delay,
the tropospheric delay’s variation with time is smaller. Consequently, the model matches
the reference data better and the unmodeled delay is smaller. As expected, the model using
measured weather data as input performs better than the model using GPT weather data.
Fitting the error magnitude function (3.42) for the unmodeled tropospheric delay is done
in the same way as for the unmodeled ionospheric delay. The elevation range from 5◦ to
90◦ is split into 17 bins of 5◦ each. For GPT weather data, all three empirical quantities
(standard deviation, RMS, 68.3% quantile) agree well with each other (max. deviation
< 10 cm/25 %). For measured weather data, the standard deviation is approx. half as large
as the other two quantities, indicating a non-zero mean. Because the RMS is the largest of
the three empirical quantities in each bin for both model types, it is chosen as data basis to
fit the error magnitude function in order to get a conservative estimate of the actual error.
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The numerical representation of σρc,T is:

σρc,T (θ) = 5.7 cm + 59.8 cm e−
θ

9.8◦ (3.47)

for the modified Hopfield model with GPT input data and

σρc,T (θ) = 4.2 cm + 84.8 cm e−
θ

7.1◦ (3.48)

for the modified Hopfield model with measured input data.

3.6.4 Code Multipath and Code Tracking Noise

The magnitude of code multipath δρM and code tracking noise δρN is estimated based on the
multipath combination ρMC (3.32). ρMC is an estimate for the sum of δρM and δρN , leveled to
be zero-mean. Because the extent of multipath in a GNSS pseudorange measurement mainly
depends on the reception conditions, the spreading code and the receiver’s code tracking loop
properties, this analysis is carried out for each signal individually, once for static data and
once for kinematic data. The error magnitude function for the multipath error is again fitted
as a function of θ in 17 bins of 5◦ each, spanning from 5◦ to 90◦.

Figure 3.5: Code multipath and code tracking noise for GPS, estimated via the multipath
combination. (a),(c),(e) Static data for G1C, G2X and G5X. (b),(d),(f) Kinematic data
for G1C, G2X and G5X.

The results for GPS as a function of θ are displayed in Figure 3.5. The equivalent fig-
ure for Galileo appears in the appendix (Section B.2). Due to the identical code chipping
rates, the plot for ρMC,E1X is similar to the one for ρMC,G1C , while the plots for ρMC,E5X
and ρMC,E7X are similar to the one for ρMC,G5X . The static data displayed in Figures 3.5a, c, e
were recorded in an environment associated with little multipath (direct signal path always
present, no surfaces with high reflection coefficients nearby). Under these circumstances, the
expected multipath mainly depends on the signal’s code chipping rate fco (higher chipping
rate equals less multipath), its modulation (BPSK is more prone to multipath than BOC) and
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the early-to-late spacing of the receiver’s tracking loop (narrower spacing equals less multi-
path) [Teunissen and Montenbruck, 2017, Section 15.5]. While all three tracked GPS signals
contain BPSK modulation and details about the receiver’s tracking loops are unknown, the
effect of fco is visible for the static data in Figures 3.5a, c, e: ρG5X with the highest chip-
ping rate of 10.23MHz has the lowest multipath error, ρG1C with the intermediate chipping
rate of 1.023MHz has a medium multipath error and ρG2X with the lowest chipping rate
of 511.5 kHz has the largest multipath error. The difference between G5X and G1C is more
pronounced than the difference between G1C and G2X, mirroring the larger difference in
chipping rate (factor of 10 for G5X and G1C, factor of 2 for G1C and G2X).

The effect of the reception conditions on the multipath error is apparent when comparing
the results from kinematic data sets in Figures 3.5b, d, f to the ones from static data sets.
While the effect of fco is still present, the multipath error in the kinematic sets is much larger.
Statistical analysis shows that this increase affects the wider quantiles more than narrower
ones: The 68.3% quantiles of static and kinematic data are nearly identical over the whole
elevation range for all six signals (e. g. 0.27m for the bin ranging from 5◦ to 10◦ for static
data on G5X compared to 0.30m for kinematic data). The 95.5% quantiles (percentage
of sample points in the ±2σ interval around the mean for normally distributed data) are
approx. twice as large for kinematic data as they are for static data (e. g. 0.59m static
compared to 1.19m kinematic in the 5◦-10◦ bin for G5X). The 99.7% quantiles (±3σ interval
for normally distributed data) for kinematic data suffer from large outliers, making them
infeasible as data points to fit the magnitude function (e. g. 0.98m static compared to 8.17m
kinematic in the 5◦-10◦ bin for G5X).

Fitting the magnitude functions for σρc,M and σρc,N requires some additional steps com-
pared to fitting the ones for σρc,I and σρc,T for two main reasons:
• Separating code tracking noise from code multipath is difficult. To do so, the code track-
ing noise is only fitted based on observations expected to have no significant multipath
error. To isolate these observations, two criteria are applied: θ ≥ 60◦ and |ρMC | < 3 m.
The function for σρc,N is then fitted only based on observations that meet both criteria.

• ρMC varies significantly from static to kinematic data. As the intended application is
kinematic and features varying GNSS reception conditions, fitting σρc,M based on static
data leads to overly optimistic results. The quantiles for the kinematic data show that
the multipath error is far from being normally distributed and contains a high amount
of large outliers. This however is unproblematic: One aspect of the measurement noise
model is to provide a basis for reliable outlier detection and elimination in the integra-
tion filter (see Chapter 6). To identify pseudoranges corrupted with large multipath er-
rors, σρc,M has to describe the nominal amount of multipath present in kinematic data.

The magnitude functions for σρc,M and σρc,N are therefore fitted in the following manner:
1. σρc,N is fitted as a function of C/N0 for each signal individually based on all pseudorange

observations with θ ≥ 60◦ and |ρMC | < 3 m. The dependency of σρc,N on C/N0 is dis-
cussed in detail in e. g. Kaplan and Hegarty [2017, Section 8.9]. Since pseudoranges with
C/N0 < 30 dB-Hz are discarded anyway, a corresponding offset is inserted into (3.42):

σρc,N (C/N0) = aρc,N + bρc,N e−
C/N0−30 dB-Hz

xρc,N . (3.49)
While mathematically equivalent to the formulation without the offset, this stabilizes
the fitting process because aρc,N and bρc,N now have a similar order of magnitude.
As the maximum C/N0 in all the data sets is 60 dB-Hz, the range from 30 dB-Hz to
60 dB-Hz is divided into 15 bins of 2 dB-Hz each. Statistical analysis shows that all
aforementioned empirical quantities agree well with each other in each bin, indicating
that the remaining errors are close to being zero-mean normally distributed, so the
68.3% quantile of each bin is chosen as value to fit.
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2. σρc,M is fitted as a function of θ for each signal individually based on all pseudorange
observations from kinematic data sets. In order to get a representation of the nom-
inal error to facilitate outlier detection, the 68.3% quantile of each bin is chosen as
value to fit the error magnitude function (3.42). After the fitting process, the constant
term aρc,M is removed from the fitted function because it corresponds to the constant
noise floor present in all observations. This effect has already been parametrized via
the code tracking noise function σρc,N .

Figure 3.6: Fitted standard deviation of code tracking noise. (a),(c),(e) GPS signals G1C,
G2X and G5X. (b),(d),(f) Galileo signals E1X, E5X and E7X.

Table 3.6: Fitted Parameters of Code Tracking Noise Magnitude Function

Signal aρc,N (in cm) bρc,N (in cm) xρc,N (in dB-Hz)

G1C 14.1 62.4 10.0
G2X 18.0 99.3 7.8
G5X 9.8 129.4 7.0
E1X 12.7 108.3 8.9
E5X 0.0 76.8 13.2
E7X 11.7 99.7 6.6

Figure 3.6 depicts the fitted standard deviation of the code tracking noise as a function
of C/N0 for all six employed signals. The corresponding numerical values are presented
in Table 3.6. Theoretical analysis predicts a lower tracking noise for signals with a higher
chipping rate [Groves, 2013, p. 397]. This does not correspond to the fitted functions. σρc,N
for G1C and E5X are the lowest of all six signals throughout the fitting interval, while σρc,N
for G2X and G5X are the highest. However, the signals with higher chipping rate also exhibit
higher average C/N0 values (e. g. 54.2 dB-Hz for E7X compared to 50.1 dB-Hz for G2X), so
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their RMS tracking noise error over all values to fit is in fact the lowest: 16.5 cm to 18.7 cm
for the three signals with 10.23MHz chipping rate, 23.5 cm to 26.0 cm for the two signals
with 1.023MHz chipping rate and 29.2 cm for the G2X signal with 511.5 kHz chipping rate.

Figure 3.7: Fitted standard deviation of code multipath measurement noise, based on
kinematic data. (a),(c),(e) GPS signals G1C, G2X and G5X. (b),(d),(f) Galileo signals
E1X, E5X and E7X.

Table 3.7: Fitted Parameters of Code Multipath Error Magnitude Function. aρc,M is Re-
moved After the Fitting Process Because the Effect of the Constant Noise Floor is Accounted
for via the Code Tracking Noise Function σρc,N .

Signal aρc,M (in cm) bρc,M (in cm) xρc,M (in ◦)

G1C 15.5 57.4 29.9
G2X 24.0 83.3 17.6
G5X 9.4 26.2 35.8
E1X 18.5 78.0 23.0
E5X 4.3 42.7 33.5
E7X 1.7 43.8 39.3

Figure 3.7 presents the fitted standard deviation of the code multipath error as a function
of θ for all six signals, while Table 3.7 lists the numerical values. The expected dependency
of the multipath error on the chipping rate is clearly visible: G5X, E5X and E7X have the
same fco and very similar multipath characteristics. Due to its BOC modulation, E1X is
expected to suffer from less multipath error than the BPSK-modulated G1C, although both
share a common chipping rate. This expectation is not backed up by the experimental data,
which show better multipath characteristics on G1C. G2X with the lowest chipping rate has
the highest multipath error, but the difference to E1X is small.
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The presented results for σρc,M and σρc,N are applicable to single-frequency pseudoranges.
When forming IF combinations from two pseudoranges on different frequencies, multipath
and code tracking errors from both involved signals have to be taken into account. Their
contributions are scaled depending on the two involved frequencies:

σ2
ρc
p/q

,M =
(

1
1− γp,q

)2

σ2
ρcp,M

+
(

γp,q
1− γp,q

)2

σ2
ρcq ,M

. (3.50)

This equation holds for tracking noise errors in the same way as it does for multipath errors
by simply replacing the subscript M with N in all three standard deviations. The numerical
values for the scaling factors of the individual variances range from 1.59 to 6.48, demonstrating
why IF combinations are associated with increased noise. Due to the zero-mean characteristics
of both ρM and ρN , the increased noise is filtered out by the EKF over time.

3.6.5 Total Pseudorange Error

To sum up the results presented so far and provide a clear overview of the achievable GNSS
positioning performance, the total pseudorange measurement error δρ̃ is evaluated in this
section. Only the static data sets are taken into account to exclude large multipath errors and
possible influences due to the varying accuracy of the receiving antenna’s reference position
in kinematic data. The reference value for the pseudoranges is taken to be the true range
from satellite antenna to receiver antenna. The satellite’s position is computed based on
final precise satellite orbit and clock data. The receiver antenna’s position is known with
an accuracy of better than 5 cm. All effects that are known a-priori or from the available
pseudoranges (δtR, δtS , δρI , δρT , dp,q) are compensated in the same manner as they are for
processing in the integration filter when forming the corrected pseudoranges ρc.

Figures 3.8 and 3.9 display the CDF and the relative frequency of the total errors for five
different Galileo pseudoranges, respectively: single-frequency observations on E1X, E5X and
E7X as well as IF combinations on E1X/E5X and E1X/E7X. Galileo was chosen because
it offers the largest amount of multi-frequency observations. The corresponding plots for
GPS look similar and appear in the appendix (Section B.2). The same holds for the total
pseudorange errors of GPS and Galileo when broadcast satellite orbits and clocks are used
instead of ultra-rapid precise data. The error of the IF combinations in Figures 3.8d, e and
3.9d, e appears to be approximately normally distributed with mean and median close to zero.
In comparison, the single-frequency observations all have a mean and a median significantly
smaller than zero, indicating the effect of the unmodeled ionospheric delay. Their relative
frequencies also feature a lower maximum and wider slopes. These findings are quantified
by the numerical values in Table 3.8. The means of all four IF combinations utilized in
the integration filter differ less than 1σ from zero. For single-frequency pseudoranges, the
opposite is true. Because the magnitude of the unmodeled ionospheric delay varies from
one data set to another, the standard deviations of the IF combinations are smaller than
the ones for the single-frequency pseudoranges, too. All this leads to an RMS of 1.11m to
1.44m for the errors of the IF combinations compared to RMS values of 3.00m to 5.44m
for the errors of the single-frequency observations. These results underline the advantages
of working with IF combinations as far as accuracy is concerned. Additionally, the small
means of the IF combinations in Table 3.8 serve as a verification for the DCB calibration
performed in Section 3.4.
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Figure 3.8: CDF of total pseudorange error for Galileo with predicted half of ultra-rapid pre-
cise satellite orbits and clocks, corrected for all applicable DCBs. Only static data to exclude
large multipath errors. (a),(b),(c) Single-frequency observations on E1X, E5X and E7X.
(d),(e) IF combinations on E1X/E5X and E1X/E7X.

Figure 3.9: Relative frequency of total pseudorange error for Galileo with predicted half of
ultra-rapid precise satellite orbits and clocks, corrected for all applicable DCBs. Only static
data to exclude large multipath errors. (a),(b),(c) Single-frequency observations on E1X,
E5X and E7X. (d),(e) IF combinations on E1X/E5X and E1X/E7X.
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Table 3.8: Total Pseudorange Error With Predicted Half of Ultra-Rapid Precise Satellite
Orbits and Clocks, Corrected for all Applicable DCBs. Only Static Data to Exclude Large
Multipath Errors

Signal Mean (in m) Standard Deviation (in m) RMS (in m)

G1C −2.55 1.58 3.00
G2X −4.04 2.38 4.69
G5X −4.53 2.56 5.20
G1C/G2X −0.33 1.41 1.44
G1C/G5X −0.31 1.06 1.11

E1X −2.70 1.64 3.16
E5X −4.13 2.60 4.88
E7X −4.67 2.79 5.44
E1X/E5X −0.66 1.08 1.26
E1X/E7X −0.66 1.08 1.26

3.6.6 Range Rates

The magnitude of the range rate error δ ˜̇ρ is fitted based on the difference between a reference
value - the true line-of-sight velocity between satellite and receiver antenna based on final
precise orbit and clock data - and the corrected range rates ρ̇c. In analogy to the total
pseudorange error, all effects that are known a-priori (δṫR, δṫS) are compensated in the same
manner as they are for processing in the integration filter.

Figure 3.10: Range rate error in static data for varying GNSS measurement intervals τg for
both GPS and Galileo. Different colors indicate different satellites.

Figure 3.10 depicts the influence of the GNSS measurement interval τg on the range
rate error δ ˜̇ρ in static data. Because range rates are the time derivative of carrier phase
measurements, their accuracy increases with increasing measurement intervals, as long as the
carrier phase’s accuracy remains independent of time. Assuming uncorrelated input data and
no cycle slips, the variance of ρ̇c if obtained from (3.4) via variance propagation is:

σ2
ρ̇c
k

= 2
(

λca
2πτ cg,k

)2

σ2
φ +

(
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2π

φck − φck−1
τ cg,k

2

)2

σ2
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g,k

+ c2σ2
δˆ̇t−
R,k

. (3.51)

Due to the high accuracy of GNSS-based time measurement, the second term on the right
hand side of (3.51) can be neglected. As δˆ̇t−R,k is estimated based on range rate observations,
its variance decreases with increasing τg, too. This holds as long as the assumption of a
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constant receiver clock drift throughout the measurement interval is true. Consequently,
σ2
ρ̇c
k
decreases with the square of τg for small values of τg. This is verified by the results in

Figures 3.10a, b: The product σ2
ρ̇c
k
τ cg,k

2 is approx. 3mm2 for τg = 0.2 s and approx. 5mm2

for τg = 1 s. For larger values of τg, the variation of δṫR during the measurement interval
plays a significant role. Therefore, the product σ2

ρ̇c
k
τ cg,k

2 increases for larger measurement
intervals and is approx. 2000mm2 for τg = 30 s.

While τg is the dominant factor for the range rates’ accuracy in static data, its influence
in kinematic data sets gets outmatched by two additional error sources: On the one hand,
the vehicle’s velocity might change during τg. This is reflected better in the reference solution
with its data rate of 100Hz than in the range rates with their data rate of 5Hz to 10Hz. On
the other hand, the kinematic data sets feature varying GNSS reception conditions, resulting
in loss of tracking lock, a reduced C/N0 and ultimately cycle slips.

Figure 3.11: Range rate error and vehicle speed in kinematic data for varying GNSS reception
conditions for both GPS and Galileo. GNSS measurement interval τg = 0.2 s, different colors
in (a),(b) indicate different satellites.

These effects are visible in Figure 3.11. It depicts the range rate error δ ˜̇ρ and the vehicle
speed ‖vnen‖ as a function of time in two different kinematic data sets: one with good GNSS
reception conditions (Figures 3.11a, c) and one with mixed GNSS reception conditions (Fig-
ures 3.11b, d). τg is 0.2 s in both sets. The scale of the vertical axis is reduced by a factor of ten
in comparison to Figure 3.10 due to the increased magnitude of δ ˜̇ρ. Figure 3.11a visualizes the
increased range rate error due to the vehicle’s movement. During standstill, δ ˜̇ρ is on the same
level as in Figure 3.10a. As soon as the vehicle starts moving, the magnitude of δ ˜̇ρ increases.
The value of δ ˜̇ρ depends on the change of vnen, so the range rate error is especially large
during accelerating, braking and cornering maneuvers. Figure 3.11b illustrates the second
additional error source in kinematic data: cycle slips due to poor GNSS reception conditions.
Even during the standstill phase from 0.6 h to 1 h, peaks of approx. ±0.5m s−1 are visible.
These correspond to carrier phase errors of approx. ±10 cm or ±λca

2 for τg = 0.2 s. Such half-
cycle slips can occur when tracking a data-modulated signal (e. g. G1C) with a tracking loop
insensitive to errors of ±180◦ [Groves, 2013, p. 446]. Once the vehicle starts moving, cycle
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slips occur frequently, resulting in range rate errors of up to 6m s−1. However, this effect is
exaggerated in Figure 3.11b due to the amount of observations. The overall RMS of δ ˜̇ρ is
approx. 7 cm s−1 and only 5% of range rate observations have an absolute error of more than
that. In comparison, the overall RMS for the data set in Figure 3.11a is approx. 1.5 cm s−1

and 1% of range rate observations have an absolute error of more than 7 cm s−1.

Figure 3.12: Range rate error in kinematic data and its fitted standard deviation.

Figure 3.12 shows δ ˜̇ρ from all kinematic data sets as a function of θ. In analogy to
the unmodeled atmospheric delays, the fitted error magnitude function and its negative are
depicted in the same plot as the actual error. Fitting the error magnitude function is also
done in the same way with 17 bins of 5◦ each. The calculation of standard deviation, RMS
and 68.3% quantile reveals that while the first two are almost identical (indicating a mean
close to zero), the latter one is roughly three times smaller. This was to be expected because
the errors induced by cycle slips influence standard deviation and RMS, but not the 68.3%
quantile due to their infrequency. The largest RMS occurs in the second bin with 10.9 cm s−1.
This is still small enough to enable the detection of half-cycle slips on the 3σ level for GNSS
measurement rates of 5Hz or higher. Consequently, the RMS is chosen in order to get an
conservative estimate of the actual error while still enabling detection and elimination of
outliers. The data points and the fitted function (as well as its negative) are displayed in
Figure 3.12. The numerical representation of σρ̇c is:

σρ̇c (θ) = 13.4 cm s−1 e−
θ

62.4◦ . (3.52)

The constant term aρ̇c is neglected because it is estimated by the fitting algorithm as
aρ̇c = 1.7 · 10−11 m s−1.
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Chapter 4

Odometry Preprocessing

This chapter details how odometry measurements received from the vehicle’s built-in sensors
are preprocessed before they are forwarded to the integration filter. The forwarded data
consist of the observables described in Section 4.1 and their associated measurement noise,
modeled as laid out in Section 4.3. A central part of the odometry preprocessing is the
estimation of longitudinal and lateral tire slip, both of which are then compensated in order
to obtain vehicle velocities w. r. t. the ECEF frame as accurately as possible. Slip estimation
is performed with different models of varying complexity, as detailed in Section 4.2.

4.1 Observables
The vehicle’s built-in ESC distributes several types of messages via CAN bus. Out of these
messages, two types of measurements are utilized in the navigation algorithm: wheel rotation
rate ωw for each of the four wheels and steering wheel angle δsw. The wheel rotation rates are
favored over the likewise available wheel ticks, i. e. the number of wheel encoder increments
that have moved past the detector since the last measurement epoch. This is done because
the wheel ticks suffer from large quantization errors due to the encoder’s limited angular
resolution [Bevly and Cobb, 2010, Section 4.4.2]. While this angular resolution is the same
for the rotation rates, they are computed internally by the ESC with its built-in clock,
enabling a much higher time resolution than the interval between two ESC messages of the
same type being transmitted via CAN bus, which is 10ms for the particular vehicle utilized
to collect measurement data in this thesis. As a result, the rotation rates offer a resolution
of approx. 8.2 · 10−3 rad s−1 instead of approx. 6.5 rad s−1 for the wheel ticks, as determined
from measurement data. The resolution for the wheel rotation rate observations is obtained
from the wheel speed resolution of 0.01 kmh−1 in the respective CAN message, divided by a
dynamic tire radius rd of 34 cm. This value for rd represents the arithmetic mean of the values
at the four wheels, obtained via reference equipment as detailed in Section 4.2. The resolution
for the wheel tick observations is obtained from the encoder’s resolution of 96 increments per
full wheel revolution, divided by the time interval of 10ms between two messages containing
wheel tick data being transmitted via CAN bus.

In order to apply the odometry observations correctly within the integration filter, they
need to have a timestamp tGo , given in GPS system time tG. Because tG is unknown to the
ESC, the values for tGo are supplied by one of the on-board GNSS receivers. Due to their
location in different CAN messages, ωw and δsw are not transmitted simultaneously. This is
countered by interpolating the time series for δsw with the query points of the timestamps
for ωw. Afterwards, all five odometry measurements in epoch k have the same timestamp tGo,k.
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The odometry preprocessing inputs these data and calculates the velocity vector vbew for
each wheel:

vbew =


vbew,F
vbew,L
vbew,U

 . (4.1)

The entry vbew,U is only included to keep the notation consistent with the definitions from
Section 2.1 and to allow for the usage of operations reserved for three-dimensional space
(e. g. the cross product). vbew,U cannot be measured by the odometry sensors and is not
processed in the integration filter. For computation of vbew, each wheel’s velocity in its own
wheel coordinate frame w is determined based on its rotation rate ωw, the a-priori estimate
of the corresponding dynamic tire radius r̂−d and the estimated slip values λ̂x and α̂ by
rearranging the slip definitions (2.25) and (2.26). In order to prevent the distinction of cases
in the definition of longitudinal slip (2.25) from appearing whenever λx is mentioned, an
auxiliary quantity κx, called longitudinal tire slip correction factor, is introduced:

κx =


1

1 + λx
for ωwrd ≤ vwew,x (braking)

1− λx for ωwrd > vwew,x (acceleration).
(4.2)

With the help of κx, each wheel’s velocity in its own wheel coordinate frame is expressed as:

vwew =


vwew,x
vwew,y
vwew,z

 =


1

− tan α̂
0

ωwr̂−d κ̂x. (4.3)

Different models for slip estimation are detailed in Section 4.2. Because rd is modeled as
random walk, the propagation simplifies to:

r̂−d,k = r̂+
d,k−1. (4.4)

For the unsteered rear wheels, vbew and vwew are identical. For the steered front wheels, the
two rotation matrices Cfl

b for front left and Cfr
b for front right are obtained from the steering

wheel angle δsw. This requires the individual steering angles δfl and δfr, which are expressed
in terms of the mean steering angle δf and the difference steering angle ∆δf at the front
axle [Harrer and Pfeffer , 2017, Section 4.2]:

δf = δfl + δfr
2 ∆δf = δfl − δfr (4.5)

δfl = δf + 1
2∆δf δfr = δf −

1
2∆δf . (4.6)

δf and ∆δf are fitted as third order polynomials of δsw:

δf (δsw) =
3∑
i=0

cδf ,iδ
i
sw ∆δf (δsw) =

3∑
i=0

c∆δf ,iδ
i
sw. (4.7)

Symmetrical steering is assumed, i. e. the left wheel does the same for δsw > 0 as the right
wheel does for δsw < 0, but with opposite sign:

δfl (δsw) = −δfr (−δsw) . (4.8)

Imposing this condition on (4.7) reduces the number of polynomial coefficients to be fitted
by a factor of two. As a result, δf becomes an odd function of δsw, while ∆δf becomes an
even function of δsw:

δf (δsw) = cδf ,1δsw + cδf ,3δ
3
sw ∆δf (δsw) = c∆δf ,0 + c∆δf ,2δ

2
sw. (4.9)
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The four remaining coefficients are fitted based on measurement data obtained during stand-
still with the front wheels placed on turntables. δsw is known from the built-in sensor, δfl and
δfr are measured by the turntables. Figure 4.1 shows the measured values and the fitted poly-
nomials. The sample points are not spaced evenly, but densified around δsw = 0 because small
steering wheel angles are more common during ordinary driving scenarios than large ones.

Figure 4.1: Steering angles as a function of the steering wheel angle. (a) Mean angle at
front axle. (b) Difference angle at front axle (scale of vertical axis differs from the other
three subfigures). (c) Front left wheel. (d) Front right wheel.

4.2 Tire Slip Estimation
Estimating the tires’ longitudinal and lateral slip is an integral aspect of odometry prepro-
cessing, because both types of slip need to be compensated for accurate estimation of the
vehicle’s velocity w. r. t. the Earth. The degree of accuracy enhancement generated by proper
slip estimation depends on the driving scenario’s acceleration profile. Driving with moderate
horizontal acceleration corresponds to low tire slip levels. Consequently, neglect of tire slip
does not decrease velocity estimation accuracy as severe as it does for more dynamic driving
scenarios with large horizontal accelerations and high levels of tire slip. Two different tire
models for slip estimation are described and parametrized in this section. The section starts
with all aspects that are common to both presented slip estimation methods and the measure-
ment data recorded for model parametrization. Each model’s individual aspects as well as the
parametrization results are detailed in the corresponding subsections. Section 4.2.3 lays out a
way to estimate the tires’ side slip based on gyroscope measurements instead of accelerometer
measurements to reduce the influence of vehicle vibrations on the side slip estimate.

Common to all examined methods is the application of a single-track model. Hence, all
quantities related to slip estimation (α, λx, κx, µx, µy, Fw

ew) may differ from front to rear axle,
but are identical for left and right wheels. The position pbbc of the vehicle’s CG is modeled
as known and invariant, because the employed measurement equipment is unable to detect
changes in pbbc during driving. The CG is assumed to be located above the line connecting
the single-track model’s two wheels, with height hCG above the road surface. Wheel load
transfer between front and rear axle due to longitudinal acceleration is therefore included
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in tire slip estimation. In contrast, wheel load transfer between left and right wheels is not
included in tire slip estimation, since this requires a more advanced modeling concept than
the single-track model. All calculations are performed with specific forces fpq, obtained by
dividing a force Fpq by the vehicle mass mv:

fpq = Fpq

mv
. (4.10)

Because formulation of kinetic equations is simplest for a rigid body’s CG [Gross et al., 2019,
Section 3.4], the corrected IMU measurements are transferred to the vehicle’s CG:

f bic = f bib + ω
b
ib ×

(
ω
b
ib × pbbc

)
+ ω̇

b
ib × pbbc. (4.11)

f bic is the specific force acting on the CG w. r. t. the ECI frame. f bib and ω
b
ib are the IMU

measurements, corrected for the estimated IMU errors. ω̇
b
ib is assumed to be negligible. In

the context of tire slip estimation, forces and kinematic quantities of the vehicle w. r. t. the
road are of interest. Due to the magnitude of these kinematic quantities (e. g. yaw rates of
up to 40 ◦ s−1), the motion between the ECEF frame and the ECI frame can be neglected,
yielding f bic = f bec and ω

b
ic = ω

b
ec. Therefore, wheel load estimation is performed based on the

components of f bec, known from (4.11):

f bef,U = f bec,U
lr
l
− f bec,F

hCG
l

(4.12)

f ber,U = f bec,U
lf
l

+ f bec,F
hCG
l
, (4.13)

where f bef,U and f ber,U are the specific wheel loads for the single-track model’s front and rear
wheel, respectively. For computation of the lateral specific forces, steady-state cornering
(ψ̈nb = 0) is assumed, yielding:

f bef,L = f bec,L
lr
l

f ber,L = f bec,L
lf
l
. (4.14)

The longitudinal components f bef,F and f ber,F complete the vectors f bef and f ber. A distinction
of cases needs to be made because the particular vehicle utilized to collect measurement data
in this thesis brakes with all four wheels, but accelerates only with the front ones:

f bef,F =

f
b
ec,F for f bec,F ≥ 0
f bec,F

fbef,U
fbec,U

for f bec,F < 0
(4.15)

f ber,F =

0 for f bec,F ≥ 0
f bec,F

fber,U
fbec,U

for f bec,F < 0.
(4.16)

(4.15) and (4.16) include the additional assumption that the distribution of brake force be-
tween the single-track model’s front and rear wheel happens according to the wheel load:

f bef,F
f ber,F

=
f bef,U
f ber,U

for f bec,F < 0. (4.17)

For δf = 0, this is denoted as ideal brake force distribution and equivalent to the equality of
the longitudinal friction coefficients at both wheels [Pischinger and Seiffert, 2016, p. 752]:

µx,f = µx,r =
f bec,F
f bec,U

for f bec,F < 0. (4.18)
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However, typical built-in brake force distributions feature a constant ratio between f bef,F
and f ber,F , independent of f bec,F [Pischinger and Seiffert, 2016, p. 753], so assuming an ideal
brake force distribution causes errors in the estimation of longitudinal tire slip. It is done
nonetheless because the vehicle’s actual brake force distribution is unknown. The introduced
error is minimized by applying the same assumption for the parametrization of the tire slip
model as for the slip estimation algorithm, leading to some degree of error cancellation.

Because tire slip estimation happens in the wheel coordinate frame, f bef needs to be rotated
accordingly to get f fef . The rotation matrix Cf

b for the single-track model’s front wheel is
obtained from δf . Since the rear wheel is unsteered, no rotation is necessary and f ber = f rer.
Longitudinal and lateral friction coefficients for both of the single-track model’s wheels are
computed from the components of f fef and f rer:

µx,f =
ffef,x

ffef,z
µx,r =

f rer,x
f rer,z

(4.19)

µy,f =
ffef,y

ffef,z
µy,r =

f rer,y
f rer,z

. (4.20)

With the computation of these friction coefficients, the steps common to both employed
tire slip estimation models are concluded. Details about the different models and their
parametrization results appear in the respective subsections.

Measurement data for model parametrization are recorded in three sets:

1. Driving in a straight line with constant velocity on a horizontal road for estimation of
each wheel’s dynamic tire radius rd. This is performed in both directions to compensate
for potential systematic effects (e. g. varying drag due to wind) and with speeds ranging
from 5 kmh−1 to 100 kmh−1.

2. Braking and accelerating in a straight line on a horizontal road with varying absolute
acceleration values for estimation of the tire parameters for longitudinal slip. The
maximum deceleration is reached when the vehicle’s anti-lock braking system (ABS)
engages, the maximum acceleration is limited by engine power.

3. Driving in a circle with constant velocity on a horizontal road to estimate the tire
parameters for lateral slip. This is performed both clockwise and counter-clockwise
and repeated with speeds ranging from 5 kmh−1 to 35 kmh−1. The circle’s radius is
kept constant at 15m, yielding lateral accelerations of up to ±6.3m s−2.

All sets are recorded with good GNSS conditions on a dry road. Reference values for vbeb, f bib
and ω

b
ib are obtained by integrating observations from a geodetic GNSS receiver for RTK po-

sitioning with a navigation grade IMU (see Chapter 7 for details). These reference values are
used to parametrize the tire models. This parametrization is performed with a Gauss-Helmert
model. The input data’s variance is obtained from the precision of the reference values via
variance propagation. As tire slip estimation is performed within the odometry preprocessing
based on measurements from a MEMS IMU, observations from this MEMS IMU are recorded
simultaneously and utilized for measurement noise parametrization in Section 4.3.

4.2.1 Linear Tire Model

The linear tire model assumes proportionality between µx and λx for longitudinal slip and
between µy and α for lateral slip, with the proportionality constants cλ and cα according
to (2.27). In general, both slip stiffnesses may vary from front to rear axle, yielding a total
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of four unknowns for parametrization of the model. With the parametrized model, tire slip
estimation happens by combining (2.27), (4.19) and (4.20):

λ̂x,f = µx,f
cλ,f

λ̂x,r = µx,r
cλ,r

(4.21)

α̂f = µy,f
cα,f

α̂r = µy,r
cα,r

. (4.22)

The numerical values of the stiffnesses depend on the individual tire. The stiffness of a given
tire typically increases with tire wear due to the reclining tread depth. In contrast, weather
and road surface do not influence a tire’s slip stiffness, but the maximum possible friction
coefficient and the slip values for which this maximum friction coefficient is reached [Pacejka,
2006, Chapter 1]. Consequently, the individual tire and its surrounding conditions (e. g. road
surface, weather, tire wear) as well as the desired accuracy determine the linear tire model’s
application boundary.

Figure 4.2: Fitted longitudinal tire slip models. (a) Front tire. (b) Rear tire.

Figures 4.2 and 4.3 depict the data points for fitting the tire models and the results of
the fitting process. Both the linear and the Magic Formula tire model are shown in the
same plot in order to compare them directly with each other. The Magic Formula and its
comparison with the linear tire model are detailed in Section 4.2.2. The displayed values for
the longitudinal slip λx are computed from the reference equipment’s estimate of vbeb, the
wheel rotation rates from the CAN bus and the reference values for rd, which are determined
in a preceding step. The depicted side slip angles αf and αr are obtained based on the
reference equipment’s estimates of vbeb and ω

b
eb as well as the steering angle δf , which in

turn is computed from the steering wheel angle transmitted via the CAN bus with the help
of (4.9). The displayed values for the friction coefficients µx and µy are obtained from the
reference equipment’s estimates of f bib and ω

b
ib by applying (4.11)-(4.20).

In order to decide whether usage of the linear tire model is appropriate, an application
boundary needs to be set for it. This is done by finding the largest value of the friction
coefficient |µlin| for which the relative error as defined by (4.23) stays below 5% for all of the
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Figure 4.3: Fitted lateral tire slip models. (a) Front tire. (b) Rear tire.

four quantities µx,f , µx,r, µy,f and µy,r:∣∣∣∣ δµ̃µMF

∣∣∣∣ =
∣∣∣∣µlin − µMF

µMF

∣∣∣∣ , (4.23)

where the subscripts lin and MF denote linear and Magic Formula tire model, respectively.
Based on the measurement data, a limit of |µlin| ≤ 0.7 is identified, with µy,r being the
critical of the four quantities µx,f , µx,r, µy,f and µy,r. To assure that the combination of
longitudinal and lateral slip does not exceed this level,

√
µ2
x + µ2

y ≤ 0.7 is set as application
boundary for the linear tire model. If the estimated horizontal friction coefficient at one of
the single-track model’s tires exceeds this limit, measurements from the corresponding axle
are not forwarded to the integration filter in that epoch. In case the vehicle’s ABS or ESC
engages, no odometry measurements from either axle are utilized in the EKF, because each of
these indicators signalizes that the linear model’s application limit is exceeded. Hence, only
data points satisfying these limits are used for fitting the tire stiffnesses. Figure 4.2 depicts
the longitudinal tire characteristics. Only braking is shown because the particular vehicle
utilized for this thesis features an undriven rear axle. Also, higher absolute slip values are
reached during braking than during acceleration. The longitudinal slip stiffness is similar for
both of the single-track model’s tires: cλ,f = 41.8 and cλ,r = 42.5, with a standard deviation
of 0.9 in both cases. Figure 4.3 displays the lateral tire characteristics. Absolute values of
α and µy are shown since tire behavior is assumed to be identical for left and right turns.
In contrast to the longitudinal data in Figure 4.2, the measurement data only cover friction
coefficients up to |µ| ≈ 0.8, so neither tire leaves its linear range by a large margin. Both tires
experience similar friction coefficients due to the assumption of steady-state cornering (4.14)
and the fact that longitudinal acceleration is close to zero during this measurement scenario.
The front tire’s side slip angle is larger than the rear tire’s, resulting in a lower stiffness at
the front axle: cα,f = 7.7 rad−1 and cα,r = 16.0 rad−1. The reason for this is that the steering
elasticity reduces the effective side slip stiffness at the front axle, so the observable value of
cα,f is lower than the one for cα,r [Harrer and Pfeffer , 2017, Section 5.2.2]. The obtained
standard deviations are σcα,f = 0.08 rad−1 and σcα,r = 0.18 rad−1.
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4.2.2 Magic Formula Tire Model

Pacejka’s Magic Formula (2.28) is an empirical tire model for describing longitudinal and
lateral tire forces as functions of λx and α, respectively. Its basic form, which is employed in
this thesis, does not cover the occurrence of combined longitudinal and lateral slip simultane-
ously. In addition, it only applies to steady-state tire characteristics. Extensions of the basic
model for combined slip and instationary tire behavior exist, but require extended model
parametrization [Pacejka, 2006]. These extensions are therefore not covered in this thesis,
because the aim is to keep the effort necessary for model parametrization as low as possible.
Simplification of the Magic Formula is possible, e. g. by setting the curvature factor Eλ/α to
zero [Schramm et al., 2013, p. 237], yielding:

µx = Dλ sin {Cλ arctan [Bλλx]}+Gλ

µy = Dα sin {Cα arctan [Bαα ]}+Gα.
(4.24)

This approach is applied here due to the following reasons:

• Reduced parametrization effort.

• Eλ/α mainly influences the shape of the curves of µx (λx)/µy (α) close to the maximum
friction coefficient and for even higher slip values [Pacejka, 2006, Section 4.3]. These
high slip values correspond to high absolute horizontal accelerations, which rarely occur
during ordinary driving scenarios.

• In contrast to the version with non-zero curvature factor, the simplified Magic For-
mula (4.24) can easily be solved algebraically for λx and α. This is important for both
slip estimation and variance propagation (see Section 4.3).

In general, all model parameters in (4.24) may vary from front to rear axle, yielding a total
of 16 unknowns for parametrization of the model. The numerical values of these unknowns
depend on the individual tire. Among others, they change with tire wear, tire pressure,
weather and road surface. Consequently, extensive calibration is required to parametrize the
model for a variety of conditions. In order to keep the parametrization effort low, the 16
unknowns are only estimated for one set of conditions in this thesis. The results in Chapter 7
verify that even this reduced parametrization effort leads to improved accuracy in comparison
with the linear tire model.

Table 4.1 shows the numerical results of the parameter adjustment, while Figures 4.2 and
4.3 visualize these results. The vertical shift Gλ/α is not estimated, because an adjustment
process including this parameter indicates that it does not deviate from zero significantly in
any of the four cases. Since the maximum friction coefficient in lateral direction µy,M is not
reached during the corresponding measurement set, it is assumed to be identical to µx,M ,
yielding Dα = Dλ. As a consequence of assuming an ideal brake force distribution, µx,M is
almost identical for front and rear. The Magic Formula model displays good agreement with
the linear model up to the latter’s validity limit of |µ| = 0.7. The maximum absolute values
of the differences in estimated slip are: less than 0.18% for λ̂x,f , less than 0.11% for λ̂x,r,
less than 0.4◦ for α̂f and less than 0.25◦ for α̂r.

The parameters’ standard deviations in Table 4.1 reveal that the adjustment is more
precise at the front tire than at the rear one. That’s because the rear wheel load is smaller
than the front wheel load. As a result, σµx,r is larger than σµx,f , because both are obtained
via variance propagation from the precision of f beb as measured by the reference equipment.
The static wheel load at the rear wheel is 69% of the static front wheel load, while the rear
wheel load during braking with µx = −1 is less than 20% of the front wheel load.
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Table 4.1: Estimated Parameters and Their Standard Deviations for Magic Formula
Tire Model

Parameter Unit λx,f λx,r αf αr

Bλ/α 1 or rad−1 38.3 ± 1.2 34.5 ± 1.4 6.36± 0.35 12.3 ± 0.7
Cλ/α 1 1.31± 0.02 1.39± 0.02 1.30± 0.06 1.39± 0.07
Dλ/α 1 1.06± 0.01 1.04± 0.01 1.06± 0.01 1.04± 0.01
Gλ/α 1 0 0 0 0

With the parametrized model, tire slip estimation is performed by combining (4.19),
(4.20) and (4.24):

λ̂x,f = 1
Bλ,f

tan
arcsin µx,f

Dλ,f

Cλ,f
λ̂x,r = 1

Bλ,r
tan

arcsin µx,r
Dλ,r

Cλ,r
(4.25)

α̂f = 1
Bα,f

tan
arcsin µy,f

Dα,f

Cα,f
α̂r = 1

Bα,r
tan

arcsin µy,r
Dα,r

Cα,r
. (4.26)

Special care needs to be taken for large absolute horizontal accelerations: If a tire approaches
its maximum friction coefficient, the input for the arcsine function may reach an absolute value
larger than one (e. g. due to IMU measurement noise), which is outside the arcsine function’s
domain. In addition, the restriction of the arcsine function’s output to the interval [− π

2 ,
π

2 ]
limits the estimated slip values to |λ̂x| ≤ λx,M and |α̂| ≤ αM . λx,M and αM are the slip values
for which the maximum possible friction coefficients µx,M and µy,M are reached. This leads
to gross estimation errors in case the actual slip value is outside this interval (i. e. |λx| > λx,M
or |α| > αM ). Due to the vehicle’s ABS and ESC, these conditions only persist for a very
short period of time, if at all. Since the engagement of ABS or ESC indicates that at least
one of the tires is operating close to or beyond λx,M/αM , no odometry measurements from
either axle are utilized in the integration filter if one of the systems takes action. To overcome
the aforementioned restrictions for epochs in which neither system is engaged, the following
distinction of cases is made:

1. If
√
µ2
x + µ2

y > 1.4 at one of the single-track model’s tires, measurements from the
corresponding axle are not forwarded to the integration filter in that epoch. This limit
doubles the application range compared to the linear tire model.

2. If
√
µ2
x + µ2

y ≤ 1.4, but |µ| > µM − 0.02 in longitudinal and/or lateral direction, the
respective friction coefficient is set to ±(µM − 0.02). This ensures that the input for
the arcsine function stays within the interval (−1, 1). The margin of 0.02 limits the
magnitude of the corresponding partial derivative ∂λx

∂µx
or ∂α

∂µy
, both of which approach

±∞ for µ→ ±µM .

3. Otherwise, no additional steps are necessary in order to apply (4.25) and (4.26).

4.2.3 Side Slip Estimation Based on Gyroscope Measurements

Computation of the lateral specific forces requires the lateral component of f bec. Due to the
vibration induced by the vehicle’s engine and by road unevenness, f bec,L as derived from the
IMU’s acceleration measurements according to (4.11) is very noisy. A way to avoid this noise
is to derive f bec,L from the IMU’s vertical rotation rate measurement ωbib,U instead. Under
the assumption that Earth rotation rate ω

b
ie and transport rate ω

b
en are small in comparison
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to ω
b
ib and that roll and pitch angle can be neglected, ωbib,U equals the yaw rate ψ̇nb. This

enables computation of f bec,L based on ωbib,U and the CG’s horizontal velocity [Harrer and
Pfeffer , 2017, p. 99]:

f bec,L = ψ̇nb

√
vbec,F

2 + vbec,L
2

≈ ωbib,U
√
vbec,F

2 + vbec,L
2
,

(4.27)

which includes the additional assumption of steady-state cornering (ψ̈nb = β̇ = 0). To get
the CG’s horizontal velocity, the longitudinal velocity at the single-track model’s rear wheel
is obtained as the mean of the longitudinal velocity from both rear wheels:

vber,F = κ̂x,r
2
(
ωw,rlr̂

−
d,rl + ωw,rrr̂

−
d,rr

)
. (4.28)

κ̂x,r is estimated based on f ber,F , which is already known. The radii of curvature for the
single-track model’s rear wheel Rr and the CG RCG are obtained via geometric relations
concerning the vehicle’s instantaneous center of movement [Harrer and Pfeffer , 2017, p. 93]:

Rr =
∣∣∣∣∣ l cos(δf − αf )
sin(δf − αf + αr)

∣∣∣∣∣ (4.29)

RCG =
√
R2
r + l2r − |2Rrlr sinαr|. (4.30)

The absolute values are taken in both cases to assure that left and right turns are treated
equally. f bec,L gets the correct sign from the yaw rate ψ̇nb in (4.27). With Rr and RCG,
the lateral specific force is computed by combining (4.27) and the definition of the vehicle
side slip angle (4.31):

cosβ =
vbec,F√

vbec,F
2 + vbec,L

2 (4.31)

f bec,L =
ψ̇nbv

b
ec,F

cosβ

=
ψ̇nbv

b
er,F

cosβ (4.32)

=
ψ̇nbv

b
er,F

cosαr
RCG
Rr

,

making use of the fact that the longitudinal velocity is the same for all points on the line
connecting the single-track model’s two wheels, so vbec,F = vber,F . The connection between
β, αr, Rr and RCG is once again based on geometric relations. Equations (4.29)-(4.32)
contain the tires’ side slip angles αf and αr. These are unknown prior to tire slip estimation.
To overcome this, iteration is performed. Initial values for αf and αr are obtained based
on f bec,L as derived from the IMU’s acceleration measurements according to (4.11). Iteration
is considered successful once the absolute change between two iteration steps is less than 0.01◦
for both αf and αr. If the iteration does not converge, odometry measurements from this
epoch are discarded. This only happens in less than 0.1% of all examined epochs. After
successful iteration, f bec,L is distributed between front and rear tire based on the assumption
of steady-state cornering according to (4.14). The computation of f bec,L based on ωbib,U instead
of f bib,L increases the lateral velocity’s accuracy drastically: The RMS of the measurement
error δṽbew,L drops from 18 cm s−1 to 4 cm s−1 for each of the front wheels and from 9 cm s−1

to 2 cm s−1 for each of the rear wheels.
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However, when the lateral velocities derived from ωbib,U are input into the integration
filter instead of the ones derived from f bib,L, the overall estimation accuracy decreases. This
only occurs during longer periods without GNSS measurement updates, e. g. in tunnels.
Due to a faster yaw angle error growth of the variant that uses ωbib,U , the lateral position
error in tunnels grows more quickly. When GNSS measurements are available, the two
variants perform almost identical since the localization algorithm has an additional source of
information available to stabilize the yaw estimation. A possible explanation for the degraded
performance of the variant with side slip angle estimation based on ωbib,U is the fact that while
the IMU’s measurement of f bib,L is noisy, its error is close to zero-mean and its time correlation
is small. These properties allow the EKF to filter out the noise. When side slip estimation is
performed based on ωbib,U , the side slip angle at the front axle exhibits a bias (see Figure 4.9).
Although this bias is small, its existence violates the Kalman filter assumption of zero-mean
measurement noise, leading to suboptimal estimation accuracy. Another important aspect
that might cause degraded integration filter performance is that both the a-priori yaw estimate
and the odometry observations rely on the same input value when side slip estimation is
performed based on ωbib,U . This leads to a correlation between the EKF’s state vector and
the odometry measurement vector, making it more difficult to correct the yaw angle, which
is derived from IMU measurements, with odometry observations. Consequently, the results
presented in Chapter 7 rely on the lateral velocities derived from accelerometer measurements.
The potential of the method outlined in this section is demonstrated in Figures 4.9 and 4.12,
which depict the accuracy of side slip angle and lateral velocity estimation on the basis of ωbib,U .

4.3 Measurement Noise
The integration filter inputs the odometry observables together with their measurement noise
covariance matrix Ro. In contrast to the matrices Rρc and Rρ̇c supplied by GNSS preprocess-
ing, Ro is not a diagonal matrix, because the correlation between the odometry observations
cannot be neglected. One reason for this is the fact that the eight entries of the odometry
measurement vector (formed by one two-dimensional velocity vector for each wheel) stem
from just five odometry sensors: four for wheel rotation rate and one for the steering wheel
angle. Another reason for correlation between the wheels is the utilization of the single-track
model: The estimated tire slip is identical for both wheels of each axle, which is not true
in general. Since multiple different quantities (e. g. the side slip angles of the front left and
the front right tire) are estimated as a single value (e. g. the side slip angle of the single-
track model’s front tire), the resulting estimation errors of these quantities are correlated.
To account for this correlation, the computation of Ro is performed in two steps, which are
detailed in Sections 4.3.1 and 4.3.2, respectively: First, the measurement noise covariance
matrix of each individual wheel is calculated. In the second step, these individual matrices
are assembled in form of a block-diagonal matrix and the correlation between the wheels is
accounted for by including non-zero off-diagonal elements.

4.3.1 Noise Determination for Individual Wheels

The covariance matrix Σvbew of each individual wheel is obtained via variance propagation
from the inputs for the calculation of vbew:

vbew = Cw
b

T


1

− tan α̂
0

ωwr̂−d κ̂x. (4.33)

63



Odometry Preprocessing

Cw
b is assumed to be error-free since δfl and δfr are known with high accuracy. The variance

of r̂−d does not need to be included in Ro because rd is contained in the integration filter’s
state vector. Its variance will therefore be accounted for via the filter’s measurement model
described in Section 6.3. The three remaining inputs α̂, κ̂x and ωw are assumed to be un-
correlated. Any neglected correlations between these inputs that influence the off-diagonal
elements of Ro are accounted for later on when the correlation between the wheels is in-
cluded (see Section 4.3.2). The variances of α̂ and λ̂x are computed via variance propagation
of (4.21)-(4.22) for the linear tire model and via variance propagation of (4.25)-(4.26) for
the Magic Formula tire model. This requires the covariance matrices of the tire parameters
(cλ/α for the linear model; Bλ/α, Cλ/α and Dλ/α for the Magic Formula model), which are
known from the parameter adjustment process in Section 4.2. It also requires the variance
of the friction coefficients from (4.19)-(4.20), which is assessed based on the IMU’s measure-
ment characteristics. To perform variance propagation, the partial derivatives of α̂ and λ̂x
w. r. t. the input values (tire parameters and friction coefficients) are necessary. Since the
curvature factor Eλ/α is set to zero, these partial derivatives can be obtained analytically
even for the Magic Formula model. After the variance of λ̂x has been obtained, the vari-
ance of κ̂x is computed via variance propagation of (4.2). σ2

ωw as the last required input
for the covariance propagation is parametrized by comparing a reference value for ωw with
the actual measurement.

This parametrization is performed by driving in a straight line with constant velocity
on a horizontal road with speeds ranging from 30 kmh−1 to 90 kmh−1. The road is part
of Griesheim airfield, a former airfield used by the TU Darmstadt for research concerning
automotive engineering as well as other tasks. The road’s surface consists of tarmac. Because
the dynamic tire radii rd are known with a precision of σrd ≤ 0.1 mm from the data recorded
for tire model parametrization in Section 4.2 and the reference equipment estimates the
vehicle’s speed with a standard deviation of less than 2mms−1, the reference value for ωw
has a standard deviation in the range of 0.01 rad s−1 to 0.025 rad s−1 for this speed interval.
As depicted in Figure 4.4, the empirical standard deviation of the measurement error δω̃w
increases with |ωw|. Based on these results, σωw is fitted as a linear function of |ωw|. To
prevent unrealistically low values for the measurement noise covariance at low speeds, a
minimum value of 0.15 rad s−1 is introduced for σωw .

Figure 4.4: Fitted standard deviation of wheel rotation rate. The additional horizontal axis
at the top is based on the arithmetic mean of the four dynamic tire radii rd and is included
for visualization purposes only.
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The accuracy of tire slip estimation is visualized in Figures 4.5-4.9. Identical to Fig-
ures 4.2 and 4.3, the reference values for the longitudinal slip λx are computed from the
reference equipment’s estimate of vbeb, the wheel rotation rates from the CAN bus and the
reference values for rd. The reference values for the side slip angle α are obtained based on
the reference equipment’s estimates of vbeb and ω

b
eb as well as the steering angle δf , which

in turn is determined from the steering wheel angle transmitted via CAN bus with the help
of (4.9). In contrast to Figures 4.2 and 4.3, the friction coefficients µx and µy for all the data
in Figures 4.5-4.9 are computed based on the MEMS IMU’s measurements of f bib and ω

b
ib,

since these measurements are available to the localization algorithm during normal opera-
tion, while the reference IMU’s observations are not. Consequently, the reference values in
Figures 4.5-4.9 appear to be very noisy, because their slip value on the vertical axis has the
reference equipment’s accuracy, while their value for the friction coefficient on the horizontal
axis is considerably less accurate. This behavior is desired, since the aim of the procedure
is to parametrize the slip estimation errors occurring during normal operation. In all five
Figures 4.5-4.9, the reference slip value computed in this manner is displayed in the same
plot as the value calculated with the respective tire model. To show the expected estimation
precision, the tire model’s estimate of the slip’s standard deviation is included in form of the
1σ confidence interval. A more detailed analysis reveals that the major part of the tire slip
estimation error stems from an incorrectly estimated friction coefficient, which in turn is a
result of the MEMS IMU’s measurement errors due to vehicle vibration and sensor noise.
Only a minor part of the slip estimation error stems from incorrect tire parameters.

Figure 4.5: Longitudinal slip estimation accuracy with linear tire model. (a) Front tire.
(b) Rear tire.

Figure 4.6: Longitudinal slip estimation accuracy with Magic Formula tire model. (a) Front
tire. (b) Rear tire.
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Figure 4.5 displays the accuracy of longitudinal slip estimation with the linear tire model,
Figure 4.6 with the Magic Formula tire model. The data basis for the two figures is the same
as for the adjustment of the longitudinal tire slip parameters, because these data cover the
whole range of longitudinal tire slip up to ABS engagement. The shown range is selected
based on each model’s validity range. Therefore, no values for |µx| > 0.7 exist in Figure 4.5.
For both tire models, the slip’s estimated standard deviation increases with |µx|. However,
this increase is hardly noticeable in Figure 4.5 due to the linear tire model’s limited application
range. In Figure 4.6, the bounded domain of the arcsine function in (4.25) becomes visible:
|λ̂x,f | and |λ̂x,r| are restricted to a maximum of 4.6% and 4.4%, respectively. They do not
increase any more for |µx| > µx,M − 0.02.

Examination of the stochastic model reveals that the reference value falls within the
1σ confidence interval in 35% of the epochs for the front tire with the linear model. With
the Magic Formula model, this value rises to 42%. While both of these values are too low,
they are based on data consisting solely of strong braking maneuvers. For more moderate
longitudinal slip values, they are in fact higher. Compared to the linear tire model, the Magic
Formula broadens the application range while simultaneously increasing the correctness of
precision estimation. This effect also occurs at the rear tire: The reference value falls within
the 1σ confidence interval estimated by the linear tire model in 40% of the epochs, while this
percentage rises to 49% with the Magic Formula model.

Figure 4.7: Side slip angle estimation accuracy with linear tire model, based on accelerometer
measurements. (a) Front tire. (b) Rear tire.

Figure 4.8: Side slip angle estimation accuracy with Magic Formula tire model, based on
accelerometer measurements. (a) Front tire. (b) Rear tire.
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Figure 4.7 displays the accuracy of side slip angle estimation with the linear tire model,
Figure 4.8 with the Magic Formula tire model. µy is obtained from the MEMS IMU’s ac-
celerometer measurements in both cases. The data basis for the two figures is the same as
for the adjustment of the side slip tire parameters, because these data cover a wide range
of lateral acceleration up to ±6.3m s−2. In contrast to the plots for longitudinal slip, the
scale of the axes is identical for both tire models, since the measurement data contain only
very few points outside the linear model’s validity range of |µ| ≤ 0.7. For both tire mod-
els, the slip’s estimated standard deviation increases with |µy|. In case of the linear model,
σα ≈

σµy
cα

because σcα is very low. While σµy increases with |µy|, the increase in σα is hardly
visible in Figure 4.7.

The reference value falls within the 1σ confidence interval in 67% of the epochs for the
front tire and 68% of the epochs for the rear tire with the linear model. With the Magic
Formula model, these values rise to 69% at the front and 70% at the rear. Just as for longitu-
dinal slip estimation, the Magic Formula broadens the application range while simultaneously
increasing the correctness of precision estimation compared to the linear model. The improve-
ments achieved by the Magic Formula model are smaller than they are for longitudinal slip
because the measurement data do not contain many values outside the tires’ linear range.

Figure 4.9: Side slip angle estimation accuracy with Magic Formula tire model, based on
gyroscope measurements. (a) Front tire. (b) Rear tire.

The accuracy of side slip angle estimation is improved when µy is obtained from gyroscope
measurements instead of accelerometer measurements. This is depicted in Figure 4.9. It is
based on the same data set and the same tire model as Figure 4.8. In contrast to Figure 4.8,
the tire model’s parameters are fitted based on the reference IMU’s measurements of the
vertical rotation rate ωbib,U instead of the lateral specific force f bec,L derived from accelerometer
measurements according to (4.11). The equivalent plot for the linear tire model appears in the
appendix (Section B.3). The RMS of the side slip angle estimation error decreases from 0.87◦
to 0.35◦ at the front tire and from 0.62◦ to 0.23◦ at the rear tire when gyroscope data are used
instead of accelerometer data. However, Figure 4.9a indicates a bias in the estimation of αf :
The reference value is higher than the estimated value in 74% of epochs. The arithmetic
mean of the estimation error is −0.17◦ while the error’s empirical standard deviation is 0.30◦.
Because the data set consists of driving in a circle with constant velocity, the assumption of
steady-state cornering is valid and cannot be the reason for this bias. A possible explanation
is an unmodeled scale factor error in the MEMS IMU whose measurements are used to
calculate α̂, resulting in too low values for |ψ̇nb| and subsequently |f bec,L| as well as |µy|.
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4.3.2 Correlation in Between the Wheels

With the estimated values for longitudinal and side slip, the 3-D observation vector
z̃o = vbew for each wheel is computed, resulting in an overall observation vector with twelve
entries. The corresponding 12×12 covariance matrix has block-diagonal form, consisting of
four 3×3 submatrices. Before these data are forwarded to the integration filter, the correlation
between the wheels is included to ensure proper processing of the observations in the EKF.
These correlations are too large to be neglected because slip estimation is performed with a
single-track model, yielding the same slip estimate for both wheels of each axle. The corre-
lation coefficients are parametrized by forming the difference between the 12×1 observation
vector and a reference solution, obtained from the integration of a geodetic GNSS receiver for
RTK positioning and a navigation grade IMU. This measurement error allows for computation
of Ξ, the matrix of correlation coefficients. Ξ concerns the correlation between the measure-
ment errors of the different velocity components at the four wheels within the same epoch,
any potential temporal correlations are neglected. Since these empirical quantities depend
on the evaluated measurement data, they are averaged over a number of different scenarios
to obtain representative results. The correlations for the vertical components δṽbew,U are not
important as these entries are not taken into account by the EKF anyway. The empirical
correlation values between longitudinal measurement error on the one hand and lateral mea-
surement error on the other hand are close to zero and therefore neglected. The values for
longitudinal and lateral velocity measurement error are:

Ξδṽbew,F
≈


1 0.5 0.4 0.2

0.5 1 0.2 0.4
0.4 0.2 1 0.5
0.2 0.4 0.5 1

 Ξδṽbew,L
≈


1 0.98 0.3 0.3

0.98 1 0.3 0.3
0.3 0.3 1 0.99
0.3 0.3 0.99 1

 , (4.34)

where Ξδṽbew,F
contains the correlation coefficients for the errors of the four longitudinal wheel

velocities and Ξδṽbew,L
contains the correlation coefficients for the errors of the four lateral

wheel velocities. Both are in the order front left, front right, rear left, rear right. With the
exception of the entries for the lateral correlation in between two wheels of the same axle
(0.98 and 0.99), all values in (4.34) are rounded to one significant digit. The high correlation
in lateral direction along each axle indicates that the two entries contain almost identical
information. It stems from the fact that lateral velocity estimation uses the same side slip
angle for both wheels of each axle. Inclusion of such high correlation coefficients into the
measurement covariance matrix Ro causes this matrix to be close to singular, because some
rows now contain almost the same information. To avoid this, the arithmetic mean of the
two lateral velocity estimates of each axle is formed and only two lateral velocities, vbef,L
and vber,L, are processed in the integration filter. After removal of the four vertical velocity
components, the odometry observation vector z̃o,6D contains six entries:

z̃o,6D =
(
vbefl,F vbefr,F vberl,F vberr,F vbef,L vber,L

)T
. (4.35)

The correlation coefficients of z̃o,6D are obtained by combining Ξδṽbew,F
with the correlation

coefficient in between the lateral velocity errors at both axles:

Ξδz̃o,6D ≈



1 0.5 0.4 0.2 0 0
0.5 1 0.2 0.4 0 0
0.4 0.2 1 0.5 0 0
0.2 0.4 0.5 1 0 0
0 0 0 0 1 0.3
0 0 0 0 0.3 1


. (4.36)
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The accuracy of velocity estimation is depicted in Figures 4.10-4.12. Each of the figures
shows the velocity error and the 1σ confidence interval estimated by odometry preprocessing
as a function of the wheel rotation rate. The data set spans a duration of approx. 2 h and
contains various acceleration profiles, including the maneuvers used for parametrization of
the tire models.

Figure 4.10: Longitudinal odometry velocity error, front and rear left wheel. The additional
horizontal axis at the top is based on the arithmetic mean of the four dynamic tire radii rd
and is included for visualization purposes only. (a),(c) Linear tire model. (b),(d) Magic
Formula tire model.

Figure 4.10 displays the longitudinal velocity error for the left wheels. The plot for the
right wheels is very similar and appears in the appendix (Section B.3). The estimation
error shows the same behavior for both front and rear left wheel because longitudinal slip
estimation for both axles is performed on the basis of longitudinal acceleration measurements
from the IMU, which are noisy due to the vehicle’s vibrations. For the actual error, no
difference between the linear and the Magic Formula tire model is apparent since the presented
data mainly feature horizontal accelerations within the tires’ linear range. The error’s RMS
is 4 cm s−1 in all four subfigures. The 1σ confidence interval [−σvwew,F , σvwew,F ] increases with ωw
since σωw does so, too. For values of |µx| up to 0.5, σωw is the major influence on σvwew,F .
Under these conditions, the estimated standard deviation ranges from 5 cm s−1 at standstill
to 20 cm s−1 for ωw = 100 rad s−1 (approx. 120 kmh−1).

The difference between the tire models is exemplified by the peaks in the estimated
confidence interval that appear in Figures 4.10b, d, but do not appear in Figures 4.10a, c.
They stem from epochs with large absolute values of µx. These are outside the linear tire
model’s application range, therefore they are discarded in Figures 4.10a, c. In contrast, the
Magic Formula model is able to perform slip estimation in these epochs. Since large values
of |µx| lead to increased uncertainty in λ̂x and therefore κ̂x, the estimated confidence interval
of the velocity measurement is comparatively high. The stochastic model is set up to deliver
a rather pessimistic estimate of the velocity precision. This leads to the fact that 93% to
96% of the errors fall within the 1σ confidence interval in each of the four subfigures of 4.10.
The reason for this is that due to the odometry’s high data rate of 100Hz, the measurement
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noise is correlated over many measurement updates, violating the EKF’s assumption of white
noise. Consequently, the integration filter cannot smooth out odometry measurement errors
as quickly as it expects. The increased estimated measurement noise models this behavior and
prevents the EKF from obtaining unrealistically low values for the error covariance matrix P.

Figure 4.11 depicts the lateral velocity error at the front and rear axle when side slip
estimation is performed based on accelerometer measurements. The error increases with ωw
due to two reasons: On the one hand, the absolute error in ωw grows with the vehicle speed.
On the other hand, the vehicle’s vibration due to road unevenness increases, too. The latter
effect is the dominant one in the lateral velocity error growth. This is apparent in Figure 4.12,
which presents the results of the same data set, but with side slip estimation on the basis of
gyroscope measurements: While the error’s RMS is 18 cm s−1 at the front axle and 9 cm s−1

at the rear axle in Figure 4.11, it is only 4 cm s−1 at the front axle and 2 cm s−1 at the
rear axle in Figure 4.12. These values are independent of the employed tire model since the
measurement data mainly contain lateral acceleration values inside the tires’ linear range.

When performing variance propagation with the inputs σ2
α̂, σ2

κ̂x
and σ2

ωw in order to obtain
the variance estimate for the lateral velocity of each wheel, all partial derivatives become zero
for α̂ = λ̂x = ωw = 0, leading to a variance estimate of zero for vwew,L. This causes numerical
problems within the integration filter because Ro becomes singular. To avoid these issues,
a constant term is added to the propagated variance. Since the lateral velocity at the rear
axle is smaller than the one at the front axle for small vehicle speeds, this constant term
is set to a higher value at the front than at the rear (25 cm s−1 at front and 10 cm s−1 at
rear when side slip is estimated based on accelerometer measurements, 10 cm s−1 at front
and 5 cm s−1 at rear when side slip is estimated based on gyroscope measurements). This
is visible in Figures 4.11 and 4.12. The estimated 1σ confidence interval increases with ωw,
reaching values of 50 cm s−1 at the front and 25 cm s−1 at the rear axle for ωw = 100 rad s−1

(approx. 120 kmh−1) when side slip is estimated based on accelerometer measurements. The
Magic Formula tire model exhibits peaks in the propagated variance for large values of |µy|
in the same way it does for large values of |µx| for the longitudinal velocity. These values
are outside of the linear tire model’s application range, hence they do not appear in the
corresponding subfigures. Independent of tire model and axle, the lateral velocity error is
inside the estimated confidence interval in 93% of the epochs when side slip estimation is
performed based on accelerometer measurements and in 98% of the epochs when gyroscope
measurements are used.
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Figure 4.11: Lateral odometry velocity error when side slip is estimated based on accelerom-
eter measurements, front and rear axle. The additional horizontal axis at the top is based
on the arithmetic mean of the four dynamic tire radii rd and is included for visualization
purposes only. (a),(c) Linear tire model. (b),(d) Magic Formula tire model.

Figure 4.12: Lateral odometry velocity error when side slip is estimated based on gyroscope
measurements, front and rear axle. The additional horizontal axis at the top is based on the
arithmetic mean of the four dynamic tire radii rd and is included for visualization purposes
only. (a),(c) Linear tire model. (b),(d) Magic Formula tire model.
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Chapter 5

Quality Assessment

This chapter deals with different techniques and metrics which are useful for assessing the
quality of data within a localization algorithm. Section 5.1 lists multiple categories of per-
formance metrics for localization algorithms in general and specifies various metrics within
these categories. The capability to perform quality assessment internally, i. e. by applying
techniques that are possible in real time and without employing external reference data, is
subject of Section 5.2. The main goal of this internal quality assessment is to obtain a real-
istic estimate of the current estimation error. Section 5.3 completes the chapter by defining
criteria to choose a subset of metrics for assessing the quality of the particular localization
algorithm designed within this thesis and detailing the metrics that match these criteria.
Because evaluation of said metrics requires accurate external reference data, this process is
called external quality assessment.

5.1 Performance Metrics for Localization Algorithms
This section introduces four categories of performance metrics for localization algorithms:
accuracy, integrity, availability and continuity. These four categories are widely employed in
order to get a complete picture of an algorithm’s overall performance, e. g. in Peyret [2013],
Pullen [2008] and COST Action TU1302 [2017]. The subsequent definitions of metrics from
the four categories are mainly based on these three references.

The dynamic tire radius rd plays a special role among the quantities estimated within the
localization algorithm, because it undergoes a short transient phase in the beginning of each
test scenario and then remains largely constant throughout the remainder of the scenario.
Therefore, the conventional metrics from the four mentioned categories are not suited to assess
the algorithm’s estimation performance as far as rd is concerned. Section 5.1.5 is thus dedi-
cated to performance metrics from control engineering which are able to accomplish that task.

5.1.1 Accuracy

The accuracy of any estimate output by a localization algorithm is assessed based on the
estimation error δŷ, which is the difference between an estimated quantity ŷ and its
true counterpart y̆:

δŷ = ŷ− y̆. (5.1)

The vector y acts as a placeholder in this formulation and may refer to any scalar or vector
quantity that appears within a localization algorithm. Because the true value y̆ is usually
unknown, it is replaced by a reference value obtained from sources of information with higher
accuracy than ŷ. One way to characterize the estimation error is its CDF, which is most useful
for scalar estimation errors, since visualization and interpretation of the CDF is complicated
for non-scalar quantities.
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A variety of metrics focuses on the estimation error and its distribution. The most
common ones include:

• The error’s arithmetic mean, which judges the unbiasedness of the estimation process.
It is not as robust against outliers as the median, which is why the difference between
arithmetic mean and median is an indicator for the presence of outliers or an otherwise
skewed distribution.

• The empirical covariance matrix Σδŷ of the estimation error, which describes the error’s
variation around its arithmetic mean. The error’s empirical standard deviation σδŷ is
formed by taking the square root of the elements on the main diagonal of Σδŷ. Both Σδŷ
and σδŷ quantify estimation precision, not estimation accuracy.

• Accuracy assessment is accomplished by the error’s RMS, which quantifies the variation
of ŷ around the reference value.

• In order to extract individual points from a scalar error’s CDF, error quantiles are em-
ployed. These are typically based on the error’s absolute value and define the value |δŷ|pq
which |δŷ| does not exceed in a percentage pq of epochs:

CDF
(
|δŷ|pq

)
= pq. (5.2)

Typical values for pq are 50%, 95% and 99%. In the context of localization algorithms
for automotive positioning, 3-D vectors of quantities such as position and velocity are
often transformed into scalars by splitting them up into their horizontal and their
vertical part.

5.1.2 Integrity

Integrity characterizes the amount of trust that can be placed in a quantity within a local-
ization algorithm. In order to assess integrity, some estimate concerning the magnitude of
the estimation error has to be computed by the localization algorithm. One way to quantify
integrity is to use the three parameters alert limit, time to alert and integrity risk [Pullen,
2008, p. 21]:

• The alert limit defines the magnitude of error that cannot be exceeded without posing
a safety risk.

• The time to alert is defined as the maximum acceptable time between exceeding the
alert limit and issuing a warning about it.

• The probability of exceeding the alert limit without issuing a warning within the time
to alert is called the integrity risk.

Whenever no dedicated alert limit is specified, integrity can be quantified with the concept
of a protection level. The protection level is output by the localization algorithm in ad-
dition to the estimated value ŷ and provides an upper bound for the estimated error. In
this case, the integrity risk is the probability that the actual error exceeds the computed
protection level [Peyret, 2013, p. 6].

Since the localization algorithm designed in the context of this thesis does not provide any
protection level, integrity assessment can only be performed based on the covariance matrices
output by various parts of the algorithm. The goal of this integrity assessment is to define a
metric that quantifies the agreement between the estimated covariance and the actual esti-
mation error. Because covariance matrices specify precision, but integrity concerns accuracy,
a good agreement can only be reached in case of an unbiased estimation. In order to quantify

74



5.1 Performance Metrics for Localization Algorithms

this agreement, a test quantity εδŷ is computed from δŷ and its estimated covariance Σ̂δŷ at
each epoch k. For normally distributed errors δŷ, this test quantity is chi-squared distributed
with degrees of freedom equal to the dimension of δŷ [Niemeier , 2008, Section 3.2]:

εδŷ,k = δŷT
k Σ̂−1

δŷ,kδŷk (5.3)
εδŷ,k ∼ χ2

dim(δŷ). (5.4)

Assuming no correlation between ŷ and y̆, Σ̂δŷ is the sum of the respective estimated co-
variance matrices:

Σ̂δŷ = Σ̂ŷ + Σ̂y̆. (5.5)

The agreement between estimated and actual error is quantified by specifying a percent-
age pε and computing the corresponding value ξδŷ,pε from the CDF of a chi-squared
distribution χ2

dim(δŷ):
CDFχ2

dim(δŷ)

(
ξδŷ,pε

)
= pε. (5.6)

Afterwards, it is checked how often the test quantity εδŷ,k is smaller than ξδŷ,pε within the
examined time interval. The percentage of epochs for which this check is passed is equal to
the specified percentage pε in case all of the following statements are true:

• ŷ is an unbiased estimate of y̆.

• δŷ is distributed normally.

• Σ̂δŷ describes the actual error δŷ adequately.

The described technique constitutes a very basic level of integrity assessment. While a high
degree of correlation between the actual and estimated errors is a necessity for algorithms with
good performance in terms of integrity, it is not sufficient for safety-critical systems. More
advanced levels of integrity assessment aim to overbound the actual error, identify potential
failures in the input data and alert the user about possibly unsafe operating conditions.

5.1.3 Availability

Any quantity within a localization algorithm is defined to be available at a certain epoch
if this quantity is provided with the required accuracy and integrity at that epoch [Peyret,
2013, p. 6]. The related metric is the percentage of epochs during a test scenario for which
a specific quantity is available. Unavailability occurs when the actual error is larger than
the specified tolerable maximum error, when the algorithm flags its output as unusable or
when the algorithm is unable to output any estimate at all. Due to the fact that no tolerable
maximum error is specified for any quantity within the localization algorithm designed in this
thesis and that this algorithm does not provide any usability flags, unavailability only occurs
if no output is provided at all. This case does not occur during any of the test scenarios
described in Chapter 7, therefore availability is not considered to be one of the important
metrics to demonstrate the algorithm’s performance.

5.1.4 Continuity

Continuity concerns a localization algorithm’s capability to output quantities continuously
over a defined time interval. These quantities have to fulfill specified accuracy and integrity
requirements. Continuity is quantified in terms of the continuity risk, which states the prob-
ability that the algorithm will stop providing a quantity within the required limits during
a time interval, given that the output is within the required limits at the beginning of that
time interval [Pullen, 2008, p. 22]. Due to the nature of this definition, the continuity risk
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is usually assessed in post-processing. If it is required in real time, the continuity risk can
be provided on the basis of a large set of previous measurements. By comparing the cur-
rent situation with similar ones that have occurred within this set of previous measurements,
the current continuity risk may be derived. In analogy to availability, continuity is not ad-
dressed for the algorithm developed in this thesis as there are no specified requirements for
accuracy and integrity.

5.1.5 Control Engineering Metrics for Closed-Loop Systems

Performance metrics for localization algorithms generally deal with estimated quantities ŷ
whose true value y̆ changes significantly over time, e. g. attitude, velocity and position. This
is not the case for the dynamic tire radius, whose change over the course of a test scenario
due to factors like tire wear, temperature or wheel load change is very small. In a typical
test scenario, the estimates of all four tire radii are initialized with the same, constant value.
This value is obtained from the CAN bus and does not change from one scenario to the
next. Consequently, the behavior of r̂d during the transient phase after initialization is very
important for the localization algorithm’s performance. This type of behavior is also found
in the command step response of a closed-loop system in the field of control engineering.

op 2ps

e∞

Figure 5.1: Command step response of a closed-loop system with associated performance
metrics [Lunze, 2016, p. 355].

A typical command step response of a linear system is depicted in Figure 5.1. The figure
is created in analogy to Lunze [2016, Section 7.1], where also the performance metrics defined
in this paragraph stem from. After a unit step is input into the system at t = 0, the rise
time Tr measures the time until the system’s output reaches 0.9 for the first time. The peak
overshoot op occurs at the peak time Tp. The settling time Ts,ps is defined as the point in time
after which the command step response stays inside the interval [1 − ps, 1 + ps] indefinitely.
Typical values for ps are 2%, 5% and 10% [Lunze, 2016, p. 488]. The final performance
metric depicted in Figure 5.1 is the steady-state error e∞, which is the difference between
one and the limit of the system’s response for t→∞.
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5.2 Internal Quality Assessment
Internal quality assessment refers to all techniques regarding quality assessment that are
possible in real time and only utilize information which is present within the localization
algorithm. This means in particular that only data that have been generated in previous
or the current epoch can be employed, but no future data. It also means that no external
reference data are available. Consequently, all consistency checks have to be performed
by comparing quantities within the localization algorithm with each other. The goal of
this section is to outline a method for quantifying quality of data within the integration
algorithm in all processing steps, i. e. from raw sensor data to the the integration filter’s
output vector x̂+. In this context, the term quality of data stands for accuracy whenever
accuracy assessment is possible with internal data alone. Whenever that is not the case, the
term quality of data stands for precision.

Quality assessment for the input and output data of the GNSS and odometry preprocess-
ing modules has already been performed in Chapters 3 and 4. While this assessment was
carried out with the help of external reference data, the obtained parametrization for the
measurement noise only requires data from within the localization algorithm, e. g. satellite
elevation or wheel rotation rate. This enables internal quality assessment for these in- and
outputs. The IMU’s data quality is specified in its data sheet. The values supplied by the
manufacturer are verified via laboratory tests. The integration filter’s system model and the
corresponding system noise (see Section 6.2) are responsible for computing an estimate of the
a-priori navigation solution’s quality. Since no external information is utilized in this process,
it qualifies as a form of internal quality assessment. Therefore, internal quality assessment
methods are implemented for all quantities within the localization algorithm, with the ex-
ception of the a-posteriori integrated solution x̂+. While the integration filter provides the
a-posteriori error covariance matrix P+, this matrix is solely based on all of the EKF’s input
covariance matrices. Consequently, mismatches between these input covariance matrices and
the actual measurement inputs do not affect P+, unless these mismatches are large enough
to be detected via outlier detection (see Section 6.4). That’s why the rest of this section is
dedicated to outlining a method for checking the agreement between the integration filter’s
measurement inputs and their associated data quality.

The method for internal assessment of the data quality within the integration filter relies
on two concepts from parameter adjustment theory: a-posteriori variance factors and re-
dundancy components. In order to apply these techniques, the Kalman filter’s measurement
update is expressed in terms of a Gauss-Markov model:

l = A dx̂ − υ (5.7)(
x̂−

z̃

)
=
(

I
H

)
x̂+ −

(
x̂+− x̂−

δz+

)
. (5.8)

The vector on the left hand side is the observation vector of the Gauss-Markov model, A is
its design matrix, dx̂ is the vector of unknown parameters and υ is the improvement vector.
The observation covariance matrix Σl, expressed in Kalman filter terms, is:

Σl =
(

P− 0
0 R

)
. (5.9)

The a-posteriori variance factor σ̂2
0 characterizes the agreement between the improvements

and the stochastic model [Niemeier , 2008, Section 4.5.3]:

σ̂2
0 = υ

TΣ−1
l υ

dim(l)− dim(dx̂) . (5.10)
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This formulation with the weight matrix in the numerator equal to the inverse of the ob-
servation covariance matrix implies an a-priori variance factor of one. The denominator
in (5.10) is the redundancy of the adjustment process. For the Kalman filter equivalent, it
always equals the dimension of z̃, since x̂− and x̂+ have the same dimension. If both func-
tional and stochastic model are correct and the observation vector does not contain outliers
or systematic errors, σ̂2

0 is close to one. Values larger than one imply the presence of out-
liers/systematic errors or an overly optimistic stochastic model, values smaller than one an
overly pessimistic stochastic model.

While the true parameter vector within a classical Gauss-Markov is assumed to be con-
stant in time, the true state vector of a Kalman filter changes with time according to its state
function. The Kalman filter works recursively and only processes the current observations in
conjunction with the current a-priori state vector in each epoch in order to obtain an optimal
estimate of the current state. Therefore, the redundancy in each measurement update is
small compared to classical parameter adjustment. The three types of EKF measurement
updates that are performed within the designed algorithm input pseudoranges, range rates
and odometry observations, respectively. If no outliers are detected, the redundancy for the
GNSS measurement updates equals the number of received satellites (i. e. less than 20 even
under perfect reception conditions), while the redundancy for the odometry measurement
update is six. The number of unknowns is equal to the number of elements within the state
vector, which is 22 in this case. This low level of redundancy causes the a-posteriori vari-
ance factor to fluctuate from one measurement epoch to another, with the resulting value
largely depending on the short-term measurement noise. Figure 5.2 depicts this behavior
for the three types of measurement updates in a test scenario. This makes it difficult to
obtain useful information about the actual quality of the EKF’s stochastic model from the
time series of σ̂2

0.

Figure 5.2: A-posteriori variance factor for all three types of measurement updates during
a test scenario through the inner city of Darmstadt. (a),(c),(e) Complete test scenario.
(b),(d),(f) Detailed view.
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Another problem is the fact that all elements of the improvement vector υ are merged into
a single quantity by (5.10). During any of the EKF’s measurement updates, the individual
entries of the state vector are not observable equally well. For instance, pseudorange observa-
tions mainly influence the position and receiver clock bias states, but have very little impact
on the dynamic tire radius. This is quantified by the associated redundancy components rc,
which are the diagonal elements of the matrix ΣυΣ−1

l . The sum of all individual redundancy
components equals the overall redundancy dim(l) − dim(dx̂). It is equivalent to the trace
of ΣυΣ−1

l [Niemeier , 2008, Section 8.3.2]:

tr
(
ΣυΣ−1

l

)
= tr

(
I−A

(
ATΣ−1

l A
)−1

ATΣ−1
l

)

=
dim(l)∑
j=1

rc,j

= dim(l)− dim(dx̂).

(5.11)

With the help of these redundancy components, individual a-posteriori variance factors can
be computed for each of the observation vector’s elements, or subsets of those. These indi-
vidual a-posteriori variance factors are obtained by only using the elements of υ and Σ−1

l
corresponding to the desired subset when evaluating the numerator in (5.10) while replacing
the denominator with the sum of the redundancy components of the desired subset’s ele-
ments. This enables the internal assessment of the agreement between the current state esti-
mate and the measurement vector on the one hand and their associated covariance matrices
on the other hand.

In order to perform this quality assessment, all three types of measurement updates are
merged into one Gauss-Markov model. Due to the differing measurement intervals (100ms
for GNSS vs. 10ms for odometry), multiple odometry updates occur in between two GNSS
updates. Under nominal conditions, ten odometry updates are performed in the same time
span as one pseudorange and one range rate update, yielding the following model:

x̂−

z̃ρc
z̃ρ̇c
z̃o,1
...

z̃o,10


︸ ︷︷ ︸

l∗

=



I
Hρc

Hρ̇c

Ho,1
...

Ho,10


︸ ︷︷ ︸

A∗

x̂+ −



x̂+− x̂−

δz+
ρc

δz+
ρ̇c

δz+
o,1
...

δz+
o,10


︸ ︷︷ ︸

υ∗

. (5.12)

The observation covariance matrix has block-diagonal form:

Σl∗ =



P− 0 0 0 · · · 0
0 Rρc 0 0 · · · 0
0 0 Rρ̇c 0 · · · 0
0 0 0 Ro,1 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · Ro,10


. (5.13)

In practice, the actual measurement intervals of both the GNSS receiver and the odometry
sensors vary. To account for this, two consecutive pseudorange updates are taken to mark
the beginning and end of a particular merging interval. x̂− in (5.12) is the a-priori estimate
of the total state right before the first pseudorange update, x̂+ is the last a-posteriori esti-
mate before the second pseudorange update. All measurement matrices H and measurement
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noise covariance matrices R occurring in the meantime are stored in memory to be able to
form A∗ and Σl∗ . l∗ and υ

∗ are not needed, because only the redundancy components and
a-posteriori variance factors of the elements in the state vector x̂− are of interest. The mea-
surement residuals δz+ of all updates with the exception of the last one do not refer to the
last a-posteriori estimate x̂+ within the particular merging interval, anyway.

When no GNSS measurements are available, e. g. in a tunnel, the time span in between
two consecutive pseudorange updates is much larger than the nominal 100ms. To avoid
having to store many odometry update matrices Ho and Ro in memory, the nominal GNSS
measurement interval is used as merging interval if no pseudorange update occurred in the
last 120ms. In this case, the entries corresponding to the GNSS updates are omitted when
forming A∗ and Σl∗ . This overall process yields time series for the improvements x̂+− x̂−, the
design matrix A∗ and the weight matrix Σ−1

l∗ , enabling the computation of redundancy com-
ponents rc,j and a-posteriori variance factors σ̂2

0,j for arbitrary subsets j of the elements in x̂−.

Figure 5.3: Redundancy components and a-posteriori variance factors for yaw angle, velocity
and position during a test scenario through the inner city of Darmstadt. (a),(c),(e) Redun-
dancy components. (b),(d),(f) A-posteriori variance factors.

Figure 5.3 displays rc and σ̂2
0 for the yaw angle ψnb, the 3-D velocity vector vnen and

the 3-D position vector peen during the same test scenario whose results are depicted in
Figure 5.2. The redundancy component for the vectors is obtained by summing up the three
redundancy components of its elements. The three quantities yaw, velocity and position are
chosen because they are the most important elements of the EKF’s total state vector x in
regard to automotive localization performance. The values for rc reflect the current degree of
observability for each quantity. Because velocity is measured by both GNSS and odometry,
its redundancy component is the largest, varying between 0.1 and 0.3 most of the time. The
redundancy components for ψnb and peen are considerably smaller and rarely exceed 0.05.
The yaw angle is only observable when the vehicle is moving, so rc drops to zero during
standstill in Figure 5.3a, e. g. from 6min to 9min or from 10min to 12min. Position is only
observable through pseudoranges, so rc drops to zero in Figure 5.3e during the two tunnels
that occur within the test scenario around minute 22 and minute 50. Because the estimated
position variance grows during the tunnels, the pseudorange measurements right after the

80



5.2 Internal Quality Assessment

tunnel have higher weights relative to the a-priori position estimate p̂een as they have during
periods of unobstructed sky view, causing peaks in the redundancy component for peen of up
to 0.4. With the exception of the receiver clock error states, all other elements in x̂− have
redundancy components of � 1 · 10−3, indicating that they are only very weakly observable
through a single set of merged measurements. As far as the a-posteriori variance factors are
concerned, the plots in Figure 5.3 still show a high degree of fluctuation. During the first
15min, GNSS reception conditions are good. All plots for σ̂2

0 display smaller values and less
variation than for the remaining test scenario, during which GNSS reception conditions are
impaired due to driving through urban surroundings. σ̂2

0 for p̂een in Figure 5.3f is especially
low during two time spans of standstill from 6min to 9min and from 10min to 12min. The
maximum values of σ̂2

0 exceed 1 · 104, caused by redundancy components very close to zero.
In order to avoid these large peaks, a lower limit of 1 · 10−5 for rc is introduced. For

all values below this, the measurements do not contain enough information to assess the
agreement between the actual and the estimated error in x̂+, making this form of internal
quality assessment impossible. Consequently, σ̂2

0 is set to one when rc is less than 1 · 10−5.
To limit the influence of short-term measurement noise on σ̂2

0, a moving average is formed for
each individual a-posteriori variance factor. The aim of this smoothing process is to reduce
the rapid fluctuation of the a-posteriori variance factors, but still allow for quick adaption
to changing conditions. These condition changes might be due to the shape of the driven
trajectory, e. g. turning into a corner at the end of a straight road segment, or they might
be due to varying GNSS reception conditions, e. g. satellites that dis- and later reappear
when the vehicle is driving past a building or passing under an overpass. Khanafseh et al.
[2018] examine the temporal correlation of code and carrier multipath. Correlation times in
kinematic data sets are much lower than in static data sets and range from 1.8 s to 96 s. In
order to capture the effects that code multipath with such short correlation times has on
the integrated navigation solution, the moving average of each a-posteriori variance factor is
computed over a 2 s window. This short window is already able to smooth out much of the
fluctuation in σ̂2

0, as shown subsequently.

Figure 5.4: Original and smoothed a-posteriori variance factors for yaw angle, velocity and
position during a test scenario through the inner city of Darmstadt. (a),(c),(e) Complete
test scenario. (b),(d),(f) Detailed view.
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The impact of the moving average smoother is depicted in Figure 5.4. In the overview
of the complete test scenario in Figures 5.4a, c, e, the peaks of the original data are reduced
drastically by the smoothing process. While all three a-posteriori variance factors exceed
100 in multiple epochs in the original data, none of the smoothed values is larger than 40
in any epoch. The smoothing effect becomes even more apparent in the detailed view in
Figures 5.4b, d, f: All three time series of the original data are noisy, the values of σ̂2

0 in
between two consecutive epochs often differ by a factor of more than 20. This behavior does
not allow for an assessment of the current agreement between actual and estimated errors
in the integrated navigation solution. These jumps are filtered out by the moving average,
which exhibits a smooth progression while still being able to adapt to conditions that vary
on a time scale of a few seconds, e. g. road curvature or code multipath.

The smoothed a-posteriori variance factors are used to scale the estimated variance of the
integrated navigation solution. While the a-posteriori values x̂+ and P+ remain unchanged
for processing in the EKF in the next epoch, an additional covariance matrix is formed for
each subset of x̂+ for which an a-posteriori variance factor has been computed. This output
covariance matrix is obtained by multiplying the submatrix of P+ concerning the respective
subset with the corresponding value of σ̂2

0. A lower limit of one is applied to σ̂2
0 in this process

in order to avoid reducing the entries in P+ even further. The estimated variance is typically
too low anyway due to the EFK’s assumption of measurement noise that is uncorrelated in
time, an assumption which is not true for real measurement data.

5.3 External Quality Assessment
External quality assessment refers to all techniques that judge the quality of quantities pro-
vided by the localization algorithm by comparing these quantities to external reference data.
Such techniques are employed to obtain information about the algorithm’s performance and
as a means to evaluate how well the internal quality assessment works. This section defines
criteria to select suitable metrics for external quality assessment from the catalog of metrics
detailed in Section 5.1 before listing the chosen metrics for the integrated navigation solution.

Selection criteria for performance metrics to be used for external quality assessment are:

1. The metrics are suited to quantify the deficits of the existing approaches as outlined
in Chapter 1 as well as the potential improvements that are made by the localization
algorithm developed in this thesis.

2. The metrics address quantities that are relevant for the localization algorithm’s appli-
cation in the automotive field.

3. The metrics have to be evaluable, i. e. a reference solution with sufficient accuracy has
to be available.

Because the most important contribution of this thesis is the integration of multi-frequency
pseudoranges from multiple GNSS constellations, which addresses the elimination of the
position error put forth by the ionospheric delay, position accuracy is the most important
metric according to criterion 1. The odometry preprocessing is designed to improve estimation
quality for horizontal velocity and the yaw angle, so accuracy of these quantities has to be
evaluated, too. Criterion 2 implies that more weight is to be put on the horizontal errors of
position and velocity, since their vertical components only play a minor role for automotive
applications as long as all wheels remain in contact with the road. Reference values for
attitude, velocity, position and the dynamic tire radii exist. This is not the case for the
remaining elements of the EKF’s state vector, which are IMU biases and GNSS receiver
clock errors (see Section 6.2). This is unproblematic as the accuracy of these quantities is
not of interest according to criterion 2, anyway.
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According to the criteria defined in the previous paragraph, the following metrics
are selected for external quality assessment of the localization algorithm’s integrated
navigation solution:

• Position error δp̂nen: RMS for each of the three components, 95% quantile of the hor-
izontal error |δp̂nen,hor|95 % and the vertical error |δp̂nen,U |95 %, percentage of epochs for
which horizontal and vertical error are inside their respective 95% confidence interval:
p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
and p

(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
. Because the position error

is the single most important metric, the complete CDFs of its horizontal and vertical
components are selected, as well.

• Velocity error δv̂beb: RMS for each of the three components, 95% quantile of the hori-
zontal error |δv̂beb,hor|95 %, percentage of epochs for which the horizontal error is inside
its 95% confidence interval: p

(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
.

• Attitude error δψ̂nb: Yaw error RMS, 95% quantile of the yaw error |δψ̂nb|95 %,
percentage of epochs for which the yaw error is inside its 95% confidence interval:
p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
.

• Dynamic tire radius error δr̂d: Settling time Ts,10 %.

As detailed in Section 5.1, all of these metrics concern accuracy and integrity, because avail-
ability and continuity cannot be evaluated in a meaningful way without defining specific
performance requirements. The velocity error is evaluated in the body frame because correct
velocity representation in this frame is more important in automotive engineering than the
representation in the navigation frame. The yaw error is picked as only component of the
attitude error since roll and pitch angles as well as their estimation errors remain close to zero
during usual driving conditions. The settling time is picked as most important metric for δr̂d
as it combines the need for fast response with the requirement of a low steady-state error.
The ±10% margin is computed from the difference between reference and initial values for
each of the four tire radii.
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Chapter 6

Integration Filter

This chapter describes how measurements from GNSS receiver, IMU and odometry sensors
are fused together to form the integrated navigation solution. It begins with an overview of
the localization algorithm’s architecture in Section 6.1. Afterwards, the integration filter’s
system model is presented in Section 6.2. That section includes information about the EKF’s
state vector and its initialization as well as details about covariance prediction and tuning
of the stochastic model, in particular the system noise covariance matrix Q. Besides the
system model, the measurement models for GNSS and odometry described in Section 6.3
are the most important part of the EKF. In order to limit the effect of potentially faulty
observations on the integrated navigation solution, additional steps are implemented within
the measurement updates to detect and eliminate outliers. These steps focus on measurement
innovation δz− and measurement residual δz+. They are presented in Section 6.4.

6.1 Overall Architecture
The localization algorithm’s overall architecture is depicted in Figure 6.1. On the left hand
side are the sensors that provide raw measurement data to the preprocessing blocks: pseu-
doranges ρ and carrier phase measurements φ from the GNSS receiver, specific forces f bib and
rotation rates ω

b
ib from the IMU as well as wheel rotation rates ωw and the steering wheel

angle δsw from the odometry sensors. These data are preprocessed before they are forwarded
to the integration filter. As detailed in Chapter 3, the GNSS preprocessing outputs corrected
pseudoranges ρc and range rates ρ̇c as well as a-priori estimates of receiver clock bias cδt̂−R and
drift cδˆ̇t−R. In return, it inputs the a-posteriori estimates of receiver clock bias and drift. The
odometry preprocessing provides wheel velocities vbew and receives the a-posteriori estimates
of the dynamic tire radii r̂+

d in return as presented in Chapter 4. The two remaining blocks in
Figure 6.1 are the strapdown algorithm and the integration filter. Both are described in this
section, while additional details about the integration filter are given in Sections 6.2 to 6.4.

The strapdown algorithm functions as the IMU preprocessing. It inputs the IMU data
and computes a-priori estimates of the direction-cosine matrix Ĉn,−

b , the velocity v̂n,−en and
the position p̂e,−en . These estimates are forwarded to the integration filter which feeds back the
corresponding a-posteriori estimates as well as the a-posteriori estimates of the accelerometer
biases ba and the gyroscope biases bω. The bias definition is:

ãbib = ăbib + ba + wa (6.1)
ω̃
b
ib = ω̆

b
ib + bω + wω, (6.2)

where (ãbib,ω̃bib) are the values as measured by the IMU, (ăbib,ω̆bib) are the true values and
(wa,wω) are measurement noise terms.
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Ĉ
n,−
b , v̂n,−

en , p̂e,−
en

vb
ew

r̂+
d

Ĉ
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Figure 6.1: Overall localization algorithm architecture. Measurement timestamps and co-
variance matrices omitted to increase readability (Repetition of Figure 1.1 with additional
information).

A part of the localization algorithm that is not depicted explicitly in Figure 6.1 is the
timing module. Its task is to check whether new sensor data are available and to trigger
execution of the relevant algorithm parts. Whenever new GNSS measurement are detected,
the GNSS preprocessing is triggered and its output data are forwarded to the integration
filter. The same procedure is applied to the odometry preprocessing each time new odom-
etry observations are available. The integration filter itself is triggered synchronously with
the strapdown algorithm whenever new IMU measurements are recognized. When these
IMU measurements are the only new sensor data, the integration filter solely performs its
prediction step. If new data from GNSS and/or odometry preprocessing are available, the
corresponding measurement updates are triggered, too. After the integration filter has per-
formed all requested steps, it outputs the a-posteriori estimate of the total state vector x̂+.
It is identical with the a-priori estimate x̂− in case no measurement updates were triggered.

The strapdown algorithm’s main task is the computation of the a-priori navigation solu-
tion, consisting of Ĉn,−

b , v̂n,−en and p̂e,−en . It is performed in the navigation frame formulation
according to Groves [2013, Section 5.4]. The first step is the attitude update:

Ĉn,−
b,k = Ĉn,+

b,k−1eΩb
nbτi,k , (6.3)

where Ωb
nb is the skew-symmetric matrix of the rotation rate vector ω

b
nb and τi,k = ti,k− ti,k−1

is the current IMU measurement interval. ω
b
nb is obtained from ω̃

b
ib by applying correc-

tions for the gyroscope bias bω, the Earth rotation rate ω
b
ie and the transport rate ω

b
en.

For the evaluation of (6.3), the matrix exponential function has to be used. The next
step is the velocity update. To account for the attitude change during τi,k, the mean of
Ĉn,+
b,k−1 and Ĉn,−

b,k is deployed:

v̂n,−en,k = v̂n,+en,k−1 + τi,k

Ĉn,+
b,k−1 + Ĉn,−

b,k

2 abib − (2ω
n
ie + ω

n
en)× v̂n,+en,k−1 − gnib

 , (6.4)

where abib is the IMU’s acceleration measurement, corrected for the accelerometer bias ba,
(2ω

n
ie + ω

n
en)× v̂n,+en,k−1 is the Coriolis correction and gnib is the gravity correction. The strap-

down algorithm’s last step is the position update. In analogy to the velocity update, the
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mean of a-posteriori values from the previous epoch and already updated a-priori values from
the current epoch is deployed to account for the change of velocity and position during τi,k:

h−e,k = h+
e,k−1 + τi,k

2
[
vn,+en,U,k−1 + vn,−en,U,k

]
ϕ−e,k = ϕ+

e,k−1 + τi,k
2

[
vn,+en,N,k−1

RN + h+
e,k−1

+
vn,−en,N,k

RN + h−e,k

]
(6.5)

λ−e,k = λ+
e,k−1 + τi,k

2

 vn,+en,E,k−1(
RE + h+

e,k−1

)
cosϕ+

e,k−1
+

vn,−en,E,k(
RE + h−e,k

)
cosϕ−e,k

 ,
where RN is the reference ellipsoid’s radius of curvature in north-south direction (meridian
radius of curvature) and RE is the reference ellipsoid’s radius of curvature in east-west direc-
tion (transverse radius of curvature). They are computed before the position update based
on the a-posteriori position estimate from the previous epoch p̂e,+en,k−1.

The integration filter is capable of performing three types of measurement updates: GNSS
pseudorange update, GNSS range rate update and odometry update. These three are con-
sidered to be independent of each other because their corresponding measurement noise co-
variance matrices Rρc , Rρ̇c and Ro are uncorrelated. This fact makes it possible to process
the different types of observations sequentially in case two or more different measurement
updates are requested in the same epoch [Groves, 2013, Section 3.2.7]. To do so, the first
measurement update is performed with an a-priori error state estimate of δx̂−k = 0 and the
error covariance matrix P−k . The a-posteriori values δx̂

+
k and P+

k from this first measurement
update are then used as a-priori values for the second measurement update, and so on. Hence,
the only apparent distinction between the first and the following updates is that the input
error state estimate is non-zero for all updates except the first one. For linear measurement
functions h, the sequential update is equivalent to the batch update. Whether the difference
between sequential and batch update can be neglected for nonlinear measurement functions
depends on the characteristics of h and the magnitude of δx̂−k . It can be neglected if the
linear approximation is still valid, i. e. if the following hold:

h(x̂−k + δx̂−k ) ≈ h(x̂−k ) + ∂h
∂x

∣∣∣∣
x̂−
k

δx̂−k (6.6)

∂h
∂x

∣∣∣∣
x̂−
k

≈ ∂h
∂x

∣∣∣∣
x̂−
k

+δx̂−
k

. (6.7)

For all types of measurement updates discussed in this thesis, it is assumed that the error
state estimates δx̂−k are always small enough for (6.6) and (6.7) to be true.

After all requested measurement updates are completed, a final error state estimate δx̂+
k

results. It is utilized to update the total state estimate x̂−k :

x̂+
k = x̂−k − δx̂

+
k . (6.8)

The negative sign is due to the definition of the error state vector:

x̆ = x̂− δx, (6.9)

rearranging (2.29) to see that the estimated error state vector needs to be subtracted from
the current total state estimate in order to obtain an estimate that is closer to the true
value. For the state vector of the localization algorithm as defined in Section 6.2, (6.8)
cannot be applied directly. The reason for this is that the representation of attitude and
position differs from strapdown algorithm to error state vector, requiring more complex up-
dates of the a-priori navigation solution. The reason for the changing representation and the
resulting update methods are described in Section 6.2. For the state vector’s other elements,
(6.8) is applied directly.

87



Integration Filter

6.2 System Model
The integrations filter’s state vector x consists of 22 states. The first nine states comprise
the navigation solution: attitude ψnb, velocity vnen and position peen. The next six states are
the IMU errors: gyroscope bias bω and accelerometer bias ba. They are followed by three
GNSS clock errors: receiver clock bias for GPS cδtGR, receiver clock drift cδṫR and receiver
clock bias for Galileo cδtER. The last four entries are the dynamic tire radii, assembled into
one vector rd:

x =



ψnb

vnen
peen
bω
ba
cδtGR
cδṫR

cδtER
rd



. (6.10)

With the exception of peen, the error state vector δx is the difference between x̂ and x̆ as
defined in (2.29). The error state vector’s entries for the position are changed due to numerical
reasons: While peen consists of longitude λe, latitude ϕe and height he in the units radian,
radian and meter, the error state entry δpnen is resolved in the navigation frame in the unit
meter for all three components. This improves conditioning of the error covariance matrix P
and leads to entries of similar magnitude in δx. To update the total states, the a-posteriori
estimate δp̂n,+en is converted back to the desired units [Wendel, 2007, p. 214]:

λ̂+
e = λ̂−e −

δr̂n,+en,E(
RE + h−e

)
cosϕ−e

(6.11)

ϕ̂+
e = ϕ̂−e −

δr̂n,+en,N

RN + h−e
(6.12)

ĥ+
e = ĥ−e − δr̂

n,+
en,U (6.13)

While the attitude is represented via Euler angles in the state vector, it is represented via
direction-cosine matrix in the strapdown algorithm. In order to update Ĉn,−

b , the a-posteriori
estimate δψ̂

+
nb is converted into the direction-cosine matrix δĈn,+

b [Groves, 2013, p. 563]:

Ĉn,+
b = δĈn,+

b

T
Ĉn,−
b . (6.14)

The conversion between δψ̂
+
nb and δĈn,+

b happens analogous to the conversion between ψnb

and Cn
b . It is nonlinear in general, but may be linearized if the small angle approximation

applies. Both the linear and the nonlinear conversion are detailed in Groves [2013, pp. 38-39].
For the results presented in Chapter 7, the nonlinear conversion routine is applied regardless
of the magnitude of δψ̂

+
nb.

Covariance prediction is performed based on the state vector’s time derivative as described
in (2.31)-(2.34). The time derivatives for the first 15 states are essentially the same as
in Groves [2013, Section 14.2.4]. The differences are:

• While Groves [2013] formulates the equations in the north-east-down version of the
n-frame, the east-north-up version is employed in this thesis.

• Groves [2013] resolves the position error state in the e-frame with the units radian,
radian and meter.
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• Groves [2013] employs a different gravity model, so the partial derivative of v̇een w. r. t.
the position is slightly different.

• Due to a different treatment of the IMU biases, all partial derivatives w. r. t. either bω
or ba receive the opposite sign.

The resulting system model for the first 15 states is detailed in the appendix (Section C.1).
The time derivative for the three GNSS clock states and the four dynamic tire radii is:

d
dt


cδtGR
cδṫR

cδtER

 =


0 1 0
0 0 0
0 1 0



cδtGR
cδṫR

cδtER

 (6.15)

ṙd = 0, (6.16)

where only the deterministic part is given.

6.2.1 Initialization

Before the localization algorithm’s regular routine of prediction and measurement updates
can take place, initialization of the total state x̂ and the error covariance matrix P is re-
quired. This cannot happen in a single epoch because while most states are initialized during
standstill, the yaw angle ψnb can only be initialized when the vehicle is moving. Initialization
of ψnb during standstill is impossible with the given sensor configuration since the IMU’s
gyroscopes are not accurate enough to perform gyrocompassing and the GNSS receiver is
only equipped with a single antenna. In the following, the initialization process is described
step-by-step as it is performed within the localization algorithm. All errors are assumed to
be uncorrelated unless stated otherwise.

1. The IMU biases are initialized as zero with a variance according to the IMU’s data
sheet (σbω = 0.2 ◦ s−1, σba = 0.03 m s−2).

2. The tire radii are initialized with a value received from the CAN bus. This value
corresponds to an average of all permissible tire sizes, therefore it is the same for all
four tires and does not change from one measurement scenario to another. The standard
deviation is set to 3σrd = 5 mm, approximating the tire’s wear over its lifetime.

3. Roll and pitch are estimated based on accelerometer readings [Groves, 2013, p. 198]:

ηnb = arctan2
(
f bib,L, f

b
ib,U

)
ϑnb = arctan

−f bib,F√
f bib,L

2 + f bib,U
2 . (6.17)

Their standard deviation is set to σηnb = σϑnb = 1◦ based on the IMU’s measurement
quality during standstill, evaluated against a navigation grade IMU.

4. Antenna position and receiver clock biases are obtained via a single-epoch GNSS so-
lution. Their full error covariance matrix is known due to the adjustment process,
so their correlation is included in P. The total state vector contains the IMU posi-
tion peen, which differs from the antenna position by the lever arm pbba. Because the
yaw angle is still unknown, the lever arm’s orientation w. r. t. the Earth is unknown, as
well. To account for this additional uncertainty of peen, the horizontal position variance
components in P are increased depending on the lever arm’s horizontal length.
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5. Initialization of velocity and receiver clock drift via GNSS requires at least four range
rates, which are computed from two consecutive GNSS measurement epochs. It also
requires a known antenna position since the unit vectors unas are needed. Therefore, it
happens after position initialization. In analogy to the latter, the full error covariance
matrix of vnen and cδṫR is known, so it is incorporated into P.

6. The yaw angle is set to zero, enabling the start of strapdown algorithm and EKF
covariance prediction. GNSS measurement updates are activated as well, since their
observables are resolved in the n-frame. σψnb is set to 60◦, reflecting a maximum
yaw angle error of 3σ = 180◦. The variance is reset to that value before every EKF
prediction step until yaw angle initialization is completed. This is done to counter
an unrealistic decrease of σψnb during the GNSS measurement updates, which assume
small errors. This assumption is not true for the yaw angle in general until it has been
initialized correctly in the next step. This violation of the linearization conditions may
lead to filter divergence if disregarded. With the high value of σψnb , high measurement
innovations will not affect the other states too much.

7. Once the vehicle’s speed is sufficiently high and it is traveling in a straight line, the yaw
angle is initialized by computing the angle between the xn-axis and vnea. The former
points east, the latter is obtained via GNSS as in step 5 [Groves, 2013, p. 225]:

ψnb = arctan2
(
vnea,N , v

n
ea,E

)
. (6.18)

(6.18) is only valid if the vehicle side slip angle β is zero. To check whether this con-
dition holds, vbeb is calculated by forming the arithmetic mean of the four individual
wheel velocities vbew. To enable yaw angle initialization, all of the following condi-
tions must be met:

∣∣∣vbeb,L∣∣∣ ≤ 0.2 m s−1,
∣∣∣vbeb,F ∣∣∣ ≥ 5 m s−1,

√
vnea,E

2 + vnea,N
2 ≥ 5 m s−1

and
∣∣∣ωbib,U ∣∣∣ ≤ 1 ◦ s−1. ωbib,U is measured by the IMU. The standard deviation of ψnb

computed in this manner is obtained by comparing it to a reference solution. For the
sensor configuration employed in this thesis, σψnb is set to 2◦ for the initial yaw value
based on results from numerous test scenarios. This completes the initialization process.
The odometry measurement update is activated subsequently because the integration
filter is able to calculate a valid estimate of vbeb now.

6.2.2 System Noise

Just as the measurement noise covariance matrices R, the system noise covariance matrix Q
plays an important role for the integration filter’s performance. It describes how the estima-
tion errors evolve over time. The relative magnitude of Q and R determines the weighting
of the various sensor outputs relative to each other. When integrating an INS with other
sensors as is performed in this thesis, Q contains among other things information about the
IMU’s measurement quality. Based on Groves [2013, Section 14.2.6], the continuous-time
system noise covariance matrix Q̌ is obtained from the power spectral densities (PSDs) of the
relevant sensor output, denoted as S. For conversion to discrete time, Q̌ is multiplied by the
state propagation interval τs,k:

Qk = Q̌τs,k. (6.19)

For the integration filter presented in this thesis, τs,k is identical to the IMU measurement
interval τi,k because strapdown algorithm and covariance propagation run with the same
update rate. All elements of Q̌ are specified subsequently. The notation Q̌(y) is used to
denote the covariance of the continuous-time system noise w̌ for the elements y in x. Unless
noted otherwise, all off-diagonal elements are zero.
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• Q̌(ψnb) = SrgI, with the PSD of the gyroscopes’ random noise Srg. According to the
IMU’s data sheet, Srg ≤ 6.9 · 10−8 rad2 s−1. This value is multiplied by two to account
for additional error sources, e. g. due to vibration in the car.

• Q̌(vnen) = SraI, with the PSD of the accelerometers’ random noise Sra. According
to the IMU’s data sheet, Sra ≤ 2.2 · 10−6 m2s−3. This value is multiplied by two to
account for additional error sources, e. g. due to vibration in the car.

• Q̌(peen) = 0.

• Q̌(bω) = σ2
bg

τbg
I with the standard deviation of the gyroscopes’ in-run bias variation σbg

and its correlation time τbg. According to the IMU’s data sheet, σbg = 10 ◦ h−1. τbg is
estimated from static measurement data to be approx. 200 s. The resulting value of
σ2
bg

τbg
≈ 1.2 · 10−11 rad2s−3 is multiplied by two to account for additional error sources.

• Q̌(ba) = σ2
ba
τba

I with the standard deviation of the accelerometers’ in-run bias
variation σba and its correlation time τba. According to the IMU’s data sheet,
σba = 4 · 10−4 m s−2. τba is estimated from static measurement data to be approx. 125 s.
The resulting value of σ2

ba
τba
≈ 1.3 · 10−9 m2s−5 is multiplied by two to account for addi-

tional error sources. The obtained values for τbg and τba are plausible, since in-run bias
variations typically change over periods of the order of a minute [Groves, 2013, p. 152].

• Q̌(cδtGr ) = Q̌(cδtEr ) = Scφ, with the receiver clock phase drift PSD Scφ. It is estimated
from kinematic data with good GNSS reception conditions via [Groves, 2013, p. 418]:

Scφ = σ2 (cδtR,k − cδtR,k−1 − cδṫR,k−1τg
)

τg
, (6.20)

where σ2 denotes an operator to obtain the variance of the term inside the parentheses.
The resulting numerical value is Scφ = 5 · 10−4 m2 s−1.

• Q̌(cδṫr) = Scf , with the receiver clock frequency drift PSD Scf . It is estimated from
kinematic data with good GNSS reception conditions via [Groves, 2013, p. 418]:

Scf = σ2 (cδṫR,k − cδṫR,k−1
)

τg
, (6.21)

resulting in a numerical value of Scf = 0.01 m2s−3.

• Q̌(rd) is the only part of Q̌ which includes non-zero off-diagonal elements, because tire
wear and tire temperature variation as the main causes for radius variation are highly
correlated among all four wheels [Groves, 2013, p. 674]. The correlation coefficient is
estimated as 0.25, so the respective part of the system noise covariance matrix becomes:

Q̌(rd) =


1 0.25 0.25 0.25

0.25 1 0.25 0.25
0.25 0.25 1 0.25
0.25 0.25 0.25 1

Srd , (6.22)

with the PSD of tire radius variation Srd . This PSD is parametrized based on the
assumption that the change in rd does not exceed 0.2mm per day, with a confidence
interval of 3σ:

Srd =

(
0.2 mm

3

)2

24 h ≈ 5.1 · 10−14 m2 s−1. (6.23)

Assuming an average speed of 50 kmh−1, a change of 0.2mm per day equals a change
of 5mm per 30 000 km, which corresponds to a tire’s overall wear over its lifetime.
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6.3 Measurement Models
The GNSS and odometry preprocessing modules send their respective observables and the
corresponding covariance matrices to the integration filter. The filter then utilizes these data
to update the a-priori state estimate x̂. For this task, the EKF’s measurement vector z and
the measurement matrix H are necessary:

z = ẑ− z̃ = h(x̂−)− z̃ H = ∂h
∂x

∣∣∣∣
x̂−
, (6.24)

repeating (2.39)-(2.41). Each of these two quantities is required three times: (zρc ,Hρc) for
pseudoranges, (zρ̇c ,Hρ̇c) for range rates and (zo,Ho) for odometry. They are detailed in this
order in the subsequent subsections. Afterwards, the issue of time synchronization in between
the different types of observables is detailed as well as the approach that this thesis takes to
deal with this issue.

6.3.1 Pseudorange Update

For the pseudorange measurement update, the total measurement vector z̃ρc consists of the
corrected pseudoranges ρc, while the predicted measurement vector ẑρc consists of the esti-
mated geometric range between satellite and receiver antenna. An entry zρc of the measure-
ment vector in error state formulation zρc is formed as:

zρc = ẑρc − z̃ρc

= ‖pees − p̂eea‖ −
(
ρ− cδt̂R + cδt̂S − δρ̂I − δρ̂T

)
=
(
‖pees − p̂eea‖+ cδt̂R

)
−
(
ρ+ cδt̂S − δρ̂I − δρ̂T

)
=
(∥∥∥pees − [p̂een + Ce

nĈ
n
bpbba

]∥∥∥+ cδt̂R
)
−
(
ρ+ cδt̂S − δρ̂I − δρ̂T

)
.

(6.25)

The first set of parentheses subsumes all terms that depend on x̂, while the terms in the second
set of parentheses do not. δt̂R refers to δt̂GR for GPS satellites and to δt̂ER for Galileo satellites.
The only non-zero columns in the measurement matrix Hρc are the partial derivatives w. r. t.
attitude, position and receiver clock bias:

Hρc =
(
∂hρc
∂ψnb

0 ∂hρc
∂pnen

0 0 ∂hρc
∂(cδtGR) 0 ∂hρc

∂(cδtER) 0
)
. (6.26)

Wendel [2007, pp. 212-213] gives the resulting partial derivatives for a single-constellation
setup. For a multi-constellation setup, they are identical except that the entry for the receiver
clock bias is either zero or one, depending on which constellation the pseudoranges stem from:

∂zρc

∂ψnb

= unasT
[
Ĉn
bpbba×

]
(6.27)

∂zρc

∂pnen
= −unasT (6.28)

∂zρc

∂
(
cδtGR

) =
{

1 for GPS satellites
0 for Galileo satellites

(6.29)

∂zρc

∂
(
cδtER

) =
{

0 for GPS satellites
1 for Galileo satellites.

(6.30)
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6.3.2 Range Rate Update

For the range rate measurement update, the total measurement vector z̃ρ̇c consists of the
corrected range rates ρ̇c, while the predicted measurement vector ẑρ̇c consists of the estimated
line-of-sight velocity between satellite and receiver antenna. An entry zρ̇c of the measurement
vector in error state formulation zρ̇c is formed as:

zρ̇c = ẑρ̇c − z̃ρ̇c

= unasT [vnes − v̂nea]−
[
λca
2π

φck − φck−1
τ cg,k

− cδˆ̇tR
]

=
(
unasT

[
vnes −

{
v̂nen + Ĉn

b

(
ω̂
b
eb × pbba

)}]
+ cδˆ̇tR

)
− λca

2π

φck − φck−1
τ cg,k

.

(6.31)

The outer parentheses subsume all terms that depend on x̂, while the last term does not
(the dependency of τ cg on cδˆ̇tR is neglected). Due to the magnitude of ω

b
eb (up to 40 ◦ s−1)

in comparison to the Earth rotation rate, ωie can be neglected and ω
b
eb ≈ ω

b
ib. The estimate

of ω
b
ib depends on the estimated gyroscope bias:

ω̂
b
eb ≈ ω̂

b
ib = ω̃

b
ib − b̂ω. (6.32)

The only non-zero columns in the measurement matrix Hρ̇c are therefore the partial deriva-
tives w. r. t. attitude, velocity, gyroscope bias and receiver clock drift:

Hρ̇c =
(
∂hρ̇c
∂ψnb

∂hρ̇c
∂vnen

0 ∂hρ̇c
∂bω 0 0 ∂hρ̇c

∂(cδṫR) 0 0
)
. (6.33)

Because the multi-constellation setup only differs from the single-constellation setup in terms
of receiver clock bias, but not in terms of receiver clock drift, the partial derivatives can be
taken directly from Wendel [2007, p. 213]:

∂hρ̇c

∂ψnb

= unasT
[
Ĉn
b Ω̂

b
ebpbba×

]
(6.34)

∂hρ̇c

∂vnen
= −unasT (6.35)

∂hρ̇c

∂bω
= −unasTĈn

b

[
pbba×

]
(6.36)

∂hρ̇c

∂
(
cδṫR

) = 1. (6.37)

Wendel [2007, p. 213] uses Ω̂b
ib instead of Ω̂b

eb in (6.34). Based on the aforementioned neglect
of ωie, these two are identical.

6.3.3 Odometry Update

For the odometry measurement update, all derivations are first performed for one of the four
wheels. Three-dimensional velocity vectors are employed to allow the usage of operations
reserved for three-dimensional space (e. g. the cross product). All calculations happen analo-
gously for the other three wheels. Before forwarding the assembled 12×1 vector to the EKF’s
measurement update, it is reduced to 6×1 by eliminating the vertical component for each
wheel and forming the mean of the lateral components on each axle. The same holds for the
measurement matrix, which is reduced from 12×22 to 6×22.

The total measurement vector for a single wheel z̃o consists of the three-dimensional
velocity vector vbew output by the odometry preprocessing, while the predicted measure-
ment vector ẑo is formed by transferring v̂nen to the wheel and resolving it in the b-frame.
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The measurement vector in error state formulation for a single wheel zo is formed as:

zo = ẑo − z̃o

= v̂beb + ω̂
b
eb × pbbw −Cw

b
T


1

− tan α̂
0

ωwr̂dκ̂x

= Ĉn
b

Tv̂nen + ω̂
b
eb × pbbw −Cw

b
T


1

− tan α̂
0

ωwr̂dκ̂x.
(6.38)

All three terms depend on x̂. In analogy to the range rate update, ωie is neglected and (6.32)
holds, allowing to calculate the dependency of zo on the gyroscope bias error. The other
non-zero columns in the measurement matrix Ho are the partial derivatives w. r. t. attitude,
velocity and dynamic tire radius error:

Ho =
(
∂ho
∂ψnb

∂ho
∂vnen

0 ∂ho
∂bω 0 0 0 0 ∂ho

∂rd

)
. (6.39)

These partial derivatives evaluate to:

∂ho
∂ψnb

= Ĉn
b

T [v̂nen×] (6.40)

∂ho
∂vnen

= Ĉn
b

T (6.41)

∂ho
∂bω

=
[
pbbw×

]
(6.42)

∂ho
∂rd

=

Cw
b

T


−1
tan α̂

0

ωwκ̂x 0 0 0

 . (6.43)

The non-zero entries of ∂ho
∂rd are shifted to the appropriate column, depending on which wheel

the measurement vector zo refers to.

6.3.4 Delayed Availability of Measurement Data

The three sensor types whose data are input by the localization algorithm are not synchro-
nized, i. e. they employ different measurement intervals and take their first measurement
at different times. This means that the timestamps of a total measurement vector z̃ and
its predicted counterpart ẑ do not coincide in general. To solve this issue, the approach
outlined in Steinhardt [2014, Section 4.8] is applied. All elements necessary to compute
ẑ and H for the three types of measurement updates as well as the corresponding IMU
measurement timestamp ti are kept in memory for a certain period of time. As a result,
estimated a-priori values in the time interval [ti,k−nt , ti,k] are available to form ẑ and H
after strapdown computations at time ti,k have been completed. nt + 1 is the number
of epochs to be stored. Once a new set of IMU measurements has been processed in the
strapdown algorithm, the stored data with the oldest timestamp get deleted. According to
Sections 6.3.1-6.3.3, the following elements have to be stored in order to compute ẑ and H:
p̂een, Ĉn

b , v̂nen and ω̂
b
eb. When a new set of pseudorange, range rate or odometry measure-

ments z̃ with timestamp tm is received, these stored quantities are interpolated linearly in
between the two stored timestamps that are closest to tm. If tm /∈ [ti,k−nt , ti,k], the measure-
ments are discarded. As long as the errors due to linear interpolation of p̂een, Ĉn

b , v̂nen and ω̂
b
eb

are acceptable, this approach produces the correct values for ẑ and H at the measurement
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time tm. The only quantity relevant to the measurement update that is not synchronized is
the a-priori error covariance matrix P−. The underlying assumption is that nt is selected
in such a way that the change of P− during the interval [ti,k−nt , ti,k] is small enough to be
neglected. Due to the nominal data rates of the employed sensors (IMU: 200Hz, odome-
try: 100Hz, GNSS receiver: 10Hz), keeping nt + 1 = 51 epochs in memory is sufficient to
interpolate measurements within the interval [ti,k − 0.25 s, ti,k], while the maximum nominal
measurement interval is τg = 0.1 s. Examination of the change in P over time verifies that
the aforementioned assumption holds for such small time intervals. The only exception is
the filter’s transient phase after initialization, during which P decreases quickly. During this
decrease, utilization of the value for P−k from the current epoch ti,k to perform a measure-
ment update with the timestamp tm < ti,k means that P− is smaller than it should be.
Consequently, more weight is put on the a-priori solution x̂− and less weight is put on the
measurement vector z̃ than it would be done if the correct value for P− at the epoch tm was
used instead. As a result, the estimated error state δx̂+ is smaller and the transient phase
takes slightly longer than they would otherwise. This behavior is unproblematic because it
cannot cause the filter to become unstable, which could be the case if the error state estimates
were excessively large.

Once all measurement updates in an epoch are completed, the resulting error state δx̂+

is applied to all values stored in memory. This is necessary to avoid correcting the same error
in x̂ multiple times, which would result in an overcorrection and lead to a possibly larger
error with the opposite sign.

6.4 Outlier Detection
Because all sensors may produce erroneous measurements, the integrated navigation solution
may become corrupted if these errors are not detected. An erroneous measurement in this
sense means any observation whose error is much larger than what is to be expected based
on its measurement noise covariance. These erroneous measurements are also called outliers.
Two types of techniques to deal with such outliers are implemented in the localization algo-
rithm developed in this thesis. Both techniques aim to detect potential outliers and prevent
their incorporation in the integrated navigation solution. This type of technique is known
as fault detection and isolation [Groves, 2013, p. 701]. The first technique is innovation
monitoring, the second one residual monitoring. They are similar to each other, but innova-
tion monitoring happens prior to the integration filter’s measurement update while residual
monitoring is performed afterwards.

Both monitoring techniques are not applied during initialization as well as during the
transient phase between initialization and normal filter operation. For these periods of time,
large innovations and residuals are expected because the integration filter has not converged
yet. To account for the transient phase, both monitoring techniques are disabled for an
additional 5 s after the whole initialization process (see Section 6.2.1) has been completed.

6.4.1 Innovation Monitoring

The basic principle of innovation monitoring is to compare the EKF’s innovation δz− with
its covariance matrix Σδz− :

δz− = z̃− h(x̂−) (6.44)
Σδz− = HP−HT + R. (6.45)

According to (6.44), δz− is the negative of the EKF’s measurement vector z. Due to the
sequential processing of measurement updates described in Section 6.1, it is possible that the
a-priori error state estimate δx̂− is non-zero for any measurement update except the first one.
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This has to be taken into account when computing the innovation. To derive the necessary
modifications, the EKF’s measurement update (2.36) is repeated in (6.46) and compared to
the one of a total state Kalman filter with linear measurement function (6.47):

δx̂+ = δx̂− + K
(
z−Hδx̂−

)
(6.46)

x̂+ = x̂− + K
(
z̃−Hx̂−

)
. (6.47)

The term inside the parentheses in (6.47) is the total state Kalman filter’s innovation. Its
equivalent for the error state EKF is the term inside the parentheses in (6.46). For δx̂− = 0,
the two have the same absolute value, but the opposite sign. This seeming contradiction is
resolved by the fact that H and therefore K have an opposite sign as well in the error state
EKF when compared to a total state Kalman filter. For innovation monitoring, the sign of
the innovation does not matter because all errors are assumed to be zero-mean. In order to
obtain an equivalent definition for the innovation if δx̂− 6= 0, the negative of the term inside
the parentheses in (6.46) is defined as innovation for the sequential measurement update:

δz− = z̃− h(x̂−) + Hδx̂−. (6.48)

In order to obtain the correct covariance matrix for the innovation in the sequential measure-
ment update, P− needs to be replaced with the covariance matrix of δx̂− in (6.45):

Σδz− = HΣδx̂−HT + R. (6.49)

For the first measurement update in each epoch, P− and Σδx̂− are identical.
Before outlier detection, δz− is normalized, i. e. each element δz−j is divided by its stan-

dard deviation to form δz−,∗j :

δz−,∗j =
δz−j
σδz−

j

. (6.50)

σδz−
j
is obtained by taking the square root of the corresponding entry on the main diagonal

of Σδx̂− . All individual δz−,∗j are then assembled in the normalized innovation vector δz−,∗.
Each element of δz−,∗ is standard normally distributed if all Kalman filter assumptions
hold [Groves, 2013, p. 707]. Outlier detection is now performed on the 3σ level: If any
of the elements in δz−,∗ has an absolute value larger than three, the corresponding rows and
columns are removed from δz− and Σδz− . The detected outliers are also removed from H,
R and z. The EKF’s measurement update is then performed with the remaining elements.

6.4.2 Residual Monitoring

Residual monitoring is performed in a similar manner to innovation monitoring. Instead
of the innovation δz−, the measurement residual δz+ and its covariance matrix Σδz+ are
compared with each other:

δz+ = z̃− h(x̂+) (6.51)
Σδz+ = R −HP+HT. (6.52)

The derivation of (6.52) is given in the appendix (Section C.2). Before performing an EKF
measurement update, z̃ and R are supplied by the preprocessing module. z and H are
then computed from x̂− and z̃. The measurement update produces δx̂+ and P+. If δx̂+ is
sufficiently small to allow linearization, δz+ can be calculated as follows:

δz+ = z̃− h(x̂−− δx̂+) ≈ z̃−
[
h(x̂−)−Hδx̂+

]
= Hδx̂+−

[
h(x̂−)− z̃

]
= Hδx̂+− z.

(6.53)
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Otherwise, the a-posteriori total state x̂+ has to be computed first and (6.51) has to be
applied. For the results presented in Chapter 7, the nonlinear calculation routine is applied
regardless of the magnitude of δx̂+. Outlier detection is performed in a similar way for
residual filtering as it is for innovation filtering. Because each entry in the residual vector
depends on all elements of z, the elimination of outliers happens sequentially, i. e. only one
outlier is removed at a time:

1. δz+ is normalized by dividing it by its standard deviation to form δz+,∗:

δz+,∗
j =

δz+
j

σδz+
j

. (6.54)

2. If any of the elements in δz+,∗ has an absolute value larger than three, the rows and
columns corresponding to the largest absolute value are removed from z, R and H.
The EKF’s measurement update is repeated with the shortened measurement vector
and another set of δz+ and Σδz+ is obtained.

This process is repeated until no element in δz+,∗ has an absolute value larger than three or
all elements have been removed.

In contrast to innovation filtering, no additional precautions due to the sequential process-
ing of measurement updates need to be taken: After each measurement update, δx̂+ contains
the total amount of change that has to be applied to x̂− due to all measurement updates in
this epoch so far combined. P+ describes the estimated remaining error in x̂+ after all these
measurement updates. If

∣∣δz+∣∣ is now larger than what is to be expected based on Σδz+ ,
one of the measurement updates must have contained an outlier. Because all previous mea-
surement updates have passed the residual monitoring, they did not contain any outliers.
Therefore, the outlier must stem from the current measurement update.

The residual covariance matrix Σδz+ is formed as difference of two matrices according
to (6.52). R represents the precision of the measurements, HP+HT represents the precision
of the integrated solution. During normal operation, the integrated solution is typically much
more precise than the measurements, yielding:

HP+HT � R (6.55)
Σδz+ ≈ R. (6.56)

The comparison of the magnitude of two matrices in (6.55) is to be understood as a compari-
son of their singular values. There are however cases when P+ is so large that (6.55) does not
hold. This stems from large uncertainties in the a-priori total state x̂−. If these uncertainties
get so large that the measurement covariance matrix R is way smaller than HP−HT, the
a-posteriori state depends almost entirely on the total measurement vector z̃. As a conse-
quence, R and HP+HT have a similar order of magnitude and their difference Σδz+ is close
to zero, indicating that there is not enough redundancy to decide whether outliers are present
or not. This most commonly happens when the first pseudorange measurements are received
after driving through a tunnel. The a-priori position is almost exclusively based on integrated
IMU measurements and odometry corrections, while the a-priori receiver clock biases have
been predicted based on the most recent estimate of the receiver clock drift. This leads to
large uncertainties in these states, causing Σδz+ to be conditioned badly. As a result, the
normalization of δz+ might lead to misleading results. To avoid this, residual monitoring is
omitted and the error state δx̂+ is forwarded directly when Σδz+ is conditioned badly.

97



Integration Filter

98



Chapter 7

Results

The results from the integrated processing of GNSS, IMU and odometry data are presented
in this chapter. These results stem from a variety of test scenarios, which are detailed in
Section 7.1. That section also describes the equipment used to collect input data for the
algorithm under test as well as the reference solution. The input data are then processed by
the developed localization algorithm in various configuration, before the generated integrated
solution is compared with the reference solution. This comparison is done with the help of the
metrics defined in Section 5.3. The obtained results for accuracy are examined in Section 7.2,
the ones concerning integrity in Section 7.3.

7.1 Test Scenarios
The localization algorithm’s performance is evaluated in various test scenarios. These sce-
narios are chosen to reflect a broad range of operating conditions for all sensors. The main
focus lies on covering diverse GNSS reception environments, since this is the variable that
experiences the largest spread. To achieve these aims, four types of data sets are recorded:

1. Griesheim airfield: This former airfield is used by the TU Darmstadt for research
concerning automotive engineering as well as other tasks. It features unobstructed sky
view and therefore ideal GNSS reception. The test scenario is a 2 km long circuit on
the airfield that is lapped five times: twice counter-clockwise, then twice clockwise and
again counter-clockwise for a total of 10 km. In order to compare the linear tire model
with the Magic Formula model, the test scenario is performed in two different fashions:
On the one hand in a moderate driving style, with longitudinal and lateral accelerations
of up to ±3 m s−2, resulting in a total time of 11min. On the other hand in a dynamic
driving style, with longitudinal accelerations between −10m s−2 and +5 m s−2, lateral
accelerations of up to ±6 m s−2 and a resulting time of 8min.

2. Odenwald: This data set is 150 km long and lasts 3 h to 4 h. It features rural roads,
forests and highways as well as towns and villages of different sizes. Especially chal-
lenging for the localization algorithm are the two tunnels in this data set: The first
one is called Saukopftunnel. It has a length of 2.7 km and a transit time of 140 s. The
second one is the Lohbergtunnel with a length of 1.1 km and a transit time of 75 s.

3. Darmstadt: This test scenario leads through the inner city of Darmstadt. It has a
length of 35 km and a duration of 75min to 95min. To allow for proper initialization
of the localization algorithm and the reference equipment, it starts and ends outside of
the city center in areas with good GNSS reception. Challenging parts for the localiza-
tion algorithm include narrow streets with multi-story buildings on both sides and two
tunnels, each 550m long and with a transit time of 50 s. The first tunnel contains two
90◦ turns, the second tunnel contains one 90◦ turn.
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4. Frankfurt: This is the most challenging data set in terms of GNSS reception conditions,
featuring the inner city of Frankfurt with urban canyons formed by skyscrapers. Just as
set 3, this set starts and ends outside of the city center to facilitate initialization of the
algorithm under test as well as the reference solution. In addition to the urban canyons,
the scenario includes four different tunnels with lengths ranging from 300m to 600m
and transit times ranging from 30 s to 45 s. Three of these tunnels are within the inner
city. The data set’s total length is 70 km, its duration between 95min and 110min.

Each of these test scenarios is repeated three times to get an extensive data basis and test the
repeatability of the algorithm’s performance. The only exception is scenario 2, which is only
repeated twice due to its length. Additional details about the data sets and the encountered
GNSS reception conditions appear in Appendix A.

Input data for the algorithm under test stem from the following sources: GNSS obser-
vations with a rate of 10Hz from a JAVAD Triumph-LS, IMU measurements with a rate
of 200Hz from an Xsens MTi-G-700 and odometry measurements with a rate of 100Hz from
the vehicle’s built-in sensors. Reference data are collected with a geodetic GNSS receiver
operating at 5Hz and a navigation grade ring laser gyroscope IMU (iMAR iNAV-RQH-1003)
operating at 300Hz. These reference data are processed together with GNSS observations
from a base station in Novatel’s Waypoint - Inertial Explorer software, utilizing the pos-
sibility to process the data both forward and backward in time and combine the obtained
solutions. Afterwards, the solution is transferred to the origin of the navigation and body
frames, i. e. the position of the Xsens MTi-G-700, by applying the appropriate lever arm.

7.2 Accuracy
All metrics concerning accuracy that were selected in Section 5.3 are evaluated in this section.
Due to the large amount of test scenarios, only a subset of scenarios is featured here. The re-
sults for the remaining scenarios are listed in the appendix (Section B.4). This section starts
by examining the reference solution’s quality to verify that this quality is sufficient for proper
evaluation of the selected metrics. Afterwards, the improvements brought forth by the devel-
oped GNSS and odometry processing methods are assessed. The main improvements through
multi-frequency/multi-constellation GNSS occur in terms of position accuracy, whereas the
main improvements through the novelties in odometry processing occur in terms of velocity
accuracy in the body frame and yaw angle accuracy. Consequently, only the accuracy metrics
concerning the respective quantities are presented in the corresponding subsections.

7.2.1 Reference Solution Quality

The reference equipment is able to provide v̆beb and ψ̆nb with sufficiently high precision to
qualify as valid reference in all data sets. This is demonstrated by the 95% quantiles of the
corresponding estimated standard deviations: Both |σ̂v̆b

eb,hor
|95 % and |σ̂v̆b

eb,U
|95 % are below

1.5 cm s−1 in all data sets, while |σ̂ψ̆nb |95 % does not exceed 0.01◦ in any data set. Since the
95% quantile of the horizontal velocity error |δv̂beb,hor|95 % reaches values as low as 4 cm s−1,
any further improvement regarding velocity accuracy requires a better reference solution.
This is not the case for the yaw angle, because its 95% error quantile |δψ̂nb|95 % does not
sink below 0.15◦ in any data set. However, for the quantification of further improvements
to yaw angle accuracy, the misalignment between reference IMU and the vehicle needs to
be estimated, because the current mechanical setup does not allow for a sufficient repeat
accuracy after the equipment is dis- and remounted.

The position accuracy of the reference solution varies among the data sets because it
is mainly influenced by the GNSS reception conditions. In order to verify that the ref-
erence solution’s quality is sufficient, the 95% quantiles of its estimated standard devia-
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tion for the horizontal and vertical position error, |σ̂p̆n
en,hor

|95 % and |σ̂p̆nen,U |95 %, are provided
alongside the quantiles for the horizontal and vertical position error in the upcoming tables.
|σ̂p̆n

en,hor
|95 % ranges from 0.4 cm at Griesheim airfield to 23 cm in the inner city of Frankfurt,

while |σ̂p̆nen,U |95 % spans the interval [0.5 cm, 15 cm]. Moreover, the CDFs of σ̂p̆n
en,hor

and σ̂p̆nen,U
are plotted together with the CDFs of δp̂nen,hor and |δp̂nen,U |, respectively. From these steps, it
is clear that the reference equipment is able to provide p̆een with sufficient quality to qualify
as a valid reference, as well.

7.2.2 Improvements ThroughMulti-Frequency/Multi-Constellation GNSS

The inclusion of multi-frequency/multi-constellation GNSS data into the localization algo-
rithm mainly benefits position accuracy. To demonstrate this, the results achieved by this
advanced algorithm configuration are compared with the results achieved by a basic single-
frequency/single-constellation configuration that inputs GNSS observations on GPS L1 C/A
only. The advanced configuration uses all aspects described in Chapter 3, including the pre-
dicted half of ultra-rapid precise satellite orbits and clocks. The basic configuration uses
navigation message data instead. Apart from these restrictions, the input data are identical,
i. e. they stem from the exact same sensors during the exact same test run. Both configura-
tions employ the linear tire model for slip estimation, because utilization of Pacejka’s Magic
Formula model in mass-market applications is unlikely due to the limited validity of its pa-
rameters under varying road and weather conditions. While the slip stiffnesses of the linear
tire model are impacted by tire wear, tire pressure and wheel load (among other things) as
well, they do not depend on the road surface and therefore vary slower with time than the pa-
rameters of the Magic Formula model. Comparison of the navigation solution that is obtained
when the linear tire model is applied with the navigation solution that is obtained when the
Magic Formula tire model is applied shows almost identical position accuracy, anyway. This
holds for all collected data sets, which is why the numerical results of this comparison are
omitted. One of the runs from every test scenario is presented in detail in this section, the
results from the other runs appear in the appendix (Section B.4.1). Only metrics concerning
position accuracy are shown, because velocity, yaw angle and dynamic tire radius accuracy
remain almost unaltered in both GNSS processing configurations.

Figures 7.1-7.5 display the CDF of the horizontal and vertical position error for one
run from each test scenario, respectively. Each figure features the results from the multi-
frequency/multi-constellation algorithm in comparison with the results from the single-fre-
quency GPS L1 C/A algorithm. The standard deviation of the reference, as estimated by the
Inertial Explorer software, is included in each plot to verify that the reference is sufficiently
more accurate than the algorithms under test. The 50%, 95% and 99% quantiles of the
horizontal and vertical position error for both algorithms are indicated in each figure to
facilitate comparison of these important performance metrics. Two different sets of scales are
employed for the horizontal axes: The first set is featured in Figures 7.1 and 7.2, which depict
the results obtained at Griesheim airfield. The second set is featured in Figures 7.3-7.5, which
depict the results obtained in the Odenwald, in Darmstadt and in Frankfurt, respectively. The
reason for the scale adjustment is the varying range of the displayed values, which changes
considerably from the first group to the second one due to the dissimilar GNSS reception
conditions in the respective scenarios. The numerical values for the position accuracy metrics
selected in Section 5.3 are listed in Table 7.1.
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Figure 7.1: Position error CDF for Griesheim airfield data set, moderate driving style. 50%,
95% and 99% error quantiles are indicated. (a) Horizontal error. (b) Vertical error.

Figure 7.2: Position error CDF for Griesheim airfield data set, dynamic driving style. 50%,
95% and 99% error quantiles are indicated. (a) Horizontal error. (b) Vertical error.

Figure 7.1 depicts the position errors for Griesheim airfield in moderate driving style,
Figure 7.2 in dynamic driving style. The advanced algorithm configuration outperforms the
basic configuration in both scenarios. While the quantiles for the horizontal position error are
roughly halved through the inclusion of multi-frequency/multi-constellation GNSS, improve-
ment in the vertical position error is even larger. The single-frequency algorithm exhibits a
vertical bias of more than 2m in both scenarios, presumably caused by the remaining iono-
spheric error after applying the Klobuchar model. As a consequence, the largest vertical
error of the advanced configuration is smaller than the smallest vertical error of the basic
configuration. For the moderate driving style, the minimum error of the single-frequency
algorithm exceeds the maximum error of the multi-frequency algorithm by more than 2m,
which corresponds to a factor of more than five. The data displayed in Figures 7.1 and 7.2
represent the level of performance both algorithm versions are capable of under ideal GNSS
reception conditions. Because the position accuracy of the single-frequency algorithm de-
pends on the accuracy of the Klobuchar model for the specific ionospheric conditions, the
performance achievable with the basic configuration is substantially more time-dependent
than the performance achievable with the advanced configuration.
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Figure 7.3: Position error CDF for Odenwald data set. 50%, 95% and 99% error quantiles
are indicated. (a) Horizontal error. (b) Vertical error.

Figure 7.4: Position error CDF for Darmstadt data set. 50%, 95% and 99% error quantiles
are indicated. (a) Horizontal error. (b) Vertical error.

Figure 7.3 displays the position errors in the Odenwald data set. The declining GNSS
reception conditions in comparison with the Griesheim airfield data sets show in the region
between 80% to 100% of the CDFs. This concurs with the expectation, because most of
the data set consists of roads with nearly unobstructed sky view, while the remaining areas
feature dense forests, multi-story buildings and tunnels. These conditions are responsible
for the bend in the CDFs above the 80% mark and the almost horizontal portion of the
curves when approaching 100%. The multi-frequency/multi-constellation algorithm achieves
better performance in horizontal and vertical direction throughout the scenario than the basic
algorithm configuration, with the vertical direction showing the largest improvements.

For the scenario in the inner city of Darmstadt, which is shown in Figure 7.4, the largest
improvements occur at the upper end of the horizontal error’s CDF. The basic algorithm
is more susceptible to large errors in pseudorange measurements from a few satellites, be-
cause the number of available satellites is lower than in the multi-constellation configuration.
During stretches within urban canyons, multipath and NLOS errors cannot be identified as
clearly as they can in the advanced algorithm, which can also rely on Galileo signals to sta-
bilize position estimation. This leads to a reduction of |δp̂nen,hor|95 % by 62% (from 3.05m
to 1.15m), an effect that is even more pronounced at the 99% level, where the reduction is
75% (from 5.74m to 1.46m). In contrast to the horizontal error, the major benefits of the
advanced configuration in terms of vertical position accuracy occur in the lower region of the
CDF, because the single-frequency algorithm’s vertical position estimate is biased due to the
remaining ionospheric error after application of the Klobuchar model.
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Figure 7.5: Position error CDF for Frankfurt data set. 50%, 95% and 99% error quantiles
are indicated. (a) Horizontal error. (b) Vertical error.

The position error exhibits similar characteristics in the most challenging of the test
scenarios, Frankfurt inner city (depicted in Figure 7.5), as it does in the Darmstadt scenario.
In this case, even the multi-frequency/multi-constellation algorithm starts to struggle because
the surrounding buildings are even higher and urban canyons occur more frequently. The
advanced algorithm’s performance is not as good as it is in the Darmstadt scenario for
horizontal position accuracy, while it is even better than in the Darmstadt scenario for vertical
accuracy. The advanced algorithm still outperforms the basic configuration in all areas of the
CDF, especially in vertical direction. Given the severely impaired GNSS reception conditions
with long stretches spent inside urban canyons and tunnels, the overall position accuracy of
the multi-frequency/multi-constellation algorithm is remarkable and shows the performance
that the developed localization algorithm is capable of, due to the optimal collaboration of
data from different sensors in the integration filter.

The numerical results from the presented scenarios in terms of position accuracy are sum-
marized in Table 7.1. The multi-frequency/multi-constellation configuration achieves higher
position accuracy than the single-frequency GPS L1 C/A configuration in each scenario for
all evaluated metrics. The improvement is most pronounced in vertical direction. Under
ideal conditions, the designed algorithm comes close to achieving the 95% horizontal er-
ror quantile of 30 cm, which is the current target for localization algorithms in autonomous
cars [Humphreys et al., 2018, p. 459]. This marks the limit of what is possible with real
time pseudorange positioning techniques in this sensor setup. The advanced algorithm’s per-
formance decreases under impaired GNSS conditions, but the increased number of available
observations due to the multi-frequency/multi-constellation capability makes the advanced
configuration more robust in these scenarios than the basic algorithm, which is limited to
GPS L1 C/A observations only.
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Table 7.1: Position Accuracy Metrics, Largest Improvement for Each Data Set in Bold.
Metrics for Each Scenario: Position Error RMS (1st Row), 95% Quantile of Horizontal and
Vertical Position Error (2nd Row), 95% Quantile of Estimated Reference Standard Deviation
in Horizontal and Vertical Direction (3rd Row)

Metric Unit Multi-Frequency/ Single-Frequency
Multi-Constellation GPS L1 C/A only

Griesheim airfield data set, moderate driving style
RMS of δp̂nen m [0.11; 0.17; 0.15] [0.16; 0.29; 2.70]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 0.33

/
0.31 0.45

/
2.92

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m < 0.01

/
0.01

Griesheim airfield data set, dynamic driving style
RMS of δp̂nen m [0.17; 0.29; 0.65] [0.66; 0.44; 2.10]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 0.50

/
0.94 1.00

/
2.37

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m < 0.01

/
0.01

Odenwald data set
RMS of δp̂nen m [0.34; 0.49; 0.65] [0.39; 0.77; 1.89]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.12

/
1.35 1.87

/
3.00

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.06

/
0.05

Darmstadt data set
RMS of δp̂nen m [0.40; 0.53; 1.43] [1.11; 1.12; 3.25]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.15

/
3.10 3.05

/
4.95

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.14

/
0.11

Frankfurt data set
RMS of δp̂nen m [0.39; 0.71; 0.77] [1.12; 1.38; 3.53]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.91

/
1.54 2.68

/
5.48

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.19

/
0.15
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7.2.3 Improvements Through Enhanced Odometry Processing

Processing odometry observations in the integration filter mainly serves two tasks: On the
one hand, these observations offer an additional source of information about the vehicle’s
movement in the body frame, thereby increasing the estimation quality of vbeb and ψnb. On
the other hand, they stabilize the whole estimation process in case of severely impaired GNSS
conditions, e. g. in urban canyons or tunnels, thereby reducing the rate of error growth in all
quantities of the integrated navigation solution, including position. While the former effect
is visible continuously in every data set, the latter only occurs in surroundings with very
limited sky view. At all other times, position accuracy is nearly unaffected by odometry
measurements, because enough pseudorange observations are available to correct the errors
in the a-priori position.

This section examines both of these odometry capabilities. The effects on estimation
accuracy for velocity, yaw angle and dynamic tire radius provided by different versions of
odometry processing are examined in the first part. One of the runs from every test scenario
is featured here, while the others appear in the appendix (Sections B.4.2-B.4.4). The runs
presented in this section are identical to the ones presented in Section 7.2.2. This section’s sec-
ond part deals with the positive effect that odometry observations have on position accuracy
during stretches with severely obstructed satellite visibility. Throughout this whole section,
the multi-frequency/multi-constellation configuration is employed for GNSS processing.

7.2.3.1 Velocity, Yaw Angle and Dynamic Tire Radius

Tables 7.2-7.4 list the evaluated accuracy metric concerning velocity, yaw angle and dynamic
tire radius in all test scenarios, respectively. Four odometry configurations are compared
with each other in each table. Ordered by increasing complexity, these configurations are:

• Odometry measurement update deactivated completely.

• Odometry preprocessing with neglected correlation in between the wheels. All correla-
tion coefficients between the horizontal velocity components of the wheels are assumed
to be zero. This makes it unnecessary to summarize the lateral velocities at the four
wheel contact patches into one measurement for each axle. Therefore the odometry
measurement vector contains eight elements in this configuration, namely longitudinal
and lateral velocity from each of the four wheels. The linear tire model is employed
for slip estimation. This configuration is included in the evaluation to emphasize the
benefits of non-zero correlation coefficients.

• Odometry preprocessing with linear tire model as detailed in Chapter 4. The odometry
measurement vector contains six elements, correlations are taken into account.

• Odometry preprocessing with Pacejka’s Magic Formula tire model as detailed in Chap-
ter 4. Apart from the tire model, this configuration is identical to the previous one.

Table 7.2 presents the selected velocity accuracy metrics. The largest improvement in
each scenario occurs when the odometry update is activated, no matter what configuration
is applied for odometry processing. The RMS of the lateral velocity error is reduced the
most, e. g. from 34.3 cm s−1 to 3.2 cm s−1 when using the odometry model with uncorrelated
measurement noise at Griesheim airfield in moderate driving style. As detailed below, this
increased lateral velocity accuracy mainly stems from the fact that yaw angle observability
is improved when odometry measurements are included. Since reducing the lateral error also
reduces the horizontal error, |δv̂beb,hor|95 % drops as well when the odometry measurement up-
date is activated. Under ideal GNSS reception conditions, the RMS in longitudinal direction
grows slightly when odometry measurements are included. The opposite effect occurs when
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Table 7.2: Velocity Accuracy Metrics. Metrics for Each Scenario: Velocity Error RMS
(1st Row), 95% Quantile of Horizontal Velocity Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Griesheim airfield data set, moderate driving style
RMS of δv̂beb cm s−1 [1.4; 2.0; 3.5] [1.5; 2.2; 3.5] [1.7; 3.2; 3.4] [1.2; 34.3; 3.8]
|δv̂beb,hor|95 % cm s−1 4.5 5.0 6.5 59.3

Griesheim airfield data set, dynamic driving style
RMS of δv̂beb cm s−1 [2.8; 3.8; 6.0] [2.9; 4.2; 6.3] [3.3; 8.0; 7.5] [1.4; 35.7; 5.3]
|δv̂beb,hor|95 % cm s−1 8.5 9.1 14.9 52.1

Odenwald data set
RMS of δv̂beb cm s−1 [1.7; 1.7; 3.9] [1.7; 2.0; 3.9] [1.9; 2.5; 3.7] [34.2; 45.5; 4.8]
|δv̂beb,hor|95 % cm s−1 4.3 4.8 6.0 53.8

Darmstadt data set
RMS of δv̂beb cm s−1 [1.8; 1.8; 3.0] [1.8; 2.0; 3.0] [1.7; 2.1; 3.2] [6.9; 21.9; 3.6]
|δv̂beb,hor|95 % cm s−1 5.1 5.4 5.6 47.2

Frankfurt data set
RMS of δv̂beb cm s−1 [1.8; 1.9; 3.2] [1.8; 2.1; 3.2] [1.7; 2.8; 3.1] [3.2; 31.6; 4.4]
|δv̂beb,hor|95 % cm s−1 4.9 5.2 6.3 66.3

GNSS reception conditions are impaired. The largest reduction happens in the Odenwald
data set, where the longitudinal RMS drops from 34.2 cm s−1 to ≤1.9 cm s−1 when odometry
updates are turned on. The unusually large RMS without odometry stems from the two long
tunnels in this data set, during which the longitudinal velocity error of the solution with
deactivated odometry grows to 9m s−1. None of the other odometry configurations exhibits
a longitudinal error of more than 10 cm s−1 in these tunnels.

Taking the correlation in between the wheels into account increases velocity accuracy even
further. While lateral RMS and |δv̂beb,hor|95 % are reduced in all scenarios, the longitudinal
RMS decreases in three scenarios and increases in the other two. The biggest improve-
ments occur for the dynamic scenario at Griesheim airfield with a high level of horizontal
acceleration. Comparison of linear and Magic Formula tire model reveals that while the
errors with the Magic Formula configuration are smaller for 13 out of 20 metrics and equal
for the remaining seven, the improvements are small in comparison with the ones achieved
through incorporation of the correlations. For all three configurations with activated odome-
try measurement updates, the difference in velocity accuracy brought forth by varying GNSS
conditions is insignificant. The only scenario exhibiting a higher error level is the one with the
dynamic driving style. This demonstrates the odometry sensors’ ability to provide velocity
observations with the same quality that GNSS is able to under ideal reception conditions,
as long as the vehicle’s horizontal accelerations remain on a moderate level. Overall, the
integrated localization algorithm with GNSS, INS and odometry data achieves a high level
of velocity accuracy, independent of the surrounding conditions.
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Table 7.3: Yaw Angle Accuracy Metrics. Metrics for Each Scenario: Yaw Angle Error RMS
(1st Row), 95% Quantile of Yaw Angle Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Griesheim airfield data set, moderate driving style
RMS of δψ̂nb ◦ 0.07 0.09 0.10 1.14
|δψ̂nb|95 %

◦ 0.17 0.20 0.22 1.66

Griesheim airfield data set, dynamic driving style
RMS of δψ̂nb ◦ 0.14 0.14 0.19 0.98
|δψ̂nb|95 %

◦ 0.27 0.33 0.36 1.16

Odenwald data set
RMS of δψ̂nb ◦ 0.09 0.10 0.10 0.87
|δψ̂nb|95 %

◦ 0.19 0.21 0.21 1.18

Darmstadt data set
RMS of δψ̂nb ◦ 0.22 0.23 0.22 0.99
|δψ̂nb|95 %

◦ 0.47 0.48 0.48 1.36

Frankfurt data set
RMS of δψ̂nb ◦ 0.19 0.20 0.20 1.23
|δψ̂nb|95 %

◦ 0.40 0.41 0.40 1.74

The metrics for yaw angle accuracy in Table 7.3 show similar results as the ones for veloc-
ity accuracy. Once again, the largest improvements are made when activating the odometry
update. Both the incorporation of correlation into the measurement noise covariance matrix
and the Magic Formula tire model offer an additional increase in accuracy, although neither
of these increases is particularly large. The biggest difference in between these three odom-
etry configurations occurs for the dynamic scenario at Griesheim airfield, demonstrating the
benefits of the Magic Formula’s wider application range in terms of horizontal acceleration
when compared with the linear tire model. In contrast to velocity, yaw angle accuracy de-
teriorates when GNSS reception conditions are impaired. Driving moderately at Griesheim
airfield results in the best performance, while the scenarios in the inner cities of Darmstadt
and Frankfurt show the worst results. The reason for this behavior is that since velocity
accuracy is assessed in the body frame, data from IMU and odometry are largely responsi-
ble for those results, while GNSS observations only play a minor role. Accurate yaw angle
estimation on the other hand requires observations with high quality in both body and navi-
gation frame. Poor GNSS reception conditions impede carrier tracking in the GNSS receiver,
yielding increased tracking noise and more cycle slips, which leads to larger range rate errors.
Due to signal obstructions, fewer range rate observations are available anyway. Consequently,
estimation of the vehicle’s velocity w. r. t. the n-frame is less accurate, which in turn results
in decreased yaw angle accuracy.
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Figure 7.6: Transient phase of r̂d after initialization for Frankfurt data set. Ts,10 % is in-
dicated. Curves for Magic Formula tire model hidden behind curves for linear tire model
in (a),(b). (a) Front left wheel. (b) Front right wheel. (c) Rear left wheel. (d) Rear
right wheel.

The final metric selected in Section 5.3 is Ts,10 %, the 10% settling time for the dynamic tire
radius. This metric quantifies how quickly the dynamic tire radii go through their transient
phase and reach steady-state after initialization. One exemplary transient phase is depicted
in Figure 7.6. The estimated values of rd are shown for all four wheels and the three different
odometry configurations with activated odometry update. While the initialization value is
taken from the CAN bus and is identical for all tires and all scenarios, the reference value
reflects each tire’s true dynamic radius and differs from wheel to wheel. The ±10% settling
interval is computed from the difference between reference and initial value for each wheel.
Once the vehicle has started moving and initialization is completed, all dynamic tire radii
leave their initialization values and move toward the reference. When compared among the
wheels, the curves for each of the configurations resemble each other closely. Moreover, the
curves for Magic Formula and linear tire model with non-zero correlation are very similar to
one another. Both configurations reach the lower limit of the settling interval within 10 s or
less before they overshoot slightly. In the depicted scenario, the overshoot stays within the
±10% settling interval, which is true for 13 out of the 14 total runs. In the one run in which
the overshoot exceeds the settling interval (depicted in the appendix, Figure B.42), it stays
below ±15% and Ts,10 % is achieved after less than 40 s for both configurations experiencing
overshoot. In Figure 7.6, the configuration with uncorrelated measurement noise takes 93 s
to 124 s before reaching the settling interval at the four wheels, but does not overshoot.
No difference is apparent in between the three odometry configurations as far as steady-
state error is concerned. Given that the difference between reference value and initialization
value ranges from 8mm to 12mm, the initialization value of 1.67mm for the tire radii’s
standard deviation appears too low. However, since all dynamic tire radii reach their settling
interval after just 10 s with non-zero correlation, increasing the initial standard deviation is
unnecessary. Moreover, it leads to more overshooting and worse performance overall. Due
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Table 7.4: Dynamic Tire Radius Accuracy Metrics. Only Metric is 10% Settling Time

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Griesheim airfield data set, moderate driving style
Ts,10 % of δr̂d s 3.4 3.3 338 N/A

Griesheim airfield data set, dynamic driving style
Ts,10 % of δr̂d s 2.7 2.7 164 N/A

Odenwald data set
Ts,10 % of δr̂d s 128 164 173 N/A

Darmstadt data set
Ts,10 % of δr̂d s 10 95 128 N/A

Frankfurt data set
Ts,10 % of δr̂d s 7.5 10 124 N/A

to the odometry’s short measurement interval and its low measurement noise, the estimated
standard deviation drops quickly anyway. During the depicted time interval, it sinks from its
initialization value of 1.67mm down to 0.02mm.

Numerical values of Ts,10 % from all test scenarios are listed in Table 7.4. Since all four
tire radii exhibit different settling times in general, the greatest value of the four is presented.
With deactivated odometry update, no estimation of rd is possible, so the respective entries
are N/A. For the three configurations with activated odometry update, the tire radii’s settling
time shows the largest difference in between the configurations of all evaluated metrics. While
settling takes at least 124 s with uncorrelated odometry measurement noise, it is accomplished
in 10 s or less in seven out of ten scenarios when correlations are taken into account. The tire
radii’s settling time is also the metric whose results vary the most for a given configuration,
both in between different test scenarios and in between different runs of the same test scenario.
The reason for these large variations requires further investigation.

7.2.3.2 Position During Impaired Satellite Availability

Position accuracy is dictated by pseudorange observations. As long as a sufficient number of
pseudorange measurements is available, the effect of odometry observations on the estimated
position is negligible. Even deactivating the odometry update completely does not worsen
position accuracy in this case. However, this changes during stretches with severely impaired
satellite availability, e. g. urban canyons or tunnels. Under these circumstances, odometry
observations are able to stabilize the position estimate by limiting how fast the estimates for
attitude and velocity drift away from the correct values. The odometry configuration does
not play a deciding role for stabilizing position estimation, all three versions described in
Section 7.2.3.1 yield almost identical results. This positive effect that odometry observations
have on position accuracy is demonstrated subsequently by examining position error growth in
two exemplary tunnels. Two odometry configurations are compared with each other: Linear
tire model with non-zero correlations on the one hand and deactivated odometry update on
the other hand.
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Figure 7.7: Horizontal projection of position solution during tunnel in Odenwald data set,
with and without odometry aiding. Beginning and end of tunnel as well as driving direction
are indicated. On this scale, the reference solution is indistinguishable from the solution with
activated odometry update and hence omitted.

Figure 7.8: Position error during tunnel in Odenwald data set, with and without odometry
aiding. Beginning and end of tunnel are indicated. (a) Horizontal error and its estimated
1σ confidence interval over time. (b) Vertical error and its estimated 1σ confidence interval
over time.

Results from the first tunnel are presented in Figures 7.7 and 7.8. With a length of
2.7 km and a transit time of 140 s, this tunnel from the Odenwald data set is the longest one
encountered in any of the test scenarios. As shown in Figure 7.7, the tunnel runs in east-west
direction and features an elongated double bend. Since the horizontal position error δp̂nen,hor
with activated odometry measurement update stays below 5m within the depicted time
interval, it cannot be distinguished from the reference solution in this figure. Therefore, the
reference solution is omitted. The solution with deactivated odometry measurement update
is solely based on IMU dead-reckoning once the vehicle enters the tunnel. δp̂nen,hor grows to
more than 400m during the tunnel as the IMU’s measurement errors are integrated over time.
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Once the first pseudorange observations are available after leaving the tunnel, the position
estimate jumps toward the correct solution. The first five GNSS measurement updates after
the tunnel yield jumps of 450m, 30m, 15m, 10m and 2m, respectively.

The error’s progression over time is shown in Figure 7.8. In addition to the horizontal
and vertical error of the two odometry configurations, their estimated 1σ confidence intervals
are plotted, as well. Due to the position aiding provided by the odometry, the horizontal
error’s estimated standard deviation σ̂δpn

en,hor
does not exceed 11m when the odometry update

is activated, while it grows to more than 300m without odometry aiding. No significant
difference between the two odometry configurations is apparent for the vertical position error,
because odometry does not provide information about the vehicle’s vertical velocity. Since the
vertical velocity is much smaller than the horizontal one, σ̂δpnen,U grows slower than σ̂δpn

en,hor

and never reaches more than 6m.

Figure 7.9: Position error during tunnel in Darmstadt data set, with and without odometry
aiding. Beginning and end of tunnel are indicated in all subfigures. (a) Horizontal error
and its estimated 1σ confidence interval over time. (b) Vertical error and its estimated 1σ
confidence interval over time. (c) Horizontal projection of position solution. The arrow
indicates the driving direction. On this scale, the reference solution is indistinguishable from
the solution with activated odometry update and hence omitted.

Figure 7.9 displays the same plots for the second tunnel, which is located in the inner
city of Darmstadt, has a length of 550m and a transit time of 50 s. A 90◦ right turn occurs
after 450m, otherwise the tunnel is straight. The reference solution cannot be distinguished
from the solution with activated odometry update in Figure 7.9c, so the reference solution is
omitted. While δp̂nen,hor grows to 38m without odometry aiding, it does not exceed 1.5m with
activated odometry update. The corresponding values for the estimated standard deviation
are 15m without and 0.9m with odometry aiding, respectively. Once the first pseudorange
measurements are received after the tunnel, jumps of up to 22m occur if odometry aiding is
turned off, whereas no GNSS update causes a position correction of more than 0.8m with
activated odometry update. As far as the vertical position error and its estimated standard
deviation are concerned, both odometry configurations perform equally well.
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7.3 Integrity
This section assesses the localization algorithm’s performance in terms of integrity and to
what extent the a-posteriori variance factors are able to increase this performance. Integrity is
evaluated for position, velocity and yaw angle by applying the metrics selected in Section 5.3.
These metrics quantify the agreement between actual and estimated error by computing the
percentage of epochs for which the actual error is inside its estimated 95% confidence interval.
The numerical values for position, velocity and yaw angle integrity are listed in Table 7.5,
Table 7.6 and Table 7.7, respectively. One run of each scenario is presented in every table,
the results from the remaining runs appear in the appendix (Sections B.4.5-B.4.7). The runs
featured in this section are identical to the ones presented in Sections 7.2.2 and 7.2.3. All
results in this section stem from the algorithm configuration utilizing multi-frequency/multi-
constellation GNSS and the linear tire model with non-zero measurement noise correlation.
The metrics are evaluated once with the applied a-posteriori variance factors and once without
them in order to demonstrate the integrity improvements brought forth by this technique of
internal quality assessment.

Table 7.5: Position Integrity Metrics. Metrics for Each Scenario: Percentage of Epochs for
Which Horizontal Error (1st Row) and Vertical Error (2nd Row) are Inside Their Respective
95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Griesheim airfield data set, moderate driving style

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 18.4 14.4

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 63.7 56.8

Griesheim airfield data set, dynamic driving style

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 10.6 3.2

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 6.8 0.8

Odenwald data set

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 8.4 6.5

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 44.8 40.3

Darmstadt data set

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 6.5 3.4

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 27.3 19.3

Frankfurt data set

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 11.8 8.2

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 35.0 28.2
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Table 7.5 shows the evaluated position integrity metrics. None of the percentages reaches
its target level of 95%, with values ranging from 3.2% to 18.4% in horizontal and from
0.8% to 63.7% in vertical direction. The generally low level of agreement between actual
and estimated error demonstrates the limitations of any approach that is based on estimated
standard deviations or covariance matrices: While these estimated quantities describe the er-
ror’s precision, the computed error w. r. t. the reference solution describes accuracy. Because
pseudoranges are the algorithm’s only source of absolute position information, the integrated
navigation solution is biased due to all remaining biases in the pseudoranges. These biases
might stem from errors in satellite position and clock bias data, from unmodeled atmospheric
delays or from multipath errors. The EKF does not account for any remaining biases that are
present in its measurement input, which leads to overly optimistic values in the output covari-
ance matrix. With the help of the a-posteriori variance factor σ̂2

0, the problem is mitigated
slightly. The improvements range from 1.9 to 8.0 percentage points. Since all a-posteriori
variance factors are computed from the Gauss-Markov model’s residuals, biases that change
slowly or not at all with time cannot be detected via σ̂2

0 either. Therefore, σ̂2
0 is not able to

raise the estimated covariance high enough to account for the time correlation and remaining
biases in the pseudorange errors. The localization algorithm displays an especially poor per-
formance in terms of integrity for the vertical position error in the Griesheim airfield data set
with dynamic driving style. Even with applied a-posteriori variance factor, the actual error
is only inside the estimated 95% confidence interval in 6.8% of epochs. This is particularly
interesting because the test scenario at Griesheim airfield with moderate driving style was
recorded less than two hours earlier and the algorithm outputs a 95% confidence interval that
includes the actual vertical error in 63.7% of epochs in that scenario. A possible explanation
for this behavior would be that the algorithm obtains an initial position estimate outside of
the confidence interval in the run with dynamic driving style and is unable to correct this
estimate within the short duration of the test scenario (approx. 8min). However, this is not
the case, as is demonstrated by Figure 7.10.
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Figure 7.10: Position error and its estimated 95% confidence interval, Griesheim airfield data
set, with and without a-posteriori variance factor. (a) Horizontal error, moderate driving
style. (b) Horizontal error, dynamic driving style. (c) Vertical error, moderate driving style.
(d) Vertical error, dynamic driving style.

Figure 7.10 depicts the position error together with its estimated 95% confidence interval
for two test scenarios at Griesheim airfield. Figures 7.10a, c stem from the run with moderate
driving style, Figures 7.10b, d from the run with dynamic driving style. The estimated
confidence interval without application of the a-posteriori variance factor is very similar in
both cases, reaching values around 10 cm for the horizontal and around 15 cm for the vertical
error. These values would describe the actual error correctly if all pseudorange measurement
noise components were uncorrelated in time, zero-mean and normally distributed, which they
are not. Due to the higher velocity and acceleration in the run with dynamic driving style,
position prediction is not as accurate as it is in the run with moderate driving style, yielding
larger position residuals and consequently a higher a-posteriori variance factor. The actual
errors are lower in the run with moderate driving style. While this is true for both horizontal
and vertical error, the effect is more pronounced in vertical direction. The initial vertical
position estimate in Figure 7.10d is 0.75m too low and outside the estimated 95% confidence
interval. However, it gets corrected and matches the reference value after 45 s before it leaves
the confidence interval on the other side and remains too high for the remaining run. The
single-epoch GNSS position solutions exhibit a bias of −0.67m and an empirical standard
deviation of 0.59m in vertical direction over the whole duration of the scenario. This bias
is close to the initial vertical position error, but the time series of single-epoch position
solutions suggests that the error should stay negative throughout the run. Why this is not
the case and the error switches its sign and gets too large shortly after initialization is not
clear and requires further investigation. The issue is not caused by the odometry update
because the error’s progression does not change when the odometry update is deactivated.
A possible explanation is that the higher vibrations caused by the increased vehicle speed
and acceleration increase the IMU’s unmodeled errors to a level that is not reflected by the
system noise covariance matrix Q. MEMS IMUs are known to be particularly vulnerable to
these types of errors [Groves, 2013, p. 159].
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Table 7.6: Velocity Integrity Metrics. Only Metric is Percentage of Epochs for Which the
Horizontal Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Griesheim airfield data set, moderate driving style

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 51.8 46.8

Griesheim airfield data set, dynamic driving style

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 20.1 15.6

Odenwald data set

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 75.0 53.7

Darmstadt data set

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 80.4 52.3

Frankfurt data set

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 71.0 46.6

The evaluated velocity integrity metrics are listed in Table 7.6. The resulting values
are generally higher than for position and lie between 15.6% and 80.4%. Application of
the a-posteriori variance factor yields larger gains in this case, with improvements ranging
from 4.5 to 28.1 percentage points. The reason for the enhanced overall performance in
comparison with position integrity is that both sources of velocity information - GNSS range
rates and odometry - do not exhibit any significant biases. Moreover, their error correlation
time is much shorter than the one of pseudorange observations. Because two independent
sources of velocity information exist, they are able to correct each other’s errors, yielding a
better agreement between actual and estimated velocity error. Just as for position integrity,
the poorest performance is obtained in the Griesheim airfield scenario with dynamic driving
style. While the horizontal velocity error is inside the estimated 95% confidence interval in
46.6% to 53.7% of epochs for the other four test scenarios without applying the a-posteriori
variance factor, this in only the case in 15.6% of epochs for the Griesheim airfield scenario
with dynamic driving style. Application of the a-posteriori variance factor does not increase
the estimated covariance enough to achieve a level of integrity that is similar to the other
scenarios, indicating that the reason for the unusually poor performance in terms of integrity
stems from the high level of horizontal acceleration. This hypothesis is examined further in
the subsequent paragraph.
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Figure 7.11: Horizontal velocity error and its estimated 95% confidence interval, Griesheim
airfield data set, with and without a-posteriori variance factor. (a) Moderate driving style.
(b) Dynamic driving style.

Figure 7.11 depicts the horizontal velocity error δv̂beb,hor together with its estimated 95%
confidence interval both test scenarios at Griesheim airfield. It is evident that velocity es-
timation suffers from more short-term noise than position estimation. This is due to the
vehicle’s vibrations that are observed by the IMU. The confidence level without σ̂2

0 is almost
identical for both driving styles, varying between 1 cm s−1 to 2.5 cm s−1 once the transient
phase after completed initialization is over. Similarly to the behavior for position estimation
in Figure 7.10, the higher accelerations in the run with dynamic driving style cause velocity
estimation to be less accurate than in the run with moderate driving style, leading to larger
corrections from the measurement updates and therefore a higher a-posteriori variance fac-
tor. Moreover, the GNSS range rates are less accurate when the vehicle is subject to high
accelerations, as detailed in Section 3.6.6. The reason for the decreased accuracy is that
numerical differentiation is performed to compute the range rates from carrier phase obser-
vations. Consequently, the velocity obtained from range rates is an average of the velocity
within the previous GNSS measurement interval of τg = 0.1 s. This average cannot account
for accelerations that are not constant within τg. Because the range rate’s measurement
noise is parametrized as a function of satellite elevation θ, higher vehicle dynamics are not
reflected properly in the measurement noise covariance matrix Rρ̇c , causing a discrepancy
between actual and estimated errors.

While the odometry measurement noise grows both with wheel rotation rate as well as
with horizontal acceleration, the actual odometry measurement error grows simultaneously,
as examined in Section 4.3. Due to the high level of horizontal acceleration in the dynamic
driving style and the increased IMU noise caused by the larger vibrations of the vehicle at
higher speeds, the horizontal friction coefficient is outside the linear tire model’s validity limit
of |µ| = 0.7 in 7% of epochs in the scenario with dynamic driving style, compared to less than
1% of epochs in the scenario with moderate driving style. Consequently, a lot of odometry
observations are disregarded by the odometry preprocessing module and not forwarded to the
integration filter in the dynamic scenario, yielding the increased velocity error that is visible
in Figure 7.11b. The a-posteriori variance factor is unable to account for the magnitude of
this increase, resulting in the comparatively poor performance in terms of velocity integrity
exhibit by the localization algorithm in the scenario with dynamic driving style.
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Table 7.7: Yaw Angle Integrity Metrics. Only Metric is Percentage of Epochs for Which the
Yaw Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Griesheim airfield data set, moderate driving style

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 75.5 75.1

Griesheim airfield data set, dynamic driving style

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 54.4 44.6

Odenwald data set

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 76.3 73.8

Darmstadt data set

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 67.2 59.1

Frankfurt data set

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 71.8 66.8

The final integrity metric selected in Section 5.3 concerns the yaw angle. Its numerical
results are presented in Table 7.7. The yaw angle achieves the best performance in terms
of integrity of all quantities selected for integrity assessment, with the actual error inside
the 95% confidence interval in 44.6% to 76.3% of epochs. Attitude is the only quantity of
the EKF’s state vector that has non-zero entries in the measurement matrices of all three
types of measurement updates, indicating that all types of measurement updates contribute
directly to attitude correction and not only through the attitude’s correlation with the other
states. However, the yaw angle is only directly observable from the combination of range
rate and odometry update when the vehicle is moving, as verified by the progression of
its redundancy component in Section 5.2. Both range rates and odometry yield velocity
estimates without any significant biases and with short error correlation times. Consequently,
their noise comes close to the EKF’s model of zero-mean Gaussian white measurement noise.
Therefore, the integration filter is able to filter out the noise almost as well as the EKF’s
model assumes, leading to an estimated yaw angle covariance that is not as overly optimistic as
the one for position.

The a-posteriori variance factor yields comparatively small improvements between 0.4
and 9.8 percentage points. While all types of measurement updates have non-zero entries for
attitude in their measurement matrices, none of them provides explicit information about
the yaw angle. Hence, the entries in the measurement matrices concerning the yaw angle are
smaller than the ones concerning the states for which the respective measurement update
provides explicit information, e. g. the entries concerning position in case of the pseudorange
update or the entries concerning velocity in case of the range rate update. Therefore, the
yaw angle corrections are small compared to the corrections for states for which explicit in-
formation is provided by the measurement updates, leading to smaller residuals and a smaller
a-posteriori variance factor. The poorest performance is once again achieved in the Griesheim
airfield scenario with dynamic driving style, analogous to position and velocity integrity.
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Figure 7.12: Yaw angle error, its estimated 95% confidence interval and yaw rate, Griesheim
airfield data set, with and without a-posteriori variance factor. (a),(c) Moderate driving
style. (b),(d) Dynamic driving style.

Yaw angle error and its estimated confidence interval for two scenarios at Griesheim
airfield are presented in Figures 7.12a, b. In comparison with the velocity error, which is
overlaid by a lot of short-terms noise stemming from the vehicle’s vibrations, both the yaw
error as well as its confidence interval are much smoother. The reason for this phenomenon
is that while road unevenness causes significant linear vibrations along all three body axes
when the vehicle is moving, no significant rotary vibrations are induced, especially around
the vertical axis. Once the vehicle starts moving and the transient phase is over, the 95%
confidence interval without σ̂2

0 stays between 0.08◦ and 0.12◦ until the car slows down to
a standstill at the end of the run in Figure 7.12a, causing the confidence level to increase.
Due to the higher speed in the dynamic driving style, yaw angle observability even better
and the 95% confidence interval without σ̂2

0 is slightly lower, varying from 0.06◦ to 0.10◦ in
between transient phase and final braking maneuver. As demonstrated in Figures 7.12c, d,
the yaw angle error is correlated with the yaw rate ψ̇nb. As long as the vehicle is traveling
in a straight line, δψ̂nb remains close to zero. Left turns cause a positive yaw rate and a
positive yaw angle error, right turns cause negative values for both quantities. The reason for
this behavior is that the non-zero vehicle side slip angle during cornering makes distinction
between direction of travel and orientation of the body frame’s x-axis necessary, resulting
in decreased yaw angle accuracy. Moreover, the directions of the velocity vectors vnea at the
GNSS antenna on the one hand and vnen at the IMU on the other hand are unequal during
cornering, impeding yaw angle estimation even further. The combination of these effects
leads to increased discrepancies between prediction and measurement, resulting in larger yaw
angle residuals and a higher a-posteriori variance factor. This correlation between yaw angle
error and σ̂2

0 is especially evident in the run featuring dynamic driving style, an observation
that is backed up by the fact that the application of σ̂2

0 increases the percentage of epochs
for which the yaw error is inside the 95% confidence interval by 9.8 percentage points in this
case. This is the greatest improvement among all test scenarios in Table 7.7.
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Evaluation of the entirety of integrity metrics proves that the chosen metrics are able
to assess the quality of the output covariance matrix. This assessment reveals the EKF’s
deficiencies when measurement and/or system noise deviate from the idealized model of zero-
mean Gaussian white noise. Because the noise is not filtered out as quickly as the model
assumes, the estimated covariance matrix is overly optimistic. The larger the discrepancy
between model and reality gets, the greater the mismatch between actual and estimated
error becomes. In this thesis, the pseudorange errors display the longest correlation times
and largest biases of all noise sources, causing position to be the quantity with the poorest
performance in terms of integrity. While the a-posteriori variance factors are able to increase
integrity for all examined quantities, this increase is not sufficient to reach an estimated 95%
confidence level that covers the actual error in 95% of epochs in any of the evaluated test
scenarios. A possible approach to fix this problem is to account for the errors’ time correlation,
e. g. by raising the noise covariance dependent on the respective error’s correlation time or by
adding prefilters to whiten the noise. However, an increased measurement noise covariance
hampers outlier detection, possibly leading to worse accuracy.

While the technique of a-posteriori variance factors has proven to be insufficient to yield
a level of integrity that is adequate for safety-critical systems, the redundancy components
obtained in order to compute σ̂2

0 are suitable to assess how well any subset of elements from the
EKF’s state vector is observable based on the measurement input at a given time, as shown
in Section 5.2. This is an important aspect of state vector observability, although a thorough
observability analysis needs to take the IMU data and the system model into account, as
well. With the depicted technique of merging pseudorange, range rate and odometry updates
into one Gauss-Markov model to form redundancy components, observability is quantified
purely on an epoch-by-epoch basis, leaving out the system dynamics and the EKF’s ability to
observe states by inferring from the progression of measurements over longer periods of time.
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Chapter 8

Conclusion and Outlook

This final chapter consists of two eponymous sections. In the first one, the results of the
thesis are summarized and analyzed in the context of the aims defined in the introduction.
Based on this analysis, conclusions are drawn about which elements of the developed local-
ization algorithm already achieve satisfactory performance and which elements still need to
be improved. The second section gives an outlook on potential next steps to enhance the al-
gorithm’s performance within the limits of the chosen approach as well as possible expansions
beyond these limits.

8.1 Conclusion
This thesis aims to make additional GNSS constellations and frequencies beyond GPS L1 us-
able for automotive applications by including them in an integrated GNSS/INS localization
algorithm. While the main advantages are increased satellite availability and the elimination
of the ionospheric error, modern GNSS signals offer additional benefits like reduced suscepti-
bility to multipath errors, higher signal transmission power and faster signal acquisition via
pilot components free of navigation data. In order to achieve a high degree of flexibility w. r. t.
the available pseudoranges, the GNSS preprocessing is able to work with different types of IF
combinations and single-frequency pseudoranges simultaneously. This capability is especially
important for GPS processing because the currently broadcast signals vary from satellite to
satellite due to the ongoing stepwise modernization of the GPS constellation. Since each
signal is affected by different biases, their simultaneous processing requires the consideration
of DCBs. While satellite-specific DCBs are obtained from external sources, receiver-specific
DCBs are calibrated a-priori for the employed receiver. To account for the signal biases aris-
ing from the multi-constellation approach, an additional receiver clock bias entry is included
in the integration filter’s state vector. Satellite orbit and clock data are obtained from the
predicted half of ultra-rapid precise products published by GFZ instead of the navigation
messages, which serve as backup. This preserves the algorithm’s real time capability while
reducing the satellite position and clock bias error, which is the largest remaining error after
the ionospheric delay has been eliminated through multi-frequency observations. A very im-
portant part of the developed GNSS preprocessing module is the measurement noise model.
Due to the inherently different error characteristics of IF combinations on the one hand and
single-frequency pseudoranges on the other hand, a sophisticated measurement noise model
is necessary to enable optimal weighting of all types of input data in the integration filter.

With the help of selected metrics for position accuracy, the improvements brought forth by
multi-frequency/multi-constellation GNSS in comparison with conventional single-frequency
GPS L1 C/A integration are quantified. The algorithm developed in this thesis achieves
consistently higher accuracy than the single-frequency algorithm throughout all recorded test
scenarios. These test scenarios feature varying GNSS conditions, ranging from unobstructed
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sky view at an airfield to severely impaired reception inside urban canyons. The largest
advancements include the reduction of the 95% horizontal error quantile from 3.05m to
1.15m for a scenario in the inner city of Darmstadt and the reduction of the 95% vertical
error quantile from 2.92m to 0.31m for a scenario at Griesheim airfield.

In addition to data from GNSS receiver and IMU, observations from the vehicle’s built-in
odometry sensors are input by the integration filter. Wheel rotation rates from all four wheels
as well as the steering wheel angle are preprocessed to obtain the horizontal velocity vector
at each of the four wheel contact patches. During odometry preprocessing, longitudinal and
lateral tire slip are compensated with the help of tire models with varying complexity in
conjunction with a single-track model. Due to the fact that all tire slip estimates are based
on the same IMU acceleration measurements, the velocity errors are correlated in between
the wheels. Correlation in lateral direction among the wheels of each axle is particularly
severe, so these four measurements are merged to form two new observations, each repre-
senting the lateral velocity at one of the axles. Moreover, non-zero off-diagonal elements are
included in the noise covariance matrix to account for the correlation in the entries of the
resulting 6×1 odometry measurement vector. The improvements brought forth by enhanced
odometry processing are twofold: One the one hand, lateral velocity and yaw angle accuracy
increase because an additional source of information about the vehicle’s movement in the
body frame is available. On the other hand, position accuracy is improved in surroundings
with severely impaired GNSS reception, e. g. urban canyons or tunnels. These improvements
are quantified with the help of selected metrics, revealing that the inclusion of correlation
coefficients in between the wheels reduces lateral velocity and yaw angle error noticeably. In
contrast, switching from a basic linear tire model to a more advanced Magic Formula tire
model yields only minor improvements. Hence, the Magic Formula’s increased parametriza-
tion effort is not justified. Moreover, its parameters depend on road surface and weather,
thereby limiting its generality.

For safety-critical systems, performance metrics beyond accuracy are required. A neces-
sity to achieve satisfactory integrity performance is the availability of an error estimate that
adequately models the actual error. This thesis examines if the concept of a-posteriori vari-
ance factors is able to derive such an adequate error estimate by monitoring the agreement
between the integration filter’s measurement inputs and their attributed covariance matrices.
The results demonstrate that this is not the case, as the actual error falls within the estimated
95% confidence interval in only 6.5% to 80.4% of epochs, even after applying the a-posteriori
variance factors. Integrity performance is especially poor for position due to the fact that
Kalman filters tend to deliver overly optimistic error estimates if the input errors are biased
and/or highly correlated in time, both of which are true for pseudorange observations. Al-
though the utilization of IF combinations eliminates the bias stemming from the unmodeled
ionospheric delay, the remaining errors account for enough bias and time correlation to yield
a biased position estimate in the integrated navigation solution. Consequently, describing the
solution’s precision via its covariance matrix cannot adequately monitor its accuracy, leading
to poor integrity performance.

8.2 Outlook
While the work carried out in the context of this thesis increases the localization algorithm’s
performance significantly, room for improvement and areas requiring further investigation
still exist. Enhancing the algorithm’s performance may be carried out within the limits of
the approach chosen in this thesis (i. e. without applying carrier phase positioning methods or
other techniques requiring a steady stream of external input data) or outside of these limits.
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Possible expansions beyond the limits of this thesis’ approach are manifold, so only a
selection is mentioned here. Positioning techniques based on carrier phase observations, such
as RTK and PPP, offer position accuracy on the centimeter level. However, additional re-
search is necessary to improve their reliability in surroundings with impaired GNSS reception
conditions, especially for kinematic applications. Vector tracking schemes or deep GNSS/INS
integration are potential solutions on the way to an algorithm that minimizes the likelihood
of losing ambiguity fixes while simultaneously reducing the time for refixing the ambiguities
in case the fix is lost nonetheless. Another option for satisfying the accuracy requirements
of autonomously driving cars is the inclusion of data from additional sensors (e. g. radar,
cameras, lidar) into the integration filter.

Several enhancements within the limits set for this thesis exist, as well. An obvious
one is the inclusion of GNSS observations from constellations beyond GPS and Galileo,
i. e. GLONASS and BeiDou, thereby raising satellite availability even more. The current
design does not utilize all data provided by the receiver. Only two pseudoranges and one
carrier phase measurement per satellite are processed in each epoch, neglecting one pseudo-
range and two carrier phase measurements in epochs for which the receiver tracks signals of
a satellite on three frequencies. These neglected observations could be used for purposes like
cycle slip detection or outlier elimination.

As far as odometry processing is concerned, the single-track model with linear tire char-
acteristics has proven to be sufficient for dynamics that usually occur in everyday road traf-
fic. However, the odometry preprocessing module does currently not have the capability to
account for variations in the tire slip stiffnesses, which have to be parametrized a-priori. Be-
cause these stiffnesses change over time, e. g. due to tire wear and variations in tire pressure, a
method for estimating them during the localization algorithm’s normal operation is required
in order to maintain the current performance level. The odometry module’s lateral velocity
observations are very noisy due to the vibrations induced by road unevenness. Estimating the
side slip angles based on gyroscope measurements avoids this problem and reduces the error’s
RMS by 75%, but decreases the accuracy of the integrated navigation solution. Developing a
method for tire slip compensation that does not rely on IMU measurements has the potential
to overcome these issues and yield better performance of the odometry module in particular
as well as the integrated algorithm in general.

Because the concept of a-posteriori variance factors is unable to deliver realistic error
estimates, other techniques have to be considered to achieve the level of integrity required
by safety-critical applications. One possible approach is error overbounding. Since error
distribution functions derived with overbounding techniques impede outlier detection, their
application might worsen the integrated solution’s accuracy. In order to avoid this, each
input may be assigned two different error distribution function. On the one hand a nominal
error model, e. g. one of the models derived in this thesis, which is to be used for outlier
detection and computation of the integrated solution. On the other hand an overbounding
error model, which is to be used for obtaining protection levels for this integrated solution.

When envisioning the application of the developed algorithm as a source of input data for
a vehicle’s motion controller, additional capabilities have to be included. The most important
one is the ability to perform all operations in real time inside the vehicle without the need
to record data and process them later. Also, the algorithm needs to be able to store the
current solution in memory when the vehicle gets parked and reload it when the vehicle is
started again in order to avoid the initialization process, enabling the algorithm to output
a complete navigation solution right away. A possibility to reinitialize the integration filter
during normal operation has to implemented, as well. This function is activated in case
the estimated total state vector drifts away too far from the truth, which causes too many
measurements to be rejected by outlier detection and therefore makes it impossible for the
integration filter to reconverge to the correct values.
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Appendix A

Test Scenario Details

This first appendix chapter provides detailed information about the test scenarios from Chap-
ter 7. Its first section presents maps of the driven routes, its second section assesses the GNSS
reception conditions in each scenario with the help of several different quality indicators.

A.1 Maps of the Routes
A map of each route is depicted in this section to illustrate the selected test scenarios.
Figures A.1-A.4 give an overview of the four routes, while Figure A.5 shows a magnified
section of Figure A.4 to detail the route through the city center of Frankfurt.

Figure A.1: Test scenario 1: Griesheim airfield (generated with Google Maps).

133



Test Scenario Details

Figure A.2: Test scenario 2: Odenwald (generated with Google Maps).
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A.1 Maps of the Routes

Figure A.3: Test scenario 3: Darmstadt (generated with Google Maps).
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Figure A.4: Test scenario 4: Frankfurt (generated with Google Maps). The red rectangle
indicates the section that is shown in detail in Figure A.5.
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A.1 Maps of the Routes

Figure A.5: Test scenario 4: Frankfurt, detailed view of city center, magnified section of
Figure A.4 (generated with Google Maps).
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A.2 GNSS Reception Conditions
This section assesses GNSS reception conditions in each test scenario via several quality indi-
cators. PDOP and number of available satellites are depicted in Section A.2.1. Sections A.2.2
and A.2.3 examine code multipath and range rate errors that occur during the test scenarios.
Among all GNSS error terms, these two are influenced the most by varying GNSS reception
conditions. The total pseudorange error is investigated in Section A.2.4 by evaluating the ac-
curacy of single-epoch GNSS position solutions. Finally, Section A.2.5 assesses the reference
solution quality via quantities computed by Novatel’s Waypoint - Inertial Explorer, the soft-
ware used to obtain the reference solution. Reference solution quality correlates with GNSS
reception conditions because the reference solution is based on RTK positioning. Therefore,
its accuracy is predominantly influenced by carrier phase measurement quality.

A.2.1 PDOP and Number of Available Satellites

Figures A.6-A.10 present PDOP and number of available satellites for all runs of each scenario
in the multi-frequency/multi-constellation configuration. Satellites are considered available
if the C/N0 in the L1 band is at least 30 dB-Hz (C/NO,G1C for GPS, C/NO,E1X for Galileo).

Figure A.6: PDOP and number of available satellites for Griesheim airfield data sets,
moderate driving style. (a) Percentage of GNSS measurement epochs in which PDOP is
at least as good as indicated. (b) Percentage of GNSS measurement epochs in which no
more than the indicated number of satellites is available.

Figure A.7: PDOP and number of available satellites for Griesheim airfield data sets,
dynamic driving style. (a) Percentage of GNSS measurement epochs in which PDOP is
at least as good as indicated. (b) Percentage of GNSS measurement epochs in which no
more than the indicated number of satellites is available.
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Figure A.8: PDOP and number of available satellites for Odenwald data sets. (a) Per-
centage of GNSS measurement epochs in which PDOP is at least as good as indicated.
(b) Percentage of GNSS measurement epochs in which no more than the indicated number of
satellites is available.

Figure A.9: PDOP and number of available satellites for Darmstadt data sets. (a) Per-
centage of GNSS measurement epochs in which PDOP is at least as good as indicated.
(b) Percentage of GNSS measurement epochs in which no more than the indicated number of
satellites is available.

Figure A.10: PDOP and number of available satellites for Frankfurt data sets. (a) Per-
centage of GNSS measurement epochs in which PDOP is at least as good as indicated.
(b) Percentage of GNSS measurement epochs in which no more than the indicated number of
satellites is available.
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A.2.2 Code Multipath Error

This section examines the code multipath errors that occur during the various test scenarios
with the help of the multipath combination ρMC (3.32). ρMC mainly comprises the summed
up effects of code multipath, NLOS reception errors and code tracking noise. The results for
all test scenarios are presented in Figures A.11-A.16 and Tables A.1-A.6. Each figure depicts
ρMC on one specific signal for all runs of each scenario. The same holds for the tables.

The data are shown in the figures in form of the folded cumulative distribution func-
tion (FCDF), a depiction that is commonly used for the assessment of GNSS errors (e. g. in
Cohenour and van Graas [2011], Perea et al. [2016], Joerger and Pervan [2016]). It is espe-
cially useful if the main interest lies in the large absolute errors, which occur rather seldom.
The FCDF is obtained by folding the upper half of the CDF down to the interval [0, 0.5):

FCDF =
{

CDF for CDF ≤ 0.5
1− CDF for CDF > 0.5.

(A.1)

In order to magnify the visualization of the large absolute errors, the vertical axis of the
FCDF plots is displayed logarithmically.

The results demonstrate that the goal of covering diverse GNSS reception conditions
was achieved. The scenarios at Griesheim airfield exhibit the smallest multipath errors for
all signals, while the Frankfurt scenario exhibits the largest multipath/NLOS errors. The
Odenwald and Darmstadt scenario lie in the middle for all signals. When comparing the
different signals with each other, the findings from Section 3.6.4 are confirmed: G5X, E5X
and E7X exhibit the lowest multipath errors due to their high code chipping rate. G1C
achieves intermediate performance, while G2X and E1X suffer from the largest multipath
errors. E1X is especially vulnerable to very large errors. While an error of more than 100m
is only experienced by one of the other signals in one of the runs (G2X in the 2nd Darmstadt
run, see Table A.2), E1X shows such large errors in all eight runs that did not take place
at Griesheim airfield. The maximum error of more than 900m occurs in the 1st Frankfurt
run (see Table A.4). While such large errors are usually detected and eliminated via outlier
detection, this reduces the number of available pseudorange observations, leading to degraded
signal geometry and decreased position accuracy.
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A.2 GNSS Reception Conditions

Figure A.11: FCDF of multipath combination ρMC on GPS L1 for all test scenarios.
(a) Griesheim airfield data sets, moderate driving style. (b) Griesheim airfield data sets,
dynamic driving style. (c) Odenwald data sets. (d) Darmstadt data sets. (e) Frankfurt
data sets.

Table A.1: RMS, 99% Quantile and Maximum of Multipath Combination ρMC on GPS L1
for all Test Scenarios. Each Cell Contains the Values for all Runs of a Given Scenario

Test Scenario RMS of 99% Quantile of Max. Value of
ρMC (in m) |ρMC | (in m) |ρMC | (in m)

Griesheim airfield, 0.36
/
0.36

/
0.36 1.32

/
1.16

/
1.24 3.46

/
2.18

/
3.12

moderate driving style
Griesheim airfield, 0.36

/
0.36

/
0.36 1.14

/
0.99

/
1.13 3.25

/
3.06

/
2.58

dynamic driving style
Odenwald 0.53

/
0.77 1.74

/
2.29 26.4

/
27.8

Darmstadt 0.54
/
0.71

/
0.98 1.88

/
2.61

/
2.70 17.0

/
25.0

/
45.2

Frankfurt 0.96
/
0.61

/
0.90 2.34

/
1.80

/
1.97 48.7

/
25.0

/
53.4
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Figure A.12: FCDF of multipath combination ρMC on GPS L2C for all test scenarios.
(a) Griesheim airfield data sets, moderate driving style. (b) Griesheim airfield data sets,
dynamic driving style. (c) Odenwald data sets. (d) Darmstadt data sets. (e) Frankfurt
data sets.

Table A.2: RMS, 99% Quantile and Maximum of Multipath Combination ρMC on GPS L2C
for all Test Scenarios. Each Cell Contains the Values for all Runs of a Given Scenario

Test Scenario RMS of 99% Quantile of Max. Value of
ρMC (in m) |ρMC | (in m) |ρMC | (in m)

Griesheim airfield, 0.40
/
0.40

/
0.40 1.56

/
1.11

/
1.51 11.3

/
8.07

/
6.67

moderate driving style
Griesheim airfield, 0.40

/
0.40

/
0.40 1.21

/
1.36

/
1.52 4.06

/
5.83

/
4.46

dynamic driving style
Odenwald 0.79

/
1.15 2.82

/
3.44 35.1

/
59.9

Darmstadt 0.83
/
1.71

/
1.23 2.98

/
5.15

/
4.27 39.4

/
114

/
46.3

Frankfurt 1.57
/
0.95

/
1.30 5.24

/
3.22

/
4.03 91.2

/
37.7

/
66.0
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Figure A.13: FCDF of multipath combination ρMC on GPS L5 for all test scenarios.
(a) Griesheim airfield data sets, moderate driving style. (b) Griesheim airfield data sets,
dynamic driving style. (c) Odenwald data sets. (d) Darmstadt data sets. (e) Frankfurt
data sets.

Table A.3: RMS, 99% Quantile and Maximum of Multipath Combination ρMC on GPS L5
for all Test Scenarios. Each Cell Contains the Values for all Runs of a Given Scenario

Test Scenario RMS of 99% Quantile of Max. Value of
ρMC (in m) |ρMC | (in m) |ρMC | (in m)

Griesheim airfield, 0.21
/
0.21

/
0.21 0.77

/
0.49

/
0.95 26.0

/
26.6

/
6.02

moderate driving style
Griesheim airfield, 0.21

/
0.21

/
0.21 0.55

/
0.38

/
0.33 1.37

/
0.68

/
0.58

dynamic driving style
Odenwald 1.00

/
1.30 3.63

/
3.93 31.5

/
32.0

Darmstadt 0.57
/
0.93

/
1.00 1.90

/
4.04

/
3.18 29.2

/
30.0

/
29.6

Frankfurt 1.99
/
0.87

/
0.89 5.32

/
2.93

/
2.96 41.3

/
41.5

/
30.5
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Figure A.14: FCDF of multipath combination ρMC on Galileo E1 for all test scenarios.
(a) Griesheim airfield data sets, moderate driving style. (b) Griesheim airfield data sets,
dynamic driving style. (c) Odenwald data sets. (d) Darmstadt data sets. (e) Frankfurt
data sets.

Table A.4: RMS, 99% Quantile and Maximum of Multipath Combination ρMC on Galileo
E1 for all Test Scenarios. Each Cell Contains the Values for all Runs of a Given Scenario

Test Scenario RMS of 99% Quantile of Max. Value of
ρMC (in m) |ρMC | (in m) |ρMC | (in m)

Griesheim airfield, 0.33
/
0.33

/
0.33 1.01

/
1.24

/
1.37 2.22

/
2.88

/
4.05

moderate driving style
Griesheim airfield, 0.33

/
0.33

/
0.33 1.11

/
1.06

/
0.97 3.60

/
3.01

/
1.78

dynamic driving style
Odenwald 0.98

/
1.17 1.82

/
1.83 143

/
158

Darmstadt 1.09
/
2.53

/
1.15 1.37

/
2.08

/
2.00 148

/
165

/
141

Frankfurt 3.31
/
1.42

/
1.68 2.96

/
2.17

/
2.05 924

/
149

/
142
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Figure A.15: FCDF of multipath combination ρMC on Galileo E5a for all test scenarios.
(a) Griesheim airfield data sets, moderate driving style. (b) Griesheim airfield data sets,
dynamic driving style. (c) Odenwald data sets. (d) Darmstadt data sets. (e) Frankfurt
data sets.

Table A.5: RMS, 99% Quantile and Maximum of Multipath Combination ρMC on Galileo
E5a for all Test Scenarios. Each Cell Contains the Values for all Runs of a Given Scenario

Test Scenario RMS of 99% Quantile of Max. Value of
ρMC (in m) |ρMC | (in m) |ρMC | (in m)

Griesheim airfield, 0.18
/
0.18

/
0.18 0.52

/
0.72

/
0.74 2.11

/
3.49

/
3.91

moderate driving style
Griesheim airfield, 0.18

/
0.18

/
0.18 0.67

/
0.53

/
0.50 3.95

/
1.57

/
1.02

dynamic driving style
Odenwald 0.70

/
0.38 1.73

/
1.38 42.8

/
26.8

Darmstadt 0.36
/
0.48

/
0.52 1.29

/
1.74

/
1.97 15.8

/
24.7

/
26.1

Frankfurt 1.02
/
0.56

/
0.63 2.38

/
1.77

/
2.03 41.9

/
22.9

/
25.6
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Figure A.16: FCDF of multipath combination ρMC on Galileo E5b for all test scenarios.
(a) Griesheim airfield data sets, moderate driving style. (b) Griesheim airfield data sets,
dynamic driving style. (c) Odenwald data sets. (d) Darmstadt data sets. (e) Frankfurt
data sets.

Table A.6: RMS, 99% Quantile and Maximum of Multipath Combination ρMC on Galileo
E5b for all Test Scenarios. Each Cell Contains the Values for all Runs of a Given Scenario

Test Scenario RMS of 99% Quantile of Max. Value of
ρMC (in m) |ρMC | (in m) |ρMC | (in m)

Griesheim airfield, 0.18
/
0.18

/
0.18 0.61

/
0.83

/
0.83 3.29

/
2.50

/
3.51

moderate driving style
Griesheim airfield, 0.18

/
0.18

/
0.18 0.63

/
0.49

/
0.47 2.14

/
2.88

/
1.10

dynamic driving style
Odenwald 0.43

/
0.53 1.39

/
1.36 20.0

/
31.3

Darmstadt 0.63
/
0.61

/
0.78 1.29

/
1.72

/
2.44 22.3

/
24.4

/
22.7

Frankfurt 0.63
/
1.34

/
0.44 1.93

/
2.15

/
1.58 56.3

/
33.6

/
21.6
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A.2.3 Range Rate Error

This section examines the range rate errors that occur during the various test scenarios.
The results for all runs of each test scenario are presented in Figure A.17 and Table A.7.
No distinction between GPS and Galileo is made because the results are very similar for
both constellations. This is in analogy to the range rate measurement model parametrized
in Section 3.6.6. The data shown in Figure A.17 are depicted in form of their FCDF to
illustrate the frequency with which large absolute errors occur in the different test scenarios.
Just as for the multipath errors in Section A.2.2, the scenarios at Griesheim airfield feature
the smallest errors, while the Frankfurt scenario exhibits the largest ones and the Odenwald
scenario as well as the Darmstadt scenario lie in the middle.

Figure A.17: FCDF of range rate error δ ˜̇ρ for all test scenarios. (a) Griesheim airfield
data sets, moderate driving style. (b) Griesheim airfield data sets, dynamic driving style.
(c) Odenwald data sets. (d) Darmstadt data sets. (e) Frankfurt data sets.

Table A.7: RMS, 99% Quantile and Maximum of Range Rate Error δ ˜̇ρ for all Test Scenarios.
Each Cell Contains the Values for all Runs of a Given Scenario

Test Scenario RMS of 99% Quantile of Max. Value of
δ ˜̇ρ (in m s−1) |δ ˜̇ρ| (in m s−1) |δ ˜̇ρ| (in m s−1)

Griesheim airfield, 0.04
/
0.04

/
0.04 0.14

/
0.15

/
0.14 1.41

/
1.24

/
0.95

moderate driving style
Griesheim airfield, 0.05

/
0.05

/
0.05 0.19

/
0.20

/
0.19 1.22

/
0.97

/
0.44

dynamic driving style
Odenwald 0.12

/
0.11 0.45

/
0.42 7.82

/
6.81

Darmstadt 0.09
/
0.10

/
0.18 0.31

/
0.36

/
0.39 10.3

/
6.56

/
23.7

Frankfurt 0.15
/
0.16

/
0.15 0.39

/
0.36

/
0.36 19.4

/
20.8

/
16.3
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A.2.4 Single-Epoch Position Solution Accuracy

In this section, the position error between single-epoch GNSS position solution and a refer-
ence solution is evaluated. The reference solution is obtained in the same way as in Chapter 7,
but transferred to the GNSS antenna position instead of the position of the MEMS IMU.
Single-epoch GNSS position solutions are usually only needed for initialization of the navi-
gation solution and not computed anymore after initialization is complete. For the figures
in this section, the localization algorithm tries to compute a single-epoch position solution
from multi-frequency/multi-constellation pseudoranges at each GNSS measurement epoch.
A simple outlier detection method is applied, which is able to identify and eliminate a pseu-
dorange outlier if its corresponding residual is significantly larger than the Euclidean norm
of the residuals corresponding to the remaining pseudoranges.

The horizontal and vertical position error CDFs of this single-epoch solution for all runs
of a specific test scenario are depicted in Figures A.18-A.23. Epochs in which no solution is
computed because there are not enough available pseudorange observations or the positioning
algorithm does not converge are considered to have an infinite error. Consequently, some error
quantiles are missing in several plots. The plots from the scenarios at Griesheim airfield in
Figures A.18 and A.19 have the same scale to facilitate an easy comparison. This also applies
to the plots from the Odenwald, Darmstadt and Frankfurt scenarios in Figures A.20-A.22.
However, the scale changes from the Griesheim plots to the other three, because the error
magnitudes are too dissimilar to allow for the usage of the same scale. Because the position
error reaches values of up to several hundred meters in the Frankfurt runs due to poor signal
geometry, large multipath errors and NLOS reception, the results from the Frankfurt scenario
are presented in Figure A.23 once again, but with a logarithmic scale.

Since the single-epoch solution experiences such large errors in the Frankfurt test sce-
nario, the horizontal projection of the position solution from a portion of each of its three
runs is depicted in Figures A.24-A.26. This portion contains the stretch through Frankfurt
city center, where the worst GNSS reception conditions and therefore the largest errors are
encountered. This area is also shown in the detailed map in Figure A.5 and contains deep
urban canyons as well as two tunnels. In each of the figures, the single-epoch solution and the
integrated solution are shown together in the same plot. Since the horizontal position error
of the integrated solution stays below 8m during all runs, it cannot be distinguished from the
reference solution in these figures. Therefore, the reference solution is omitted. The horizon-
tal errors of the single-epoch solution on the other hand are clearly visible and exceed values
of 1600m, 300m and 1500m during the depicted time interval for the three runs, respectively.
Because pseudoranges from multiple satellites are simultaneously affected by large multipath
or NLOS errors, these errors cannot be identified when computing the single-epoch solution,
yielding a position solution that deviates from the true position by several hundred meters.
The integrated solution remains largely uncontaminated from these large pseudorange errors,
because they are identified by the outlier detection techniques described in Section 6.4 and
subsequently eliminated.
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Figure A.18: Position error CDF for Griesheim airfield data sets from single-epoch solution,
moderate driving style. 50%, 95% and 99% error quantiles are indicated. (a) Horizontal
error. (b) Vertical error.

Figure A.19: Position error CDF for Griesheim airfield data sets from single-epoch solution,
dynamic driving style. 50%, 95% and 99% error quantiles are indicated. (a) Horizontal
error. (b) Vertical error.
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Figure A.20: Position error CDF for Odenwald data sets from single-epoch solution.
50% and 95% error quantiles are indicated, 99% error quantiles do not apply since no
position solution can be obtained in more than 1% of epochs. (a) Horizontal error.
(b) Vertical error.

Figure A.21: Position error CDF for Darmstadt data sets from single-epoch solution.
50% and 95% error quantiles are indicated, 99% error quantiles do not apply since no
position solution can be obtained in more than 1% of epochs. (a) Horizontal error.
(b) Vertical error.

Figure A.22: Position error CDF for Frankfurt data sets from single-epoch solution.
50% error quantiles are indicated. 95% error quantiles for runs 1 and 2 are off the scale,
but visible in Figure A.23. 95% error quantiles for run 3 and 99% error quantiles for all
runs do not apply since no position solution can be obtained in more than 5% of epochs for
run 3 and more than 1% of epochs for the other runs, respectively. (a) Horizontal error.
(b) Vertical error.
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Figure A.23: Position error CDF for Frankfurt data sets from single-epoch solution, loga-
rithmic scale. 50% and 95% error quantiles are indicated. 95% error quantiles for run 3 and
99% error quantiles for all runs do not apply since no position solution can be obtained in
more than 5% of epochs for run 3 and more than 1% of epochs for the other runs, respectively.
(a) Horizontal error. (b) Vertical error.

Figure A.24: Horizontal projection of position solution inside Frankfurt city center, run 1.
Driving direction is indicated. The single-epoch GNSS solution exhibits errors of more than
1600m horizontally and 1900m vertically. On this scale, the reference solution is indistin-
guishable from the integrated solution and hence omitted.
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Figure A.25: Horizontal projection of position solution inside Frankfurt city center, run 2.
Driving direction is indicated. The single-epoch GNSS solution exhibits errors of more than
300m horizontally and 1500m vertically. On this scale, the reference solution is indistin-
guishable from the integrated solution and hence omitted.
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Figure A.26: Horizontal projection of position solution inside Frankfurt city center, run 3.
Driving direction is indicated. The single-epoch GNSS solution exhibits errors of more than
1500m horizontally and 1700m vertically. On this scale, the reference solution is indistin-
guishable from the integrated solution and hence omitted.
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A.2.5 Reference Solution Quality

This section examines the GNSS reception conditions during the various test scenarios by
assessing the quality of the reference solution. Because the reference solution’s accuracy
is based on carrier phase positioning, its quality is mainly an indicator for carrier phase
measurement quality. In contrast, the accuracy of the localization algorithm developed in
this thesis is based on pseudorange positioning. Code tracking is typically much more robust
than carrier tracking [Groves, 2013, p. 373], so carrier phase measurement quality can only
serve as a coarse metric for pseudorange measurement quality.

The reference solution is obtained by processing data from a navigation grade ring laser
gyroscope IMU (iMAR iNAV-RQH-1003) and a geodetic GNSS receiver mounted inside the
car together with GNSS observations from a base station in Novatel’s Waypoint - Inertial
Explorer software. The data are processed both forward and backward in time before both
solutions are combined and smoothed to form the most accurate solution possible. In addition
to the navigation solution, Inertial Explorer also outputs several quantities that assess the
solution’s quality. One of these quantities is the estimated position standard deviation,
which is included in the figures in Section 7.2.2. Another one is the so-called quality factor,
a metric whose numerical values are the natural numbers in the interval [1, 6], with lower
values indicating higher solution quality. All possible quality factors, their description and
the associated 3-D accuracy of the reference solution are listed in Table A.8. The values for
3-D accuracy appear to be quite pessimistic. Based on the RMS of the total pseudorange
error according to Section 3.6.5, the algorithm developed in this thesis has an expected
accuracy in the order of 1m under good GNSS reception conditions. Consequently, only
epochs with a reference quality factor of 1 or 2 (max. estimated 3-D error 0.4m) warrant
proper accuracy assessment. However, because both the algorithm under test as well as
the reference solution rely on GNSS observations, the accuracy of the algorithm under test
is degraded whenever the reference solution’s quality is suboptimal, as well. Due to the
higher capability of the reference equipment (ring laser gyroscope IMU vs. MEMS IMU,
RTK positioning vs. pseudorange positioning, combining forward and backward solution vs.
forward filtering only), the solution of the algorithm under test drifts away from the truth
faster than the reference solution. Therefore, the reference is still able to assess the accuracy
of the algorithm under test properly, even if the former does not reach a quality factor of
1 or 2. This theory is backed up by the CDF of the reference solution’s estimated standard
deviation, which is included in all figures concerning the position error CDF of the algorithm
under test in Sections 7.2.2 and B.4.1.

Table A.8: Quality Factor Description and Associated 3-D Accuracy for Novatel’s Waypoint
- Inertial Explorer Software [Waypoint, 2016]

Inertial Explorer Description 3-D Accuracy of
Quality Factor Ref. Solution (in m)

1 Fixed integer 0.00− 0.15

2 Converged float or 0.05− 0.40
noisy fixed integer

3 Converging float 0.20− 1.00
4 Converging float 0.50− 2.00
5 DGNSS 1.00− 5.00
6 DGNSS 2.00− 10.00
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Figure A.27: Reference solution quality factor distribution for all test scenario runs. Each
bar represents one run of the respective scenario. The quality factor description is given in
Table A.8.

The quality factor distribution of the reference solution for all test scenarios is displayed
in Figure A.27. The scenarios are ordered from left to right in decreasing reference solu-
tion quality. As expected, the solution quality decreases with more difficult GNSS reception
conditions. Even under unimpaired sky view, a PDOP of less than 1.7 and at least twelve
available satellites at all times, Inertial Explorer is unable to obtain a solution with quality
factor 1 or 2 in more than 20% of epochs for the test scenarios at Griesheim airfield. (In
contrast to the algorithm under test, the reference solution uses GPS and GLONASS ob-
servations with an elevation mask of 10◦, so the values for PDOP and number of available
satellites differ from the ones for the algorithm under test in Section A.2.1.) Because the
higher vehicle dynamics make carrier tracking more difficult, the reference solution quality
is worse in the runs with dynamic driving style than it is in the runs with moderate driving
style. While less than 1% of epochs exhibit a quality factor of 4 or worse at Griesheim
airfield, this value rises to 7.0%, 13.4% and 18.7% on average for the Odenwald, Darmstadt
and Frankfurt scenarios, respectively.
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Appendix B

Additional Results

This appendix chapter presents results that are not included in the main part. In most cases,
these results are very similar to the ones that are described in detail in the main part and
are therefore redundant. The chapter contains four sections, which deal with DCBs, GNSS
measurement noise, odometry measurement noise and the evaluation of the test scenarios
from Chapter 7, respectively.

B.1 Differential Code Biases
This section presents the receiver-specific DCBs for all three collected data sets, each span-
ning 24 h. Since there is no noticeable variation over time except noise, only one of the plots
appears in the main part (Section 3.4). It is repeated here for easier comparison of the days
with each other. Figures B.1-B.3 display the receiver-specific DCBs computed with satellite-
specific DCBs from DLR, while Figures B.4-B.6 display the receiver-specific DCBs computed
with satellite-specific DCBs from the navigation data messages.

Figure B.1: Receiver-specific DCBs on DOY 64, computed with satellite-specific DCBs from
DLR. The plots on the left hand side contain multipath and code noise, while these effects
have been removed on the right hand side via the multipath combination. Different colors
indicate different satellites (Repetition of Figure 3.1).
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Figure B.2: Receiver-specific DCBs on DOY 65, computed with satellite-specific DCBs from
DLR. The plots on the left hand side contain multipath and code noise, while these effects
have been removed on the right hand side via the multipath combination. Different colors
indicate different satellites.

Figure B.3: Receiver-specific DCBs on DOY 66, computed with satellite-specific DCBs from
DLR. The plots on the left hand side contain multipath and code noise, while these effects
have been removed on the right hand side via the multipath combination. Different colors
indicate different satellites.
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Figure B.4: Receiver-specific DCBs on DOY 64, computed with satellite-specific DCBs from
the navigation data messages. The plots on the left hand side contain multipath and code
noise, while these effects have been removed on the right hand side via the multipath combi-
nation. Different colors indicate different satellites.

Figure B.5: Receiver-specific DCBs on DOY 65, computed with satellite-specific DCBs from
the navigation data messages. The plots on the left hand side contain multipath and code
noise, while these effects have been removed on the right hand side via the multipath combi-
nation. Different colors indicate different satellites.
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Figure B.6: Receiver-specific DCBs on DOY 66, computed with satellite-specific DCBs from
the navigation data messages. The plots on the left hand side contain multipath and code
noise, while these effects have been removed on the right hand side via the multipath combi-
nation. Different colors indicate different satellites.
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B.2 GNSS Measurement Noise
This section contains additional figures and tables concerning the GNSS measurement noise
that are not included in the corresponding Section 3.6. The results relevant to this section
which are included in Section 3.6 are repeated here to facilitate comparison. Figure B.7
displays the difference between ionospheric delay obtained from IONEX and the ionospheric
delay estimated from multi-frequency pseudoranges. Only one combination (ρE1X/E5X) is
depicted in Figure 3.3 because the plots are very similar to each other. Figure B.9 shows
code multipath and code tracking noise in static and kinematic data for Galileo to comple-
ment Figure 3.5/B.8, which presents the same data for GPS. Figures B.10-B.17 display the
total pseudorange error: Figures B.10 and B.11 for GPS with precise orbits and clocks, Fig-
ures 3.8/B.12 and 3.9/B.13 for Galileo with precise orbits and clocks, Figures B.14 and B.15
for GPS with navigation message data as well as Figures B.16 and B.17 for Galileo with
navigation message data. The corresponding numerical values are displayed in Table 3.8/B.1
for precise orbit and clock data as well as in Table B.2 for navigation message data.

Figure B.7: Difference between reference value from IONEX and estimated value for iono-
spheric delay in the L1 band. (a) Estimated value obtained from multi-frequency pseu-
doranges on G1C and G2X. (b) Estimated value obtained from multi-frequency pseudo-
ranges on E1X and E5X. (c) Estimated value obtained from multi-frequency pseudoranges
on G1C and G5X. (d) Estimated value obtained from multi-frequency pseudoranges on
E1X and E7X.
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Figure B.8: Code multipath and code tracking noise for GPS, estimated via the multipath
combination. (a),(c),(e) Static data for G1C, G2X and G5X. (b),(d),(f) Kinematic data
for G1C, G2X and G5X (Repetition of Figure 3.5).

Figure B.9: Code multipath and code tracking noise for Galileo, estimated via the multipath
combination. (a),(c),(e) Static data for E1X, E5X and E7X. (b),(d),(f) Kinematic data
for E1X, E5X and E7X.
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Figure B.10: CDF of total pseudorange error for GPS with predicted half of ultra-rapid pre-
cise satellite orbits and clocks, corrected for all applicable DCBs. Only static data to exclude
large multipath errors. (a),(b),(c) Single-frequency observations on G1C, G2X and G5X.
(d),(e) IF combinations on G1C/G2X and G1C/G5X.

Figure B.11: Relative frequency of total pseudorange error for GPS with predicted half of
ultra-rapid precise satellite orbits and clocks, corrected for all applicable DCBs. Only static
data to exclude large multipath errors. (a),(b),(c) Single-frequency observations on G1C,
G2X and G5X. (d),(e) IF combinations on G1C/G2X and G1C/G5X.
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Figure B.12: CDF of total pseudorange error for Galileo with predicted half of ultra-
rapid precise satellite orbits and clocks, corrected for all applicable DCBs. Only static
data to exclude large multipath errors. (a),(b),(c) Single-frequency observations on E1X,
E5X and E7X. (d),(e) IF combinations on E1X/E5X and E1X/E7X (Repetition of
Figure 3.8).

Figure B.13: Relative frequency of total pseudorange error for Galileo with predicted half
of ultra-rapid precise satellite orbits and clocks, corrected for all applicable DCBs. Only
static data to exclude large multipath errors. (a),(b),(c) Single-frequency observations on
E1X, E5X and E7X. (d),(e) IF combinations on E1X/E5X and E1X/E7X (Repetition of
Figure 3.9).
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Figure B.14: CDF of total pseudorange error for GPS with LNAV satellite orbits and
clocks, corrected for all applicable DCBs. Only static data to exclude large multipath errors.
(a),(b),(c) Single-frequency observations on G1C, G2X and G5X. (d),(e) IF combinations
on G1C/G2X and G1C/G5X.

Figure B.15: Relative frequency of total pseudorange error for GPS with LNAV satellite or-
bits and clocks, corrected for all applicable DCBs. Only static data to exclude large multipath
errors. (a),(b),(c) Single-frequency observations on G1C, G2X and G5X. (d),(e) IF combi-
nations on G1C/G2X and G1C/G5X.
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Figure B.16: CDF of total pseudorange error for Galileo with F/NAV satellite orbits and
clocks, corrected for all applicable DCBs. Only static data to exclude large multipath errors.
(a),(b),(c) Single-frequency observations on E1X, E5X and E7X. (d),(e) IF combinations
on E1X/E5X and E1X/E7X.

Figure B.17: Relative frequency of total pseudorange error for Galileo with F/NAV satel-
lite orbits and clocks, corrected for all applicable DCBs. Only static data to exclude
large multipath errors. (a),(b),(c) Single-frequency observations on E1X, E5X and E7X.
(d),(e) IF combinations on E1X/E5X and E1X/E7X.
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Table B.1: Total Pseudorange Error With Predicted Half of Ultra-Rapid Precise Satellite
Orbits and Clocks, Corrected for all Applicable DCBs. Only Static Data to Exclude Large
Multipath Errors (Repetition of Table 3.8)

Signal Mean (in m) Standard Deviation (in m) RMS (in m)

G1C −2.55 1.58 3.00
G2X −4.04 2.38 4.69
G5X −4.53 2.56 5.20
G1C/G2X −0.33 1.41 1.44
G1C/G5X −0.31 1.06 1.11

E1X −2.70 1.64 3.16
E5X −4.13 2.60 4.88
E7X −4.67 2.79 5.44
E1X/E5X −0.66 1.08 1.26
E1X/E7X −0.66 1.08 1.26

Table B.2: Total Pseudorange Error With Broadcast Satellite Orbits and Clocks, Corrected
for all Applicable DCBs. Only Static Data to Exclude Large Multipath Errors

Signal Mean (in m) Standard Deviation (in m) RMS (in m)

G1C −1.21 1.65 2.04
G2X −3.00 2.40 3.84
G5X −3.49 2.60 4.35
G1C/G2X 0.75 1.40 1.59
G1C/G5X 0.74 1.10 1.33

E1X −2.27 1.67 2.82
E5X −3.78 2.61 4.59
E7X −4.16 2.82 5.03
E1X/E5X −0.12 1.46 1.46
E1X/E7X −0.12 1.46 1.46
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B.3 Odometry Measurement Noise
This sections contains additional figures regarding the odometry measurement noise that are
not included in the corresponding Section 4.3. The results relevant to this section which are
included in Section 4.3 are repeated here to facilitate comparison. Figure B.19 shows the side
slip angle estimation accuracy of the linear tire model when µy is obtained from gyroscope
measurements to complement Figure 4.7/B.18, which presents the same data for the case
that µy is obtained from accelerometer measurements. Figure B.21 displays the longitudinal
velocity error for the right wheels. It is very similar to Figure 4.10/B.20, which depicts the
same for the left wheels, because the estimated longitudinal slip is identical for both wheels
of each axle.

Figure B.18: Side slip angle estimation accuracy with linear tire model, based on accelerom-
eter measurements. (a) Front tire. (b) Rear tire (Repetition of Figure 4.7).

Figure B.19: Side slip angle estimation accuracy with linear tire model, based on gyroscope
measurements. (a) Front tire. (b) Rear tire.
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Figure B.20: Longitudinal odometry velocity error, front and rear left wheel. (a),(c) Linear
tire model. The additional horizontal axis at the top is based on the arithmetic mean of
the four dynamic tire radii rd and is included for visualization purposes only. (b),(d) Magic
Formula tire model (Repetition of Figure 4.10).

Figure B.21: Longitudinal odometry velocity error, front and rear right wheel. (a),(c) Linear
tire model. The additional horizontal axis at the top is based on the arithmetic mean of the
four dynamic tire radii rd and is included for visualization purposes only. (b),(d) Magic
Formula tire model.
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B.4 Test Scenario Results
This section presents additional results from the evaluation of the test scenarios described in
Chapter 7. Only one run of each scenario is featured in that chapter, while this appendix
section contains all runs. The results are mostly listed without further description. How-
ever, values that deviate considerably from the ones in Chapter 7 are set in bold face and
explained briefly.

B.4.1 Position Accuracy

All metrics regarding position accuracy are included in this section. Figures B.22-B.35 depict
the position error CDFs for all runs of each scenario. Two different sets of scales are employed
for the horizontal axes: The first set is featured in Figures B.22-B.27, which depict the results
obtained at Griesheim airfield. The second set is featured in Figures B.28-B.35, which depict
the results obtained in the Odenwald, in Darmstadt and in Frankfurt. This scale adjustment
is performed because the error’s magnitude varies due to the dissimilar GNSS reception
conditions at Griesheim airfield on the one hand and during the remaining test scenarios on
the other hand. However, the application of the same scales for the horizontal axes for each
run of a specific scenario still allows for an easy assessment of the position error’s repeatability.
In the second part of the section, the numerical values for the evaluated position accuracy
metrics are listed in Tables B.3-B.6. The tables compare the accuracy achieved by the multi-
frequency/multi-constellation algorithm with the accuracy achieved by the single-frequency
GPS L1 C/A algorithm, just as it is done in Section 7.2.2. Each table features the results
from all runs of a specific test scenario.
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Figure B.22: Position error CDF for Griesheim airfield data set, moderate driving
style, run 1. 50%, 95% and 99% error quantiles are indicated. (a) Horizontal error.
(b) Vertical error.

Figure B.23: Position error CDF for Griesheim airfield data set, moderate driving
style, run 2. 50%, 95% and 99% error quantiles are indicated. (a) Horizontal error.
(b) Vertical error (Repetition of Figure 7.1).

Figure B.24: Position error CDF for Griesheim airfield data set, moderate driving
style, run 3. 50%, 95% and 99% error quantiles are indicated. (a) Horizontal error.
(b) Vertical error.
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Figure B.25: Position error CDF for Griesheim airfield data set, dynamic driving style, run 1.
50%, 95% and 99% error quantiles are indicated. (a) Horizontal error. (b) Vertical error.

Figure B.26: Position error CDF for Griesheim airfield data set, dynamic driving style, run 2.
50%, 95% and 99% error quantiles are indicated. (a) Horizontal error. (b) Vertical error.

Figure B.27: Position error CDF for Griesheim airfield data set, dynamic driving style, run 3.
50%, 95% and 99% error quantiles are indicated. (a) Horizontal error. (b) Vertical error
(Repetition of Figure 7.2).
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Figure B.28: Position error CDF for Odenwald data set, run 1. 50%, 95% and 99% error
quantiles are indicated. (a) Horizontal error. (b) Vertical error (Repetition of Figure 7.3).

Figure B.29: Position error CDF for Odenwald data set, run 2. 50%, 95% and 99% error
quantiles are indicated. (a) Horizontal error. (b) Vertical error.

173



Additional Results

Figure B.30: Position error CDF for Darmstadt data set, run 1. 50%, 95% and 99% error
quantiles are indicated. (a) Horizontal error. (b) Vertical error.

Figure B.31: Position error CDF for Darmstadt data set, run 2. 50%, 95% and 99% error
quantiles are indicated. (a) Horizontal error. (b) Vertical error (Repetition of Figure 7.4).

Figure B.32: Position error CDF for Darmstadt data set, run 3. 50%, 95% and 99% error
quantiles are indicated. (a) Horizontal error. (b) Vertical error.
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Figure B.33: Position error CDF for Frankfurt data set, run 1. 50%, 95% and 99% error
quantiles are indicated. (a) Horizontal error. (b) Vertical error (Repetition of Figure 7.5).

Figure B.34: Position error CDF for Frankfurt data set, run 2. 50%, 95% and 99% error
quantiles are indicated. (a) Horizontal error. (b) Vertical error.

Figure B.35: Position error CDF for Frankfurt data set, run 3. 50%, 95% and 99% error
quantiles are indicated. (a) Horizontal error. (b) Vertical error.
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Table B.3: Position Accuracy Metrics for Griesheim Airfield Data Sets. Metrics for Each
Scenario: Position Error RMS (1st Row), 95% Quantile of Horizontal and Vertical Position
Error (2nd Row), 95% Quantile of Estimated Reference Standard Deviation in Horizontal
and Vertical Direction (3rd Row)

Metric Unit Multi-Frequency/ Single-Frequency
Multi-Constellation GPS L1 C/A only

Moderate driving style, run 1
RMS of δp̂nen m [0.18; 0.13; 0.50] [0.35; 0.29; 3.56]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 0.42

/
0.75 0.67

/
4.12

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m < 0.01

/
0.01

Moderate driving style, run 2 (repetition from Table 7.1)
RMS of δp̂nen m [0.11; 0.17; 0.15] [0.16; 0.29; 2.70]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 0.33

/
0.31 0.45

/
2.92

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m < 0.01

/
0.01

Moderate driving style, run 3
RMS of δp̂nen m [0.13; 0.19; 0.14] [0.23; 0.24; 3.13]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 0.42

/
0.26 0.48

/
3.28

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m < 0.01

/
0.01

Dynamic driving style, run 1
RMS of δp̂nen m [0.41; 0.28; 0.72] [0.41; 0.28; 1.91]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 0.78

/
1.16 0.68

/
2.04

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m < 0.01

/
0.01

Dynamic driving style, run 2
RMS of δp̂nen m [0.21; 0.27; 0.58] [0.60; 0.24; 2.12]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 0.75

/
0.89 0.95

/
2.31

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m < 0.01

/
0.01

Dynamic driving style, run 3 (repetition from Table 7.1)
RMS of δp̂nen m [0.17; 0.29; 0.65] [0.66; 0.44; 2.10]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 0.50

/
0.94 1.00

/
2.37

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m < 0.01

/
0.01
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Table B.4: Position Accuracy Metrics for Odenwald Data Sets. Values That Deviate Consid-
erably From the Ones in Chapter 7 in Bold. Metrics for Each Scenario: Position Error RMS
(1st Row), 95% Quantile of Horizontal and Vertical Position Error (2nd Row), 95% Quantile
of Estimated Reference Standard Deviation in Horizontal and Vertical Direction (3rd Row)

Metric Unit Multi-Frequency/ Single-Frequency
Multi-Constellation GPS L1 C/A only

Run 1 (repetition from Table 7.1)
RMS of δp̂nen m [0.34; 0.49; 0.65] [0.39; 0.77; 1.89]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.12

/
1.35 1.87

/
3.00

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.06

/
0.05

Run 2
RMS of δp̂nen m [0.55; 1.98; 1.02] [0.89; 2.19; 2.96]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.44

/
1.97 2.70

/
4.86

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.05

/
0.04

In comparison with the first run, the position error RMS in northern direction is much
larger for the second Odenwald data set in Table B.4. This applies to both the multi-frequen-
cy/multi-constellation configuration (0.49m vs. 1.98m) as well as the single-frequency/single-
constellation configuration (0.77m vs. 2.19m). This increase stems from the algorithm’s
behavior inside a long tunnel (Saukopftunnel, 2.7 km long). As depicted in Figure 7.7, the
tunnel runs in east-west direction. Consequently, a lateral position drift causes the error
in northern direction to grow. While the maximum error in northern direction stays below
5m for both configurations in the first run, it reaches up to 40m in the second run, thereby
influencing the overall RMS heavily. The large lateral position error stems from an incorrectly
estimated gyroscope bias along the zb-axis, which leads to a yaw angle error that grows over
time. In the first run, the yaw error’s absolute value inside the tunnel does not exceed
0.3◦ for both configurations. In the second run, it grows to 1.0◦ for the single-frequency
configuration and even 1.8◦ for the multi-frequency/multi-constellation configuration. As
soon as the vehicle leaves the tunnel, both the yaw error as well as the position error get
corrected within a few measurement updates.
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Table B.5: Position Accuracy Metrics for Darmstadt Data Sets. Metrics for Each Scenario:
Position Error RMS (1st Row), 95% Quantile of Horizontal and Vertical Position Error
(2nd Row), 95% Quantile of Estimated Reference Standard Deviation in Horizontal and
Vertical Direction (3rd Row)

Metric Unit Multi-Frequency/ Single-Frequency
Multi-Constellation GPS L1 C/A only

Run 1
RMS of δp̂nen m [0.44; 0.44; 1.22] [0.29; 1.83; 1.41]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.07

/
2.51 2.82

/
3.00

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.16

/
0.11

Run 2 (repetition from Table 7.1)
RMS of δp̂nen m [0.40; 0.53; 1.43] [1.11; 1.12; 3.25]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.15

/
3.10 3.05

/
4.95

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.14

/
0.11

Run 3
RMS of δp̂nen m [0.50; 0.45; 0.90] [0.38; 0.82; 2.42]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.16

/
1.75 1.72

/
3.41

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.12

/
0.08
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Table B.6: Position Accuracy Metrics for Frankfurt Data Sets. Values That Deviate Consid-
erably From the Ones in Chapter 7 in Bold. Metrics for Each Scenario: Position Error RMS
(1st Row), 95% Quantile of Horizontal and Vertical Position Error (2nd Row), 95% Quantile
of Estimated Reference Standard Deviation in Horizontal and Vertical Direction (3rd Row)

Metric Unit Multi-Frequency/ Single-Frequency
Multi-Constellation GPS L1 C/A only

Run 1 (repetition from Table 7.1)
RMS of δp̂nen m [0.39; 0.71; 0.77] [1.12; 1.38; 3.53]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.91

/
1.54 2.68

/
5.48

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.19

/
0.15

Run 2
RMS of δp̂nen m [0.43; 0.57; 0.95] [0.50; 1.33; 2.47]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 1.29

/
2.08 2.86

/
3.37

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.10

/
0.06

Run 3
RMS of δp̂nen m [0.51; 1.18; 1.62] [0.65; 1.49; 1.98]

|δp̂nen,hor|95 %
/
|δp̂nen,U |95 % m 2.32

/
3.77 3.35

/
3.84

|σ̂p̆n
en,hor

|95 %
/
|σ̂p̆nen,U |95 % m 0.23

/
0.15

In comparison with the other runs, the position error RMS in northern and vertical
direction as well as the vertical error’s 95% quantile are significantly larger for the third
Frankfurt data set in Table B.6. This only applies to the multi-frequency/multi-constellation
configuration, while the single-frequency/single-constellation configuration achieves better
vertical accuracy in the third run than it does in the first run, which is featured in the main
part. The increased vertical error of the multi-frequency/multi-constellation configuration
probably stems from one or more pseudorange measurements which are contaminated by
multipath errors too small to be rejected via outlier detection before they corrupt the position
solution. Both the error in northern direction as well as the one in vertical direction exceed
3m for a time span of approx. 4min during a stretch of 500m inside one of the deepest urban
canyons, with maximum errors of 7m for both components. As soon as the vehicle leaves the
canyon, the error drops to values below 2m in all components.
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B.4.2 Velocity Accuracy

All metrics regarding velocity accuracy are included in this section. Each of the Tables B.7-
B.10 features the results from all runs of a specific test scenario. Just as in Section 7.2.3, four
different odometry configurations are listed alongside each other: Magic Formula tire model
with non-zero correlation in the odometry measurement noise covariance matrix Ro, linear
tire model with non-zero correlation in Ro, linear tire model with uncorrelated measurement
noise in Ro and odometry update turned off completely.

Table B.7: Velocity Accuracy Metrics for Griesheim Airfield Data Sets. Metrics for Each Sce-
nario: Velocity Error RMS (1st Row), 95% Quantile of Horizontal Velocity Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Moderate driving style, run 1
RMS of δv̂beb cm s−1 [1.4; 1.7; 4.0] [1.4; 1.9; 3.9] [1.6; 3.0; 3.6] [1.4; 35.9; 3.5]
|δv̂beb,hor|95 % cm s−1 4.0 4.5 5.9 91.0

Moderate driving style, run 2 (repetition from Table 7.2)
RMS of δv̂beb cm s−1 [1.4; 2.0; 3.5] [1.5; 2.2; 3.5] [1.7; 3.2; 3.4] [1.2; 34.3; 3.8]
|δv̂beb,hor|95 % cm s−1 4.5 5.0 6.5 59.3

Moderate driving style, run 3
RMS of δv̂beb cm s−1 [1.5; 2.2; 4.2] [1.5; 2.5; 4.2] [1.8; 3.7; 4.2] [1.1; 31.2; 4.4]
|δv̂beb,hor|95 % cm s−1 4.9 5.5 7.3 44.6

Dynamic driving style, run 1
RMS of δv̂beb cm s−1 [2.7; 3.2; 6.0] [2.7; 3.7; 6.0] [2.9; 5.6; 6.7] [1.3; 34.8; 5.4]
|δv̂beb,hor|95 % cm s−1 7.9 8.9 11.3 52.7

Dynamic driving style, run 2
RMS of δv̂beb cm s−1 [2.8; 3.4; 6.5] [2.9; 3.9; 6.7] [3.2; 7.0; 7.6] [1.3; 34.3; 5.5]
|δv̂beb,hor|95 % cm s−1 8.3 9.2 13.7 50.8

Dynamic driving style, run 3 (repetition from Table 7.2)
RMS of δv̂beb cm s−1 [2.8; 3.8; 6.0] [2.9; 4.2; 6.3] [3.3; 8.0; 7.5] [1.4; 35.7; 5.3]
|δv̂beb,hor|95 % cm s−1 8.5 9.1 14.9 52.1
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Table B.8: Velocity Accuracy Metrics for Odenwald Data Sets. Metrics for Each Scenario:
Velocity Error RMS (1st Row), 95% Quantile of Horizontal Velocity Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Run 1 (repetition from Table 7.2)
RMS of δv̂beb cm s−1 [1.7; 1.7; 3.9] [1.7; 2.0; 3.9] [1.9; 2.5; 3.7] [34.2; 45.5; 4.8]
|δv̂beb,hor|95 % cm s−1 4.3 4.8 6.0 53.8

Run 2
RMS of δv̂beb cm s−1 [1.4; 1.6; 3.9] [1.4; 1.8; 3.7] [1.5; 2.9; 3.6] [21.1; 24.8; 4.1]
|δv̂beb,hor|95 % cm s−1 4.1 4.6 6.5 44.3

Table B.9: Velocity Accuracy Metrics for Darmstadt Data Sets. Metrics for Each Scenario:
Velocity Error RMS (1st Row), 95% Quantile of Horizontal Velocity Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Run 1
RMS of δv̂beb cm s−1 [1.5; 1.5; 2.6] [1.5; 1.6; 2.5] [1.4; 2.0; 2.7] [4.4; 21.8; 2.9]
|δv̂beb,hor|95 % cm s−1 4.3 4.5 4.7 30.6

Run 2 (repetition from Table 7.2)
RMS of δv̂beb cm s−1 [1.8; 1.8; 3.0] [1.8; 2.0; 3.0] [1.7; 2.1; 3.2] [6.9; 21.9; 3.6]
|δv̂beb,hor|95 % cm s−1 5.1 5.4 5.6 47.2

Run 3
RMS of δv̂beb cm s−1 [1.8; 2.0; 2.6] [1.8; 2.2; 2.5] [2.1; 1.9; 2.5] [3.3; 22.2; 3.4]
|δv̂beb,hor|95 % cm s−1 5.5 5.8 6.0 48.4
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Table B.10: Velocity Accuracy Metrics for Frankfurt Data Sets. Values That Deviate Con-
siderably From the Ones in Chapter 7 in Bold. Metrics for Each Scenario: Velocity Error
RMS (1st Row), 95% Quantile of Horizontal Velocity Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Run 1 (repetition from Table 7.2)
RMS of δv̂beb cm s−1 [1.8; 1.9; 3.2] [1.8; 2.1; 3.2] [1.7; 2.8; 3.1] [3.2; 31.6; 4.4]
|δv̂beb,hor|95 % cm s−1 4.9 5.2 6.3 66.3

Run 2
RMS of δv̂beb cm s−1 [1.9; 12.6; 3.2] [1.9; 12.5; 3.2] [2.0; 14.7; 3.1] [4.0; 24.2; 3.7]
|δv̂beb,hor|95 % cm s−1 25.8 25.5 29.7 54.9

Run 3
RMS of δv̂beb cm s−1 [1.9; 2.7; 3.4] [1.9; 2.9; 3.3] [2.1; 2.6; 3.2] [2.5; 35.2; 4.5]
|δv̂beb,hor|95 % cm s−1 6.3 6.9 6.7 62.6

Lateral velocity error RMS and the horizontal error’s 95% quantile are much larger in
the second Frankfurt data set than they are in the other runs in Table B.10 for all configura-
tions with enabled odometry update. This stems from problems with the reference solution.
Because the ring laser gyroscope IMU used to obtain the reference solution was not fastened
properly inside the car, it changed its orientation w. r. t. the vehicle slightly throughout the
run, causing a yaw error varying over time in between −0.5◦ and +0.5◦. Because this mis-
alignment is not constant over time, it cannot be estimated and subsequently corrected in
post-processing. The incorrect yaw angle generates an incorrect lateral reference velocity,
yielding the large errors for this run in Table B.10. The same phenomenon is visible in the
yaw angle accuracy metrics in Table B.14. The configuration with deactivated odometry
update does not experience unusually large errors, because the general level of the lateral
velocity error is higher than the effect caused by the incorrect reference solution.
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B.4.3 Yaw Angle Accuracy

All metrics regarding yaw angle accuracy are included in this section. Each of the Tables B.11-
B.14 features the results from all runs of a specific test scenario. Just as in Section 7.2.3, four
different odometry configurations are listed alongside each other: Magic Formula tire model
with non-zero correlation in the odometry measurement noise covariance matrix Ro, linear
tire model with non-zero correlation in Ro, linear tire model with uncorrelated measurement
noise in Ro and odometry update turned off completely.

Table B.11: Yaw Angle Accuracy Metrics for Griesheim Airfield Data Sets. Metrics for Each
Scenario: Yaw Angle Error RMS (1st Row), 95% Quantile of Yaw Angle Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Moderate driving style, run 1
RMS of δψ̂nb ◦ 0.09 0.10 0.11 1.28
|δψ̂nb|95 %

◦ 0.19 0.21 0.21 2.60

Moderate driving style, run 2 (repetition from Table 7.3)
RMS of δψ̂nb ◦ 0.07 0.09 0.10 1.14
|δψ̂nb|95 %

◦ 0.17 0.20 0.22 1.66

Moderate driving style, run 3
RMS of δψ̂nb ◦ 0.10 0.11 0.12 1.05
|δψ̂nb|95 %

◦ 0.21 0.23 0.25 1.57

Dynamic driving style, run 1
RMS of δψ̂nb ◦ 0.11 0.13 0.14 1.00
|δψ̂nb|95 %

◦ 0.25 0.28 0.28 1.23

Dynamic driving style, run 2
RMS of δψ̂nb ◦ 0.14 0.15 0.17 0.97
|δψ̂nb|95 %

◦ 0.23 0.27 0.33 1.20

Dynamic driving style, run 3 (repetition from Table 7.3)
RMS of δψ̂nb ◦ 0.14 0.14 0.19 0.98
|δψ̂nb|95 %

◦ 0.27 0.33 0.36 1.16
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Table B.12: Yaw Angle Accuracy Metrics for Odenwald Data Sets. Values That Deviate
Considerably From the Ones in Chapter 7 in Bold. Metrics for Each Scenario: Yaw Angle
Error RMS (1st Row), 95% Quantile of Yaw Angle Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Run 1 (repetition from Table 7.3)
RMS of δψ̂nb ◦ 0.09 0.10 0.10 0.87
|δψ̂nb|95 %

◦ 0.19 0.21 0.21 1.18

Run 2
RMS of δψ̂nb ◦ 0.51 0.51 0.83 0.87
|δψ̂nb|95 %

◦ 0.41 0.42 0.47 1.19

Yaw angle error RMS and its 95% quantile are much larger in the second Odenwald data
set than they are in the first run in Table B.12 for all configurations with enabled odometry
update. The RMS is greater than the 95% quantile for all three odometry configurations,
indicating error distributions with very thick tails. These tails stem from two situations
occurring in the second run. The first one is a long tunnel (Saukopftunnel, 2.7 km long),
during which the yaw angle error grows to 1.8◦, 1.8◦ and 0.9◦ for the odometry configura-
tions with Magic Formula tire model, linear tire model and uncorrelated measurement noise,
respectively. This tunnel is already mentioned in Section B.4.1, because the yaw error growth
inside it is responsible for the comparatively large position error in northern direction for the
second Odenwald data set in Table B.4. The second situation is a standstill of 12min due to
a closed road. Since the yaw angle is unobservable when the vehicle is not moving, its error
grows over time and reaches values of 4.2◦, 4.2◦ and 2.7◦ for the three respective odometry
configurations. As soon as the vehicle starts moving again, the error drops to its usual level
of approx. 0.2◦. The phenomenon of yaw error growth during standstill may be countered by
applying zero angular rate updates (ZARUs) whenever standstill is detected [Groves, 2013,
Section 15.3.3]. However, this problem is only encountered once in all test scenario runs,
because it only occurs when the vehicle is stationary for a long time.
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Table B.13: Yaw Angle Accuracy Metrics for Darmstadt Data Sets. Metrics for Each Sce-
nario: Yaw Angle Error RMS (1st Row), 95% Quantile of Yaw Angle Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Run 1
RMS of δψ̂nb ◦ 0.18 0.19 0.19 0.85
|δψ̂nb|95 %

◦ 0.41 0.42 0.43 1.15

Run 2 (repetition from Table 7.3)
RMS of δψ̂nb ◦ 0.22 0.23 0.22 0.99
|δψ̂nb|95 %

◦ 0.47 0.48 0.48 1.36

Run 3
RMS of δψ̂nb ◦ 0.25 0.25 0.23 1.21
|δψ̂nb|95 %

◦ 0.48 0.49 0.47 1.73

Table B.14: Yaw Angle Accuracy Metrics for Frankfurt Data Sets. Values That Deviate
Considerably From the Ones in Chapter 7 in Bold. Metrics for Each Scenario: Yaw Angle
Error RMS (1st Row), 95% Quantile of Yaw Angle Error (2nd Row)

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Run 1 (repetition from Table 7.3)
RMS of δψ̂nb ◦ 0.19 0.20 0.20 1.23
|δψ̂nb|95 %

◦ 0.40 0.41 0.40 1.74

Run 2
RMS of δψ̂nb ◦ 0.85 0.85 0.92 0.85
|δψ̂nb|95 %

◦ 0.89 0.90 1.03 1.31

Run 3
RMS of δψ̂nb ◦ 0.21 0.21 0.21 1.23
|δψ̂nb|95 %

◦ 0.43 0.43 0.46 1.56

Yaw angle error RMS and its 95% quantile are much larger in the second Frankfurt
data set than they are in the other runs in Table B.14 for all configurations with enabled
odometry update. As detailed in Section B.4.2 for the lateral velocity error, this stems from
problems with the reference solution due to the fact that the ring laser gyroscope IMU used
to obtain the reference solution was not fastened properly inside the car, causing it to change
its orientation w. r. t. the vehicle slightly throughout the run.
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B.4.4 Dynamic Tire Radius Accuracy

All metrics regarding dynamic tire radius accuracy are included in this section. Figures B.36-
B.42 depict the transient phase of r̂d after initialization for selected runs of each scenario.
The run chosen for evaluation in Sections 7.2 and 7.3 is always shown. The other runs are
only included if their plots exhibit any unusual behavior that does not occur in the chosen
runs, in which case this unusual behavior is mentioned in the figure’s caption. The horizontal
axes have the same scale in all figures to facilitate an easy comparison.

In the second part of the section, the numerical values for the evaluated dynamic tire
radius accuracy metrics are listed in Tables B.15-B.18. Just as in Section 7.2.3, four different
odometry configurations are listed alongside each other: Magic Formula tire model with non-
zero correlation in the odometry measurement noise covariance matrix Ro, linear tire model
with non-zero correlation in Ro, linear tire model with uncorrelated measurement noise in Ro

and odometry update turned off completely. Each table features the results from all runs
of a specific test scenario. Values deviating considerably from the ones listed in Chapter 7
are highlighted in the tables. As stated in Section 7.2.3, the reason for these large variations
requires further investigation. Consequently, no explanation is given here.

Figure B.36: Transient phase of r̂d after initialization for Griesheim airfield data set,
moderate driving style, run 1. Ts,10 % is indicated. Curves for Magic Formula tire model
hidden behind curves for linear tire model in (a),(b). Configuration with uncorrelated mea-
surement noise does not reach settling interval at any wheel, configuration with correlated
measurement noise and linear tire model does not reach settling interval at rear left wheel.
(a) Front left wheel. (b) Front right wheel. (c) Rear left wheel. (d) Rear right wheel.
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Figure B.37: Transient phase of r̂d after initialization for Griesheim airfield data set,
moderate driving style, run 2. Ts,10 % is indicated. Curves for Magic Formula tire model
hidden behind curves for linear tire model in (a),(b). The plots from run 3 are almost iden-
tical to these ones and hence omitted. (a) Front left wheel. (b) Front right wheel. (c) Rear
left wheel. (d) Rear right wheel.

Figure B.38: Transient phase of r̂d after initialization for Griesheim airfield data set,
dynamic driving style, run 3. Ts,10 % is indicated. Curves for Magic Formula tire model
hidden behind curves for linear tire model in (a),(b). The plots from the other runs are
almost identical to these ones and hence omitted. (a) Front left wheel. (b) Front right
wheel. (c) Rear left wheel. (d) Rear right wheel.
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Figure B.39: Transient phase of r̂d after initialization for Odenwald data set, run 1. Ts,10 % is
indicated. Curves for Magic Formula tire model hidden behind curves for linear tire model
in (a),(b). The plots from run 2 are almost identical to these ones and hence omitted.
(a) Front left wheel. (b) Front right wheel. (c) Rear left wheel. (d) Rear right wheel.

Figure B.40: Transient phase of r̂d after initialization for Darmstadt data set, run 2. Ts,10 % is
indicated. Curves for Magic Formula tire model hidden behind curves for linear tire model
in (a),(b). The plots from the other runs are almost identical to these ones and hence omitted.
(a) Front left wheel. (b) Front right wheel. (c) Rear left wheel. (d) Rear right wheel.
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Figure B.41: Transient phase of r̂d after initialization for Frankfurt data set, run 1. Ts,10 % is
indicated. Curves for Magic Formula tire model hidden behind curves for linear tire model
in (a),(b). The plots from run 3 are almost identical to these ones and hence omitted.
(a) Front left wheel. (b) Front right wheel. (c) Rear left wheel. (d) Rear right wheel
(Repetition of Figure 7.6).

Figure B.42: Transient phase of r̂d after initialization for Frankfurt data set, run 2. Ts,10 % is
indicated. Curves for Magic Formula tire model hidden behind curves for linear tire model
in (a),(b). This is the only run of all test scenarios in which the overshoot exceeds the ±10%
settling interval. (a) Front left wheel. (b) Front right wheel. (c) Rear left wheel. (d) Rear
right wheel.
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Table B.15: Dynamic Tire Radius Accuracy Metrics for Griesheim Airfield Data Sets. Values
That Deviate Considerably From the Ones in Chapter 7 in Bold. Only Metric is 10%
Settling Time

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Moderate driving style, run 1
Ts,10 % of δr̂d s 5.3 N/A N/A N/A

Moderate driving style, run 2 (repetition from Table 7.4)
Ts,10 % of δr̂d s 3.4 3.3 338 N/A

Moderate driving style, run 3
Ts,10 % of δr̂d s 3.2 3.2 317 N/A

Dynamic driving style, run 1
Ts,10 % of δr̂d s 3.2 2.9 274 N/A

Dynamic driving style, run 2
Ts,10 % of δr̂d s 2.9 2.8 167 N/A

Dynamic driving style, run 3 (repetition from Table 7.4)
Ts,10 % of δr̂d s 2.7 2.7 164 N/A

In both odometry configurations utilizing the linear tire model, the ±10% settling interval
is not reached in the first run with moderate driving style at Griesheim airfield in Table B.15.
The configuration with uncorrelated measurement noise does not reach the settling interval
at any wheel, the configuration with correlated measurement noise does not reach the settling
interval at the rear left wheel.

Table B.16: Dynamic Tire Radius Accuracy Metrics for Odenwald Data Sets. Values That
Deviate Considerably From the Ones in Chapter 7 inBold. Only Metric is 10% Settling Time

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Run 1 (repetition from Table 7.4)
Ts,10 % of δr̂d s 128 164 173 N/A

Run 2
Ts,10 % of δr̂d s 21 111 172 N/A
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Table B.17: Dynamic Tire Radius Accuracy Metrics for Darmstadt Data Sets. Values That
Deviate Considerably From the Ones in Chapter 7 inBold. Only Metric is 10% Settling Time

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Run 1
Ts,10 % of δr̂d s 2.6 2.5 37 N/A

Run 2 (repetition from Table 7.4)
Ts,10 % of δr̂d s 10 95 128 N/A

Run 3
Ts,10 % of δr̂d s 66 164 165 N/A

Table B.18: Dynamic Tire Radius Accuracy Metrics for Frankfurt Data Sets. Only Metric
is 10% Settling Time

Metric Unit Magic Formula Linear Uncorrelated Odometry
Tire Model Tire Model Meas. Noise Turned off

Run 1 (repetition from Table 7.4)
Ts,10 % of δr̂d s 7.5 10 124 N/A

Run 2
Ts,10 % of δr̂d s 39 37 102 N/A

Run 3
Ts,10 % of δr̂d s 30 30 201 N/A
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B.4.5 Position Integrity

All metrics regarding position integrity are included in this section. Each of the Tables B.19-
B.22 features the results from all runs of a specific test scenario. The tables compare
the integrity achieved by the multi-frequency/multi-constellation algorithm including the
a-posteriori variance factor with the integrity achieved by this algorithm without the
a-posteriori variance factor, just as it is done in Section 7.3.

Table B.19: Position Integrity Metrics for Griesheim Airfield Data Sets. Values That Deviate
Considerably From the Ones in Chapter 7 in Bold. Metrics for Each Scenario: Percentage of
Epochs for Which Horizontal Error (1st Row) and Vertical Error (2nd Row) are Inside Their
Respective 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Moderate driving style, run 1

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 19.7 15.4

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 10.0 9.2

Moderate driving style, run 2 (repetition from Table 7.5)

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 18.4 14.4

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 63.7 56.8

Moderate driving style, run 3

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 16.1 12.6

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 72.1 67.4

Dynamic driving style, run 1

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 12.6 4.5

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 7.0 1.6

Dynamic driving style, run 2

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 9.6 2.9

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 6.1 1.1

Dynamic driving style, run 3 (repetition from Table 7.5)

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 10.6 3.2

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 6.8 0.8

In comparison with the other runs, the algorithm’s performance in terms of vertical po-
sition integrity is much poorer for the first Griesheim airfield data set with moderate driving
style in Table B.19. This applies to both configurations, with and without a-posteriori vari-
ance factor. The reason for this behavior is unclear and requires further investigation.
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B.4 Test Scenario Results

Table B.20: Position Integrity Metrics for Odenwald Data Sets. Metrics for Each Scenario:
Percentage of Epochs for Which Horizontal Error (1st Row) and Vertical Error (2nd Row) are
Inside Their Respective 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Run 1 (repetition from Table 7.5)

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 8.4 6.5

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 44.8 40.3

Run 2

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 7.9 6.1

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 27.0 23.9

Table B.21: Position Integrity Metrics for Darmstadt Data Sets. Metrics for Each Scenario:
Percentage of Epochs for Which Horizontal Error (1st Row) and Vertical Error (2nd Row) are
Inside Their Respective 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Run 1

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 7.2 5.3

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 25.5 20.1

Run 2 (repetition from Table 7.5)

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 6.5 3.4

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 27.3 19.3

Run 3

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 7.5 3.5

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 30.3 22.7
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Additional Results

Table B.22: Position Integrity Metrics for Frankfurt Data Sets. Metrics for Each Scenario:
Percentage of Epochs for Which Horizontal Error (1st Row) and Vertical Error (2nd Row) are
Inside Their Respective 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Run 1 (repetition from Table 7.5)

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 11.8 8.2

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 35.0 28.2

Run 2

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 8.6 5.8

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 23.2 17.7

Run 3

p
(
εδp̂n

en,hor
≤ ξδp̂n

en,hor
,95 %

)
% 8.0 5.9

p
(
εδp̂nen,U ≤ ξδp̂nen,U ,95 %

)
% 25.7 21.5
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B.4 Test Scenario Results

B.4.6 Velocity Integrity

All metrics regarding velocity integrity are included in this section. Each of the Tables B.23-
B.26 features the results from all runs of a specific test scenario. The tables compare
the integrity achieved by the multi-frequency/multi-constellation algorithm including the
a-posteriori variance factor with the integrity achieved by this algorithm without the
a-posteriori variance factor, just as it is done in Section 7.3.

Table B.23: Velocity Integrity Metrics for Griesheim Airfield Data Sets. Only Metric is
Percentage of Epochs for Which the Horizontal Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Moderate driving style, run 1

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 54.0 48.6

Moderate driving style, run 2 (repetition from Table 7.6)

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 51.8 46.8

Moderate driving style, run 3

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 47.3 41.2

Dynamic driving style, run 1

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 24.2 19.2

Dynamic driving style, run 2

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 21.7 15.3

Dynamic driving style, run 3 (repetition from Table 7.6)

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 20.1 15.6
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Additional Results

Table B.24: Velocity Integrity Metrics for Odenwald Data Sets. Only Metric is Percentage
of Epochs for Which the Horizontal Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Run 1 (repetition from Table 7.6)

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 75.0 53.7

Run 2

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 84.7 62.4

Table B.25: Velocity Integrity Metrics for Darmstadt Data Sets. Only Metric is Percentage
of Epochs for Which the Horizontal Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Run 1

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 86.7 64.7

Run 2 (repetition from Table 7.6)

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 80.4 52.3

Run 3

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 80.1 53.2
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B.4 Test Scenario Results

Table B.26: Velocity Integrity Metrics for Frankfurt Data Sets. Values That Deviate Con-
siderably From the Ones in Chapter 7 in Bold. Only Metric is Percentage of Epochs for
Which the Horizontal Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Run 1 (repetition from Table 7.6)

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 71.0 46.6

Run 2

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 30.1 15.6

Run 3

p
(
εδv̂b

eb,hor
≤ ξδv̂b

eb,hor
,95 %

)
% 69.4 38.7

In comparison with the other runs, the algorithm’s performance in terms of velocity
integrity is much poorer for the second Frankfurt data set in Table B.26. This applies to both
configurations, with and without a-posteriori variance factor. As detailed in Section B.4.2
for lateral velocity accuracy, this stems from problems with the reference solution due to
the fact that the ring laser gyroscope IMU used to obtain the reference solution was not
fastened properly inside the car, causing it to change its orientation w. r. t. the vehicle
slightly throughout the run. The localization algorithm cannot account for this increased
lateral velocity error, since it stems from an incorrect reference solution and not from errors
in the integration filter’s input data.
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Additional Results

B.4.7 Yaw Angle Integrity

All metrics regarding yaw angle integrity are included in this section. Each of the Tables B.27-
B.30 features the results from all runs of a specific test scenario. The tables compare
the integrity achieved by the multi-frequency/multi-constellation algorithm including the
a-posteriori variance factor with the integrity achieved by this algorithm without the
a-posteriori variance factor, just as it is done in Section 7.3.

Table B.27: Yaw Angle Integrity Metrics for Griesheim Airfield Data Sets. Only Metric is
Percentage of Epochs for Which the Yaw Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Moderate driving style, run 1

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 74.2 73.0

Moderate driving style, run 2 (repetition from Table 7.7)

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 75.5 75.1

Moderate driving style, run 3

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 66.9 65.9

Dynamic driving style, run 1

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 58.5 52.5

Dynamic driving style, run 2

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 55.5 47.6

Dynamic driving style, run 3 (repetition from Table 7.7)

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 54.4 44.6
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B.4 Test Scenario Results

Table B.28: Yaw Angle Integrity Metrics for Odenwald Data Sets. Only Metric is Percentage
of Epochs for Which the Yaw Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Run 1 (repetition from Table 7.7)

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 76.3 73.8

Run 2

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 80.5 78.6

Table B.29: Yaw Angle Integrity Metrics for Darmstadt Data Sets. Only Metric is Percentage
of Epochs for Which the Yaw Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Run 1

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 77.0 71.5

Run 2 (repetition from Table 7.7)

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 67.2 59.1

Run 3

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 63.0 54.9
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Additional Results

Table B.30: Yaw Angle Integrity Metrics for Frankfurt Data Sets. Values That Deviate
Considerably From the Ones in Chapter 7 in Bold. Only Metric is Percentage of Epochs for
Which the Yaw Error is Inside its 95% Confidence Interval

Metric Unit With A-Posteriori Without A-Posteriori
Variance Factor Variance Factor

Run 1 (repetition from Table 7.7)

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 71.8 66.8

Run 2

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 11.4 8.1

Run 3

p
(
εδψ̂nb ≤ ξδψ̂nb,95 %

)
% 52.4 46.0

In comparison with the other runs, the algorithm’s performance in terms of yaw an-
gle integrity is much poorer for the second Frankfurt data set in Table B.30. This applies
to both configurations, with and without a-posteriori variance factor. As detailed in Sec-
tion B.4.3 for yaw angle accuracy, this stems from problems with the reference solution due
to the fact that the ring laser gyroscope IMU used to obtain the reference solution was
not fastened properly inside the car, causing it to change its orientation w. r. t. the vehicle
slightly throughout the run. The localization algorithm cannot account for this increased
yaw angle error, since it stems from an incorrect reference solution and not from errors in
the integration filter’s input data.
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Appendix C

Additional Equations

This appendix chapter presents equations that are not included in the main part. It contains
two sections, which deal with the integration filter’s system model and the Kalman filter
residual covariance matrix, respectively.

C.1 System Model
As described in Section 6.2, the integrations filter’s state vector x consists of 22 states. While
the time derivatives of the last seven states (three GNSS clock errors and four dynamic tire
radii) are given explicitly in that section, the time derivatives for the first 15 states are not.
The reason for this is that these time derivatives are taken from Groves [2013, Section 14.2.4]
without significant changes. Small differences exist:

• While Groves [2013] formulates the equations in the north-east-down version of the
n-frame, the east-north-up version is employed in this thesis.

• Groves [2013] resolves the position error state in the e-frame with the units radian,
radian and meter. In contrast, it is resolved in the n-frame with the unit meter for all
three components in this thesis.

• Groves [2013] employs a different gravity model, so the partial derivative of v̇een w. r. t.
the position is slightly different.

• Due to a different treatment of the IMU biases, all partial derivatives w. r. t. either ba
or bω receive the opposite sign.

The resulting system model is given in this section. There is no connection to the other seven
states, so all remaining off-diagonal entries of the continuous-time system matrix N are zero.

d
dt



ψnb

vnen
pnen
bω
ba


=



N11 N12 N13 −Cn
b 0

N21 N22 N23 0 −Cn
b

0 I N33 0 0
0 0 0 0 0
0 0 0 0 0





ψnb

vnen
pnen
bω
ba


(C.1)
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Additional Equations

N11 = − [(ω
n
ie + ω

n
en)×] (C.2)

N12 =


0 1

RN+he 0
− 1
RE+he 0 0
− tanϕe
RE+he 0 0

 (C.3)

N13 =


0 0 − vnen,N

(RN+he)2

0 ωie sinϕe
RN+he

vnen,E
(RE+he)2

0 −ωie cosϕe
RN+he −

vnen,E
(RE+he)(RN+he) cos2 ϕe

vnen,E tanϕe
(RE+he)2

 (C.4)

N21 = −
[
Cn
b f bib×

]
(C.5)

N22 = − [vnen×] N12 − [(2ω
n
ie + ω

n
en)×] (C.6)

N23 = N23,A + N23,B (C.7)

N33 =


0 vnen,E tanϕe

RN+he − vnen,E
RE+he

0 0 − vnen,N
RN+he

0 0 0

 (C.8)

N23,A = [vnen×]


0 0 vnen,N

(RN+he)2

0 −2ωie sinϕe
RN+he − vnen,E

(RE+he)2

0 2ωie cosϕe
RN+he + vnen,E

(RE+he)(RN+he) cos2 ϕe
−vnen,E tanϕe

(RE+he)2

 (C.9)

N23,B =


0 0 0
0 0 0
0 − 1

RN+he
∂gnib,U
∂ϕe

−∂gnib,U
∂he

 (C.10)

∂gnib,U
∂ϕe

= ge cosϕe
[
2cϕ2 sinϕe + 4cϕ4 sin3 ϕe + 6cϕ6 sin5 ϕe + 8cϕ8 sin7 ϕe

]
+ 2cϕhhe sinϕe cosϕe (C.11)

∂gnib,U
∂he

= −
[
ch1 − cϕh sin2(ϕe)

]
+ 2ch2he (C.12)

C.2 Kalman Filter Residual Covariance
To derive the Kalman filter’s residual covariance matrix Σδz+ , the filter’s measurement update
is expressed in terms of a Gauss-Markov model. All equations describing the general Gauss-
Markov model are explained in Niemeier [2008, Chapter 4]. The general Gauss-Markov
model and its formulation with Kalman filter terms are:

l = A dx̂ − υ (C.13)(
x̂−

z̃

)
=
(

I
H

)
x̂+ −

(
x̂+− x̂−

δz+

)
. (C.14)

The vector on the left hand side is the observation vector of the Gauss-Markov model, A is
its design matrix, dx̂ is the vector of unknown parameters and υ is the improvement vector.
Improvements are the negative of residuals, so their covariance matrices are identical. The
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C.2 Kalman Filter Residual Covariance

observation covariance matrix Σl, expressed in Kalman filter terms, is:

Σl =
(

P− 0
0 R

)
. (C.15)

For the general Gauss-Markov model, the improvement’s covariance matrix Συ is:

Συ = Σl −AΣdx̂AT. (C.16)

In Kalman filter terms, the parameter covariance matrix Σdx̂ is the a-posteriori covariance
matrix P+. Translating (C.16) to Kalman filter terms yields:

Συ =
(

P− 0
0 R

)
−
(

I
H

)
P+

(
I HT

)
=
(

P− 0
0 R

)
−
(

P+ P+HT

HP+ HP+HT

)

=
(

P−−P+ −P+HT

−HP+ R −HP+HT

)
.

(C.17)

From (C.14), the term in the bottom right corner is the covariance matrix of the Kalman
filter measurement residual:

Σδz+ = R −HP+HT. (C.18)
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