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Abstract

Detecting and localizing archaeological monuments and historical man-made terrain structures is
essential for learning and preserving our cultural heritage. With the advancement of laser scanning
technology, it is possible to acquire Airborne Laser Scanning (ALS) point clouds and create Digital
Terrain Models (DTMs), which can be analyzed by archaeologists for interesting monuments and
structures. However, manually inspecting high volumes of DTM data is a time-consuming task. The
goal of this research is to utilize deep learning for automated detection of archaeological monuments
and historical man-made terrain structures in DTMs. Southern Lower Saxony, i.e. specifically the
Harz mining region, was chosen as the study region because a significant number of monuments can
be found here. Due to the limited amounts of annotated data and the large amounts of unlabeled
data, the focus is on Self Supervised Learning (SSL).

SSL involves two steps: pretext and downstream. In the pretext, a model is trained on unlabeled
data to learn intrinsic characteristics and interesting patterns in the input. Downstream is the
second step, which involves learning patterns from annotated datasets. In the downstream step,
the trained model from the pretext step is either used a fixed feature extractor or directly finetuned
for supervised tasks on annotated datasets.

In this research, convolutional encoder-decoder networks and Generative Adversarial
Networks (GANs) are trained on unlabeled DTM data in the SSL pretext. The trained models are
then customized for downstream tasks such as classification, instance segmentation, and semantic
segmentation. They are then finetuned on small amounts of annotated data for detection of
archaeological monuments and man-made terrain structures in the Harz region in Lower Saxony.

Experiments are conducted on three different datasets from the Harz region. The first dataset
contains areal structures which includes archaeological monuments such as charcoal kilns, burial
mounds and mining holes and other man-made terrain structures such as bomb craters. The
second dataset contains linearly elongated structures which includes archaeological monuments
such as ditches and hollow ways and other man-made structures such as paths and roads. The
third dataset from Harz includes annotated examples of historical stone quarries. Results of the
experiments indicate the positive impact of SSL pretraining on the downstream tasks. The best
classification algorithm performs similar with and without SSL pretraining. However, for instance
and semantic segmentation tasks which are much more complex, SSL pretraining improves the
Mean Average Precision (MAP) score by 5.28 % and the Mean Intersection Over Union (MIOU)
score by 4.72 %, respectively, on the Harz areal dataset. On the linear structures dataset, the
increase in MAP and MIOU scores are 6.18 % and 1.22 %, respectively. Finally, SSL pretraining
leads to an increase of 3.02 % in the MIOU score in the stone quarries dataset.

Keywords: Self Supervised Learning, LiDAR, Archaeology, Historical Mining



Kurzfassung

Das Detektieren und Lokalisieren von archäologischen Denkmälern und historischen, von
Menschenhand geschaffenen Geländestrukturen ist für den Schutz unseres kulturellen Erbes
unerlässlich. Mit dem Fortschritt der Laserscanning-Technologie ist es möglich, Airborne Laser
Scanning (ALS) Punktwolken zu erfassen und Digitale Geländemodelle (DGM) zu erstellen, die
von Archäologen auf interessante Denkmäler und Strukturen analysiert werden können.
Allerdings ist die manuelle Detektion im digitalen Geländemodell (DGM) eine zeitaufwändige
Aufgabe. Das Ziel der Arbeit ist es, Deep Learning für die automatisierte Erkennung von
archäologischen Denkmälern und historischen, von Menschenhand geschaffenen
Geländestrukturen in DGMs einzusetzen. Als Modellregion wurde Südniedersachsen, d.h. speziell
die Montanregion Harz gewählt, weil sich hier eine besondere Dichte von Denkmälern befindet.
Aufgrund der begrenzten Menge an gelabelten Daten und der großen Menge an ungelabelten
Daten liegt der Fokus auf Self Surpervised Learning (SSL).

SSL umfasst zwei Schritte: Pretext und Downstream. Im Pretext wird ein Modell auf
ungelabelten Daten trainiert, um intrinsische Eigenschaften und interessante Muster in der
Eingabe zu lernen. Downstream ist der zweite Schritt, der das Lernen von Mustern aus gelabelten
Datensätzen beinhaltet. Im Downstream wird das trainierte Modell aus dem Pretext-Schritt
entweder als fester Feature-Extraktor verwendet oder direkt für überwachte Aufgaben auf
gelabelten Datensätzen nachtrainiert.

In dieser Arbeit werden Convolutional-Encoder-Decoder-Netzwerke und Generative Adversarial
Networks (GANs) auf ungelabelten DGM-Daten im SSL-Pretext trainiert. Die trainierten
Modelle werden dann im SSL-Downstream für Klassifizierung, Instanzsegmentierung und
semantische Segmentierung angepasst. Anschließend werden sie mit Hilfe kleiner Mengen
gelabelter Daten für die Erkennung archäologischer Denkmäler in der Harzregion in
Niedersachsen nachtrainiert.

Die Experimente werden mit drei verschiedenen Datensätzen aus der Harzregion durchgeführt.
Der erste Datensatz enthält kompakte, geschlossene Strukturen, zu denen archäologische
Denkmäler wie Meilerplätze, Grabhügel und Pingen und andere vom Menschen geschaffene
Geländestrukturen wie Bombentrichter gehören. Der zweite Datensatz enthält langgestreckte
lineare Strukturen, zu denen archäologische Denkmäler wie Gräben und Hohlwege und andere
vom Menschen geschaffene Strukturen wie Wege und Straßen gehören. Der dritte Datensatz aus
dem Harz umfasst annotierte Beispiele von historischen Steinbrüchen. Die Ergebnisse der
Experimente zeigen den positiven Einfluss des SSL-Pretrainings auf die Downstream Aufgaben.
Der beste Klassifikationsalgorithmus schneidet mit und ohne SSL-Vortraining ähnlich ab. Für
Instanz- und semantische Segmentierungsaufgaben, die viel komplexer sind, verbessert das
SSL-Pretrainings jedoch den Mean Average Precision (MAP)-Score um 5,28 % und den Mean
Intersection Over Union (MIOU)-Score um 4,72 %, jeweils auf dem Harzer Areal-Datensatz.
Beim Datensatz für lineare Strukturen beträgt die Steigerung der MAP- und MIOU-Scores 6,18
% bzw. 1,22 %. Schließlich führt das SSL-Pretraining zu einer Erhöhung des MIOU-Scores im
Datensatz Steinbrüche um 3,02 %.

Schlagworte: Selbstüberwachtes Lernen, LiDAR, Archäologie, Historischer Bergbau
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1. Introduction

This chapter introduces the the motivation and goal of this research. It gives details of the region
under study and lists an overview of how this thesis is structured.

1.1. Motivation and Research Goal

Archaeology studies physical remains of objects to discover facts about human history and culture
from prehistoric and historical era. It helps us have a glance at the lives of people in the past
and how things have changed through time. While facts and information about the historical era
are found in written records, prehistoric era for which no written records are available can only be
discovered through study and analysis of archaeological remains. Places with physical remains of
human activities in the past are called archaeological sites. Settlements, cemeteries, and historical
mining regions are examples of archaeological sites.

Archaeological sites, features and artifacts, and historical terrain structures are part of our cultural
heritage. They are indicators of past human accomplishments and sometimes the only sources
of information about the history. Therefore, it is important to preserve and protect them. The
first step in this direction is to identify and document archaeological sites. Archaeologists discover
archaeological features and artifacts by surveying and visual observation of the surface of the
earth. Anything that can be used to understand human life in the past is marked as interesting for
archaeology and analyzed later.

To speed up the process, drones, air balloons, aerial photography and satellite imagery are used
to remotely scan potential archaeological sites and find features and artifacts. However, there
are features and artifacts underground or historical terrain structures that are not directly visible
by the naked eye. Moreover, archaeological sites could be covered by forest essentially rendering
them undetectable in aerial images. In such cases, remote sensing technologies such as Light
Detection And Ranging (LiDAR) or Airborne Laser Scanning (ALS) can be used to scan such
regions and collect point cloud data by measuring the range and reflectance of the earth’s surface
and objects on it. The collected point cloud is processed to create DTM data which can be used
in analysis and visualization of terrain structures. Archaeologists use Geographic Information
System (GIS) software such as ArcGIS (ArcGIS) or Quantum GIS (QGIS) to perform analysis and
create visualizations of the DTMs for identifying and registering archaeological monuments.

Even though LiDAR technology is efficient in collecting ALS point clouds for big regions, manual
analysis of the DTM by-products is still laborious and time-consuming. Archaeologists need to
search and mark potential features and artifacts and then perform a field survey on the marked
regions for validation. Moreover, the process has to be repeated every time data is collected for a
new region. To automate the process and avoid manual inspection of DTM data for the same set of
artifacts and features every time a new region is scanned, Machine Learning (ML) techniques are
applied. Archaeologists determine unique characteristics of interesting archaeological monuments
and preprocess the data to create annotated datasets. Such a dataset consists of hand-engineered
input features paired with their corresponding labels. ML models such as Support Vector Machine
(SVM), decision trees, logistic regression, Naive Bayes classifiers, K-nearest neighbours, and more,
are trained using the annotated datasets to detect archaeological structures in DTM data given the

10



1.1. Motivation and Research Goal 11

hand-engineered features as input. Trained ML models are then used for new datasets every time
a region is scanned. Thus, archaeologists do not need to manually inspect DTM data every time.

Classical ML techniques need their input features to be hand-engineered by domain experts.
Additionally, many of them only work for linearly separable input data and cannot learn
non-linearities or complex relationships between input data and target labels. With the immense
increase in availability of data in many research areas and the emergence of powerful computing
tools such as Graphics Processing Units (GPUs), Deep Learning (DL) techniques are utilized for
automating many tasks such as objection detection in natural images, machine translation,
speech recognition, medical image analysis and many more in other research fields. High volumes
of LiDAR point clouds and already interpreted datasets in archaeolgocial database systems
encourage utilization of DL techniques in archaeology as well. DL models handle input data
directly without hand-engineered features, solve complex tasks, and can be trained with large
datasets efficiently taking advantage of recent advances in computing. To train such models, a
dataset of input DTMs and corresponding target labels are required without the need for
hand-engineered input features by domain experts.

Supervised DL models require large annotated datasets for training in order to learn, generalize
and perform well on unseen data. In many other domains such as recognition and localization of
objects in natural images, machine translation and speech recognition where deep learning
research has matured, tons of annotated datasets are available. Examples are the Citscapes
dataset for urban scene understanding (Cordts et al., 2016), ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset (Russakovsky et al., 2015), Pascal Visual Object
Classes (VOC) dataset (Everingham et al., 2015) in Computer Vision (CV). In Natural Language
Processing (NLP) and speech recognition, there are datasets such as Europarl (Koehn, 2005),
blog authorship corpus (Schler et al., 2006), and speech commands (Warden, 2018). There are
annotated datasets available in the remote sensing community as well including SpaceNet
(Van Etten et al., 2018), Deepsat (Basu et al., 2015), Brazilian Coffee Scenes (Penatti et al.,
2015), and 2D semantic labeling datasets from International Society for Photogrammetry and
Remote Sensing (ISPRS). However, there are no annotated LiDAR datasets publicly available for
archaeological research. DL researchers in archaeology create their own datasets and train models
for detection of archaeological monuments (Verschoof-van der Vaart and Lambers, 2019; Trier
et al., 2019; Gallwey et al., 2019; Soroush et al., 2020; Kazimi et al., 2019b). These datasets are
small compared to those in other domains and are not made publicly available. Moreover, manual
annotation of large DTMs is quite laborious and time-consuming. Currently, researchers in
archaeology working with LiDAR data tackle the problem of insufficient training data by the use
of transfer learning from other domains. For example, pretrained deep learning models on
ImageNet and other datasets are used to finetune models on LiDAR data acquired for
archaeological purposes (Trier et al., 2018, 2019; Verschoof-van der Vaart and Lambers, 2019).
While this aids in learning to detect archaeological structures, pretraining deep learning models
on LiDAR data directly can lead to better detection and faster convergence. This is the main
contribution and aim of this research, i.e., to pretrain deep learning models on LiDAR data and
finetune them on the same for archaeological applications. Even though large annotated datasets
are not available, unlabeled LiDAR datasets and its derived products, e.g., DTMs, can be
exploited by an exciting DL field called Self Supervised Learning (SSL).

The goal of this research is to exploit large volumes of unlabeled DTMs created from LiDAR point
clouds for self supervised detection of archaeological monuments. This is done using SSL in two
steps: pretext and downstream. In the pretext phase, unlabeled DTMs are used to train Deep
Neural Networks (DNNs) for learning hidden features and capturing intrinsic characteristics of the
input DTM. In the second step, i.e., the downstream phase, small datasets annotated with objects
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and structures related to historical mining are used to finetune the trained DL models from the
pretext in order to learn detecting such structures.

DNNs in the first step in SSL, i.e., pretext, utilize unlabeled data for learning and extracting useful
features and hidden representations. However, for the models to learn this, some implicit labels or
supervision signals are required. Implicit labels can be the input data itself or any type of data that
can automatically be created from the available data with ease and without manual annotations.
Examples include rotating input images by 0, 90, 180 and 270 degrees and training a model to
predict the applied rotation (Gidaris et al., 2018), or shuffling image patches and training a model
that learns the shuffling permutations (Noroozi and Favaro, 2016). Further examples of implicit
labeling or self supervised representation learning are studied by Zhang et al. (2019b), Doersch
et al. (2015), Zhang et al. (2016c), Larsson et al. (2016), Vondrick et al. (2018), Lee et al. (2017),
and Misra et al. (2016), among others.

As implicit labels in representation learning of DTMs, an array of derived rasters originally intended
for better visualization of the terrain can be utilized. In principle, the DTM patches alone can be
used for this purpose by applying rotations, or cropping parts of the DTM patches, and training a
model to learn the applied rotations or reconstruct the cropped regions. However, relief visualization
rasters derived from the DTMs are shown to be effective, compared to the original DTMs, in
training deep learning models for supervised tasks (Kazimi et al., 2019a). Therefore, such rasters
are used as implicit supervision signals in this research. Rasters such as Simple Local Relief
Model (SLRM), Local Dominance (LD), Positive Openness (POS), Negative Openness (NEG),
Sky View Factor (SVF) and slope (explained in detail in Chapter 2) are derived from DTMs, each
of which is suitable for visualization of certain structures in the terrain that are not directly visible
by the naked eye in the DTMs. Many GIS tools have functions or toolboxes that calculate raster
derivatives given an input DTM. In this research, the so called Relief Visualization Toolbox (RVT)
software (Kokalj and Somrak, 2019) is used to calculate 6 previously mentioned raster derivatives
from unlabeled DTM data. Such rasters are used to learn hidden representations in DTMs by
training DL models that take DTMs as inputs and learn to generate previously mentioned raster
derivatives for them. Thus, the first hypothesis to be investigated in this research is:

Research Hypothesis 1 Relief visualization rasters are useful implicit supervision signals for
training deep learning models for learning hidden representations and properties in Digital Terrain
Models (DTMs).

Deep learning models in the second step in SSL, i.e., downstream, aim to utilize annotated datasets
to solve a supervised task, e.g., image classification, bounding box detection, or semantic and
instance segmentation. When large datasets with labels are available, such models perform well.
However, when the dataset is small and there is a possibility to get huge amounts of unlabeled
data for the same domain, pretrained models from the first step, i.e., pretext, prove useful. The
trained pretext models are utilized to extract useful representations from the inputs in annotated
datasets. They are finetuned for supervised downstream tasks. It is proved that utilizing pretrained
models and finetuning them leads to improved performance compared to training them directly from
scratch. Using SSL pretraining, the model already learns important properties of the input data
which helps gain improved performance in the supervised downstream task. This leads to the
second hypothesis investigated in this thesis:

Research Hypothesis 2 Self supervised pretraining and finetuning the pretrained models for
supervised learning tasks with annotated DTM datasets leads to improved performance compared
to training supervised models with random weight initialization.

The downstream task in this research is the automated detection of archaeological monuments and
historical man-made terrain structures in DTM data. Three distinct datasets are created for the
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experiments in this research. The distinction is based on the shapes and the sizes of structures in
each dataset. The categories studied in the first dataset include archaeological monuments such as
charcoal kilns, burial mounds and mining holes and other man-made terrain structures like bomb
craters. They have closed, compact and areal shapes and are more or less similar in size. The
second dataset contains linearly elongated structures which include archaeological monuments such
as ditches and hollow ways, and man-made structures such as paths and roads. The third dataset
consists of annotated examples of historical stone quarries. Even though stone quarries also have
closed and areal shapes, they are relatively big in size and hence they are not included in the first
dataset. Models pretrained in the pretext step for representation learning from unlabeled DTMs are
finetuned in the downstream step with the small annotated datasets to detect such structures. They
are customized to perform various supervised tasks such as classification, instance segmentation
and semantic segmentation.

In classification, the model is customized and finetuned to produce a single label for every DTM
input image showing the existence (or absence) of previously mentioned structures. While this
approach is useful in cases where a coarse indication of existence for objects of interest is adequate,
it is not suitable for fine-grained identification of objects with their precise locations. For exact
delineation of each object in the DTM input, instance segmentation is more appropriate in which
the model is trained to learn bounding box coordinates, segmentation masks and class labels for
each object instance in the given input. This gives rise to the third hypothesis in this research:

Research Hypothesis 3 Classification models are suitable for a coarse identification of regions
containing objects of interest, but instance segmentation techniques are more desirable when precise
locations of each object is desired.

Instance segmentation models work well when objects to be detected have closed areal shapes
such as mining holes or bomb craters. However, for objects that are thin and elongated along the
whole input, but cover only a small number of pixels, the bounding box predicted by the instance
segmentation models is essentially the bounding box for the whole input image and the segmentation
masks are either not accurate or they are incomplete. In such cases, semantic segmentation models
are more useful. In semantic segmentation, the models learn to assign categories to every pixel in
the input DTM. Pixel-wise class labels predicted by such models can be post-processed to create
separate instances of each object or structure in the input DTM regardless of their shape. This is
the final hypothesis studied in this research:

Research Hypothesis 4 Instance segmentation models prove useful for areal objects, but do not
give useful predictions for thin linearly elongated structures. Semantic segmentation models,
however, give pixel-wise predictions for a given input, rendering them suitable for objects of any
shape.

The region of study for this research is the Harz mountains located in the center of Germany with
a maximum altitude of 1141 meters. The region is rich in ore and mineral deposits explored and
processed over thousands of years (Segers-Glocke et al., 2000; Bartels and Klappauf, 2012; Malek,
2017). The Harz region played a vital role in the history of Europe during the Middle Ages as the
ore found on this region was the main source for minting coins. The city of Goslar located in this
region was the residence for German kings and emperors in the 11th century, as evidenced by the
Imperial Palace, the largest of its kind in Germany. The region also gained importance in the late
15th century after smelting silver with the help of lead ores became possible due to water drainage
and technical innovations. This region is home to the ore mines of Rammelsberg and the medieval
Town of Goslar which were listed as UNESCO World Heritage Sites in 1992. The Rammelsberg
mine is the first industrial monument in Germany to be listed as the world heritage site. The Upper
Harz Water Management System which was declared as UNESCO World Heritage Site in 2010 is
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also located in this region. Currently, all the monuments in the region listed as world heritage
encompass a total of 200 square kilometers. The mining activities in the region started at the end
of 3rd millennium BC and left traces, as evidenced by new scientific studies on two bronze finds
(Malek and Klappauf, 2017).

As evidenced by the archaeological monuments and structures explained previously, the region
is home to important cultural heritage items. Therefore, it is important to carry out precise,
interdisciplinary research and develop methods to identify, document and protect them. With that
in mind, this research aims at incorporating self supervised deep learning techniques for detection
of archaeological monuments and man-made terrain structures in the region using DTM data.

1.2. Outline

The rest of the thesis is organized as follows:

Chapter 2 gives a brief introduction to fundamental concepts in archaeology, Geographic
Information System (GIS), remote sensing, Light Detection And Ranging (LiDAR) or Airborne
Laser Scanning (ALS) technology, Digital Terrain Model (DTM) and its derivatives, and Deep
Learning (DL).

Chapter 3 discusses previous research on this topic. It outlines previous techniques for detection
of archaeological monuments, applications of DL techniques in remote sensing and LiDAR data.

Chapter 4 gives details of the datasets, archaeological objects and terrain structures of interest in
this thesis and the data processing techniques.

Chapter 5 explains the core methodologies for this research including descriptions of pretext and
downstream tasks in Self Supervised Learning (SSL), and different DL architectures used in each
step.

Chapter 6 includes details of experiments conducted. It describes data processing methods,
training tools and setups, evaluations and results.

Chapter 7 concludes the thesis with a summary and discussion of the methods, experiments and
evaluation results. It also gives hints on possible future research in this direction.
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This chapter contains an introduction to methods and concepts behind this research. Section 2.1
gives an introduction to archaeology. Fundamental concepts in GIS are explained in Section 2.2.
Section 2.3 gives the definition of remote sensing and contains detailed discussions of LiDAR, DTMs
and rasters derived from the DTMs, which are the main data sources for this research. Basics of
DL, the underlying methodology for this thesis, are discussed in Section 2.4.

2.1. Archaeology

Archaeology comes from the Greek word ’arkhaois’ meaning ancient. It is the study of recent and
ancient human history using material remains. It analyzes objects created, used and modified in
the past to comprehend human culture. Portable remains such as tools, clothing and decorations
are called artifacts while non-portable remains such as pyramids, mining holes, and charcoal kilns
are called features. While information about historic civilizations is obtained through past written
records, artifacts and features could sometimes be the only sources of information about prehistoric
civilizations.

The two major disciplines in archaeology are historic and prehistoric civilizations. Prehistoric
archaeologists study human history from times with no written records while historic archaeologists
deal with times after writing was developed. Depending on the type of artifacts and features, the
time period of the phenomena and the civilizations investigated, there are multiple sub-disciplines
in archaeology.

Bioarchaeology studies human remains (Martin et al., 2013), zooarchaeology is the study of
animal remains from archaeological sites (Reitz et al., 1999) and paleoethnobotany researches on
archaeological plant remains (Pearsall, 2015). Archaeologists in cultural resource management
preserve items of value to culture such as archaeological sites, historical buildings and museums
(Schiffer and Gumerman, 1977; Green and Doershuk, 1998; Praetzellis and Praetzellis, 2011).

Another field of study in archaeology, underwater archaeology, investigates the artifacts and
features submerged under water and found at the bottom of lakes, rivers and oceans (Bowens,
2011). Industrial archaeology (Hudson, 2014), ethnoarchaeology (David et al., 2001),
environmental archaeology (Reitz and Shackley, 2012), forensic archaeology (Cox and Hunter,
2005), paleopathology (Armelagos and Cohen, 1984) are other sub-domains in archaeology.

Finally, mining archaeology studies the process of ancient mining and ore extraction (Stöllner,
2014). It studies how raw mineral materials were extracted, prepared, used and traded. This thesis
is focused on applications of deep learning techniques for automated detection of structures related
to historical mining.

2.2. Geographic Information System

GIS is a framework for capture, storage, analysis and presentation of spatial data (Worboys and
Duckham, 2004). The first task in a GIS workflow includes collecting spatial data through Global
Positioning System (GPS), photography or remote sensing systems such as multispectral scanning

15



16 2. Basics

or LiDAR and storing them. The collected data are analyzed for extracting information, and then
visualized and presented.

2.2.1. Spatial Reference System

Data for the same area could be collected at different times or using different acquisition devices. In
order to overlay and connect information from different sources about the same geographic location,
spatial reference systems are used. Spatial reference systems describe where features are located
in the real world. An example of spatial reference systems is the European Petroleum Survey
Group (EPSG) number system (Obe and Hsu, 2011).

2.2.2. Coordinate Reference Systems

To identify points on the reference systems, coordinate systems are used. There are two types of
coordinate systems: geographic and projected coordinates.

– Geographic coordinates use the latitude and longitude measured in degrees. Latitude
starts from the equator and goes northwards (positive) and downwards (negative) while
longitude starts from the meridian in Greenwich and goes right (positive) and left
(negative) in the range of −180 to 180 degrees. The advantage in such a coordinate system
is that only one system is used for the whole world. The disadvantages are the use of
degrees and not metric units and calculations in spherical trigonometry.

– Projected coordinates: The 3D shape of the earth is projected into a 2D plane using
different kinds of projections, e.g., conical, cylindrical or azimuthal projections. The
advantage is that now, a cartesian coordinate system could be used with metric units and
calculations are done simply in planar trigonometry. However, due to the deformations in
the size and shape after projection, there are multiple map projections each for different
zones around the globe. Examples of projected systems include Universal Transversal
Mercator (UTM) coordinates (worldwide) (Langley, 1998), and Gauss–Krüger coordinates
(Germany) (Snyder, 1987).

2.2.3. Raster and Vector Data

Spatial information could be stored as raster and vector data. Vector data represent information
as points, lines or polygons and are mostly used for storing discrete information such as political
boundaries, rivers and lakes. Objects represented in vector format are clearly distinguished from
each other as there is a crisp boundary among them. Raster data, on the other hand, are functions
of feature positions, e.g., f(x,y), and represent information in the form of a matrix or grid of cells.
Raster data are mostly utilized for storing continuous information such as temperature, elevation
or precipitation.

2.2.4. GIS Software

There are many software applications used in GIS such as ESRI ArcGIS, GRASS GIS, and QGIS,
among others. ArcGIS developed by ESRI is a well known commercial software used by many
organizations. The ArcGIS Desktop trinity includes a suite of ArcCatalog, ArcMap and
ArcToolbox which are for geodata management, analysis and visualization, and geoprocessing
operations, respectively. ArcGIS software is, however, only compatible with Windows operating
system and cannot be installed on Unix-based operating systems. Another well known GIS
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software is QGIS. It is open source and freely available. It is compatible with all operating
systems. It can carry out most of the operations available in ArcGIS.

2.2.5. GIS Data File Formats

Vector data are stored in a format called shapefile that is used and compatible with most GIS
software including ArcGIS and QGIS. A shapefile contains features of the common geometry,
thematic attributes and spatial extent.

Raster data are stored in matrices or gridded cells where each cell or pixel is a function of point
locations and denote a continuous phenomenon. Examples of file formats for raster data are JPG,
GIF, PNG, and BMP, among others. The most commonly used file format is the GeoTiff file format
which is platform independent and portable among different GIS software products.

2.3. Remote Sensing

Remote sensing refers to sensing, detecting and recording information about the earth’s surface or
targets of interest without being in contact with it (Fischer et al., 1976; Awange and Kyalo Kiema,
2013). Energy is emitted from a source towards the target surface. The reflected energy from the
target is then sensed and recorded by a sensor. The reflected energy or the time and distance
of travel by the energy between the source and the target is used to analyze and extract useful
information about the target. Remote sensing can be carried out from the ground, the air (i.e.,
from an aircraft) or from the space (i.e., using satellites) (Aggarwal, 2004).

A remote sensing system is mainly composed of an energy source that emits energy, a sensor that
collects and processes the reflected energy from the target. The radiated energy has two important
characteristics: wavelength and frequency. Wavelength refers to the length of one wave cycle,
measured in units of meters and micro and nano meters. Frequency is defined as the number of
cycles of a wave passing a particular point in unit of time. It is measured in Hertz (i.e., cycles
per second). Depending on the wavelength of the energy radiated from the source, the amount of
reflected energy will vary for different types of matter. This helps in distinguishing different types
of illuminated target surfaces (Verhoeven, 2017). The range of frequencies and wavelengths for
electromagnetic radiations is called the electromagnetic spectrum. It is illustrated in Figure 2.1.

Figure 2.1.: The electromagnetic spectrum. Image from Verhoeven (2017).

A spectral remote sensing system collects light energy within specific ranges of the electromagnetic
spectrum called bands. Objects on the earth’s surface reflect or emit energy in unique ways. The
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response for one band may not be used to distinguish a feature, while that of another band may
be useful. For example, the reflections for water and vegetation using visible light might be similar
while they are very distinct for infrared light. Hence, multispectral systems are used to cover
different types of surfaces. Some terminologies related to remote sensing data are explained below.

Spectral Resolution

Reflected radiation within a certain wavelength is stored as one channel or band in remote sensing
images. This range is called the bandwith, which determines the spectral resolution of remotely
sensed data. The smaller the range of wavelength for a bandwidth, the better different objects are
recognized in the data (Klemas, 2010).

Spatial Resolution

It is also referred to as the ground sampling distance and represents the size of the smallest area
or object covered by the sensor at any particular instant (Cracknell, 2007). The visible area at any
instant of time is usually referred to as the Instantaneous Field of View (IFOV). For a feature to
be detected, its size has to be greater than or equal to the spatial resolution.

Radiometric Resolution

It refers to the number of possible different outputs a single pixel of remote sensing data could
represent. This is usually measured in bits. For example, a pixel in remote sensing data with
a radiometric resolution of 8 bits could store one of 28 = 256 different values. The higher the
radiometric resolution, the better the differences among different objects are detected.

Scale

The ratio of distance on a remote sensing image or the map to the actual distance on the ground
is called the scale. For example, in a map with a scale of 1 : 100000, an actual ground distance of
of 1 km will correspond to 1 cm.

2.3.1. Passive and Active Remote Sensing

Based on the type of energy source, remote sensing systems are divided into passive and active
remote sensing systems (Cracknell, 2007). Passive remote systems such as multispectral and
hyperspectral cameras use natural energy sources such as the sun for illumination or radiation.
However, the disadvantage is that the source is not available at all times, e.g., there is no reflected
energy from the sun as the source at night. Active remote sensing systems have their own source
of energy and measurements can be taken at anytime. Examples of active remote sensing systems
are Radio Detection and Range (RADAR) and LiDAR systems. RADAR systems have their own
source of energy. They emit microwave energy towards the target surface, and measure the time
of travel (Campbell, 2002). The time is used to calculate the distance from the source to target.
The distance and the amount of reflected energy for the target surface is stored and analyzed for
extracting useful information about the surface.
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2.3.2. LiDAR Systems

Terrestrial or airborne LiDAR systems emit laser light pulses towards the target to measure the
top of target features. A LiDAR system is equipped with a GPS that records the coordinates of the
light energy and an Inertial Measurement Unit (IMU) which registers the orientation of the LiDAR
system. Using the coordinates, orientation, and the time of the reflected energy, it is possible to
measure the target locations.

Multiple reflections might be recorded for target points creating a distribution or a waveform.
LiDAR systems record information in two different ways: either individual information at the
peaks of the distribution or waveform or the full distribution. Reflected light at individual points
are called discrete returns and a discrete LiDAR system may record 1− 4 returns for each emitted
laser pulse. Full wave LiDAR systems store the whole distribution of the reflected energy. An
example illustration for airborne LiDAR is given in Figure 2.2.

Figure 2.2.: Schematics of Airborne LiDAR Systems. Reprinted from Center for Advanced Spatial
Technologies (CAST) Website. ©2021 CAST.

Collections of recorded information for points using LiDAR systems are called point clouds where
each point has the x and y coordinates for location and z values representing elevations. LiDAR
points can be classified as belonging to ground or non-ground surfaces such as vegetation, buildings,
or other infrastructure which can be used by national mapping agencies. Some of the common class
codes for LiDAR points include bare earth (class 2), low (3) to high (5) vegetation classes, and
building (class 6) (Dong and Chen, 2017). While a simple LiDAR dataset could be used for 3D
visualization of the point clouds, classified point clouds are used for creating DTMs. Class labels
for LiDAR points can be used to filter out certain structures, e.g., buildings or trees, and retain
only the points on the terrain.

2.3.3. Processing LiDAR Data

Most LiDAR point clouds are stored in files with the .las file format and represent a collection
of discrete return points. Vector-based methods (e.g., Triangulated Irregular Networks (TINs)

https://gmv.cast.uark.edu/scanning-2/airborne-laser-scanning/
https://gmv.cast.uark.edu/scanning-2/airborne-laser-scanning/
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(Peucker et al., 2017)) or raster based methods are used to create continuous surface models from
these discrete points.

TIN is a vector-based representation of continuous information comprising of non-overlapping
triangles. The triangles are created from irregularly distributed points. Delaunay triangulation is
a well known method for filtering LiDAR point clouds to filter non-ground points and create
triangles representing elevation surfaces for the bare earth (Axelsson, 2000). Delaunay
triangulation refers to creating non-overlapping triangles using the data points as the vertices
such that no other data point lies within their circumcircle, i.e., circle passing through all three
vertices of the triangle. Axelsson (2000) creates a TIN by starting with a small set of points and
iteratively adding new data points to the TIN if they meet the criteria, e.g., the elevation value is
below a certain threshold. The process is stopped when all the points are classified as ground or
non-ground. The completed TIN contains triangles faces of which represent homogeneous
elevations for the surface.

Another method for representing LiDAR data as continuous infromation is the raster based method.
Different spatial interpolation methods are used to create raster grids such as DTMs from LiDAR
point clouds. Spatial interpolation refers to determining the value of a point based on other
points within a specific distance. Examples of raster interpolation techniques are Inverse Distance
Weighting (IDW), thin-plate splines and kriging, among others (Li and Heap, 2008).

2.3.4. Digital Terrain Models and Derived Rasters

DTMs model a terrain using elevation values of 2D points. It is a continuous representation of
the bare earth surface. The elevation values are approximations of vertical distance from each
point on the terrain to a reference surface. The reference surface is usually the mean sea level.
Rasters including height values for non-ground objects such as building, vegetation and more are
called Digital Surface Models (DSMs) (Hirt, 2014). Another term for DTM is Digital Elevation
Model (DEM), which is used interchangeably with DTM in literature. DTMs are used for many
tasks in hydrology (Quinn et al., 1991), geomorphology (Chorowicz et al., 1989; Moore et al., 1991),
geography (Carrara et al., 1997), cartography (Yoeli, 1983), archaeology (Risbøl et al., 2013; Harris
and Lock, 1988; Dubbini et al., 2016), planning and modeling of road systems (Liu and Sessions,
1993), forests (Maguya et al., 2014; Yu et al., 2005), and landscapes (Florinsky, 1998), and disaster
management (Price and Vojinovic, 2008), among others.

Figure 2.3.: Example DTM raster.

An example DTM raster is illustrated in Figure 2.3. It is created from an ALS point cloud using
TIN with linear interpolation. To visualize DTMs , different methods are used to derive other
rasters from them. The derived rasters are generally either in grayscale or color image formats.
Examples of rasters derived from DTMs are slope, aspect, shaded relief, SLRM, SVF, LD, and
openness (POS and NEG), among others. Each derived raster makes certain structures stand out
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that are useful for visualization of objects and structures. A brief summary of the derived rasters
and how they are calculated is given below.

Slope

Slope is related to the first derivative and is a raster product that indicates the steepness of a
surface. It is calculated as the maximum rate of change of elevation for a point with respect to its
neighboring points (Gelbman and Papo, 1984; Kokalj and Hesse, 2017). Slope is calculated using
Equation 2.1.

slope = arctan(
Rise
Run

) = arctan(

√
(
∂z

∂x
)2 + (

∂z

∂y
)2) (2.1)

Where Rise and Run, shown in Figure 2.4a, are the difference in elevation for a pixel with respect
to a fixed number of neighboring pixels in x and y direction, respectively. Values in slope rasters
are in degrees and range from 0 to 90 degrees (pixels with no information are set to −1). Slope
raster calculated for the DTM in Figure 2.3 is shown in Figure 2.5.

(a) Slope (b) Aspect

Figure 2.4.: Slope and aspect rasters.

Figure 2.5.: Slope raster for the DTM in Figure 2.3

Aspect

Aspect indicates the direction of maximum rate of change in elevations with respect to the
neighboring points, as illustrated by the arrow in Figure 2.4b. Aspect is calculated using
Equation 2.2.

aspect = arctan(
∂z
∂x
∂z
∂y

) (2.2)

Values in aspect rasters are in degrees and range from 0 to 360 degrees (pixels with no information
are set to −1). Aspect raster calculated for the DTM in Figure 2.3 is shown in Figure 2.6.
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Figure 2.6.: Aspect raster for the DTM in Figure 2.3

Hillshade relief

Hillshade relief is a representation of terrain surfaces based on shadows created by a hypothetical
light from a certain direction, generally the northwest. Pixels in the regions perpendicular to the
light source are highly illuminated and are thus assigned a high value while those at an angle higher
than 90◦ are dark and thus take small values (Kokalj and Hesse, 2017). To calculate hillshade, it is
necessary to first calculate the slope (using Equation 2.1) and aspect (using Equation 2.2) rasters.
In addition, the altitude and azimuth angles of the hypothetical light source must be defined. The
altitude angle is defined as the angle between the horizontal plane that an observer is standing on
and an imaginary line between the observer and the light source. Azimuth is the angle measured
clockwise from the true north to the point on the plane directly below the light source. It is
illustrated in Figure 2.7.

Figure 2.7.: Altitude (γ) and azimuth (α) angles with respect to a reference point and the light source.

After calculating the slope and aspect as explained previously and setting the angles for altitude
(γ) and azimuth (α), the hillshade relief raster can be calculated using Equation 2.3.

Hillshade = 255.0 ∗ ((cos(90− γ)) ∗ cos(S)) + (sin(90− γ) ∗ sin(S) ∗ cos(α−A)) (2.3)

Where S and A denote the slope and aspect values calculated previously.

Three hypothetical light sources from different directions can be used to create multiple shaded
reliefs and represented as RGB images. An example RGB shaded relief with three different azimuth
(α) values for each channel (R = 315◦, G = 15◦, and B = 75◦) and a fixed altitude angle γ = 30◦

is illustrated in Figure 2.8.

Sky View Factor (SVF)

SVF represents the visibility percentage of the sky for every pixel. Values in SVF rasters range
between 0 and 1 and they are helpful in visualizing archaeological mining structures (Zakšek et al.,
2011; Kokalj and Hesse, 2017). SVF values are calculated taking the zenith angles above the
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Figure 2.8.: RGB Hillshade raster for the DTM in Figure 2.3

horizontal plane into account and are therefore suitable for concave structures such as mining holes
(Kokalj et al., 2013; Doneus, 2013). SVF is calculated using Equation 2.4.

SVF = 1−
∑n

i=1 sin(γi)

n
(2.4)

Where each γi is the elevation angle as shown in Figure 2.9. It is calculated and normalized for n
directions.

Figure 2.9.: The SVF is defined by the visible part of the sky denoted as Ω on the right image. γi is the vertical
elevation angle in n directions with a radius of R pixels. ©(Zakšek et al., 2011).

Pixels in SVF rasters range from 0 to 1 showing the visibility of the sky. Example SVF raster
calculated from the DTM in Figure 2.3 with a radius of 64 pixels for 16 directions is shown in
Figure 2.10

Figure 2.10.: SVF raster for the DTM in Figure 2.3

Openness

Positive openness (POS) quantifies the mean zenith angle of horizon elevations within a search
radius while negative openness (NEG) is the mean nadir angle of all determined horizons (Yokoyama
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et al., 2002). For each pixel, the zenith (β) and nadir (δ) angles are determined based on the profiles
for multiple directions, i.e., azimuth angles α and fixed radius r. Examples for two different points
and two azimuth angles are shown in Figure 2.11. For 8 different directions with azimuth angles
α ∈ 0◦,45◦,90◦,...,315◦ and a radius r, POS is calculated as shown in Equation 2.5.

Figure 2.11.: Zenith and nadir angles used in calcuation of POS and NEG, respectively, for two pixels along
two directions with azimuth angles α ∈ 90◦,270◦. Adapted from Figure 1 in Doneus (2013).

POS =
βr,0 + βr,45 + ...+ βr,315

8
(2.5)

Where βr,45 denotes the zenith angle determined for a point with respect to r neighboring pixels
and the direction with an azimuth angle α of 45◦.

For the same setting, NEG is calculated using Equation 2.6.

NEG =
δr,0 + δr,45 + ...+ δr,315

8
(2.6)

Where δr,45 denotes the nadir angle determined for a point with respect to r neighboring pixels
and the direction with an azimuth angle α of 45◦.

Openness highlights the outlines and the highest and lowest parts of the raster. POS rasters are
suitable for visualizing structures such as sunken paths, bomb craters, and ridges between holloways
while NEG rasters help visualize the actual holloways, and burial mounds (Doneus, 2013). Pixel
values in POS and NEG range from 0◦ to 180◦. POS and NEG rasters calculated for the the DTM
in 2.3 are illustrated in Figures 2.12 and 2.13.

Figure 2.12.: POS raster for the DTM in Figure 2.3
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Figure 2.13.: NEG raster for the DTM in Figure 2.3

Local Dominance (LD)

LD indicates how dominant an observer would be from a specific point with respect to its
neighboring points (Hesse, 2016). The dominance value for each point is calculated using the
average angle at which a virtual observer standing at the said point would look down at the
neighboring points within a fixed radius r. As a result, pixels at the local peaks get high
dominance values and appear brighter while those at the local sinks have small dominance values
and appear darker. LD is suitable for visualization of protruded features such as burial mounds
and sunken features such as hollow ways. It is used in detection of archaeological mining
structures and landform recognition (Kazimi et al., 2020). An LD raster for the DTM in Figure
2.3 is shown in Figure 2.14.

Figure 2.14.: LD raster for the DTM in Figure 2.3

Simple Local Relief Model (SLRM)

SLRM is a raster calculated from DTM and is used for separating small scale scale features from
large scale landscapes and making them stand out. First, the DTM is smoothed using a low pass
convolutional filter, and the result is subtracted from the original DTM to create a trend removal
map. This helps separate small scale features from large landscapes, but their elevations are
underestimated. To alleviate this problem, a purged DTM is calculated by creating zero contours
in the trend removal map , assigning original elevations to the contour lines, and interpolating the
points. The final raster created by subtracting the purged DTM from the original DTM is called
SLRM and contains a less biased representation of small scale features. SLRMs are suitable for
visualization and analysis of landscapes containing archaeological features such as burial mounds,
mining holes, ridge and furrow fields, and charcoal kilns, among others (Hesse, 2010; Gallwey et al.,
2019). SLRM is also used in small wetland detection (Leonard et al., 2012), landform analysis in
geomorphology (Raper, 1989), and visualization of subtle topographic change (Orengo and Petrie,
2018). An SLRM raster for the DTM in Figure 2.3 is shown in Figure 2.15.
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Figure 2.15.: SLRM raster for the DTM in Figure 2.3

2.4. Deep Learning

Deep learning is a technique that utilizes multiple parameterized processing layers to learn
complicated structures in data by using backpropagation and gradient-based optimization
algorithms (LeCun et al., 2015). A deep learning model or a DNN is composed of an input layer,
an output layer and two or more hidden layers. Each layer contains one or more neurons which
are basic information processing units. Input data are fed to the input layer, the hidden layers
process and learn the intrinsic characteristics of the input data. The output layer produces an
output that should be as similar to the the desired outcome as possible. Fundamental
components of DNNs, training procedures and types of deep learning techniques are explained in
the following subsections.

2.4.1. Neurons

Neurons or nodes are basic building blocks of neural networks. They are mathematical models
inspired by the biological neuron. A neuron computes the weighted sum of its inputs, and its
output depends on a so called activation function as shown in Equation 2.7 below.

a = f(
N∑
i=1

wixi) (2.7)

Where N denotes the number of input features, f stands for the choice of activation function and
wi and xi are the ith weight or parameter and input feature, respectively. Components of a simple
neuron are illustrated in Figure 2.16.

Figure 2.16.: A single neuron.

Some common activation functions are described as follows.
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Sigmoid

The sigmoid function defined by Equation 2.8 squashes its input values in the range between 0 and
1.

f(z) =
1

exp(−z) + 1
(2.8)

Where z is the weighted sum of a neuron’s inputs.

Hyperbolic Tangent (Tanh)

The Tanh function defined by Equation 2.9 normalizes the inputs in the range between −1 and 1.

f(z) =
exp (z)− exp (−z)
exp (z) + exp (−z)

(2.9)

Rectified Linear Unit

The Rectified Linear Unit (ReLU) function defined by Equation 2.10 is regularly used in DNNs
and transforms the inputs into the range [0,∞].

f(z) =

{
z : z > 0

0 : z ≤ 0
(2.10)

Exponential Linear Unit

Exponential Linear Unit (ELU), as shown in Equation 2.11 is similar to ReLU, i.e., it is an identity
function for non-negative numbers. For negative numbers, ReLU becomes horizontal sharply while
ELU has a constant parameter α which allows the function to become horizontal slowly until its
output equals −α.

f(z) =

{
z : z > 0

α(exp(z)− 1) : z ≤ 0
(2.11)

2.4.2. Layers

Layers are composed of neurons or nodes. Combinations of multiple layers form a (deep) neural
network. The first layer is called the input layer, the final layer is the output layer and those in
between are referred to as the hidden layers. There are different types of layers, each of which are
effective for certain types of input data and certain tasks. Common types of layers are explained
in what follows.

Dense or Fully Connected Layer

As the name suggests, a dense or fully connected layer is one in which every neuron in a layer is
connected to every neuron in the previous layer. A neural network with two (dense) hidden layers
is illustrated in Figure 2.17.
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Figure 2.17.: A neural network with 2 hidden layers. Circles represent nodes or neurons, arrows represent
the connection or weights between nodes and W denotes the weight matrix.

Convolutional Layer

Neurons in a dense layer are fully connected to those of the previous layer and each neuron functions
independently without sharing any connections. Therefore, for inputs with high dimensions such as
images, it does not scale well. For example, for an input image of size 227×227×3, a single neuron in
the first layer of a neural network needs 227×227×3 = 154 587 connections or parameters (ignoring
the bias term). Adding more layers and more neurons would result in orders of magnitude larger
number of parameters. High numbers of parameters lead to inefficiency in computation as well as
overfitting. Overfitting is referred to the phenomenon that a model performs well on training data,
but poorly on test or unseen data. To handle aforementioned issues, a convolutional layer proves
useful. The main advantages that convolutional layers bring to the equation are local connectivity
and weight sharing.

Instead of every pixel in an input volume, e.g., input image, a neuron is connected to only a small
region of the input. For this connection, usually a matrix of size k1×k2×dinput, usually referred to
as the filter, kernel or the weight matrix, is used where k1 and k1 are the hyperparameters for the
width and height and dinput is the depth of the input volume. The output is calculated by taking
the sum of element-wise multiplication of the filter F with a small k1 × k2 × di region R of the
input. The convolution for two-dimensional filters, F , and inputs, I, are shown in Equation 2.12.

Z(i,j) = (I ∗ F )(i,j) =
k1∑
m

k2∑
n

I(m,n)F (i−m,j − n) (2.12)

This operation is applied to other regions of the input, but with the same kernel or weights. In
other words, every local region R is connected to the neurons in the following layer by the same
weights instead of independent weights for each region. This leads to a huge reduction in the
number of parameters. For example, for the same input of size 227× 227× 3 and a kernel matrix
of size 5 × 5 × 3, there are only 5 × 5 × 3 = 45 parameters (ignoring the bias term) required.
The output of convolutional layers maintain the grid structure, like image inputs, but the spatial
dimensions and the depth are controlled by hyperparameters such as stride, padding and the size of
the feature maps. Stride refers to the distance between neighboring positions of the filter matrix
F on the input volume while calculating the output. The spatial dimensions of the output volume
are inversely proportional to the stride size as shown in Equation 2.13. In some cases, it is desirable
to keep the spatial dimensions of the output volume similar to those of the input. Therefore, the
input is first padded with zeros and the convolution is applied to the padded version. In general,
the output size for a convolutional layer is calculated as follows.
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Woutput = b
Winput − f + 2p

s
c+ 1 (2.13)

WhereWoutput andWinput denote the dimensions (height or width) of the output and input volumes,
f , s and p stand for the filter size, stride size and the size of zero padding, respectively. For example,
for an image of size 227× 227× 3, a kernel matrix of size 5× 5× 3, a stride size of 2, and no zero
padding, the height and width of the output volume is calculated to beH =W = b227−5+2×0

2 c+1 =
112, using Equation 2.13. The output, with a size of 112× 112 is a so called feature map produced
by a single kernel matrix of size 5×5×3 that specializes in detecting a specific feature, e.g., edges, in
all regions of the input volume. To learn parameters that specialize at detecting multiple different
features, more kernel matrices can be introduced into the layer and this will define the depth of
the output volume referred to as the feature maps. For example, for the input size of 227× 227× 3
and 96 different kernels of size 5×5×3 the final output volume will be of size 112×112×96. This
brings the number of parameters for the layer to be 5 × 5 × 3 × 96 = 7200. The overall structure
of a single convolutional layer is illustrated in Figure 2.18.

Figure 2.18.: A single convolutional layer. No zero padding is used in this example.

Figure 2.19.: Max pooling operation shown for a volume of size 112× 112× 96 with a window size of 2× 2
and strides of 2. For clarity, it is also shown using a single slice input of 4× 4 pixels.

Convolutional layers are usually followed by another operation called max pooling introduced below:

– Max pooling refers to downsampling the input. It helps avoid overfitting and adds
translation invariance to the network. Due to downsampling, the computational cost is also
reduced. Max pooling is carried out by scanning the input using a small window and giving
the maximum value inside the window as the output. It is illustrated in Figure 2.19.
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2.4.3. Objective Functions

Objective functions, also referred to as the loss, cost or error function in the literature, are the
core of training a DNN. The goal is to train a model that makes predictions as similar to the
ground truth, i.e., expected outcome, as possible. This is facilitated by minimizing the objective
function which varies based on the type of task and the nature of the expected output. Some of
the commonly used objective functions are explained in this section.

Mean Squared Error

Mean Squared Error (MSE), as shown in Equation 2.14, is a function that calculates the average
squared difference between the values estimated by the model, ŷ, and the actual ground truth, y.
It is also referred to as the quadratic or L2 loss in literature.

MSE =
1

N

N∑
i=1

(ŷi − yi)2 (2.14)

Where N denotes the number of examples. MSE is suitable for regression tasks where the expected
output values are continuous real numbers such as house prices, temperature, etc.

Mean Absolute Error

Mean Absolute Error (MAE), as shown in Equation 2.15, is a function that calculates the average
absolute difference between the estimated values by the model, ŷ, and the actual ground truth, y.
It is also referred to as the L1 loss in literature.

MAE =
1

N

N∑
i=1

|(ŷi − yi)| (2.15)

Where N denotes the number of examples. MAE, like MSE, is also suitable for regression tasks.

Cross Entropy

Cross Entropy (CE), as shown in Equation 2.16, is a function that calculates the difference between
two distributions. It is mainly suitable for classification tasks where the values are discrete numbers.
In the case of neural networks, the distributions are the predicted output by the model, ŷ, and the
ground truth labels, y represented as one-hot vectors to imitate a distribution.

CE = − 1

M

M∑
i=1

N∑
j=1

yijlog(ŷij) (2.16)

Where M and N denote the number of examples and number of categories, respectively. It is
necessary to point out that the output of a neural network might not necessarily represent a
probability distribution. To facilitate this, the final activation function for multi-class classification
networks is a special function called softmax. As shown in Equation 2.17, the softmax function
squashes its input values in the range of 0 to 1 such that their sum over all class labels equals 1 in
order to represent a probability distribution.

σ(z)i =
exp(zi)∑N
j=1 exp(zj)

(2.17)
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for i = 1,...,N , and z = (z1,...,zN ) ∈ RN where N is the number of categories or the length of the
output vectors.

In the case of two categories, i.e., N = 2, the CE function becomes a special case referred to as the
Binary Cross Entropy (BCE).

2.4.4. Evaluation Metrics

While objective functions are used to train the models, evaluation metrics are used to evaluate
their performance. Common evaluation metrics are explained here. Before going into the details
of the evaluation metrics, there are a number of terms that need to be clarified.

– True Positive (TP): In binary classification, there are mainly two categories, i.e., 1 or
positive and 0 or negative. True positive (TP) is the number of correct positive predictions.
In other words, it is the number of examples with the positive label 1 which were correctly
labeled as 1 by the model.

– True Negative (TN): It is the number of correct negative predictions. In other words, it
is the number of examples with the negative label 0 which were correctly labeled as 0 by the
model.

– False Positive (FP): It is the number of negative examples falsely classified as positive by
the model.

– False Negative (FN): It is the number of positive examples falsely classified as negative by
the model.

Accuracy

Accuracy is defined as the fraction of correct predictions by the model. It is shown in Equation
2.18 below.

Accuracy =
number of correct predictions
total number of predictions

=
TP+ TN

TP+ TN+ FP+ FN
(2.18)

Precision

Precision is defined as the fraction of positive predictions that actually belongs to the positive class.
It is shown in Equation 2.19.

Precision =
TP

TP+ FP
(2.19)

Recall

Recall is defined as the fraction of positive examples correctly predicted by the model. It is shown
in Equation 2.20.

Recall =
TP

TP+ FN
(2.20)
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F1-score

A model that labels all the examples as positive will have a 100% recall, but very low precision.
On the other hand, if it only assigns a positive label to very few examples of the positive class and
labels everything else as negative, it will have a high precision but low recall. Therefore, a better
evaluation metric that is a trade-off between good precision and recall scores is the F1-score. It is
the harmonic mean of precision and recall defined by Equation 2.21.

F1 = 2 · Precision · Recall
Precision+ Recall

(2.21)

Accuracy, precision, recall and F1-score are common evaluation metrics for classification tasks.

Intersection over Union (IOU)

Intersection Over Union (IOU), also called the Jaccard Index, denotes how well the predicted
output matches the ground truth. It is suitable for semantic segmentation tasks and shown in
Equation 2.22 below.

Jaccard(y,ŷ) = IOU(y,ŷ) =
‖y ∩ ŷ‖
‖y ∪ ŷ‖

=
TP

TP+ FP+ TN
(2.22)

Where y and ŷ denote the ground truth and predicted output, respectively.

Mean Average Precision

Mean Average Precision (MAP) is the standard evaluation metric for instance segmentation tasks.
In binary classification, the model outputs a probability score between 0 and 1. To assign a positive
or a negative label to the example, a threshold is set. For example, the threshold can be set to
0.5 and for any example, if the predicted probability is above 0.5, it is labeled as positive, and
negative otherwise. The threshold can be increased or decreased for optimal labeling depending on
the task. Using different threshold values, the precision and recall can be calculated, and the area
under the curve for precision and recall can be used in calculating the MAP score. An example of
precision-recall curve is shown in Figure 2.20.

Figure 2.20.: An example of precision-recall curve.

MAP is defined as the area under the precision-recall curve averaged for n categories, as shown in
Equation 2.23.

MAP =
1

n

n∑
k=1

APk (2.23)
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Where AP denotes the area under the precision-recall curve and is defined in Equation 2.24.

AP =

∫ 1

0
p(r) dr (2.24)

2.4.5. Backpropagation

Backpropagation is an algorithm that is used in training a neural network. It calculates the gradient
of the error function with respect to parameters of the network. The gradients are used to update
the parameters in order to minimize the objective or loss function. Backpropagation makes use of
the chain rule of calculus to reuse the calculated gradients with respect to parameters in a layer,
l, in calculating the gradients with respect to parameters in the previous layer, l − 1. The chain
rule of calculus states that if y = f(u) and u = g(x), then the derivative of y is calculated using
Equation 2.25.

∂y

∂x
=
∂y

∂u

∂u

∂x
(2.25)

The procedure for backpropagation, or calculating the gradients of the error function with respect
to the network parameters is as summarized as follows.

– Give an input x, pass it through the hidden layers all the way to the output layer, and store
all intermediate values.

– Compute the error function E using the output and the desired target.

– Calculate the gradients of the error function E with respect to parameters in the output layer.

– Use the chain rule of calculus to calculate the gradients for the previous layer l−1 by reusing
the calculated gradients in layer l and the stored values, all the way to the input layer.

– Use the computed gradients to update the paramters of the network.

A more detailed explanation of backpropagation can be found in (Nielsen, 2015).

The partial derivatives by backpropagation are used to decide how much and in which direction
to change each parameter in the network in order to minimize the error. The way in which the
parameters are changed using gradient descent is explained in the following section.

2.4.6. Gradient Descent

Backpropagation calculates the gradient of the error function with respect to parameters of the
network. It is an indicator of how changing the value of each parameter affects the error. Gradient
descent is an algorithm that uses the calculated gradients to tweak the parameters in order to
minimize the error. It can be applied in three different ways.

Batch Gradient Descent

In batch gradient descent, the parameters are updated once at each run for all the examples in the
dataset using Equation 2.26.

W = W− η∇WE(W) (2.26)



34 2. Basics

WhereW is the network parameters and∇ and E denote the gradient operation and error function,
respectively. η is referred to as the learning rate determining the magnitude of the steps to take
towards the minimum error.

Batch gradient descent is very slow as it performs one update for the whole dataset. For batch
gradient descent, the whole dataset needs to fit into memory as well.

Stochastic Gradient Descent

In Stochastic Gradient Descent (SGD), the parameter is updated for each example in the dataset
at each run.

W = W− η∇WE(W;xi; yi) (2.27)

Where xi and yi are the ith input and output pair in the dataset.

SGD is faster than the batch gradient descent as the parameters are frequently updated, but this
also leads to fluctuation in the error graph making it harder to reach the exact minimum.

Mini-batch Gradient Descent

To overcome the shortcomings of both batch and stochastic gradient descent, mini batch gradient
descent comes to play. Instead of updating the parameters once for the whole dataset (like batch
gradient descent) or once for each training example (like SGD), it performs one update for a small
batch of n examples from the training data. This is usually referred to as the batch size in deep
learning research.

W = W− η∇WE(W;xi:i+n; yi:i+n) (2.28)

Thus, the loss does not fluctuate, like it does for SGD, resulting into a more stable convergence.
Additionally, it takes advantage of computational resources such as GPUs to make fast matrix
multiplications for the mini batch, leading to faster training.

2.4.7. Gradient Descent Optimization Algorithms

The gradient descent variants explained in Section 2.4.6 need a hyperparameter, the learning rate
η, to be defined in advance. The performance and speed of the model highly depends on the value
of the learning rate. If it is too small, the model will take a very long time to converge. On the
other hand, if it is too big, the model may never converge and jump over the minima. It could
also get stuck in a suboptimal local minima or a saddle point that it may not be able to get out
of. To deal with such challenges, there are a number of optimization algorithms, some of which are
explained in this section.

Mini Batch Gradient Descent with Momentum

In mini batch gradient descent with momentum, instead of using only the gradients at the current
pass, an exponentially decaying average of the gradient in all the previous passes are used to update
the parameters. This helps accelerate towards the minima and reduces the fluctuations.

Vt = β1Vt−1 + (1− β1)∇WE(W) (2.29)
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Where Vt is the exponentially decaying average of gradients until time step t. β1 is a
hyperparameter for the momentum usually set to 0.9. The parameters are then updated as
follows.

W = W− ηVt (2.30)

Root Mean Square Propagation

Root Mean Square Propagation (RMSProp) uses the exponentially decaying average of squared
gradients to update the parameters which results in an even smoother path towards the minima
and reduced fluctuations in the error.

St = β2St−1 + (1− β2)(∇WE(W))2 (2.31)

Where St denotes the exponentially decaying average of the gradients squared. The parameters
are then updated as follows.

W = W− η∇WE(W)

ε+
√
St

(2.32)

Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) (Kingma and Ba, 2015) uses a combination of both
techniques in gradient descent with momentum and RMSProp to update the parameters. It keeps
exponentially decaying averages of the past gradients as well as the past gradients squared.

W = W− η
Vt

1−β1

ε+
√

St
1−β2

(2.33)

Where β1 and Vt are the hyperparameter and exponentially decaying average of the past gradients
from Equation 2.29, and β2 and St are the hyperparameter and exponentially decaying average of
the past gradients squared from Equation 2.31.

2.4.8. Supervised Learning

In supervised learning, the dataset, D, is composed of N inputs and labels, D = {(x1,y1),
(x2,y2),...,(xN−1,yN−1),(xN ,yN )} and the goal is to train a model that associates each input example
to its corresponding label, f : X→ Y.

Based on the type of target values, supervised learning is divided in to two categories: classification
and regression. In classification, the target value, yi, is one of C discrete classes. The model is
trained to produce output vectors, ~̂y, of length C representing probability distributions where the
probability, ŷyi at ythi index is maximized. In such tasks, softmax is generally used as the activation
function for the final layer of the network to squash the predictions and imitate a probability
distribution (in the case of two classes, the sigmoid activation function is commonly used). The
suitable objective function is cross entropy. Some examples of classification tasks are recognizing
handwritten digits in images, assigning a label to an input image, and sentiment analysis from
textual data, among others.

In regression, the target value, yi, is a continuous real number. The model is trained to produce
an output, ŷi, which is as similar to the label as possible. Based on the range of possible values
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for the labels, suitable activation functions for the final layer of the networks used in regression are
sigmoid (for values between 0 and 1), Tanh (for values between −1 and 1), ReLU (for positive real
numbers) or linear, i.e., identity function (for the range (−∞,∞)). Objective functions for such
tasks are binary cross entropy (for sigmoid as the final activation function), MSE or MAE. An
example of regression task is predicting house prices taking the house specifications such as number
of rooms, location, etc., into consideration.

Common supervised learning tasks in computer vision are image classification, semantic/instance
segmentation and object detection, among others, some of which are explained below.

Image Classification

Image classification is defined as the task of assigning a label (from a set of predefined categories)
to a given input image. The application of DL models for image classification or other visual
tasks gained its popularity after Krizhevsky et al. (2012) won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) (Russakovsky et al., 2015) with a record breaking performance.
The model they used is commonly known as AlexNet and is composed of 5 convolutional, max
pooling and dropout layers followed by 3 dense or fully connected layers. It is illustrated in Figure
2.21. It uses two GPUs during training to speed up computation and uses data augmentation and
dropout to avoid overfitting. Data augmentation refers to increasing the size of training dataset
using already existing examples. For training AlexNet, they randomly crop images, apply random
translation and flipping which leads to an increase in dataset size by a factor of 2048. Dropout,
shown in Figure 2.22, refers to dropping out some of the neurons in a layer at random during
training. This avoids the neurons in a layer from co-adapting and leads to better generalization
(Srivastava et al., 2014). The model achieved a top 5 error rate of 15.4%, where the next best
method by the Intelligent Systems and Informatics (ISI) team from the University of Tokyo achieved
a top 5 error rate of 26.2%.

Figure 2.21.: Architecture of AlexNet (Krizhevsky et al., 2012).

Another image classification network named VGGNet was proposed by Simonyan and Zisserman
(2015) that allowed higher number of layers due to filters of size 3 × 3 as opposed to 11 × 11 and
5× 5 in the initial convolutional layers resulting into improved classification accuracy.

Instead of stacking layers sequentially, Szegedy et al. (2015) proposed the inception module which
uses 3 convolutional layers with filter sizes of 1 × 1, 3 × 3 and 5 × 5 and a max pooling layer in
parallel and concatenates their outputs. The 1×1 convolution, inspired by Lin et al. (2014), learns
fine-grained representations while the 5 × 5 convolution learns abstract representations. As the
number of convolutional layers grow, it is common practice to increase the depth, i.e., the size of
the feature map and decrease the spatial dimensions of the outputs. Multiple convolution and max
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Figure 2.22.: Dropout (Srivastava et al., 2014).

pooling layers in parallel lead to a high number of parameters, consequently causing overfitting,
and making the computations costly. To avoid this problem, an extra 1 × 1 convolution is added
before the 3×3 and 5×5 convolutions and after the max pooling layer in order to reduce the depth,
and hence the number of parameters. The complete inception module is illustrated in Figure 2.23

Figure 2.23.: The inception module (Szegedy et al., 2015)

As the number of layers in DL models grow, it becomes difficult to train and optimize them. He
et al. (2016) show that the training error increases with the size of a network. However, they create
a Deep Convolutional Neural Network (DCNN) called Residual Network (ResNet) that uses the
so-called residual modules. They argue that adding extra layers to a model should either increase
the model’s performance or keep it the same, but not decrease it. Residual modules are composed
of weighted layers and nonlinear activation functions (i.e., ReLU) and an identity function. The
idea is that if a smaller network is already optimal, the weighted layers are pushed to output
zeros, effectively keeping the final output the same. Otherwise, the weighted layers help improve
performance. The residual module is illustrated in Figure 2.24

Figure 2.24.: The residual modules (He et al., 2016). The left module is used for smaller networks while the
right one is used in bigger networks
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Xception (Chollet, 2017) is another well known DCNN that is inspired by the Inception (Szegedy
et al., 2016) and ResNet (He et al., 2016) models. It uses a combination of depthwise separable
convolutions (Sifre and Mallat, 2014) and residual modules. While regular convolution applies a
kernel through the spatial dimensions and the channel dimension or depth of the input volume
at once and simultaneously learns cross-channel and spatial correlations, the inception module
(Szegedy et al., 2015, 2016) performs this operation in two steps. It first applies a 1×1 convolution
across the channel dimension and then a 3×3 or 5×5 convolution across the spatial dimensions. The
Xception model uses a more extreme version of the inception module, i.e., the convolution along
the spatial dimension is applied separately for every channel. Moreover, the order of operations is
inverse, i.e., first the spatial convolution over each input channels is performed, and then a pointwise
convolution is applied. This leads to fewer number of parameters which in turn results in faster
computation and improvement in generalization. The depthwise separable convolution is shown in
Figure 2.25. For an input volume of dimensions 128 × 128 × 3 and an output feature map of size
16, a normal convolution with a kernel size of 5× 5 would require:

– 3× 5× 5× 16 = 1200 parameters.

– 3× 5× 5× 128× 128× 16 = 19.7 million operations.

For the same input and output, a depthwise separable convolution would require:

– 3× 5× 5 + 3× 16 = 123 parameters.

– 3× 5× 5× 128× 128 + 128× 128× 3× 16 = 2 million operations.

(a) Normal Convolution (b) Depthwise Convolution (c) Depthwise Separable Convolution

Figure 2.25.: Normal, Depthwise and Depthwise separable convolutions. Image Source: eli.thegreenplace.net

Other well known image classification models include MobileNets (Howard et al., 2017; Sandler
et al., 2018), DenseNet (Huang et al., 2017), and EfficientNet (Tan and Le, 2019), among others.

Classification models take input images and learn abstract representations through multiple
weighted layers. Commonly, the initial layers are thin with big spatial dimensions and deeper
layers get wider and have smaller spatial dimensions. The final layer is designed to output vectors
representing class probabilities for the given input. Outputs of layers before the final classification
layer are referred to as features in deep learning literature. For other vision tasks where the goal
is not to assign a label to the input image, but to learn pixel-wise labels or detect bounding box
locations of objects in the input, deep learning classifiers discussed previously can be used as
feature extractors. The goal is to learn and extract discriminative features of images using the

https://bit.ly/3nFa40h
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classification models and use them as input to further layers designed for semantic segmentation,
instance segmentation or object detection, explained as follows.

Object Detection

Object detection refers to finding the location and the class label for each object in the image.
The locations are encoded as rectangular bounding boxes. The general steps in object detection
methods are identifying informative regions in the input, extracting relevant features and classifying
them. A well-known object detection framework is called Region-Based Convolutional Neural
Networks (RCNN) (Girshick et al., 2014) with three distinct stages. The first stage is for identifying
informational regions in the input and proposing possible candidate bounding boxes that may
contain an object. This is done using the selective search algorithm (Uijlings et al., 2013). The
selective search algorithm initially partitions the input regions and then iteratively groups similar
regions based on color, texture, size or shape. The final bounding boxes are then passed on to
the next stage. The second stage, i.e., feature extraction, makes use of Convolutional Neural
Networks (CNNs). The regions proposed by the selective search algorithm in the previous stage
are resized to a fixed size before being fed to the CNN for feature extraction. CNN outputs, which
are learned discriminative features for each proposed region, are then fed to the final stage. The
final stage has two branches. The first branch contains multiple classifiers, i.e., one for each of the
predefined categories, which perform a binary classification, i.e., object versus background, using
SVMs. The second branch is a regression module which learns bounding box coordinates for the
object in the corresponding proposed region using the features learned by the CNN. The RCNN
framework is illustrated in Figure 2.26.

Figure 2.26.: RCNN Framework (Girshick et al., 2014)

Instead of computing features for each proposed region separately, Girshick (2015) developed Fast
RCNN that extracts features from images once and then applies the region proposal algorithm on
the computed features. A Region of Interest (ROI) pooling layer is then used to extract fixed-length
feature vectors from the proposed regions and feed them to fully connected layers and eventually to
the final branch for bounding box regression and classification. Instead of SVM classifiers, the final
classification module is a multiclass softmax classifier. Fast RCNN is illustrated in Figure 2.27.

The region proposal stage in RCNN and Fast RCNN is a bottleneck for the previously explained
frameworks and takes a lot of time compared to the remaining stages. Ren et al. (2016) proposed
Faster RCNN, replacing the region proposal algorithm with a Region Proposal Network (RPN).
The RPN takes an input image of any size and produces rectangular outputs each of which are
paired with an objectness score representing the probability of the rectangular region belonging to
an object or the background. The RPN network shares computation with convolutional layers from
the CNN model for feature extraction in the first step. The output feature map of the last shared
convolutional layer is fed to a small network for region proposal generation. A sliding window
approach is used to map an n × n spatial window from the feature map into a lower dimensional
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Figure 2.27.: Fast RCNN Framework (Girshick, 2015)

feature vector. The vector is then fed to the following layers for classification and bounding box
regression.

The Faster RCNN framework and the RPN module that it uses are illustrated in Figure 2.28.

(a) Faster RCNN (b) RPN Module used in Faster RCNN

Figure 2.28.: Faster RCNN and the RPN module (Ren et al., 2016)

Objects in images come at different scales essentially making them hard to detect. A standard
solution to this is using feature pyramids based on image pyramids (Adelson et al., 1984). Lin
et al. (2017b) introduce Feature Pyramid Network (FPN) which creates feature pyramids in a two
steps. In the first step called the bottom-up pathway, the input image is processed by a DCNN and
feature maps at different scales are stored to be used for creating feature pyramids. The second step
is called the top-down pathway. In this this step, the final output feature map with a small spatial
resolution but high level semantic information is upsampled and merged with the corresponding
feature maps from the bottom-up pathway. The process is repeated until the feature map with the
biggest spatial resolution in the bottom-up pathway is merged with the last upsampled feature map
from the top-down pathway. The final merged feature maps at different resolution are passed on
to the RPN. FPN, illustrated in Figure 2.29, is architecture-independent and can use any DCNN
such as ResNet, VGGNet and others. Additionally, it can be incorporated in any of the previously
explained object detection frameworks, e.g., Fast RCNN or Faster RCNN.

Instance Segmentation

Object detection frameworks explained previously are designed to learn bounding box coordinates
and class labels for objects contained in an input image. The bounding box represents a coarse,
rectangular location for an object, but if a precise outline for each instance in the input image is
desired, a method called instance segmentation is applied. In addition to bounding box
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Figure 2.29.: FPN Structure (Lin et al., 2017b)

coordinates and class labels, instance segmentation models also learn pixel-wise segmentation
masks. A well-known architecture for this task is called Mask RCNN (He et al., 2017), illustrated
in Figure 2.30. It is built on top of Faster RCNN (Ren et al., 2016) with an additional branch for
segmentation. Moreover, the ROI pooling layer in Faster RCNN is a max pooling operation on a
discrete grid based on a region proposal. It is used to create fixed-length feature vectors for
regression and classification layers in the detection framework. While this does not hurt the
classification because of its robustness to small translations, it has a negative effect on pixel-wise
segmentation mask predictions. To alleviate this problem, the ROI pooling is replaced with a
so-called RoIAlign operation in Mask RCNN. RoIAlign uses bilinear interpolation in order to
preserve the exact spatial correspondence between the pixels. This small change in the
architecture results into more accurate segmentation masks.

Figure 2.30.: Mask RCNN (He et al., 2017)

Other examples of object detection (including instance segmentation) frameworks include You
Only Look Once (YOLO) (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018; Bochkovskiy
et al., 2020), Spatial Pyramid Pooling Network (SPPNet) (He et al., 2015), Region-based Fully
Convolutional Network (R-FCN) (Dai et al., 2016), and Path Aggregation Network (PANet) (Liu
et al., 2018), among others.

Semantic Segmentation

Semantic segmentation networks are end-to-end frameworks that learn pixel-wise labels for an input
image. While instance segmentation models are good at localizing objects using a rectangular
bounding box and learning their segmentation masks, they are generally suitable for areal objects.
For linearly elongated structures, e.g., roads or streams, that could be situated diagonally in an
input image, the bounding box detected by an instance segmentation model is basically the whole
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image. Semantic segmentation assigns a label for a pixel, regardless of which object instance in the
input image it belongs to, making such frameworks suitable for objects of any shape or size.

Fully Convolutional Network (FCN)(Long et al., 2015) is the first fully convolutional network that
takes an input image of arbitrary size and predicts dense pixel-wise labels. It is built on top of
well known deep classifiers such as VGGNet, AlexNet or GoogLeNet among others. The final
classification layer and all the dense layers in the classifiers are discarded. A 1×1 convolution with
the feature map size equal to the number of categories in the dataset, e.g., 21 for PASCAL VOC
dataset (Everingham et al., 2015), is added. Finally a deconvolution, i.e., backwards convolution or
transposed convolution layer is added at the end to upsample and match the dimensions of the input
image. The model, illustrated in Figure 2.31, is trained end-to-end and achieved state-of-the-art
results in segmentation tasks in 2014.

Figure 2.31.: FCN architecture for semantic segmentation (Long et al., 2015)

DCNNs take an input image and extract high level representations through multiple convolutional
layers. The striding and max pooling operations decrease the spatial resolution of the features.
For semantic segmentation tasks, it is desirable to have high resolution outputs in order to make
accurate pixel-level predictions. Chen et al. (2017b) propose removing the max pooling operations
in the final layers of DCNNs and using atrous convolutions in order to keep the spatial resolution
as high as possible. Atrous convolution, also known as dilated convolution, is based on the ’hole’
algorithm (Mallat, 1999) and is similar to the regular convolution operation with an extra parameter
called dilation rate. Dilation rate is the spacing between the elements in the convolutional kernel
as shown in Figure 2.32. Dilated convolution provides a bigger field of view compared to regular
convolution without additional computational cost.

(a) (b) (c)

Figure 2.32.: Regular (a) and dilated (b & c) convolution with a 3×3 kernel and dilation rates of 1, 2 and 3

Additionally, DCNNs are invariant to translations in the input and learn abstract representations.
While such invariance is beneficial for image classification tasks, it is detrimental to semantic
segmentation, specially the final upsampling layers, where the goal is precise pixel-level labeling.
To overcome this, Chen et al. (2017b) propose combining the final feature maps in the DCNN
with fully connected Conditional Random Field (CRF) (Krähenbühl and Koltun, 2011). CRF is
computationally efficient and excels at capturing fine edge details and long range dependencies (in
this specific case). Combining it with DCNN boosts pixel-level predictions and refines the outputs
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of DL models as shown in Figure 2.33. The whole architecture termed DeepLab is illustrated in
Figure 2.34.

Figure 2.33.: Example prediction by DeepLab with CRF (Chen et al., 2017b)

Figure 2.34.: Architecture of DeepLab (Chen et al., 2017b)

Objects of the same category may appear at different scales in images. To account for this variation,
an improved version of DeepLab termed DeepLab V2 which makes uses of Atrous Spatial Pyramid
Pooling (ASPP) is proposed by Chen et al. (2017b). ASPP is referred to fusing feature maps of
multiple atrous convolution with different dilation rates in order to improve prediction accuracy
for objects at different scales. It is visualized in Figure 2.35.

Figure 2.35.: Atrous Spatial Pyramid Pooling used in DeepLab V2 (Chen et al., 2017b)

To improve performance and eliminate the need for CRF post-processing of DCNN outputs, Chen
et al. (2017a) propose DeepLab V3. It uses atrous convolution in the final layers of DCNNs
followed by ASPP. Additionally, the output of the ASPP module is concatenated with low level
image features from the initial convolution layers in order to encode global context. The
concatenated features are passed on to to the following layers and finally, predictions are made
directly and without the use of CRF. The authors show that including multi-scale contextual
information through ASPP and global context help make more precise predictions and lead to
improved prediction accuracy compared to previous DeepLab versions. The architecture for
DeepLab V3 is shown in Figure 2.36.

Finally, an even more improved version termed DeepLab V3+ is proposed by Chen et al. (2018).
It is an extension of DeepLab V3 with a refined decoder module for better prediction along object
boundaries. Additionally, the convolutional layers including those in the ASPP module use
depthwise separable convolution, as in the Xception network (Chollet, 2017). This results into a
faster model with improved performance. The architecture is shown in Figure 2.37.
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Figure 2.36.: DeepLab V3 (Chen et al., 2017a)

Figure 2.37.: DeepLab V3+ (Chen et al., 2018)

The feature extractor or encoder part of the DeepLab variants could incorporate DCNNs such as
ResNet, VGGNet or Xception models originally developed for image classification.

Previous DCNNs for semantic segmentation follow a general pattern of learning image
representations by gradually decreasing the spatial resolution. The low-resolution representation
is then used in the decoder part of the model to recover high resolution representations by
upsampling using different methods such as transposed convolution, bilinear upsampling, and/or
non-linear upsampling using pooling indices, among others. In contrast, High Resolution
Network (HRNet) (Sun et al., 2019; Wang et al., 2020) maintains the high resolution
representation throughout the network and gradually branches out parallel blocks of
convolutional layers (eventually 4 parallel branches) with different spatial resolution and regularly
exchanging information across the parallel branches. The resulting network is one that outputs
semantically richer and spatially more precise representations. The general architecture for
HRNet is illustrated in Figure 2.38 and the final outputs from the 4 branches can be used to
extend the model for different vision tasks as shown in Figure 2.39.

Figure 2.38.: HRNet architecture (Sun et al., 2019; Wang et al., 2020)

Other well known architectures for semantic segmentation include UNet (Ronneberger et al., 2015)
and SegNet (Badrinarayanan et al., 2017), among others.
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Figure 2.39.: HRNet architecture extended for classification (a), semantic segmentation (b) and feature
extraction for object detection tasks (c) (Sun et al., 2019; Wang et al., 2020)

2.4.9. Transfer Learning

DNNs rely on large volumes of labeled data for training in order to generalize and perform well
on unseen examples. It is time-consuming and laborious to create labeled data for every task. A
solution to this is transfer learning. A DNN trained on another large dataset, such as ImageNet
(Russakovsky et al., 2015) is used for a new task with a dataset of small size. The pretrained
DNN is either used as an initialization and finetuned or simply used as a fixed feature extractor for
another small linear classifier, e.g., SVM (Cortes and Vapnik, 1995). Sharif Razavian et al. (2014)
use a DNN by (Sermanet et al., 2014) trained on ILSVRC data (Russakovsky et al., 2015) as a
feature extractor for vision tasks such as image classification, object detection and visual instance
retrieval, and report superior results compared to the state-of-the-art methods. Yosinski et al.
(2014) finetune or retrain the weighted layers of the pretrained model on the new dataset and
show that the performance depends on how similar or dissimilar the base dataset (large dataset
the model was pretrained on) and the the small target dataset are.

Transfer learning is a dominant pretraining approach and works well when a large annotated dataset
for a similar domain to the small dataset is available. However, unsupervised or self supervised
pretraining, explained in the following sections, are promising pretraining methods (Yang et al.,
2020a) that demonstrate comparable results and are specially useful when large labeled datasets in
the similar domain are not available. In this research, SSL pretraining is utilized due to the large
volumes of unlabeled DTM data and lack of annotated datasets in the domain of this research.

2.4.10. Unsupervised Learning

In unsupervised learning, there are only input examples and no manual annotations. It can be
used to detect and discard redundant and non-essential aspects of the data (Masci et al., 2011).
The goal is to find some structure and extract useful features from the data that can help solving
another task or answer some questions regarding the data. Unsupervised learning can be grouped
into tasks such as clustering, association, and anomaly detection.

In clustering, the model learns to extract features and group similar examples together. Examples
include grouping customers by purchasing behavior, grouping images of handwritten digits into
their corresponding category, and identifying fake news by analyzing the content and grouping
similar news together.

Association is the task of identifying unknown patterns in the data by finding correlations with
other examples using known attributes. For example, if person P1 has read and liked a book B1,
and the task is to find out whether or not they will like another book B2, it can be solved by looking
at other readers, Pi 6=1, who have read B1 and B2 and liked B1. In general, if Pi 6=1 has liked B2 as
well, by association, so will P1. Applications of association tasks include recommending products
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one is most likely to buy based on similar previous purchases between buyers and the similarities
of products.

Anomaly detection refers to analyzing the data and finding irregularities or data points that are
different compared to other examples in the dataset. Applications of anomaly detection include
fraud detection in banking, health monitoring in hospitals, and surveillance systems, among others.
Anomaly detection can be used to detect outliers in the dataset.

Two other common unsupervised learning methodologies: autoencoders and Generative Adversarial
Networks (GANs) are explained in details in the following.

Autoencoders

Autoencoders are a special case of unsupervised learning where the goal is to map an input x ∈
RN into a lower dimensional latent space h ∈ RN ′ using a function f with parameters θ and
then reconstruct the input from the latent space representation h using another function g with
parameters θ′.

h = fθ(x)
y = gθ′(h)

(2.34)

The model is trained to minimize the difference between original input x and the reconstructed
y. This unconstrained autoencoder simply learns identity mapping (Goodfellow et al., 2016). To
learn useful representations that apply on new examples and generalizes well, other versions of
autoencoders are developed, some of which are detailed below.

– Denoising Autoencoders: In denoising autoencoders, the input data is corrupted by adding
some noise. The model maps the corrupted input to the latent space and learns to reconstruct
the original non-corrupted version of the input. Examples of noise added to input data can
be removing random pixels from an input image or adding Gaussian noise.

– Convolutional Autoencoders: As explained previously, convolutional layers have the
advantage of weight sharing and translation invariance compared to fully connected layers.
Hence they work better on 2D image data.

– Stacked Autoencoders: Multiple layers are stacked together to learn latent space
representation of the input first. Similar number of layers are then used to reconstruct the
original input from the latent space representation. This can be normal fully connected
layers or convolutional layers.

A convolutional autoencoder model proposed by Guo et al. (2017) is illustrated in Figure 2.40
which learns reconstructing and clustering MNIST data (LeCun et al., 1998).

In general, autoencoders are trained to compress inputs to a latent space representation and
reconstruct the original input. However, all the variants of autoencoders can be trained such that
the encoder part learns hidden representation of the input, but the decoder uses this
representation to predict not the original input but other relevant information. Examples are
learning to reconstruct color images from grayscale images, reconstructing high resolution images
from low resolution counterparts, translating between different data modalities, e.g., aerial
photographs to Digital Terrain Models (DTMs) for the same region, and more. Since the
reconstructed output is not the original input in these cases, a more appropriate term is the
encoder-decoder networks.
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Figure 2.40.: Convolutional autoencoder by Guo et al. (2017)

Generative Adversarial Networks (GANs)

GANs are specific application of generative modeling. Generative models learn internal
representation and distribution of the input and as such can be used to sample and generate new
examples from the learned distribution. GANs, first introduced by Goodfellow et al. (2014), are
generative approaches that frame a task with unlabeled data as a supervised learning problem. A
GAN consists of a generator and a discriminator model. The generator samples random noise
from a Gaussian distribution and uses it as an input to generate new plausible examples for the
task domain. The discriminator on the other hand takes input examples from the task domain
and the new examples generated by the generator, and its task is to determine whether a given
input is real (i.e., from the task domain) or fake (i.e., created by the generator). The two models
are trained jointly in what is called as the zero-sum game in literature. The generator tries to
generate realistic examples to fool the discriminator and the discriminator tries to separate real
examples from fake. It is called the zero-sum game as the reward for either one, the generator or
the discriminator, is a loss for the other. In most cases, the training stops when the generator can
generate examples that could fool the discriminator at least 50% of the time. The generator can
then be used in other applications for generating synthetic data. The general pipeline for GANs is
illustrated in Figure 2.41

Mathematically, training GAN models is defined by the following objective function.

L(G,D) = Ey[logD(y)] + Ez[log(1−D(G(z))] (2.35)

Where D(y) denotes the predicted probability by the discriminator, D, that the input, y, is real. Ey
is the expected value over all examples in the dataset. G(z) represents the generated fake example
by the generator, G, given a random noise, z, as the input. Ez is the expected value over all inputs
to the generator.

Figure 2.41.: Example pipeline for Generative Adversarial Networks
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A specific type of GANs is the conditional GANs (Mirza and Osindero, 2014) in which the generator
and/or the discriminator is conditioned on an extra input in addition to the random noise (for
the generator) and the fake and real samples (for the discriminator). The condition can be the
gender (e.g., male or female) for a GAN model that tries to generate photos, or time (e.g., day
or night, winter or summer) for generating images. In conditional GANs, an image y is generated
conditioned on the noise vector z, as in the case of general GANs, but it is additionally conditioned
on an observed image x. The objective function for conditional GANs is hence modified and shown
in Equation 2.36.

L(G,D) = Ex,y[logD(x,y)] + Ex,z[log(1−D(x,G(x,z)))] + λLL2(G) (2.36)

Where the first two expressions denote the general GAN objective with the addition of input image
x as the condition. The last expression is the L2 distance loss, LL2 , and is meant to train the
generator to not only fool the discriminator but also produce outputs that are similar to ground
truth images.

A well known example of conditional GANs is the Pix2Pix model (Isola et al., 2017). Pix2Pix is a
general-purpose image-to-image translation model that learns mapping from an input image to
output image. It can be used for tasks such as photo generation, semantic segmentation, image
colorization, edge-to-photo translation, sketch-to-photo translation, day-to-night translation of
photos, and map-to-aerial photo translation, among others. The random noise vector z in
conditional GANs is to avoid producing deterministic outputs when learning a mapping from
input x to output y. However, authors of Pix2Pix report that the generator simply learns to
ignore the noise. Therefore, the generator input in Pix2Pix is only the input image x and noise is
only included in the form of dropout in the network layers. An illustration of the Pix2Pix
approach is given in Figure 2.42. Other examples of conditional GANs are CycleGAN (Zhu et al.,
2017), and StackGAN (Zhang et al., 2017a), among others.

Figure 2.42.: Conditional GANs for edge-to-photo translation (Isola et al., 2017).

GANs have a wide range of applications such as image-to-image translation (Isola et al., 2017;
Peters and Brenner, 2020), text-to-image translation (Zhang et al., 2017a; Zhu et al., 2017), video
generation (Vondrick et al., 2016), photo blending (Wu et al., 2019a), inpainting (Pathak et al.,
2016), image super-resolution (Ledig et al., 2017), and cartoon generation (Jin et al., 2017), among
others. In addition to direct applications of GANs in generating realistic examples, they are helpful
in improving predictions in supervised tasks. Kumar et al. (2017) use GANs in a semi-supervised
learning framework to improve classification accuracy on MNIST (LeCun et al., 1998) and SVHN
(Netzer et al., 2011) datasets. A trained discriminator is used as a feature extractor for image
classification (Radford et al., 2016), and a trained generator is used to create synthetic annotated
datasets for cases where limited training data is available (Shrivastava et al., 2017).
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2.4.11. Self Supervised Learning

Self Supervised Learning (SSL) makes use of unlabeled and labeled data. The unlabeled data
is first utilized in the first task called pretext to train a model that learns useful features from
the data. The learned features and the trained model are then leveraged in a second step called
the supervised downstream task that uses labeled data. The pretext phase uses an architecture
composed of a DCNN block (i.e., a deep neural network with multiple convolutional layers) followed
by a task specific block (i.e., convolutional and/or fully connected layers) that learns from unlabeled
data using implicit supervision signals. Implicit supervision signals refer to the labels that are
automatically created from the raw unlabeled data without manual annotation and used to train
deep learning models. Examples of implicit supervision signals include rotations applied on input
images, parts of input images cropped out, and gray-scale counterparts of color images, among
others. Automatically creating such supervision signals or labels from tons of unlabeled images
facilitate training deep learning models in the pretext phase. Models trained in this manner can
be used in the second phase, i.e., downstream task (Erhan et al., 2010). The downstream phase
uses the same DCNN block from the pretext phase initialized with the already learned parameters
or weights. It is then followed by a task specific block that learns from annotated examples.
Depending on the type of annotations, the task specific block can be classification, segmentation
or object detection networks. The general pipeline for SSL is illustrated in Figure 2.43. The inputs
to the pretext task are images from a large unlabeled dataset and the labels used for training are
the implicit supervision signals automatically created, e.g., rotations applied to input images, or
parts of inputs images that are cropped and used as labels. The inputs to the downstream task
are images from a manually annotated dataset, and the supervision signals used for training the
model are manual annotations indicating either class labels, segmentation masks, or bounding box
coordinates. Mathematically, the SSL pretext step is shown Equation 2.37.

ŷp = g(f(xu)) (2.37)

Where xu and ŷp denote the unlabeled input data the output in the pretext. f is the DCNN module
shown in Figure 2.43 and g indicates task specific layers in the pretext task.

Equation 2.38 represents the downstream step in SSL.

ŷd = h(f∗(xl)) (2.38)

Figure 2.43.: Pipeline for self supervised learning. The DCNN block for both pretext and downstream tasks
is the same. The following blocks or layers are task specific. In downstream task, the DCNN block uses the
pretrained weights from the pretext task for supervised finetuning.
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Where xl and ŷd denote the labeled input data and the output in the downstream step. f∗ is the
DCNN module shown in Figure 2.43 which is pretrained in the pretext step as indicated by the ∗
symbol. h indicates task specific layers in the supervised downstream task.

Autoencoders, GANs, and variants of DCNNs are suitable for the pretext task of learning useful
properties and extracting features in the dataset. In this research, an encoder-decoder model and
a GAN-based approach are used for the pretext. An encoder-decoder is similar to the stacked
autoencoders, with the difference that the output is not a reconstruction of the given input, but
an approximation of another superivision signal, e.g., relief rasters for DTMs. An example of SSL
pretext task is training a deep neural network that learns image rotations. Unlabeled images are
rotated at 90, 270, 180 and 270 degrees and the model is trained to learn the applied rotation.
Such a pretraining and incorporating the trained model in supervised vision tasks is reported to
prove useful (Gidaris et al., 2018).

Doersch et al. (2015) train a model to take two patches from a 3×3 image grid and predict the used
configuration, as shown in Figure 2.44. The trained model learns image representation by predicting
such context and boosts performance on supervised vision tasks such as image classification and
object detection. The pretext task forces the model to learn feature embeddings for the image
patches. The learned feature embeddings for visually similar patches are close to each other in the
embedding space while the embeddings for dissimilar patches are far from each other. This helps
the model in the downstream task perform better.

Figure 2.44.: Unsupervised pretraining by learning to predict the context. The DL model is trained to take
two patches from the 8 possible configurations and predict the sampled configuration (Doersch et al., 2015)

Other examples of unsupervised representation learning include learning to solve jiggsaw puzzle
in images (Noroozi and Favaro, 2016), and image colorization (Zhang et al., 2016c) (Figure 2.45),
among others.

Figure 2.45.: Unsupervised pretraining by image colorization (Zhang et al., 2016c)

Deep learning models trained on the pretext task with unlabeled data can be loaded and finetuned
on a downstream task with limited amount of labeled data. This is true for downstream tasks
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with limited amounts of annotated data and a similar domain to the pretext task. Examples of
downstream tasks are image classification, semantic segmentation, instance segmentation, object
detection, and human action recognition, among others.



3. Related Work

This chapter describes related methods in detection of archaeological terrain structures in DTMs.
Section 3.1 explains general applications of remote sensing technology in archaeology. Section 3.2
lists common applications of deep learning in remote sensing research in general. Section 3.3 focuses
on deep learning applications in point cloud data, specially ALS point clouds and its derived rasters.
Section 3.4 includes related work in deep learning used for archaeological research.

3.1. Remote Sensing in Archaeology

Remote sensing is defined as the technique for acquiring information about objects by collecting
data through sensors and instruments in a nondestructive and noninvasive manner. This includes
data collected by airborne or spaceborne sensors such as LiDAR, RADAR, aerial photography, and
satellites or ground based sensors such as ground-penetrating radar and terrestrial laser scanning
systems (Campana, 2017). Archaeology is the approach for revealing information about the human
history and its environment through field surveys, excavations, and data analysis (Hadjimitsis et al.,
2013). Remote sensing techniques and data collected through remote sensing systems are used in
archaeology for accomplishing many tasks. These include acquiring information about objects of
interest to archaeologists residing on the surface of the earth or buried under ground, monitoring
cultural heritage and archaeological sites, and documenting changes through time. Collected remote
sensing data are also used to store, analyze and visualize archaeological information with the help
of GIS tools. This section outlines different types of remote sensing systems and their applications
in archaeology.

The first application of remote sensing in archaeology is the use of aerial photography. Aerial
photographs were used for documentation of archaeological sites in Iran (Stolze and Nöldeke,
1882), United Kingdom (Capper, 1907; Bewley, 1999, 2002), Italy (Myers et al., 2002), and
Poland (Rączkowski, 2005). During the first World War, aerial photography was used by
governments as a source of intelligence. This led to a large storage of aerial photographs that
were later utilized for the purpose of archaeological studies (Campana, 2017; Rączkowski, 2001).
The second World War generated even more aerial photographs that are utilized by archaeologists
as well (Going, 2002). Main techniques for aerial photography and their applications in
archaeology are discussed by Crawford and Keiller (1928) and Deuel (1969). Aerial photography
is used to survey, analyze and document archaeological sites and landscapes (Campana, 2017;
Horne, 2011; Palmer, 2007; Doneus, 2001; Bewley, 2003b).

Aerial photographs are as useful as the visibility of the surface that they capture, and the visibility
depends on many natural phenomena, e.g., weather condition. Multispectral and hyperspectral
scanners are remote sensing tools that address the shortcomings of aerial photographs. They are
sensitive to lights in the infrared and ultra-violet lights which are not visible to the human eye and
could acquire more information than the aerial photographs. They are more sensitive to changes
in vegetation and temperature and better at discriminating soil moisture (Donoghue, 2001; Shell,
2002; Beck and Cowley, 2011). Multispectral remote sensing, like aerial photography, is used for
archaeological research, in addition to other purposes in the industry or the research community.
It is used to analyze archaeological crop stress (Moriarty et al., 2019; James et al., 2020), and
archaeological remains in Italy (Gennaro et al., 2019). Other applications of multispectral remote
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sensing include archaeological land use characterization (Villalon-Turrubiates and Llovera-Torres,
2011), archaeological prospection in alpine alluvial plain (Brivio et al., 2000), and detection of moats
around medieval settlements in South India (Rajani and Kasturirangan, 2014), among others.

Multispectral and hyperspectral sensors can be airborne systems mounted on an aircraft and
capturing data or they can be spaceborne and mounted on satellites. Satellite imagery is also used
for archaeological purposes even if they are originally meant differently, e.g., military purposes.
Examples of satellites that were used for military purposes are CORONA, argo, Lanyard and
COSMOS (Hadjimitsis et al., 2013; Parcak, 2009). Other examples of satellite images are the
KVR images from Russian space program, Landsat by National Aeronautics and Space
Administration (NASA) and United States Geological Survey (USGS), IKONOS by the Space
Imaging organization, CHRIS Proba by the European Space Agency (ESA), EO-1 Hyperion by
NASA, QuickBird, WorldView, and GeoEye-1. Images from the aforementioned satellite systems
come in different spatial and temporal resolutions and are utilized in archaeology in addition to
other research or commercial purposes. Images from the CORONA and KVR satellites were used
for archaeological purposes (Fowler and Fowler, 2005), mapping of geomorphological features
(Grosse et al., 2005), and monitoring cultural heritage sites (Kostka, 2002). Landsat images are
used for detection of Mayan settlements (Vaughn and Crawford, 2009) and neolithic settlements
in Greece (Alexakis et al., 2009), and monitoring archaeological sites (Barlindhaug et al., 2007)
and monuments in Cyprus (Hadjimitsis et al., 2009). EO-1 Hyperion images which are of high
resolutions are used in detection of archaeological crop marks (Agapiou et al., 2012). QuickBird
imagery is also utilized for archaeological prospection (Lasaponara and Masini, 2006b) and
identification of archaeological buried remains (Lasaponara and Masini, 2006a).

As explained in Chapter 2, multispectral and hyperspectral scanners are passive remote sensing
systems that use natural light from the sun for illumination or radiation. The disadvantage is
that such systems cannot be used all the time, e.g., there is no reflected sun energy at night.
RADAR is an active remote sensing system that has its own source of energy, can penetrate through
cloud, smoke and light precipitation conditions, facilitating measurements at any time (Campana,
2017). RADAR remote sensing, airborne, spaceborne or ground-based, has been utilized in many
archaeological projects. Examples include detection of ancient Maya settlements and archaeological
structures within the settlements (Adams, 1980; Pope and Dahlin, 1989; Garrison et al., 2011),
analysis and monitoring of archaeological sites (Tapete et al., 2013; Stewart et al., 2013; Moore
et al., 2006), and detection of the Great Wall in north-western China (Xinqiao et al., 1997), among
others.

Terrestrial laser scanning is another active remote sensing technique that is useful for many
research fields such as architecture, earth science and archaeology (Forte and Campana, 2016).
Terrestrial laser scanning data and methods are used for documentation of archaeological
monuments (Neubauer et al., 2005; Lerma et al., 2010) and landscapes (Forte et al., 2005). They
are also used for recording, monitoring, and preservation of archaeological heritage (Grussenmeyer
et al., 2012; Lercari, 2019; Castagnetti et al., 2012; Wei et al., 2010). Other example applications
of terrestrial laser scanning in archaeological research include damage detection in historical
buildings (Armesto-González et al., 2010), virtual reconstruction of destroyed historical structures
(Bitelli et al., 2017; Lindstaedt et al., 2011), and monitoring of wet-preserved archaeological wood
(Lobb et al., 2010), among others.

Finally ALS or airborne LiDAR is a remote sensing technique that measures elevations of the
ground surface relative to a reference point. It produces high resolution digital terrain models for
large landscapes that are otherwise unattainable by photogrammetry (Campana, 2017). LiDAR
has also had the most significant impact in archaeological remote sensing (Bewley, 2003a). It is
used in archaeological research for mapping archaeological landscapes (Chase et al., 2011),
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detecting archaeological features under woodland canopies (Devereux et al., 2005), identifying
archaeological sites and landscapes (Masini et al., 2011), detection and monitoring of cultural
heritage (Trier and Zortea, 2012; Risbøl et al., 2015), forest management (Roman et al., 2017),
discovery of amazonian villages (Iriarte et al., 2020), revealing hidden Mayan structures under
forest canopy in Guatemala (Canuto et al., 2018), uncovering previously unknown Great War
sites in Belgium (Gheyle et al., 2018), uncovering arhchaeological landscapes at Angkor (Evans
et al., 2013), and the discovery of medieval fortified settlements in southern Italy (Masini et al.,
2018), among others. LiDAR rasters, different types of which were explained in Chapter 2, are
utilized for better interpretability and visualization of archaeological landscapes, features and
artifacts. Yokoyama et al. (2002) and Doneus (2013) use openness for visualization and
interpretation of DTM data. Kokalj et al. (2013) address archaeological interpretation of LiDAR
data with different relief models including analytical hillshading, trend removal, slope, SVF and
elevation differentiation, among others. Kokalj and Hesse (2017) give an extensive list of LiDAR
rasters and discuss the types of archaeological structures each of them are suitable for. This thesis
specifically focuses on using LiDAR data: LD, SLRM, slope, SVF, POS and NEG, in addition to
DTM for the purpose of self supervised detection of archaeological monuments.

3.2. Deep Learning in Remote Sensing

Deep learning techniques are used in remote sensing applications for many tasks including land cover
classification, semantic and instance segmentation, scene classification, image registration, point
cloud registration, change detection, data fusion and more. This section lists example applications
of deep learning models in remote sensing relevant to this research.

Land Use and Land Cover Classification

Land Use and Land Cover Classification (LULC) is a common task in remote sensing. It refers to
image classification or semantic segmentation tasks carried out for remote sensing data such as
multispectral satellite images. DCNNs have dominated the LULC task in remote sensing. Helber
et al. (2019) create EuroSAT, a benchmark dataset for LULC tasks using deep learning
techniques. They use well-known DCNNs such as ResNet and GoogleNet and a shallow
three-layer CNN to classify Sentinel-2 satellite images from the EuroSAT dataset into one of ten
LULC classes including industrial buildings, residential buildings, annual crop, permanent crop,
river, sea and lake, herbaceous vegetation, highway, pasture and forest. Zhang et al. (2018)
combine the ideas for residual learning, atrous convolution and spatial pyramid pooling to create
a UNet-like (Ronneberger et al., 2015) model for urban land use and land cover classification
based on high spatial resolution satellite imagery. Kussul et al. (2017) compare DCNNs with
traditional fully connected models and random forest, and show the superiority of DCNNs for
classification of land and crop types such as maize, soybeans, wheat, sunflower and sugar beet
using Landsat-8 and Sentinel-1A satellite images. MarsNet (Palafox et al., 2017) is another
example application of multiple DCNN classifiers used in parallel for automated detection of
geological landforms on Mars. Other examples of DCNNs applied in LULC include the works of
Zhang et al. (2019a), Tracewski et al. (2017), and Marcos et al. (2018), among others.

Scene Classification

Image scene classification is another import task in the remote sensing community which has
profited from the advances in deep learning. Cheng et al. (2017a) create a benchmark dataset called
"NWPU-RESISC45" for this task. The dataset contains more than 30 thousand images covering
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45 scene categories. The authors report classification results using different classification models
such as AlexNet, VGGNet and GoogLeNet. Another benchmark dataset named Aerial Image
Dataset (AID) is created by Xia et al. (2017). It is a dataset with more than 10 thousand annotated
aerial scene images. Hu et al. (2015) use transfer learning and finetune classifiers trained on
ImageNet data in order to classify scences in high resolution remote sensing images. Nogueira et al.
(2017) also explore the effect of finetuning deep classifiers pretrained on ImageNet dataset on remote
sensing scene classification task. They use GoogLeNet, VGGNet, and AlexNet models, among
others, with randomly initialized weights and also ImageNet weights to perform scene classification
on datasets such as UCMerced (Yang and Newsam, 2010), RS19 (Xia et al., 2010), and Brazilian
Coffee Scenes (Penatti et al., 2015). Lu et al. (2017) use unsupervised representation learning to
improve scene classification accuracy. They first use deconvolution networks to extract a set of
feature maps for each image using multiple filters and minimize the reconstruction error between
the input image and the output feature maps. The learned feature maps are then aggregated using
spatial pyramid pooling and passed on to an SVM classifier. Other examples of DL models in
remote sensing scene classification include research works by Cheng et al. (2017b), Cheng et al.
(2018), Li et al. (2017a), and Zhang et al. (2019d), among others.

Object Detection

Object detection in remote sensing refers to identifying and localizing objects in a given remotely
sensed data such as satellite images (Cheng and Han, 2016). Deep learning models have shown
great success in the remote sensing object detection tasks as well. A benchmark dataset for optical
remote sensing object detection named Detection in Optical Remote sensing (DIOR) is created
by Li et al. (2020a). Deng et al. (2018) use concatenated ReLUs and inception modules to create
a feature extractor. They then create a multi-scale object proposal network to generate region
proposals which are consequently merged with the extracted features and fed to the final object
detection network. Their proposed multi-scale object detection framework is evaluated on datasets
such as NWPU-VHR-10 (Cheng et al., 2014), Aerial-Vehicle (Liu and Mattyus, 2015) and aircraft
dataset (Zhang et al., 2016a). The authors report better detection results compared to other object
detection models, e.g., Faster RCNN (Ren et al., 2016) and YOLO (Redmon et al., 2016; Redmon
and Farhadi, 2017), evaluated on the same datasets.

Objects in optical remote sensing images appear at different rotation angles, making them hard
for DL models to predict. To alleviate this problem, Cheng et al. (2016) propose a model termed
Rotation Invariant Convolutional Neural Network (RICNN) for object detection. Their model
uses existing CNN architectures, but is additionally trained to produce similar feature
representations for multiple rotations for the same input. Their object detection model is
evaluated on on the NWPU-VHR-10 (Cheng et al., 2014) dataset and achieves better results
compared to other detection frameworks trained under the same conditions. Other examples of
DL models for object detection in remote sensing data include the works of Li et al. (2017b), Li
et al. (2018b), Diao et al. (2016), Ding et al. (2018), and Zhang et al. (2019c), among others.
Extensive overviews of object detection in remote sensing are written by Li et al. (2020a), Zhang
et al. (2016b) and Cheng and Han (2016).

Semantic Segmentation

Semantic segmentation of remote sensing images is also an important task. Similar to other major
research topics in remote sensing, deep learning techniques have found their way into segmentation
of remote sensing imagery as well. Examples of benchmark datasets in remote sensing image
segmentation tasks include the Vaihingen and Potsdam datasets by ISPRS (Rottensteiner et al.,
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2012), Zurich dataset (Volpi and Ferrari, 2015), and EvLab-SS dataset (Zhang et al., 2017b).
Acquiring large annotated datasets for segmentation tasks in remote sensing imagery is costly and
time-consuming. The previously mentioned datasets have either sacrificed high spatial resolution
images for higher number of class labels or included more categories by a trade-off in the image
resolution. Kemker et al. (2018) created a dataset called RIT-18 which contains high resolution
multispectral images and includes higher number of categories, i.e., 18 different classes including
road marking, trees, buildings, vehicles, woode panels, vegetations, water, and rocks, among others.
It is difficult to use the dataset for training DL models due to imbalanced class distribution. To
alleviate this problem, Kemker et al. (2018) first use the Digital Imaging and Remote Sensing
Image Generation (DIRSIG) modeling software to generate large volumes of synthetic annotated
multispectral images. The synthetic dataset is then used for training a DCNN that learns pixel-wise
classification or semantic segmentation. The trained model is finetuned on the RIT-18 dataset.
The authors use adapted versions of SharpMask (Pinheiro et al., 2016) and RefineNet (Lin et al.,
2017a) as the DCNN for semantic segmentation and report superior results compared to traditional
methods, e.g., SVM and Multi Layer Perceptrons (MLPs), trained on the RIT-18 dataset.

Kampffmeyer et al. (2016) use DCNNs for semantic segmentation in the ISPRS Vaihingen dataset
(Rottensteiner et al., 2012) but incorporate uncertainty maps in the network using Monte Carlo
dropout (Gal and Ghahramani, 2016) in order to improve segmentation accuracy. Rustowicz et al.
(2019) create a dataset for semanatic segmentation of crop types in in Ghana and South Sudan.
The authors use a DNN called 2D UNet + CLSTM, which is a hybrid of UNet (Ronneberger et al.,
2015) and Convolutional Long Short Term Memory (LSTM) (Shi et al., 2015), and achieves great
accuracy scores on their own dataset and outperforms previous leading methods on the dataset
from Munich, Germany (Rußwurm and Körner, 2018). Other examples of DL models for semantic
segmentation in remote sensing images include the works of Marmanis et al. (2016), Xu et al.
(2018b), Audebert et al. (2017), Wurm et al. (2019), Pan et al. (2018), and Diakogiannis et al.
(2020), among others.

3.3. Deep Learning in Point Clouds and Digital Terrain Models

Similar to to their success on 2D image data, deep learning techniques solve various problems using
3D point cloud data and 2D rasters derived from ALS point clouds. Major tasks in deep learning for
3D point cloud data include 3D shape classification, object detection and point cloud segmentation
(Guo et al., 2020).

Based on how the input data are processed, shape classification techniques are categorized into
three different methods. The first method is multi-view based in which the unstructured point
cloud is projected into 2D images on which the model is trained. Examples of such methods
include MVCNN (Su et al., 2015), MHBN (Yu et al., 2018), and View-GCN (Wei et al., 2020),
among others. The second method is based on 3D volumetric representations of the point cloud
data. A point cloud is first voxelized into 3D grids and then fed to 3D CNNs for shape classification.
Examples of such methods include VoxNet (Maturana and Scherer, 2015), OctNet (Riegler et al.,
2017), and PointGrid (Le and Duan, 2018), among others. The last method is called point-based
where deep learning models directly consume raw point clouds for feature extraction and prediction
tasks. Different models are applied using the point-based approaches including MLP, CNN and
graph-based models. Examples of MLP-based approaches include PointNet (Qi et al., 2017a),
PointNet++ (Qi et al., 2017b), and PointASNL (Yan et al., 2020), among others. Examples of
CNN-based approaches include RS-CNN (Liu et al., 2019), PointConv (Wu et al., 2019b), GeoConv
(Lan et al., 2019), PointCNN (Li et al., 2018a), and KPConv (Thomas et al., 2019), among others.
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Finally examples of graph-based methods include DGCNN (Wang et al., 2019), KCNet (Shen et al.,
2018), G3D (Dominguez et al., 2018), and PointGCN (Zhang and Rabbat, 2018), among others.

The second major task in deep learning for 3D point clouds is object detection. Deep learning
models in this task are divided into two categories based on the workflow. The first category is
based on region proposals. First, regions with the possibility of containing objects are proposed
and then features are extracted for each region in order to predict a class label. Examples of region
proposal-based models include PointRCNN (Shi et al., 2019), F-PointNets (Qi et al., 2018), and
the works of Vora et al. (2020), Lang et al. (2019), Yang et al. (2019b), and Xu et al. (2018a),
among others. The second category of deep learning models for object detection in 3D point clouds
is called the single shot method. In the single shot methods, a single stage is used to predict
class probabilities and bounding boxes for objects in the input. Examples of such methods include
VeloFCN (Li et al., 2016), 3D-FCN (Li, 2017), 3DSSD (Yang et al., 2020b), and LaserNet (Meyer
et al., 2019a), among others.

Finally, the third major task is semantic segmentation of point clouds using deep learning. The
goal is to predict a label representing the semantic meaning of each point. Similar to shape
classification, there are multiple categories in this approach as well based on how the input is
processed. Examples of multi-view methods include the works of Lawin et al. (2017), Boulch
et al. (2017), and Tatarchenko et al. (2018), among others. Example methods using volumetric
representations include SEGCloud (Tchapmi et al., 2017), and ScanComplete (Dai et al., 2018),
among others. Finally, examples of point-based methods for this task include the works of
Engelmann et al. (2018), Zhang et al. (2019e), and Hu et al. (2020), among others.

Other example applications of deep learning on 3D point cloud include photo-realistic point cloud
rending with Conditional GANs (Peters and Brenner, 2020), point cloud to image translation
Milz et al. (2019), semantic segmentation with multi view outlier detection (Peters et al., 2020),
automatic generation of point cloud data for training (Peters and Brenner, 2019), and the works
of Shu et al. (2019), Yang et al. (2019a), and Sauder and Sievers (2019), among others.

Methods explained above on general 3D point clouds are also applicable to ALS point clouds
which are the initial data source for the rasters used in this research. An adapted version of
PointNet (Qi et al., 2017a,b) is used for semantic labeling of ALS point cloud (Winiwarter et al.,
2019). Yang et al. (2017) first transform each point in the 3D space into a 2D image using the
geometric and full-waveform features of its surrounding points and then feed the image to a CNN
for classification. Qin et al. (2019) propose VPNet which uses a combination of volumetric and
point based representation for semantic labeling of ALS point clouds. Li et al. (2020b) use a model
for this task (i.e., semantic labeling of ALS point clouds) taking into consideration three distinct
properties of ALS point clouds including geometry of instances, variations in scale for different
categories and the discrepancies in the elevations. Zhang et al. (2021) propose DPCC-Net which
uses DCNNs in combination with k-means clustering for unsupervised 3D terrain scene clustering.
The DCNN is used for extracting features and the k-means algorithm is used for clustering, the
results of which are used as pseudo labels for training the DCNN. Politz et al. (2020) use height
distributions within a grid for a rasterized point cloud as inputs to a DCNN for classification. ALS
data are also used alongside dense image matching for semantic segmentation with DCNNs (Politz
and Sester, 2018, 2019). Other examples of deep learning for ALS point clouds include the works
of Zhao et al. (2020), Zhao et al. (2018), Zhang et al. (2018), Soilán et al. (2019), and Politz et al.
(2018), among others.

ALS point clouds are usually used to create DTMs first and then DCNNs are trained on the
DTMs or other DTM derivatives. Torres et al. (2018) use DTMs to identify mountain summits
with deep learning. Lee (2019) exploit deep learning and DTM data for detection of craters on
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Mars. Marmanis et al. (2015) use DTMs and deep learning to filter points above the ground. Heo
et al. (2020) train a CNN model on DTM data to search for high solar energy regions. Another
example of deep learning application using DTMs is identification of river defences (Wood et al.,
2021). Researchers also derive other rasters from DTMs and then use them to train deep learning
models. Examples include classification of ancient Maya settlements with DCNNs trained on relief
visualization rasters (Somrak et al., 2020), automated mapping of cultural heritage in SLRM rasters
(Trier et al., 2021), mapping topographic features of mining related valley fills in slope rasters
(Maxwell et al., 2020b), mapping of industrial heritage using relief rasters such as SLRM, POS and
NEG rasters (Gallwey et al., 2019), among others.

3.4. Deep Learning in Archaeology

Traditional machine learning and computer vision tools and methods have been applied in
cultural heritage and archaeological research for many tasks. van der Maaten et al. (2006) use
content-based retrieval system for classification of historical glass and edge detection algorithms
for medieval coin classification. Meyer et al. (2019b) use Object Based Image Analysis (OBIA)
techniques on DTM data for automated detection of field monuments such as ridge and furrow
areas, burial mounds, and mote-and-bailey castles in Westphalia, Germany. Kersten and
Lindstaedt (2012) automatically reconstruct 3D models of cultural heritage objects and
archaeological structures from image data. Pavlidis et al. (2007) make use of 3D acquisition and
digitization techniques to document and display cultural heritage artworks. Such digitization can
also help in monitoring cultural heritage objects as small deformations and cracks can easily be
detected (Beraldin et al., 1999). Gomez-Lahoz and Gonzalez-Aguilera (2009) use the Computer
Aided Design (CAD) software to create 3D models of archaeological sites. Computer vision
photogrammetry techniques are applied for recording underwater archaeological sites in low
visibility environments (Van Damme, 2015). Yaman (2019) use multinomial logistic regression for
classification of arrowheads made of iron and bronze found in an excavation project in
Karamattepe, Turkey. Makridis and Daras (2013) automatically classify archaeological pottery
sherds using classical computer vision and image processing techniques such as Kirsch edge
detection (Kirsch, 1971), Local Binary Patterns (LBP) (Ojala et al., 1994), Bag of Words (BoW)
(Wallach, 2006), K-Nearest Neighbor (KNN) (Aha et al., 1991), and SVM (Chang and Lin, 2011).
Klassen et al. (2018) use a semi supervised approach with multiple linear regression and
graph-based models to predict the chronology of medieval archaeological sites in Angkor,
Cambodia. Orengo and Garcia-Molsosa (2019) automatically detect potsherds in high resolution
drone imagery using Random Forest (RF). Traviglia and Torsello (2017) detect patterns in
archaeological landscapes using remote sensing images and classical filtering method, Gabor filters
(Feichtinger and Strohmer, 2002), thresholding and and feature extraction algorithms.

Classical methods for archaeology explained previously require discriminative features to be
extracted based on informed decisions by an expert in the field. The extracted features are then
processed by automated machine learning algorithms for classification or detection of interesting
patterns. Selection and extraction of such features manually is an expensive task and costs a lot
of time and money specially with large volumes of data. Similar to their applications in the other
domains explained in previous sections, deep learning techniques are applicable to research fields
in archaeology and cultural heritage management as well. Researchers have leveraged DL
methods for detection and classification of archaeological objects in natural images, aerial and
satellite imagery, and laser scanning data, among others. Brenner et al. (2018) use CNNs to
automatically detect bomb craters in World War II aerial images. Bundzel et al. (2020) use DL
models to detect areas of ancient construction activity and find remnants of ancient Maya
building. The authors train UNet and Mask RCNN models on LiDAR data and report
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satisfactory detection rates, specially for objects of medium size. Trier et al. (2021) automatically
map cultural heritage sites in Norway training Fast RCNN on LiDAR data. They report
detection results for structures such as grave mounds, pitfall traps, and charcoal kilns. Other
examples of DL applications in archaeological research include the works of Soroush et al. (2020),
Lambers et al. (2019), Maxwell et al. (2020b), Maxwell et al. (2020a), and Gallwey et al. (2019),
among others.

In general, there is a lack of benchmark datasets for archaeological tasks. Researchers in this domain
create their own labeled datasets which are not made publicly available. These datasets are small in
comparison to datasets in other domains, e.g., natural images. Therefore, in an attempt to improve
the performance, transfer learning from other domains are used. For example Trier et al. (2019)
use models pretrained on ImageNet, and Verschoof-van der Vaart and Lambers (2019) use models
pretrained on PASCAL VOC (Everingham et al., 2015) to finetune them on their own archaeological
datasets, respectively. The goal of this research is to utilize the recent promising method, i.e., Self
Supervised Learning (SSL). SSL pretext uses unlabeled data for the same domain, i.e., DTM
data to pretrain deep learning models. The pretrained models are then finetuned for suprvised
downstream tasks on annotated datasets to detect archaeological monuments and historical terrain
structures.



4. Datasets

This chapter includes details of the datasets used in this research. Section 4.1 discusses the DTM
data collected from the Lower Saxony State in Germany. Section 4.2 describes archaeological
monuments and man-made terrain structures in the Harz including two multi-class datasets: one
with areal structures and one with linear structures, and one single-category dataset. Data
preprocessing for deep learning tasks are explained in Section 4.3

4.1. Digital Terrain Model and Relief Visualization Dataset

The focus of this thesis is automated detection of man-made terrain structures related to historical
mining and archaeology in the Harz mountains. The Harz mountains are located in Lower Saxony,
Germany with a maximum altitude of 1141 meters. The region is home to ore and mineral deposits
found and processed over thousands of years (Segers-Glocke et al., 2000; Bartels and Klappauf, 2012;
Malek, 2017). The ore found in this region was the main source for minting coins in the Middle Ages.
The historical town of Goslar, which was the residence for German kings and emperors in the 11th

century, is also located in this region. Water drainage and technical innovations in the 15th century
led to the possibility of smelting silver with the help of lead ores and added to the significance of
the region. Goslar, the ore mines of Rammelsberg, and Upper Harz Water Management Systems
that are listed as UNESCO World Heritage Sites are also located in this region.

Annotated datasets for a small region of the Harz mountains are available as detailed in the following
sections. However, unlabeled DTM data for the whole state of Lower Saxony is leveraged in the
pretext phase of SSL, i.e., the main methodology in this dissertation. The DTM data is created
from LiDAR using TIN (explained in Chapter 2) with linear interpolation. It has a resolution of 0.5
meters per pixel and encompasses a total area of 47 000 km2. The DTM contains elevation values
of up to 1000 meters and visualizing the whole region as such would just yield a grayscale image
mostly filled with dark color. For better visualization, the shaded relief for the DTM is illustrated
in Figure 4.1.

As explained in Chapter 2, various relief visualizations can be calculated from the DTMs which
normalize the pixel values within a fixed range and are transformed into a more visually
perceivable format. Examples of such relief rasters, as explained in Chapter 2, include Simple
Local Relief Model (SLRM), Local Dominance (LD), Sky View Factor (SVF), Positive
Openness (POS), Negative Openness (NEG) and slope among others. While the relief rasters are
originally created for visualization, analysis and presentation (in the form of maps) of structures
on the terrain, they are used in this thesis for pretraining deep learning models in the Self
Supervised Learning (SSL) pretext phase. The RVT software (Kokalj and Somrak, 2019) is used
to calculate the previously mentioned relief rasters for the unlabeled DTM data. Examples of
DTM regions and the corresponding relief rasters are visualized in Figures 2.3-2.15 in Chapter 2.

60
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Figure 4.1.: Hillshade relief visualization for DTM data from Lower Saxony.

4.2. Archaeological Monuments in the Harz

This section describes the archaeological monuments and man-made terrain structures studied in
this research. There are two datasets with objects of areal and linearly elongated shapes. The first
dataset includes bomb craters, charcoal kilns, burial mounds and mining holes. The second dataset
contains examples of ditches, paths, roads, and hollow ways. Another dataset with annotated
examples of stone quarries is also investigated. The stone quarries also have closed areal shapes,
but due to the huge difference in their sizes compared to the objects in the first dataset, they are
investigated separately. Annotations for all the datasets are created in ArcGIS by archaeologists
or with their guidance using the locations of already known monuments and structures. Details of
each dataset are given in the following sections. However, since some of structures studied in this
research may not be known to everyone, a brief explanation of some of them are given here.

– Charcoal kilns: Charcoal kilns are structures built for creating coal from wood which were
used as fuel for smelting ores and production of metals (Deforce et al., 2021). An example of
charcoal kiln is shown in Figure 4.2a.

– Bomb craters: bomb craters are a type of crater or structure formed by the bombs dropped
from air craft during World War II. An example of a bomb crater is shown in Figure 4.2b.
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– Burial mounds: Accumulated earth and and stones over a grave are called burial mounds.
An example of burial mound is shown in Figure 4.2c.

– Mining holes: Mining holes or sinkholes are a kind of depression on the terrain caused by
mining. An example of mining hole is shown in Figure 4.2d.

– Hollow ways: Hollow ways are ancient paths and tracks that are sunken due to humans
and animals walking on them over time, and they now exist in the form of linear depressions
on the terrain. An example of hollow ways is shown in Figure 4.2e.

– Ditches: Ditches are structures that were created to channel water for irrigation and water
supply management. An example of ditches is shown in Figure 4.2f.

– Stone quarries: Stone quarries are mining structures from which rocks and minerals are
extracted. An example of stone quarries is shown in Figure 4.2g.

(a) Example charcoal kiln. Taken from Figure 5 in
(Di Fazio et al., 2010)

(b) Example bomb crater. Taken from Figure 10 in
(Passmore et al., 2014)

(c) Examples of burial mounds. Taken from Figure 1 in
(Dayaratne, 2012)

(d) Example mining hole. Image by Katharina Malek,
NLD.

(e) 3D-rendering of a hollow way. Image credit: Georg
Drechsler and Katharina Malek, NLD.

(f) Example of a ditch from the Upper Harz Water
management System. Credit: Katharina Malek NLD

(g) Communion quarry near the mine of Rammelsberg,
Goslar (Credit: Torsten Schröpfer, NLD).

Figure 4.2.: Example images for the structures studied in this research.
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Figure 4.3.: Example annotations for the Harz Areal Dataset.

4.2.1. Areal Dataset

This dataset contains annotated examples of 4 kinds of areal structures including bomb craters,
charcoal kilns, burial mounds and mining holes. They have areal shapes, and some of them are
manually annotated as such. However, annotating the exact shape of all the instances is a
time-consuming task. Knowing the central pixel location of each instance, the ArcGIS software is
used to create circular polygons as annotations for some of the 4 structures. This results into
missing parts of each object instance in some cases and covering parts of the background pixels
with the object in other cases. Examples of annotations for these structures are shown in Figure
4.3. Statistics for the structures in this dataset are given in Table 4.1.



64 4. Datasets

No. examples Min. diameter Avg. diameter Max. diameter

Bomb Craters 617 1.3 m 7.4 m 38 m
Charcoal Kilns 2543 6.3 m 15.3 m 24.4 m
Burial Mounds 1410 4.5 m 14.8 m 37.7 m
Mining Holes 2986 1.2 m 8 m 63 m

Table 4.1.: Statistics for Harz Areal Dataset.

Figure 4.4.: Example annotations for the Harz Linear Dataset.

4.2.2. Linear Dataset

The second dataset in this research includes linearly elongated structures such as ditches, paths,
roads and hollow ways. They are initially annotated as line features in ArcGIS. To approximate
the actual width or each structure and also to be able to apply deep learning techniques (especially
semantic and instance segmentation), polygon features are calculated from the line features using
the ArcGIS Buffer operation. The buffer distance on each side of the line features are set based on
the type of the structure. For ditches, a buffer distance of 1 meter on each side is used, resulting in
polygon features of width 2 meters for each ditch. A buffer distance of 2 meters is used for paths
and hollow ways, resulting in polygon features of width 4 meters for these two structures. Finally
for the road features, different buffer distances are applied based on the type of each road. A
buffer distance of 4 meters is used for county roads. For state roads and federal roads, the applied
buffer distances are 6 and 8 meters, respectively. Example annotations for this dataset are shown
in Figure 4.4. Statistics for the structures in this dataset are given in Table 4.2.

No. segments Min. area Avg. area Total area Max. area

Ditches 837 17.57m2 2030m2 1.69 km2 0.63 km2

Paths 1183 44.80m2 4469m2 5.28 km2 0.06 km2

Roads 174 440.11m2 17 606m2 3.06 km2 0.02 km2

Hollow ways 756 28.41m2 54 479m2 1.39 km2 0.05 km2

Table 4.2.: Statistics for Harz Linear Dataset.
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Figure 4.5.: Example annotations for the Stone Quarries (SQ) Dataset.

4.2.3. Stone Quarries Dataset

The final dataset in this research includes annotations of only one kind of structure: historical
stone quarries. They are manually annotated as polygons of different sizes and shapes. Example
annotations for stone quarries are shown in Figure 4.5 and the statistics are given in Table 4.3. As
observed in the statistics shown in Tables 4.1 and 4.3, examples of stone quarries are very large
compared to the structures in the areal dataset explained in Section 4.2.1 previously. Therefore,
this dataset is used separately even though the stone quarries also have a closed shape and can in
principle be included in the areal dataset.

No. examples Min. area Avg. area Max. area

3082 20.9m2 6494m2 3 km2

Table 4.3.: Statistics for Stone Quarries Dataset.

4.3. Data Preparation for Deep Learning Models

This section describes the data processing steps to prepare training, validation and test sets for
deep learning experiments conducted in this research. Details of unlabeled data processing steps for
the SSL pretext task are given in Section 4.3.1. In the second phase of the SSL approach followed
in this research, three downstream tasks are carried out: classification, instance segmentation and
semantic segmentation, and the processing details are described in Sections 4.3.2, 4.3.3 and 4.3.4,
respectively.

4.3.1. Data Processing for Self Supervised Learning Pretext

Unlabeled DTM data for Lower Saxony is leveraged in the first phase in SSL, namely the pretext
phase. To create training data, 200 000 random DTM patches of size 224× 224 pixels are cropped
from the region. For each of the DTM patches, relief rasters such as LD, SLRM, slope, SVF, POS
and NEG, explained previously, are calculated using the RVT software (Kokalj and Somrak, 2019).
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Pixels in the relief rasters are calculated relative to neighboring pixels within a search radius of 64
pixels each for 16 directions. For more details regarding the search radius and direction parameters,
please refer to Section 2.3.4 or the user manual for RVT (Kokalj and Somrak, 2019). Illustrations
for four selected DTM patches with their corresponding relief rasters from the prepared dataset
are given in Table 4.4. Input DTM patches and the relief rasters are scaled locally to have pixels
in the range 0 and 1 using Equation 4.1

X =
X −MIN(X)

MAX(X)−MIN(X)
(4.1)

WhereX denotes a raster patch and MIN and MAX indicate the minimum and maximum operators.

DTM Patch 1 DTM Patch 2 DTM Patch 3 DTM Patch 4

In
pu

t
D
T
M

LD
SL

R
M

Sl
op

e
SV

F

Continued on next page



4.3. Data Preparation for Deep Learning Models 67

Table 4.4 – continued from previous page
DTM Patch 1 DTM Patch 2 DTM Patch 3 DTM Patch 4
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Table 4.4.: Four training examples for SSL pretext. First row shows DTM inputs, the remaining 6 rows
show relief rasters used as labels.

4.3.2. Data Processing for Classification

Classification models take input DTM patches and produce a probability for the input belonging
to a category from a predefined set of categories. To train a classifier with inputs of n×n pixels, an
n× n DTM patch centered at each annotated object is cropped from the region and assigned the
corresponding object’s label. For this experiment, classifiers with input sizes n ∈ {32,64,96,128,224}
are trained. An example DTM input for an instance of burial mounds is shown in Figure 4.6.

Figure 4.6.: Example input and label for classification with input size of 128× 128 pixels.

4.3.3. Data Processing for Instance Segmentation

Instance segmentation models predict bounding box coordinates, binary segmentation masks and
class labels for object instances in a given input DTM and therefore need training data prepared
as such. For this approach, random DTM patches are cropped for each object making sure the
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object is included in the patch, but not necessarily centered. Thus, multiple training examples can
be created for each object and this helps increase the size of training data. Example DTM input
and annotations for instance segmentation model is shown in Figure 4.7.

(a) DTM input. (b) Bounding box. (c) Segmentation mask.

Figure 4.7.: Training example for instance segmentation.

4.3.4. Data Processing for Semantic Segmentation

In semantic segmentation, the predicted output for every input is the pixel-wise class labels.
Similar to instance segmentation, training data for this approach is also created by random crops
of DTM around each object making sure the object is within the patch and not necessarily
centered. Example DTM input and annotations for semantic segmentation model is shown in
Figure 4.8.

(a) DTM input. (b) semantic segmentation label.

Figure 4.8.: Training example for semantic segmentation.

The same datasets are used for classification, instance segmentation and semantic segmentation.
The difference is in how the inputs and labels are prepared for each task as explained previously.



5. Methodology

This chapter discusses the deep learning technique technique, i.e., Self Supervised Learning (SSL),
used for recognition of archaeological terrain structures in DTMs created from LiDAR or ALS data.
SSL, as explained in Chapter 2, is composed of two steps. The first step is called the pretext, in
which unlabeled data are used to train deep learning models for representation learning and feature
embedding extraction. The learned and extracted feature embeddings are close to each other in
the embedding space for similar inputs. The knowledge from the pretext step is then transferred
to the second step called the downstream. In the downstream tasks, models are initialized with
the pretrained weights from the pretext step and then finetuned on annotated datasets for different
supervised tasks, i.e., classification, object detection and semantic segmentation. In the pretext
phase in this research, models are trained on unlabeled DTM data (and automatically calculated
relief rasters are used as implicit supervision signals) to generate relief visualization rasters. The
pretrained models are then customized for supervised downstream tasks to detect archaeological
monuments. The DTM patches alone can be used for the pretext with random rotations or cropping
applied to each DTM patch as the supervision signal. However, the relief rasters are used as the
supervision signals in this task since they are shown to be effective in training deep learning models
(Kazimi et al., 2019a). The goal is to train deep learning models that learn generating such
rasters from DTMs and by doing so help improve detection performance in supervised downstream
tasks. Section 5.1 describes the SSL pretext approaches exploited in this research and Section 5.2
gives details of the supervised downstream tasks for detection of archaeological monuments and
man-made terrain structures. The general pipeline for the SSL technique used in this research is
shown in Figure 5.1

Figure 5.1.: Training pipeline in Self Supervised Learning.
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5.1. Pretext Methods

DTM data represent the elevation of points on a terrain with respect to a reference height using
continuous values. The values can range from 0 (in some cases it could be negative as well) and go
up to thousands or more depending on the region. This is different to natural images which have a
fixed gray-scale range, e.g., 0 to 255. There are methods to convert raw DTM data into other raster
formats, referred to as relief visualizations, each of which has a certain fixed range of values and
are suitable for interpreting different structures. Among them are LD, SLRM, slope, SVF, POS,
and NEG, as explained in Chapter 2. While such relief visualization rasters are mathematically
calculated from the DTM, in this research, deep learning models are trained in the SSL pretext
phase to automatically generate them given an input DTM. Two different methods are explored
as the pretext tasks in this research. The first method follows an encoder-decoder approach to
generate the corresponding relief visualization rasters for a DTM patch. Hence, it is termed as
the Relief Visualization Network (RVNet). The encoder-decoder model learns to map input DTM
patches to their corresponding relief rasters. Since the goal is to use the pretrained encoder-decoder
model to improve detection performance in supervised downstream tasks, it is desired that the
model does not learn the mapping (from input DTM patches to relief rasters) perfectly. It should
only approximately generate outputs that resemble the original relief rasters. Thus, the model is
forced to learn important properties of the data (Goodfellow et al., 2016). This constraint can
be introduced by adding random noise to the input DTM patches or incorporating noise to the
model architecture, e.g., in the form of dropout layers (Isola et al., 2017). A well-known family of
architectures for this is Generative Adversarial Networks (GANs). Therefore, the second pretext
method in this research is based on GANs and used for the same purpose, i.e., generating relief
visualizations. It is therefore termed as the Relief Visualization GAN (RVGan). Both methods
use the unlabeled DTM data and the automatically calculated relief visualization rasters explained
in Chapter 4 for training. Detailed explanations of the two approaches are given in the following
sections.

5.1.1. Relief Visualization Network (RVNet)

Figure 5.2.: Relief Visualization Net (RVNet)

As shown in Figure 5.1, the pretext phase is composed of a main CNN module and a task specific
module. The downstream phase uses its own task specific module which is different to that of the
pretext, but it uses the same architecture in the main CNN module as in the pretext phase making
the knowledge transfer possible. Many different deep learning architectures can be used in the
pretext phase, as long its main CNN module is compatible to be incorporated in the downstream
phase. In this section, the well-known HRNet model (Sun et al., 2019; Wang et al., 2020) is selected.
This choice is made based on HRNet’s performance in the supervised classification task compared
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to another well-known deep learning architecture (He et al., 2016). It is also compared to ResNet as
the backbone in Mask RCNN for instance segmentation. Finally, HRNet for semantic segmentation
is compared to DeepLabV3+ (Chen et al., 2018) with the ResNet backbone. In general, HRNet
performs better (as reported in the following sections) and hence it is selected as the main model in
this research. The last layer in the pretext phase is composed of convolutional layers that output
a feature map with 6 channels each representing LD, SLRM, slope, SVF, POS and NEG rasters,
respectively. Thus, the first SSL method is called the Relief Visualization Network (RVNet) and
illustrated in Figure 5.2.

5.1.2. Relief Visualization GAN (RVGan)

The second pretext method in this research is based on conditional GANs, specifically the
Pix2Pix model (Isola et al., 2017). A generator model is trained to take input DTMs and produce
the corresponding relief visualization rasters. A discriminator model is simultaneously trained to
take input DTMs and the corresponding relief rasters, either the already calculated ones or those
produced by the generator, and its task is to tell them apart. The architecture for this approach,
called Relief Visualization GAN (RVGan) is illustrated in Figure 5.3. While the discriminator
model is similar to that of the Pix2Pix (Isola et al., 2017), the generator model is selected to be
HRNet (Sun et al., 2019; Wang et al., 2020) similar to the RVNet model.

Figure 5.3.: Relief Visualization GAN (RVGan)

5.2. Downstream Methods

The second phase in SSL is called downstream. In this phase, the lower main CNN module as
shown in Figure 5.1 is initialized with the learned weights of the main CNN module from the
pretext phase and the task specific module is customized to supervised tasks and finetuned on
annotated datasets. Three different tasks are explored in this phase for detection of archaeological
monuments and man-made terrain structures in the Harz region. These are classification, instance
segmentation and semantic segmentation explained in the following sections.
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5.2.1. Classification of Archaeological Monuments and Terrain Structures

Classification is the task of assigning a label from a list of predefined categories to a given input. The
classification models in this research are trained to take input DTMs and predict the probability
of archaeological monuments and terrain structures in the given input region. The pipeline for
classification of archaeological structures including Charcoal Kilns (CK), Burial Mounds (BM),
and Mining Holes (MH) and man-made structures such as Bomb Craters (BC) in addition to
Background class (BG) is shown in Figure 5.4.

Figure 5.4.: Pipeline for classification of archaeological monuments and man-made terrain structures. The
input is a DTM patch. The label is an integer indicating which type of object it contains.

The main CNN module in the pipeline for classification is the HRNet model which is also used in
the SSL pretext methods (RVNet and RVGan). The pipeline can be trained with random weight
initialization, but to take advantage of the SSL pretraining, the main CNN module can be initialized
with the pretrained parameters of RVNet or RVGan in order to train faster and produce better
results. As explained previously the ResNet (He et al., 2016) model is also trained for classification
on the same dataset and compared to the HRNet.

Figure 5.5.: Pipeline for inference. clfh denotes trained classifier with input size h× h
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Objects may appear at different sizes and scales. In order to account for these variations, classifiers
with different input sizes are trained. Additionally, in order to make use of the trained classifiers,
inspired by the works of Palafox et al. (2017), they are used together to make predictions on large
regions following the methodology shown in Figure 5.5 and Equation 5.1.

HMn =

C∑
c=i

HMc,n for n = 1,2,...,N (5.1)

Where HMc,n denotes the predicted heatmap for class n by classifier c using Algorithm 1, N and
C denote the number of classes and number of classifiers (each trained with different input sizes
previously mentioned), respectively, and the final heatmaps by the classifiers are summed for each
class and optionally masked for values greater than a desired threshold. The final heatmap for each
class represent the presence or absence of the corresponding class in the DTM.

Algorithm 1 The procedure for generating heatmaps using a classification model

Require:
classifierH×W : classifier model trained with input size H ×W
DTMinput: Input DTM of size P ×Q
N : Number of classes the the classifier model is trained to detect.
s: Stride size for the sliding window approach.

1: procedure GetHeatmaps(classifierH×W , DTMinput, N , s)
2: HM← Zeros(N × P ×Q) . a matrix of zeros of shape (N × P ×Q)
3: for each item i in range(0, P −H, step = s) do
4: for each item j in range(0, Q−W , step = s) do
5: currentPatch← DTMinput[i : i+H,j : j +W ]
6: n← classifierH×W (currentPatch) . Class label predicted for the current patch
7: HM[n,i : i+H,j : j +W ] += ones(H ×W )
8: end for
9: end for

10: return HM . a heat map of size P x Q for each class
11: end procedure

5.2.2. Instance Segmentation of Archaeological Monuments and Terrain Structures

The classification approach explained in the previous section produces heatmaps with a rough
indication of regions containing structures of interest. They are also very slow at inference scanning
large DTM regions cropping DTM patches to make predictions. The cropping of DTM patches
need to be overlapping for a reasonable heatmap at the end. To alleviate such issues and make
faster predictions, instance segmentation approaches are studied on the same dataset and for the
same task, i.e., automated detection of archaeological monuments and man-made structures in
DTMs. Instance segmentation models produce class labels, bounding box coordinates and binary
segmentation masks for every instance of objects in a given input DTM as shown in Figure 5.6.
Thus, while scanning a large region using the instance segmentation models, it is not necessary
to crop overlapping patches as the instances of objects in each patch are detected individually.
This leads to fast prediction for larger regions. For instance segmentation, the well-known Mask
RCNN (He et al., 2017) framework is used. It is first trained using ResNet as the feature extractor
backbone as in the original version. Then, the ResNet backbone is replaced with HRNet and the
model is trained on the same dataset. Similar to the classification approach, the main CNN module
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in instance segmentation framework (with HRNet backbone) is also initialized with the pretrained
weights from RVNet or RVGan and finetuned on the same dataset.

Figure 5.6.: Pipeline for instance segmentation of archaeological monuments and man-made terrain
structures. The main CNN module can be initialized with random weights or pretrained weights from
the main CNN modules in the SSL pretext, i.e., RVNet and RVGan’s generator.

5.2.3. Semantic Segmentation of Archaeological Monuments and Terrain Structures

Instance segmentation models work well when objects in the input have an areal structure and covers
big blobs of the input region. For linearly elongated thin structures or small objects not covering
many pixels, the predictions are not as desired. With these considerations, another approach called
semantic segmentation is studied. Semantic segmentation refers to pixel-wise labeling of inputs to
a predefined set of categories. The predictions are given for every pixel regardless of the shape or
size of objects. The pipeline for semantic segmentation is illustrated in Figure 5.7. It is the HRNet
architecture as used in the RVNet and RVGan models in the pretext phase. Its main CNN module
is also initialized with random weights or the pretrained weights from the main CNN module in
RVNet and RVGan’s generator. Additionally, as explained previously, the DeepLabV3+ (Chen
et al., 2018) model with the ResNet backbone is also trained for semantic segmentation on the
same data.

Figure 5.7.: Pipeline for semantic segmentation of archaeological monuments and man-made terrain
structures. Similarly, the main CNN module can be initialized with random weights or pretrained weights
from the main CNN modules in the SSL pretext, i.e., RVNet and RVGan’s generator.



6. Experiments and Results

This chapter describes the experiments and evaluation results for this research. Section 6.1
contains conducted experiments for the SSL pretext with unlabeled DTM data. Sections 6.2-6.4
give details of quantitative evaluations for supervised downstream tasks including classification,
instance segmentation and semantic segmentation. An overview of experiments with each method
and each dataset is given in Talbe 6.1. Section 6.5 includes comparisons for predictions by deep
learning models and manual annotations by three different people evaluated against the initial
ground truth annotations. Section 6.6 compares the three supervised approaches qualitatively
and a summary of experiments and results is given in Section 6.7.

Model Backbone Weights Input Output Task category Dataset Section

RVNet HRNet - DTMs relief rasters Pretext DTMs &
relief rasters 6.1

RVGan HRNet - DTMs relief rasters Pretext DTMs &
relief rasters 6.1

HRNet -
- /
RVNet /
RVGan

DTMs Class labels Classification Areal 6.2

ResNet - - DTMs Class labels Classification Areal 6.2

Mask RCNN ResNet - DTMs
Class labels &
Coordinates &
Masks

Instance
segmentation

Areal /
Linear 6.3

Mask RCNN HRNet
- /
RVNet /
RVGan

DTMs
Class labels &
Coordinates &
Masks

Instance
segmentation

Areal /
Linear 6.3

HRNet -
- /
RVNet /
RVGan

DTMs Segmentation
maps

Semantic
segmentation

Areal /
Linear /
Stone quarries

6.4

DeepLabV3+ ResNet - DTMs Segmentation
maps

Semantic
segmentation

Areal /
Linear /
Stone quarries

6.4

HRNet - -

DTM /
LD /
SLRM /
SVF /
Slope /
POS /
NEG /
Combined

Segmentation
maps

Semantic
segmentation Areal 6.4

Table 6.1.: Overview of methods and datasets used in the experiments linked to the corresponding sections.

6.1. Self Supervised Learning Pretext Experiments

In the pretext phase, 200 000 DTM patches of size 224× 224 pixels are randomly cropped from the
DTM for Lower Saxony and the corresponding relief visualization rasters, namely LD, SLRM, slope,
SVF, POS and NEG are calculated. Both SSL pretext methods: RVNet and RVGan are trained to
learn producing the said relief visualization rasters from the DTM patches. The experiments are
done in Python and the Keras (Chollet et al., 2015) deep learning framework. Both approaches
are trained for 50 epochs with a batch size of 20 examples using the Adam (Kingma and Ba, 2015)
optimization algorithm. 80% (160 000) of the examples are used for training, 10% (20 000) for
validation and 10% (20 000) for testing. RVNet is trained using the Binary Cross Entropy (BCE)
function shown in Equation 6.1.
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BCE = −
H∑
i=1

W∑
j=1

yij log(ŷij) + (1− yij)log(1− (ŷij)) (6.1)

Where H and W denote the height and width of the output rasters. ŷ and y denote the predicted
and original relief rasters, respectively.

RVGan is trained using the GAN objective function shown in Equation 2.36. Both methods are
evaluated based on how close their predicted relief rasters are to the original relief rasters. This is
quantified by the Mean Absolute Error (MAE) score explained in Section 2 and shown in Equation
2.15.

Model BCE MAE

RVNet 0.493 0.017
RVGan 0.496 0.027

Table 6.2.: Test results for RVGan and RVNet on the test set. Better results are in bold.

(a) MAE by RVNet for training and validation. (b) MAE comparison for RVNet and RVGan.

Figure 6.1.: MAE plots for RVNet and RVGan.

The Mean Absolute Error (MAE) plot during training for the RVNet approach and the validation
MAE for both RVNet and RVGan are shown in Figure 6.1. The BCE loss and MAE scores on the
test set are listed in Table 6.2. BCE is the loss function the models try to minimize, hence the
lower BCE indicates the better performance. MAE, as explained previously, shows how close the
predicted pixels by the models are to the original relief rasters. The best possible value for both
BCE and MAE is 0 and is achieved only if the predicted and original relief rasters are completely
identical. Since the range of values for predictions and the original relief rasters is from 0 to 1, the
best MAE score, i.e., 0 is achieved if the original relief rasters and the predicted rasters have all
zeros or all ones in every pixel. The worst MAE score is 1 and is achieved if the original rasters
have all ones and the predictions have all zeros in every pixel or vice versa. For BCE, the best
possible score is 0 and the worst possible score is 15.43. Moreover, in addition to minimizing the
objective function to get the lowest possible BCE and MAE score in reconstructing relief rasters,
the generator in RVGan is trained to fool the discriminator by generating realistic examples. In
the beginning of the training, the outputs of both generator and discriminator are random, hence
the the generated relief rasters are random noise and the accuracy of discriminator is around 50%.
As the training progresses, the discriminator learns to tell apart original relief rasters from those
produced by the generator, thus scoring a high accuracy. Then, the generator learns to generate
realistic examples and fool the discriminator bringing its accuracy down. The validation accuracy
plot for the discriminator, depicting this phenomenon, is shown in Figure 6.2. After 20 epochs,
the generated relief rasters are realistic enough that the discriminator thinks they come from the
original data distribution.
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Figure 6.2.: Validation accuracy plot for the discriminator model.

Ground Truth RVNet RVGan
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Table 6.3 – continued from previous page
Ground Truth RVNet RVGan

P
O
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Table 6.3.: Examples of relief visualization rasters by RVNet and RVGan

Examples of relief rasters generated by the RVNet and RVGan are illustrated in Table 6.3. As
expected, the encoder-decoder approach (RVNet) learns the mapping from DTM patches to the
relief rasters better than the GAN-based approach (RVGan). For example the POS and NEG
rasters produced by the generator look like random noise. It is also consistent with the lower
(better) BCE and MAE scores by RVNet shown in Table 6.2. This is by design, as explained in
Chapter 5, since the ultimate goal is not generating perfect relief visualizations, but learning useful
properties of the data that can help with the performance in supervised downstream tasks. The
impact of RVGan is thus more significant in detection scores by the downstream tasks as discussed
in the following sections.

Further examples of relief rasters by RVNet and RVGan are additionally shown in Appendix A.

6.2. Classification

For the classification task, 5 models are trained with inputs of height and width 32, 64, 96, 128
and 224 pixels separately. They are trained on the areal dataset to classify an input DTM into
5 categories including background (BG), bomb craters (BC), charcoal kilns (CK), burial mounds
(BM) and mining holes (MH). The dataset is created from three separate regions for training,
validation and testing. Number of examples for each category in each set is listed in Table 6.4.
Similar to the pretext phase, experiments are conducted using Python and Keras (Chollet et al.,
2015). The training is carried out for 50 epochs with batches of 20 examples, minimizing cross
entropy using the Adam (Kingma and Ba, 2015) optimization algorithm. The objective function
for training the classifiers is the categorical cross entropy function shown in Equation 2.16. Table
6.5 shows quantitative evaluation results on the test set using different input sizes for the HRNet
and the ResNet models used as the classifiers. The best scores are achieved by the HRNet model
with input dimensions of 64 pixels. The maximum diameter for an object in the dataset is 38
meters as shown in Table 4.1. For the DTM with a resolution of half a meter per pixel, 64 pixels
would contain all the objects with a smaller diameter than 32 meters. Thus, it is expected for the
model with input size of 64× 64 to give the highest F1-score compared to the others.
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Bomb craters Charcoal kilns Burial Mounds Mining holes Background

Training 314 1560 833 1741 3351
Validation 169 479 357 481 -
Testing 134 504 220 764

Table 6.4.: Number of examples for each category in the regions for training, validation and testing. For training
the classifiers, random patches with none of the 4 categories are also created to help the models learn when an input
does not contain any of the objects/structures.

Model Input Dim. F1-score Precision Recall

HRNet 32 85.13 85.28 84.97
ResNet 32 76.13 76.74 75.53

HRNet 64 87.49 87.51 87.47
ResNet 64 80.40 81.99 78.88

HRNet 96 85.40 85.47 85.32
ResNet 96 73.13 73.86 72.41

HRNet 128 83.30 83.38 83.22
ResNet 128 73.47 73.97 72.97

HRNet 224 80.38 80.93 79.84
ResNet 224 80.06 80.82 79.32

Table 6.5.: Evaluation results on the test set for HRNet and ResNet with random weights initialization on Harz
areal dataset using different input dimensions.

The HRNet model, as illustrated in Figure 5.4, is first trained with random weights. Additionally,
the main CNN module in the architecture is initialized with the pretrained weights from RVNet
and RVGan model and trained on the same dataset. The F1-scores for the classifiers with random
weights, pretrained weights from RVNet and pretrained weights from RVGan are shown in Table
6.6. For smaller input sizes, the SSL pretraining does not help improve performance scores, but
as the input sizes grow, the performance scores for HRNet using pretrained weights of RVNet and
RVGan grow, and are higher than HRNet with random weight initialization. This is intuitive as
the SSL pretraining is done with higher input sizes, i.e., 224× 224 pixels.

Pretrained weights 32 64 96 128 224

HRNet - 85.13 87.49 85.40 83.30 80.38
HRNet RVNet 81.62 84.85 76.76 82.00 88.23
HRNet RVGan 83.63 84.72 84.38 81.75 86.39

Table 6.6.: Effect of SSL pretext on performance of HRNet with different input dimensions. Values denote F1
scores on the areal data test set. Better scores by different models are in bold and the highest score overall is shown
in blue.

The accuracy plots for training the models with different input sizes are shown in Figure 6.3. It is
observed that using pretrained weights from the SSL pretext methods, i.e., RVNet and RVGan help
the models converge faster compared to using randomly initialized weights. The lowest accuracy
scores are gained by ResNet with each input size, and the performance of HRNet with random
weight initializations reach those initialized with the weights from the SSL pretext methods only
after approximately 20 epochs.

To further evaluate the performance of training from scratch with random weights and fine-tuning
with pretrained weights from the SSL pretext method, i.e., RVGan, for input sizes of 64, 32 and 224
are shown in Tables 6.7-6.9. Confusion matrices for ResNet and HRNet with pretrained weights
from RVNet, and input sizes of 96 and 128 are included in Appendix A. In general, the model
trained from scratch is better at predicting bomb craters (BC) while for the rest of the objects,
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(a) Input size: 32× 32 (b) Input size: 64× 64

(c) Input size: 96× 96 (d) Input size: 128× 128

(e) Input size: 224× 224

Figure 6.3.: Accuracy plots for classification models with different input sizes.

it alternates depending the size of the input DTM patches. Bomb craters are very similar to
mining holes and therefore, they are interchangeably mislabeled by the models. Due to the high
number of examples for mining holes (1741) and smaller number of examples for bomb craters
(314) during training, the models make more false predictions for bomb craters than mining holes.
Burial mounds and charcoal kilns have more distinct structures and are therefore not mislabeled
as much. 5 different models trained with different input sizes are then used by the pipeline shown
in Figure 5.5 and Algorithm 1 to scan a large region and produce heatmaps for each object class.
Results of the qualitative evaluation are shown in Section 6.6.
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BG 94.93 0.67 0.40 1.73 2.27
BC 31.51 41.10 2.28 0.46 24.20
CK 2.04 0.00 89.22 0.00 8.51
BM 7.44 0.00 0.41 90.50 1.03
MH 4.87 5.23 0.54 0.90 88.10

(a) Random weights
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l

BG 94.27 0.53 1.07 1.33 2.80
BC 32.42 36.99 2.28 1.37 26.48
CK 2.38 0.00 79.00 0.11 18.27
BM 8.26 0.21 0.41 89.26 1.24
MH 3.16 4.69 1.44 1.26 89.09

(b) RVGan weights

Table 6.7.: Confusion matrix for the HRNet with input dimensions of 64 and different weight initializations. Values
are in percent.
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Predicted
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BG 90.00 0.53 1.73 2.40 5.33
BC 20.09 47.03 1.83 0.00 30.59
CK 7.60 0.11 83.54 0.23 8.29
BM 8.47 0.21 1.45 88.84 0.41
MH 4.15 5.68 1.26 0.81 87.74

(a) Random weights
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l

BG 91.20 0.53 1.20 2.93 4.13
BC 29.22 44.29 3.65 0.46 21.92
CK 7.60 0.00 78.66 0.45 13.05
BM 7.64 0.21 0.21 91.12 0.21
MH 6.67 6.04 0.99 0.81 85.12

(b) RVGan weights

Table 6.8.: Confusion matrix for the HRNet with input dimensions of 32 and different weight initializations. Values
are in percent.
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BG 80.40 1.33 5.07 5.33 7.87
BC 12.79 52.97 6.39 0.91 26.48
CK 9.53 0.68 59.82 1.48 28.26
BM 10.12 0.21 1.45 85.54 2.07
MH 4.24 8.48 2.16 0.63 84.13

(a) Random weights

Predicted
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BG 98.40 0.13 0.00 0.40 1.07
BC 55.71 16.89 0.46 0.00 26.48
CK 6.47 0.00 87.85 0.11 5.33
BM 8.68 0.21 0.21 89.67 0.62
MH 4.87 5.59 0.27 0.09 88.82

(b) RVGan weights

Table 6.9.: Confusion matrix for the HRNet with input dimensions of 224 and different weight initializations. Values
are in percent..

6.3. Instance Segmentation

This section contains quantitative results for experiments with the instance segmentation approach
on two different datasets. Section 6.3.1 lists the results for instance segmentation using the areal
dataset, i.e., the same dataset used in the classification experiments as well and described in Section
4.2.1. Section 6.3.2 contains results for a dataset of linear structures as explained in Section 4.2.2.
On both the datasets, the instance segmentation architecture, Mask RCNN, shown in Figure 5.6
is first trained with random weights using both HRNet and ResNet as the backbone. Additionally,
it is trained after initializing the main CNN module of the architecture with pretrained weights
from the pretext, namely, the RVNet and RVGan weights. While the rest of the parameters during
training are specific to each dataset, the general objective function for instance segmentation is
composed of three functions for the three branches, i.e., classification, bounding box regression and
segmentation branches. It is defined by Equation 6.2.

L = Lcls + Lbox + Lmask (6.2)

Where Lcls and Lmask are the cross entropy function shown in Equation 2.16, and Lbox is the
smooth L1 loss shown in Equation 6.3 below.

Lboxα=1 =

{
|y − ŷ| : |y − ŷ| > α
1
α(y − ŷ)

2 : |y − ŷ| ≤ α
(6.3)

6.3.1. Areal Dataset

The areal dataset explained in Section 4.2.1 and used in the classification experiment is used to
train instance segmentation models as well. The same tools (Python and Keras) and the same
training, validation and testing regions are used for this approach as well. The input DTMs are
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prepared with dimensions of 256 × 256 each and the batch size is set to 4 examples. The data
contains examples of 4 classes including bomb craters (BC), charcoal kilns (CK), burial mounds
(BM) and mining holes (MH). The Mean Average Precision (MAP) scores on the test data achieved
by Mask RCNN with the ResNet and HRNet backbones (trained with random weights), and with
the HRNet backbone finetuned with pretrained weights from the RVNet and RVGan are shown in
Table 6.10. As observed in the table, Mask RCNN with HRNet backbone outperforms the same
with ResNet backbone. Additionally, finetuning with the pretrained weights of RVNet and RVGan
both achieve higher MAP scores compared to random weight initialization proving the positive
impact of SSL pretraining with unlabeled data.

Backbone Pretrained weights MAP

HRNet - 53.25
ResNet - 46.15
HRNet RVNet 58.38
HRNet RVGan 58.29

Table 6.10.: Effect of SSL pretraining on Mask RCNN on Areal Dataset. Values range from 0 to 100 and higher
values are better. The best score is shown in bold.

Training and validation loss plots for the Mask RCNN model with different backbones are shown in
Figure 6.4. The models with the HRNet backbones converge faster and the validation loss for the
model with pretrained weights from RVGan are more consistent and smaller (better). The smallest
validations are achieved after the 5th or 6th epochs after which the models overfit, i.e., training loss
decreases but the validation loss increases.

(a) Training loss (b) Validation loss

Figure 6.4.: Training and validation loss for instance segmentation with Mask RCNN on the areal dataset.

The trained models are used to make predictions on examples from the test set and the outputs
are converted (from raster) to polygons and saved as vector files (i.e., shape files) that can be
processed and visualized in ArcGIS. The predictions and ground truth are given as inputs to the
Spatial Join tool in ArcGIS which joins features based on their spatial relationships. It can be
used to determine the intersecting and non-intersecting polygons. Based on the outputs of the
Spatial Join tool, the confusion matrices for predictions by each model are computed. Table 6.11
shows the confusion matrices for the number of predicted instances that intersect with the ground
truth. It includes any prediction that intersects the ground truth. The percentage of intersection
area between the predictions and the ground truth are listed in Table 6.12. In both tables OP
indicates the percentage of over-predictions, i.e., predictions by the models that do not exist in
the ground truth. NC stands for Not Captured, i.e., percentage of example objects that exist in
the ground truth, but were not labeled by the models. OP and NC are explained visually in
Figure 6.5. In general, the Mask RCNN model with the HRNet backbone outperforms that with
the ResNet backbone. Additionally, the SSL pretraining has a positive impact on the performance
as indicated by the results of Mask RCNN initialized with RVNet and RVGan weights. Examples
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of bomb crater are mostly confused with mining holes. This is because the two structures look
quite similar. The models tend to label more examples of bomb craters as mining holes than the
other way around because of the imbalance in the data, i.e., the number of annotated mining
holes (1741) outweighs that of bomb craters (314) during training. Examples of burial mounds
and mining holes are confused with charcoal kilns. Charcoal kiln structures are eroded over time
showing burial mound-like structures around the perimeters and mining hole-like structures in the
middle part contributing to the confusion by the models. Qualitative evaluation results are shown
in Section 6.6.

Figure 6.5.: Example illustration showing the intersection (∩) between predictions (PRED) and ground truth (GT)
examples, ground truth examples not captured by the model (NC), and over-predictions (OP), i.e., predictions by
the model that do not intersect any ground truth example.
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BC 58.21 5.97 0.00 15.67 20.15
CK 0.00 90.48 0.40 7.14 1.98
BM 0.91 8.64 90.45 0.00 0.00
MH 2.88 24.21 6.41 62.17 4.32
OP 43.02 75.07 81.95 90.88

(a) HRNet backbone and random weights
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BC 48.51 22.39 0.00 11.94 17.16
CK 0.00 89.29 0.00 9.92 0.79
BM 0.91 25.00 72.73 0.45 0.91
MH 1.70 54.45 1.18 36.91 5.76
OP 53.49 82.50 56.89 96.10

(b) ResNet backbone and random weights
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BC 63.43 4.48 0.00 17.16 14.93
CK 0.00 95.04 0.00 4.17 0.79
BM 0.91 17.73 80.91 0.00 0.45
MH 4.32 22.64 1.70 66.36 4.97
OP 46.90 81.59 70.39 90.70

(c) HRNet backbone and RVNet weights
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BC 66.42 2.99 0.75 14.93 14.93
CK 0.00 96.03 0.00 2.98 0.99
BM 0.45 8.64 90.91 0.00 0.00
MH 3.80 8.25 0.39 82.20 5.37
OP 61.86 87.10 69.14 87.13

(d) HRNet backbone and RVGan weights

Table 6.11.: Confusion matrix for Mask RCNN results on the areal data test set with different backbones and
weight initializations. Values show percentage for number of predicted instances that intersect those of the ground
truth. NC denotes percentage for number of ground truth examples not captured by the models. OP stands for
over-prediction, i.e., percentage of predicted instances by the models that do not intersect any ground truth.
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BC 70.44 9.46 0 22.58 1.50
CK 0 75.53 1.08 14.42 2.40
BM 0.14 5.16 98.62 0 0
MH 4.47 15.81 5.09 85.20 2.75
OP 21.80 63.32 65.31 71.26

(a) HRNet backbone and random weights
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BC 52.6 70.27 0 74.89 0.79
CK 0 74.56 0 15.12 1.10
BM 0.08 19.78 96.06 0.45 0.23
MH 3.01 43.34 0.85 75.83 2.85
OP 32.32 70.23 36.4 77.3

(b) ResNet backbone and random weights
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BC 77.08 3.08 0 84.05 0.67
CK 0 72.01 0 9.57 0.86
BM 0.19 11.63 94.22 0 0.21
MH 5.94 15.11 1.1 86.64 2.48
OP 26.57 73.37 54.18 70.48

(c) HRNet backbone and and RVNet weights
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BC 83.59 1.99 1.77 77.58 0.63
CK 0 76.42 0 5.21 1.35
BM 0.09 6.76 95.82 0 0
MH 7.04 4.96 0.52 84.99 2.55
OP 31.57 79.52 49.15 69.10

(d) HRNet backbone and RVGan weights

Table 6.12.: Percentages for the intersection area of predicted instances in the areal data test set by Mask RCNN
and the ground truth. NC denotes percentage for the the area of ground truth examples not captured by the models.
OP stands for over-prediction, i.e., percentage for the area of predicted instances by the models that do not intersect
any ground truth.
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6.3.2. Linear Dataset

The second dataset used by the instance segmentation method, i.e., Mask RCNN, is the linear
dataset explained in Section 4.2.2. It contains linear structures including ditches, paths, roads and
hollow ways. Similar to the areal dataset, the training, validation and testing set for this dataset
have also been prepared from three separate non-overlapping regions. The number of examples and
the area for each category are listed in Table 6.13.

Ditches Paths Roads Hollow ways
Examples Area Examples Area Examples Area Examples Area

Training 364 0.73 km2 668 2.94 km2 82 1.96 km2 366 0.83 km2

Validation 35 0.21 km2 135 0.96 km2 5 0.68 km2 59 0.31 km2

Test 40 0.23 km2 102 0.90 km2 4 0.22 km2 23 0.20 km2

Table 6.13.: Number of examples and total area for each category in the regions for training, validation and testing
in the linear dataset.

Input DTM patches with sizes of 128 × 128 pixels and a batch size of 8 are used to train the
instance segmentation segmentation models with random weights and also with the pretrained
weights from the SSL pretext. The MAP scores for the model with the ResNet backbone, and the
HRNet backbones with random weights, RVNet weights and RVGan weights on the test set for
this data are listed in Table 6.14. As observed, SSL pretraining leads to better scores on this data
as well. Similar to the experiments with the areal dataset, the Spatial Join tool in ArcGIS is used
to create confusion matrices and also the percentages for the intersection area of predictions by
the deep learning models and the ground truth. The confusion matrices are shown in Table 6.15
and the corresponding percentages of intersection area for predictions and the ground truth are
listed in Table 6.16. Examples of ditches, roads and hollow ways are mostly confused with those of
paths and the majority of path instances are falsely categorized as roads, as shown in Table 6.11.
However, the correctly classified examples have the highest intersection with the ground truths for
all the categories as shown in Table 6.12. Qualitative results are shown in Section 6.6.

Backbone Pretrained weights MAP

HRNet - 48.77
ResNet - 49.45
HRNet RVNet 50.73
HRNet RVGan 54.95

Table 6.14.: Effect of SSL pretraining on Mask RCNN on Linear Dataset. Values range from 0 to 100 and higher
values are better. The best score is shown in bold.

The training and validation loss plots are shown in Figure 6.6. Consistent with the the preivous
experiments and the MAP scores on the test set shown in Table 6.14, the Mask RCNN model
using the pretrained weights from the RVGan model in the pretext converges faster and shows the
smallest loss values in the training and validation sets. Optimal number of training epochs before
the models start overfitting are 14 or 15 epochs.
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Figure 6.6.: Training and validation loss for instance segmentation with Mask RCNN on the linear dataset.
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Ditch 45.13 17.65 13.39 7.39 16.43
Path 7.43 60.56 16.07 5.36 10.58
Road 34.13 49.52 11.28 5.07 0.00
H-way 21.79 31.53 13.27 17.44 15.97
OP 11.39 4.50 14.38 18.38

(a) HRNet backbone and random weights
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Ditch 40.26 13.83 21.04 10.17 14.70
Path 3.89 53.39 19.44 7.47 15.81
Road 20.51 51.58 22.38 5.53 0.00
H-way 20.23 40.87 15.15 12.78 10.97
OP 15.15 8.12 4.81 24.70

(b) ResNet backbone and random weights
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Ditch 37.91 29.65 13.30 10.35 8.78
Path 5.27 60.04 12.18 14.08 8.42
Road 28.78 56.14 3.84 11.24 0.00
H-way 19.00 37.18 6.72 27.76 9.34
OP 12.72 8.50 17.56 20.71

(c) HRNet backbone and RVNet weights
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Ditch 11.48 40.00 19.57 12.78 16.17
Path 2.51 55.12 8.55 20.56 13.26
Road 0.00 72.09 27.23 0.69 0.00
H-way 4.50 32.02 5.57 42.01 15.89
OP 14.63 2.29 4.31 21.0

(d) HRNet backbone and RVGan weights

Table 6.15.: Confusion matrix for Mask RCNN results on the linear data test set with different backbones and weights
initializations. Values show percentage for number of predicted instances that intersect those of the ground truth. NC denotes
percentage for number of ground truth examples not captured by the models. OP stands for over-prediction, i.e., percentage
of predicted instances by the models that do not intersect any ground truth.
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Ditch 23.41 7.95 13.69 12.82 5.98
Path 0.28 47.44 48.74 2.81 3.88
Road 2.11 27.85 98.24 1.09 0
H-way 6.42 19.46 20.05 36.51 5.98
OP 13.32 3.22 4.90 7.05

(a) HRNet backbone and random weights
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Ditch 18.12 8.14 20.18 12.55 7.66
Path 0.19 40.52 41.97 3.40 6.17
Road 0.60 13.59 96.89 1.01 0
H-way 3.42 20.82 36.50 22.46 4.04
OP 20.78 8.40 3.29 19.74

(b) ResNet backbone and random weights
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Ditch 24.10 10.49 9.06 15.11 3.48
Path 0.39 58.89 38.62 5.59 2.38
Road 2.03 35.61 98.50 2.09 0
H-way 5.51 20.89 12.24 45.42 3.02
OP 14.50 6.10 4.07 14.59

(c) HRNet backbone and RVNet weights
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Ditch 1.12 9.43 6.53 10.25 12.94
Path 0.07 57.48 37.95 5.3 4.04
Road 0 27.83 99.24 0.01 0
H-way 0.27 22.62 5.10 36.42 5.66
OP 26.40 33.90 1.06 19.45

(d) HRNet backbone and RVGan weights

Table 6.16.: Percentages for the intersection area of predicted instances in the linear data test set by Mask RCNN
and the ground truth in the linear dataset. NC denotes percentage for the the area of ground truth examples not
captured by the models. OP stands for over-prediction, i.e., percentage for the area of predicted instances by the
models that do not intersect any ground truth.

6.4. Semantic Segmentation

Similar to instance segmentation, experiments on the two datasets are conducted using the
semantic segmentation model shown in Figure 5.7 initialized with random weights, and also with
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the pretrained weights from SSL pretext, namely, the RVNet and RVGan. Additionally, the
semantic segmentation experiment is conducted on the stone quarries dataset explained in Section
4.2.3. Section 6.4.1 describes experiments on the areal dataset. Section 6.4.2 gives details of
experiments on the linear dataset. Finally, Section 6.4.3 contains experiments and results on the
stone quarries dataset. While the rest of the parameters during training are specific to the
datasets, the objective function for training semantic segmentation models are the categorical
cross entropy function defined in Equation 2.16.

6.4.1. Areal Dataset

The positive impact of relief visualization rasters on classification and instance segmentation tasks
are already discussed in Kazimi et al. (2020) and Kazimi et al. (2019a). To understand the effect
of different relief visualization rasters on semantic segmentation, the 6 previously mentioned relief
rasters and the DTM patches for the areal dataset explained in Section 4.2.1 are separately used
to train the HRNet model. Additionally, all the 6 relief rasters are combined in 6 channels in the
order listed in Table 6.17 as the combined input for the semantic segmentation model. The raster
patches are prepared with sizes of 224 × 224 pixels and used in batches of 20 examples to train
the HRNet for 20 epochs separately for every input raster and/or the combinations. The MIOU
and class-wise Intersection Over Union (IOU) scores for background (BG), bomb craters (BC),
charcoal kilns (CK), burial mounds (BM) and mining holes (MH) achieved using different input
rasters are shown Table 6.17. As observed, the original DTM is good for detecting mining holes
and identifying background pixels that do not contain any structures/objects of interest. The LD
raster is effective for bomb craters and burial mounds while the slope raster leads to the highest
IOU score for charcoal kilns. Finally SVF raster achieves the top overal MIOU score.

Input raster MIOU BG BC CK BM MH

Combined 61.58 96.37 51.53 60.09 58.72 41.19
DTM 62.37 96.43 50.94 62.11 61.04 41.33
LD 61.82 96.25 56.97 57.05 64.13 34.70
SLRM 59.82 96.38 43.05 58.28 65.26 36.13
SLOPE 61.46 96.12 53.60 62.72 59.95 34.90
SVF 62.83 96.47 54.63 61.09 64.02 37.91
POS 61.10 96.42 47.77 61.94 63.77 35.60
NEG 54.93 96.04 40.56 51.46 58.43 28.18

Table 6.17.: IOU by HRNet on the test set with different relief raster as the input. Combined means all the relief rasters
except DTM in 6 channels in the order listed in the table.

Model Pretrained weights MIOU BG BC CK BM MH

HRNet - 61.49 96.36 51.41 59.36 62.56 37.77
DeepLabV3+ - 57.50 96.08 38.75 63.53 57.39 31.73
HRNet RVNet weights 62.68 96.69 42.23 65.05 68.37 41.03
HRNet RVGan weights 66.21 96.65 62.07 63.13 67.88 41.31

Table 6.18.: Effect of SSL pretraining on semantic segmentation performance of the areal dataset. Values show the IOU
scores on the test set.

Additionally, the semantic segmentation architecture shown in Figure 5.7 using HRNet is trained
for 50 epochs with randomly initialized weights and also pretrained weights to evaluate the impact
of SSL pretraining on semantic segmentation as well. HRNet is also compared to the DeepLabV3+
model (Chen et al., 2018) with the ResNet backbone, which is also trained for semantic segmentation
on the same dataset. The MIOU scores and class-wise IOU scores for background (BG), bomb
craters (BC), charcoal kilns (CK), burial mounds (BM) and mining holes (MH) on the test data
by ResNet (i.e., DeepLabV3+ with ResNet backbone), and HRNet with random weights, RVNet
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weights and RVGan weights are shown in Table 6.18. As it is observed in the table, SSL pretraining
improves MIOU score from 61.49 percent with random weight initialization to 66.21 percent with
SSL pretrained weights.

The training and validation MIOU plots for the semantic segmentation models are shown in Figure
6.7. Consistent with the previous experiments and the MIOU scores listed in Table 6.18, models
using the pretrained weights from SSL pretext methods, i.e., RVNet and RVGan converge faster
and show the highest MIOU values for training and validation sets at each epoch. The optimal
number of epochs after which the performance scores stays constant is 25 (epochs 26− 50 are not
shown in Figure 6.7).

(a) Training MIOU (b) Validation MIOU

Figure 6.7.: Training and validation MIOU plot for semantic segmentation on the areal dataset.

For the semantic segmentation experiments on the areal dataset, similar to the instance
segmentation experiments, the Spatial Join tool in ArcGIS is used to calculate the confusion
matrices and the percentages for the area of intersection between the predictions and the ground
truth examples. As shown in Table 6.19 the HRNet models finetuned with weight initialization
from the SSL pretext methods, i.e., RVNet and RVGan, score higher. Similarly, the intersection
areas of predictions and ground truth for these models are higher than those of HRNet with
random weights and DeepLabV3+ as listed in Table 6.20.

Additionally, the results by the semantic segmentation approach shown in Tables 6.19 and 6.20
are better than those by the instance segmentation approach shown in Tables 6.11 and 6.12. The
instance segmentation approach also makes more over-predictions (OP) as indicated in the last
row in each table. In other words, the instance segmentation models label a higher percentage of
background pixels as the object classes. Looking at the diagonal values in Tables 6.19 and 6.20,
it might appear that the randomly initialized models perform better, however, it can be observed
from the NC columns that the percentage of ground truth examples not captured by models
initialized with random weights are higher. Additionally, the OP columns show that in general,
the percentage of over-predictions, i.e., background pixels labeled as objects by the models with
the random weights are also higher, which is not desired. Qualitative evaluation results are shown
in Section 6.6.
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BC 64.93 0.75 0.75 9.70 23.88
CK 0.00 93.45 0.00 0.99 5.56
BM 0.00 0.00 96.82 0.00 3.18
MH 3.27 0.13 0.26 66.36 29.97
OP 11.81 2.07 8.09 15.32
(a) HRNet with random weights
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BC 72.39 0.00 0.00 2.24 25.37
CK 1.79 89.88 2.38 1.19 4.76
BM 0.91 0.00 95.91 0.00 3.18
MH 8.77 0.39 0.39 63.87 26.57
OP 12.50 2.56 7.38 24.24

(b) DeepLabV3+ with random weights
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BC 60.45 1.49 0.00 14.18 23.88
CK 0.00 96.63 0.00 1.19 2.18
BM 0.00 0.45 94.55 0.00 5.00
MH 3.53 0.52 0.00 71.99 23.95
OP 35.71 10.34 19.69 9.45
(c) HRNet with RVNet weights
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BC 72.39 0.00 0.00 7.46 20.15
CK 0.00 95.24 0.00 2.58 2.18
BM 0.00 0.00 96.36 0.00 3.64
MH 3.40 0.52 0.00 73.17 22.91
OP 6.82 2.81 2.75 21.46
(d) HRNet with RVGan weights

Table 6.19.: Confusion matrix for semantic segmentation results on the areal data test set. Values show percentage
for number of predicted instances that intersect those of the ground truth. NC denotes percentage for number of
ground truth examples not captured by the models. OP stands for over-prediction, i.e., percentage of predicted
instances by the models that do not intersect any ground truth.
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BC 75.48 1.84 0.37 9.10 3.55
CK 0 64.95 0 0.15 4.3
BM 0 0 92.52 0 3.23
MH 2.66 0.20 0.01 58.59 20.19
OP 3.18 0.19 2.22 8.75
(a) HRNet with random weights
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BC 86.46 0 0 4.22 1.74
CK 0.3 70.29 1.64 0.35 6.02
BM 0.16 0 92.94 0 1.76
MH 8.22 0.34 0.7 60.71 17.16
OP 3.07 0.28 1.14 7.76

(b) DeepLabV3+ with random weights
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BC 71.93 0.06 0 22.21 1.58
CK 0 70.91 0 0.25 1.91
BM 0 0.07 86.44 0 2.75
MH 2.44 0.82 0 66.13 14.18
OP 2.02 0.45 0.55 9.93
(c) HRNet with RVNet weights
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BC 82.71 0 0 7.97 1
CK 0 69.71 0 0.38 2.24
BM 0 0 90.53 0 1.72
MH 2.46 0.73 0 65.16 13.35
OP 1.77 0.27 0.89 9.04
(d) HRNet with RVGan weights

Table 6.20.: Percentages for the intersection area of predicted instances by semantic segmentation models and the
ground truth in the areal dataset. NC denotes percentage for the the area of ground truth examples not captured
by the models. OP stands for over-prediction, i.e., percentage for the area of predicted instances by the models that
do not intersect any ground truth.

6.4.2. Linear Dataset

The linear dataset explained in Section 4.2.2 and used in the instance segmentation experiment
in Section 6.3.2 is used in the semantic segmentation experiment as well. The input DTMs are
prepared with sizes of 128 × 128 pixels each. Similar to previous experiments, the DeepLabV3+
with ResNet backbone, and the HRNet model with random weights, RVNet weights, and RVGan
weights are trained for 50 epochs and a batch size of 20 examples. The MIOU scores and class-wise
IOU scores for background (BG), ditch, path, road and hollow way classes in the test data are
listed in Table 6.21. HRNet significantly outperforms DeepLabV3+ with the ResNet backbone and
SSL pretraining is observed to have increased the performance scores compared to random weight
initialization in this experiment as well, as indicated by the IOU scores.
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Model Pretrained weights MIOU BG Ditch Path Road Hollow way

HRNet - 52.24 91.35 17.73 44.17 81.61 26.34
DeepLabV3+ - 44.15 89.45 14.22 30.91 73.12 13.05
HRNet RVNet weights 53.46 91.21 18.70 44.98 81.68 30.71
HRNet RVGan weights 53.04 91.45 17.52 47.78 81.91 26.57

Table 6.21.: Effect of SSL pretraining on semantic segmentation of the linear data test set. Values show IOU scores.

The training and validation MIOU plots for semantic segmentation on this datasets are shown
in Figure 6.8. As observed, the convergence for models using pretrained weights from the SSL
pretext methods, i.e., RVNet and RVGan are faster and the highest MIOU values for training and
validation at each epoch belong to the model with RVGan weights.

Figure 6.8.: Training and validation MIOU plot for semantic segmentation on the linear dataset.

Similar to previous experiments, the Spatial Join tool in ArcGIS is used to calculate the confusion
matrices and the percentage of intersecting polygons in the predicted and ground truth examples.
Consistent with the previous results, HRNet performs better than DeepLabV3+ with the ResNet
backbone and pretrained models produce higher scores, as evidenced by the confusion matrices in
Table 6.22. The area of intersecting polygons in the prediction and ground truth examples line
up nicely as well as shown in Table 6.23. Additionally, the results by the semantic segmentation
approaches listed in Tables 6.22 and 6.23 are significantly better than those obtained by the instance
segmentation approaches listed in Tables 6.15 and 6.16. The semantic segmentation approaches
do not confuse categories including ditches, roads and hollow ways with examples of the path
category as drastically as the instance segmentation approaches. However, the over-prediction (OP)
percentage for semantic segmentation models are higher than the instance segmentation models.
Results of qualitative evaluation are shown in Section 6.6.
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Ditch 58.43 11.83 6.17 4.61 18.96
Path 13.30 56.63 11.66 6.35 12.05
Road 23.94 9.50 65.42 1.14 0.00
H-way 18.67 7.29 2.21 49.71 22.11
OP 74.48 80.32 29.16 90.87

(a) HRNet with random weights
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Ditch 56.09 12.17 12.09 1.48 18.17
Path 14.56 39.31 23.59 2.42 20.13
Road 27.00 4.61 67.93 0.37 0.09
H-way 36.12 10.16 12.53 18.18 23.01
OP 90.11 96.64 88.22 98.53
(b) DeepLabV3+ with random weights
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Ditch 56.00 13.39 1.39 7.57 21.65
Path 6.65 58.44 10.89 9.55 14.47
Road 23.94 10.10 64.82 1.14 0.00
H-way 9.91 5.00 4.83 61.92 18.35
OP 66.21 64.71 37.61 91.39

(c) HRNet with RVNet weights
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Ditch 65.13 12.87 5.39 1.22 15.39
Path 12.79 60.22 9.85 4.28 12.87
Road 20.10 11.06 68.16 0.64 0.05
H-way 17.36 6.31 0.57 59.21 16.54
OP 74.14 83.80 43.88 90.56

(d) HRNet with RVGan weights

Table 6.22.: Confusion matrix for semantic segmentation results on the linear data test set. Values show percentage for
number of predicted instances that intersect those of the ground truth. NC denotes percentage for number of ground truth
examples not captured by the models. OP stands for over-prediction, i.e., percentage of predicted instances by the models
that do not intersect any ground truth.
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Ditch 27.84 3.34 0.43 5.25 7.98
Path 0.57 53.58 7.48 1.28 4.09
Road 0.29 0.98 89.29 0.05 0
H-way 2.76 1.4 0.22 34.29 12.14
OP 84.14 63.31 24.38 93.22
(a) HRNet with random weights
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Ditch 15.25 0.99 2.61 1.55 6.58
Path 1.05 20.55 21.66 0.32 6.41
Road 0.34 0.68 86.50 0.02 0
H-way 5.21 1.05 3.44 7.63 11.88
OP 90.13 90.99 69.31 97.19

(b) DeepLabV3+ with random weights
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Ditch 23.67 1.97 0.27 5.91 8.43
Path 0.37 54.44 3.57 1.55 4.33
Road 0.27 0.91 88.63 0.04 0
H-way 0.93 1.04 0.20 40.71 9.55
OP 79.66 59.68 29.63 94.78

(c) HRNet with RVNet weights

Predicted

D
it

ch

P
at

h

R
oa

d

H
-w

ay

N
C

A
ct

ua
l

Ditch 28.56 3.92 0.73 3.83 4.99
Path 0.59 60.35 4.64 0.64 4.17
Road 0.46 1.37 87.51 0.04 0
H-way 3.43 2.02 0.05 35.34 7.13
OP 81.57 72.42 36.78 94.49
(d) HRNet with RVGan weights

Table 6.23.: Percentages for the intersection area of predicted instances by semantic segmentation models
and the ground truth in the linear dataset. NC denotes percentage for the the area of ground truth examples
not captured by the models. OP stands for over-prediction, i.e., percentage for the area of predicted instances
by the models that do not intersect any ground truth.

6.4.3. Stone Quarries Dataset

The stone quarry examples from the dataset explained in Section 4.2.3 are prepared in patches of
size 384×384 pixels to train the semantic segmentation model shown in Figure 5.7 and evaluate the
SSL pretraining impact. The number of examples and the area for training, validation and testing
are listed in Table 6.24. The models are trained for 20 epochs and the F1-scores, precision and recall
values on the test data are listed in Table 6.25. Consistent with the previous experiments, HRNet
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outperforms DeepLabV3+ with the ResNet backbone, and SSL pretraining improves performance
scores compared to random weight initialization.

No. examples Min. area Avg. area Max. area Total area

Training 2079 25.07m2 6415m2 3 km2 13.34 km2

Validation 414 32.05m2 6715m2 1.12 km2 2.78 km2

Testing 589 20.91m2 6616.67m2 0.63 km2 3.90 km2

Table 6.24.: The number of examples and area for training, validation and test in the stone quarries dataset.

Model Pretrained weights F1-score Precision Recall

HRNet - 65.44 76.66 61.69
DeepLabV3+ - 52.39 57.01 56.36
HRNet RVNet weights 68.46 77.51 65.67
HRNet RVGan weights 67.08 72.42 67.95

Table 6.25.: Effect of SSL pretraining on semantic segmentation performance on the stone quarries dataset.

The plots for F1-scores by the models on training and validation sets are shown in Figure 6.9.
Similar to the models’ performances in the previous experiments, using the pretrained weights
from the SSL pretext methods, i.e., RVNet and RVGan leads to faster convergence and higher
scores.

(a) Training F1-score (b) Validation F1-score

Figure 6.9.: Training and validation F1-score plot for semantic segmentation on the quarries dataset.

The confusion matrices and the intersection area for prediction and ground truth examples listed
in Tables 6.26 and 6.27 also indicate the superiority of HRNet to DeepLabV3+ with the ResNet
backbone and the positive impact of SSL pretext methods.

Quarries NC

Quarries 89.30 10.7
OP 56.28

(a) HRNet with random weights

Quarries NC

Quarries 98.3 1.7
OP 92.6

(b) DeepLabV3+ with random weights

Quarries NC

Quarries 93.55 6.45
OP 53.78

(c) HRNet with RVNet weights

Quarries NC

Quarries 94.74 5.26
OP 65.04

(d) HRNet with RVGan weights

Table 6.26.: Confusion matrix for semantic segmentation on the stone quarries test set. Values show
percentage for number of predicted instances that intersect those of the ground truth. NC denotes ground
percentage for number of ground truth examples not captured by the models. OP stands for over-prediction,
i.e., percentage of predicted instances by the model that do not intersect any ground truth.
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Quarries NC

Quarries 16.27 3.75
OP 9.19

(a) HRNet with random weights

Quarries NC

Quarries 15.23 0.03
OP 16.46

(b) DeepLabV3+ with random weights

Quarries NC

Quarries 18.15 2.07
OP 7.43

(c) HRNet with RVNet weights

Quarries NC

Quarries 17.63 2.12
OP 10.76

(d) HRNet with RVGan weights

Table 6.27.: Percentages for the intersection area of predicted and ground truth stone quarries. NC denotes
ground percentage for number of ground truth examples not captured by the models. OP stands for over-
prediction, i.e., percentage of predicted instances by the model that do not intersect any ground truth.

6.5. Evaluation on 4 Test Regions with Distinct Objects

The quantitative evaluations in the previous sections are based on DTM patches cropped from the
testing region making sure each patch includes an instance of the objects in each dataset. The
predictions are made for each patch prepared in the test set and the results are evaluated. In
this experiment, four large test regions are scanned in a sliding window fashion and labeled using
Algorithm 2. Each of the 4 regions include examples for one of the categories such as bomb craters,
charcoal kilns, burial mounds and mining holes. The predictions are made using the instance
segmentation and semantic segmentation approaches and are evaluated quantitatively against the
ground truth annotations. As mentioned in Chapter 4, the ground truth for the datasets used in
the supervised tasks are not as precise, and are for simplicity approximated with circular polygons
for example, even if the original shape of the objects and structures are not perfectly circular.
Therefore, this experiment is conducted and three different colleagues are requested to manually
annotate the same four test regions very precisely. Their annotations are also compared to the
initial ground truth and the predictions by the deep learning approaches. The comparison gives
a good impression of how well the predictions by the deep learning models are, even though the
initial annotations were not as precise.

Algorithm 2 The procedure for making predictions on a large test region.

Require:
modelH×W : a deep learning model trained with input size H ×W
DTMinput: Input DTM of size P ×Q

1: procedure Predict(modelH×W , DTMinput)
2: L← Zeros(P ×Q) . a matrix of zeros of shape (P ×Q) to store predictions
3: for each item i in range(0, P −H, step = H) do
4: for each item j in range(0, Q−W , step =W ) do
5: currentPatch← DTMinput[i : i+H,j : j +W ]
6: prediction← modelH×W (currentPatch) . Labels predicted for the current patch
7: L[n,i : i+H,j : j +W ] = prediction
8: end for
9: end for

10: return L . Matrix of size P x Q holding predictions for the large region.
11: end procedure

Predictions for four regions by different deep learning models in the instance and semantic
segmentation approaches are loaded into ArcGIS, and converted from raster to vector, i.e.,
polygons. The Spatial Join tool in ArcGIS is used to calculate the confusion matrices and the
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percentage of intersection between predicted and ground truth examples. The results are listed in
Tables 6.28-6.31. Additionally, the Spatial Join tool is used to calculate the same, i.e., confusion
matrices and the percentage of intersection between manual annotations by the 3 colleagues and
the ground truth examples. The results are listed in Tables 6.32 and 6.33.

The results for instance segmentation approaches shown in Tables 6.28 and 6.29 appear better at
the first glance compared to the results by the semantic segmentation approaches shown in Tables
6.30 and 6.31. However, looking at the last rows in each table, it can be observed that the instance
segmentation models make high over-predictions (OP) compared to the semantic segmentation
models. In other words, higher amounts of background regions containing no objects are falsely
categorized as the object instances by the instance segmentation models while very few amounts of
background regions are falsely categorized as the objects by the semantic segmentation approaches.

Predicted

B
C

C
K

B
M

M
H

N
C

A
ct
ua

l

BC 79.59 4.08 4.08 6.12 6.12
CK 0.00 66.67 2.22 21.11 10.00
BM 5.66 5.66 88.68 0.00 0.00
MH 11.11 9.72 2.78 75.00 1.39
OP 71.10 92.98 93.23 96.94
(a) HRNet backbone with random weights
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BC 69.39 10.20 0.00 14.29 6.12
CK 0.00 67.78 0.00 26.67 5.56
BM 0.00 11.32 83.02 3.77 1.89
MH 4.17 31.94 0.00 62.50 1.39
OP 70.63 94.60 81.28 98.04
(b) ResNet backbone with random weights
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BC 87.76 2.04 0.00 4.08 6.12
CK 1.11 80.00 0.00 14.44 4.44
BM 1.89 11.32 81.13 1.89 3.77
MH 12.50 8.33 0.00 75.00 4.17
OP 69.66 94.21 87.54 97.01
(c) HRNet backbone with RVNet weights
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BC 87.76 0.00 0.00 6.12 6.12
CK 1.11 83.33 0.00 6.67 8.89
BM 0.00 9.43 86.79 3.77 0.00
MH 15.28 5.56 0.00 75.00 4.17
OP 63.58 94.71 89.45 96.29
(d) HRNet backbone with RVGan weights

Table 6.28.: Confusion matrix for instance segmentation results with Mask RCNN with different backbones and weight
initialization on the 4 test regions using Algorithm 2. Values show percentage for number of predicted instances that intersect
those of the ground truth. NC denotes percentage for number of ground truth examples not captured by the models. OP
stands for over-prediction, i.e., percentage of predicted instances by the models that do not intersect any ground truth.
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BC 71.30 6.06 3.49 78.31 5.08
CK 0 61.17 2.81 17.80 5.95
BM 0.72 2.39 97.04 0 0
MH 5.28 8.43 1.64 90.37 0.68
OP 46.55 87.11 68.33 83.32
(a) HRNet backbone with random weights
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BC 53.83 34.36 0 76.22 5.08
CK 0 60.04 0 17.84 4.07
BM 0 4.51 94.94 0.60 1.19
MH 3.34 18.77 0 82.77 0.68
OP 45.17 90.27 63.54 85.94
(b) ResNet backbone with random weights
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BC 78.33 6.99 0 92.54 5.08
CK 0.03 70.30 0 15.89 3.44
BM 0.45 5.81 94.63 0.07 3.84
MH 7.34 9.16 0 88.96 3.16
OP 48.55 89.58 68.98 80.12
(c) HRNet backbone with RVNet weights

Predicted

B
C

C
K

B
M

M
H

N
C

A
ct
ua

l

BC 82.35 0 0 79.48 5.08
CK 0.01 65.64 0 8.58 7.37
BM 0 4.63 94.71 0.46 0
MH 9.90 5.86 0 85.16 3.16
OP 28.80 91.48 72.49 57.95
(d) HRNet backbone with RVGan weights

Table 6.29.: Percentages for the intersection area of predicted and ground truth examples in the 4 test regions by the Mask
RCNN for instance segmentation with different backbones and weight initializations using Algorithm 2. NC denotes percentage
for the the area of ground truth examples not captured by the models. OP stands for over-prediction, i.e., percentage for the
area of predicted instances by the models that do not intersect any ground truth.
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BC 87.76 2.04 0.00 4.08 6.12
CK 0.00 70.00 0.00 0.00 30.00
BM 0.00 1.89 73.58 0.00 24.53
MH 4.17 1.39 0.00 63.89 30.56
OP 22.03 28.26 23.53 61.60

(a) HRNet with random weights
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BC 24.49 0.00 6.12 59.18 10.20
CK 3.33 14.44 27.78 11.11 43.33
BM 3.33 14.44 27.78 11.11 43.33
MH 12.50 0.00 2.78 54.17 30.56
OP 77.14 78.69 47.89 88.39
(b) DeepLabV3+ with random weights
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BC 67.35 0.00 0.00 22.45 10.20
CK 0.00 67.78 0.00 0.00 32.22
BM 0.00 0.00 71.70 0.00 28.30
MH 1.39 0.00 0.00 65.28 33.33
OP 49.25 63.69 38.71 68.48

(c) HRNet with RVNet weights
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BC 87.76 2.04 0.00 4.08 6.12
CK 0.00 71.11 1.11 2.22 25.56
BM 0.00 0.00 73.58 0.00 26.42
MH 6.94 0.00 0.00 59.72 33.33
OP 18.64 41.96 36.51 72.99

(d) HRNet with RVGan weights

Table 6.30.: Confusion matrix for semantic segmentation results on the 4 test regions using Algorithm 2. Values show
percentage for number of predicted instances that intersect those of the ground truth. NC denotes percentage for number of
ground truth examples not captured by the models. OP stands for over-prediction, i.e., percentage of predicted instances by
the models that do not intersect any ground truth.

Predicted

B
C

C
K

B
M

M
H

N
C

A
ct
ua

l

BC 70.59 0.74 0 6.43 6.34
CK 0 40.25 0 0 27.14
BM 0 0.13 68.09 0 24.23
MH 1.05 0.03 0 52.73 23.02
OP 6.96 15.04 7.98 39.28

(a) HRNet with random weights
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BC 14.23 0 1.23 43.32 8.66
CK 0.67 5.15 7.36 2.17 40.43
BM 0 0 73.76 0 16.50
MH 8.37 0 0.83 45.49 22.14
OP 49.04 72.71 21.15 64.95
(b) DeepLabV3+ with random weights
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BC 48.27 0 0 26.66 8.96
CK 0 39.95 0 0 23.38
BM 0 0 59.72 0 23.75
MH 0.65 0 0 53.27 26.50
OP 6.80 35.43 10.27 38.98

(c) HRNet with RVNet weights
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BC 80.14 0.14 0 6.14 4.24
CK 0 41.30 0.02 0.40 20.48
BM 0 0 61.89 0 22.36
MH 2.11 0 0 54.29 28.56
OP 4.51 19.10 6.40 50.00

(d) HRNet with RVGan weights

Table 6.31.: Percentages for the intersection area of predicted and ground truth examples in the 4 test regions by the semantic
segmentation approaches using Algorithm 2. NC denotes percentage for the the area of ground truth examples not captured
by the models. OP stands for over-prediction, i.e., percentage for the area of predicted instances by the models that do not
intersect any ground truth.

The results for both: semantic and instance segmentation models, are worse than those of the
manual annotations by the three colleagues shown in Tables 6.32 and 6.33. However, the colleagues
had the advantage of having a prior knowledge of which of the 4 separate regions contain which of
the 4 structures, i.e., bomb craters, charcoal kilns, burial mounds and mining holes. Therefore, the
only error in their annotations are either false annotations of background regions as the mentioned
categories or missing annotations for some instances. There are no errors of confusing one category
with the other. For charcoal kilns, the models even correctly predict and recover higher number of
examples compared to the colleagues 2 and 3.

Among the annotations by the colleagues, the highest scores are in general achieved by colleague
1. Among individual categories, the scores are alternating which indicates that even in manual
annotations by humans, there are discrepancies even though they had the advantage of prior
knowledge about which regions contain which of the structures. The percentage of
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BC 100.0 0.00 0.00 0.0 0.00
CK 0.0 96.67 0.00 0.0 3.33
BM 0.0 0.00 92.45 0.0 7.55
MH 0.0 0.00 0.00 87.5 12.50
OP 2.0 32.03 9.26 70.0

(a) Colleague 1
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BC 100.00 0.00 0.00 0.00 0.00
CK 0.00 52.22 0.00 0.00 47.78
BM 0.00 0.00 83.02 0.00 16.98
MH 0.00 0.00 0.00 94.44 5.56
OP 5.77 6.0 0 56.69

(b) Colleague 2
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BC 100.00 0.00 0.00 0.00 0.00
CK 0.00 60.00 0.00 0.00 40.00
BM 0.00 0.00 81.13 0.00 18.87
MH 0.00 0.00 0.00 90.28 9.72
OP 3.92 50.91 14.0 58.86

(c) Colleague 3

Table 6.32.: Confusion matrix for manual annotations by 3 colleagues compared to the initial ground truth. Values show
percentage for the intersection area of predicted instances and the ground truth. NC denotes percentage for the the area of
ground truth examples not captured by the models. OP stands for over-prediction, i.e., percentage for the area of predicted
instances by the models that do not intersect any ground truth.
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BC 97.94 0 0 0 0
CK 0 60.24 0 0 1.7
BM 0 0 91.54 0 7.24
MH 0 0 0 73.28 15.38
OP 1.63 27.10 12.82 49.90

(a) Colleague 1
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BC 100 0 0 0 0
CK 0 25.54 0 0 43.50
BM 0 0 83.99 0 15.67
MH 0 0 0 90.40 8.09
OP 4.55 4.24 0 39.68

(b) Colleague 2
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BC 100 0 0 0 0
CK 0 63.97 0 0 33.06
BM 0 0 82.39 0 16.59
MH 0 0 0 84.00 11.86
OP 3.11 3.81 15.91 39.31

(c) Colleague 3

Table 6.33.: Percentages of the intersection area of manual annotations by the 3 colleagues and the initial ground truth. NC
denotes percentage for the the area of ground truth examples not captured by the models. OP stands for over-prediction, i.e.,
percentage for the area of predicted instances by the models that do not intersect any ground truth.

over-predictions for some of the categories, e.g., charcoal kilns and mining holes, by the colleagues
are not far behind the over-predictions by the semantic segmentation models.

Since the new manual annotation by colleague 1 matches the original ground truth the best, the
predictions by the model are also compared against the annotations by colleague 1 below.

Model Predictions Evaluated Against Annotations by Colleague 1

Manual annotations for the 4 test regions by colleague 1 matched the ground truth annotations the
best among other colleagues, as shown previously. This is also confirmed by the visual evaluations
in the following section as the annotations by colleague 1 are more detailed and precise. Therefore,
the predictions by the deep learning approaches are also compared to the annotations by colleague
1. Tables 6.34 and 6.35 show the confusion matrices and percentages of intersection area for the
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BC 79.25 3.77 3.77 7.55 5.66
CK 0.00 60.94 5.47 19.53 14.06
BM 5.56 3.70 88.89 0.00 1.85
MH 8.76 5.99 3.69 70.51 11.06
OP 63.43 90.71 91.71 92.66
(a) HRNet backbone with random weights
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BC 67.92 11.32 0.00 15.09 5.66
CK 0.00 64.84 0.00 22.66 12.50
BM 1.85 11.11 79.63 5.56 1.85
MH 2.30 17.97 0.92 66.82 11.98
OP 66.93 92.42 81.17 95.34
(b) ResNet backbone with random weights
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BC 83.02 3.77 0.00 7.55 5.66
CK 0.78 76.56 0.00 10.94 11.72
BM 0.00 16.67 77.78 1.85 3.70
MH 8.76 9.68 0.00 72.35 9.22
OP 63.84 91.22 87.76 92.45
(c) HRNet backbone with RVNet weights
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BC 84.91 0.00 0.00 9.43 5.66
CK 0.00 72.66 0.00 6.25 21.09
BM 0.00 3.70 88.89 3.70 3.70
MH 11.52 3.69 0.00 73.73 11.06
OP 54.55 93.52 88.91 90.03
(d) HRNet backbone with RVGan weights

Table 6.34.: Confusion matrix for instance segmentation results with Mask RCNN with different backbones and weight
initialization on the 4 test regions using Algorithm 2. Values show percentage for number of predicted instances that intersect
those labeled by colleague 1. NC denotes percentage for number of examples by colleague 1 not captured by the models.
OP stands for over-prediction, i.e., percentage of predicted instances by the models that do not intersect any annotation by
colleague 1.
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BC 62.53 5.42 3.53 70.87 5.84
CK 0 63.46 4.76 16.17 11.79
BM 0.70 3.31 85.43 0 1.74
MH 5.75 3.51 3.17 81.84 4.02
OP 42.88 83.66 77.52 72.00
(a) HRNet backbone with random weights
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BC 45.78 34.57 0 66.11 5.08
CK 0 64.45 0 18.15 10.89
BM 0.19 5.52 78.14 1.24 2.92
MH 2.69 16.04 0.31 76.57 4.82
OP 43.12 88.15 65.37 76.24
(b) ResNet backbone with random weights
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BC 67.14 7.40 0 85.60 5.84
CK 0.03 74.50 0 15.01 9.25
BM 0 9.68 77.91 0.46 4.44
MH 5.57 5.34 0 85.30 6.52
OP 46.54 86.76 69.77 75.71
(c) HRNet backbone with RVNet weights

Predicted
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M

M
H

N
C

A
ct
ua

l

BC 71.99 0 0 72.74 5.84
CK 0 63.99 0 7.19 15.65
BM 0 2.53 79.38 0.65 4.66
MH 7.82 1.23 0 81.19 7.16
OP 24.86 89.22 72.96 55.05
(d) HRNet backbone with RVGan weights

Table 6.35.: Percentages for the intersection area of predicted examples in the 4 test regions by Mask RCNN with different
backbones and weight initializations using Algorithm 2, and annotations by colleague 1 in the 4 test regions. NC denotes
percentage for the the area of examples by colleague 1 not captured by the models. OP stands for over-prediction, i.e.,
percentage for the area of predicted instances by the models that do not intersect any annotation by colleague 1.

predictions by the instance segmentation models and the annotations by colleague 1. Tables 6.36
and 6.37 show the same for the semantic segmentation models.

As seen in Table 6.28 (instance segmentation vs. initial ground truth) and Table 6.34 (instance
segmentation vs. new annotations by colleague 1), there is a stronger match between the predictions
by the instance segmentation approaches and the annotations by colleague 1 compared to the
match between the said predictions and the initial ground truth. This confirms that even though
the models were trained with less precise ground truth annotations, they still learn to properly
detect objects. With better and more precise ground truth, they are expected to perform even
better. The same is confirmed by the percentages of intersection are between the predictions by
instance segmentation models and the initial ground truth (Table 6.29) and the new annotations
by colleague 1 (Table 6.35).
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Predicted

B
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BC 84.91 1.89 0.00 5.66 7.55
CK 0.00 52.34 0.00 0.00 47.66
BM 0.00 1.85 75.93 0.00 22.22
MH 4.61 0.46 0.00 41.94 53.00
OP 8.33 24.73 19.61 31.88

(a) HRNet with random weights

Predicted
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BC 22.64 0.00 5.66 62.26 9.43
CK 2.34 12.50 19.53 7.81 57.81
BM 0.00 0.00 81.48 0.00 18.52
MH 9.68 0.00 0.92 42.40 47.00
OP 66.04 74.19 47.52 80.32
(b) DeepLabV3+ with random weights
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BC 66.04 0.00 0.00 22.64 11.32
CK 0.00 51.56 0.00 0.00 48.44
BM 0.00 0.00 70.37 0.00 29.63
MH 2.30 0.46 0.00 43.32 53.92
OP 38.46 60.82 38.71 43.01

(c) HRNet with RVNet weights

Predicted
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BC 84.91 1.89 0.00 5.66 7.55
CK 0.00 54.69 0.78 1.56 42.97
BM 0.00 1.85 72.22 0.00 25.93
MH 4.15 0.00 0.00 47.00 48.85
OP 11.48 37.39 37.50 39.89

(d) HRNet with RVGan weights

Table 6.36.: Confusion matrix for semantic segmentation results on the 4 test regions using Algorithm 2. Values show
percentage for number of predicted instances that intersect those annotated by colleague 1. NC denotes percentage for number
of examples by colleague 1 not captured by the models. OP stands for over-prediction, i.e., percentage of predicted instances
by the models that do not intersect any annotation by colleague 1.
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BC 61.5 0.62 0 5.46 8.11
CK 0 41.92 0 0 42.79
BM 0 0.09 56.28 0 24.72
MH 1.78 0.02 0 44.85 35.97
OP 4.31 9.93 5.59 11.47

(a) HRNet with random weights

Predicted
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BC 11.97 0 1.42 37.12 9.00
CK 0.75 4.89 7.10 2.56 54.29
BM 0 0 59.83 0 23.87
MH 6.19 0 0.37 37.88 36.14
OP 42.58 70.25 19.93 56.53
(b) DeepLabV3+ with random weights

Predicted
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BC 41.40 0 0 22.78 11.03
CK 0 42.57 0 0 42.30
BM 0 0 40.55 0 30.54
MH 1.26 0.12 0 42.02 40.23
OP 4.95 28.6 11.59 21.37

(c) HRNet with RVNet weights

Predicted

B
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K

B
M

M
H

N
C
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BC 68.25 0.12 0 5.33 6.38
CK 0 43.76 0.02 0.35 35.58
BM 0 0.19 43.94 0 25.0
MH 2.03 0 0 44.67 35.28
OP 3.62 12.90 6.21 23.68

(d) HRNet with RVGan weights

Table 6.37.: Percentages for the intersection area of predicted examples by semantic segmentation using Algorithm 2 and
annotations by colleague 1 in the 4 test regions. NC denotes percentage for the the area of examples by colleague 1 not
captured by the models. OP stands for over-prediction, i.e., percentage for the area of predicted instances by the models that
do not intersect any annotation by colleague 1.

Similarly, the confusion matrix in Table 6.30 compared to Table 6.36 and the table for percentages
of intersection area in Table 6.31 compared to Table 6.37 show that the match between predictions
by the semantic segmentation models are also matching the new precise annotations by colleague
1 stronger than the initial approximate ground truth annotations. This stronger match is despite
the fact the models were trained with the initial imprecise ground truths, further confirming the
capacities of the uses approaches. Trained with better, more precise ground truth annotations, the
models are expected to produce even better outcomes.

6.6. Qualitative Evaluations

This section contains qualitative evaluation results for the experiments using the three different
approaches, i.e., classification, instance segmentation and semantic segmentation on three datasets.
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Section 6.6.1 contains example predictions by for the areal dataset, it also compares the predictions
by deep learning models to the manual annotations by three separate people. Sections 6.6.2 and
6.6.3 includes the same for the linear and stone quarries datasets.

6.6.1. Qualitative Results for Areal Dataset

Three different methodologies, i.e., classification, instance segmentation and semantic
segmentation are used to detect archaeological monuments and man-made terrain structures in
DTM data. Each method is trained from scratch with random weights and also finetuned with
the pretrained weights of RVNet and RVGan from the SSL pretext method. The best results for
each method are illustrated side by side for four different regions including bomb craters (BC),
charcoal kilns (CK), burial mounds (BM) and mining holes (MH) in Table 6.38. Further
qualitative results showing predictions by models trained with random weight initialization and
the ones finetuned with pretrained weights for each approach are shown in Appendix A.
Additionally, the manual annotations by three different people are also shown for comparison. As
shown in Table 6.38, predictions by the classification pipeline are in terms of heatmaps with a
rough indication of regions containing structures of interest. For instance segmentation, the
outputs are rectangular bounding boxes, segmentation masks and class labels for each instance in
the input. However, for clarity, predictions are shown as segmentation maps, and the rectangular
bounding box can be inferred using the segmentation maps. For semantic segmentation, the
outputs are already multi-class segmentation maps and are visualized as such. For all the regions
and objects shown in Table 6.38, the semantic segmentation approach produced more accurate
predictions. The visualizations are consistent with the quantitative results in Tables 6.28-6.31 as
there are more false predictions by the instance segmentation model, i.e., Mask RCNN with
RVGan weights (row 5 in Table 6.38) for bomb craters, burial mounds and mining holes.
Additionally, the amount of over-predictions by the instance segmentation model is very high. For
semantic segmentation with RVGan weights, the number of false positives are very low, and
specially invisible in these regions (row 6). There are also no visible over-predictions by the
semantic segmentation model. While the instance segmentation results are clearly worse than the
manual annotations by the colleagues, the semantic segmentation predictions are comparable.
Bomb craters, charcoal kilns and mining holes are mostly recovered well. There is just an
apparent under-prediction for the burial mounds. Overall, the semantic segmentation approach
produces better results than the classification and instance segmentation approach.

Bomb Craters (BC) Charcoal Kilns (CK) Burial Mounds (BM) Mining Holes (MH)
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Table 6.38 – continued from previous page
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Table 6.38 – continued from previous page
Bomb Craters (BC) Charcoal Kilns (CK) Burial Mounds (BM) Mining Holes (MH)

C
ol
le
ag

ue
3

Table 6.38.: Predictions for 4 regions by the best trained model in three approaches and manual annotations
by 3 colleagues. The third and fourth rows contain predicted heatmaps for the corresponding class by
HRNet and ResNet classifiers using the inference pipeline shown in Figure 5.5. The fourth and fifth rows
are predictions by the instance segmentation and semantic segmentation (SS) approaches using RVGan
weights.

6.6.2. Qualitative Results for the Linear Dataset

Experiments on the linear dataset are conducted using instance and semantic segmentation
approaches. For both methods, the model finetuned with the pretrained weights from the RVGan
model achieved the top performance scores on the test set. Therefore, qualitative results for these
two approaches using the pretrained weights of RVGan on 4 regions are shown in Table 6.39.
Similar to the performance on the areal dataset, the semantic segmentation approach produces
the better results, specially for thin linear structures such as ditches, as shown in the 4th region in
Table 6.39. These results are also consistent with the quantitative results in Tables 6.15-6.23. For
most of the categories and examples, the semantic segmentation model makes correct predictions
and does not miss. For example, instances of paths roads and ditches are correctly captured, but
there are more over-predictions by the semantic segmentation model. The hollow way in Region 2
is better predicted by the instance segmentation model, but the rest of the examples are not
captured well. However, the instance segmentation model makes less over-predictions as
confirmed by the quantitative results in Tables 6.15 and 6.16. Further qualitative results showing
predictions by models trained with random weight initialization and the ones finetuned with
pretrained weights for each approach are shown in Appendix A.
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Table 6.39 – continued from previous page
Region 1 Region 2 Region 3 Region 4
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Table 6.39.: Predictions for 4 regions by the best trained model in two approaches, i.e., semantic and instance
segmentation, on the test dataset containing linear structures..

6.6.3. Qualitative Results for Stone Quarries Dataset

Experiments on the stone quarries dataset are conducted only using the semantic segmentation
approach. Similar to the other two datasets, on this dataset as well, the semantic segmentation
approach shown in Figure 5.7 is trained with random weight initialization and also pretrained
weights from the RVNet and RVGan models from the SSL pretext phase. Example predictions
by the models are shown in Table 6.40. Results by the DeepLabV3+ with ResNet backbone are
included in Appendix A. The results reflect the quantitative evaluation in Section 6.4.3 (specifically,
Tables 6.26 and 6.27) and show that SSL pretraining improves performance score. Moreover, for
smaller examples of stone quarries, the HRNet model with RVGan weights works better than the
same with RVNet weights and random weights. For big examples that do not completely fit in the
input patch of 384 × 384 pixels, the results are not as clean as expected and the effect is obvious
in the predictions by the 8th region in Table 6.40.

Actual labels HRNet with
random weights

HRNet with
RVNet weights

HRNet with
RVGan weights
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Table 6.40 – continued from previous page
Actual labels HRNet with

random weights
HRNet with

RVNet weights
HRNet with
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Table 6.40.: Stone quarry predictions for 4 regions by the HRNet model trained with random weights,
RVNet weights, and RVGan weights.



6.7. Summary 103

6.7. Summary

Two methods, RVNet and RVGan, are trained in the pretext phase in SSL to learn generating
relief rasters for a given input DTM patch. The weights of the trained models are used in the
second phase, i.e., downstream to finetune deep learning models for supervised tasks such as
classification, instance segmentation and semantic segmentation. Experiments on the supervised
tasks are conducted on the three datasets explained in Chapter 4. Deep learning models used in
the supervised downstream tasks include HRNet, ResNet, Mask RCNN and DeepLabV3+. A
short overview reporting which methods are suitable for which tasks is listed in Table 6.41. In
general, the most suitable approach is the semantic segmentation approach as it makes better
predictions (backed by the qualitative and quantitative evaluations detailed previously). HRNet
is the better model compared to ResNet and DeepLabV3+, and SSL pretext has a significantly
positive impact on the performance scores as evidenced by the MIOU and MAP scores in the
semantic segmentation and instance segmentation approaches, respectively. Additionally, all the
models using the pretrained weights from the SSL pretext methods, i.e., RVNet and RVGan
converge faster that those initialized with random weights, as observed in the plots for training
and validation.

Model Backbone Weights Classification Instance
Segmentation

Semantic
Segmentation

HRNet - - +++ - +
HRNet - RVNet ++ - ++
HRNet - RVGan + - +++
ResNet - - o - -

DeepLabV3+ ResNet - - - o
Mask RCNN ResNet - - + -
Mask RCNN HRNet - - + -
Mask RCNN HRNet RVNet - ++ -
Mask RCNN HRNet RVGan - +++ -

Table 6.41.: Summary of results showing which methods are suitable for which task. The character ’-’
indicates that the method/backbone/weights is not used. The suitability starts from worst (’o’) to best
(’+++’).



7. Discussions and Conclusions

The final chapter in this dissertation includes discussions of the methodologies, datasets and
evaluation results. It links the conducted experiments and evaluation results to the research
hypotheses mentioned in the introduction in Chapter 1. Section 7.1 discusses DL methods used
for the pretext tasks and their impact on downstream supervised tasks, i.e., classification,
instance segmentation and semantic segmentation. Section 7.2 gives a summary of the
dissertation and points out further research directions.

7.1. Discussions

This section gives assessments of approaches used for pretext and downstream tasks in two separate
subsections that follow.

7.1.1. Assessment of Pretext Methods

The main idea behind this research is the use of SSL pretraining to improve detection results
for archaeological monuments and man-made terrain structures in LiDAR data with the help of
supervised DL models. The two pretext methods investigated are encoder-decoder architectures
(RVNet) and GANs (RVGan). Both approaches make use of a well-known DL model, i.e., HRNet
as their core backbone architecture.

Both pretext methods are designed to train models that learn to generate relief visualization rasters
for given DTM inputs. It is hoped that by doing so, the model learns important features in the
DTMs (Hypothesis 1) and aids supervised learning models in detection of archaeological monuments
and man-made terrain structures (Hypothesis 2).

The experiments and results in Section 6.1 show that relief visualization rasters are good supervision
signals that can be used to train deep learning models when there are huge amounts of unlabeled
DTM data. They are automatically calculated with tools such as RVT and help tune the parameters
of deep learning models. Training deep learning models with such rasters help learn intrinsic
characteristics of DTM inputs. The relief rasters generated by the RVNet and RVGan in Table 6.3
confirm that deep learning models learned the properties of DTM inputs well enough to be able to
automatically generate the corresponding relief rasters.

While RVNet achieves better scores (Table 6.2) and produces relief visualizations of higher quality
(Table 6.3) compared to those by RVGan, the impact of pretraining with RVGan is more prominent
on the supervised downstream tasks, specially instance segmentation and semantic segmentation
as discussed in Chapter 6. Additionally, pretrained weights of SSL pretext methods help the
supervised models in the downstream tasks converge faster, as shown in the training and validation
plots in Chapter 6.

In summary, the experiments and results are inline with the assumptions in Hypotheses 1 and
2. In other words, relief visualization rasters are good supervision signals for deep learning with
unlabeled DTM data and SSL pretraining with such datasets helps the supervised downstream
tasks.

104



7.1. Discussions 105

7.1.2. Assessment of Downstream Methods

The first downstream task investigated is a classification approach. Classifiers are trained to
categorize input DTMs into 5 classes: bomb craters, charcoal kilns, burial mounds, mining holes
and background. Since the label predicted by a classifier is a single integer denoting the class,
assigning the predicted label to a squared grid in the region of interest would result into blobs of
DTMs with imprecise labels. Morover, objects may appear with different sizes and also at
different scales. To account for this, 5 classifiers are trained with inputs of height and width equal
to 32, 64, 96, 128 and 224 pixels each. The trained models are then used to scan large DTMs in a
sliding window fashion, moving left to right and top to bottom with predefined strides, cropping
DTM patches and making predictions. Each classifier ends up with a heatmap of the region for
each category. The resulting heatmaps by all the models are summed for each category and used
as the final map.

The precision and quality of the final heatmaps depend on the amount of overlap, i.e., the value for
the strides during scanning of the region. The smaller the stride is, the more precise and detailed
the final heatmaps are. However, the computation time at test time also increases proportionally
with the value of the stride. For more precise and crisp predictions, and in order to avoid the
overhead in computation time, instance segmentation techniques are applied. This is the main
idea behind Hypothesis 3. While the classification approach is good for a rough indication of
regions containing objects/structures interest, instance segmentation models provide crisp outlines
of objects and structures in the input DTM and assigns class labels and bounding box coordinates
for each of them. Moreover, at test time, there is no need to crop overlapping input DTM patches
to make predictions. Thus, more accurate predictions are achieved in a smaller period of time.
The assumption that instance segmentation is a more suitable approach is confirmed with the
qualitative results shown in Table 6.38. The predictions by the classifiers are in terms of heatmaps
and show roughly where instances of objects probably exist. Instance segmentation predictions are
exact outline of each structure.

There are two issues with instance segmentation frameworks. If an object is elongated linearly
throughout the input patch, especially if it lies diagonally, the predicted rectangular bounding box
is the rectangle covering the whole input region, which is not a helpful information. Additionally,
in region-based instance segmentation frameworks (used in this dissertation), the region proposal
network proposes many regions with different sizes where objects of interest could exist. This could
lead to multiple proposed regions with different sizes and confidence scores for the same object. It is
therefore required to set a threshold for the number of proposed regions and an additional threshold
for the confidence scores at prediction time. Setting these threshold may lead to overestimation or
underestimation causing false positives or negatives. To alleviate such problems, a third option,
semantic segmentation is explored. This is the main idea behind Hypothesis 4.

Semantic segmentation model provides pixel-wise class labels for a given DTM patch. Therefore,
each pixel is assigned to one and only one category regardless of the shape and size of objects in the
input. Similar to instance segmentation models, semantic segmentation models also scan regions
of interest much faster than classifiers and produce more accurate and fine-grained results. The
assumption that semantic segmentation is more suitable and specially predicts thin and linearly
elongated structures well is confirmed by the results shown in Table 6.39. For example, the ditch in
Region 4 is recovered by the semantic segmentation model while the instance segmentation model
does not predict it.

In summary, the semantic segmentation approach is found to be the most appropriate method for
this task.
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7.1.3. Assessment of Selected Core Deep Learning Architectures

A well-known architecture, HRNet (Sun et al., 2019; Wang et al., 2020), is selected for all the
methods such as RVNet, RVGan, classification, instance segmentation and semantic segmentation
in this research. The choice is based on its superior results compared to another well-known
model called ResNet (He et al., 2016). ResNet is a deep learning architecture that can be trained
as a classifier, but it can also be incorporated as a feature extractor in instance and semantic
segmentation frameworks. In this research, ResNet is used for the classification pipeline, the
backbone of Mask RCNN (He et al., 2017) for instance segmentation and the feature extractor in
DeepLabV3+ (Chen et al., 2018) for semantic segmentation. The results are compared with the
HRNet model and since the HRNet scores better in general, it is used as the main architecture for
the SSL pretext frameworks, i.e., RVNet and RVGan.

7.1.4. Assessment of Predictions for each Category

In general, the models predict structures such as charcoal kilns and burial mounds well, e.g., with
an IOU score of 65.05 and 68.37 percent with the HRNet model with RVNet weights in semantic
segmentation. They have more distinct characteristics and structures, and they are in average
bigger in size than bomb craters and mining holes (see Table 4.1). Bomb craters and mining holes
are smaller in size compared to burial mounds and charcoal kilns and these two structures are very
similar to each other in terms of shape and structure. These properties impact the predictions by
the deep learning models. For example, the IOU scores for the HRNet model with RVNet weights in
semantic segmentation on bomb craters and mining holes are 42.23 and 41.03 percent, respectively.
It is also reflected in the confusion matrices in Table 6.19. Bomb craters are mostly confused for
mining holes compared to burial mounds and charcoal kilns, and mining holes are mostly confused
for bomb craters than the rest. Additionally, the models seem to miss, i.e., not recover in the
predictions, a higher percentage of bomb craters and mining holes while the prediction rate for
charcoal kilns and burial mounds are high.

On the linear dataset, for wider, mostly straight structures such as roads and paths, the predictions
are better while for thin structures such as ditches or hollow ways, the predictions are worse. For
example the IOU scores for paths and roads are 47.78 and 81.91 percent, respectively, while the
scores for ditches and hollow ways are 17.52 and 26.57 percent, respectively, by the HRNet model
with RVGan weights in semantic segmentation. Roads are mostly confused for paths, which is
quite intuitive as the two structures look quite similar specially in the small streets. Examples of
ditches are mostly confused with paths, and hollow ways are mostly confused for ditches. Finally
the higher percentage of paths are confused for roads, as seen in the confusion matrices in Table
6.22.

The stone quarries dataset is framed to contain binary labels, i.e., quarry vs. background. While
the recovery rate for the stone quarries is 94.74 percent by the HRNet model with RVGan weights,
and only 5.24 percent of ground truth examples are missed, the over-prediction (percentage of
predicted quarries that do not intersect any ground truth) is quite high (65.04 percent) as shown in
Table 6.26. The percentage of over-predictions by the HRNet model with RVNet is lower (better)
than the rest of the models, which is in turn consistent with the high F1 and precision scores shown
in Table 6.25.

7.2. Summary and Outlook

This research was aimed at automated detection of structures related to historical mining and
archaeology in ALS or LiDAR data. Structures and objects of interest include archaeological
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monuments such as charcoal kilns, burial mounds, mining holes, ditches, hollow ways and stone
quarries and man-made structures such as bomb craters, paths and roads in the Harz region, Lower
Saxony. To this end, deep learning techniques, the emerging methodology in many research areas,
are exploited. Due to their intrinsic dependence on a lot of annotated data and the lack of such
data in this research, Self Supervised Learning (SSL) methods are explored. As the first step in SSL
termed pretext, two methods are pretrained on unlabeled DTMs created from ALS data. The first
method is an encoder-decoder approach, called RVNet, that learns generating relief visualization
rasters for DTM inputs. The second is based on GANs, called RVGan, and is trained to do the
same.

The learned parameters from the pretrained models are then used in the second step in SSL
termed the downstream. Downstream is the task of training a supervised learning model on
annotated dataset with the model initialized using parameters of pretrained models from the
pretext step. Three different downstream tasks, i.e., classification, instance segmentation and
semantic segmentation are experimented with in this research. The results of the experiment
confirm the positive impact of pretraining with unlabeled DTM on the performance of supervised
learning models with annotated data. It is also shown that initializing the models in the
supervised downstream tasks with the weights of SSL pretext methods lead to faster convergence.

Two well-known deep learning architectures: HRNet and ResNet (or DeepLabV3+ and Mask RCNN
with the ResNet backbone), are trained with random weight initialization for each supervised
downstream task. The model with higher scores in each task, i.e., HRNet, is then selected as the
main backbone for the pretext methods, namely RVNet and RVGan. The positive impact of SSL
pretraining is confirmed with the increase in MAP scores for instance segmentation experiments.
The MAP scores increased from 53.25 to 58.38 in the areal dataset and from 48.77 to 54.95 in the
linear dataset. The MIOU scores in semantic segmentation experiments also confirm the positive
impact of SSL pretraining. There is an increase from 61.49 to 66.21, 52.24 to 53.46, and from 65.44
to 68.46 in the areal, linear and stone quarries dataset, respectively.

In summary, both the pretext methods: the GAN-based model, i.e, RVGan and the
encoder-decoder based model, i.e., RVNet, have positive impacts on the detection scores of
supervised tasks. The impact of RVGan, however, is more significant and it is therefore the
recommended pretext approach in the future. Compared to the classification and instance
segmentation approaches in the supervised downstream tasks, the semantic segmentation
approach performs better rendering it as the most suitable approach in the future.

Even though the use of unlabeled data in training the pretext models help achieve better
performance in the downstream tasks, the performance is still limited and highly depends on the
quality (and also the amount) of annotated data. Furthermore, archaeological structures come in
different sizes and shapes, and the input size with which to train deep learning models has a great
impact on the performance. While a model trained with a small input size, e.g., 224× 224, is able
to detect small structures such as mining holes, charcoal kilns and bomb craters, it performs
poorly in detecting larger structures such as historical stone quarries, and vice versa. Further
research is required to conduct experiments addressing these issues. Combining datasets with
objects of different sizes and shapes together, training a single deep learning model with input
DTMs of each object at different scales, and using further augmentation techniques can perhaps
help.

The predictions by the deep learning models are converted to vector data (shape files containing
polygons for each detected structure) which can be loaded into ArcGIS projects (or other GIS tools)
and analyzed by archaeologists for further improvement and analysis. The polygons for predicted
structures are however sometimes overlapping (depending on the stride size during prediction using
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Algorithm 2) or parts belonging to the same structure are split into two or more polygons due
to mispreditions for some of the pixels (specially for linear structures). Therefore, further image
processing techniques are required to connect separate predictions that belong to the same structure.

The predictions by deep learning approaches can be used by archaeologists to detect and analyze the
changes that each structure undergo through time. For example, based on the detected polygons,
the 3D shapes of objects can be automatically reconstructed (Elschen, 2018). The reconstructed
shape can be compared with a previously stored shape or an expected ideal shape for the said
structure in order to analyze the level of degradation that has occurred in the object.

Further research in this direction include deep learning applications for other structures related to
historical mining and archaeology. Additional information can also be used as input to the models
which can lead to better predictions. Examples include aerial photos corresponding to the regions
for the same DTM inputs, tags from Open Street Map (OSM), e.g., building, highway, parks, etc.
Finally, in addition to the encoder-decoder and the GAN-based approaches, other methods such as
the convolutional variational autoencoder can be explored as the SSL pretext approach. Moreover,
this research is focused on detecting archaeological monuments on the preprocessed ALS or LiDAR
point cloud in the form of DTMs. Applications of deep learning techniques could be explored to
directly work on the LiDAR point cloud directly, without the need for preprocessing.
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Table A.2 – continued from previous page
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Table A.4 – continued from previous page
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Table A.9 – continued from previous page
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A.2. Classification

Predicted
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BG 90.00 0.53 1.73 2.40 5.33
BC 20.09 47.03 1.83 0.00 30.59
CK 7.60 0.11 83.54 0.23 8.29
BM 8.47 0.21 1.45 88.84 0.41
MH 4.15 5.68 1.26 0.81 87.74
(a) HRNet with random weights

Predicted
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M
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ct
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l

BG 80.40 1.33 5.07 5.33 7.87
BC 12.79 52.97 6.39 0.91 26.48
CK 9.53 0.68 59.82 1.48 28.26
BM 10.12 0.21 1.45 85.54 2.07
MH 4.24 8.48 2.16 0.63 84.13
(b) ResNet with random weights

Predicted
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BG 87.73 1.07 0.93 2.93 7.33
BC 25.11 46.12 1.83 0.46 26.03
CK 7.15 0.11 68.33 1.48 22.70
BM 8.06 0.00 0.62 90.29 0.41
MH 3.70 5.32 0.81 1.17 88.64

(c) HRNet with RVNet weights

Predicted
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BG 91.20 0.53 1.20 2.93 4.13
BC 29.22 44.29 3.65 0.46 21.92
CK 7.60 0.00 78.66 0.45 13.05
BM 7.64 0.21 0.21 91.12 0.21
MH 6.67 6.04 0.99 0.81 85.12
(d) HRNet with RVGan weights

Table A.10.: Confusion matrix for the HRNet with input dimensions of 32 and different weight initializations.
Values are in percent.

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 94.93 0.67 0.40 1.73 2.27
BC 31.51 41.10 2.28 0.46 24.20
CK 2.04 0.00 89.22 0.00 8.51
BM 7.44 0.00 0.41 90.50 1.03
MH 4.87 5.23 0.54 0.90 88.10
(a) HRNet with random weights

Predicted
B

G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 83.47 6.00 1.60 4.27 4.67
BC 4.11 72.60 1.83 0.91 20.09
CK 2.61 0.68 70.26 0.68 25.54
BM 5.79 2.07 0.83 89.46 1.24
MH 4.15 14.88 0.63 1.44 78.54
(b) ResNet with random weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 94.40 0.67 1.20 1.20 2.53
BC 27.85 45.21 1.83 0.91 23.74
CK 2.16 0.00 79.34 0.23 18.05
BM 10.74 0.21 0.21 88.02 0.21
MH 3.70 5.86 0.90 1.53 87.65

(c) HRNet with RVNet weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 94.27 0.53 1.07 1.33 2.80
BC 32.42 36.99 2.28 1.37 26.48
CK 2.38 0.00 79.00 0.11 18.27
BM 8.26 0.21 0.41 89.26 1.24
MH 3.16 4.69 1.44 1.26 89.09
(d) HRNet with RVGan weights

Table A.11.: Confusion matrix for the HRNet with input dimensions of 64 and different weight initializations.
Values are in percent.
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Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 95.73 0.53 0.40 1.47 1.87
BC 38.81 36.07 9.13 1.83 13.70
CK 3.86 0.00 82.07 0.34 13.51
BM 8.47 0.41 0.41 89.46 0.62
MH 4.78 4.60 1.26 0.99 88.01
(a) HRNet with random weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 85.73 1.60 3.07 5.33 4.27
BC 9.59 56.62 9.13 4.57 19.63
CK 5.11 0.34 41.09 2.95 50.28
BM 3.72 0.41 0.83 93.80 0.62
MH 3.07 6.85 4.33 3.97 81.42
(b) ResNet with random weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 96.53 0.40 0.53 0.93 1.60
BC 52.97 25.11 1.83 2.28 17.35
CK 18.96 0.57 52.89 1.25 26.11
BM 9.09 0.00 0.00 90.29 0.00
MH 9.02 5.05 1.71 2.07 81.79

(c) HRNet with RVNet weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 95.33 0.53 1.33 0.67 2.13
BC 31.51 34.25 2.74 1.37 29.68
CK 6.24 0.00 75.37 0.34 17.82
BM 8.88 0.00 0.21 88.64 1.65
MH 3.79 3.70 1.35 0.36 90.44
(d) HRNet with RVGan weights

Table A.12.: Confusion matrix for the HRNet with input dimensions of 96 and different weight initializations.
Values are in percent..

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 95.87 0.40 0.80 0.93 2.00
BC 47.95 26.03 5.94 0.91 18.72
CK 5.45 0.00 76.16 0.57 17.59
BM 8.06 0.21 0.21 90.50 0.41
MH 4.78 3.52 3.07 0.63 87.65
(a) HRNet with random weights

Predicted
B

G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 87.60 1.60 2.93 4.40 3.47
BC 9.59 67.12 12.79 3.20 6.85
CK 3.41 0.34 45.52 2.50 48.01
BM 4.13 0.21 1.45 92.98 0.62
MH 3.43 8.84 5.32 5.41 76.65
(b) ResNet with random weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 96.80 0.40 0.53 0.40 1.87
BC 54.34 26.03 3.65 0.46 15.07
CK 7.83 0.00 72.08 0.45 19.41
BM 12.60 0.21 0.00 86.57 0.00
MH 2.98 4.42 3.97 0.90 87.38

(c) HRNet with RVNet weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 96.27 0.53 1.33 0.53 1.33
BC 45.21 28.31 5.02 0.46 20.55
CK 1.93 0.00 76.84 0.34 20.66
BM 8.68 0.21 1.03 88.84 0.62
MH 3.61 4.87 7.12 0.90 83.14
(d) HRNet with RVGan weights

Table A.13.: Confusion matrix for the HRNet with input dimensions of 128 and different weight
initializations. Values are in percent.
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Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 97.47 0.13 0.53 0.67 1.20
BC 60.27 11.42 2.28 0.00 25.57
CK 14.30 0.00 60.27 0.45 24.74
BM 5.79 0.00 0.00 92.56 1.03
MH 4.51 3.61 0.63 0.18 90.71
(a) HRNet with random weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 82.53 1.73 1.33 12.00 2.40
BC 10.50 59.82 5.94 7.76 15.53
CK 2.61 1.25 80.82 1.25 13.85
BM 2.07 0.83 0.41 95.45 0.62
MH 3.25 7.30 5.50 11.54 72.05
(b) ResNet with random weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 98.40 0.13 0.27 0.13 1.07
BC 49.77 26.94 0.46 0.00 22.37
CK 2.38 0.00 91.37 0.00 6.02
BM 14.26 0.00 0.00 84.71 0.41
MH 3.34 4.60 0.27 0.00 91.43

(c) HRNet with RVNet weights

Predicted

B
G

B
C

C
K

B
M

M
H

A
ct

ua
l

BG 98.40 0.13 0.00 0.40 1.07
BC 55.71 16.89 0.46 0.00 26.48
CK 6.47 0.00 87.85 0.11 5.33
BM 8.68 0.21 0.21 89.67 0.62
MH 4.87 5.59 0.27 0.09 88.82
(d) HRNet with RVGan weights

Table A.14.: Confusion matrix for the HRNet with input dimensions of 224 and different weight
initializations. Values are in percent.
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A.3. Areal Dataset
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Continued on next page
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Table A.15 – continued from previous page
Bomb Craters (BC) Charcoal Kilns (CK) Burial Mounds (BM) Mining Holes (MH)
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Table A.15 – continued from previous page
Bomb Craters (BC) Charcoal Kilns (CK) Burial Mounds (BM) Mining Holes (MH)
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Table A.15.: Predictions for 4 regions in the areal dataset by the trained models in three approaches and
manual annotations by 3 colleagues.
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A.4. Linear Dataset

Region 5 Region 6 Region 7 Region 8
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Table A.16 – continued from previous page
Region 5 Region 6 Region 7 Region 8
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Table A.16.: Predictions for 4 regions by the trained models in the linear dataset.

Region 9 Region 10 Region 11 Region 12
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Table A.17 – continued from previous page
Region 9 Region 10 Region 11 Region 12
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Table A.17 – continued from previous page
Region 9 Region 10 Region 11 Region 12
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Table A.17.: Predictions for 4 regions by the trained models in the linear dataset.
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