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Abstract

Automatic monitoring of construction processing has drawn attention in the fields of
Architecture-Engineering-Construction, and Facilities-Management industry increasingly. Point
clouds, acquired via laser scanning or stereo matching of images, have been considered the most
appropriate data source in monitoring the lifecycle of construction projects due to accurate and
detailed 3D information provided. However, inconsistent coordinate systems, lack of topological
and semantic information, complex construction scenarios pose great challenges for using point
clouds in construction monitoring and change detection.

This research aims to develop novel methods and techniques involving point cloud registration,
semantic segmentation, and change detection to obtain and present spatial and temporal changes
in structural components of buildings of the site during the construction process. Hereby, the
work provides contributions on three major aspects: (i) global matching for point cloud regis-
tration, (ii) point embedding for semantic segmentation of point clouds, and (iii) information
fusion for change detection.

To achieve robust and efficient registration of point clouds, we developed novel registration meth-
ods that utilized global features and their attributes in the frequency domain. The low-frequency
components of the global signals are matched to achieve robust and efficient registration of point
clouds. To interpret 3D scenes robustly and embed 3D points in discriminative feature space, we
focus on the engineering of point correlations, the involvement of attention mechanism, and the
improvement of receptive fields of points. The point correlations can be either considered using
the manifold-learning-based method in which the correlation in feature space and spatial space
are both involved or can be embedded by building global relations between points using deep
learning techniques. The attention mechanism is also involved in improving the discriminate
features and suppressing interference. The improvement of the receptive field can be achieved
by building multi-scale neighborhoods during feature learning. In the change detection task,
both the geometric and semantic changes are considered. Geometric changes are obtained by
the occupancy conflicts of point clouds. By fusing the geometric and semantic information using
the Dempster-Shafer theory, we can visualize the changes in the construction sites.

The methods for the proposed co-registration and segmentation were evaluated by experiments
with different open benchmark datasets and for the change detection with an TUM-PF-own
datasets. For the co-registration (WHU-TLS), an average of translation errors about 40 cm and
an average of rotation errors about 0,1 degree can be achieved. For the segmentation, an overall
accuracy of about 85% (ISPRS Vaihingen ALS) and about 54% (TUM photogrammetric point
cloud) can be obtained. As for the change detection, an overall accuracy of about 75% can be
finally achieved.






Kurzfassung

Die automatische Uberwachung von Bauprozessen hat in den Bereichen Architektur, Ingenieur-
wesen, Bauwesen und Facility Management zunehmend an Bedeutung gewonnen. Punktwolken,
die durch Laserscanning oder automatische Bildzuordnung erfasst werden, gelten als die am
besten geeignete Datenquelle fiir die Uberwachung des Lebenszyklus von Bauprojekten, da sie
genaue und detaillierte 3D-Informationen liefern. Inkonsistente Koordinatensysteme, fehlende
topologische und semantische Informationen und komplexe Bauszenarien stellen jedoch eine
grofle Herausforderung fiir die Verwendung von Punktwolken bei der Bautiiberwachung und der
Erkennung von Veranderungen dar.

Ziel dieser Forschungsarbeit ist es, neue Methoden und Techniken zu entwickeln, die Koreg-
istrierung von Punktwolken, semantische Segmentierung und Anderungsdetektion umfassen, um
raumliche und zeitliche Veranderungen der strukturellen Gebdudekomponenten einer Baustelle
wéahrend des Bauprozesses zu erfassen und darzustellen. Dabei liefert die Arbeit Beitrdge zu drei
Hauptaspekten: (i) Globales Matching fiir die Registrierung von Punktwolken, (ii) Merkmal-
seinbettung fiir die semantische Segmentierung von Punktwolken und (iii) Informationsfusion
fiir die Anderungsdetektion.

Um eine robuste und effiziente Registrierung von Punktwolken zu erreichen, wurden neue Meth-
oden entwickelt, die globale Merkmale und ihre Attribute im Frequenzbereich nutzen. Die
niederfrequenten Komponenten der globalen Signale werden genutzt, um eine robuste und ef-
fiziente Registrierung von Punktwolken zu erreichen. Um 3D-Szenen robust zu interpretieren
und 3D-Punkte in einen diskriminierenden Merkmalsraum einzubetten, konzentriert sich die
Arbeit auf die Entwicklung von Punktkorrelationen, die Einbeziehung von Aufmerksamkeits-
mechanismen und die Verbesserung des rezeptiven Felds von Punkten. Die Punktkorrelatio-
nen konnen entweder durch nichtlineare Dimensionsreduktion bestimmt werden, bei der sowohl
die Korrelation im Merkmalsraum als auch Nachbarschaftsbeziehungen einbezogen werden oder
durch globale Beziehungen zwischen Punkten durch Deep-Learning-Methoden eingebettet wer-
den. Der Einsatz eines sogenannten Aufmerksamkeitsmechanismuses dient der Verbesserung der
Unterscheidungsmerkmale und unterdriickt Storungen. Die Verbesserung des rezeptiven Feldes
kann durch den Aufbau von Nachbarschaften in mehreren, verschiedenen Distanzen wéihrend des
Lernprozesses erreicht werden. Bei der Anderungsdetektion werden sowohl die geometrischen als
auch die semantischen Verianderungen beriicksichtigt. Geometrische Anderungen werden durch
Belegungskonflikte von Punktwolken ermittelt. Durch die Fusion von geometrischen und seman-
tischen Informationen unter Verwendung der Dempster-Shafer-Theorie kénnen Anderungen auf
Baustellen visualisiert werden.

Die Methoden fiir die vorgeschlagene Koregistrieung und Seemntierung wurden durch Experi-
mente mit verschiedenen offenen Benchmarkdatensétzen und die Anderungsdetektion mit TUM-
PF-eigenen Datensétzen evaluiert. Im Mittel konnten fiir die Koregistrierung (WHU-TLS) ein
Translationsfehler von ca. 30 cm und einen Rotationsfehler von ca. 0,1 Grad, fiir die Seg-
mentierung Gesamtgenauigkeiten von ca. 85% (ISPRS Vaihingen ALS) und ca. 54% (TUM
photogrammetrische Punktwolke) und fiir Anderungsdetektion ca 75% erreicht werden.
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1 Introduction

1.1 Motivation

In the fields of Architecture-Engineering-Construction and Facilities-Management (AEC/FM),
the management of the life-cycle of a construction project is of great importance. Activity man-
agement of the construction project usually requires a forward flow of design intent of the project
and a feedback flow of project state information. As a process providing feedback information,
progress monitoring is one of the core tasks in the management of a construction project [Turkan
et al., 2012]. The need for automatic and accurate progress monitoring of construction projects
has increased in recent decades. In the past decade, advances in computer vision have boosted
many crucial tasks like building modeling [Arayici, 2007; Xu et al., 2018a; Xu & Stilla, 2019],
progress tracking [Turkan et al., 2012; Kim et al., 2013; Bosché et al., 2014], scene recognition
[Xu et al., 2017], and quality control [Shih & Wang, 2004; Gordon & Akinci, 2005; Arayici, 2007]
towards automatic, intelligent, and integrated processing pipelines. Here, Building Information
Model (BIM) is a representative platform that is increasingly widely used for the design of con-
struction projects and the monitoring of the construction progress, which can provide a solution
for accurate progress monitoring [Tang et al., 2010; Tuttas et al., 2017]. However, there are still
gaps between the current development of progress monitoring and the final goal of progress mon-
itoring with high automation and digitization. Challenges also occur in many specific tasks, such
as integration of multiple attributes, alignment of time frames, and standardization of data for-
mats and processing interfaces. For tackling these challenges, progress monitoring has been widely
studied in the fields of AEC/FM. However, traditional ways of implementing progress monitoring
depend on visual inspections, extensive manual records, and data analysis. The conventional
methods rely heavily on personal skills, inspector experiences, and surveying techniques [Bosché,
2010]. The traditional surveying-based methods for construction monitoring are labor-intensive,
error-prone, time-consuming, and lacking continuity. To address these problems, many researchers
have studied various techniques for automatic construction monitoring, such as 2D imaging based
site analysis [Haas et al., 1984; Abeid et al., 2003; Ibrahim et al., 2009; Chi et al., 2009; Wu
et al., 2010], photogrammetry based site mapping [El-Omari & Moselhi, 2008; Golparvar-Fard
et al., 2009, 2015; Braun et al., 2015; Tuttas et al., 2015, 2017], and terrestrial laser scanning
(TLS) based mapping and scene analysis [Stone & Cheok, 2001; El-Omari & Moselhi, 2008; Lee
et al., 2013; Kim et al., 2013; Bosché et al., 2014; Xu et al., 2017; Xu et al., 2018b]. Among the
aforementioned technologies, point clouds acquired using light detection and ranging (LiDAR)
and stereo vision techniques have been considered the most appropriate technique to capture 3D
information of construction projects with high accuracy and efficiency [Xu & Stilla, 2021]. By
using LiDAR techniques, distances from the sensor to nearby surfaces can be observed with mil-
limeter to centimeter accuracy at speeds of thousands of point measurements per second [Tang
et al., 2010]. While benefiting from the stereo vision techniques, images captured by digital cam-
eras can not only cover regions of interest but also be processed to generate point clouds with
accurate positions and rich 3D details. Besides, colors and textures also serve as additional infor-
mation to aid further modelling. Laser scanning and stereo vision techniques show their advances
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in providing fast, accurate, comprehensive, and detailed 3D as-built information for the sensed
construction scene.

In Fig. 1.1, Tuttas et al. [2017] illustrated the general procedure for construction progress
monitoring using point clouds. The construction project’s schedule can be updated by comparing
the as-built information from the sensed data with as-planned information provided by 4D-BIM.
Thus, decisions can be made for further construction activities. For a fair comparison with as-
planned BIM, as-built information from the sensed technologies has to be organized at the object
level for fulfilling the requirement of progress monitoring purposes. However, the raw 3D points
do not naturally contain object-oriented information. Further processing of the measured 3D data
is required for achieving the task of progress monitoring.

Photogrammetry
(as-planned) (as-built)

| Data acquisition |
— Schedule ’:'q:
I Image orientation

Co-regilstration \
| Dense matching |

+

3D point cloud

State 1; State 1;
A

3D geometry and
object attributes

Update

| As-built — as-planned comparison |

—  Activities k—é—»l OK |

Figure 1.1: Ilustration of the general procedure for construction progress monitoring using a 4D BIM and
a photogrammetric point cloud [Tuttas et al., 2017].

Remarkable researches have been reported in developing processes and algorithms for process-
ing 3D point cloud data in the field of progress monitoring. Turkan et al. [2012] developed an
automated recognition system that combines 3D object recognition technology with schedule in-
formation into a combined 4D objection-oriented progress tracking system, which helped update
the design plan of the construction progress. Kim et al. [2013] proposed a system by match-
ing a-built data with an as-planned model and revising the as-built status. Bosché et al. [2014]
monitored the construction of a utility corridor in a university engineering building with a Scan-
versus-BIM object recognition framework. Tuttas et al. [2017] performed continuous monitoring
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by acquiring and subsequently comparing co-registered point clouds. Xu et al. [2018a] provided
a robust solution for reconstructing scaffolds from a photogrammetric point cloud of a construc-
tion site using a novel 3D feature descriptor and a projection-based segmentation method. Puri
& Turkan [2020] developed a semi-automated methodology for monitoring bridge construction
projects by comparing project as-built data from 3D point clouds and 4D project design model.
The process involved the registration of virtual point cloud from 3D model and as-built point
cloud and also segmentation and object recognition based on the scanned data.

From the aforementioned researches, it can be seen that three major tasks should be ad-
dressed (see Fig. 1.2) in the progress monitoring: (1) registration; (2) semantic segmentation or
object recognition; (3) change detection. To be specific, point clouds acquired at different epochs
should be aligned by point cloud registration for a fair comparison between different states of a
construction project or comparison between as-built and as-planned data. Meanwhile, semantic
segmentation should be conducted to fill semantic gaps between raw point clouds and the required
as-built model. Most importantly, comparison between different states of construction process
should be implemented by change detection of point clouds to detect and present changes of
construction scenes.

Align point clouds from different
coordinate systems

Registration of point clouds

I

Semantic segmentation Interpret 3D scenes presented by point
of point clouds clouds
Change detection of point Detect and present changes between point
clouds clouds

Figure 1.2: Three-step workflow for change detection from point clouds.

However, to achieve automatic progress monitoring and change detection, several essential
problems must be addressed (see Fig. 1.3). First, point clouds acquired during the construction
process and BIMs at different states should be aligned in the same coordinate system to enable
the comparison. Generally, due to temporal changes and incompleteness caused by occlusions in
complex urban environments, it leads to difficulties in setting reliable and sufficient ground control
points and it is usually challenging to find correspondences completely automatically. It makes
the registration of point clouds a challenging task. Second, there are uneven densities resulting
from different viewing distances of scanners and noise and outliers of point clouds, which makes
the extracted features ineffectual and leads to difficulties in interpreting the complex construction
scene. In addition, in construction scenes, there exists not only various categories of building
objects but also some temporal objects belonging to other categories, which makes construction
scenes of high complexity. Third, the progress of a construction project is indicated by changes
between different states of the construction. The comparison is usually conducted based on the
segmentation and recognition results of building objects. However, as mentioned before, for either
laser scanning or stereo vision technique, they all have limits in observations, such as occlusions.
This factor should also be considered when detect and present changes in a construction scene.
Considering the aforementioned problems, the research questions can be summarized as follows:

I To what extent of robustness, accuracy, and efficiency could a marker-free alignment of
point clouds measured at different time epochs with temporal changes and incompleteness
of data achieve?
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IT What are the necessary aspects that must be considered when learning features to ensure an
accurate interpretation of complex scenarios using point clouds with uneven point densities,
intense noise, and outliers?

IIT To what extent of automation could be achieved for change detection? Is it sufficient enough
to detect changes by purely comparing segmentation results of building objects?

Align point clouds with temporal
changes and incompletence of
data? How robust, accurate, and
efficient could the alignment be?

Point cloud Point cloud
acquired at epoch t1 acquired at epoch t2

E.g., Point clouds acquired at different epochs but with different coordinate systems

Interpret scenes with high
complexity using point clouds
with uneven point densities,
strong noise and outliers? Which

Point cloud with Point cloud with aspects shall be considered?
color information semantic labels

E.g.. Photogrammetric point cloud with colors but without semantic labels

Y

To what extent of automation

t Point cloud g could be achieved for change
acquired at acquired at = : : ;
epoch t1 epoch {2 detection? Is it sufficient to purely

compare segmentation results?

_.E;g., Point louds aciluired at different epochs with canges

Figure 1.3: Problems for construction monitoring and change detection.

For finding answers to the aforementioned research questions, before introducing our objectives
and contributions, we first provide a detailed survey and review of related work in the following
section.

1.2 State of the art

Numerous researchers have studied change detection using point clouds. According to the three-
step workflow mentioned in the last section, we will provide detailed reviews and discussions
concerning methods and algorithms relating to registration, semantic segmentation, and change
detection in the following section.

1.2.1 Registration of point clouds

Point cloud registration has long been a challenging task in the field of photogrammetry and
computer vision. The objective of registration is to estimate a rigid transformation that aligns
multiple individual but related point clouds into a unified coordinate system [Hebel et al., 2009; Xu
et al., 2019a]. These point clouds might be acquired from different viewpoints, at different times,
using different platforms, or via multimodal sensors. The registration between them should be
done in an automatic and marker-free manner. Numerous studies have been intensively reported
to solve mark-less point cloud registration, with two major steps always involved, including the
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estimation of correspondences and the calculation of transformation parameters. Here, matching
correct correspondences is the key to the success of registration. In the following, we will review
methods using the matching of correspondences, which can be grouped into three fundamental
classes conforming to the principles that they used: geometric constraint-based methods, feature
description-based methods, and global information-based methods.

Geometric constraint-based registration

For geometric constraint-based approaches, a geometric constraint is formed by points or primi-
tives as an indicator for retrieving and matching correspondences. For example, Iterative Closest
Point (ICP) searched for associated points based on minimizing point-by-point distances between
the various point clouds [Besl & McKay, 1992; Habib et al., 2010; Al-Durgham & Habib, 2013] for
point cloud registration. Its variants, such as Geometric Primitive ICP [Bae & Lichti, 2008], geo-
metric features + ICP [Habib et al., 2005, 2010; Gressin et al., 2013], Go-ICP [Yang et al., 2013],
are also representative approaches, which utilize geometric constraints by minimizing distances
between corresponding elements. However, for the ICP-based methods, proper initial transfor-
mation estimation is needed to avoid incorrect local optimum. Apart from ICP-based methods,
many methods follow a different registration scheme, in which specially designed combinations of
points or primitives matter to the identification of corresponding points. This specially designed
combination of points or primitives can create a constraint when searching for candidate pairs of
points, significantly increasing the efficiency compared with a random matching test. 4-point con-
gruent systems (4PCS) and its variants such as Super4PCS [Mellado et al., 2014}, keypoint-based
4PCS (K4PCS) [Theiler et al., 2014], and semantic keypoint-based 4PCS (SK4PCS) [Ge, 2017]
are representative approaches following this strategy. In this type of method, corresponding sets
of congruent points are identified by utilizing the constraint of intersection ratios and selecting
candidates for finding correspondences. In affine transformation, intersection ratios of four points
congruent sets consisting of two pairs of points are invariant. Thus, by filtering out all four point-
sets follow intersection ratios from a given four point-sets in the target point cloud, we can reduce
the number of candidates in the source point cloud. Compared with feature description-based
registration, the geometric constraint-based methods have higher robustness to occlusions and
unequal densities since the geometric constraint can be built on a larger scale than the features
extracted from a local context. Similarly, instead of points, using the combination of different
kinds of primitives, for example, two pairs of planes [Chen et al., 2019], is also a compelling choice.
The use of geometric primitives like planes can upgrade the robustness of the geometric features,
as they constraint degree of freedom (DoF) and are less sensitive to uneven point densities and
outliers [Xu et al., 2019a]. For example, measured distances between points in the point-based
4PCS methods are more sensitive to noise than the primitive-based one. The volumetric 4PCS
(V-4PCS) [Huang et al., 2017] is also a method under the framework of 4PCS, which extended
the surface expression to volumetric ones and shows a promising improvement in computational
efficiency.

Feature description-based registration

For feature description-based registration approaches, the corresponding pairs between point
clouds are identified through retrieving features with the most substantial similarity. An appro-
priate feature description plays an essential role in this retrieving process, usually implemented
by feature descriptors. Various feature descriptors have been demonstrated in many studies that
are useful in feature retrieving and matching. An eligible feature descriptor should have two
core characteristics, namely, high descriptiveness and rotation-invariance. High descriptiveness
ensures a discriminative description of geometric features for non-corresponding points and sub-
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stantial similarity between features of corresponding points. Rotation-invariance guarantees the
robustness of the generated features, which the rigid transformation between point clouds should
not influence. Renowned examples of feature descriptors include scale-invariant feature transform
(SIFT) [Flitton et al., 2010], fast point feature histogram (FPFH) [Rusu et al., 2009], rotational
projection statistics (RoPS) [Guo et al., 2013] and signature of histogram of orientations (SHOT)
[Tombari et al., 2010]. However, the performance of descriptors (i.e., SIFT) highly depends on
the saliency of input points selected by keypoint detectors like Harris 3D. The detection of key
points will highly influence the performance of both candidate selection and feature extraction.
Furthermore, the basic principle for achieving rotation in-variance mainly counts on the pose
normalization. For instance, SIF'T achieves rotation-invariance in feature extraction by orienting
the local reference frame (LRF) axis to the dominant orientation of gradients. However, the ori-
entation of LRF is easy to be influenced by noise and outliers. An alternative is to obtain the
local geometry statistics, which are easy to implement and fast to compute. However, the critical
problem is that this kind of feature may encounter low descriptiveness. Additionally, features
can also be extracted from geometric primitives that clustered from points, such as lines [Habib
et al., 2005; Hebel & Stilla, 2010, 2012; Ge & Hu, 2020], curves [Yang & Zang, 2014], planes
[Xiao et al., 2013], surfaces [Ge & Wunderlich, 2016]. Thus, the accuracy of extracting these
geometric candidates for registration, such as key points or primitives, is an important factor
that influences the registration results. Besides, artifacts may also be brought in when extracting
geometric primitives.

Global information-based registration

In the aforementioned registration categories, local information is mainly utilized and generated
based on 3D points themselves or clusters of primitives. Registration can also make use of global
features derived from the entire point clouds. For instance, in the normal distribution transform
(NDT) method [Biber & Strafler, 2003], points were transformed into a normal distribution, the
natural distribution of which forced alignment between point clouds [Magnusson et al., 2007]. The
distribution of point densities is another global indicator for alignment. In some representative
methods, coherent point-drift [Myronenko & Song, 2010] and kernel affinity correlation [Tsin &
Kanade, 2004] were applied on the density for finding correspondences. In a recent work of [Dong
et al., 2018], global features were used for the fast orientation of multi-scan unordered point clouds.
In our previous work [Huang et al., 2019], 3D point clouds of a highly complicated scenario were
projected into 1D histograms and 2D images for achieving registration in low-dimensional spaces.
These projected histograms and images were also a global expression of original point clouds.

Generally, for both geometric constraint-based and feature description-based registration, they
follows the strategy of finding local correspondence. Compared with local-correspondence-based
approaches, the global information-based methods can avoid the establishing of local feature
descriptions and thus be more robust to noise and outliers and less sensitive to irrelevant changes
of details. However, large overlap are usually required for global-information-based methods.
Otherwise, the approaches based on global features may make a significant difference.

1.2.2 Semantic segmentation of point clouds

For parsing semantic information of the 3D scene from point clouds, one practical solution is
semantic labeling. The primary goal of semantic labeling of point clouds is to annotate every point
in the point cloud with a label of semantic meaning, in accordance with geometric or radiometric
information provided based on the point itself and its neighborhood. This can be achieved via
the classification of acquired points. Due to the development of deep learning techniques, many
new advances have also brought new solutions for semantic segmentation of point clouds. Thus,
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semantic segmentation approaches can be divided into two groups based on the rule that whether
deep learning techniques are applied: traditional methods and deep learning-based methods.

Point cloud classification with traditional methods

To achieve the semantic labeling of points, supervised classification is typically implemented
[Vosselman et al., 2017; Li et al., 2019a]. It comprises two main steps: generation of distinctive
features and classification of 3D points with corresponding features with a classifier. For the
extraction of features, the local context of each point is conventionally defined by its neighboring
points and presented by various handcrafted mathematical expressions based on spatial or spectral
attributes of these points. For the training process, the mathematical expressions of the selected
representative samples are integrated into a feature vector and fed into a classifier along with the
corresponding labels. In previous work, to create discriminative features, studies have exploited
both point geometry and inherent attributes. Many contextual features extracted from spatial
distributions and directions of points have shown their effectiveness in the classification task
[Yang et al., 2017a], such as eigenvalue based features from covariance matrix of point coordinates
[Chehata et al., 2009; Weinmann et al., 2015a,c|, waveform-based features from transformation
[Jutzi & Gross, 2010; Zhang et al., 2011], 2D projected patterns [Zhao et al., 2018], elevation values
and height differences [Maas, 1999; Gorgens et al., 2017; Sun et al., 2018], and orientations of
points from normal vectors [Rabbani et al., 2006]. However, designing good handcrafted features
is a critical and challenging task, which requires a good understanding of the scanned objects and
highly depends on empirical tests [Xu et al., 2019b].

Classifier refers to a mathematical function or transformation implemented by algorithms or
strategies, which projects input features to a category. A well-designed classifier should maxi-
mum the discrimination of features of various semantics. Regarding point cloud classification, a
considerable amount of classifiers have been introduced and tested, including AdaBoost [Chan
& Paelinckx, 2008], support vector machines (SVM) [Mallet et al., 2011], composite kernel SVM
[Ghamisi & Hofle, 2017], and random forest (RF) [Chehata et al., 2009], Hough forest [Yu et al.,
2016], 3D Markov Random Field (MRF) [Yin & Collins, 2007], and conditional random fields
(CRF) [Niemeyer et al., 2014; Weinmann et al., 2015b; Yao et al., 2017; Vosselman et al., 2017,
Li et al., 2019b]. For supervised classification, a classifier is trained using the generated features
and the corresponding labels so that the classifier’s parameters can be optimized for inferring
categories of points from input features. Then, the trained classifier can be used to predict labels
of points from other test areas. However, these interactions are not controllable. There is still
heterogeneity in the classification results in some cases, especially in low-density areas and borders
of urban objects. Therefore, contextual information is typically considered to improve the spatial
smoothness of the classification results. Furthermore, to encode the spatial dependencies between
3D points, a graph structure is usually constructed to model the adjacency relationship. Numer-
ous optimization strategies are based on specific classic graphical models such as MRF [Munoz
et al., 2009; Lu & Rasmussen, 2012; Kang & Yang, 2018]. In Landrieu et al. [2017], instead of
fixing on some standard graphical models, a general mathematical optimization framework with
more versatile solutions for spatial smoothing is proposed.

Point cloud classification with deep learning techniques

Compared with classification approaches using handcrafted features, classification methods using
learned features can automatically discover the feature representations needed for classification
from raw points, requiring less prior knowledge and avoiding sophisticated feature design. Feature
learning is usually achieved via dictionary learning or deep learning. At the moment, deep-
learning-based methods for point cloud classification are getting increasingly popular recently,
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which provides end-to-end solutions that decrease the efforts in feature design and improve abilities
to learn high-level feature representation for the classification task. For a neural network-based
method, its layer structure and parameters can implicitly express the spatial interactions between
3D points, facilitating the feature representations. Tennumerous neural networks have achieved
remarkable performance in a wide range of applications. Examples include VoxNet [Maturana
& Scherer, 2015], MultiViewCNN [Su et al., 2015], PointNet [Qi et al., 2017a], PointNet++ [Qi
et al., 2017b], PointCNN [Li et al., 2018], PointSIFT [Jiang et al., 2018], superpoint graph (SPG)
[Landrieu & Simonovsky, 2018], RandLA-Net [Hu et al., 2020], and many more.

Generally, deep learning methods for point cloud classification can be categorized into five
major types: projection-based methods, voxel-based methods, point-based methods, graph-based
methods, and attention-based methods.

Projection-based methods

The core idea of projection-based methods is to project points from the 3D Euclidean space
to 2D planes or manifold space so that the projected data can utilize CNN approaches designed
for 2D data. Values (e.g., grayscales, intensities, or densities) of the projected data will represent
either geometry (e.g., elevations) or attributes (e.g., RGB colors) of original 3D points. The most
commonly used 2D projected representation is imagery. The 2D rendered image derived from
virtual cameras of different viewing positions [Su et al., 2015] is an example. Through the use of
multiple 2D rendered images, the 3D geometry of an object can be delineated. The rendered 2D
images of an object are then applied to a 2D CNN network for object classification. According
to reported studies, projection-based methods have demonstrated success in various classification
applications using large-scale LIDAR point clouds. In Yang et al. [2017b], geometric features and
full-waveform attributes were generated from local neighboring points of each point and assigned
with x— and y— coordinates to a pixel in a 2D image. The generated 2D images encapsulated
either geometric and radiometric information and were then fed into 2D CNNs. With the predicted
labels of 2D pixels and a back-projection, the labeling of 3D points could be achieved. In Yang
et al. [2018], based on the previous strategy of [Yang et al., 2017b], a multi-scale CNN and 2D
images of features extracted from neighborhoods of various scales were developed, which obtained
a better performance of classification. In Boulch et al. [2018], snapshot images with pixels, in
which RGB colors and depths were encoded, were applied to a 2D fully convolutional network.
Once the labels of 2D pixels were obtained, they were back-projected to the original 3D space to
fulfill 3D point classification eventually. In Zhao et al. [2018], 2D images of multi-scale contextual
information, including features of height, intensity, and roughness, were attained to represent the
original 3D LiDAR points. Then, a multi-scale CNN was applied to conduct a classification of
3D points using these 2D images. Apart from 2D images, a digital surface model (DSM), as
2.5D data, is also adopted to represent 3D points of ALS data, since points in ALS data always
reveal an even distribution in horizontal directions and lack of vertical distribution. In Chen et al.
[2017], the DSM generated from 3D points was utilized as one input, fed into a two-stream deep
neural network. Generally speaking, the neural network design based on the projection method
is directly inherited from the existing 2D CNN solutions, and there is almost no need to adjust
the network structure. However, these methods are deficient in presenting information from the
depth direction and inevitably cause errors in rendering and interpolation.

Voxel-based methods

Voxel-based approaches structure the 3D space into regular voxel grids and project discrete 3D
points into these voxels. Then, 3D points will be represented by the spatial occupancy of voxels so
that a 3D convolution with a cubic template can be applied. VoxNet [Maturana & Scherer, 2015]
is one early example, which directly transformed points to 3D voxels assigned with occupancy
and implemented a 3D CNN to predict class labels of 3D objects. In Engelcke et al. [2017], as
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an improvement, point clouds were voxelized into grid structures, then the voting procedure was
introduced in a 3D CNNs. Similar to grey values of 2D pixels, occupancy is the most commonly
used attribute that could be assigned to 3D voxels. However, there are also some other strategies
to represent points with voxels. For instance, in Wang & Posner [2015], values of voxels were
encoded by attributes generated from spatial positions of all points within this voxel. Besides,
irregular-shaped 3D grid structures (e.g., voxels may have different sizes or cuboid shaps) can
also be used for organizing 3D points. For example, the octree structure was introduced to CNNs
in Wang et al. [2017], wherein normal vectors of points in each leaf node were averaged as voxel
values and then fed into CNN. Similarly, Kd-trees were also utilized to structure discrete 3D
points [Klokov & Lempitsky, 2017]. Voxel structures can also combine with pixels. For example,
in Qin et al. [2019], both voxels and pixels were used as inputs in the proposed VPNet for semantic
labeling of ALS data. The generation of voxels provided contextual information from the local
area. On the contrary, auxiliary structures can be utilized to assist voxels as well. For instance,
in Zhou & Tuzel [2018], unified features of every voxel were extracted via an additional feature
encoding layer based on the region proposal network. These features would tackle the sparsity
of 3D points. In Qi et al. [2016], two aforementioned schemes (i.e., voxel-based convolution and
feature encoding layers) were combined into a multi-orientation volumetric CNN. The features
of each orientation were generated with a shared network, and results of an image-based CNN
were also integrated. In Su et al. [2018], sparse bilateral convolutional layers directly operated
on a collection of points represented as a sparse set of samples in a high-dimensional lattice. The
efficiency can be maintained using indexing structures to apply convolutions only on occupied
parts. Choy et al. [2019] introduced a 4D CNN for spatio-temporal perception, and a hybrid
kernel was proposed to deal with the exponential increase of parameters in using a 4D hypercube.
However, similar to the shortcomings of projection-based methods, the voxelization process, either
regular-shaped or irregular-shaped ones, definitely lead to a loss of spatial information since this
is a sampling process. In this case, aliasing is inevitable due to the setting of the voxel resolution.
Moreover, points of different categories may be rasterized into a voxel with the same label, which
adds ambiguity and decreases the accuracy. The 3D structure requires considerably larger memory
consumption and computational cost than 2D images, which hinders applying and developing this
method.

Point-based methods

Point-based methods use discrete points as input to networks. As a milestone, the emergence
of PointNet [Qi et al., 2017a] started the trend of directly using discrete points in deep neural
networks. PointNet and its variants [Qi et al., 2017b, 2018] showed remarkable performance on
popular benchmarks with either indoor [Armeni et al., 2016; Dai et al., 2017] or outdoor [Geiger
et al., 2012; Hackel et al., 2017; Zhang et al., 2019b] applications. One of the key innovations
of PointNet is to consider the unstructured and disordered characteristics of 3D points through
a transformation and align points into the same orientation frame. Thus, it can establish an
end-to-end framework in which 3D points can be classified without preprocessing. Moreover, for
each point, local and global features were considered and learned in PointNet. In Yousefhussien
et al. [2018], the multi-scale frame was developed to embed PointNet, for achieving a classification
of large-scale ALS point clouds. In Li et al. [2018], PointCNN with a new network structure was
proposed to learn an X transformation of points to deal with permutations and centralization.
In Jiang et al. [2018], PointSIFT encoded 3D information of point orientations, then the module
was embedded in the multi-scale frame of PointNet++. In Thomas et al. [2019], KPConv used a
newly designed point convolution, which adapted kernel points to local geometry, in which weights
for kernel positions are defined by linear correlation. In Boulch [2020], ConvPoint replaced the
discrete kernels by continuous ones. Zhang et al. [2019a] proposed an efficient convolutional
operator which utilized statistics from concentric spherical shells to define local representative
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features. The RandLA-Net method proposed an efficient and lightweight network architecture
that involved a random point sampling strategy and a novel local feature aggregation module [Hu
et al., 2020]. In Li et al. [2020a], a geometry-attentional network was designed, which improved
PointSIFT by embedding dense hierarchical structure and elevation-attention module. In this
work, low-level geometric vectors were introduced to induce the learning of high-level local pattern
representation, which increased the discrimination of geometric awareness of features. In Li et al.
[2020Db], a density-aware convolution module was introduced to directly work on 3D point sets
and deal with uneven density distribution of 3D point clouds. Additionally, a context encoding
module was designed to regularize the global semantic context. In Wen et al. [2020], a directionally
constrained fully convolutional neural network utilized a novel directionally constrained point
convolution module to encode local context in an orientation-aware way by considering projected
2D receptive fields. Moreover, point-based methods are also used as an encoder for extracting
deep features, which can be integrated with other optimization algorithms. For instance, in
Huang et al. [2020b], PointNet++ with hierarchical data augmentation was proposed to learn
deep features of points and then optimized by a manifold-based feature embedding.

Graph-based methods

Rather than directly using discrete points as input, points, as well as the contexts, can be
structured by a graph. A graphical model could naturally represent the spatial space of 3D
scenes [Landrieu et al., 2017]. The graph-structured data is then fed into a newly designed
network. GraphCNN is an encouraging instance, which has shown promising results on different
applications [Simonovsky & Komodakis, 2017; Landrieu & Simonovsky, 2018; Wang et al., 2018].
In the graph-structured data, the edges between the points are created for generating the topology
of the graph.

Attention-based methods

Recently, the attention mechanism is becoming increasingly popular, as it can provide scores
of importance for parameters. The attention helps in improving the discriminate features and
suppressing interference. In Fu et al. [2019], a dual attention network was proposed to integrate
local features with their global dependencies adaptively. The feature aggregation is achieved by
a weighted sum of the features at all positions. Meanwhile, channel attention was also applied
to learn the interdependencies between feature channels. As for semantic segmentation of point
clouds, in Feng et al. [2020], a point-wise spatial relation module was introduced to learn the
dependencies of all points. In Li et al. [2020a], elevation-based attentions were learnt as an ac-
tivation map for the deep features used for classification. Meanwhile, some work utilizes the
attention mechanism in scope for feature aggregation. In Hu et al. [2020], attention-based ag-
gregation is applied to the local scope to integrate the neighboring features. However, most of
the aforementioned attention modules only utilized relations as the weights to aggregate features.
The global structural information could be further explored based on the relations.

Compared with classic classification methods using handcrafted features, deep-learning-based-
methods show their advances in learning high-level feature representation and improving the dis-
crimativeness of extracted features in the classification task. Among deep-learning-based methods,
point-based approaches shows their strength due to the capabilities of dealing with geometric na-
ture of point clouds directly. Although many state-of-the-art deep learning-based methods has
achieved remarkable performance in many applications, there are still some aspects that could be
further exploited. First, the local geometric characteristic of points can be further investigated
using deep learning methods. Second, long-range relations may provide additional and rich infor-
mation provided in large receptive fields. Third, the optimization of the deep embedded feature
space could be exploited.
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1.2.3 Change detection using point clouds

Change detection is to identify differences in the state of an object or phenomenon by observing it
at different time points [Singh, 1989]. Generally, the change detection approaches can be categories
into three classes concerning the representation type of the output for changes: (1) point-based
changes; (2) voxel- or occupancy grid-based changes; (3) segment/object-based changes.

Point-based change detection

The most direct way of detecting changes between 3D data is a point-to-point comparison, which
is also denoted as surface difference. Basgall et al. [2014] obtained changes by directly calculate
differencing between LiDAR and stereophotogrammetric point clouds using the CloudCompare
software. The changes of single buildings were detected by visual inspection. Kang et al. [2013]
used the Hausdorff distance to calculate point-to-point distances to avoid local density variation
issues for detecting changes between point clouds. Xu et al. [2015] utilized a point-to-plane surface
difference map by merging and comparing two datasets. The changes were detected by applying
context rules to the difference map. This method required heavy prior knowledge about the scene.
Du et al. [2016] proposed an automatic method to detect building changes in urban areas using
aerial images and LiDAR data which was coregistered using the ICP algorithm. In this method,
height difference and grey-scale similarity were utilized as indicates for changes. Besides, the
graph-cuts method was applied to further optimize the detected changes by considering contextual
information. This method applied some thresholds for the detecting task, and the thresholds
were set based on prior knowledge of the scene. In general, point-to-point distance is sensitive to
point densities. Additionally, in point-based change detection, the high-level semantics are not
considered, and the limitations of observation are also not tackled.

Voxel-based change detection

For voxel-based change detection methods, point clouds are structured to 3D grids or octree-based
voxels, in which the changes can be conducted by comparing different occupancy states between
point clouds. Pagac et al. [1998] utilized occupancy grids for constructing and maintaining a map
of an autonomous vehicle’s environment for the purpose of navigation, using evidential reasoning.
The sensor readings are fused into the map using the Dempster-Shafer theory (DST). Wolf &
Sukhatme [2004] applied a similar method for SLAM in a dynamic environment. The occupancy
state is defined as free, unknown, and occupied. The changes can be obtained by comparing differ-
ent states of occupancy. However, the aforementioned methods only studied occupancy modelling
in 2D grids. Hebel et al. [2013] applied Dempster-Shafer theory (DST) to determine conflicting
evidence along the laser pulse propagation path. Occupancy grids are utilized for tracing the
propagation path in 3D space for each measurement. Meanwhile, additional attributes are taken
to define the types of changes into account by considering different characteristics of man-made
objects and vegetation. Xiao et al. [2015] further combined the occupancy-based change detec-
tion with a point-to-triangle distance-based method to conduct direct consistency evaluation on
points. This combined method tackled irregular point densities and occlusion problems. Gehrung
et al. [2016] proposed a framework for the volumetric modeling and visualization of large-scale
urban environments. However, the usual raycasting-based methods bring artifacts caused by the
traversal of negative discretized space. Gehrung et al. [2018] utilized knowledge about planar
surfaces to prevent the type of artifacts. In Gehrung et al. [2019], a Delta Octree was utilized for
encoding changes between epochs, which improved the processing efficiency of detecting changes.
Although the voxel-based change detection methods consider tackled the occlusion problems,
while the changes of high-level semantics are not considered.
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Segment-based change detection

Segment-based methods utilize segmentation techniques to extract clusters, and these clusters
serve as basic units for detecting changes. The post-classification method is regarded as a popular
method since it transforms the direct geometric or spectral comparison to label changes, which
tends to be more robust toward disturbances induced by acquisition conditions (such as season,
luminance differences), on the other hand, it is able to provide a type change matrix. However,
in most cases, the change detection results of this method highly depend on the classification or
object detection results, which subsequently requires careful sample collection and feature design.
Vosselman et al. [2004] detected and updated building changes in a 2D map using laser scanning
data. After segmentation and filtering bare earth points, the object points were classified as
buildings or vegetation based on surface roughness, segment size, height, color, and first-last
pulse difference. The building segments were compared with the building objects on 2D maps
for change detection. Aijazi et al. [2013] classified point clouds into two main object classes:
permanent and temporary. Different natural or human-made changes occurring in the urban
landscape over this period are detected and analyzed using cognitive functions of similarity, and
the resulting 3D cartography is progressively modified and updated accordingly. Schachtschneider
et al. [2017] assessed the behavior of each segment in the scene from temporal objects from
the global occupancy grid based on the segmentation results of point clouds. A region-growing
algorithm achieved the segmentation of the point clouds.

For point-based change detection, methods rely highly on strong prior knowledge on the
scene, which limits the generalization of the methods. In addition, point-based change detection
is comparatively less robust to change of details, i.e., point densities or illuminance. As for
voxel-based change detection, although in some occupancy-based change detection methods the
occlusions are addressed when detected changes and the different characteristics of objects are
considered, the work on semantic changes of complex urban scenes with high occlusions is quite
limited. Segment-based change detection can present high-level changes but also highly rely
on the preprocessing results. The improvement of the semantic segmentation process and the
consideration of missing information could be further investigated.

Global matching —|— Point embedding —|— Information fusion
- Global features - Point relations - Occupancy
- Frequency domain - Attention mechanism - Semantics

E.g.. The global features of point E.g.. The affinity matrix E.g.. The representation of
clouds in frequency domain indicating the point relations semantic changes of point clouds

Figure 1.4: The proposed solutions for the research questions, including three aspects: (1) global matching
achieved by utilizing global features and attributes in frequency domain; (2) point embedding considering
point relations and the attention mechanism; (3) information fusion by fusing the geometric occupancy
and semantic information.
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1.3 Objectives and contributions

In this thesis, we present a framework for detecting changes from construction sites and urban
scenes using 3D point clouds, with a sequence of novel algorithms and methods in the fields of
registration, semantic segmentation, and change detection. We aim to develop robust methods
and techniques to acquire and present changes of structural components of buildings in the con-
struction scene during the construction process. Additionally, the specific concerns of the three
tasks will be addressed, and the pros and cons of the proposed methods will be discussed. The
possible further solutions will be provided as possible future work.

To provide answers for the research questions in Section 1.1, we proposed solutions (see
Fig. 1.4) that focus on aspects of global matching, point embedding, and information fusion,
which can help us solve the task of detecting changes in construction sites. With these solutions,
a wide range of algorithms and methods were developed. In Fig. 1.5, we illustrate an overview
of these methods, containing former works from other researches and our proposed methods and
their developing routes.

Figure 1.5: A diagram of algorithms and methods with involved publications of solved tasks, core strategies,
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1.4 Structure and organization

This thesis is organized as follows: Chapter 2 presents the theoretical basics of Fourier-based
image registration, manifold learning-based dimensionality reduction, point-based deep learning
operations, the voxel-based structure of point clouds, and occupancy-based change detection.
Chapters 3-5 describe the core parts of this thesis, namely the methods for solving the afore-
mentioned research questions. Chapter 6 presents the experiments, including the datasets and
the evaluation metrics. Chapter 7 presents the experimental design, results, and analysis on the
results. Chapter 8 presents the discussion on the three main tasks involved in the progress mon-
itoring and change detection of construction sites using point clouds. Chapter 9 finalizes this
thesis by presenting the conclusions and providing outlooks for future works.
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2 Basics

In this chapter, we introduce specific techniques and algorithms about the Fourier-based im-
age registration, manifold learning-based dimensionality reduction, point-based deep learning
techniques for semantic segmentation, the voxel-based data structure, and the occupancy-based
change detection. Our methods are developed based on similar concepts of these techniques.
To be specific, for the task of point cloud registration, our methods are developed based on 3D
extension of Fourier-based image registration and provide our solution for robust phase correla-
tion. As for semantic segmentation, manifold learning-based methods are used for dimension-
ality reduction, which is vital in feature engineering. Our method improves the local manifold
learning-based methods by considering spatial constraints and provides a solution for large-scale
data. Deep learning techniques are also popular and advanced techniques on semantic segmen-
tation. Our methods tend to make an improvement based on the concept of point-based deep
learning techniques by considering long-range relations and involving an attention mechanism.
Raycasting-based change detection provides a solution for determining changes considering the
unseen space. Our method aims at considering the unseen space but with a different type of point
clouds and makes an improvement by considering semantic information.

2.1 Fourier-based image registration

In this section, we will introduce image registration using Fourier-based method. The principle of
phase correlation, different solutions for robust shift estimation based on phase correlation, and
the application to image registration will be explained in the following sections.

2.1.1 The principle of phase correlation

Before introducing the robust shift estimation based on phase correlation, a short introduction
to phase correlation will be given. Compared with some other commonly used correlation-based
methods, phase correlation tends to be more accurate and efficient. The general idea of phase
correlation is that any translation between two relevant images in the spatial domain can be
represented as a phase shift in the frequency domain. Assume that two images are related to
each other by shifts in the column and row direction denoted as x¢ and yg, respectively, and the
relation can be presented by:

s(z,y) = r(z — 20,y — Yo), (2.1)

where s(z,y) and r(z,y) represent the two image in spatial domain. Then, a discrete Fourier
transform (DFT) can be conducted on these two images to transform them into the frequency
domain. Afterward, the relation between the Fourier transforms can be written as:

S(u,v) = R(u,v)e (uzotvyo) (2.2)
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in which S(u,v) and R(u,v) are the corresponding Fourier transforms of s(x,y) and r(x,y). The
normalized cross-power spectrum can be represented as:

_ S(u,v)R*(u,v)
|5 (u, v) R* (u, v)]

_ e—i(uxo-i-vyo), (2.3)

Q(u,v)

in which R* is the complex conjugate of R, and the magnitude of @ is normalized to 1. The
inverse Fourier transform (IFT) of Q(u,v) is a Dirac delta function centered on (zg,yp). Thus,
the translation can be estimated by finding the peak coordinates of this function, as shown in
Fig. 2.1. However, this solution can only provide results in integer pixel, which is not precise
enough. To get subpixel estimation, one way is to get precise determination of the main peak
location of the IFT of the normalized cross-power spectrum, but this method is sensitive to noise.

Target image noise IFT of cross-ﬁo&cr spectrum

(®)

Figure 2.1: Illustration of the phase correlation. a) Phase correlation with image pair, b) phase correlation
of image pair with noise.

2.1.2 Robust shift estimation

To obtain robust and precise shift estimation, two major solutions are usually applied (see
Fig. 2.2). One is Stone’s soluti