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Abstract

Image-based mobile mapping systems featuring multi-camera configurations allow for efficient geospatial
data acquisition in both outdoor and indoor environments. We aim at accurate geospatial 3D image
spaces consisting of collections of georeferenced multi-view RGB-D imagery, which may serve as basis for
3D street view services. In order to obtain high-quality depth maps, dense image matching exploiting
multi-view image sequences captured with high redundancy needs to be performed. Since this process is
entirely dependent on accurate image orientations, we mainly focus on pose estimation of multi-camera
systems within this thesis. Nonetheless, we also present methods and investigations to obtain accurate,
reliable and complete 3D scene representations based on multi-stereo mobile mapping sequences.

Conventional image orientation approaches such as direct georeferencing enable absolute accuracies at
the centimeter level in open areas with good GNSS coverage. However, GNSS conditions of street-based
mobile mapping in urban canyons are often deteriorated by multipath effects and by shading of the signals
caused by vegetation and large multi-story buildings. Moreover, indoor spaces do not even allow for any
GNSS signals. Hence, we propose a powerful and versatile image orientation procedure that is able to
cope with these issues encountered in challenging urban environments.

Our integrated georeferencing approach extends the powerful structure-from-motion pipeline COLMAP
with georeferencing capabilities. It assumes initial camera poses with sub-meter accuracy, which allow
for direct triangulation of the complete scene. Such a global approach is much more efficient than an
incremental structure-from-motion procedure. Furthermore, an initial image orientation solution already
facilitates to georeference in a geodetic reference frame. Nevertheless, accuracies at the centimeter level
can only be achieved by incorporation of ground control points. In order to obtain sub-pixel accurate rel-
ative orientations, strong tie point connections for the highly redundant multi-view image sequences are
required. However, hardly overlapping fields of view, strongly varying views and weakly textured surfaces
aggravate image feature matching. Hence, constraining relative orientation parameters among cameras
is crucial for accurate, robust and efficient image orientation. Apart from supporting fixed multi-camera
rigs, our integrated georeferencing approach that uses bundle adjustment allows for self-calibration of all
relative orientation parameters or just single components.

We extensively evaluated our integrated georeferencing procedure using six challenging real-world
datasets in order to demonstrate its accuracy, robustness, efficiency and versatility. Four datasets were
captured outdoors, one by a rail-based and three by different street-based multi-stereo camera systems.
A portable mobile mapping system featuring a multi-head panorama camera collected two datasets in
an indoor environment. Employing relative orientation constraints and ground control points within
these indoor spaces resulted in absolute 3D accuracies of ca. 2 cm, and precisions at the millimeter
level for relative 3D measurements. Depending on the use case, absolute 3D accuracy values for outdoor
environments are slightly larger and amount to a few centimeters. However, determining 3D reference
coordinates is a costly task. Not relying on any ground control points led to horizontal accuracies of
ca. b cm for a scenario featuring some loops, while dropping down to a few decimeters for an extended
junction area. Since the height component is even more dependent on prior camera poses from direct
georeferencing, these 2D accuracies significantly decreased for the 3D case. However, incorporating just
one ground control point facilitates the elimination of systematic effects, which results in 3D accuracies
within the sub-decimeter range. Nevertheless, at least one additional check point is recommended in
order to ensure a reliable solution.



Once consistent and sub-pixel accurate relative poses of spatially adjacent images are available, in-
sequence dense image matching can be performed. Aiming at precise and dense depth map generation, we
evaluated several image matching configurations. Standard single stereo matching led to high accuracies,
which could not significantly be improved by in-sequence matching. However, the image redundancy
provided by additional epochs resulted in more complete and reliable depth maps.



Kurzfassung

Bildbasierte Mobile Mapping Systeme, die mit Mehr-Kamera-Konfigurationen ausgestattet sind, ermdogli-
chen eine effiziente rdumliche Datenerfassung im Aussen- wie auch im Innenraum. Ziel ist die Erzeugung
von georeferenzierten Multi-View RGB-D Bildern als Grundlage fiir 3D-Bildraume bzw. 3D Street View
Services. Um dafiir hochwertige Tiefenkarten zu erhalten, ist eine dichte Bildzuordnung der mit hoher
Redundanz erfassten Multi-View Bildsequenzen erforderlich. Da dieser Prozess aber génzlich von genauen
Bildorientierungen abhéngig ist, wird in dieser Arbeit hauptséchlich auf die Posenbestimmung von Mehr-
Kamera-Systemen fokussiert. Es werden jedoch auch Methoden und Untersuchungen préasentiert, welche
basierend auf Multi-Stereo Mobile Mapping Sequenzen der Generierung von genauen, zuverlassigen und
vollstdndigen 3D-Szenenrepriasentationen dienen.

Konventionelle Bildorientierungsanséatze, wie beispielsweise die direkte Georeferenzierung, erméglichen
absolute Genauigkeiten im Zentimeterbereich in offenen Gebieten die eine gute GNSS-Abdeckung aufwei-
sen. GNSS-Bedingungen fiir strassenbasiertes Mobile Mapping in urbanen Strassenschluchten werden
aber oft durch grosse mehrstockige Gebaude und Vegetation beeintrichtigt, was zu Mehrwegeffekten
und Signalabschattungen fiihrt. Zudem kénnen in Innenrdumen tiberhaupt keine GNSS-Signale empfan-
gen werden. Somit wird ein leistungsfahiges und vielseitiges Bildorientierungsverfahren vorgeschlagen,
welches diese Schwierigkeiten, die in anspruchsvollen urbanen Umgebungen anzutreffen sind, bewéaltigen
kann.

Der entwickelte integrierte Georeferenzierungsansatz erweitert die leistungsfahige Structure-from-
Motion Pipeline COLMAP mit Georeferenzierungsfunktionalitit. Es werden initiale Kameraposen mit
Sub-Meter-Genauigkeit vorausgesetzt, die eine direkte Triangulation der gesamten Szene ermdoglichen.
Solch ein globaler Ansatz ist um einiges effizienter als ein inkrementelles Structure-from-Motion Ver-
fahren. Eine initiale Bildorientierungslosung ldsst auch schon die Georeferenzierung in einem geodatis-
chen Referenzrahmen zu. Genauigkeiten im Zentimeterbereich kénnen aber nur unter Verwendung von
Bodenpasspunkten erreicht werden. Um Sub-Pixel genaue relative Orientierungen zu erhalten, wer-
den starke Verkniipfungspunktbeziehungen zwischen den hochredundanten Multi-View Bildsequenzen
benétigt. Kaum {iberlappende Sichtfelder, sehr unterschiedliche Ansichten und schwach texturierte
Oberflachen erschweren jedoch die Bildmerkmalszuordnung. Demzufolge ist die Einfiihrung von Bedin-
gungen fiir relative Orientierungsparameter zwischen Kameras entscheidend fiir eine genaue, robuste und
effiziente Bildorientierung. Neben der Unterstiitzung von festen Mehr-Kamera-Anordnungen ermdoglicht
der integrierte Georeferenzierungsansatz mit Biindelausgleichung eine Selbstkalibrierung von allen rela-
tiven Orientierungsparametern oder auch nur von einzelnen Komponenten.

Das integrierte Georeferenzierungsverfahren wurde anhand von sechs anspruchsvollen Datensétzen
umfassend evaluiert, um dessen Genauigkeit, Robustheit, Effizienz und Vielseitigkeit zu demonstrieren.
Vier Datensétze wurden im Aussenraum erfasst, einer mit einem schienenbasierten und drei mit unter-
schiedlichen strassenbasierten Multi-Stereo Kamerasystemen. FEin portables Mobile Mapping System,
das iiber eine Mehr-Kopf-Panoramakamera verfiigt, ermoglichte die Erfassung von zwei Datensétzen in
einem Innenbereich. Die Verwendung von relativen Orientierungsbedingungen und Bodenpasspunkten in
diesen Innenrdumen fiithrte zu absoluten 3D-Genauigkeiten von ca. 2 cm, wie auch zu Prézisionswerten
im Millimeterbereich fiir relative 3D-Messungen. Je nach Anwendungsfall wurden fiir den Aussenraum
etwas grossere absolute 3D-Genauigkeitswerte im Zentimeterbereich ermittelt. Die Bestimmung von
3D-Referenzkoordinaten ist jedoch arbeitsaufwéndig. Bei Nichtberiicksichtigung von Bodenpasspunkten
wurden horizontale Genauigkeiten von ca. 5 cm fiir ein Szenario mit einigen Schleifen erreicht, wahrend
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ein erweiterter Strassenkreuzungsbereich zu mehreren Dezimetern fiihrte. Da die Hohenkomponente noch
starker von den initialen Kameraposen aus der direkten Georeferenzierung abhéngig ist, verschlechterten
diese 2D-Genauigkeiten signifikant fiir den 3D-Fall. Wird aber nur ein Bodenpasspunkt einbezogen,
kénnen systematische Effekte eliminiert werden, was zu 3D-Genauigkeiten im Sub-Dezimeter-Bereich
fihrt. Um eine zuverlassige Losung zu gewéhrleisten, wird jedoch empfohlen, zusétzlich mindestens
einen Kontrollpunkt zu verwenden.

Sobald konsistente und Sub-Pixel genaue relative Posen von raumlich benachbarten Bildern vorliegen,
kann eine sequenzbasierte dichte Bildzuordnung ausgefiithrt werden. Mehrere Bildzuordnungskonfigura-
tionen wurden fiir die Generierung von moglichst prazisen und dichten Tiefenkarten evaluiert. Standard
Einzel-Stereo Matching ergab hohe Genauigkeiten, die durch ein Matching in der Sequenz nicht sig-
nifikant verbessert werden konnten. Zusétzliche Epochen lieferten aber eine erhéhte Bildredundanz, die
zu vollstandigeren und zuverléssigeren Tiefenkarten fiihrte.
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Chapter 1

Introduction

1.1 Motivation - Urban 3D Data Capture from Mobile Mapping
Image Sequences

Prevalent digitalization trends aiming at generating high-fidelity scene representations or digital twins
demand 3D geoinformation of high quality. Large-scale areas can be mapped efficiently by airborne
platforms, which typically deliver accuracies that correspond to 1 GSD. However, targeted geometric
resolutions and thus accuracies for such scenarios typically amount to one decimeter, which is often
not sufficient for 3D mapping of urban road environments. Moreover, occlusions caused by buildings
and vegetation lead to incomplete data collection. In contrast, vehicle-based mobile mapping systems
are ideally suited for efficient and accurate 3D data capture of traffic corridors, where a large part of
the public technical infrastructure is located. Hence, resulting digital 3D realities can be exploited e.g.
for infrastructure asset inventories and efficient road or rail infrastructure management, thus avoiding
dangerous fieldwork.

First successful mobile mapping experiments led to the GPSVan (Novak, 1991) and the VISAT system
(Schwarz et al., 1993), which were based on stereo camera systems. Nonetheless, for a considerable period,
street-based mobile mapping systems usually featured lidar sensors as main components (Puente et al.,
2013), and used cameras solely for point cloud colorization. Lidar delivers moderate densities and high
precision. Since it is an active acquisition method, even homogeneous surfaces and difficult lighting
conditions can be overcome, which is particularly beneficial in indoor environments. However, successful
co-registration of images and laser scans poses a few challenges. Even if synchronization as well as
calibration of offsets and rotations among laser scanners and cameras are managed precisely, moving
objects such as pedestrians and vehicles can still lead to inconsistencies. Camera-based mobile mapping
systems can prevent such issues, since both radiometry and derived 3D geometry are based on the same
source. Furthermore, image-based measurements and scene interpretations are far more intuitive than
measurements in 3D point clouds. They also require very little training, in contrast to measurements in
3D point clouds, which typically need expert skills. An extensive comparison between lidar and vision is
given by Leberl et al. (2010).

Significant progress in imaging sensors with respect to both geometric and radiometric resolution, as
well as advances in image processing methods, have made camera-based systems even more attractive for
highly efficient and accurate 3D mapping in complex urban environments (Pollefeys et al., 2008; Gallup,
2011). Many powerful algorithms for dense 3D scene generation rely on stereo image matching. There are
two main approaches for obtaining stereo images, either by establishing physical or virtual stereo bases.
The first requires two cameras that are precisely synchronized and rigidly attached to a frame, while the
latter uses images captured by the same camera at two different epochs. Precalibrated physical stereo
bases are typically an order of magnitude more precise than virtual stereo baselines resulting from vehicle
movement. Hence, we prefer multi-stereo camera configurations to meet our high accuracy requirements
(Cavegn and Haala, 2016). In order to obtain a full 360° 3D coverage in urban areas with multi-story
buildings and numerous superstructures, we developed a novel 360° panoramic stereo camera configuration
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(Blaser et al., 2018). It uses two multi-head 360° panorama cameras, tilted forward and backward by
90° respectively, and offers large rigid stereo bases for all viewing directions. Such multi-view stereo
configurations are well suited for generating accurate geospatial 3D image spaces consisting of collections
of georeferenced multi-view RGB-D imagery (Nebiker et al., 2015). The underlying images combined
with depth maps derived from dense image matching allow for a high-fidelity scene representation with
an unparalleled level of detail. Furthermore, they can be exploited for tasks such as 3D monoplotting
enabling a user to accurately determine 3D coordinates of features of interest simply by clicking on a
location within the 2D images. However, depth maps are frequently generated by performing multi-view
stereo matching using imagery captured at different epochs. In order to efficiently apply coplanarity
constraints during dense stereo matching, sub-pixel accurate relative orientations of the image sequences
are required.

In contrast to airborne nadir applications, where ground sampling distances remain roughly constant
over the complete mapping area, vehicle-based mobile mapping images show large scale variations caused
by different distances to mapping objects. Hence, using a common mobile mapping configuration, one
pixel corresponds to 2-6 mm in object space for a typical measurement range of 4-14 m and it is 1 cm
at 23 m (Cavegn and Haala, 2016). While infrastructure management applications often demand 3D
measurement accuracies within the sub-decimeter range, urban modeling requires absolute accuracies at
the centimeter level. As earlier studies showed, these requirements could already be met in open areas.
Burkhard et al. (2012) obtained absolute 3D point measurement accuracies of 4-5 cm in average to good
GNSS conditions using their stereovision mobile mapping system. The capability of the StreetMapper
lidar mobile mapping system to produce dense 3D measurements at an accuracy level of 3 cm in good
GNSS conditions was demonstrated by Haala et al. (2008). Nonetheless, GNSS conditions of land-
based mobile mapping vehicles in urban environments are often deteriorated by multipath effects and
by shading of the signals caused by trees and large multi-story buildings, which aggravate fulfilling
the accuracy requirements by only performing direct georeferencing. Furthermore, distances between
cameras and measured objects are typically a few meters, compared to several hundred meters for airborne
applications. Therefore, the contribution of the GNSS positioning error to the overall error budget is
much larger than the contribution of the error from the attitude determination. Moreover, Pollefeys
et al. (2008) and Frahm et al. (2010) encountered trajectory discontinuities of ca. 10 cm in direct
georeferencing during a vehicle stop of several seconds. Such inconsistencies can only be corrected by
image-based georeferencing, which additionally allows for the elimination of trajectory offsets in the
range of several decimeters. Hence, an integrated georeferencing approach using bundle adjustment and
incorporating multi-view image sequences aiming at improving accuracy, robustness and efficiency needed
to be developed.
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1.2 Objectives - Georeferencing of Multi-View Imagery and 3D
Computation in Urban Environments

Accurate image orientations are the foundation of all subsequent steps of a 3D mapping pipeline. This
pipeline typically includes depth map computation, point cloud and mesh generation as well as texturing.
Densely built-up urban environments with extended areas of poor GNSS coverage frequently limit direct
georeferencing accuracies to several decimeters up to meters. Furthermore, indoor environments prevent
the use of GNSS signals, so that image orientation solutions require alternative approaches such as
simultaneous localization and mapping (SLAM). Both direct georeferencing and SLAM do usually not
provide sub-pixel accurate relative poses of spatially adjacent images, which are needed for dense image
matching. Hence, it was our main objective to develop a powerful and versatile integrated georeferencing
approach for challenging outdoor and indoor environments. We targeted to significantly increase the
initial georeferencing quality in terms of accuracy, robustness and efficiency by exploiting highly redundant
multi-view image sequences captured by camera-based mobile mapping systems. The new georeferencing
approach should address the following main issues:

Accuracy Direct georeferencing or SLAM typically delivers accuracies of several decimeters in challeng-
ing environments. This does neither meet our absolute accuracy requirements of a few centimeters
nor provide image orientation accuracies at the sub-pixel level that is needed for satisfying dense
image matching results. However, camera poses featuring accuracies within the meter range are
well suited as initial solution for advanced integrated georeferencing.

Robustness Multi-camera systems pointing in various directions allow for large fields of view. However,
if treated individually, vision-based pipelines are usually not able to successfully orient all images.
Therefore, imagery captured at the same epoch have to be handled as one set.

Efficiency Determination of 3D coordinates of ground control points is a time-consuming and costly
task. Hence, an integrated georeferencing approach relying on just a few or even no ground control
points was desired. While real-time approaches are mandatory in the robotics industry, short
processing times were not our main interest.

Versatility Our integrated georeferencing approach needs to be applicable universally. In addition to
challenging urban road and rail environments, it should also perform well indoors where no GNSS
signals are available and feature matching conditions are aggravated due to low-textured surfaces or
repetitive patterns. Furthermore, supporting multi-stereo pinhole camera systems and multi-head
panorama cameras as well as the corresponding perspective and fisheye camera models is crucial.

Our overall goal is the generation of high-quality depth maps that build a crucial part of georeferenced
RGB-D imagery. Since they are entirely dependent on accurate image orientations, we mainly focus on
integrated georeferencing of multi-camera systems. Nonetheless, methods and investigations to obtain
accurate, reliable and complete 3D scene representations based on multi-stereo mobile mapping sequences
are of interest as well. In order to achieve these aims, leveraging the high image redundancy is essential.

Accuracy Our intended applications based on depth maps demand absolute accuracies within the sub-
decimeter range and relative accuracies at the centimeter level. Shortened measurement distances
provide high accuracies, but require sufficient image capturing rates, i.e. collection of multiple
images every two meters. Furthermore, adequate stereo bases constitute a key component for
precise relative measurements.

Reliability We expect to obtain depth maps that feature a low amount of outliers. Redundancy allows
that each surface element is seen by multiple views, which is the factor of success for each filtering
technique.

Completeness Dense image matching allows to compute a 3D depth value for each single pixel of
the area that is covered by at least two images. Difficulties arise due to vegetation, reflective or
transparent surfaces such as glass facades or windows. Moving objects are challenging, but stereo
matching enables a spatial and temporal coherence.
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1.3 Main Contributions - Integrated Georeferencing Exploiting
Relative Orientation Constraints

Mobile mapping systems featuring multi-view stereo or multi-head cameras capture a set of several images
at each epoch. In order to successfully orient such multi-view image sequences, relative orientation
constraints among cameras need to be exploited within an integrated georeferencing procedure. Such
methods require a multitude of prior metric information. Hence, we assume the availability of the
following:

e precisely calibrated interior orientation parameters (IOPs) of all cameras

e precisely calibrated relative orientation parameters (ROPs) among cameras

e calibrated lever arm (LA) and misalignment (MA) parameters by boresight alignment

e initial exterior orientation parameters (EOPs) from direct georeferencing or SLAM

¢ limited number of ground control points (GCPs) in a predefined geodetic reference frame

We extended a powerful structure-from-motion pipeline with georeferencing capabilities. While highly
redundant multi-view image sequences lead to strong image connections and thus accurate relative ori-
entations, prior camera poses and ground control points allow for georeferencing in a geodetic reference
frame. Based on initial EOPs, we perform spatial feature matching by only considering image candidates
that lie within a predefined maximum range and a specified field of view. This search space reduction
leads to a significant speed-up of the process. A further efficiency increase was reached by modifying
the existing incremental SfM pipeline into a global approach. Hence, prior camera poses allow for imme-
diate triangulation of the complete scene, which does not suffer from a weak initial pair initialization.
Furthermore, initial EOPs always enable a weak datum computation. Incorporation of ground control
information shows the highest accuracy potential, but determination of reference data is costly.

Exploitation of constraints for the precisely calibrated offsets and rotations among respective cameras
is one of our main contributions. Provided that all cameras are rigidly attached to a platform, constrain-
ing ROPs allows for more robust and accurate image orientation results. While stereo cameras have
large overlapping fields of view, there is usually no overlapping area among individual stereo systems
of a multi-stereo configuration. Furthermore, multi-head panorama cameras feature small overlapping
areas. Therefore, sufficient tie point connections cannot be established among all images captured at
the same point of time, which results in many non-oriented images. Multi-view image sequences cap-
tured in opposite driving directions can diminish this issue. However, well textured surfaces are still
required for sufficient feature extraction and matching, which is especially not the case for indoor envi-
ronments. Hence, enforcing consistent ROPs for all epochs is the key element. Apart from supporting
fixed multi-camera rigs, our integrated georeferencing approach that performs bundle adjustment allows
for self-calibration of all relative orientation parameters or just single components. There is no need
for a calibration field on-site, since collecting multi-view images in opposite driving directions frequently
suffices. If precise ROPs and initial EOPs are available, employment of GCPs is optional. While such
cost-efficient processings result in well co-registered multi-view image sequences from multiple driving di-
rections and campaigns, and thus lead to precise relative poses, absolute accuracies of several decimeters
have to be expected.

We comprehensively evaluated our developed georeferencing approach in order to demonstrate its ac-
curacy, robustness, efficiency and versatility. Four datasets were captured outdoors by either a rail-based
or varying street-based multi-stereo mobile mapping systems. Furthermore, we collected two datasets
in an indoor environment by a portable panoramic mobile mapping system. The fact that all scenarios
feature real-world conditions is of high practical relevance.

Once consistent and sub-pixel accurate stereo image sequences are available, in-sequence dense image
matching for precise depth map generation can be performed. Due to movement predominantly in camera
viewing direction, a polar rectification method was required to fully exploit the redundancy provided by
images captured at multiple epochs. We show that single stereo matching delivers high accuracies,
whereas in-sequence matching leads to more reliable and complete 3D scene representations.
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1.4 Outline

We perform image-based 3D reconstruction based on highly redundant multi-view image sequences cap-
tured by mobile mapping systems. Since we mainly focus on sophisticated computation of accurate
camera poses, this thesis is structured in the following four main parts: related work, developed image
orientation methods, evaluation of integrated georeferencing approach, evaluation of in-sequence dense
image matching.

Chapter 2 provides a literature review comprising both image orientation and dense 3D scene gener-
ation approaches. First, general image orientation concepts derived from different research communities
are presented and compared. Second, the focus is laid on pose estimation of multi-camera systems in
challenging urban environments that do not allow for a sufficient number of GNSS signals. Afterwards,
a survey covering dense image matching procedures for the computation of 3D urban representations is
given.

Chapter 3 introduces our developed integrated georeferencing approach. It extends the powerful
structure-from-motion pipeline COLMAP with georeferencing capabilities. Apart from incorporating
initial camera poses from direct georeferencing or SLAM as well as ground control points, relative orien-
tation constraints among cameras are exploited. Our procedure enables image orientation accuracies at
the sub-pixel level, which are required for multi-view stereo matching of high-quality.

Chapter 4 comprehensively evaluates our integrated georeferencing approach based on six datasets
featuring different environments and varying multi-camera configurations. Well textured road and rail
scenes offer favorable conditions for establishing image feature correspondences. In contrast, indoor
environments that primarily show repetitive structures and homogeneous surfaces are more challenging.
In addition to employing prior camera poses, ground control points and relative orientation constraints,
investigations include self-calibration of relative orientation parameters among cameras as well as no
utilization of ground control points.

Chapter 5 presents an evaluation of in-sequence dense image matching. Varying image configurations
also comprising multiple epochs are compared in order to generate dense and precise depth maps as well
as accurate 3D point clouds. Furthermore, the multi-view stereo matching process can assess whether the
image orientations provided by our integrated georeferencing approach meet the requirements of sub-pixel
accuracy. We utilized the SURE software system with its implemented polar rectification approach that
is able to handle large motion in camera viewing direction.

Chapter 6 concludes this thesis by summarizing the potential of our integrated georeferencing ap-
proach. Moreover, it is compared to state-of-the-art procedures and recommendations for multi-camera
configurations are given. In addition, open issues and future work are discussed, while some recent
learning-based approaches for both image orientation and dense 3D scene computation are presented.
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Chapter 2

From Imagery to 3D Geometry

Image-based 3D reconstruction includes an image orientation and a 3D computation process. Hence, we
first present and compare general image orientation concepts derived from different research communities,
namely photogrammetry, computer vision and robotics. Afterwards, we focus on pose estimation of
stereo and multi-view image sequences captured by mobile mapping systems. To this end, urban canyons
with poor GNSS coverage and indoor spaces that do not allow for any GNSS signals are particularly
challenging. Since direct georeferencing cannot deliver sufficient accuracies in such environments, an
image-based georeferencing approach for pose estimation of multi-camera systems is required. Our survey
further covers dense image matching procedures for subsequent computation of complex 3D geometry
encountered in urban areas. While learning-based approaches for both image orientation and dense 3D
scene generation are beyond the scope of this thesis, we present some of these recent methods in section
6.2.

2.1 Image Orientation Approaches for Diverse Scenarios

The goal of image orientation procedures is to determine 3D position and attitude information for all
images at acquisition time. While traditionally tackled by the geodesy and photogrammetry commu-
nities, other communities have addressed this problem in the past decades as well. Due to emerging
technologies such as autonomous driving and augmented reality, image orientation is still a hot topic.
Photogrammetry mainly focuses on accuracy and reliability, while speed and robustness is more impor-
tant in robotics. However, all image orientation approaches share the same important component that is
bundle adjustment.

2.1.1 Photogrammetric Georeferencing Concepts

The photogrammetry community differentiates three image orientation procedures (see figure 2.1). Tra-
ditional indirect georeferencing relies on tie point connections established within overlapping aerial
image regions as well as ground control points (GCPs). The 3D coordinates of these GCPs are previously
determined accurately in a geodetic reference frame by tachymetry or GNSS. In order to comply with the
7 degrees of freedom of a 3D Helmert transformation, at least three reference points are needed. However,
highly accurate and homogeneous results usually demand many more GCPs that are well distributed.
Bundle block adjustment, also referred to as aerial triangulation, computes both exterior orientation
parameters for each single image and 3D tie point coordinates. If desired, even interior orientation pa-
rameters can be self-calibrated. Linearized observation equations require initial values, which can be
derived from flight mission planning or aircraft navigation data. Indirect georeferencing approaches were
already established several decades ago, e.g. Ackermann et al. (1970). Griin (1982) obtained very high
accuracies by using self-calibrating bundle block adjustment based on imagery captured by analog aerial
cameras.
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Direct georeferencing, often also named direct sensor orientation, is an appropriate alternative
if the mobile platform is equipped with a high-quality GNSS/INS system. In order to provide camera
poses, a Kalman filter processes the complementary GNSS and inertial observations. While IMUs are
prone to drift effects, GNSS updates that are available at a lower frequency can stabilize the combined
solution. However, the resulting quality is also dependent on the system calibration, initialization and
trajectory characteristics. The concept of direct georeferencing was introduced by Schwarz et al. (1993)
and extensively investigated by Skaloud (1999) and Cramer (2001). Since no GCPs are utilized, possible
systematic GNSS errors, e.g. due to cycle slips, lead to large mapping deviations in object space. Hence,
Cramer (2001) and Haala (2005) proposed to correct systematic offsets as well as time-dependent drifts
by incorporating additional image observations.

Combining direct and indirect georeferencing leads to integrated georeferencing. In addition to
position and attitude information provided by a GNSS/INS system, it employs image observations of
tie points and optionally ground control points. Heipke et al. (2002) present a comparison of several
approaches in terms of direct and integrated georeferencing. Incorporating only one GCP into integrated
georeferencing resulted in object space accuracies similar to conventional aerial triangulation using nu-
merous GCPs. Integrated georeferencing is particularly beneficial in challenging areas with moderate
GNSS coverage or in case of low-quality GNSS/INS modules. This applies to UAV platforms with lim-
ited payload capacity and thus low-cost navigation sensors. Eugster (2011) presents approaches that
enable real-time georegistration of video streams and single images captured by UAVs based on coarse
initial position and attitude information in combination with existing digital 3D city models. Rehak
(2017) shows that integrated georeferencing allows for UAV mapping with accuracies at the centimeter
level even by not utilizing any GCPs. Instead of employing position and attitude weighted observations
from a separate inertial/GNSS fusion step, Cucci et al. (2017) directly include raw inertial observations
into the bundle adjustment of a dynamic network. Alternatively, initial camera poses can also be derived
from a SLAM procedure.

Ground control points in a | GNSS/INS-based
; mages -
geodetic reference frame navigation data
Timestamps

v v 3

Indirect / image-based
georeferencing

Direct georeferencing

A 4 A 4 A 4

Integrated georeferencing

A 4

Image orientation parameters

Figure 2.1: Comparison of the three different photogrammetric image orientation approaches (adapted from
Eugster (2011)).

2.1.2 Structure from Motion (SfM)

Estimation of camera poses and reconstruction of sparse 3D scene structures is tackled in the computer
vision community by structure from motion. While relying on projective geometry, no initial values are
required. We distinguish two main concepts: incremental and global approaches. Both procedures expect
image correspondences, which are determined by feature extraction and matching combined with geo-
metric verification (see figure 2.2). In case of incremental SIM (Wu, 2013), a carefully selected two-view
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reconstruction seeds the model. Subsequently, the procedure incrementally registers new images, trian-
gulates scene points, refines the reconstruction using bundle adjustment and filters outliers (Schonberger
and Frahm, 2016). In order to obtain accurate results, this sequential process implies repeated bundle
adjustment that is time-consuming. In contrast, global SfM approaches are inherently parallelizable and
only require a single bundle adjustment (Sweeney et al., 2015; Reich et al., 2017). All relative poses
among image pairs or triplets are considered to simultaneously estimate all camera poses in a single step.
Camera orientations are estimated by rotation averaging and camera positions by translation averaging.
Tron et al. (2016) give a survey of promising solutions for robust rotation optimization and they bench-
mark the robustness against the presence of outliers. Cui and Tan (2015) improved the harder problem
of translation averaging by using depth maps.
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Image Registration Outlier Filtering # yj_,’ '
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Figure 2.2: Standard processing pipeline of COLMAP for image orientation that is an incremental structure-
from-motion approach (Schénberger and Frahm, 2016).

Conventional incremental and global SfM approaches are not ideally suited to reconstruct large-
scale image collections. Aiming at improved scalability and efficiency, large SfM problems are typically
divided into multiple better conditioned sub-problems that are optimized independently. The resulting
sub-models are frequently merged by finding common 3D points across the models and by robustly
estimating a similarity transformation using a RANSAC method (Gherardi et al., 2010; Havlena et al.,
2010; Parys and Schilling, 2012). Klingner et al. (2013) solve concurrent bundle adjustment problems
with fewer than 1500 images and then match the 3D models to each other in order to obtain one consistent
reconstruction. Toldo et al. (2015) perform hierarchical SfM and describe the entire SIM process as a
binary tree constructed by image clustering. Each leaf corresponds to a single image, while internal
nodes represent partial models obtained by merging two sub-nodes. Computation proceeds from bottom
to top, starting from several seed couples and eventually reaching the root node. This scheme is able to
cut the computational complexity by one order of magnitude and it is less sensitive to both initialization
and drift. Partitioning into smaller instances and hierarchical combination makes the problem inherently
parallelizable (Toldo et al., 2015). Shah et al. (2015) give a good overview of approaches for sub-tasks
of large-scale SfM. They propose a multistage approach that initially generates a coarse 3D model based
on a subset of images. This initial solution allows for efficient orientation of the remaining images as
well as feature matching and triangulation. Zhu et al. (2018) present a distributed framework that
significantly enhances the efficiency and robustness of large-scale motion averaging. They first divide
all images into multiple partitions that preserve strong data association for well-posed and parallel local
motion averaging. Then, they solve global motion averaging that determines image poses at partition
boundaries and a similarity transformation per partition to register all images in a single coordinate
frame. Finally, local and global motion averaging are iterated until convergence. In order to improve
computational efficiency, Cui et al. (2017) developed a hybrid SfM approach. An adaptive rotation
averaging method first estimates camera rotations in a global manner. Based on these, camera centers
are computed incrementally. Global rotation averaging decreases the risk of scene drift, and incremental
estimation of image positions shows improved robustness in case of noisy data. Cui et al. (2019) present
an efficient and robust incremental reconstruction system. While careful track selection significantly
reduces the number of feature tracks used in bundle adjustment, an improved rotation averaging method
enables to reconstruct both general and ambiguous image datasets. In contrast, Zhao et al. (2018) use a
hierarchical approach to solve SfM problems by decoupling the linear and non-linear components. The
algorithm begins with small local reconstructions based on non-linear bundle adjustment. These are then
merged in a hierarchical manner using a strategy that requires to solve a linear least squares optimization
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problem followed by a non-linear transform. Linearity has the advantageous properties that it does not
rely on initial estimates, there is no need for iterations and the solution will not end in a local minimum.

2.1.3 Simultaneous Localization and Mapping (SLAM)

SLAM procedures aim at simultaneous sensor pose estimation and map generation of the environment.
A broad overview of the current state of SLAM is given by Cadena et al. (2016). SLAM methods can
basically be subdivided into visual SLAM, visual odometry and lidar SLAM. In case of lidar SLAM,
captured point clouds are continuously aligned and laser scanner poses determined (Hess et al., 2016).
However, cameras are often preferred due to their low costs and high frame rates. Visual odometry allows
for relative pose estimation of consecutive views by tracking image information in real-time (Scaramuzza
and Fraundorfer, 2011; Fraundorfer and Scaramuzza, 2012). Additionally incorporating IMU observations
leads to visual-inertial odometry algorithms (Lynen et al., 2015; Forster et al., 2016). Visual odometry
focus on local consistency of the trajectory and a local map is used to obtain a more accurate estimate of
the local trajectory. In contrast, visual SLAM is concerned with global map consistency. Hence, visual
odometry can be used as a building block for a complete SLAM algorithm to recover the incremental
motion of a camera. Further components include loop closure detection and possibly a global optimization
step to obtain a metrically consistent map. Loop closure is the process of observing the same scene by
non-adjacent frames and adding a constraint between them, which considerably reduces the accumulated
drift in the pose estimation (Yousif et al., 2015).

SLAM approaches mainly focus on robustness and speed, and they basically consist of a frontend
and a backend. The frontend is responsible for feature extraction and matching, outlier removal as well
as loop closure detection. The backend performs pose and structure optimization by tools such as g2o
(Kiimmerle et al., 2011) or GTSAM (Dellaert, 2012) that are based on factor graphs. A factor graph
is a bipartite graph consisting of factors connected to variables. These variables represent the unknown
random variables in the estimation problem, while the factors represent probabilistic information on those
variables, derived from measurements or prior knowledge. SLAM approaches have been categorized into
filtering approaches and smoothing approaches (Yousif et al., 2015). Filtering methods solve online
SLAM problems by incorporating sensor measurements as they become available. In contrast, smoothing
procedures address the full SLAM problem by typically using a least squares error minimization technique.
Recent results in monocular visual-inertial navigation have shown that full smoothing approaches based
on non-linear optimization outperform filtering methods in terms of accuracy, since they are able to
relinearize past states (Forster et al., 2016). However, this improvement comes at the cost of increased
computational complexity.

2.1.4 Comparison of Pose Estimation Approaches

Depending on the originating community, image orientation approaches feature different characteristics
(see table 2.1). Integrated georeferencing uses collinearity equations to employ tie point and GCP as
well as initial EOP observations. Linearized observation equations demand initial values, which are not
required by SfM or SLAM. SfM relies on projective geometry and thus utilizes homogeneous coordinates.
It incorporates solely image feature correspondences that lead to arbitrary scaled reconstructions. In order
to obtain a spatially correct solution, a subsequent 3D similarity transformation is needed. Visual SLAM
basically performs feature tracking in sequential images. If a stereo camera configuration or additional
IMU observations are available, metric relative camera poses can be computed. In contrast, integrated
georeferencing provides camera poses in a global geodetic reference frame. Real-time performance is of
utmost interest for SLAM methods, thus cameras with low geometric resolutions but with high frame
rates are preferred. Airborne mapping featuring high geometric image resolution, regular flight patterns
and high image overlap is a typical application for indirect georeferencing, often also referred to as aerial
triangulation or bundle block adjustment. All approaches contain a component that performs global
refinement using bundle adjustment, which is described in section 2.1.5.
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Indirect / 1gtegrated Structure from motion Visual SLAM

georeferencing (IG) (StM)
Originating community photogrammetry computer vision robotics
Approaches collinearity equations projective geometry filtering or smoothing
Observations irﬁiii:logl (t)S}’D:}fgrpf é tie points tie points
Initial values needed not required not required
Coordinate system global geodetic local local
Processing offline offline real-time
Geometric resolution high medium low
Image configuration regular pattern arbitrary sequence
Overlap high medium high
Typical applications airborne mapping close-range navigation

Table 2.1: Comparison of characteristics for three different image orientation approaches.

2.1.5 Bundle Adjustment

Based on a set of measured image feature locations and correspondences, bundle adjustment (Triggs
et al., 2000) aims to refine both 3D tie point positions and camera parameters by minimizing reprojection
errors. This optimization is usually formulated as a non-linear least squares problem, where the error is
the squared L2 norm of the difference between the observed feature location and the projection of the
corresponding 3D tie point on the image plane of the camera (Agarwal et al., 2010). For the following
paragraph that shows how to solve non-linear least squares problems by the popular Levenberg-Marquardt
algorithm, we reference to Agarwal et al. (2010) and Agarwal et al. (2020). Let x € R™ be an n-
dimensional vector of variables, and F(z) = [f1(z), ..., fm (x)]T be an m-dimensional function of x. We
intend to solve the following optimization problem:

min 3| F(x)|? (21)

The Jacobian matrix J(z) of F'(z) is an m x n matrix, where J;;(x) = 0; f;(«) and the gradient vector
g(z) = Vi||F(2)||* = J(x) " F(x). The general strategy for solving non-linear optimization problems is
to solve a sequence of approximations to the original problem. At each iteration, the approximation is
solved to determine a correction Az to the vector z. In case of non-linear least squares, an approximation
can be defined by using the linearization F'(z+ Az) = F(z)+ J(x)Az, which leads to the following linear
least squares problem:

Igiwn%HJ(x)Ax + F@)|? (2.2)

However, iteratively solving a sequence of these problems leads to an algorithm that may not converge.
To avoid this, the size of the step Az needs to be controlled, which can be done by introducing a
regularization term:

1
rgin§||J(ac)Ax+F(:r)||2 + M| D(x)Az|? (2.3)

Here, D(z) is a non-negative diagonal matrix and A is a non-negative parameter that controls the
strength of regularization. This damping factor \ is adapted until a decrease of the objective function
is reached, which enables Levenberg-Marquardt to gradually switch between gradient descent and the
Gauss-Newton method (Siinderhauf, 2012). Gradient descent continuously moves by small steps into the
direction of the negative gradient until convergence. While it guarantees to always decrease the value of
the objective function and thus converges to a minimum, its performance is rather slow. On the other
hand, Gauss-Newton converges very fast (quadratically) when already close to the solution, but it can
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fail to give a valid descending step when the optimizer is still far from the sought minimum (Siinderhauf,
2012).

SfM and SLAM procedures rely on feature extraction and matching, which are prone to outliers. A
significant number of these can be eliminated by robust estimation methods such as RANSAC (Fischler
and Bolles, 1981) based on the epipolar geometry. However, loss functions are frequently essential in
order to reduce the influence of noisy data on the solution of non-linear least squares problems. Irschara
(2012) evaluates the performance of different robust loss functions such as Huber and Cauchy for bundle
adjustment.

Large-scale datasets lead to huge numbers of variables in the optimization problem, since each camera
has 6 DoF and each 3D point position 3 DoF. However, for almost all problems, the number of cameras
is much smaller than the number of points. Furthermore, feature correspondences are limited to adjacent
images. Hence, exploitation of the natural structure and sparsity of the bundle adjustment problem
is crucial for numerically stable and efficient procedures. The sparse bundle adjustment approach of
Frahm et al. (2010) utilizes sparse Cholesky decomposition methods in combination with a suitable
column reordering scheme. Similarly, Schonberger et al. (2014) employ sparse Cholesky factorization
and maximize sparsity structure by column and row reordering, but they additionally use the Schur
complement trick (Triggs et al., 2000; Agarwal et al., 2010). Its purpose is to first solve the reduced
camera system and then to update the points via back-substitution.

Processing large image blocks can also be facilitated by reducing the number of tie points (Karel
et al., 2016) or even not relying on any 3D points, which is structureless bundle adjustment. For such
approaches, the optimization cost is not based on reprojection errors but on multiple view relations such
as the epipolar or trifocal constraints (Steffen et al., 2012; Rodriguez Lépez, 2013; Cefalu and Fritsch,
2014; Indelman et al., 2015; Zheng and Wu, 2015). The structureless procedure developed by Cefalu
et al. (2016) allows for self-calibration of camera parameters and the authors mention the main drawback
of structureless bundle adjustment. Constraints describe relations between observations, so that the
number of equations easily exceed that of classical bundle adjustment. This is especially the case for
highly redundant scenarios where the same object points are observed multiple times.

Discussion

We aim at an accurate and robust image orientation procedure. SLAM methods perform in real-time,
but they are not able to meet our high accuracy requirements. SfM approaches show good performance,
support arbitrary image collections and they are scalable. However, SfM delivers unknown scene scales
and thus non-metric reconstructions. In contrast, integrated georeferencing provides accurate camera
poses in a predefined coordinate reference frame, but requires initial values. A combination of these two
approaches seems to be promising, i.e. extending an SfM approach with georeferencing capabilities.

2.2 Image Orientation for Street-Level and Indoor Multi-Camera
Systems

Multi-camera mobile mapping systems allow for efficient data capture in both outdoor and indoor envi-
ronments. While poor GNSS coverage in urban canyons leads to reduced image orientation accuracies,
there is even no GNSS availability in indoor spaces. Hence, image-based georeferencing approaches are
essential. Subsequent steps such as dense image matching demand sub-pixel accurate camera poses.
Largely varying camera views pose a challenge for establishing tie point connections. However, an ade-
quate number of such correspondences are crucial in order to obtain satisfying bundle adjustment results.
Therefore, exploiting relative orientation constraints among cameras is a key element.
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2.2.1 Pose Estimation of Multi-Camera Systems

Several image-based mobile mapping systems feature at least two pinhole stereo cameras pointing forward
(Novak, 1991; Schwarz et al., 1993; Burkhard et al., 2012). In order to obtain larger coverages, multiple
stereo camera systems (Meilland et al., 2015; Cavegn and Haala, 2016) or hybrid configurations consisting
of both stereo and panorama cameras in combination with lidar sensors are employed (Paparoditis et al.,
2012). Blaser et al. (2018) assembled a 360° stereo configuration based on forward looking pinhole cameras
and two tilted panorama cameras featuring fisheye optics (Abraham and Forstner, 2005; Schneider et al.,
2009). In contrast, Van Den Heuvel et al. (2006) present a mobile mapping system with a single 360°
camera configuration. To perform 3D mapping, they rely on panorama imagery captured at two different
vehicle positions, i.e. virtual stereo bases. While efficient, such an approach cannot provide the high
relative accuracies that are achieved by rigid and precalibrated physical stereo bases.

Schneider et al. (2012) developed a bundle adjustment approach for omnidirectional and multi-view
cameras. Such configurations allow rays perpendicular to the viewing direction, which cannot be trans-
formed into image coordinates for the collinearity equations. Furthermore, the collinearity equations are
not suited for far points, since small angles between rays lead to numerical instabilities or singularities.
Hence, they use a minimal representation of homogeneous coordinates for image and scene points, en-
abling scene points at the horizon to significantly stabilize camera rotations. Same as Schneider et al.
(2012), Kneip et al. (2013) use bearing vectors (camera rays) instead of image point coordinates as ob-
servations. They propose an efficient non-iterative approach for absolute pose estimation that does not
require any initial values. For evaluation, the following camera configurations are used: one forward
and one backward looking camera, two stereo cameras directed forward, one forward and one sideward
pointing camera, forward and backward as well as two sideward looking cameras. Employing camera
systems pointing into all four viewing directions led to the best results, which was confirmed by Urban
et al. (2017). In contrast to Schneider et al. (2012) and Kneip et al. (2013), they extended the common
collinearity equations with a general camera model supporting arbitrary multi-camera systems. Their
generic and modular bundle adjustment method does not only allow for pose estimation, but also for
simultaneous self-calibration and scene reconstruction. Kersting et al. (2012) modified the conventional
collinearity equations to incorporate GNSS/INS-derived positions and orientations as well as relative
sensor orientations. Their single-step calibration method for multi-camera mobile mapping systems has
the ability to estimate two sets of ROPs, namely the lever arm offsets and the boresight angles relating
the cameras and the IMU body frame as well as the ROPs among the cameras.

Havlena et al. (2008) adapted their SEM approach in order to process imagery captured by a stereo rig
with two omnidirectional cameras. Employing stereo constraints improved the stability of the reconstruc-
tion and helped to keep its overall scale. SfM without constraining the stereo base worked sufficiently
when using additional GNSS/INS data, but failed when such data was not available. While many open-
source SfM pipelines support both perspective and fisheye camera models, they do not allow for the
incorporation of relative orientation constraints (Sweeney et al., 2015; Moulon et al., 2017; Schonberger
and Frahm, 2016; Mapillary, 2020). However, OpenMVG (Moulon et al., 2017) and OpenSfM (Map-
illary, 2020) incorporate prior camera positions and ground control points. This is also the case for
Rumpler et al. (2017) who developed a complete processing pipeline from image capturing to mesh gen-
eration. Pix4D! and Agisoft? meanwhile offer commercial photogrammetric software products enabling
multi-camera rig processing including ROP self-calibration. Similarly, the open-source photogrammetric
software MicMac (Rupnik et al., 2017) allows constraining relative orientation parameters among cameras
as well as incorporating camera positions and ground control points.

For airborne mapping scenarios, oblique images from the individual camera heads are usually treated
independently in aerial triangulation (Cavegn et al., 2014; Rupnik et al., 2015; Karel et al., 2016).
However, Sun et al. (2016) parametrize oblique camera poses with nadir camera poses as well as constant
relative poses between oblique and nadir cameras. This leads to a decrease of the number of unknown
parameters and the dimension of the normal equations, which dramatically reduces the computational
complexity and memory cost. Relative observations that relate the position and attitude parameters of
two consecutive epochs are exploited by Rehak (2017) as well as by Schénberger et al. (2014) in the case

Lhttps://www.pixdd.com
2https://www.agisoft.com
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of UAV mapping. Klingner et al. (2013) optimize trajectories from Google Street View (Anguelov et al.,
2010) cars by leveraging precise relative poses from IMU and by considering a generalized camera model
that supports rolling shutter cameras. Liu et al. (2018) developed a visual odometry algorithm for a street-
based multi-camera system. Their method is particularly more robust in challenging environments, in
which a single stereo configuration easily fails due to the lack of features. In order to provide accurate and
reliable vehicle localization in real-time, Geppert et al. (2019) fuse absolute pose estimates with relative
motion estimates from a multi-camera visual-inertial odometry pipeline. Not limiting to a specific camera
configuration, Kuo et al. (2020) present an adaptive SLAM system that works for arbitrary multi-camera
setups.

2.2.2 Georeferencing Approaches for Mobile Platforms in Urban Canyons

Street-based mobile mapping systems enable absolute 3D measurement accuracies of a few centimeters in
open areas that feature good GNSS conditions (Barber et al., 2008; Haala et al., 2008; Burkhard et al.,
2012). However, high-rise buildings forming urban canyons degrade GNSS coverage and there are GNSS
multipath effects, which result in poor direct georeferencing accuracies. Hence, integrated georeferencing
is essential in challenging built-up urban environments. This even allows for accurate image orientation
of data captured at different days and daytimes, which is typical for city-wide mobile mapping.

Ellum and El-Sheimy (2006) proposed to feed coordinate updates (CUPTs) determined by photogram-
metric bundle adjustment back into a loosely coupled GNSS Kalman filter. This approach incorporating
additional stereovision-based position updates was later on exploited by Eugster et al. (2012). While
they demonstrated a consistent improvement of the absolute 3D measurement accuracy from several
decimeters to a level of 5-10 c¢m for land-based mobile mapping, Ellum and El-Sheimy (2006) achieved
no improvement in mapping accuracy. Bayoud (2006) developed a SLAM system that does not rely on
GNSS observations, but is solely based on inertial observations and tie points from vision sensors. Vi-
sion updates for position and orientation are employed as external measurements in an inertial Kalman
filter. Forward intersection based on the resulting filtered poses allows for 3D coordinate computation
of surrounding features, which can be used as control points for resection in the next epoch. Hassan
et al. (2006) perform bundle adjustment incorporating camera positions and orientations provided by
a Kalman filter. In areas with poor GNSS coverage, weights of camera positions and orientations are
small and hence the solution will only depend on image observations, which results in photogrammetric
bridging. Similar approaches were also developed by Forlani et al. (2005) and Silva et al. (2014) in order
to bridge street-based mobile mapping stereo image sequences in GNSS denied areas.

Brenner and Hofmann (2012) use 3D landmarks to georeference their lidar mobile mapping system in
challenging environments. They automatically extract pole-like structures and match them to accurately
positioned reference objects. However, the number of such landmarks is limited in real-world environ-
ments, and they struggle with false positive detections. Instead of pole objects, Tournaire et al. (2006)
extract and reconstruct crosswalks in order to co-register street-level mobile mapping data and aerial im-
agery. The motivation is that airborne surveys are much less affected by GNSS degradations experienced
by ground-based mobile mapping systems in challenging urban environments. They show the feasibility of
obtaining stereo camera poses with sub-decimeter accuracy by relying on an external aerial reference and
utilizing ground control objects. Similarly, Javanmardi et al. (2017) use road marking correspondences to
correct lidar mobile mapping data by airborne nadir images. Their proposed framework only performs a
two-dimensional registration and they report a 2D accuracy of 12 cm. In order to avoid the costly process
of GCP determination, also Nebiker et al. (2012) proposed to fuse ground-based imagery from mobile
mapping systems with airborne nadir images. First experiments resulted in horizontal accuracies in the
order of 5 cm, equivalent to the ground sampling distance of the aerial imagery, and vertical accuracies
of approx. 10 cm.

Shan et al. (2014) developed a fully automated pipeline to georeference ground-based multi-view stereo
models by oblique airborne images. In order to handle large viewpoint variations, they warp terrestrial
images into aerial views using depth map information from the MVS models and corresponding camera
poses. Then, the synthesized views are matched with aerial images by SIFT feature correspondences,
leading to pixel-level accuracies. Wu et al. (2018) perform rectification of both terrestrial and oblique
aerial images based on building facades. Feature matching and subsequent combined bundle adjustment
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of terrestrial and UAV images resulted in a 3D RMSE of 83 mm. Also Fanta-Jende et al. (2019) mainly use
feature correspondences on fagades to automatically co-register panoramic mobile mapping and oblique
aerial imagery with pixel-level accuracy. Their earlier approach to improve georeferencing of road-based
mobile mapping in GNSS denied urban environments employs airborne nadir images as external reference
(Jende et al., 2018). They ortho-project panoramic images to an artificial ground plane in object space so
that co-registration can be performed. Due to a flying height of ca. 4500 m, they only show a horizontal
trajectory improvement. Furthermore, a GSD of 10 cm allows for sub-pixel and thus accurate feature
correspondences of salient road markings, but barely enables absolute sub-decimeter accuracies of the
mobile platform. Based on the same aerial nadir images, Hussnain et al. (2018) correct trajectories of a
mobile laser scanning platform. Their adjustment technique, which is based on B-splines and uses feature
correspondences as well as IMU observations, delivers absolute 3D accuracies of ca. 20 cm. According to
Hussnain et al. (2019), matching and triangulating road marking features between aerial images provide
reference 3D tie point coordinates. Also determining these 2D features in projected point cloud patches
allows for trajectory improvement of the mobile mapping system.

Molina et al. (2016) introduce the concept of mapKITE, which is ideally suited for 3D corridor
mapping as it combines road-based mobile data capture with UAV image acquisition. A coded optical
target placed on top of a terrestrial lidar platform enables continuous correspondences and thus serves
as kinematic GCP for UAV sensor orientation. Employing two GCPs at both ends of a segment that
measures 2.3 km as well as one kinematic GCP per image resulted in an absolute 2D accuracy of ca. 5
cm and a 3D accuracy of approx. 10 cm (Molina et al., 2017). This approach can also be used the other
way around, i.e. trajectory adjustment of street-based MMS in urban canyons.

Discussion

We address the problem of computing accurate image orientations for multi-camera mobile map-
ping systems in challenging urban environments. Several recent approaches utilize additional aerial
products as external reference. However, limiting factors are a typical GSD of 10 cm for airborne
surveys and low-cost sensor orientation modules for UAVs. Our mobile platforms that feature mul-
tiple cameras are equipped with navigation systems of high quality. Hence, we prefer to use camera
poses provided by direct georeferencing as initial values. In combination with relative pose constraints
among cameras, these prior EOPs allow to reduce the costly process of GCP coordinate determination
on-site to a minimum. Furthermore, constraining ROPs is a crucial factor for accurate and robust
georeferencing of highly redundant multi-view image sequences.

2.3 Dense Reconstruction of 3D Urban Scenes

A typical image-based 3D reconstruction pipeline presumes accurate image orientations to compute depth
maps, followed by 3D point cloud and 3D surface generation. We focus on image sequences recorded
by street-based mobile mapping systems featuring stereo and multi-view stereo camera configurations.
Regarding our overall goal of obtaining geospatial 3D image spaces of high quality, we aim at precise,
reliable and dense depth maps. For this purpose, imagery captured at multiple epochs needs to be
exploited. However, vehicle motion predominantly in camera viewing direction poses some challenges on
the stereo matching process. In addition to 3D computation approaches, image matching strategies for
scenarios ranging from airborne nadir and oblique through UAV to close-range and street-level mapping
are reviewed within the following sections.

2.3.1 Approaches for Image-Based 3D Reconstruction

Dense 3D reconstruction basically comprises three main steps, namely depth map generation, point cloud
computation and 3D surface generation. According to Nebiker et al. (2010), each of these three processes
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stands for a different 3D city modeling paradigm, i.e. image-based modeling, rich point cloud based
modeling, geometric 3D modeling. In case of image-based city modeling, the 3D urban environment is
represented by georeferenced 2D images or videos. Such imagery can efficiently be captured by ground-
based mobile mapping systems. Nebiker et al. (2015) extend this model that only relies on radiometry
by depth information, leading to geospatial 3D image spaces. Hence, such RGB-D imagery allows for a
high-fidelity metric photographic representation of the environment. Dense depth maps ideally provide
a depth value for each pixel of the corresponding RGB image. Since they are based on the same source,
spatial and temporal coherence of the RGB and the depth information can be ensured. This is typically
not possible for dense 3D point clouds, since geometry is acquired by laser scanners and radiometry by
cameras with different viewing geometries and at different epochs.

Geometric 3D models can basically be subdivided into surface-based and volumetric-based scene
representations. Volumetric models may be generated by varying primitives, but they are frequently
defined by an uniform arrangement of cubic volumes, called 3D voxels. Surfaces are usually defined by
3D meshes, consisting of planar faces that share the same edges. Triangular and topologically consistent
surfaces are well supported by many photogrammetric pipelines, but in particular by visualization tools.
Berger et al. (2014) compare numerous surface reconstruction methods that are based on point clouds,
while Musialski et al. (2013) provide a comprehensive overview of urban reconstruction.

Computation of 3D scenes fully depends on accurate image orientations (see figure 2.3). These might
be provided by direct georeferencing, but challenging environments require integrated georeferencing.
Since it incorporates image observations, a sparse scene reconstruction based on distinctive features
is additionally generated. Subsequent stereo matching or plane-sweeping stereo allow for depth map
computation, while some multi-view matching approaches directly compute 3D point clouds.

Stereo matching includes a rectification and a dense image matching (DIM) process. Image rectifica-
tion warps a pair of images so that epipolar lines across the two views are parallel. Hence, corresponding
points feature identical rows, facilitating DIM methods to only search along the horizontal direction.
Dense stereo image matching is often defined as a global optimization problem. It comprises cost calcu-
lation of pixelwise matching, followed by aggregation of matching costs, disparity map computation and
refinement (Scharstein and Szeliski, 2002; Szeliski, 2011). The cost function usually contains two terms,
i.e. a data term and a smoothness term. The data term measures how well the resulting depth map
agrees with the input images in terms of radiometry. The smoothness term incorporates the assumption
that the scene is piecewise smooth and penalizes assigning different depth values to neighboring pixels. In
particular the semi-global matching (SGM) approach introduced by Hirschmiiller (2008) and its multiple
variants work efficiently, since matching cost aggregation is only performed along 8 or 16 path direc-
tions. Nevertheless, a depth value for every pixel covered by a stereo image pair can be computed, and
accuracies are at a similar level as the resolution of the imagery. Several pipelines do not only perform
two-view stereo matching, but multi-view stereo. In case of Rothermel et al. (2012), a reference image
can feature several match images, thus each baseline provides another disparity map for the same view.
Hence, disparity map fusion is required, leading to consistent non-redundant 3D geoinformation.

Plane-sweeping stereo was originally proposed by Collins (1996) and successfully applied by Pollefeys
et al. (2008) and Gallup (2011) for 3D urban scene reconstruction from street-level imagery. This method
tests a set of plane hypotheses and records for each pixel in a reference view the best plane using some
dissimilarity measure. It works with an arbitrary number of cameras. Plane-sweeping stereo assumes
multiple planes for the depth tests, a reference image, and several match images captured at different
camera positions. Images need previously to be corrected for radial distortion, but no image rectification
process is required. In order to reduce computation time as well as to improve depth map quality in
ambiguous parts of urban scenes, Pollefeys et al. (2008) and Gallup (2011) incorporate plane priors
obtained from the reconstructed sparse points. Additional GPU parallel processing leads to real-time
computation, which allows to cope with large-scale urban environments.

Multi-view matching approaches do not rely on image spaces, but they directly target the object
space. Hence, Bethmann and Luhmann (2017) transferred matching cost calculation and pathwise cost
aggregation of the conventional SGM method into object space. Cost calculation is formulated within a
dense voxel raster using the gray values of all images instead of pairwise cost calculation in image space.
Thus, object-based SGM is not limited to two-view stereo matching, but allows for real multi-image
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correlation. Moreover, semi-global pathwise optimization in object space leads to index maps instead
of disparity maps. Since index maps directly indicate the 3D positions of the best matches, no fusion
procedure is needed. While the benefits of the original SGM method such as robustness in weakly textured
areas and good results at sharp object boundaries are maintained, object-based semi-global multi-image
matching does not require a previous image rectification process (Bethmann and Luhmann, 2017).

We aim at obtaining precise, reliable and dense depth maps. While depth information is often di-
rectly computed, alternative 3D scene representations such as 3D point clouds or 3D meshes need to be
reprojected onto the viewing geometry of respective base images (Schér et al., 2018). If not generated
based on the same data source, remaining system calibration inaccuracies and moving objects lead to
inconsistencies. Nevertheless, such 3D models may feature high-quality geometries, as they can exploit
the full potential of the vast number of 3D manipulation and fusion algorithms.
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Figure 2.3: Overview of the main processing components for generating 3D geometry solely based on imagery.

Benchmarks have proven to be especially valuable in order to compare varying approaches that address
a specified task. Within this section, ongoing benchmarks that do not target a particular application
are presented, while benchmarks from the photogrammetric community are described in section 2.3.2.
Scharstein and Szeliski (2002) established the first benchmark for two-view stereo correspondence algo-
rithms approx. two decades ago. It initially featured 38 datasets captured by low-resolution cameras.
Scharstein et al. (2014) added 33 stereo datasets with a resolution of 6 MP and provided highly accurate
ground truth disparities by using a structured light system. However, image acquisition in a controlled
indoor environment hardly allows varying conditions. Similarly, Seitz et al. (2006) collected data in a
laboratory, but they compare and evaluate multi-view stereo reconstruction algorithms. Only two small
objects were mapped by hundreds of images using a low-resolution camera mounted on a precisely con-
trolled robotic arm, while reference data was acquired with a laser stripe scanner. In order to account for
real-world conditions, Strecha et al. (2008) introduced a multi-view stereo benchmark featuring outdoor
building scenes. It comprises well-textured objects captured by a 6 MP camera, as well as by a laser scan-
ner to obtain dense 3D ground truth data. In contrast, Schops et al. (2017) and Knapitsch et al. (2017)
provide a variety of challenging outdoor as well as complex indoor scenes. The benchmark of Schops
et al. (2017) aims at evaluating both two-view stereo and multi-view stereo algorithms. They captured
images using a high-resolution camera (24 MP), and they also employed a synchronized multi-camera
rig for collecting low-resolution imagery (0.4 MP). Same as Knapitsch et al. (2017), ground truth scene
geometry was acquired using a high-precision laser scanner. However, Knapitsch et al. (2017) focus on
high-resolution video sequences as input, encouraging the development of new approaches that leverage
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the provided high temporal resolution for increased reconstruction fidelity. Moreover, they allow for the
evaluation of complete reconstruction pipelines, i.e. image orientation and dense 3D reconstruction.

2.3.2 Image Matching Strategies for Aerial and Terrestrial Scenarios

Aerial photogrammetry is an established 3D data capturing method for large areas (see table 2.2). In
case of airborne nadir scenarios, one large-format aerial camera is directed perpendicular to the flying
direction. Large distances to respective mapping areas lead to rather small depth of field variations.
Regular flight patterns facilitate both two-view and multi-view stereo matching for the computation of
digital surface models (DSMs). Dense pixelwise matching allows for the generation of such results at a
resolution that corresponds to the ground sampling distance (GSD) of the original images. However, only
one height value per raster cell is usually computed, which leads to 2.5D scene representations.

Haala (2014) presents results of the benchmark on high density image matching for DSM computation.
It features two nadir datasets with different land use and block geometry. One dataset includes three
strips with 12 images each, captured over a semi-rural area with undulating terrain. With a GSD of
20 cm and a moderate image overlap of ca. 60% in both directions, this dataset is representative for
statewide data collection. The other dataset incorporates a densely built-up urban area mapped by three
strips with five images each. It has a smaller GSD of 10 cm as well as a higher overlap of 80% in both
directions. These two datasets served for the evaluation of eleven dense image matching (DIM) solutions
in terms of accuracy and reliability. A common reference surface was obtained by computing a median
DSM based on all DIM results. Although independent ground truth is preferred, median DSM surfaces
are appropriate to illustrate DIM differences, showing regions that are potentially challenging for DIM.
For such areas, elevation profiles from the available DSMs were additionally investigated. There are
increased DSM deviations for fine object structures at a size similar to the resolution of the available
imagery. A suitable image overlap allows to eliminate erroneous matches and supports the generation of
DSMs at vertical accuracies close to the sub-pixel level (Haala, 2014).

In addition to one nadir looking camera head, airborne oblique scenarios usually feature four tilted
camera heads pointing in the cardinal directions. These oblique views enable that even building fagades
and other vertical objects as well as building footprints are represented in the imagery. In contrast to
nadir mapping, oblique images allow for true 3D modeling. However, applying DIM algorithms to oblique
imagery introduces some major challenges. These include great illumination changes, large perspective
deformations and multiple occlusions due to high buildings and vegetation. A higher depth of field leads
to larger image scale variations and thus varying GSDs within the same images. Gerke (2009) successfully
applied the sophisticated SGM technique to a set of oblique airborne images. He compared the resulting
disparity maps with a reference map derived from airborne lidar, but he also computed 3D point cloud
differences. Around 60 to 70 percent of all matches were within a range of up to three pixels.

Cavegn et al. (2014) introduced a benchmark dataset aiming at the evaluation of high density image
matching based on oblique airborne imagery. It was captured over an urban area by a medium-format
camera featuring a nadir and four oblique camera heads tilted by 35°. Nadir images have a GSD of 6 c¢m,
while there is a GSD of 6-13 cm for all four oblique views. The provided oblique aerial image block consists
of three strips with nine images each for all five views, resulting in a total of 135 images. The approximate
image overlap in nadir view is 70% and 50% for along and across track, respectively. Generated 3D DIM
point clouds are compared to reference data collected by terrestrial laser scanning (TLS). Several building
facade patches serve for DIM quality evaluation regarding accuracy, reliability and density. Point cloud
density is specified as the number of points per square meter. However, higher density values do not
necessarily mean better quality, since point cloud filtering may lead to lower density values but better
geometry results. Flatness errors indicate the noise level of the extracted 3D geometry and they are
calculated based on all point cloud deviations to a best fitting plane. Deviations between DIM results
and reference data are evaluated by RMSE, mean values and grid visualizations. Furthermore, profiles
reveal the matching resolution, potential systematic errors and accuracies. In order to validate the
proposed evaluation procedure, Cavegn et al. (2014) include results from SURE (Rothermel et al., 2012).
They overcome the significant increase in disparity search space as well as the resulting higher processing
times and memory requirements by employing a modified SGM method called tSGM. It determines the
search space for every pixel individually using a pyramid based multi-resolution approach. The evaluation
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of a tower building featuring planar fagcades with several windows and a school building whose fagades
show distinctive structures resulted in DIM accuracies of ca. 1-2 pixel.

Further oblique benchmarks were introduced by Nex et al. (2015) and Ozdemir et al. (2019). In
addition to DIM evaluation, they incorporate tasks such as image orientation. Nex et al. (2015) provide
85 oblique and nadir airborne images featuring a GSD of approx. 10 cm and an image overlap of ca.
80% in both directions. Evaluation is based on TLS as reference data and performed according to the
procedure developed by Cavegn et al. (2014). Ozdemir et al. (2019) captured oblique data of a 3D
artifact representing a typical urban scenario by means of a mock 3D city model (ca. 80 cm x 80 cm)
in a controlled laboratory environment. They simulated a classical airborne flight with a nadir image
overlap of 80% and 65% for along and across-track direction, respectively. Each camera station features
six images, i.e. two nadir images and four oblique views tilted by 45°. Upscaling to real-world dimensions
would lead to a high GSD of ca. 1 cm. A multi-stripe triangulation-based laser scanner delivered 3D
reference point clouds of two buildings. DIM results are evaluated in terms of accuracy and completeness
based on patches showing different texture and geometric complexity.

Unmanned aerial vehicles (UAVs) are suitable for 3D mapping of small to medium-scale environments.
An extensive overview is given by Colomina and Molina (2014). Compared to airplanes, they are very
agile but they have a limited payload capacity, forcing to carry low-weight and thus often low-cost imaging
sensors. UAVs allow for data capture of all the three scenarios listed in table 2.2, i.e. area-based as well
as object-based and linear mapping. In case of area-based mapping, conventional flight patterns from
airborne photogrammetry can be used. In contrast, corridor mapping, such as performed by Molina et al.
(2017), does frequently incorporate only one flight strip and not multiple. This requires other image
orientation procedures to stabilize imagery in cross direction, and solely enables DIM of images acquired
consecutively in flight direction. Object-based mapping leads to varying camera viewing directions and
less uniform image collections, which is challenging for DIM. Schér et al. (2018) investigate DIM results
based on four datasets, comprising both area-based mapping by a fixed-wing UAV and object-based data
capture by multicopter platforms. They incorporate the three DIM solutions SURE (Rothermel et al.,
2012), COLMAP (Schonberger et al., 2016) and patch-based multi-view stereo (PMVS) (Furukawa and
Ponce, 2010). While SURE is even able to sufficiently reconstruct homogeneous surfaces and COLMAP
delivers results with a small noise level, PMVS generates incomplete point clouds. Nex et al. (2015)
provide a combined UAV and terrestrial dataset comprising one building for DIM benchmark purposes.
The available 228 images have an average GSD of 5 mm and TLS data serves as reference.

Close range photogrammetry is ideally suited for 3D reconstruction of small to medium-sized objects.
Similar to airborne nadir and UAV mapping, close-range scenarios typically feature imagery captured by
only one camera. However, applying dense multi-view image matching to nonuniform image collections
and convergent views poses some challenges. Wenzel (2016) presents a DIM approach and strategies that
are able to handle varying image configurations and resolutions. Ahmadabadian et al. (2013) demonstrate
the potential of several DIM algorithms to generate accurate and dense point clouds using stereo imagery
of four objects. Remondino et al. (2014) perform a comparison of four DIM solutions using three aerial and
five close-range terrestrial datasets, featuring variations in image scale, image resolution, image number,
camera network, baseline length, object texture and size. Generated dense point clouds are evaluated by
a flatness error measure, profiles and Euclidean distances to a TLS mesh.

Multi-camera mobile mapping systems enable efficient street-level image data acquisition. To this
end, single stereo, multi-stereo or panoramic camera configurations are often used. In particular cameras
looking forward and backward record large scene depth variations, leading to significant image scale
changes within the same imagery. Incorporation of images captured at multiple consecutive epochs
further aggravates the 3D reconstruction process. Predominant motion in viewing direction between
neighboring images results in epipoles located inside or close to the stereo partner. Since conventional
rectification approaches (Loop and Zhang, 1999; Fusiello et al., 2000) fail for such scenarios, sequential
matching demands advanced rectification procedures. Pollefeys et al. (1999) and Oram (2001) proposed
methods that can deal with arbitrary stereo configurations and multiple epochs. Nonetheless, platform
movement mainly in camera viewing direction leads to very small baselines, which do not allow stereo
matching to generate precise depth maps and accurate 3D point clouds. Geiger et al. (2012) introduced
a benchmark featuring stereo image sequences of numerous street sections captured by a mobile mapping
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system. Stereo image matching is one of several tasks. A mobile laser scanner delivered accurate ground
truth and the provided real-world outdoor scenes reduce the issue of algorithm overfitting. In order to
account for moving objects, Menze and Geiger (2015) added another large-scale dataset with ground
truth annotations for all static and dynamic scene objects.

AlI‘bO.I‘ 1e A1rb.orne UAV Close range Street-level
nadir oblique

# cameras 1 usually 5 often 1 1 several
Depth of field small medium medium medium large
Area-based X X X (x)

Object-based X X

Linear (x) X
Dimensionality 2.5D 3D 3D 3D 3D

Table 2.2: Characteristics of different image matching scenarios.

Discussion

We aim at accurate 3D urban scene reconstructions based on stereo imagery provided by street-level
mobile mapping. In order to exploit the high image redundancy, in-sequence dense image matching
needs to be applied. In contrast to airborne nadir scenarios, which feature cameras pointing perpen-
dicular to the flying direction, cameras of mobile mapping systems often face the driving direction.
Main platform motion in camera viewing direction aggravates the 3D reconstruction process. Since
traditional rectification methods struggle with epipoles located inside or close to the stereo partner,
sophisticated approaches such as polar rectification are required.

Summary

Multi-camera mobile mapping systems can provide highly redundant multi-view image sequences.
While such imagery covers the surrounding 3D scene very well, establishing feature correspondences
among strongly varying views is challenging. Camera pose estimation is even more aggravated in
urban environments that do not allow for a sufficient number of GNSS signals. Hence, the image
orientation process needs to exploit relative orientation constraints among cameras. Furthermore,
incorporation of initial camera poses from direct georeferencing or SLAM as well as ground control
points enable accurate georeferencing. Consequently, extending the structure-from-motion pipeline
COLMAP with these features is very promising in order to obtain image orientation accuracies at the
sub-pixel level. High-quality alignment of multiple image sequences is a prerequisite for successful
multi-view stereo matching, leading to accurate 3D scene representations.
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Chapter 3

Developed Methods for Integrated
Georeferencing

We aim at highly accurate and reliable image orientations in challenging urban environments. For this
purpose, redundant multi-view imagery captured by multi-camera systems is exploited. These are either
organized as multi-stereo camera rigs or multi-head panorama cameras (see section 4.1.1). Determination
of tie point correspondences among images of strongly varying views is challenging and often not feasible.
However, constraining relative orientation parameters (ROPs) among cameras mitigates this issue, and
just requires the computation of one pose per epoch (see section 3.1). Hence, we not only improved ROP
functionality of the powerful SfM pipeline COLMAP, but also implemented georeferencing capabilities
(see section 3.2). While prior camera poses from direct georeferencing or SLAM are a prerequisite,
incorporation of GCPs allows for a further quality improvement.

We explain our approaches within the next sections using a dataset captured in Basel in July 2014.
It features a typical configuration for road mapping in an urban environment. Six pinhole cameras are
assembled as three stereo systems, one facing forward, one back-right and one left (see figure 3.1). All
sensors are mounted on a rigid frame in order to ensure stability of relative orientations among cameras
but also to an IMU. More details concerning the dataset Basell4 can be found in section 4.2.1.

3.1 Relative Orientation Constraints for Image-Based Mobile
Mapping

Multi-camera mobile mapping systems allow for efficient data capturing, frequently covering the entire
horizontal field of view. Moreover, image acquisition at high frame rates and often in opposite driving
directions leads to highly redundant data. Hence, orientation of individual images is a cumbersome
approach, which is often not able to provide camera poses for several candidates. However, constraining
relative orientation parameters among multiple cameras enables both high accuracy and robustness of
image orientation.

Establishing adequate stereo bases is crucial for accurate 3D mapping. As typical in airborne scenarios,
images captured by the same camera at two different epochs can build a virtual stereo base. However,
such a virtual stereo base contains the inaccuracies of two camera poses derived from georeferencing.
Therefore, physical stereo bases are preferably used for applications with shorter distances to objects of
interest, which is the case for street-based mobile mapping. As shown by figure 3.1, physical stereo bases
require two cameras attached to a rigid frame. Since physical stereo bases can be calibrated with high
precision, they allow for 3D accuracies at the millimeter level, while virtual stereo bases rather deliver
centimeter accuracies.

The configuration depicted in figure 3.1 features 11 MP cameras for the forward looking stereo system
and 2 MP cameras for both the back-right and left pointing stereo systems. The higher geometric
resolution in driving direction is due to a larger line of sight compared to sideways as well as the availability
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of more objects of interest in the roadway. While this camera configuration that captured the dataset
Basell4 enables a stereo coverage in three horizontal directions, other configurations employing multi-
head panorama cameras deliver 360° horizontal mappings, and e.g. 270° in the vertical direction. If
combined, panoramas are frequently used for navigation and exploration purposes, and measurements for
accurate 3D coordinate determination are performed in stereo images. Reasons are small image overlaps
for panorama camera heads as well as rather short bases enabling accurate depth estimation only for short
distances. In contrast, large image overlaps of individual stereo camera systems allow for many feature
matches and thus well connected images due to a similar view and mapped area. However, assigning
point connections to other stereovision systems with varying views still poses some challenges.

Figure 8.1: Camera configuration (left) and images captured by all cameras at the same location during a mobile
mapping campaign in Basel in July 2014 (right: forward stereo [top], back-right stereo [middle], left stereo
[bottom]).

Exploitation of Multi-Camera Rigs

Standard image orientation procedures consider each camera separately. Hence, they would try to es-
timate six individual poses per epoch in case of our dataset Basell4. While feasible in well-structured
environments, these approaches barely deliver accurate and reliable pose estimations for all images in
difficult environments with low-texture areas or repetitive patterns. However, since we rely on fixed
multi-camera systems, these can technically be defined as multi-camera rigs. Nonetheless, as only feasi-
ble for images captured at exactly the same epoch, both a precise synchronization and a stable assembly
of all sensors are required. Moreover, the relative orientation parameters among all sensors have to
be precalibrated. However, constraining these calibrated ROPs during bundle adjustment means that
only reference camera poses need to be estimated, which significantly reduces the degrees of freedom.
Since handled as a unit, fewer observations per camera image are necessary, yet preferably distributed all
around in order to stabilize the multi-camera rig. The need for fewer feature correspondences is especially
beneficial for homogeneous surfaces or moving objects, but also for moderate to non-overlapping FOVs.

ROP Definition and Estimation Procedures

Every multi-camera rig has a reference camera, which is frequently the left camera of the forward pointing
stereo system, and varying relative orientation parameters to the other cameras. ROPs between two
cameras include three translation and three rotation parameters, that is six in total. In case of our dataset
Basel14, either five relations to the reference camera or two relations to the reference camera and three
bases can be defined (see figure 3.2). The conventional approach for multi-stereo, which expects position
vectors and rotations with regard to a reference camera, was implemented by Schonberger (2020) and is
our prime choice for multi-head panorama cameras. Inspired by Kersting et al. (2012), who primarily
focused on calibration and not on 3D mapping scenarios, we implemented a sophisticated approach that
is best suited for multi-stereo camera configurations. It handles stereo camera systems as individual
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units, thus featuring a position vector and a 3D rotation to the left camera and then a base to the
corresponding stereo camera partner. Since stereo bases are usually precalibrated with a higher precision
than the respective offsets and rotation components related to the reference camera, this approach enables
estimating arbitrary single components yet fixing the calibrated stereo values. For many scenarios, self-
calibration of rotations among stereovision systems is sufficient.

Our image orientation procedure based on COLMAP facilitates four different options:

e self-calibration of all ROPs
e fixed multi-camera rig (precalibrated ROPs with high precision required)

e fixed bases but estimation of all ROPs among reference camera and stereovision systems (precisely
precalibrated stereo bases needed)

e fixed bases but estimation of either offsets or rotations among reference camera and stereovision
systems (precisely precalibrated stereo bases needed)
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Figure 3.2: Top views of different ROP definition and estimation procedures: conventional approach always
referring to a reference camera (left), sophisticated approach that exploits precisely calibrated stereo bases depicted
in green (middle), approach for multi-head panorama cameras (right).

3.2 Georeferencing by Prior Camera Poses and Ground Control
Points

We aim for photogrammetric reconstructions, thus correct dimensions as well as positioning and attitude
information in a predefined geodetic reference frame are of utmost importance. In contrast, proper scaling
and georeferencing is often not handled in the computer vision community (see section 2.1.4). Since SfM
approaches deliver ambiguous scale factors, either a length reference bar or control points are required
in order to obtain metric reconstructions. In case of stereo mapping, the precise length of at least one
stereo base is needed.

Georeferencing is frequently achieved by performing a similarity transformation of the SfM model onto
GCP coordinates defined within the target datum. Rigid similarity transformations feature 6 degrees of
freedom (DoF), namely three translations and three rotations. In case of distorted geodetic reference
frames, estimating an additional scale factor is appropriate, which results in 7 DoF and a minimum of
three GCPs. However, more accurate results can be obtained by integrated georeferencing. Due to the
incorporation of exterior orientation parameters (EOPs) from direct georeferencing or SLAM, potential
image block deformations can be reduced or actually avoided. Moreover, exploitation of prior EOPs even
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allows for processing image sequences without GCPs. Nonetheless, GCP utilization for highly accurate
georeferencing or at least using one check point for validation is recommended.

COLMAP Implementations

The standard COLMAP processing pipeline (see figure 2.2) developed by Schénberger and Frahm (2016)
normalizes scenes in order to avoid degenerate visualizations after bundle adjustment and to improve
the numerical stability of algorithms. This normalization comprises scene scaling to a predefined extent
and scene coordinate reduction to the centroid. Hence, resulting SfM models have unknown scale factors
and arbitrary orientations. However, a standard COLMAP post-processing module called model_aligner
(Schonberger, 2020) enables correct georeferencing by performing a 3D similarity transformation to 3D
coordinates of at least three projection centers.

We aimed at a tighter and more accurate georeferencing implementation, which supports the incor-
poration of EOPs, GCPs and ROPs among cameras. Moreover, ROP definition with both hard and soft
constraints was demanded. While the utilization of prior EOPs already delivers scene scale and georef-
erencing that is typically in the decimeter to meter range, employing GCPs and calibrated ROPs lead to
a further refinement. In either case, a weak datum computation is performed, which results in modified
3D coordinates of both projection centers and ground control points.

If GCPs as well as a precise ROP calibration are available, our extended COLMAP procedure carries
out integrated georeferencing using a fixed multi-camera rig (see table 3.1, use case I). In case of a moder-
ately precise calibration, bundle adjustment with fixed ROPs among cameras can lead to inconsistencies.
Hence, ROP self-calibration is an adequate option (use case II). In order to avoid the time-consuming
step of GCP coordinate determination, integrated georeferencing solely based on EOPs and fixed ROPs
is the method of choice (use case III). However, ROPs among the reference camera and the other stereo
camera systems might be precalibrated with reduced accuracies compared to respective stereo bases. In
such a case, the precalibrated length of at least one stereo base needs to be fixed, while the other ROP
components can be defined as soft constraints (use case IV). Nonetheless, a precise ROP self-calibration
requires accurate initial EOPs as well as redundant image data, preferably captured in opposite driving
directions.

Use case EOPs | GCPs ROPs
Initial Fixed \ Initial

I: IG with GCPs and fixed ROPs X X X

II: IG with GCPs and ROP self-calibration X X X

III: IG without GCPs but with fixed ROPs X X

IV: IG without GCPs but with ROP self-calibration X X X

Table 3.1: Four use cases with varying exploitation of ground control points (GCPs) and relative orientation pa-
rameters (ROPs), but all relying on prior exterior orientation parameters (EOPs). Initial ROPs are precalibrated,
and additionally self-calibrated within bundle adjustment.

3.3 Preprocessing Steps for Integrated Georeferencing

Camera poses determined in urban as well as in indoor environments frequently show accuracies in the
decimeter range. Reasons are either poor GNSS conditions in urban canyons or camera poses derived
from SLAM. In order to improve the accuracy of these prior EOPs, we perform integrated georeferenc-
ing, which additionally relies on corrected images, on calibrated ROPs, and optionally on GCPs (see
figure 3.3). Hence, high-quality calibration of the complete configuration, an image processing step, and
direct georeferencing or SLAM are required. Calibration is an often underestimated yet crucial proce-
dure, playing a key role in ensuring high relative and absolute accuracies. It comprises calibration of
interior orientation parameters (IOPs) of each single camera, calibration of offsets and rotations between
a reference camera and all the other cameras (see section 3.1), as well as boresight alignment that is
the calibration of lever arm and misalignment relating the reference camera and the IMU body frame.
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Precisely calibrated interior orientation parameters serve for distortion and principal point corrections of
the images.

Calibration
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Figure 3.3: Components and processing steps that are needed in order to obtain highly accurate exterior orien-
tation parameters for all images.

3.3.1 Camera and Multi-Sensor System Calibration

Multi-camera mobile mapping systems enable efficient geodata collection for road corridor mapping appli-
cations. In order to facilitate the image orientation process, constraining ROPs among individual cameras
mounted on a rigid frame is fundamental. Hence, these ROPs but also interior orientation parameters of
each camera as well as lever arm and misalignment need to be calibrated precisely, since errors and offsets
will be transferred to the full extent to the following 3D mapping steps. While Burkhard et al. (2012) only
used one outdoor calibration field for the estimation of all components, we employ two calibration fields
for road mapping. An indoor calibration field serves for IOP and ROP estimation, whereas boresight
alignment is performed outdoors.

Calibration of Interior and Relative Orientation Parameters

Interior orientation parameters comprise the principal distance ¢, coordinates of the principal point xg, yo
as well as additional parameters for lens distortion, i.e. symmetric radial distortions and asymmetric
distortions caused by lens decentering. We usually estimate two radial and two tangential distortion
parameters. Our calibration procedure supports both pinhole and fisheye cameras (Blaser et al., 2018).
While pinhole cameras follow the perspective projection model, Ladybugb camera heads feature fisheye
lenses that are best fitted by the equidistant projection model (Abraham and Forstner, 2005). As shown
in section 3.1, there are ROP estimation approaches for general cases as well as for multi-stereo camera
configurations. While the first defines ROPs of all cameras with regard to a reference camera, the
latter separates ROPs of stereo bases and ROPs among a reference camera and the respective stereo
camera systems. We simultaneously estimate IOPs and ROPs by constrained bundle adjustment using
imagery from several epochs captured at different locations in an indoor calibration field (see figure 3.4).
Such a field features many signalized coded targets, which are uniformly distributed all around and
were determined with sub-millimeter accuracy in 3D. Calibrated ROPs typically show a precision at the
millimeter to sub-millimeter level.
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Figure 3.4: Indoor calibration field that is utilized for calibrating IOPs and ROPs (Source: iNovitas).

Boresight Alignment

A further step aims at estimating the relative orientation between the reference camera of a multi-
camera configuration and the body frame, which is the reference frame of the navigation system (see
section 7.1.1). While EOPs of the reference camera are computed by constrained bundle adjustment
usually incorporating images captured by the main stereo system pointing forward, body frame EOPs
are determined by direct georeferencing. The difference between these two solutions results in a position
vector ¥, and a corresponding rotation RY;, i.e. lever arm and misalignment (see green components
in figure 3.5). Since directly affected by the GNSS/INS solution that often shows accuracies at the
centimeter level, boresight alignment contributes a larger part to the total error than IOP and ROP
calibration. Therefore, good GNSS coverage at data collection time is essential, which can be ensured
in our two outdoor calibration fields. One was established on a basketball court and served for our
Basel datasets (see section 4.2.1), while the other features a rather straight road segment. Coordinates
of photogrammetric targets and well-defined natural points were determined with a 3D accuracy in the
millimeter range.

Please note that we use the following naming convention: A vector r defines three translations to
a target frame (subscript) w.r.t. an original frame (superscript), e.g. r% indicates the position of the
camera frame cl represented in the mapping frame m. A subscript of a rotation matrix defines an original
frame, while a superscript stands for a target frame. Therefore, R} indicates a 3D rotation from the
camera frame cl to the mapping frame m.

Camera poses for the dataset Basell4 are computed as follows:

e Pose of reference camera cl based on body frame pose (see gray components in figure 3.5) as well
as on lever arm and misalignment (see green components in figure 3.5):

r)] =r; + R} rlél (3.1)

Zf = Rz% Rlc)1 (32)

e Poses of cameras ¢2-c6 based on reference camera (c1) pose and ROPs (see purple components in
figure 3.5 as well as in figure 3.2):

ris =r; +R% rf:% (3.3)

¢ =RERY (3-4)
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riy=r)] + R} rié (3.5)

=R R (3.6)

="+ R7rS + R%rS (3.7)
i = R R RE (3.8)
=17 + R7r (3.9)

s = R4 R (3.10)

=1 4+ R re + R r (3.11)
6 = Rl RG R (3.12)
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Figure 3.5: Illustration of lever arm and misalignment (green) as well as camera pose computation (purple)
including the relevant coordinate systems: mapping frame (m), IMU body frame (b) and coordinate systems of
all cameras (c1-c6) for the dataset Basell4.

3.3.2 Direct Georeferencing and SLAM

We utilize cameras as mapping sensors, whereas GNSS and IMU as well as lidar sensors deliver data
for initial EOP computation that is required by our integrated georeferencing approach. While outdoor
navigation data comprises GNSS and IMU observations suitable for direct georeferencing, lidar and
IMU data are processed in a SLAM procedure for indoor environments. In such environments where
homogeneous surfaces and repetitive textures are omnipresent, active sensor technologies are preferred
over passive and thus the choice for lidar SLAM and not visual SLAM.
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Direct Georeferencing

In outdoor environments, we rely on complementary data collected by INS and differential GNSS em-
ploying virtual reference stations. While inertial navigation delivers high relative accuracies, GNSS can
correct IMU drift effects, enabling accurate global solutions as well (see section 2.1.1). Nonetheless, GNSS
signal outages or systematic errors due to multipath effects, incorrectly fixed GNSS carrier phase ambi-
guities or cycle slips are prevalent in urban environments. We process navigation data in tightly coupled
mode using the GNSS and inertial post-processing software Inertial Explorer! from NovAtel. Further-
more, we perform processing in multi-pass directions and additionally smooth trajectories. Incorporation
of image events with timestamps provides body frame poses in WGS84 and Euler angles as roll v, pitch
0, heading v (see figure 3.6). Subsequently, we transform these global geographical coordinates into a
map projected coordinate system as well as ellipsoidal to orthometric or leveled heights. Our application
scenarios usually demand a mapping frame of Switzerland, thus a Swisstopo tool named REFRAME?
can e.g. deliver plane coordinates in the Swiss horizontal reference frames LV03 or LV95, and leveled
heights in the Swiss vertical reference frame LN02. Euler angles are converted from the representation
roll v, pitch 0, heading % to omega w, phi ¢, kappa x (see section 7.1.2 for formulas). As explained in
section 3.3.1, lever arm (LA) and misalignment (MA) allow for computation of reference camera poses,
and utilizing calibrated ROPs among cameras lead to EOPs from direct georeferencing for all images.

Indoors: SLAM

/ Lidar / / IMU /
|+l
Navigation data processing
v
/ Trajectory /
[xy.z qviqx,quqz]
Image events Time-based linear
with timestamps interpolation
v
LA MA / Poses of body frame /
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v
Translations, rotations, rotation
parametrization conversion
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/Camera poses [E,N,H w,(p,K]/ /Camera poses [E,N,H w,<p,K]/

Figure 3.6: Workflows for direct georeferencing (left) and SLAM (right). Resulting EOPs are needed as initial
values for our subsequent integrated georeferencing approach.
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Simultaneous Localization and Mapping

We perform indoor 3D mapping using a multi-head panorama camera. Nonetheless, trajectories are com-
puted by SLAM (see section 2.1.3) utilizing the Google Cartographer (Hess et al., 2016) that employs
lidar and IMU data (see figure 3.6). The starting position of lidar SLAM defines the origin of a local
Cartesian coordinate system. Although real-time poses are computed, an optimized sensor trajectory is
exported once data collection is completed. In a post-processing step, we conduct time-based interpola-
tion of the camera trigger events between the trajectory events. Linear interpolations for the positions
and spherical linear interpolations based on quaternions for the orientations result in body frame poses.

Lhttps://novatel.com/products/waypoint-software/inertial-explorer
2https://www.swisstopo.admin.ch/en/maps-data-online/calculation-services/reframe.html
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Afterwards, we either transform these local poses or control point reference coordinates by a 6 DoF sim-
ilarity transformation. Moreover, we convert quaternions gy, ¢z, gy, - to the Euler angles representation
omega w, phi ¢, kappa x (see section 7.1.2 for formulas). Employing boresight alignment parameters
between the body frame and the reference camera head as well as calibrated ROPs among panorama
camera multi-heads result in prior exterior orientation parameters for all images.

3.4 Implementation of our Integrated Georeferencing Approach
based on COLMAP

COLMAP is a powerful incremental structure-from-motion tool, which was mainly developed by Johannes
Schonberger (Schonberger and Frahm, 2016; Schonberger, 2018). Since established as one of the best
performing open-source tools of its kind, COLMAP often serves as a baseline in the computer vision
community, representing the pipeline based on hand-crafted features. It supports perspective as well
as fisheye camera models. The standard procedure depicted in figure 2.2 first extracts SIFT features,
then matches them, followed by geometric verification that leads to a scene graph. Based on a carefully
selected two-view reconstruction, the sparse model grows incrementally. The underlying loop consists
of image registration, triangulation of scene points, reconstruction refinement by bundle adjustment and
outlier filtering. As already mentioned in section 3.2, the resulting SfM models have unknown scene
scales and they are not georeferenced. Furthermore, due to strong motion in driving direction and tiny
bases, sequences of monocular images barely enable an adequate initialization. While ROPs among multi-
cameras can be constrained, i.e. just estimation of all ROPs, precalibrated values cannot be defined and
thus none can be fixed. Moreover, there is no GCP support and incorporation of initial EOPs is not
possible in the standard COLMAP pipeline. However, Heng et al. (2019) modified COLMAP so that
initial pose estimates from a GNSS/INS system can be used for tie point triangulation, which considerably
speeds up the process that is especially beneficial for large-scale reconstructions.

We extended COLMARP for the purpose of integrated georeferencing (see section 2.1.1 and figure 3.7).
When compared to the standard COLMAP pipeline (see figure 2.2), the main difference is a global
and not an incremental reconstruction process (see section 2.1.2). Since we rely on initial EOPs from
direct georeferencing or SLAM (see section 3.3.2), we can directly triangulate tie points for all images.
Prior EOPs further enable spatial feature matching and they serve for bundle adjustment (see section
2.1.5), where GCPs and ROPs are exploited as well. The standard procedure performs both local and
global bundle adjustment. The first is conducted for each new image by employing a predefined number
of images, while the latter incorporates all images and is carried out as soon as either the number of
registered images or the number of generated 3D tie points meet some criteria. In contrast, our modified
approach only performs iterative global refinement, which leads to significantly shorter computation
times.

Images

Correspondence Search

Feature Extraction

Feature Matching

Geometric Verification

Global Reconstruction
Triangulation m [

Bundle Adjustment

EoPs|ccps|ROPS

Outlier Filtering

Sparse
Reconstruction

Figure 3.7: Adapted processing pipeline of COLMAP based on initial exterior orientation parameters (EOPs).
Our contributions are marked in red, and they basically include a global SfM procedure exploiting EOPs, GCPs
as well as ROPs (compare with figure 2.2).
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Our integrated georeferencing approach utilizes three COLMAP modules, namely the feature_extractor
and the spatial_matcher for correspondence search as well as the mapper module for global reconstruc-
tion (see figure 3.8). These modules contain the core functionality and they are implemented in C++.
Moreover, we developed additional data preprocessing and post-processing procedures in Python, ranging
from measuring pixel coordinates of GCPs to camera pose transformations.

3D coordinates of projection centers are given in a predefined coordinate reference frame, however,
COLMAP requires translation vectors in a local system. Therefore, we first reduce initial projection
centers to the EOP centroid, i.e. 3D coordinate translation into a local coordinate system. This step
prevents calculation inaccuracies since large values can cause numeric instabilities. Second, we compute
translation vectors t based on rotation matrices Rey and projection centers X as follows:

t=[t t, t.] =-RevXo (3.13)

(see section 7.1.2 for details on rotation matrices). Furthermore, we convert Euler angles as omega w, phi
©, kappa k to quaternions g, ¢z, ¢y, g» (see section 7.1.2 for formulas). Correspondence search and global
reconstruction result in refined local poses, which are transformed back to the predefined coordinate
reference frame. Local projection center coordinates Xy are computed based on rotation matrices Reoy
and translation vectors t

Xo=[Xo Yo Z ] =-R&yt (3.14)

, and quaternions are converted to Euler angles (see section 7.1.2 for formulas).

We usually employ a few GCPs that are available in a predefined coordinate reference frame. Same as
projection center coordinates, the 3D coordinates of these GCPs are reduced to the EOP centroid. These
local coordinates do not require a further calculation, but can directly be utilized within the bundle
adjustment process. ROPs are defined in a different local coordinate system. The reference camera
defines its origin, the x-axis frequently points to the stereo partner, the y-axis upwards and the z-axis
complements the right-handed coordinate system. In order to compute the desired components in a local
system, equation (3.13) is needed that is the same as for EOPs.
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Figure 3.8: Adapted processing pipeline indicating COLMAP modules as well as required camera pose and 3D
coordinate transformations.

Correspondence Search

As depicted by figure 3.7 and figure 3.8, correspondence search comprises feature extraction, feature
matching and geometric verification. COLMAP extracts SIFT features by default. However, Schonberger
et al. (2017) show that DSP-SIFT (Dong and Soatto, 2015) performs better than SIFT. Since more



Developed Methods for Integrated Georeferencing 41

features are extracted at the cost of longer computation times, DSP-SIFT is particularly advantageous
in difficult environments with poor texture. We rely on initial EOPs, so that the spatial feature matcher
implemented in COLMAP can be used. In order to reduce the search space, it only considers camera
positions closer than a given maximum radius from the current image. Moreover, we added a maximum
angle constraint to further speed up the process, as feature matching is the most time-consuming step
within the COLMAP procedure.

Geometric verification of potentially overlapping image pairs is performed as described by Schonberger
and Frahm (2016). SfM verifies the matches by trying to estimate a transformation that maps feature
points between images using projective geometry. If a valid transformation maps a sufficient number of
features between the images, they are considered as geometrically verified. Since the correspondences
from matching are often outlier-contaminated, robust estimation techniques, such as RANSAC, are then
required. The output is a scene graph with images as nodes and verified pairs of images as edges.

Global Reconstruction

Verified feature matches are triangulated to natural 3D points based on prior EOPs (see figure 3.9).
Particularly in straight segments, same tie points are visible in numerous images. Hence, COLMAP
tries to extend 3D point tracks, and merges 3D points that are very close to each other, followed by
retriangulation. Bundle adjustment jointly refines camera poses and scene structure in a non-linear
optimization (see section 2.1.5). We carry out global bundle adjustment based on Google’s Ceres Solver
library for non-linear least squares problems (Agarwal et al., 2020). Our bundle adjustment procedure
(see equation (3.15)) minimizes reprojection errors between projected natural 3D points as well as ground
control points and their corresponding 2D measurements in image space (see equation (3.16)). Moreover,
same as Rumpler et al. (2017), it also minimizes differences of 3D projection center coordinates from
direct georeferencing or SLAM and photogrammetric reconstruction (see equation (3.17)). We use either
zero loss or the Cauchy loss function to potentially down-weight outliers. However, mobile mapping
datasets frequently feature a moderate number of outliers, so that the robust Huber loss function would
be an adequate option as well.
Optimization problem:

fr=min> E(P)+ > EP(R)+ Y EY(S) (3.15)

where FE = error function
P = natural 3D points
R = reference / ground control points
S = projection centers (from direct georeferencing or SLAM)

Error function for 3D points (tie points and GCPs):

E(X)= Y p(CP(Ti(X),2")) (3.16)

reXp

where p = loss function (e.g. robust Cauchy function)
CT = 2D reprojection error / Euclidean distance in 2D
I'(X) = projected 3D point into image
x = observed 2D measurement

Error function for projection centers:

E(C) = Y p(C™(M, ) (3.17)
MeS

where p = loss function (e.g. robust Cauchy function)
C% = Euclidean distance in 3D
M = projection center from direct georeferencing or SLAM
C = reconstructed projection center
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Besides, we enforce calibrated relative orientation parameters or define constraints for ROPs among
cameras in bundle adjustment (e.g. constant ROPs for base over all image sequences if self-calibrated).
COLMAP then completes and merges 3D point tracks, removes inconsistent points, retriangulates ob-
servations before performing a new bundle adjustment computation. This iterative global refinement
process is continued until convergence is reached.

Iterative global refinement

Global bundle adjustment

+ Point filtering

{ Image i F» Triangulation

Figure 8.9: Detailed workflow of our global reconstruction procedure.
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Summary

We presented our main contributions and their implementations in COLMAP within this chapter.
Constraining relative orientation parameters among cameras allows for precise and robust image
orientations, while incorporation of prior camera poses and ground control points leads to accurate
georeferencing. In chapter 4, we evaluate our integrated georeferencing approach based on datasets
featuring different environments and varying multi-camera systems.
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Chapter 4

Evaluation of Integrated
Georeferencing Approach

We aim at improving moderately accurate camera poses from direct georeferencing or SLAM in order to
enable high-quality dense image matching. Since relying on multi-camera systems and exploiting relative
orientation constraints (see section 3.1), image redundancy can be leveraged. For efficiency reasons,
not the maximum but the most adequate number of cameras is of interest. Therefore, we evaluate
varying camera configurations in different environments. Road and rail scenes often feature well textured
areas that enable sufficient feature matching. In contrast, indoor environments are more challenging
due to repetitive structures and weakly textured surfaces (see section 4.5). Furthermore, GNSS signals
cannot be received indoors, so that a SLAM procedure is required for initial camera pose determination.
We performed extensive investigations and show that our integrated georeferencing approach based on
COLMAP is universally applicable. While GCP incorporation allows for high accuracies, solely employing
EOPs increases efficiency.

4.1 Use Cases and Evaluation Methodology

We considered six datasets to determine the performance of our developed integrated georeferencing
approach in terms of accuracy, robustness, efficiency and versatility. Three street-level datasets as well
as one rail dataset were all captured by multi-stereo camera systems. While one stereovision system
always pointed forward, additional stereo camera systems enabled a close to 360° horizontal coverage. A
full horizontal coverage was reached in our two indoor use cases by utilization of a multi-head panorama
camera. Such configurations enable strong feature point connections that lead to accurate and robust
results.

4.1.1 Overview of Test Campaigns

We evaluate our integrated georeferencing approach using several real-world datasets (see table 4.1). They
comprise road, rail and indoor environments. While prior EOPs were obtained by direct georeferencing
outdoors, lidar SLAM delivered initial EOPs in GNSS denied environments such as buildings (see section
3.3.2). The two datasets Basell4 and Basell5 cover the same study area in the city center of Basel
(see section 4.2). It includes a junction with three street sections. Nonetheless, the utilized camera
configurations vary considerably. While three horizontally arranged stereo camera systems served for
Basel14, Basellb features five stereo systems and two further cameras. Apart from a forward pointing
stereo camera system, there are four stereo systems constituted by panorama camera heads that enable
an adequate vertical coverage. A standard stereo Y configuration featuring stereo camera systems facing
forward, back-right and back-left was employed for capturing the dataset Zugl7 (see section 4.3). It
includes five street loops in a suburban environment. The rail dataset Viennal6 involves a train station
and was acquired by five stereo camera systems (see section 4.4). In contrast, a panorama camera collected
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the indoor datasets Muttenzl7 and Muttenz18 that cover the same floor of a building (see section 4.5).
Indoor environments typically show homogeneous surfaces and repetitive patterns, which pose a major

challenge for feature matching.

’ Name Month \ Environment \ Prior EOPs \ Used camera config. \ # Cam. ‘
road: urban GNSS/INS | 2x forward, 2x back-right,
Basell4 07.2014 (junction) (DG) 2x left 6
road: urban GNSS/INS | 2x forward,
Basell3 08.2015 (junction) (DG) 2x tilted panorama (2x 5) 12
standard stereo Y:
Zugl7 03.2017 Egad.lsubu)rban GN(%S(SNS 2x forward, 2x back-right, 6
ve J00ps 2x back-left
. rail: GNSS/INS | 4x forward, 2x downward,
Viennal6 10.2016 train station (DG) 2x right, 2x left 10
Muttenz17 | 11.2017 | door Lidar SLAM | X horizontal panorama 5
building (5 camera heads)
Muttenz18 | 03.2018 | 240OT Lidar SLAM | X horizontal panorama 5
building (5 camera heads)

Table 4.1: Overview of datasets and utilized multi-camera systems. Road and rail environments were mapped by
multi-stereo systems, while a panorama camera served for indoor mapping.

Our integrated georeferencing approach relies on initial EOPs, exploits ROPs among cameras, and
can employ GCPs. Varying environments lead to different accuracies of initial EOPs. Its influence as
well as the benefit of not only using a forward pointing stereo camera system are extensively investigated
within the next sections. According to table 3.1, we differentiate four use cases by utilization of GCPs or
not, and either by fixing ROPs or by self-calibrating them. Due to GCP incorporation, use cases I and
IT allow for highest accuracies. Moreover, exploitation of ROPs among cameras attached to a rigid frame
greatly increases the chance that all images can be oriented, i.e. high robustness. As shown by table 4.2,
we fixed precalibrated ROPs for our indoor datasets, while self-calibrating ROPs in the outdoor cases.
Determination of GCP coordinates is a costly task. Hence, we demonstrate the accuracy potential of
integrated georeferencing without GCPs for an extended junction in an urban environment as well as for
several loops in a suburban neighborhood. Moreover, we show that a multi-camera configuration of a
train-based MMS can be self-calibrated by only fixing stereo camera bases.

[Name | I | 0O [0 ] IV [V]

Basell4

122, 423

5

Basell5

122, 423

4.24

Zugl7

4.3.2

4.3.3

Viennal6
Muttenz17
Muttenzl18

4.4.2

4.5.2
4.5.2

Table 4.2: Chapter indication of datasets and respective use cases defined in table 3.1 for evaluation of our
integrated georeferencing approach. I: IG with GCPs and fixed ROPs, II: IG with GCPs and ROP self-calibration,
IIT: IG without GCPs but with fixed ROPs, IV: IG without GCPs but with ROP self-calibration, V: In-sequence
dense image matching.

4.1.2 Standard Processing and Investigation Procedure

One of our main features is the exploitation of relative orientation constraints (see section 3.1). Hence, the
ROP configuration and its corresponding calibrated values need to be defined in a JSON file as expected
from COLMAP. For all of our outdoor use cases, the left camera of the forward pointing stereo system
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serves as reference of the multi-stereo camera rig. Indoors is different, since the backward facing camera
head of the panorama camera acts as reference.

We mainly used the predefined COLMAP standard parameters. Therefore, SIFT features were ex-
tracted for all of our outdoor datasets. However, we performed DSP-SIFT feature extraction for our
indoor datasets Muttenz17 and Muttenz18. While DSP-SIFT delivers more features that is especially
beneficial in difficult environments with weakly textured areas, computation time is significantly increased
(see section 3.4). We frequently used a maximum angle constraint of 100 degrees within the spatial fea-
ture matching procedure, which would even allow for matching of images from forward and left pointing
systems. Although we usually utilized a maximum radius of 20 m, we used 10 m for the datasets Basel14
and Basell5 when processed with GCPs as well as for our indoor datasets. We did not refine any interior
orientation parameters within the bundle adjustment process, since they were previously calibrated pre-
cisely (see section 3.3.1). Empirical experiments showed that the linear solver type SPARSE_SCHUR needs
considerably less computation time than ITERATIVE_SCHUR for bundle adjustment due to faster conver-
gence. Furthermore, we considered a maximum of ca. 10’000 images within a single processing, which
is still feasible with SPARSE_SCHUR and thus our prime choice. We utilized the zero loss function due to
a rather low amount of outliers and in order to avoid down-weighting of GCP observations. Nonethe-
less, investigations without GCPs for Basell5 and Zugl7 were performed using the robust Cauchy loss
function.

In order to determine the achievable mapping accuracy, comparing 3D coordinates of check points
with a more accurate reference is the standard procedure. This reference is frequently captured by
tachymetry. Check point coordinates are computed by spatial intersection employing exterior orientation
parameters from integrated georeferencing as well as image point measurements performed manually. For
the datasets Basell4 and Basell5, we used a Matlab tool and determined 3D point coordinates based
on single stereo image pairs from the forward pointing camera system, i.e. only two image observations
for each point were provided. For the other datasets, we performed a bundle adjustment-based forward
intersection with a Python tool usually employing four image observations per point.

4.2 Test Campaigns in an Urban Environment

Urban environments frequently show various scene structures and distinctive textures, which is beneficial
for feature extraction and matching. However, prevalent large buildings in cities often form urban canyons.
These pose a challenge for GNSS positioning due to GNSS outages and multipath effects. Hence, direct
georeferencing accuracies of several decimeters up to meters are the normal case in such environments. We
performed two road mapping campaigns using different camera configurations in the city center of Basel,
Switzerland. The first configuration includes three stereo camera systems, while the other incorporates
twelve cameras acquiring highly redundant imagery. In a first set of experiments, we assessed the quality
of directly georeferenced image orientations as well as its improvement by integrated georeferencing.
Subsequently, we compared different scenarios regarding camera configurations and GCP groups. Finally,
the potential of integrated georeferencing without employing any GCPs was investigated.

4.2.1 Vehicle-Based Mobile Mapping Systems and Data
Mobile Mapping Platform

The vehicle-based stereovision mobile mapping research platform of the Institute of Geomatics at FHNW
features several industrial stereo cameras with CCD sensors as well as a GNSS/IMU positioning system
(see figure 3.1 and figure 4.1). All sensors are synchronized by hardware trigger signals from a custom-
built trigger box. Although the platform allows for arbitrary camera configurations, there is always a main
stereovision system with high-resolution cameras facing forward covering the road with its infrastructure
(see table 4.3 and table 4.4). For the campaign in July 2014, we additionally assembled FHD cameras
forming a back-right stereovision system mapping the closer sidewalk area and lower fagade parts as well
as a left stereovision system covering the opposite sidewalk area. However, we did not consider imagery
captured by a panorama camera in our experiments. For the campaign in August 2015, we used our novel
360° stereo panorama setup with two multi-head panoramic cameras equipped with fisheye optics tilted
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forward and backward by 90° each (Blaser et al., 2018; Nebiker, 2019). In addition to one single camera
head facing forward and one backward, the other individual heads of the panoramic cameras pointing
sideways constitute five stereo systems. They cover pavement, complete fagades of buildings and the
entire overhead space even in heavily built-up urban environments. However, we disregarded imagery
from the stereo system looking downward at the mobile mapping vehicle as well as images captured by
an additional FHD camera in the center of the forward pointing stereo camera system (see figure 4.2).

Our MMS features a NovAtel SPAN inertial navigation system for direct georeferencing of the imagery
acquired at typically 5 fps. The navigation system consists of a tactical grade inertial measurement unit
featuring fiber-optics gyros of the type UIMU-LCI and a L1/L2 GNSS kinematic antenna. In case of
good GNSS coverage, these sensors provide an accuracy of horizontally 10 mm and vertically 15 mm
during post-processing. Accuracies of the attitude angles roll v and pitch 6 are specified with 0.005° and
heading ¥ with 0.008°. A GNSS outage of 60 seconds degrades the horizontal accuracy to 110 mm and
the vertical to 30 mm.

Figure 4.1: Multi-view multi-sensor stereovision IGEO mobile mapping system with sensor configuration for the
campaign in July 2014 (left) and for the campaign in August 2015 (right).

Camera tvpe Sensor size Pixel size Principal Field of view Camera

P [um] distance [mm] '] model
AVT 11 MP (4008 x 2672) 9.00 21.0 81 x 60 perspective
Basler/FHD 2 MP (1920 x 1080) 7.40 7.9 84 x 54 perspective
Ladybug 5 5 MP (2448 x 2048) 3.45 43 113 x 94 fisheye
camera head

Table 4.3: Interior orientation parameters of the three different camera types mounted on the IGEO mobile

mapping system.

Basel14 Basell5
Pointing direction forward back-right Joft forward 'left—down'7 left-up,
of stereo cameras right-up, right-down
Camera type AVT Basler Basler AVT Ladybug 5
Base length [mm)] 905 779 949 905 1584

Table 4.4: Length of stereo bases for the two camera configurations used during the campaigns in Basel.
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Figure 4.2: Mobile mapping images captured by all cameras at the same location during the campaign in August
2015 (forward stereo [top left], panorama forward and backward [top right], panorama stereo [middle and bottom]).

Study Area and Mobile Mapping Data

The relatively small but demanding study area depicted in figure 4.3 is located at a very busy junction
of five roads in the city center of Basel, Switzerland. It includes three streetcar stops leading to many
overhead wires as well as large and rather tall commercial properties (see figure 4.4) that create a very
challenging environment for GNSS positioning (see figure 4.6). Besides, there is ongoing construction
work as well as several moving objects such as pedestrians, cars and streetcars in the investigated region,
which pose even more challenges for data processing. Three street sections of this test site featuring
sidewalks were mapped three times, once in July 2014 and twice during a day in August 2015, which
is a difference in time of 13 months (see table 4.5). In all nine cases data acquisition was performed
shortly before noon and in good weather conditions. The individual image sequences contain 85 up
to 191 timestamps on a sequence length between 108 m and 217 m. An along-track distance between
successive image exposures of 1 m was targeted, but larger distances occurred at velocities higher than
18 km/h since the maximum frame rate was 5 fps.

While the campaign in July 2014 was part of a complete survey of the city-state of Basel, the campaign
in August 2015 was specifically performed for the investigations at our study area (see figure 4.5). In
order to capture optimal trajectories, we collected kinematic data according to best practice as specified
by the manufacturer. First, static initialization for approx. three minutes in an open sky area followed
by leveling until approaching the test site was carried out. After the first mapping of the test site, an
additional loop was driven so that data could again be acquired in the study area. Returning to the start
area, imagery was captured on our outdoor calibration field for the purpose of boresight alignment. A
further loop served for leveling and there was a static observation at the end of around four minutes nearby
the former FHNW building as well. A GNSS station on its roof, which used to be part of the Automated
GNSS Network for Switzerland (AGNES), was defined as base station. The complete campaign resulted
in a total trajectory length of 22.756 km and 12’220 image epochs captured on 20.8.2015 from 10:17:53
until 11:19:29. Section 3.3 covers calibration and direct georeferencing for the dataset Basell4, while
Blaser et al. (2018) describe in detail the complete calibration and processing procedure for the dataset
Basell5.
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— Location 201 —
~——/ Location 202

Figure 4.3: Base map of the study area with overlaid projection centers of selected stereo image sequences, 3D
reference points and locations of trajectory discontinuities (Source of base map: Geodaten Kanton Basel-Stadt).

Figure 4.4: Mobile mapping imagery of the campaign performed in July 2014 illustrating the test site charac-
teristics but also typical challenges, e.g. GNSS shadowing, numerous pedestrians, heavy traffic with multiple
streetcars, cars and cyclists.

Sequence Date and Time # Epochs Length [m] Ali/([):fr_ltm(;k‘ Spamlr\l/lga)[(r.n]
1.0 24.7.14 10:20 123 164 1.34 1.97
1.1 20.8.15 10:30 161 173 1.08 1.25
1.2 20.8.15 10:47 156 175 1.13 1.48
2.0 27.7.14 11:53 157 173 1.11 1.60
2.1 20.8.15 10:34 171 212 1.25 2.06
2.2 20.8.15 10:50 191 217 1.14 1.93
3.0 27.7.14 11:57 85 108 1.29 1.49
3.1 20.8.15 10:37 116 141 1.23 1.73
3.2 20.8.15 10:53 96 146 1.54 2.37

Table 4.5: Characteristics of the nine selected image sequences x.y (where x corresponds to the street sections 1
to 3 shown in figure 4.3 and y indicates the campaign, 0 = 24./27.7.2014, 1 = 20.8.2015 10:30-10:37, 2 = 20.8.2015
10:47-10:53).
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Figure 4.5: Trajectory of the campaign performed on 20.8.2015 (green: high direct georeferencing quality, red:
low quality, study area: medium to low quality; trajectory extent in east-west direction is approximately 4.75
km).
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Figure 4.6: Number of satellites for all image sequences captured in Basel (blue equals five satellites). The
variations for each street section are significant, even though campaign 2 was only performed 16 minutes later
than campaign 1 (compare middle with bottom row).
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Reference Data

In order to validate our results, we captured independent and highly accurate reference data in March
2015, which is eight months after the first mobile mapping survey. Nonetheless, there were no significant
changes for permanent objects such as buildings and roads in the study area. However, changes occurred
due to moving objects.

We performed four 360° terrestrial laser scans recording XYZ point geometry and intensity (see
figure 5.5). By registering the point clouds onto several cadastral reference points, an absolute 3D TLS
accuracy of 1-2 cm was obtained. In addition, we determined 3D coordinates of more than 50 points
mainly on corners of road markings using a total station. These points have an absolute 3D accuracy of
better than 1 cm and served either as ground control or check points. All measurements were performed
in the Swiss horizontal reference frame LV95 and with leveled heights in the LNO2 vertical reference
frame.

4.2.2 Significant Improvement of Direct Georeferencing Solution by Inte-
grated Georeferencing

By performing both trajectory and check point investigations, we show within this section that direct geo-
referencing solutions consistently deviate several decimeters in challenging urban environments. However,
these offsets as well as trajectory discontinuities can be corrected by integrated georeferencing.

o GCP group 1 _ A
A}
A

B
GCP group 2 M~~9-8<( e N N
GCP group 3 LAY

2.1

A Ground Control Points (GCP)
& Check Points (CP)
@ Image Seguence 2.1

50 m

GCP group 4 /-
4

-

-

Figure 4.7: Locations of ground control point groups as well as check points for stereo image sequence 2.1 (Source
of background map: Geodaten Kanton Basel-Stadt).

Data Processing

We established one GCP group consisting of two, three or four GCPs at each end of a street section as well
as two additional GCP groups in-between close to the corresponding sharp curve (see figure 4.7). Since
street section 3 is a straight segment, it was defined by only two GCP groups. Identification and sensor
coordinate measurement of the utilized natural GCPs mainly on corners of lane markings or crosswalks
was sometimes challenging. We performed integrated georeferencing with ROP self-calibration for each
of the nine forward stereo image sequences by incorporating exterior orientation parameters from direct
georeferencing. Hence, ROPs of the forward pointing stereo base were constrained but not fixed. This
resulted in a mean track length, which is the mean number of images that observe the same tie point, of
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at least 7 for all sequences (see table 4.6). Furthermore, all values for mean observations per image are
larger than 3000 and mean reprojection errors between 0.71 and 0.83 pixel were computed. Please note
that no separation between GCPs and tie points but the total values are depicted.

Sequence 1.0 1.1 1.2 Mean 1.x
Registered images 246 322 312

3D points 126’568 160’896 150’814
Observations 885’720 | 1'191’775 | 1’052°595

Mean track length 7.0 7.4 7.0 7.1
Mean obs. per image 3601 3701 3374 3599
Mean reproj. error [px] 0.73 0.76 0.81 0.77
Sequence 2.0 2.1 2.2 Mean 2.x
Registered images 314 342 382

3D points 156’445 1547529 166’459
Observations 1’200°287 | 1’259’882 | 1’308’171

Mean track length 7.7 8.2 7.9 7.9
Mean obs. per image 3823 3684 3425 3644
Mean reproj. error [px] 0.71 0.79 0.81 0.77
Sequence 3.0 3.1 3.2 Mean 3.x
Registered images 170 232 192

3D points 90’498 107’511 83’328
Observations 708’763 832’515 583’823

Mean track length 7.8 7.7 7.0 7.5
Mean obs. per image 4169 3588 3041 3599
Mean reproj. error [px] 0.74 0.83 0.81 0.79

Table 4.6: COLMAP processing statistics of datasets Basell4 and Basell5. Four GCP groups were considered
for street sections 1 and 2, while two GCP groups were incorporated for street section 3.

Trajectory and Orientation Deviations between Direct and Integrated Georeferencing

In order to assess the quality of directly georeferenced sensor orientations as well as the potential improve-
ment by integrated georeferencing in a challenging urban environment with frequent GNSS degradations,
we computed deviations of projection centers and orientation angles between direct and integrated geo-
referencing for all nine sequences. 3D deviations of projection centers range from 59 mm to 804 mm and
result in a mean value of 400 mm (see table 4.7 and figure 4.8). The height is the component with the
largest residuals for all but for sequences 3.1 and 3.2. We obtained rather small deviations for street
section 3, for both projection centers and orientation angles (see table 4.8). While sequences 1.1 and 2.1
show the largest omega w and kappa x deviations with more than 0.4°, we achieved mean values of ca.
0.25° for these components. Phi ¢ values are rather small for all sequences.
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| Sequence | AE[mm] [ AN[mm] | AH[mm] | A3D [mm] |
1.0 297 38 425 520
1.1 38 89 125 159
1.2 436 29 568 716
2.0 54 40 83 107
2.1 266 92 502 576
2.2 173 478 624 804
3.0 31 17 88 94
3.1 29 42 30 59
3.2 166 520 135 562
Mean 166 149 287 400

Table 4.7: RMSE values for deviations of projection centers between direct and integrated georeferencing.
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Figure 4.8: RMSE values in mm for deviations of projection centers between direct and integrated georeferencing
depicted in a chart (same values as in table 4.7).

| Sequence | Aw [] \ Ag [] \ Ak [] \
1.0 0.240 0.090 0.239
1.1 0.442 0.068 0.418
1.2 0.389 0.071 0.366
2.0 0.069 0.049 0.080
2.1 0.405 0.080 0.440
2.2 0.381 0.062 0.431
3.0 0.023 0.058 0.038
3.1 0.103 0.087 0.086
3.2 0.094 0.063 0.143
Mean 0.238 0.070 0.249

Table 4.8: RMSE values for deviations of image orientation angles between direct and integrated georeferencing.

Potential improvements in deviations of projection centers and thus in trajectory accuracy due to
integrated georeferencing over direct georeferencing are illustrated in detail by figure 4.9 to figure 4.17.
Trajectories of stereo image sequences captured on the same street section at different times show differ-
ences of up to several decimeters. While we obtained small deviations for sequences 1.1 and 2.0, they are
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significantly larger for the other sequences of these two street sections. All deviations of street section 3
are smaller than 20 cm, with the exception of the north component of sequence 3.2, which amounts to
approx. 50 cm. All sequences of street section 1 basically show positive deviations in the east component,
negative height deviations, and north deviations that are close to zero.
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Figure 4.9: Deviations of projection centers in m for image sequence 1.0. Residuals of the east component as well
as height deviations amount to several decimeters. There is a trajectory discontinuity at location 101.
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Figure 4.10: Deviations of projection centers in m for image sequence 1.1. All differences are smaller than 20 cm,
but there is a trajectory discontinuity at location 101.
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Figure 4.11: Deviations of projection centers in m for image sequence 1.2. Large residuals for both the east com-
ponent and the height were obtained. Moreover, the computed deviations disclose two trajectory discontinuities,
one at location 101 and one at location 102.
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Figure 4.12: Deviations of projection centers in m for image sequence 2.0. Even though differences are small,
they reveal two trajectory discontinuities at locations 201 and 202.

0.7
0.6
0.5

;

\
/

0.4 : g
0.3
0.2

= Location 201
0.1 : A East
0.0 : , — , , . +ANorth
010 50 2 250 2350, A Height

Stereo image number
-0.2

-0.3
-0.4

Figure 4.13: Deviations of projection centers in m for image sequence 2.1. The height component shows residuals
of more than 30 cm as well as a significant discontinuity at location 201.
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Figure 4.14: Deviations of projection centers in m for image sequence 2.2. All differences are negative and they
range up to 70 cm. There is a trajectory discontinuity at location 201.
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Figure 4.15: Deviations of projection centers in m for image sequence 3.0. Most differences are smaller than 10
cm.
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Figure 4.16: Deviations of projection centers in m for image sequence 3.1. Although all differences lie within the
sub-decimeter range, they reveal a trajectory discontinuity at location 301.
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Figure 4.17: Deviations of projection centers in m for image sequence 3.2. The north component deviates by ca.
50 cm, while the other two components show differences of less than 20 cm.

Trajectory Discontinuities in Direct Georeferencing

The charts illustrating trajectory deviations between direct and integrated georeferencing clearly reveal
nine trajectory discontinuities, which are indicated by vertical dotted lines (see figure 4.9 until figure 4.17).
According to figure 4.3 and figure 4.18 all of them but one (location 202) were caused by a vehicle stop
of several seconds mainly in front of crosswalks. However, no correlation between stop duration and 3D
value of the discontinuities could be proven (see table 4.9). 3D discontinuities amount mostly to a few
centimeters, but they reach up to approx. 15 cm for sequence 2.0 at location 201. No discontinuities
are present in sequences 3.0 and 3.2, mainly because of no vehicle stops. There is an option for fine-
tuning the automated zero velocity update (ZUPT) detection tolerances in the GNSS/INS post-processing
software Inertial Explorer, which might eliminate trajectory discontinuities, but not remove the observed
systematic trajectory offsets.

| Location | Sequence [ Stop [s] [ AE [mm] | AN [mm] [ AH [mm] [ A3D [mm] |

101 1.0 17 49 -21 -43 68
101 1.1 13 63 19 4 66
101 1.2 31 17 -26 -75 81
102 1.2 68 -1 1 -28 28
201 2.0 19 56 4 133 144
201 2.1 56 16 -2 46 49
201 2.2 41 -15 15 -12 24
202 2.0 0 -4 1 -30 30
301 3.1 16 -2 -11 18 21

Table 4.9: Dimensions of trajectory discontinuities that we disclosed at nine locations.
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Location 101, Sequence 1.1

Location 101, Sequence 1.2

Location 201, Sequence 2.2 Location 20, equence 2.0 Location 301, Sequence 3.1

Figure 4.18: Mobile mapping imagery captured at locations of trajectory discontinuities.

Check Point Investigations for Direct and Integrated Georeferencing

] [mm] I Seq. | #CPs | AE[ AN | AH | A2D | A3D |
1.0 14 21 14 7 25 26
e 2.0 10 10 15 6 18 19
3.0 6 21 26 12 33 35
Mean x.0 17 18 8 25 27
1.0 14 318 | 59 445 324 551
2.0 10 65 | 49 97 82 126
DG 3.0 6 47 20 76 51 92
Mean x.0 144 | 43 | 206 | 152 | 256
1.0 14 297 | 45 | 438 | 299 525
2.0 10 55 | 34 91 64 107
Improvement 3.0 6 26 -5 64 18 57
Mean x.0 127 | 25 198 127 229
Factor DG 8.5 | 2.4 | 258 | 6.1 9.5

Table 4.10: RMSE values in mm for check point residuals of direct (DG) and integrated georeferencing (IG) in
case of dataset Basell4.

We computed 3D check point coordinates based on EOPs from both direct and integrated georefer-
encing, and calculated deviations to reference 3D coordinates determined by tachymetry. The resulting
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RMSE values for the dataset Basell4 are depicted in table 4.10. While there is a mean 3D RMSE value
of 256 mm for direct georeferencing, it amounts to 27 mm for integrated georeferencing, which is an
improvement by an order of magnitude. This is mainly caused by a significant height improvement from
206 mm to 8 mm. As expected, all 3D RMSE values computed from check point residuals of direct geo-
referencing are similar to corresponding 3D RMSE values from trajectory deviations (compare table 4.10
with table 4.7).

4.2.3 Further Investigations on Exploiting Integrated Georeferencing with
Ground Control Points and ROP Self-Calibration

Integrated georeferencing with ROP self-calibration enables high accuracies. Compared to single forward
stereo, processing multi-stereo images in a road junction area allows to especially improve the height
component. A similar effect can be observed if curved road segments are supported with additional
GCPs.

Data Processing

Same as in section 4.2.2, we defined one GCP group at each end of a segment, but no GCP groups close
to the sharp curves. We did also estimate ROPs among respective cameras over all stereo images. This
corresponds to a self-calibration of stereo bases as well as of position vectors and rotations among the
stereo camera systems. First, we processed images from the forward facing stereo system (single stereo)
for all sequences of the dataset Basell4 as well as for sequences of street sections 1 and 2 of the dataset
Basell5. Second, we performed integrated georeferencing exploiting all images from the three stereo
camera systems (multi-stereo) of the dataset Basell4 within the same process (see figure 4.19). Shorter
tie point tracks were computed for multi-stereo compared to single stereo (see table 4.11), however,
multi-stereo has a better mean reprojection error of 0.51 pixel.

2 GCVIE’ groups

Figure 4.19: Georeferenced mobile mapping images (red) and 3D tie points (black) at our test site in Basel
processed by our modified COLMAP procedure.

Please note that the results of table 4.11 do not exactly correspond to the results of table 4.6. Reasons
are two instead of four GCP groups for street sections 1 and 2, but also a slightly modified processing
workflow. While sequence 3.0 has fewer 3D points and observations in table 4.11, which leads to a smaller
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value for mean observations per image, it features longer tie point tracks. Mean reprojection errors are
similar for both processings.

’ ‘ Single stereo 1.0 ‘ Single stereo 2.0 | Single stereo 3.0 | Multi-stereo
Registered images 246 314 170 2190
3D points 106’814 129’125 71°081 1’038°228
Observations 769°117 1’020°655 601’128 6°972'788
Mean track length 7.2 7.9 8.5 6.7
Mean obs. per image 3127 3251 3536 3184
Mean reproj. error [px] 0.72 0.70 0.72 0.51

Table 4.11: COLMAP processing statistics for single stereo and multi-stereo image sequences. Two GCP groups
were incorporated for every street section.

Check Point Investigations for Single Stereo and Multi-Stereo

In order to verify the assumed advantages of using multi-stereo camera systems compared to single stereo,
we computed check point residuals to tachymetry. As depicted by table 4.12, there is a mean 3D RMSE
value of 39 mm for single stereo and a value of 28 mm for multi-stereo image sequences (combination of
forward stereo, back-right stereo and left stereo). The mean height RMSE value reduces from 18 mm to
8 mm. This improvement is especially caused by image sequence 2.0, which shows a significant accuracy
increase in the height component from 34 mm to 7 mm as well as in 3D from 51 mm to 22 mm. Results
of multi-stereo processing employing GCP groups at each end of a segment are similar to results of single
stereo processing that additionally incorporated GCP groups close to sharp curves (compare table 4.12
with table 4.10).

’ [mm] H Seq. ‘ # CPs ‘ AE ‘ AN ‘ AH ‘ A2D ‘ A3D ‘
1.0 14 20 19 10 28 30
. 2.0 10 13 16 7 20 22
Multi-stereo 3.0 6 O [ 23 | 7 | 30 | 31
Mean x.0 17 19 8 26 28
1.0 14 24 14 8 28 29
Single stereo 2.0 10 26 28 34 38 51
3.0 6 21 27 11 34 36
Mean x.0 24 | 23 | 18 33 39
1.0 14 i1 5] 2 0 1
2.0 10 13 12 27 18 29
Improvement 3.0 6 2 4 4 4 5
Mean x.0 7 4 10 7 11
Factor 1.4 | 1.2 | 2.3 1.3 1.4

Table 4.12: RMSE values in mm for check point residuals between integrated georeferencing and tachymetry
regarding both single stereo and multi-stereo camera configurations.

Check Point Investigations for Two and Four GCP Groups

While we utilized four GCP groups on street sections 1 and 2 in chapter 4.2.2, there were only two
GCPs groups per image sequence in chapter 4.2.3. The results of these two scenarios but also direct
georeferencing values are illustrated in table 4.13. For scenario I with two GCP groups, we obtained
a mean 3D RMSE value of 62 mm which is eight times better than a value of ca. 50 cm for direct
georeferencing. Scenario II featuring four GCP groups, which led to 3D check point residuals per sequence
of 19-56 mm and a mean 3D RMSE value of 33 mm, improves the direct georeferencing solution by a
factor of 15. Scenario II shows a mean 3D improvement by a factor of two an a mean height improvement
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by a factor of five when compared to scenario I. Stereo image sequences 2.1 and 2.2 have the largest
deviations but also the largest improvements.

[ Toom] [ Seq. [ #CDs [ AE [ AN | AH [ A2D | A3D | A3D DG |
1.0 14 21 | 14 | 7 25 26 551
11 1 18 | 24 | 8 30 31 168
12 10 20 | 14 | 5 2 25 764
2.0 10 0| 15 | 6 18 19 126
IG 4 GCP groups 21 1 27 [ 27 | 8 39 10 567
(scenario II) 9.2 10 39 | 39 7 55 56 316
Mean 23 [ 22 | 7 32 33 499
Mean DG 227 | 125 | 403 | 291 | 499
Factor DG 9.9 | 5.7 | 57.6 9.1 15.1
1.0 14 24 | 14 | 8 28 29 551
11 1 18 | 21 | 11 | 28 30 168
12 10 18 | 14 | 34 | 23 i 764
2.0 10 2% | 28 | 34 | 38 51 126
ﬁ;gg%gm“ps 21 1 57 | 59 | 36 | 82 90 567
9.2 10 79 | 56 | 89 | 96 | 131 816
Mean 37 | 32 | 35 | 49 62 499
Mean DG 227 | 125 | 403 | 291 | 499
Factor DG 6.1 3.9 | 11.5 5.9 8.0
1.0 14 31 0 1 3 3
11 1 0 | 3 3 ) 1
12 10 21 0 [ 29 | -1 16
Improvement 2.0 10 16 | 13 | 28 | 20 32
21 1 30 | 32 | 28 | 43 50
9.2 10 40 | 17 | 82 | 41 75
Mean 14 | 10 | 28 | 17 29
Factor 1.6 | 1.5 5.0 1.5 1.9

Table 4.13: RMSE values in mm for check point residuals of direct (DG) and integrated georeferencing (IG)
regarding two and four GCP groups, respectively.

4.2.4 Integrated Georeferencing without Ground Control Points

Determination of 3D GCP coordinates is a costly task, since usually performed by a surveying team on-
site. Moreover, surveying work is often conducted in dangerous road environments. Hence, approaches
that rely on no or just a minimal number of ground control points would be a great benefit. However,
infrastructure applications typically demand 3D accuracies within the sub-decimeter range, and as shown
in section 4.2.2, direct georeferencing solutions in urban environments usually degrade to several decime-
ters. Nonetheless, we demonstrate the feasibility of processing mobile mapping image sequences by only
incorporating prior EOPs and calibrated ROPs into our modified COLMAP procedure.

Data Processing

We fixed all precalibrated ROPs among cameras and employed EOPs from direct georeferencing but no
GCP observations, leading to mean residuals of projection centers from direct georeferencing close to 0.
We conducted two processings for both mappings of the dataset Basell5, considering images captured
at 448 epochs and 443 epochs, respectively. First, we incorporated images from the stereo cameras
directed forward as well as from the backward facing panorama camera head. Second, we employed all
twelve cameras, i.e. stereo forward imagery as well as five images per panorama camera. Regarding mean
observations per image, there are significantly larger values for three cameras compared to twelve cameras
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(see table 4.14). However, since mapped back and forth, basically all three cameras face sometime the
same direction leading to more feature matches in the corresponding images.

Seq. x.1 Seq. x.1 Seq. x.2 Seq. x.2

12 cameras 3 cameras 12 cameras 3 cameras
Registered images 5376 1344 5316 1329
3D points 1’730°085 590’716 1'730°226 573’834
Observations 1271817922 4’354°391 11538702 3981022
Mean track length 7.0 7.4 6.7 6.9
Mean obs. per image 2266 3240 2171 2996
Mean reproj. error [px] 0.64 0.67 0.64 0.67

Table 4.14: COLMAP processing statistics for image sequences from forward stereo and multi-head panorama
cameras of the dataset Basell5. While 12 cameras is the total amount, 3 cameras correspond to stereo forward
and mono backward.

Check Point Investigations

We determined 3D coordinates of the check points used in table 4.13 by image measurements in single
stereo pairs of the forward pointing cameras and by incorporating EOPs from both direct (DG) and
integrated georeferencing (IG). Then we subtracted IG from DG values leading to our improvement
values. Since twelve cameras merely delivered slightly better results, only values for investigations with
three cameras are depicted in table 4.15. While mapping 1 shows a small horizontal improvement from
135 mm to 109 mm, the 2D RMSE value reduces significantly from 509 mm to 337 mm for mapping
2, due to a considerable accuracy improvement of the east component. The height RMSE value of
mapping 1 lowers from 228 mm to 139 mm, mainly caused by sequence 2.1. However, induced by
sequence 3.2, there is a small degradation from 463 mm to 495 mm for mapping 2. Even though 3D
RMSE values for all but for 3.1 were improved, there are still mean values of 177 mm and 601 mm
for mapping 1 and 2, respectively. However, values of sequences from the same mapping are more
homogeneous compared to direct georeferencing. In summary, horizontal components can rather be
improved than height values, especially if all height residuals point in the same direction and amount
to several decimeters. Nevertheless, exploiting at least one reference height allows for mitigation of this
issue.

[ [mm] ][ Seq. | AE[ AN | AH | A2D | A3D ][ Seq. | AE| AN | AH | A2D | A3D |
1.1 89 50 116 102 155 1.2 80 331 | 563 340 658
e 2.1 107 | 55 178 121 215 2.2 43 301 | 518 304 601
3.1 86 59 121 104 160 3.2 15 364 103 367 545
Mean x.1 94 55 | 139 | 109 177 Mean x.2 56 332 | 495 | 337 | 601
1.1 74 59 138 95 168 1.2 465 24 605 466 764
DG 2.1 254 | 80 500 266 567 2.2 185 | 481 | 633 515 816
3.1 27 34 16 14 64 3.2 196 | 511 150 548 568
Mean x.1 118 | 58 | 228 | 135 266 Mean x.2 | 282 | 339 | 463 | 509 716
1.1 -15 9 22 -7 13 1.2 385 | =307 | 42 125 106
2.1 147 | 24 | 322 145 351 2.2 142 | 180 115 211 215
Impr. 3.1 -59 | -24 | -75 -60 -96 3.2 152 | 147 | -253 181 23
Mean x.1 24 3 89 26 89 Mean x.2 226 7 -32 172 115
Factor DG | 1.8 | 1.1 1.6 1.2 1.5 Factor DG | 5.0 | 1.0 0.9 1.5 1.2

Table 4.15: RMSE values in mm for check point residuals between integrated (IG) as well as direct georeferencing
(DG) and tachymetry. Either 10 or 11 check points per sequence were utilized. Improvement (Impr.) values
correspond to the difference between DG and IG. Only three cameras of the mobile mapping configuration were
used, i.e. two cameras pointing forward and one directed backward.
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Discussion

Integrated georeferencing with ROP self-calibration consistently revealed trajectory deviations from
direct georeferencing in the order of several decimeters as well as multiple trajectory discontinuities.
All image sequences captured in street sections 1 and 2 were processed using both two and four GCP
groups. Additional support close to the respective curve led to an accuracy increase from 35 mm to 7
mm for the height component and from 62 mm to 33 mm in 3D. Compared to single forward stereo,
utilization of all three stereo camera systems and two GCP groups for the dataset Basell4 improved
the height accuracy from 18 mm to 8 mm and the 3D accuracy from 39 mm to 28 mm. Hence, our
multi-stereo configuration showed the same performance as single stereo with additional GCP support
in the middle of the curved road segments. Images captured in three horizontal directions at each
epoch allow for strong tie point connections, which primarily stabilizes the height component.

We performed integrated georeferencing without GCPs for the dataset Basell5 employing both three
and twelve cameras. Our minimal configuration consisting of a forward pointing stereo camera system
and a backward facing camera delivered slightly poorer results. However, the need for only processing
25% of the total amount of images denotes an enormous efficiency increase. A resulting 3D accuracy
of 177 mm for mapping 1 is acceptable, while 601 mm for mapping 2 does not meet our accuracy
requirements. The main reason is a height offset of approx. 50 cm. Such constant deviations caused
by direct georeferencing can only be eliminated by incorporation of at least one reference height.
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4.3 Test Campaign in a Suburban Environment

Suburban environments with moderate GNSS coverage allow for direct georeferencing accuracies at the
decimeter level. A degraded horizontal solution can be improved by integrated georeferencing without
GCP utilization. However, uniformly deviated heights can only be corrected by incorporation of at least
one reference point. We processed images of a road campaign in multiple scenarios, either exploiting
imagery from one or opposite driving directions as well as including four or six cameras. Compared to
an extended junction area in Basel, a larger study area featuring five loops was considered. Even though
mainly focusing on integrated georeferencing without GCPs, we employed GCPs for ROP self-calibration.

4.3.1 Vehicle-Based Mobile Mapping System and Data
Mobile Mapping Platform

The vehicle-based stereovision mobile mapping system used for collecting the dataset Zugl7 features
six industrial cameras and a GNSS/IMU positioning system (see figure 4.20). It has a standard Y
configuration consisting of forward pointing AVT stereo cameras as well as FHD stereo cameras facing
back-right and back-left (see table 4.16). This is the same configuration as for the dataset Basell4, but a
back-left pointing instead of a left pointing stereo camera system. Hence, this Y configuration allows for
more potential connections between images captured in opposite driving directions. However, building
facades parallel to the driving direction are not covered to the same degree in individual images. While
the 11 MP cameras directed forward are separated by 1.054 m, the FHD cameras looking back-right and
back-left have stereo bases of 0.747 m (see table 4.17). Same as for the dataset Basell4, a NovAtel SPAN
inertial navigation system comprising a tactical grade inertial measurement unit and a L1/L2 GNSS
kinematic antenna provides direct georeferencing.

Figure 4.20: Camera configuration that captured the dataset Zugl7 (Source: iNovitas).

Camera tvpe Sensor size Pixel size Principal Field of view Camera
P [wm] distance [mm)] ] model

AVT 11 MP (4008 x 2672) 9.00 22.0 81 x 60 perspective

Basler/FHD 2 MP (1920 x 1080) 7.40 8.0 84 x 54 perspective

Table 4.16: Interior orientation parameters
Zugl?.

of the two different camera types used for processing the dataset

Pointing direction forward back-right back-left
of stereo cameras

Camera type AVT Basler Basler
Base length [mm)] 1054 747 747

Table 4.17: Length of stereo bases for the standard Y camera configuration used for the campaign in Zug.
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Study Area and Mobile Mapping Data

Our study area is located in the city center of Zug, Switzerland (see figure 4.21). While the eastern part
of our study area shows mainly residential neighborhoods, there are several large commercial buildings
close to the train station that create a challenging environment for GNSS positioning. We selected stereo
images from five loops captured as part of a complete survey of the city of Zug on March 20 and 21,
2017. All loops were mapped in both directions and they build two test sites. Test site I is situated in
the south-western part of our study area and features 1126 timestamps with a mean along-track spacing
of 1.4 m. Test site IT comprises 2531 epochs with a mean along-track distance between successive image
exposures of 1.5 m.

m - i
A\ visible 3D Points
A 3D Points in Manholes
@ Trajectories of Test Site I 14
® Trajectories of Test Site

i

Figure 4.21: Orthophoto of our study area with overlaid trajectories and 3D reference points (Source of or-
thophoto: Geoportal Kanton Zug). Dimensions of depicted orthophoto section are ca. 630 m x 700 m.

Calibration and Direct Georeferencing

We performed calibration and direct georeferencing of the mobile mapping platform as described in
section 3.3. Based on poses from direct georeferencing, we determined 3D coordinates for all reference
points by employing four image observations for each computation. The resulting deviations between
direct georeferencing and tachymetry are depicted in table 4.18 for test site I and in table 4.19 for test
site II. Test site I shows a small 2D RMSE value of 29 mm and height deviations of ca. one decimeter.
Test site II features a small RMSE value of 24 mm for the east component, but a larger value for the
north component resulting in a 2D RMSE value of 91 mm. Height residuals are in the range of approx.
one to two decimeters leading to a RMSE value of 142 mm. 3D RMSE values of 121 mm and 154 mm
for test site I and test site II, respectively, mainly caused by deteriorated heights, are remarkably small
considering the challenging suburban environment frequently causing GNSS degradations.
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[ [mm] [ AE | AN | AH [ A2D | A3D |
1001 =27 | 14 | 135 31 139
1002 34 | -14 | 107 37 113
1003 10 | -11 | 108 15 109
RMSE | 26 13 | 118 29 121

Table 4.18: Check point residuals in mm between direct georeferencing and tachymetry as well as resulting RMSE
values for test site I.

[mm] [ AE [ AN [ AH | A2D [ A3D |
2001 | 36 | -8 | 88 | 37 | 96
2002 | 51 | -98 | -187 | 111 | 217
2003 | -8 | 21 | 115 | 22 | 117
2004 | -10 | 52 | 180 | 53 | 187
2005 | -18 | -5 | 111 | 18 | 112
2011 | -8 | 23 | 170 | 24 | 171
2012 | -3 | 218 | 219 | 218 | 309
2013 | 10 | -15 | 160 | 18 | 161
RMSE | 24 | 88 | 142 | 91 | 154

Table 4.19: Check point residuals in mm between direct georeferencing and tachymetry as well as resulting RMSE
values for test site II. Italic values were excluded from RMSE computation due to 3D points in manholes with
indeterminable accurate heights.

Reference Data

We used several highly accurate cadastral reference points for our investigations. Eight of them are
signalized using bolts and thus clearly defined in the mobile mapping imagery (see orange 3D points in
figure 4.21 and figure 4.22). In contrast, the other three reference points are protected in manholes ca.
10-20 cm below the road surface (see purple 3D points in figure 4.21 and figure 4.22). Since we determined
3D coordinates of the cover plate centers using stereo images, they deviate from the provided 3D reference
coordinates in the centimeter range for 2D and in the decimeter range for the height component. All
measurements were performed in the Swiss horizontal reference frame LV03 and in the LNO2 vertical
reference frame based on leveled heights.

Figure 4.22: Image sections of all 11 3D reference points used for the dataset Zugl7. Top row: 3D points in test
site I, middle row: visible 3D points in test site II, bottom row: 3D points in manholes in test site II.
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4.3.2 Integrated Georeferencing with Ground Control Points and ROP Self-

Calibration
Data Processing

In order to refine all precalibrated ROPs among cameras, we employed image observations to three GCPs
for each test site. Several thousand images per test site were processed (see table 4.20), and in both
cases images from opposite driving directions. However, compared to six cameras for test site I, we only
considered four cameras for test site II, i.e. stereo forward and mono images from both back-right and
back-left (left cameras of stereo systems). This is the main reason for smaller values of mean track length
and mean observations per image (6.4 vs. 7.4 and 1676 vs. 2306, respectively).

’ \ Test site I \ Test site 11 ‘
Epochs 1126 2531
Cameras 6 4
Registered images 6751 10’085
3D points 2107485 2622882
Observations 15’564°304 16’900°128
Mean track length 7.4 6.4
Mean obs. per image 2306 1676
Mean reproj. error [px] 0.60 0.65

Table 4.20: COLMAP processing statistics for ROP self-calibration in Zug.

Check Point Investigations

We computed 3D point coordinates using measurements carried out in two stereo image pairs, and
calculated deviations to reference coordinates from tachymetry. There is a RMSE value of 20 mm for
both the east and north component leading to a 2D RMSE value of 28 mm for test site I (see table 4.21).
The corresponding height RMSE value is half as large, however, all RMSE values for GCP residuals of
test site I are significantly larger compared to test site II (see table 4.22). This is probably due to a
smaller extent and thus a stronger network geometry for test site I. We selected five check points for test
site IT, but only two of them (points 2002 and 2004) have clearly defined heights and were thus considered
for height RMSE computation. The resulting 2D RMSE value amounts to 33 mm, and the height RMSE
value is approx. one decimeter.

[ fmm] [ AE [ AN [ AH [ A2D [ A3D |

1001 5 6 -2 8 8

1002 25 32 12 41 43

1003 24 -9 10 25 27
RMSE | 20 20 9 28 30

Table 4.21: Ground control point residuals in mm between integrated georeferencing and tachymetry as well as
resulting RMSE values for test site I and ROP self-calibration I.
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] [mm] | AE | AN | AH [ A2D | A3D |
2001 3 -4 3 ) 6
2002 -11 | 12 | -52 16 54
2003 2 -7 7 7 10
2004 -8 7 129 11 130
2005 3 -1 -1 3 3
2011 =27 | -13 | 132 30 136
2012 20 -0 | 163 20 164
2013 27 | -55 | 142 62 155

RMSE all 16 21 62 26 63
RMSE GCPs | 3 5 5 5 7
RMSE CPs 20 | 26 98 33 99

Table 4.22: Both ground control point (bold numbers) and check point residuals in mm between integrated
georeferencing and tachymetry as well as resulting RMSE values for test site II and ROP self-calibration II.
Ttalic values were excluded from RMSE computation due to 3D points in manholes with indeterminable accurate
heights.

4.3.3 Integrated Georeferencing without Ground Control Points
Data Processing

We fixed all ROPs among cameras and exploited EOPs from direct georeferencing but no GCP observa-
tions. We performed several processings for both test site I and test site II. In case of test I, we considered
six but also four cameras, one and opposite driving directions, and ROPs from self-calibration I. For test
site II, we always used four cameras but one and opposite driving directions. Furthermore, we exploited
ROPs from self-calibration I as well as from self-calibration II.

Check Point Investigations

We determined 3D check point coordinates by measuring each point in four images, and computed
deviations to reference coordinates from tachymetry. Table 4.23 compares the following three scenarios:
images from six cameras and opposite driving directions (scenario I, top), images from six cameras and
one driving direction (scenario I, middle) as well as images from four cameras and one driving direction
(scenario III, bottom). Scenario I delivers the best RMSE values, and there are only slight RMSE
differences between scenarios II und III. However, all 2D RMSE values are larger than the surprisingly
very accurate value of 29 mm for direct georeferencing. In order to eliminate an apparent height offset in
direct georeferencing, we translated the computed integrated georeferencing solution to the 3D reference
coordinates of control point 1002. This led to a small height RMSE value of 15 mm for scenario I, mainly
caused by homogeneous height deviations that is represented with a standard deviation value of 11 mm.
Height RMSE values for scenarios II and III are approximately twice as large, and 3D RMSE values for
all scenarios range from 35 mm to 47 mm. In summary, incorporation of imagery from opposite driving
directions is more beneficial than employing stereo instead of mono images from camera systems directed
back-right and back-left. Moreover, using at least one reference point is essential in order to obtain height
accuracies at the centimeter level and thus 3D accuracies of better than one decimeter.
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= | [AE [ AN | AH | A2D [ A3D |
1001 -2 13 102 13 103
1002 -2 -4 85 4 85
1003 -32 | -45 | 106 56 119
No GCPs, IG-TPS, 6 cameras, Mean -12 | -12 97 24 102
back & forth, 6751 images SD 18 30 11 28 17
(scenario 1) RMSE 19 | 27 | 98 33 103

Factor DG | 1.4 | 0.5 | 1.2 0.9 1.2
IG 1002 18 26 15 31 35
Factor DG | 1.4 | 0.5 | 7.9 | 0.9 3.5

1001 -7 -3 | 114 8 114
1002 -18 | -7 81 19 83
1003 -50 | -50 | 116 71 136
No GCPs, IG-TPS, 6 cameras, Mean -25 | -20 | 104 33 111
forth, 3662 images SD 22 26 20 34 27
(scenario IT) RMSE 31 | 29 | 105 | 43 113

Factor DG | 0.8 | 0.4 | 1.1 0.7 1.1
IG 1002 19 | 25 28 32 42
Factor DG | 1.4 | 0.5 | 4.2 | 0.9 2.9

1001 -13 6 117 15 118
1002 -5 -8 78 9 79
1003 -42 | -47 | 123 63 138
No GCPs, IG-TPS, 4 cameras, Mean -20 | -16 | 106 29 111
forth, 2438 images SD 19 28 24 30 30
(scenario IIT) RMSE 26 | 28 | 108 | 38 114

Factor DG | 1.0 | 0.5 | 1.1 0.8 1.1
1G 1002 22 24 34 33 47
Factor DG | 1.2 | 0.5 | 3.5 0.9 2.6

Direct georeferencing (DG) | RMSE [ 26 ] 13 [ 118 | 29 [ 121 |

Table 4.23: Check point residuals in mm between integrated georeferencing (IG) exploiting ROPs from self-
calibration I and tachymetry (TPS) for test site I. Besides, resulting mean, standard deviation (SD) and RMSE
values as well as improvement factors compared to direct georeferencing (DG) are shown. IG 1002 indicates
RMSE values if the integrated georeferencing solution is translated to 3D reference coordinates of point 1002.

Again for test site II, we computed 3D check point coordinates using four observations per point, and
calculated deviations to reference coordinates from tachymetry. As shown by table 4.24 and table 4.25,
there are larger height RMSE values for back and forth compared to direct georeferencing, while incorpo-
ration of images from only one direction leads to slightly better height accuracies. However, 2D RMSE
values reduce in case of all scenarios. In order to remove an obvious systematic height effect in direct geo-
referencing as well as to show the feasibility of obtaining 3D deviations within the sub-decimeter range,
we performed a 3D translation to control point 2003. This resulted in a horizontal accuracy decrease for
self-calibration I, but led to smaller 2D RMSE values for self-calibration II. Height accuracies significantly
increased for opposite driving directions (from 158 mm to 25 mm and from 156 mm to 21 mm), while
improving by a factor of ca. 2 if only employing images captured in one direction. The main reason for
this difference are more homogeneous height residuals and thus smaller standard deviation values for two
driving directions. As expected and shown by the left part of table 4.25, incorporation of imagery from
back and forth as well as exploiting ROPs calibrated on the same test site feature the most stable inner
geometry, which leads to the best accuracies. To sum up, horizontal accuracies of less than one decimeter
are possible without reference data, however, constant height offsets from direct georeferencing can only
be corrected by incorporation of at least one reference point.
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| [mm] [AE|AN[AH[A2D [A3D|| [mm] |AE|AN ]| AH | A2D | A3D |
2001 -44 | 292 | 152 | 102 183 2001 -20 | -89 | 65 91 112
2002 -40 | -22 | 113 46 122 2002 -19 | -14 70 24 74
2003 10 | 44 | 157 45 163 2003 40 37 | 161 54 170
2004 -3 | 104 | 189 | 104 216 2004 3 98 | 232 98 252
2005 21 33 | 168 39 172 2005 30 | 41 85 51 99
2011 -36 | -81 | 130 89 157 2011 =21 | =59 | 111 63 127
2012 -7 | =56 | 205 56 213 2012 9 -52 | 161 53 170
2013 40 | -10 | 207 41 211 2013 57 | -18 | 202 59 210
Mean -7 | -10 | 156 65 171 Mean 10 -7 | 123 62 141
SD 31 67 28 28 34 SD 30 62 72 24 71
RMSE 30 | 64 | 158 | 70 174 RMSE 30 | 58 | 139 | 65 155
DG 24 | 88 | 142 91 154 DG 24 88 | 142 91 154
Factor DG | 0.8 | 1.4 | 0.9 | 1.8 0.9 Factor DG | 0.8 | 1.5 | 1.0 | 1.4 1.0
IG 2003 33 83 25 90 84 I1G 2003 41 72 75 83 109
Factor DG | 0.7 | 1.1 | 5.7 1.0 1.8 Factor DG | 0.6 | 1.2 | 1.9 1.1 1.4
4 cameras, back & forth, 10’085 images 4 cameras, forth, 5004 images

Table 4.24: Check point residuals in mm between integrated georeferencing exploiting ROPs from self-
calibration I and tachymetry for test site II. Besides, resulting mean, standard deviation (SD) and RMSE
values as well as improvement factors compared to direct georeferencing (DG) are shown. IG 2003 indicates
RMSE values if the integrated georeferencing solution is translated to 3D reference coordinates of point 2003.
Italic values were excluded from RMSE computation due to 3D points in manholes with indeterminable accurate
heights.

| [mm] [AE|AN[AH[A2D [A3D|| [mm] |AE|AN ]| AH | A2D | A3D |
2001 -29 | -15 | 148 33 151 2001 -9 | -16 | 60 18 63
2002 -33 1 120 33 124 2002 -7 0 83 7 83
2003 -18 | -32 | 155 36 159 2003 9 -39 | 164 40 168
2004 -25 | -30 | 181 39 185 2004 -18 | -33 | 200 38 203
2005 -15 | -57 | 168 60 178 2005 -2 | -b2 | 86 52 101
2011 -11 | 43 | 141 44 147 2011 -1 | 47 | 121 47 130
2012 10 | -35 | 202 37 205 2012 24 | -37 | 160 44 166
2013 13 | -78 | 205 79 220 2013 29 | -89 | 190 93 211
Mean -14 | -36 | 154 45 160 Mean 3 -39 | 119 42 124
SD 17 | 24 23 16 24 SD 16 26 60 25 60
RMSE 21 | 43 | 156 | 47 161 RMSE 16 | 46 | 130 | 49 135
DG 24 | 88 | 142 91 154 DG 24 88 | 142 91 154
Factor DG | 1.1 | 2.0 | 0.9 1.9 1.0 Factor DG | 1.5 | 1.9 | 1.1 1.9 1.1
1G 2003 17 23 21 28 30 IG 2003 16 24 70 29 75
Factor DG | 1./ | 8.8 | 6.8 | 3.3 5.1 Factor DG | 1.5 | 8.7 | 2.0 | 3.1 2.1
4 cameras, back & forth, 10’085 images 4 cameras, forth, 5004 images

Table 4.25: Check point residuals in mm between integrated georeferencing exploiting ROPs from self-
calibration II and tachymetry for test site II. Besides, resulting mean, standard deviation (SD) and RMSE
values as well as improvement factors compared to direct georeferencing (DG) are shown. IG 2003 indicates
RMSE values if the integrated georeferencing solution is translated to 3D reference coordinates of point 2003.
Italic values were excluded from RMSE computation due to 3D points in manholes with indeterminable accurate
heights.
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Discussion

Integrated georeferencing without GCPs resulted in 2D accuracies of 33-43 mm for test site I and
47-70 mm for test site II. Compared to direct georeferencing, this is a slight decrease for test site I and
an improvement by a factor of 1.3-1.9 for test site II. However, a 2D accuracy of 29 mm for test site I is
extraordinary. Heights did not change significantly by integrated georeferencing exploiting EOPs and
ROPs. The main reason are similar height residuals pointing in the same direction. Incorporation of
one control point and thus removing a constant height offset led to 3D accuracies of better than 5 cm
for test site I and 30-109 mm for test site II. Employing mono back-right and mono back-left instead
of stereo images does hardly lead to an accuracy decrease. However, processing imagery captured in
opposite driving directions results in more homogeneous heights. To conclude, 3D accuracies within
the sub-decimeter range are feasible by incorporation of only one control point. In case of high direct
georeferencing accuracies for the horizontal components as encountered in our experiments, even a
height reference suffices. Nevertheless, at least one additional check point is recommended in order to
guarantee a reliable solution.

4.4 Test Campaign at a Train Station

Compared to urban road environments, GNSS availability on railway tracks is usually sufficient, which
allows for 3D accuracies from direct georeferencing within the sub-decimeter range. However, feature
matching in such rail environments poses a big challenge. If considering images captured by a forward
pointing camera, the top half mainly contains sky areas that are not of interest. Since omnipresent and
distinctive, most of the features will be extracted in track ballast regions, which results in many tie points
constituting approximately a plane in 3D space. In order to prevent such weak connections, we selected a
train station showing several distinctive structures. This enables a uniform feature point distribution per
image, but also adequate tie point connections in case of large viewpoint changes. Hence, we demonstrate
the feasibility and accuracy potential of self-calibrating ROPs among individual stereo systems by only
employing calibrated stereo bases and prior camera poses from direct georeferencing.

4.4.1 Train-Based Mobile Mapping System and Data
Mobile Mapping Platform

The multi-sensor stereovision mobile mapping system assembled for capturing the dataset Viennal6
features ten industrial cameras, a GNSS/IMU positioning system and a laser scanner (see figure 4.23).
All sensors are mounted on aluminum beams attached to a locomotive, not on the roof but lower in front
of the locomotive shell, allowing to map the complete rail corridor. Two stereovision systems are directed
forward, one comprising 11 MP RGB cameras and the others 4 MP grayscale cameras (see table 4.26
and table 4.27). The stereo system with grayscale cameras has a smaller base of 0.925 m compared to
1.268 m for forward RGB, and is mainly used for tunnels, which are additionally illuminated by two
floodlights. The other three stereo systems comprise FHD cameras, one facing downward to the rails for
efficient inspection and the others pointing right or left, which is similar to Basel1l4. Same as the MMS
that captured the datasets Basell4 and Basell5 as well as Zugl7, a NovAtel SPAN inertial navigation
system consisting of a tactical grade inertial measurement unit and a L1/L2 GNSS kinematic antenna
provides direct georeferencing. A high-end laser scanner directed downward enables analysis of rails, e.g.
rail wear.
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Figure 4.23: Mobile mapping system assembled for a rail campaign in Vienna (Source: iNovitas).

Camera tvpe Sensor size Pixel size Principal Field of view Camera
P [wm] distance [mm|] ] model
AVT 11 MP (4008 x 2672) 9.00 21.1 81 x 60 perspective
Grayscale 4 MP (2048 x 2048) 5.50 7.8 72 x 72 perspective
Basler/FHD 2 MP (1920 x 1080) 7.40 7.8 84 x 54 perspective

Table 4.26: Interior orientation parameters of the three different camera types used for processing the dataset
Viennal6.

Pointing direction forward forward do oht left
of stereo cameras RGB gray Wi e

Camera type AVT Grayscale Basler Basler Basler
Base length [mm] 1268 925 820 752 757

Table 4.27: Length of stereo bases for the camera configuration assembled for a rail campaign in Vienna.

Study Area and Mobile Mapping Data

Our test site is located in Vienna, Austria, and comprises the train station called Wien Erzherzog-Karl-
Strasse, situated north-east of the larger station Wien Stadlau. Multi-stereo imagery was captured twice
on the same track but from opposite driving directions on October 11, 2016. We considered a track
section length of approx. 197 m leading to 98 (15:19:21-15:19:41, 20 seconds) and 87 (16:03:38-16:03:56,
18 seconds) timestamps, respectively (see figure 4.24). Although rather short, the employed imagery
contains several distinctive structures that is often not the case in arbitrary rail mapping images. Since
captured from ten cameras, these 185 epochs resulted in 1850 images. Mean along-track distances between
successive image exposures are 2.0 m and 2.3 m, respectively. While there is a departure platform with
facilities and roofing covering the south-western part on the one side of the utilized track, the other side
features more free space due to another track as well as vegetation and some buildings lying farther away
(see figure 4.25).

Calibration and direct georeferencing were basically performed according to section 3.3, but in the
coordinate reference system MGI / Austria GK East. Interior orientation parameters as well as offsets
and rotations of individual stereo bases were precisely calibrated in an indoor calibration field with many
signalized coded targets. However, ROPs among stereo systems as well as lever arm and misalignment
were calibrated on-site with medium precision.
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Figure 4.24: Orthophoto of the study area with overlaid blue trajectories and orange 3D check points (left)
(Source of orthophoto: Stadt Wien - data.wien.gv.at). Furthermore, there are mobile mapping images from the
left camera of the forward pointing stereo system with overlaid orange 3D check points (right).

Figure 4.25: Images of left cameras of all stereo systems captured at the same location.

4.4.2 Integrated Georeferencing with ROP Self-Calibration using Fixed Stereo
Bases

Data Processing

There were no GCP observations, so that we basically incorporated EOPs from direct georeferencing.
Moreover, we fixed stereo bases of individual camera systems, but COLMAP self-calibrated ROPs be-
tween individual stereo systems. Hence, precalibrated stereo bases defined the correct object scene scale.
Nonetheless, accurate initial EOPs from direct georeferencing were also crucial for ROP estimation among
individual bases.
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COLMAP processing resulted in a mean value of 2240 observations per image and a mean track
value of 5.4 (see table 4.28), even though images from the stereo system directed downward contain
significantly fewer features. For another rail dataset (Yconfigl6) featuring a standard Y configuration,
which corresponds to Zugl7 and comprises forward looking AVT stereo cameras as well as FHD stereo
cameras directed back-right and back-left, COLMAP computed an even smaller value of 1655 for mean
observations per image. The principal reasons are rather large mean along-track spacings of 3.4 m (64
epochs) and 3.8 m (56 epochs), respectively.

’ \ Viennal6 \ Yconfigl6 ‘
Registered images 1850 720
3D points 770752 234’086
Observations 4143899 1’191°755
Mean track length 5.4 5.1
Mean obs. per image 2240 1655
Mean reproj. error [px] 0.72 0.61

Table 4.28: COLMAP processing statistics for ROP self-calibration in case of two rail datasets.

Analysis of Connectivity Matrix

Figure 4.26 depicts 3D tie point connections after bundle adjustment, not only established between images
of the same stereo camera system but also between imagery captured by different stereovision systems.
Rows and columns represent all processed images in ascending order, from top to bottom and from left
to right. Regarding the succession of forward RGB that is shown in the dashed gray square in the top
left corner, there are first images captured by the left camera of the forward pointing system in direction
1, then in opposite direction 2, followed by imagery from the right camera in direction 1 and eventually
right images in direction 2. Numbers of feature matches are color coded and a threshold of 30 defines the
transition from red to blue.

Images recorded from forward facing cameras in the same driving direction have a great many con-
nections, i.e. forward left and right but also forward RGB and gray. However, there are barely any
connections between forward imagery captured from opposite driving directions. Some matches were
obtained between images from the forward looking cameras and images from the cameras directed down-
ward, right and left. Considering images from the downward pointing cameras, there are only a few
connections between consecutive images of the same camera as well as between left and right camera im-
ages at the same epoch. The main reason are short distances to mapping objects such as rails, crossties
and track ballast resulting in small acquired areas and small image overlapping, i.e. same points are seen
in at most two consecutive images. Due to complementary mapped regions, there are no connections be-
tween downward facing imagery and images captured by the right as well as the left stereovision systems.
Images from the right stereo camera system are well connected with images from the left stereo system
captured in the opposite direction.

Besides, figure 4.26 enables a comparison between the assembled stereo camera configuration and
a standard Y camera configuration often used for road mapping, e.g. dataset Zugl7. The Viennal6
configuration allows for only a few tie points between the forward facing stereovision systems and the
stereo camera systems directed right as well as left (see green rectangles). In contrast, imagery from the
forward pointing stereovision system is well connected with images captured in the opposite direction from
the systems looking back-right and back-left. The prime reason are stereo system pointing differences of
90° for Viennal6 and ca. 45° for the standard Y configuration. Still remarkable that several matches were
established, since SIFT features struggle with viewing direction differences of more than 30° (Hartmann
et al., 2016). On the other hand, many more SIFT features can be matched between stereovision systems
pointing right and left compared to stereovision systems facing back-right and back-left (see purple
squares). While left and right images from opposite driving directions have approximately the same
viewing direction, there is a difference of around 90° between back-right and back-left stereo camera
Systems.
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Figure 4.26: Connectivity matrices for Viennal6 (top) and for another rail dataset with a standard Y camera
configuration (bottom). Colors represent tie point matches: from red that is up to 30 connections over to light
blue until dark blue, which stands for several hundreds up to thousands of connections.
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Check Point Investigations

Since no reference points were available for the dataset Viennal6, we selected three natural points defined
by markings on the departure platform (see figure 4.24). We determined 3D coordinates of these check
points based on multiple stereo image pairs captured consecutively, i.e. four observations per 3D point
calculation. First, we computed our three references by averaging 3D point coordinates determined from
the two opposite driving directions based on forward RGB. Second, we estimated six 3D point coordinates
based on multiple stereo images from forward gray, i.e. back and forth for all three points. Moreover,
we determined 3D point coordinates employing imagery from the stereovision systems facing right and
left, respectively, only captured in the corresponding direction. Eventually, we computed RMSE values
for check point residuals between 3D coordinates determined by forward RGB and the other three stereo
camera systems.

We obtained exactly the same results for the right and left stereovision systems (see table 4.29). Values
of up to 10 mm per component lead to a 3D RMSE value of 15 mm. While the height value is even better
for forward gray compared to right and left, the degraded horizontal component values cause a 3D RMSE
value of 23 mm. This even though forward RGB and forward gray have the same pointing direction and
hence many connections. Reasons might be a lower geometric resolution compared to forward RGB and
some image blur in the grayscale images. Nonetheless, the feasibility of self-calibrating ROPs among
individual stereo systems leading to a 3D accuracy at the centimeter level has been shown. Therefore,
outdoor calibration fields for ROP estimation are optional, but at least some GCPs for boresight alignment
are mandatory.

[ o] [#CPs | AX [ AY [ AH [ A2D | A3D |
forward RGB-right 3 10 8 7 13 15
forward RGB-left 3 10 8 7 13 15
forward RGB-forward gray 6 14 17 5 22 23

Table 4.29: RMSE values in mm for check point residuals between 3D coordinates determined by forward RGB
and other stereo camera systems.

Discussion

Integrated georeferencing with ROP self-calibration utilizing GCPs is a standard procedure. However,
we did not rely on any GCPs, but on precisely calibrated stereo bases in order to obtain metric
information. Self-calibrated ROPs among the stereo camera systems pointing forward as well as right
and left enabled relative 3D point accuracies in object space of 15 mm. While satisfactory for many
applications, this procedure is efficient since not requiring any calibration field on-site. We further
compared two camera configurations in terms of tie point matching. Images from a forward pointing
camera can be well connected with images captured by a camera directed back-right or back-left, but
in the opposite driving direction. However, only a moderate number of matches can be established
between back-right and back-left. In contrast, images from right and left pointing cameras acquired
in opposite driving directions can build strong tie point connections, while connecting forward with
right or left is more challenging.
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4.5 Test Campaigns in a Building

Indoor environments are even more challenging than outdoor scenes. As there is no GNSS coverage
in buildings, initial camera poses are computed by lidar SLAM. Furthermore, feature extraction and
matching is aggravated due to weakly textured surfaces and repetitive patterns. We mapped the same
floor of a building using our portable MMS twice. While one horizontal laser scanner was available for
the first campaign, an additional laser scanner was employed for the second indoor mapping. Compared
to outdoors, no stereo imagery was captured and images of the multiple panorama camera heads do
barely overlap. We show that our integrated georeferencing approach based on COLMAP is also able to
successfully process challenging datasets collected in an indoor environment. Besides, we determine the
accuracy potential of both lidar SLAM and integrated georeferencing.

4.5.1 Indoor Mobile Mapping System and Data
Portable Mobile Mapping System

Horizontal Lidar: Velodyne VLP-16

Panorama Camera: FLIR Ladybug5

LED Stripes for Flash Light

Computer I: Prime Mini Pro

Vertical Lidar: Velodyne VLP-16

Battery
MEMS IMU: Xsens MTi-300

Computer ll: Arduino Nano

Figure 4.27: Sensor configuration of the portable panoramic mobile mapping system.

The portable panoramic mobile mapping system of the Institute of Geomatics at FHNW consists of
multiple sensors mounted on a rigid aluminum frame, which is attached to a backpack (see figure 4.27).
A multi-head 360° panorama camera of the type FLIR Ladybugb serves for image capturing and was
calibrated according to section 3.3.1. FEach of the six camera heads of the Ladybugh camera has a
resolution of 2448 x 2048 pixels (5 MP) at a pixel size of 3.45 pm, a principal distance of 4.3 mm and a
FOV of about 113° x 94°, hence featuring ultra-wide-angle optics. The labeling of the five horizontally
arranged camera heads is depicted in figure 4.28, starting with cam1 facing backward and increasing in
clockwise direction. The panorama camera is tilted by a few degrees in figure 4.27, but the arrangement of
the five consecutive camera heads turns almost horizontal in the case the backpack is carried by a person.
The MMS uses two multi-profile Velodyne VLP-16 laser scanners (lidar PUCK) with a 360° horizontal
FOV and a 30" vertical FOV for navigation as well as for mapping (see table 4.30). The horizontal lidar
is mounted on top of the frame. It is tilted by approx. 30 degrees in order to not only map walls but also
some points on floors as well as on ceilings. Even more 3D points of horizontal surfaces are captured by
the vertical lidar, which additionally improves the performance of lidar SLAM. The MEMS based Xsens
IMU of the type MTi-300 further supports 3D lidar SLAM. For dynamic use, the accuracy of the attitude
angle roll v is specified with 0.3°, pitch 8 and heading ¥ with 1.0°. In addition, there is an on-board
computer for data processing and storage (Prime Mini Pro), a computer for synchronization (Arduino
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Nano), a battery for power supply as well as four LED stripes for illumination on the backpack. Our
acquisition software was implemented using the Robot Operating System (ROS) framework. Detailed
information about our portable mobile mapping system is given in Blaser et al. (2018).

cam?
>
o"’((\
Walking direction
cam1
Q
e,))y

Figure 4.28: Top view of the backpack with camera head naming convention.

Field of view 360° x 30° (£15°)
Channels 16

Points per second | ca. 300’000
Range up to 100 m
Accuracy +3 cm

Table 4.30: Specifications of laser scanners mounted on the portable mobile mapping system.

Test Site and Data

Our indoor study area is located on the sixth floor of the former main campus building of the University of
Applied Sciences and Arts Northwestern Switzerland in Muttenz nearby Basel. As depicted in figure 4.29
and figure 4.32, it features a hallway that has a dimension of ca. 27 m x 24 m, and leads to several offices,
lecture rooms, laboratories, two staircases as well as five elevators. The typical corridor width amounts
to approx. 3 m, with a minimum of about 2 m (left part, no. 6 in figure 4.29) and a maximum of 4 m
(right part, no. 3 in figure 4.29).

We performed two campaigns, the first in November 2017 (27.11.2017 17:17-17:37, see figure 4.29)
and the second in March 2018 (21.03.2018 10:50-11:14, see figure 4.32). In both cases, we started data
acquisition at the origin of the local geodetic coordinate system marked with a dark gray diamond and
we set the camera trigger constraints to a distance interval of 1 m and an azimuth change of 15 degrees.
Figure 4.30 shows the mapping area at a specific camera position, and gives an impression of the difficult
lighting conditions as well as poor texture. Please note that our portable mobile mapping system allows
for complete indoor initialization. While we incorporated two laser scanners for the campaign in March
2018, we only used the horizontal laser scanner for the campaign in November 2017. During the complete
mapping process, online 3D lidar SLAM using the Google Cartographer (Hess et al., 2016) based on laser
scanner and IMU data was performed. This real-time computation of camera poses and 3D points served
for user guidance as well as for geometrically constrained camera triggering.

We determined 3D coordinates of many reference points representing natural markings e.g. on door
frames, elevator and room corners (see figure 4.31) by tachymetry. These reference points have an
accuracy of approximately 5 mm and we used several of them for our indoor investigations as ground
control points or check points.
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Figure 4.29: Floor base map with overlaid projection centers of camera head cam1 for the campaign performed in
November 2017, ground control points, check points, local geodetic coordinate system, area covered by figure 4.31
(purple dashed ellipse) and MMS location at the time of capturing the images of figure 4.30 (purple filled circle).

x
]
\

Figure 4.80: Images captured at the same location (see figure 4.29) from the upward facing camera head cam6
(bottom right), backward pointing camera head caml (top left) and the consecutive camera heads cam2 (top
middle), cam3 (top right), cam4 (bottom left), cam5 (bottom middle).
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Figure 4.31: Image section from camera head caml with marked ground control points (white) as well as check

points (blue and orange).
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Figure 4.32: Floor base map with overlaid projection centers of camera head cam1 for the campaign performed in
March 2018, ground control points, check points and local geodetic coordinate system (2GCPs/2CPs: two points
at the same location, but on different height levels, e.g. 3D points on door frames).

4.5.2 Integrated Georeferencing with Ground Control Points

Data Processing

For the campaign performed in November 2017, we selected three GCPs in every corner and measured
sensor coordinates for each of these 12 GCPs in three consecutive images of camera head cam2. Where
only two GCPs per group are visible in figure 4.29, two of them lie at the same 2D position but on
two different height levels (see figure 4.31). We fixed the precalibrated ROPs for our indoor processings,
exploited previously computed EOPs from lidar SLAM, and COLMAP extracted DSP-SIFT features.
Since the images from the upward facing camera head cam6 predominantly contain homogeneous surfaces
leading to few feature correspondences, we only processed images from the horizontal pointing camera
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heads caml-camb captured at 270 locations (see figure 4.33) for the dataset Muttenzl7 and at 223
locations for Muttenz18. As depicted in table 4.31, this resulted in 1350 registered images for Muttenz17
and 1115 registered images for Muttenz18. We obtained long mean 3D point tracks of 9.8 and 8.4,
respectively. However, mean observations per image of less than 700 are moderate compared to typically
at least three times larger values for outdoor environments.

We performed all experiments on a Linux laptop with an Intel Xeon E3-1535M 8-Core processor (2.9
GHz), 32 GB RAM and a Nvidia Quadro M2000M graphics card. For the dataset Muttenz17, this laptop
required 40.2 minutes for feature extraction, 131.5 minutes for feature matching and 29.6 minutes for
bundle adjustment. The considerably longer feature extraction time (feature extraction to matching ratio
of ca. 1:3) compared to our outdoor datasets (feature extraction to matching ratio of ca. 1:10) is due to
DSP-SIFT instead of SIFT, yet leading to a larger number of features. However, these features and the
resulting feature correspondences are not necessarily more evenly distributed all over the images.

et g%_

ENTYTL ee%a;‘_

Figure 4.33: Georeferenced mobile mapping images (red) and 3D tie points (black) at our indoor test site using
our modified COLMAP processing pipeline for Muttenz17.

’ Muttenz17 Muttenz18
Registered images 1350 1115
3D points 88’955 92’597
Observations 876’096 779782
Mean track length 9.8 8.4
Mean obs. per image 649 699
Mean reproj. error [px] 0.80 0.79

Table 4.31: COLMAP processing statistics of indoor image sequences.

Check Point Investigations for Building Dataset Muttenz17

We performed two studies, both evaluating the absolute 3D measurement accuracy of our portable mobile
mapping system. Study 1 aimed at assessing the calibrated relative orientation parameters among all
camera heads. Hence, we selected six blue check points close to the elevators at three locations on two
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different height levels for each camera head (see figure 4.29 and figure 4.31). Then, we determined 3D
check point coordinates by image measurements in four consecutive images and computed residuals to
tachymetry per camera head (see table 4.32). The RMSE values for 3D check point residuals vary from
15 to 20 mm with a mean value of 17 mm. Thus, measurements for 3D point determination can be
performed in arbitrary camera heads without accuracy degradation that is of high practical relevance.

| Camera head | # CPs | Ax [mm] [ Ay [mm] | Az [mm] [ A3D [mm] |

caml 6 10 11 8 17
cam?2 6 12 7 9 17
cam3 6 10 6 8 15
cam4 6 8 9 12 16
camb 6 10 13 11 20

Table 4.32: RMSE values of study 1 for check point residuals between integrated georeferencing and tachymetry.

For study 2, we determined the 3D coordinates of the 13 orange check points distributed all over the
hallway by image measurements in four consecutive images of camera head cam3 or cam4 (see figure 4.29).
The resulting RMSE value for 3D check point residuals between integrated georeferencing and tachymetry
amounts to 22 mm (see table 4.33), which is not significantly larger than the values achieved in study
1. To sum up, based on arbitrary images captured by our portable mobile mapping system that are
processed using our integrated georeferencing approach, absolute 3D point coordinates can be computed
with an accuracy of approx. 2 cm.

| Camera head | # CPs | Ax [mm] [ Ay mm] | Az [mm] | A3D [mm] |
] cam3 and cam4 \ 13 \ 10 \ 14 \ 12 \ 22 ‘

Table 4.33: RMSE values of study 2 for check point residuals between integrated georeferencing and tachymetry.

Check Point Investigations for Building Dataset Muttenz18

We defined 36 points in total and used 28 of them as check points and 8 as ground control points (see
figure 4.32). At least four image observations per point were provided for 3D coordinate computation,
which was performed for both lidar SLAM-based camera poses and improved camera poses by integrated
georeferencing. While the resulting mean check point precision by forward intersection amounts to 123
mm for lidar SLAM-based poses, it is 3 mm for improved poses by integrated georeferencing (see ta-
ble 4.34). Please note that precision is an indicator for the relative accuracy of typical 3D distance
measurement tasks.

Lidar SLAM-based poses Improved poses by
integrated georeferencing
8GCPs [ 28CPs 8GCPs | 28CPs
Precision [mm] 82 123 2 3
Accuracy [mm)] 106 133 13 18

Table 4.34: Precision and accuracy values for ground control points and check points from both lidar SLAM-based
camera poses and integrated georeferencing. Precision indicates the 3D RMSE of forward intersection for single
point measurements. Accuracy shows the RMSE of 3D point residuals to tachymetry.

In order to determine accuracy values, we transformed the computed 3D points into the ground truth
coordinate frame by eight GCPs (see figure 4.32). Hence, three translation and three rotation parameters
were estimated, but no scale. Calculation of deviations between tachymetry and the transformed 3D
points resulted in check point 3D RMSE values of 133 mm for lidar SLAM-based poses and 18 mm for
improved poses by integrated georeferencing. The results of integrated georeferencing, which represent
the absolute 3D measurement accuracy, are similar to the results obtained for the dataset Muttenzl17.
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In summary, we obtained precision and accuracy values for lidar SLAM-based poses at the decimeter
level. By performing a subsequent integrated georeferencing procedure, we improved these values by
an order of magnitude, so that relative measurements within the sub-centimeter range and absolute
measurements at the centimeter level are feasible.

Discussion

Integrated georeferencing exploiting fixed ROPs and using several GCPs located in each corner of
an indoor space provided absolute 3D accuracies of approx. 2 cm as well as precision values at the
millimeter level. Compared to initial solutions based on lidar SLAM, these values indicate an improve-
ment by an order of magnitude. Nonetheless, such a performance is only possible when extracting
DSP-SIFT instead of SIFT features, which can compensate for the poor textures encountered in indoor
environments.

Summary

We performed comprehensive investigations utilizing our integrated georeferencing approach. In-
corporation of precalibrated ROPs among cameras enabled to orient all intended images with high
accuracy, robustness and efficiency. Moreover, our developed procedure can cope with diverse envi-
ronments and varying camera configurations. Employing GCPs and constraining ROPs resulted in
absolute 3D natural point accuracies of approx. 2 cm for indoor environments. Depending on the use
case, accuracy values for outdoor environments are slightly larger and amount to a few centimeters.
Nonetheless, the obtained check point accuracies frequently correspond to GCP accuracies. In case of
GCP utilization, prior EOPs determined by both direct georeferencing using GNSS/INS filtering and
lidar SLAM are suitable. However, initial trajectory deviations should remain within the sub-meter
range.

Not relying on any GCPs necessitates precisely calibrated ROPs among cameras in order to obtain
accurate results. We achieved horizontal accuracies of ca. 5 cm for the dataset Zugl7 and up to ca.
30 cm for the dataset Basell5. However, since the height component is often highly dependent on
direct georeferencing solutions, these 2D values significantly increased for the 3D case. Nonetheless,
incorporation of at least one GCP is particularly advantageous for the height component, allowing
for absolute 3D accuracies within the sub-decimeter range. We further showed that self-calibration
of ROPs among stereo camera systems by solely exploiting EOPs and relative poses of stereo bases
as metric information is not only feasible but also precise.

Sophisticated computation of accurate camera poses constitutes the main part of this thesis. Once
georeferenced, imagery captured by multi-camera systems can be exploited for the reconstruction
of dense 3D scenes. Within the next chapter, we show that image orientations provided by our
integrated georeferencing approach meet the requirements of sub-pixel accuracy, enabling precise
and dense depth map generation. Furthermore, several configurations for in-sequence dense image
matching are evaluated.
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Chapter 5

Evaluation of In-Sequence Dense
Image Matching

In order to compute dense 3D scene representations, camera pose estimation is followed by dense image
matching (DIM) (see section 2.3). Since entirely dependent on the previous steps, not only precise
calibration but also image orientations need to be available at the sub-pixel accuracy level. Hence, we
evaluate DIM results to draw a conclusion about the quality of camera poses, but also to investigate
various in-sequence matching scenarios for precise depth map generation. However, the main focus of
this thesis is on integrated georeferencing, so that only the street-based dataset Basell4 (see section 4.2.1)
is used for these experiments. Furthermore, most investigations solely employ stereo images captured by
the forward pointing stereo camera system. Nonetheless, the densely built-up urban environment poses
several challenges such as illumination changes and multiple occlusions, as well as large scale variations
due to a higher depth of field. Some of these issues can be addressed by exploiting the high redundancy
provided by multi-camera mobile mapping systems. In order to still allow efficient data processing,
adequate image combinations have to be selected (see section 5.2). Neighboring images feature high
similarity and low to medium scale differences of specific regions, which is beneficial for dense image
matching. Potential configurations also consist of stereo pairs captured from cameras pointing in moving
direction at different timestamps, which demands an alternative polar rectification method. Investigations
in both image and object space show the potential of in-sequence dense image matching in terms of
accuracy, reliability and completeness.

5.1 Precise and Dense Depth Map Generation for Image-Based
Mobile Mapping

We aim at obtaining depth maps of high quality based on image sequences captured by mobile mapping
systems. Once distortion-corrected images as well as corresponding camera poses by integrated georefer-
encing are available, image rectification needs to be performed (see figure 5.1). Resulting epipolar images
facilitate the subsequent step of dense image matching by reducing the image correspondence problem to
a 1D issue. Based on depth maps, dense 3D point clouds are computed, which can be fused and filtered.
Reprojection of this refined 3D geoinformation by incorporation of the viewing geometry again leads to
depth maps that enable comparisons.

Accurate, reliable and complete depth maps are best generated by exploiting the available image
redundancy. Processing stereo images recorded at the same point of time is a standard procedure that
works well. However, rectifying image pairs acquired at different epochs by cameras predominantly
oriented in moving direction poses new challenges. Epipoles located inside or close to the images do
not allow for appropriate in-sequence dense image matching (see figure 5.2 and figure 5.3). Hence,
an advanced rectification method is required. We use the multi-view stereo matching software SURE
(Rothermel et al., 2012) for our experiments. In order to overcome strong motion in viewing direction,
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it features a polar rectification method. Its implementation is presented within the following section, as
well as in more detail in Cavegn et al. (2015) and Rothermel (2017).

Refined EOPs
/ Corrected images / by integrated georeferencing
[ ]

v
Rectification

Epipolar images

v
Dense image matching

Disparity / Depth maps

v

Point cloud generation

l—___1

Dense 3D point cloud
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Figure 5.1: Computation of 3D geometry based on oriented images.

Polar Rectification Approach

Standard rectification approaches do not work for arbitrary geometric configurations of stereo image pairs.
Fusiello et al. (2000) as well as Loop and Zhang (1999) construct virtual image planes parallel to the
baseline connecting the two camera centers. Then homographic mapping is used to project the original
images onto the virtual images planes. This is especially problematic for motion in viewing direction,
since virtual and original image planes are close to perpendicular, which results in huge image dimensions
as well as large distortions of the rectified imagery (see left part of figure 5.3). This does not only increase
processing times, but makes dense matching challenging or even impossible as heavily distorted images
cause problems in the computation of similarity measures.

A rectification method for general motion, also handling pure forward motion as present in our
mobile mapping scenarios, was proposed by Pollefeys et al. (1999). The SURE implementation follows
their approach, where rectification is performed by sampling corresponding half epipolar lines across two
views. Hence, half epipolar lines are the line segments defined by subdividing the epipolar line at the
epipole (see figure 5.2). Half epipolar lines are subsequently processed in a circular scheme. Corresponding
lines in the images are then arranged in parallel image rows in the rectified images I g.

The dimensions of the resulting images are limited by enforcing the distances of subsequent epipolar
lines such that each pixel on the image border opposing the epipole is sampled exactly once. Moreover,
this adaptive sampling implicitly avoids the occurrence of pixel compression in I, gy, but necessitates a
lookup table to invert the transformation. Epipoles nearby or inside the images cause strongly distorted
image regions, where depth determination is inherently not accurate (Pollefeys et al., 1999). In order
to avoid the influence of this singularity, the affected image region A, is automatically detected and
discarded from further processing.

Following the rectification step, dense image matching is carried out on I, 9. Interpolation in a lookup
table, which is established during the rectification process, enables determining the corresponding Carte-
sian coordinates u,v from polar coordinates r, 6. Subsequently, SURE performs structure computation,
which is described in detail by Cavegn et al. (2015).
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Figure 5.2: Polar rectification process. Transformation of I, . (left) to I, (right) for the case the epipole E is
located outside the image (top) and for the case the epipole E is located inside the image (bottom). A4 is the
distorted image region that will be removed for depth estimation.

Figure 5.3: Base image (L¢o) and its five neighboring images rectified by the SURE standard procedure according
to Fusiello et al. (2000) (left) as well as rectified by SURE using polar rectification (right).

5.2 Configurations for Dense Image Matching

Stereo camera systems pointing in the driving direction as depicted in figure 4.1 typically provide highly
redundant imagery. In order to exploit this redundancy, images captured at different epochs need to be
incorporated into the dense image matching process. Hence, we selected the four matching configurations
cl to c4 depicted in figure 5.4. Configuration cl represents standard stereo matching with one base and
one match image captured at the same point of time. Numerous sophisticated algorithms exist for two-
view matching (Scharstein and Szeliski, 2002; Menze and Geiger, 2015). Configuration c2 stands for the
case in which only mono imagery would be available. It is limited to sequential matching of the base
image with the previous and the following image. This case puts high demands on providing sufficient
relative orientation accuracies, but is not dependent on precise synchronization of multiple cameras.
With configurations ¢3 and c4 we introduce and investigate two multi-view stereo approaches, for which
qualitatively better results can be expected. In case of configuration c4, the base image is matched with
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all five neighboring images. Omitting the two match images of configuration c¢2 from configuration c4
leads to configuration c3.

Configuration 2 (c2) Configuration 3 (c3) Configuration 4 (c4)

Figure 5.4: Selected image matching configurations, red: base image, green: match images.

5.3 Point Cloud Generation and Filtering

We aimed to generate accurate, reliable and dense 3D point clouds based on the three image sequences
of the dataset Basell4 that are depicted in figure 5.5. Hence, we processed this mobile mapping imagery
using the software system SURE. It turned out that processing with standard parameters already leads
to good results. Potential fine-tuning does not cause a significant improvement, while filtering in object
space using the octree-based approach described in Wenzel et al. (2014) is crucial. First, we compared
the impact of using fold 3 instead of fold 2 in the filtering procedure (see figure 5.6). This means that
each point in object space needs to be confirmed by two and not only by one additional point. Obviously,
it resulted in a lower density, thus causing less clutter especially around overhead wires and eliminating
most points representing moving objects, e.g. a streetcar in the middle of the left part of figure 5.6.

' ! TLS Stations
A 3D Points
/ _ ® Image Sequence 1.0 g
" @ Image Seguence 2.0 w‘/d
© ImageSequence3.0 -

y.

Figure 5.5: Base map of the study area with overlaid projection centers of selected stereo image sequences, 3D
reference points, terrestrial laser scanning (TLS) stations and point cloud patches (Source of background map:
Geodaten Kanton Basel-Stadt).



Evaluation of In-Sequence Dense Image Matching 87

Figure 5.6: Filtered point clouds generated by incorporating forward stereo imagery of sequences 1.0 and 2.0.
Exploitation of five match images per base image (c4) using SURE filtering fold 2 (left) and SURE filtering fold
3 (right).

Second, we filtered SURE point clouds in object space using fold 3 and investigated the results of
configurations cl and c4 (see figure 5.7). While almost all moving objects are eliminated when incorpo-
rating five match images (see right part of figure 5.7), several parts of moving objects remain if just one
stereo pair is matched (see left part of figure 5.7). Only performing standard stereo matching leads to
more clutter and a considerable number of sky points around overhead wires. The fact that more fagades
are mapped in the right part of figure 5.7 is mainly due to the minimum forward intersection angle of 2°
for both configurations.

Figure 5.7: Filtered point clouds generated by incorporating forward stereo imagery of sequences 1.0, 2.0 and 3.0.
Exploitation of one match image per base image (c1, left) and five match images per base image (c4, right) using
SURE filtering fold 3.

In order to enable the forward stereovision system to particularly generate more points on sidewalks
and fagades, we set the filtering parameter fold to 2. Furthermore, this allowed to demonstrate the benefit
of additionally exploiting imagery from the back-right as well as from the left stereovision system. While
employing back-right imagery leads to a significant increase in sidewalk points (middle bottom part of
figure 5.8), the left stereovision system covers a larger road surface part and it is beneficial for lower
fagade points as well (right bottom part of figure 5.8).
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Image: forward

Point cloud: forward Point cloud: forward + back-right Point cloud: forward + left

Figure 5.8: Mobile mapping images and generated point clouds by configuration c4 in the region of patch P27
(see figure 5.5) using SURE filtering fold 2.

5.4 Investigations in Image Space

Accurate depth maps are fundamental for the urban model of 3D image spaces (Nebiker et al., 2015) and in
particular for reliable and accurate 3D monoplotting applications. Therefore, we performed comparisons
of depth maps, which were either generated directly by the SURE triangulation module or obtained by
back-projecting point clouds into the viewing geometry of a base image. Similar to the methodology
of Geiger et al. (2012), who did not interpolate ground truth disparity maps in order to avoid artificial
errors, we did not interpolate depth maps, either. This allowed to evaluate the raw depth values and to
cope with missing parts of depth maps. We only computed depth deviations for pixels holding values for
both depth maps and we just considered deviations smaller than 50 cm for RMSE and mean calculation.

Differences to Configuration c4

In a first series of tests, we carried out relative depth comparisons in image space with the depth map
of configuration c4 as reference (see figure 5.9 and table 5.1). For all extracted 3D base images, cl-c4
delivered the lowest RMSE values. The largest RMSE as well as mean values were computed for c¢2-c4.
While RMSE values for cl-c4 and c¢3-c4 are in the range of 36 mm to 57 mm, the range for c2-c4 is from
57 mm to 79 mm. c3-c4 delivered the most fagade points and c2-c4 shows an opposite behavior compared
to the two other configurations with inverted depth differences. In ¢2-c4 and c3-c4 the region close to the
epipole, where depth estimations are not accurate and thus removed, is clearly visible. This effect results
in a considerable number of road surface points not being mapped.

Base image 1.0.1 Base image 2.0.1 Base image 2.0.2 Base image 3.0.1

RMSE Mean RMSE Mean RMSE Mean RMSE Mean

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
cl-c4 53 -7 36 -10 53 -6 55 -11
c2-c4 72 9 57 22 64 19 79 18
c3-c4 56 4 38 1 54 3 57 -3

Table 5.1: Numerical deviations of depth maps generated by the SURE triangulation module. Depth maps of
configuration c4 serve as reference. Base image numbering is as follows: the first digit corresponds to the street
section (see figure 5.5), the second indicates the campaign, and the third shows a consecutive numbering.
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Base image 1.0.1

Base image 2.0.1

-0.10

cl-c4

c3-c4

Figure 5.9: Visual deviations of depth maps generated by the SURE triangulation module. Depth maps of
configuration c4 serve as reference. Base image numbering is as follows: the first digit corresponds to the street
section (see figure 5.5), the second indicates the campaign, and the third shows a consecutive numbering.

Differences to a TLS Reference

In a second test series, we used terrestrial laser scanning points projected into image space as reference.
We compared these reference depth maps (TLS) with dense image matching point clouds for all matching
configurations (cl-c4), all generated by the SURE triangulation module. Whereas we used fold 1 for
configuration cl, we set the fold parameter to 2 for the other configurations. We computed the largest
mean values, i.e. the largest depth offsets, for base image 1.0.1 (see table 5.2). We observed the largest
RMSE, i.e. the largest depth noise values, for base images 2.0.2 and 3.0.1, which were caused by distinctive
shadow areas and vegetation (see figure 5.10). All RMSE values are in the range of 107 mm to 174 mm,
with the lower bound featured by c1-TLS. RMSE values for c4-TLS are slightly larger than for ¢3-TLS,
but c4-TLS also includes more depth observations.

Base image 1.0.1 Base image 2.0.1 Base image 2.0.2 Base image 3.0.1

RMSE Mean RMSE Mean RMSE Mean RMSE Mean

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
c1-TLS 107 30 121 7 145 -3 145 -17
c2-TLS 153 18 127 5 160 -6 174 -8
¢3-TLS 137 15 142 -4 164 -16 146 -10
c4-TLS 144 8 143 -4 169 -11 150 -8

Table 5.2: Numerical depth deviations between point clouds generated by the SURE triangulation module and
TLS. Base image numbering is as follows: the first digit corresponds to the street section (see figure 5.5), the
second indicates the campaign, and the third shows a consecutive numbering.
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Figure 5.10: Visual depth deviations between point clouds generated by the SURE triangulation module and
TLS. Base image numbering is as follows: the first digit corresponds to the street section (see figure 5.5), the
second indicates the campaign, and the third shows a consecutive numbering.

Discussion

Investigations in image space showed similar results between the four selected configurations for all
four base images. Due to a single large stereo base, the traditional stereo configuration cl provided
high accuracies, which did not further improve with the additional use of images captured at different
epochs. Configuration c¢2 with sequential matching of mono image sequences loses many points around
the epipole. It also yields a limited accuracy since the base for image ray intersection is very small. The
differences between configurations ¢3 and c4 are not significant. However, especially compared to the
standard stereo configuration cl, the increasing number of match images available in configuration c4
delivers significantly higher point densities. In summary, the traditional stereo matching configuration
cl delivers depth maps with a medium completeness but with the highest accuracy, and configuration
c4 yields depth maps with the highest completeness but slightly larger RMSE values.

5.5 Investigations in Object Space

Visual inspections give a first impression of differences between selected point clouds. However, in order
to be able to draw meaningful conclusions in terms of completeness and accuracy, assumptions need
to be verified by numerical values. According to section 2.3.2, density and deviation values for several
patches were computed and visualized using deviation patches and profiles. We decided to analyze point
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cloud patches, even though point clouds of complex 3D structures can be generated by image-based
mobile mapping. However, their evaluation with terrestrial laser scanning is aggravated due to different
viewpoints and measuring techniques.

Selection and Processing of Patches

First of all, we selected five road (P1-P5) and six fagade patches (P11-P16) that are predominantly planar
and we defined them arbitrarily by four corners. Samples for each of the eleven patches depicted in Cavegn
et al. (2015) show that all road patches contain road markings and have varying lighting conditions due to
shadows, all but P5 feature streetcar rails, P3 and P4 include curbstones. Facade patches contain fagade
parts of different structure and material. Later on, we additionally determined eight patches (P21-P28)
in road and sidewalk regions by four points, i.e. two patches per side of the roads that were mapped in
both directions (see figure 5.5). Each patch area needed to be covered with point clouds generated by all
the three stereovision systems forward, back-right and left as well as with points captured by TLS. No
disturbing objects were present in most cases and all patches include curbstones as well as one vertical
plane of them. Since all patch borders entirely lying on the road surface are defined by the back-right
stereovision system, the limitation on the opposite side is given by vertical objects like facades or walls.
As it can be seen in figure 5.11, we chose patches with varying illumination conditions and a different
portion of road markings.

In order to assess all 19 selected patches, we used the evaluation procedure described by Cavegn et al.
(2014). First, we extracted TLS and DIM point clouds for each patch (see top left part of figure 5.12).
For patches P1-P5 and P11-P16, extraction was performed from one of the three filtered and fused point
clouds generated by forward stereo images, i.e. either from image sequence 1.0, 2.0 or 3.0. For patches
P21-P28, we additionally incorporated point clouds from the back-right and left stereovision systems.
Second, all reference TLS point cloud patches were subsampled to a distance of 1 cm. Furthermore, we
used TLS and DIM grids of 3 cm spacing for P21-P28 and grids of 5 cm spacing for the other patches in
order to compute deviations.

P22 P23

P25 P26 P27 P28

Figure 5.11: Selected segments of point clouds generated by forward and back-right stereo imagery defining the
patches P21-P28 (see figure 5.5).

Deviation Patches and Profiles

The bottom left part of figure 5.12 exemplarily shows the deviations of road patch P2 for configurations
cl and c4. Differences are not significant, and rails are clearly indicated by positive deviations while road
surface deviations are mainly negative. Cross-track and along-track profiles reveal an offset of about 1
cm for both configurations compared to TLS and there is a little less noise for configuration c4 (see right
part of figure 5.12).

The left column of figure 5.13 illustrates the deviations of patch P27 for configurations cl and c4
as well as for all three stereovision systems. White holes indicate sparse regions where deviations were
not computed. Deviations for forward and back-right are mainly positive and the largest deviations are
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Figure 5.12: Extraction of road patch P2 (top left), corresponding deviations DIM-TLS (bottom left) as well as
cross-track and along-track profiles (right).

computed along curbstone edges of the sidewalk as well as on the upper part of the sidewalk. There are
significantly more points for back-right than for forward, especially in case of c4. Profiles of patch P27
are depicted by the right column of figure 5.13. Cross-track and along-track profiles of point clouds from
image sequence 2.0 (forward and back-right) reveal an offset of ca. 2 cm for both configurations compared
to TLS. The vertical curbstone plane is the less accurately modeled by the back-right stereovision system.
Point clouds of c4 are less noisy than point clouds of c1 for forward and left.

Road and Facade Patches: cl vs. c4

Numerical values for the road patches P1-P5 are given in table 5.3 and statistics of the fagade patches
P11-P16 are listed in table 5.4. While the size of road patches ranges from 82 to 138 m?, the size of facade
patches lies between 23 and 119 m2. Configuration c1 delivers significantly more points than configuration
c4 for road patches, which is due to the fold parameter for the SURE triangulation module (fold 1 for
cl and fold 2 for c4, but fold 3 for both configurations in the subsequent filtering step). In contrast, all
fagade patches but patch P12 have a higher density for configuration c4 than for configuration c1. The
reason for this is a minimum angle value of 2° for the SURE triangulation module for both configurations.
Low density values are caused by difficult matching conditions, which is a large shadow area in patch P3
and a high number of road marking points whose pixel information is partly overexposed in patch P5.
RMSE, mean and standard deviation values are almost identical for configurations cl and ¢4 in case of
road patches. Patch P16 features significantly more points since this is the only investigated facade which
is almost perpendicular to the driving direction. Mean and thus RMSE values are larger for configuration
c4 than for configuration cl, but there is the same standard deviation value. The larger values of patch
P15 are due to different fagade levels and non-planarity. Mean standard deviation values for road patches
are approx. 1 cm and around 5 times larger for facade patches.

Forward, Back-Right and Left Stereovision Systems: cl vs. c4

Mean density and deviation values for the mixed road and sidewalk patches P21-P28 are given in table 5.5,
and standard deviation values are depicted in more detail by figure 5.14. While the size of the investigated
patches ranges from 11 to 32 m?, the mean size of 22 m? corresponds to around one fifth of the mean
value of the road patches P1-P5. The highest mean density value of 23268 points/m? was computed for
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Figure 5.13: Deviations DIM-TLS and profiles of road patch P27 for the forward (top), back-right (middle), and
left (bottom) stereovision systems.
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Patch size Density RMSE Mean SD
9 . 9 DIM-TLS DIM-TLS DIM-TLS
[m?] [Points/m?|

[mm)] [mm] [mm)]
P1 fw cl 103 1742 7 -6 5
P1 fw c4 103 900 7 -5 5
P2 fw cl 105 1466 13 -12 6
P2 fw c4 105 909 12 -11 6
P3 fw cl 82 692 22 -20 9
P3 fw c4 82 318 20 -18 9
P4 fw cl 90 1729 14 -5 13
P4 fw c4 90 1006 14 -3 14
P5 fw cl 138 1063 12 10 7
P5 fw c4 138 624 13 10 7
P1-P5 fw cl 104 1338 14 -7 8
P1-P5 fw c4 104 751 13 -5 8

Table 5.3: Density and deviation values of all road patches for configurations cl and c4 using SURE filtering fold
3.

Patch size Density RMSE Mean SD
9 . 9 DIM-TLS DIM-TLS DIM-TLS
[m?] [Points/m?]

[mm] [mm] [mm]

P11 fw cl 81 1166 47 32 34
P11 fw c4 81 1340 65 51 40
P12 fw cl 61 729 57 46 33
P12 fw c4 61 701 74 66 33
P13 fw cl 119 908 72 -6 72
P13 fw c4 119 1152 75 20 72
P14 fw cl 38 1006 74 -68 30
P14 fw c4 38 1132 88 -81 34
P15 fw cl 85 606 89 -63 63
P15 fw c4 85 1113 121 -109 54
P16 fw cl 23 1580 67 -12 65
P16 fw c4 23 2106 79 45 65
P11-P16 fw cl 68 999 68 12 50
P11-P16 fw c4 68 1257 81 1 50

Table 5.4: Density and deviation values of all fagade patches for configurations c1 and c4 using SURE filtering
fold 3.
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forward c1, which is circa three times higher than for forward c4, principally caused by the fold parameter
for the SURE triangulation module (fold 1 for ¢1 and fold 2 for ¢4, but fold 2 for both configurations in
the subsequent filtering step). Both values are 10-20 times higher than the values determined for P1-P5,
which is mainly due to a different filtering degree (fold 3 for P1-P5 and fold 2 for P21-P28). Low density
values are caused by difficult matching conditions such as a large shadow area for patch P22 in case of
the forward and back-right stereovision systems resulting in rather high standard deviation values, but
not in case of the left stereovision system where just a small shadow area is present since captured at
another date and daytime.

In most cases, RMSE and standard deviation values are larger for c1 than for c4. Because of the lower
filtering degree and a vertical plane of curbstones for each patch, standard deviation values are approx.
twice as large as for road patches P1-P5. While mean DIM-TLS values of 13-23 mm were computed for
patches P27 and P28 for forward and back-right, there are just a few millimeters for the left stereovision
system whose data was captured from another trajectory (image sequence 2.0 vs. 3.0). The largest
standard deviation value for forward cl was determined for patch P24, which is due to a bicyclist who
caused many non-road points that could not be removed by cl but almost completely by c4.

3D point accuracy depends on the measuring distance that is depicted by Burkhard et al. (2012) for
both camera types used in the present investigations. As the average distance between the left stereovision
system and the selected patches is around 10 m, the larger accuracy values compared to the forward and
back-right stereovision systems is not surprising. While patch P26 shows the best values for the left
stereovision system with a distance of 7 m, patch P24 has the second largest standard deviation values
due to a distance of 13 m. The largest RMSE and standard deviation values were computed for patch
P23 which has the largest area.

70
60
50 — mfw c1
br c1
40 — left c1
mfw c4
30 — br c4
left c4
20 — — —
10 -
0

P21 P22 P23 P24 P25 P26 P27 P28

Figure 5.14: Standard deviation values in mm for residuals between DIM and TLS point cloud patches (see SD
DIM-TLS in table 5.5) (fw: forward, br: back-right, c1: stereo matching, c4: in-sequence stereo matching).
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Patch size Density RMSE Mean SD
9 . 9 DIM-TLS DIM-TLS DIM-TLS
[m?] [Points/m?]

[mm)] [mm] [mm]

P21-P28 fw cl 22 23268 26 -7 19
P21-P28 fw c4 22 7623 22 -9 12
P21-P28 br cl 22 16639 26 -7 17
P21-P28 br c4 22 15699 22 -9 11
P21-P28 left cl 22 3884 33 -13 28
P21-P28 left c4 22 4183 27 -13 22
P1-P5 fw cl 104 1338 14 i 8
P1-P5 fw cd 104 751 13 5 8

Table 5.5: Mean density and deviation values of all road patches using SURE filtering fold 2 (fw: forward, br:
back-right, cl: stereo matching, c4: in-sequence stereo matching).

Discussion

In terms of density, large values were computed for both configurations cl and c4 for the back-
right stereovision system. In contrast, the forward stereovision system shows density values that
are approximately three times larger for cl than for c4. However, density is highly dependent on
filtering parameters and especially on the filtering degree. In contrast to facade patches, we computed
slightly more accurate values for ¢4 than for cl in the case of road patches, which is caused by the
higher redundancy of c4. Mainly due to large distances between the stereo cameras and the respective
patches, the left stereovision system provides the less accurate point cloud patches. Similar accuracies
were determined for the back-right and forward patches, since the lower resolution of the back-right
compared to the forward stereovision system is compensated by shorter distances to the patches.

Summary

Mobile mapping scenarios often provide highly redundant imagery, making the selection of suitable
image combinations crucial during multi-view stereo. Hence, we investigated the impact of different
stereo and image sequence matching strategies on the geometric quality of both extracted depth maps
and generated point clouds. To this end, we utilized the SURE software system with its implemented
polar rectification approach. Subsequent steps of the SURE pipeline include dense image matching,
triangulation, point cloud filtering and fusion. Especially for the triangulation and filtering modules,
varying parameters were used (fold 1 or 2 and fold 2 or 3, respectively). Standard stereo matching
led to high accuracies, which could not significantly be improved by additional in-sequence matching.
However, the redundancy achieved by incorporating imagery from additional epochs into the dense
image matching process resulted in more complete and reliable depth maps and point clouds.
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Chapter 6

Conclusion and Outlook

6.1 Summary

Our Integrated Georeferencing Approach Exploiting EOPs, GCPs and ROPs

Our developed georeferencing approach provides accurate and reliable image orientations, while being
efficient and versatile. The main reasons for these achievements are exploiting high image redundancies
and constraining relative orientation parameters (ROPs) among cameras. To this end, multi-view image
sequences captured by camera-based mobile mapping systems need to be available. In order to accurately
georeference imagery in a predefined coordinate reference frame, we rely on initial exterior orientation
parameters (EOPs) and optionally on ground control points (GCPs). These prior EOPs also allow for
direct triangulation of all scene points within our global SfM pipeline, which is much more efficient than
an incremental procedure.

We evaluated our integrated georeferencing approach through extensive investigations using six dif-
ferent real-world datasets. By exploiting EOPs, GCPs and ROPs, the accuracy potential lies at the
centimeter level for absolute 3D coordinates and at the millimeter level for relative 3D measurements.
If no GCPs are employed, it is challenging to meet accuracy requirements of better than one decimeter
in urban canyons. We obtained horizontal accuracies of a few centimeters for a scenario featuring some
loops, while dropping down to a few decimeters for an extended junction area. Since the height com-
ponent is even more dependent on prior EOPs from direct georeferencing, 3D accuracies derived from
integrated georeferencing between one and several decimeters are the normal case in urban environments.
However, using just one GCP enables the elimination of systematic effects, which results in 3D accuracies
within the sub-decimeter range. Nevertheless, this minimal GCP configuration needs to be complemented
by at least one check point in order to guarantee a reliable solution. Furthermore, precisely calibrated
multi-camera rigs and thus a correct inner geometry of trajectories are presumed. In case of solely precise
stereo bases, ROPs among individual stereo camera systems can be self-calibrated, leading to relative 3D
point accuracies in object space at the centimeter level.

A cost-effective solution would require no GCPs. While this is possible with our integrated georef-
erencing approach, we recommend to use at least one GCP in urban environments, so that potential
systematic errors can be removed. Precise calibration of multi-camera systems is demanding and time-
consuming. Our developed integrated georeferencing procedure allows for self-calibration of both interior
and relative orientation parameters. This is particularly advantageous if a multi-camera system needs to
be assembled on-site, which often happens in railway missions. Minimal requirements are prior camera
poses from direct georeferencing or SLAM, a precisely calibrated stereo base or a length reference bar
for metric information, as well as overlapping mappings, e.g. image acquisition in opposite directions.
We demonstrated that the estimation of relative orientations among individual stereo camera systems
by fixing stereo bases works well for a train-based MMS. This is even more challenging than road en-
vironments that feature better scene structures and street-based MMS that are more dynamic in terms
of vehicle motion. Moreover, our procedure is able to overcome difficult feature matching conditions as
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encountered in rail and indoor environments. While versatile, our integrated georeferencing approach
showed robustness by successfully orienting all intended images.

Comparison of our Integrated Georeferencing Approach with State of the Art

Similar to us, Fanta-Jende et al. (2019) aim at improving trajectories of street-based mobile mapping
vehicles in challenging urban environments. While we often rely on ground control points, they exploit
airborne images as reference data. First, they developed a comprehensive automated procedure for the co-
registration of aerial nadir and panoramic mobile mapping imagery based on salient road markings. Even
though Jende et al. (2018) showed significant improvements and the feasibility to obtain 3D accuracies
at the decimeter level, this was not confirmed in Fanta-Jende et al. (2019). Instead, they encountered a
slight accuracy decrease or just a minor improvement by employing nadir images. Second, Fanta-Jende
et al. (2019) presented a co-registration approach based on aerial oblique images that uses building fagades
or other high vertical objects as correspondence regions. While they obtained a significant improvement
for one test area, two other test areas showed hardly any impact (Fanta-Jende et al., 2019). Their
combined and thus best performing solution utilizing both nadir and oblique images improved check
point 2D RMSE values from 18 cm to 16 cm and from 54 cm to 25 cm for two different test areas. Our
investigations without GCPs delivered similar horizontal values for the dataset Basell5, i.e. accuracy
increase from 14 c¢cm to 11 cm and from 51 cm to 34 cm (see section 4.2.4). In case of the dataset Zugl?,
we improved a 2D RMSE value of 9 cm from direct georeferencing to a value of 5-7 cm for different
configurations (see section 4.3.3), which is more accurate by a factor of ca. 3 compared to Fanta-Jende
et al. (2019). Same as in our scenarios with no GCPs, they struggle to improve absolute accuracies of the
height component. However, by only employing one 3D reference point, our approach enables to achieve
absolute 3D accuracies within the sub-decimeter range, which is a typical requirement in 3D mapping
projects. Moreover, by incorporating a few more GCPs, we are able to consistently obtain 3D accuracies
at the centimeter level.

Compared to Fanta-Jende et al. (2019), we are not dependent on the availability and on the quality
of additional derived products. Typical GSDs of ca. 10 c¢m for nadir and oblique airborne images limit
the accuracy potential. Furthermore, possible inaccuracies of aerial image orientations are propagated
to the mobile mapping trajectories. While occlusions of road markings by vehicles or vegetation have a
significant impact on the performance of the nadir procedure, the oblique approach presumes visible multi-
story building facades. In contrast, our integrated georeferencing approach is not limited to urban road
environments, but also successfully copes with suburban and rural areas as well as indoor environments.
Moreover, our procedure supports varying multi-camera configurations and camera models. We performed
all our extensive investigations using real-world scenarios, and did not artificially distort any trajectories.

Recommendations for Multi-Camera Configurations

Multi-camera mobile mapping systems allow for efficient data capturing of road and rail corridors as well
as indoor environments. Depending on the main objective of a project, adequate camera types and camera
head numbers may vary. While panorama cameras are suitable for image collection in nearly all directions
at the same point of time, stereo pinhole camera systems featuring physical bases enable high accuracies.
If feasible, a combination of these two types is the prime choice, leading to high image redundancies in
multiple directions. Leveraging this redundancy is an essential part for obtaining accurate and robust
image orientations, as well as accurate, reliable and dense 3D scene information. However, dense image
matching for accurate 3D geometry computation highly relies on adequate stereo bases. Hence, a stereo
camera system pointing forward featuring the highest geometric resolution is useful, as the entire road or
rail corridor can be mapped. Physical stereo bases in the other directions are not necessarily required,
since cameras that do not point in the driving direction can deliver stereo images based on two epochs.
However, such virtual stereo bases are entirely dependent on the georeferencing quality and might be less
precise. For integrated georeferencing, it is more crucial to connect multi-view imagery from different
trajectories than having stereo images all around. Therefore, suitable configurations for efficient data
processing complement a stereo camera system pointing forward with mono cameras directed back-right
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and back-left or just a camera looking backward. Mapping in opposite driving directions leads to more
homogeneous integrated georeferencing solutions and especially stabilizes the height component.

6.2 Limitations and Future Work

Our integrated georeferencing approach is able to deliver accurate and robust image orientations for
small to medium-sized scenarios. Processing of up to ca. 10’000 images on a laptop still leads to
reasonable computation times. A hierarchical image orientation approach would allow for a speed-up,
but highly accurate sub-model alignment is challenging. Hence, parallel processing on scalable computing
environments and exploiting high-quality graphics processing units (GPUs) is required for handling large-
scale multi-camera datasets.

We rely on a conventional SfM procedure that exploits SIFT features, which works well for our chal-
lenging use cases. Nonetheless, we could easily replace the modules of feature extraction and matching
with alternative learning-based approaches, that would presumably lead to even better results. Further-
more, such methods could help to reduce our long computation times, in particular for feature matching.
Moreover, especially rail and indoor datasets would benefit from a better feature distribution in indi-
vidual images, which can be obtained by patterns or semantics. Consequently, promising learning-based
approaches are reviewed in the following sections.

Both Balntas et al. (2017) and Schonberger et al. (2017) evaluate hand-crafted as well as learned local
features. Balntas et al. (2017) show that a simple normalization of traditional hand-crafted descriptors
can boost their performance to the level of deep learning-based descriptors. Besides descriptor matching,
Schonberger et al. (2017) also evaluate camera poses obtained by SfM based on different feature descrip-
tors. They conclude that advanced hand-crafted features still perform on par or better than learned
features in the practical context of image-based reconstruction. Meanwhile, more powerful learned local
features have been introduced, e.g. SuperPoint (DeTone et al., 2018), LF-Net (Ono et al., 2018), D2-Net
(Dusmanu et al., 2019), R2D2 (Revaud et al., 2019), SOSNet (Tian et al., 2019). These and many others
are evaluated in a comprehensive benchmark for local features and robust estimation algorithms, which
was recently introduced by Jin et al. (2020). Similar to Schonberger et al. (2017), the accuracy of recon-
structed camera poses serves as primary metric, but they differentiate the tasks of wide-baseline stereo
and multi-view reconstruction (SfM). Jin et al. (2020) show that classical solutions may still outperform
the perceived state of the art with proper settings. Furthermore, they state that end-to-end learning
solutions do not yet outperform classical methods that subdivide the problem into separate steps. Hence,
Sarlin et al. (2020) propose to learn feature matching with graph neural networks and Kluger et al. (2020)
introduce CONSAC, which is the first learning-based method for robust multi-model fitting. Dusmanu
et al. (2020) jointly optimize keypoint locations over multiple views according to a non-linear least squares
formulation. In addition to improving poor keypoint localization of recent learned feature approaches,
they can even refine SIFT features. Wei et al. (2020) present a well performing SfM deep learning
framework, which explicitly enforces photometric and geometric consistency as well as camera motion
constraints.

There has been a significant amount of work related to visual localization in recent years. While it aims
at estimating 6 DoF camera poses such as SfM, it assumes the scene structure to be known. Sattler et al.
(2018) introduce a benchmark that motivates the development of robust visual localization approaches.
These should be able to handle large appearance variations caused by changes in seasonal and illumination
conditions. Kendall et al. (2015) proposed the first end-to-end visual localization approach based on
convolutional neural networks (CNNs). These methods learn to directly regress the camera pose from an
input image, but according to Sattler et al. (2019), they do not achieve the same level of pose accuracy as
conventional 3D structure-based methods. A reason is that pose regression is more closely related to pose
approximation via image retrieval than to accurate pose estimation via 3D geometry. Furthermore, there
is no guarantee that absolute pose regression approaches generalize beyond their training data. Since
structure-based methods rely on the laws of projective geometry as well as on the underlying 3D geometry
of the scene, they can better handle viewpoint changes (Sattler et al., 2019). Aiming to deploy visual
localization at global-scale, Lynen et al. (2020) do not employ learning-based approaches, but methods
using local features and sparse 3D models. This allows for low-latency localization queries and efficient
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fusion that is run in real-time on mobile platforms by combining server-side localization with real-time
visual-inertial-based camera pose tracking.

Several researchers replace parts of the visual localization pipeline with learning-based components.
Meyer et al. (2020) address robust long-term visual localization in large-scale urban environments ex-
ploiting street-level imagery. They first perform 2D image-based localization using image retrieval by
NetVLAD (Arandjelovic et al., 2016) in order to select corresponding reference images. Then, same as
Widya et al. (2018), dense CNN features are extracted on a regular grid, followed by keypoint relocal-
ization for accuracy improvement. Subsequently, feature correspondences are imported in COLMAP for
camera pose estimation. Sarlin et al. (2019) propose a robust hierarchical localization pipeline based
on the CNN architectures NetVLAD (Arandjelovic et al., 2016) and SuperPoint (DeTone et al., 2018).
Furthermore, they introduce HF-Net, a novel CNN that computes keypoints as well as global and local
descriptors in a single shot, which leads to reduced computation times.

Schonberger et al. (2018) propose a novel approach to visual localization based on 3D geometric and
semantic information, which is able to correctly localize images with strong viewpoint, illumination and
seasonal changes. Their model learns a general semantic scene representation in a self-supervised fashion
from data, eliminating the need for hand-crafted solutions or manual labeling. Taira et al. (2019) present
a pose verification approach to improve large-scale indoor camera localization. In order to cope with
repetitive structures and weakly textured scenes, they successfully combine different modalities, namely
visual appearance, surface normals and semantics.

Learning-based approaches are meanwhile not only ubiquitous for image orientation, but also for 3D
scene generation. While many methods learn individual components of the whole pipeline, end-to-end
procedures exist as well. Janai et al. (2020) provide a recent survey of deep learning approaches for both
stereo matching and multi-view stereo from an autonomous driving perspective. Zbontar and LeCun
(2015) were the first to employ a convolutional neural network for the stereo matching problem. Seki and
Pollefeys (2017) and Schonberger et al. (2018) perform SGM using learning-based methods, while Huang
et al. (2018) utilize a deep CNN for multi-view stereo reconstruction.

Several of these recent learning-based developments can benefit from integrated georeferencing, but in
particular visual localization. In order to reach sufficient accuracy and robustness in varying conditions,
diverse georeferenced imagery is needed for the training process. Furthermore, query images rely on
existing scene information, thus requiring large-scale image data bases that are accurately georeferenced.
Hence, our integrated georeferencing approach is an excellent choice for establishing such high-quality
reference data, showing very good performance in both outdoor and indoor environments.
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Chapter 7

Appendix

7.1 Camera Pose Computation

Camera pose estimation aims at computing position and attitude information for all images at capturing
time. This frequently includes six exterior orientation parameters, i.e. 3D coordinates of projection
center in a predefined coordinate reference frame and three Euler angles. However, 3D attitude can also
be defined by a rotation matrix or a quaternion. Please note that the computation process for Euler
angles conversion, Euler angles to quaternion, and quaternion to Euler angles in section 7.1.2 is indicated
sequentially, i.e. a variable of a particular equation refers to the result of the previous computation step.
The content of the following sections is derived from multiple sources, e.g. Colomina and Parés (2012).

7.1.1 Coordinate Reference Frames

A coordinate reference frame, often termed frame, consists of both a reference frame that is the realization
of a reference system and a coordinate system, which is the parametrization. We briefly introduce the
most important ones that are needed in order to understand our computations.

Mapping Frame is the frame in which resulting coordinates are typically demanded. It includes a
global terrestrial reference frame as well as horizontal map-projected coordinates and vertical heights.
In case of Switzerland, the horizontal reference frames LV0O3 and LV95 are primarily used. The Swiss
vertical reference frame LNO2 features leveled heights, whereas LHN95 is based on orthometric heights.

Body Frame is often used for navigation purposes. Its origin is physically located in the navigation
center of the IMU. The IMU defines the axes of the body frame: the x-axis points forward, the y-axis
points to the right, and the z-axis points downwards.

Camera Frame is identical to the respective two-dimensional image coordinate system, but features
a third axis (z) that is the camera axis. The x-axis points to the right, the y-axis points upwards, and
the z-axis complements the right-handed coordinate system. The projection center serves as origin.

7.1.2 Rotation Parametrization

We use rotation matrices R, quaternions ., ¢», gy, ¢- and Euler angles represented as roll +y, pitch 6, head-
ri1 T2 T13

ing 1 or omega w, phi ¢, kappa & for 3D attitude description. Rotation matrices R = | 721 792 723
31 T32 733

uniquely determine 3D attitude and they are orthogonal with the property that the inverse matrix equals
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the transpose: R™! = RT and RRT = I. There are different definitions for rotation matrices, how-
ever, we commonly utilize the standard rotation matrix in photogrammetry featuring rotations about the
moving axes of the source system (equation 2.27 in Luhmann et al. (2014)):

COS (Y COS K —cospsink sin
Rpe =RuR R, = | coswsink +sinwsingpcosk coswcosk —sinwsinpsinkg  — sinw cos ¢
sinwsink — coswsin Y cosk  sinw cosk + coswsinpsink  cosw cos @

(7.1)
This rotation matrix specifies a projection from image to object coordinates Rpg—img—to—ob; With regard
to a camera frame mentioned in section 7.1.1. In contrast, the computer vision community frequently uses
rotation matrices that specify a projection from object to image coordinates Rcov —obj—to—img. Moreover,
the x-axis of the underlying coordinate system points to the right, the y-axis points downwards, and the
z-axis points away. The relation between these two rotation matrices is given as follows:

1 0 0
Roy=|0 -1 0 |RE, (7.2)
0 0 -1

Instead of using ambiguous trigonometric functions as in equation (7.1), rotation matrices with al-
gebraic functions can be utilized. Hence, the three independent rotations are described by four al-
gebraic parameters, called quaternions. A quaternion, q € H, may be represented as a vector q =

[ Gw Gz Gy 4= ]T. According to Luhmann et al. (2014), a rotation matrix with algebraic functions
offers the following benefits:

e 1o use of trigonometric functions

e simplified computation of the design matrix and faster convergence in adjustment systems

e 1o singularities

e faster computation by avoiding power series for internal trigonometric calculations

Euler Angles Conversion

From Euler angles representation roll v, pitch 8, heading ¢ to Euler angles representation omega w, phi
v, kappa k:

cosfcosy —cosysiny + sinysinfcosty  sin-ysiny + cosysinf cosy
R 9y = | cosfsiny cosycosty +sinysinfsintg  —sin-ycost + cosysinfdsin (7.3)
—sinf sin -y cos 6 cosycos 6
01 o0 01 0
Rpeg=|1 0 0 |Ryp| 1 0 O (7.4)
0 0 -1 0 0 -1

= arctan (;1‘32> (7.5)
VT3 733

Tri2

Tll)

o if cosp # 0 then w = arctan (—%) and k = arctan (—
(’“ﬂ), however,
T32

e if cosp = 0 (singularity) then w = 0 and x = arctan

if ¢ # § then k = —arctan (%)
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Euler Angles to Quaternion

From Euler angles representation omega w, phi ¢, kappa  to quaternion gy, gz, gy, q:

COS (p COS K —cospsink

Rpe =RuR R, = | coswsink +sinwsinpcosk  coswcosk —sinwsingsinkg  —sinw cos ¢
sinwsink — coswsingcosk sinwcosk + coswsinpsink  cosw cos

1 0 0
T
Rey=| 0 -1 0 |RE,
0o 0 -1
711 — T22 — T'33 0 0 0
K, = 712 + 721 T22 — T11 — T33 0 0
r13 + 731 ro3 + 132 r33 — 11 — T22 0
32 — 123 713 — T31 ro1 — T12 711 + 722 + 133
K,
Ky, = —
3

e Quaternion ¢y, gz, gy, ¢- is the eigenvector of the symmetric matrix Ky that
corresponds to the largest eigenvalue

Quaternion to Euler Angles

From quaternion g, ¢z, gy, ¢ to Euler angles representation omega w, phi ¢, kappa :

e Quaternion normalization, then

1-2¢0 =22 202Gy — 2Quwq=  2G2G- + 2quway
Rev = QQzQy +2quq. 1-— 2%25 - 2(13 2‘]@;‘]2 — 2GuwQqx
2429 — 2quwqy  2QyQs + 2quwq. 11— 2(]3 — 2(]3

1 0 0 T
Rpg = 0 -1 0 Revy
0o 0 -1

713
(p = arctan (22>
VTa3 +733

o if cosp # 0 then w = arctan (—@) and k = arctan <_m)

733 T11

e if cos = 0 (singularity) then w = 0 and x = arctan (%), however,

ifo#35 thenn:—arctan( )

T22
T32

(7.10)

(7.11)

(7.12)
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7.2 Publications

The publications created during the course of this thesis are grouped by topic and sorted by date.

Image-Based and Integrated Georeferencing

Cavegn, S., S. Blaser, S. Nebiker, and N. Haala (2018). Robust and Accurate Image-Based Georefer-
encing Exploiting Relative Orientation Constraints. In ISPRS Ann. Photogramm. Remote Sens.
Spatial Inf. Sci., Volume IV-2, Riva del Garda, Italy, pp. 57-64.

Cavegn, S., S. Nebiker, and N. Haala (2016). A Systematic Comparison of Direct and Image-Based
Georeferencing in Challenging Urban Areas. In Int. Arch. Photogramm. Remote Sens. Spatial Inf.
Sci., Volume XLI-B1, Prague, Czech Republic, pp. 529-536.

Cavegn, S., S. Nebiker, and N. Haala (2016). Ein systematischer Vergleich zwischen direkter und bild-
basierter Georeferenzierung von Mobile Mapping-Stereosequenzen in einem anspruchsvollen Stadt-
gebiet. In DGPF Tagungsband 25 / 2016, Bern, Switzerland, pp. 113-123.

In-Sequence Dense Image Matching

Cavegn, S. and N. Haala (2016). Image-Based Mobile Mapping for 3D Urban Data Capture. Pho-
togrammetric Engineering & Remote Sensing 82 (12), 925-933.

Nebiker, S., S. Cavegn, and B. Loesch (2015). Cloud-Based Geospatial 3D Image Spaces — A Pow-
erful Urban Model for the Smart City. ISPRS International Journal of Geo-Information 4 (4),
2267-2291.

Cavegn, S., N. Haala, S. Nebiker, M. Rothermel, and T. Zwdlfer (2015). Evaluation of Matching
Strategies for Image-Based Mobile Mapping. In ISPRS Ann. Photogramm. Remote Sens. Spatial
Inf. Sci., Volume II-3/W5, La Grande Motte, France, pp. 361-368.

Dense Image Matching for Oblique Aerial Scenarios

Schir, P., S. Cavegn, D. Novak, B. Loesch, H. Eugster, and S. Nebiker (2018). Ein systematischer
Vergleich verschiedener Multi-View Stereo-Losungen fur die luftbildgestiitzte dreidimensionale In-
frastrukturkartierung. In DGPF Tagungsband 27 / 2018, Munich, Germany, pp. 431-449.

Haala, N. and S. Cavegn (2016). High Density Aerial Image Matching: State-Of-The-Art and Future
Prospects. In Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., Volume XLI-B4, Prague,
Czech Republic, pp. 625-630.

Haala, N., M. Rothermel, and S. Cavegn (2015). Extracting 3D Urban Models from Oblique Aerial
Images. In Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, pp. 1-4.

Haala, N. and S. Cavegn (2015). Benchmark zur Evaluation dichter Bildzuordnungsverfahren in Luft-
bildern. In DGPF Tagungsband 24 / 2015, Cologne, Germany, pp. 244-253.

Cavegn, S., N. Haala, S. Nebiker, M. Rothermel, and P. Tutzauer (2014). Benchmarking High Density
Image Matching for Oblique Airborne Imagery. In Int. Arch. Photogramm. Remote Sens. Spatial
Inf. Sci., Volume X1.-3, Zurich, Switzerland, pp. 45-52.

Deuber, M., S. Cavegn, and S. Nebiker (2014). Dense Image Matching. Performance Analysis on
Oblique Imagery. GIM International 28 (9), 23-25.

Cavegn, S., S. Nebiker, and M. Deuber (2014). Dense Image Matching mit Oblique Luftbildaufnahmen
— Ein systematischer Vergleich verschiedener Losungen mit Aufnahmen der Leica RCD30 Oblique
Penta. In DGPF Tagungsband 23 / 2014, Hamburg, Germany, pp. 1-10.
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Mobile Mapping Systems

Blaser, S., S. Cavegn, and S. Nebiker (2018). Development of a Portable High Performance Mobile
Mapping System Using the Robot Operating System. In ISPRS Ann. Photogramm. Remote Sens.
Spatial Inf. Sci., Volume IV-1, Karlsruhe, Germany, pp. 13—20.

Blaser, S., S. Nebiker, and S. Cavegn (2018). On a Novel 360° Panoramic Stereo Mobile Mapping
System. Photogrammetric Engineering € Remote Sensing 84 (6), 347-356.

Blaser, S., S. Nebiker, and S. Cavegn (2017). System Design, Calibration and Performance Analysis of
a Novel 360° Stereo Panoramic Mobile Mapping System. In ISPRS Ann. Photogramm. Remote
Sens. Spatial Inf. Sci., Volume IV-1/W1, Hannover, Germany, pp. 207-213.

Visual Localization

Rettenmund, D., M. Fehr, S. Cavegn, and S. Nebiker (2018). Accurate Visual Localization in Out-
door and Indoor Environments Exploiting 3D Image Spaces as Spatial Reference. In Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., Volume XLII-1, Karlsruhe, Germany, pp. 355-362.
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