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Abstract

With the innovative and successful CHAMP (CHAllenging Mini-satellite Payload) mis-

sion (2000–2010), GOCE (Gravity field and steady-state Ocean Circulation Explorer)

mission (2009–2013) and GRACE (Gravity Recovery and Climate Experiment) mission

(2002–2017), and the launch of its successor GRACE-Follow-On (2018), satellite gravime-

try plays an increasingly important role in modelling the static and temporal gravity

fields, detecting geophysical signals and monitoring Earth mass change processes. Among

the Earth temporal gravitational signals, ocean tides have relative high frequencies such as

semi-diurnal and diurnal, which are fundamentally undersampled by the satellites with

an absolute orbit precession of about 0.02–0.46◦/day and by the gravity recovery with a

weekly or even monthly average. Therefore, aliasing of ocean tides into low-frequency

gravity solutions is unavoidable. The alias periods of different constituents vary from

several days up to infinity. In general, an ocean tide model is included while recovering

the gravity fields to remove the ocean tide signals. However, the uncertainty of the ocean

tide model causes the ocean tide errors remaining in the fields. As a result, those ocean

tide errors are undersampled, resulting in aliasing errors. In the past decades, it has been

amply demonstrated that ocean tide aliasing is a significant problem including evidence

of S2 aliasing in GRACE data. The problem can become more severe with the technology

improvement of the on-board payloads, e.g. from micro-wave K-band ranging to laser

ranging, which is being tested on the GRACE-Follow-On mission and may be widely used

in future missions.

Though this problem attracts enough attention, the understanding of the ocean tide

aliasing in satellite gravimetry is insufficient. In view of this, this work

• elaborates the mechanism of the ocean tide aliasing systematically,

• demonstrates the mechanism analytically or numerically,

• applies the derived mechanism in reducing the tidal aliasing in post-processing,

and

• makes suggestions for the future mission design aiming at ocean tide aliasing error

mitigation.

To be specific, a two-step aliasing mechanism for satellite gravimetry is elaborated. A

ix



primary aliasing is due to the orbital undersampling of the ocean tides. The orbital

sampling is determined by the orbit precession. The periodic patterns of the observations

along the orbits demonstrate the primary aliasing periods well. Those patterns also

indicate the phase sampling of the ocean tides by the orbits, which can be used for orbit

design of future missions.

A secondary aliasing is due to the undersampling of the primary aliases by gravity re-

covery. Gravity recovery is a process of combining the observations or geopotential func-

tionals both in space and in time. Geophysical signals are averaged within the recovery

periods at different spatial scales. In general, each recovered solution can be considered

as a sample. Therefore, the secondary aliasing occurs when the primary aliasing period

and the recovery period do not satisfy the Nyquist sampling rule. The secondary aliasing

can be revealed by the spectral analysis of the recovered fields.

Primary and secondary aliasing periods are unique under the conditions that the ground-

track pattern of a given spatial scale is homogeneous within a single recovery period and

consistent among different recovery intervals. Otherwise, side aliasing frequencies show

up.

The aliasing behaviour of an individual constituent is investigated for GRACE-type forma-

tions and Bender-type constellations. The aliasing periods of a Bender-type constellation

is a stack of the aliasing periods of each single pair. In other words, the aliasing of a

constellation can be treated by individual pairs separately and interference among them

needs no special handling.

Ocean tide aliasing errors can be reduced significantly by least-squares spectral estima-

tion at the aliasing frequencies in post-processing. In general, the primary aliasing affects

the spherical harmonic coefficients in the whole spectrum, and the secondary aliasing

has more influence on the zonal and lower order tesseral coefficients. Aliasing does not

correlate with striping, but removing the aliasing errors does reduce the striping errors.

According to the phase sampling of the ocean tides by the orbits, the optimal node sepa-

ration(s) for a double- or triple-pair constellation with respect to individual constituents

is analysed. A constellation can be self-dealiasing by following the out-of-phase sampling

criteria. As each tidal constituent has different frequencies, the optimal nodal separation

for each constituent is different. Therefore, one needs to make a compromise according

to different objectives.



Zusammenfassung

Mit der innovativen und erfolgreichen Champ-Mission (CHAllenging Mini-satellite Payload
(2000–2010), Goce-Mission (Gravity field and steady-state Ocean Circulation Explorer) (2009–
2013), Grace-Mission (Gravity Recovery and Climate Experiment) (2002–2017) und dem Start
der Nachfolgemission Grace-Follow-On (2018) spielt die Satellitengravimetrie eine zunehmend
wichtige Rolle in der Modellierung des statischen und zeitlich-variablen Schwerefeldes, der Erfas-
sung geophysikalischer Signale und der Überwachung von Massentransportprozessen in der Erde.
Unter den zeitlich-variablen gravitativen Signalen der Erde haben die Ozeangezeiten die höchs-
ten Frequenzen, welche jedoch durch Satelliten grundsätzlich zu gering abgetastet werden, zum
einen durch die absolute Präzession von etwa 0.02–0.46◦/Tag zum anderen durch die Erfassung
des Schwerefeldes in wöchentlichen oder gar monatlichen Mittelwerten. Daher ist das Aliasing
der Ozeangezeiten in die niedrigen Frequenzen der Schwerfeldlösungen nicht vermeidbar. Im All-
gemeinen wird ein Ozeangezeitenmodell für die Bestimmung des Schwerefeldes berücksichtigt,
um die Signale der Ozeangezeiten zu eliminieren. Die Unsicherheiten der Ozeangezeitenmodelle
bewirken jedoch den Verbleib von Fehleranteilen der Ozeangezeiten in den Schwerefeldlösungen.
Da die Fehler der Ozeangezeiten ihrerseits aus der zu geringen Abtastung entstehen, ergeben sich
Aliasingfehler. In den letzten Jahrzehnten wurde mehrfach demonstriert, dass das Aliasing der
Ozeangezeiten – insbesondere der nachgewiesene S2-Effekt – ein ernstzunehmendes Problem in
den GRACE-Daten darstellt. Das Problem kann in Zukunft noch gravierender werden durch die
verbesserte Technologie der Bordinstrumente, z.B. durch den Wechsel im Ranging-System von
Mikrowellen im K-Band zur Lasertechnologie, wie dies derzeit in der Grace-Follow-On Mission
getestet wird und was in zukünftigen Missionen weitere Verwendung finden soll.

Obwohl dieses Problem viel Aufmerksamkeit auf sich zieht, ist das Verständnis vom Aliasing der
Ozeangezeiten in der Satellitengravimetrie ungenügend. In Anbetracht davon werden in dieser
Arbeit

• die Mechanismen des Aliasing der Ozeangezeiten systematisch herausgearbeitet,
• die gefundenen Mechanismen analytisch oder numerisch aufgezeigt,
• die entwickelten Methoden zur Reduzierung des Gezeitenaliasing in der Datennachbear-

beitung eingesetzt,
• und Vorschläge für den Entwurf zukünftiger Missionen gemacht, in denen das Aliasing der

Ozeangezeiten verringert werden soll.

Insbesondere wird in der Arbeit ein Zwei-Schritt Mechanismus des Aliasings für die Satellitengra-
vimetrie herausgearbeitet. Der primäre Aliasingeffekt stammt aus der zu geringen Abtastung des
Orbits, welche durch die Präzession der Orbitebene vorgegeben ist. Die periodischen Muster der
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Beobachtungen entlang des Orbit zeigen ebenfalls die primären Aliasingperioden. Diese Muster
geben auch die Abtastung der Phase der Ozeangezeiten durch den Orbit wieder, was für den
verbesserten Entwurf der zukünftiger Satellitenmissionen eingesetzt werden kann.

Ein sekundäres Aliasing folgt aus der zu geringen Abtastung des primären Aliasingeffekts in
der Schwerefeldbestimmung. Die Bestimmung der Schwerefeldparameter ist ein Prozess, in wel-
chem die Beobachtungen und die Funktionale des Schwerepotentials in Zeit oder Raumbereich
kombiniert werden. Geophysikalische Signale werden dabei innerhalb des Lösungszeitraums auf
verschiedene räumlichen Skalen gemittelt. Im Allgemeinen kann jede bestimmte Lösung als eine
Stichprobe der Realität betrachtet werden. Daher ergibt sich ein sekundäres Aliasing, wenn die
primäre Aliasingperiode und die Periode der zeitlichen Lösung nicht das Nyquist-Abtasttheorem
berücksichtigen. Das sekundäre Aliasing kann durch die spektrale Analyse der bestimmten Lö-
sungen aufgezeigt werden.

Primäre und sekundäre Aliasingperioden sind eindeutig unter der Bedingung, dass die Boden-
spuren innerhalb des Lösungszeitraum für eine vorgegebene räumliche Skala homogen verteilt
sind und außerdem konsistent für alle Zeitintervalle der Lösung. Ist dies nicht der Fall, so werden
zusätzliche Aliasingfrequenzen erkennbar.

Das Aliasingverhalten für die einzelnen Gezeitenkomponeten wird für Grace-ähnliche Forma-
tionen und für Bender-ähnliche Satellitenkonstellationen untersucht. Die Aliasingperioden der
Bender-ähnlichen Konstellation setzt sich aus den Aliasingperioden der einzelnen Satellitenpaare
zusammen. Daher kann man das Aliasing einer kombinierten Konstellation auch unabhängig als
einzelne Paare betrachten und es wird keine spezielle Behandlung für die Überlagerung notwen-
dig.

Die Fehler durch das Aliasing der Ozeangezeitem können deutlich verringert werden durch die
spektrale Kleinste-Quadrate-Schätzung der Aliasingfrequnzen in der Nachbearbeitung der Daten.
Im Allgemeinen betrifft das primäre Aliasing die sphärisch-harmonischen Koeffizienten im gan-
zen Spektralbereich, während das sekundäre Aliasing vor allem die zonalen und die tesseralen
Koeffizienten der niedrigen Ordnung betrifft. Das Aliasing ist zwar nicht mit den Streifenmustern
der Grace-Lösungen korreliert, aber die Entfernung der Aliasingfehler reduziert gleichzeitig die
Streifenfehler.

Gemäß der Abtastung der Ozeangezeiten bezüglich der Phasenlage durch die Orbitgeometie, wer-
den die optimale Trennungen der Knotenlinien für Doppel- und Dreifach-Paare-Konstellationen
bezüglich der einzelnen Gezeitenkomponenten untersucht. Eine Konstellation kann dabei das
Aliasing durch die Geometrie reduzieren, indem man einem „out-of-phase“ Abtastkriterium folgt.
Da jede Gezeitenkomonente eine andere Frequenz hat, differenzieren auch die optimale Trennun-
gen der Knotenlinien für jede Komponente. Daher ist es notwendig, einen Kompromiss für die
verschiedenen Ziele zu finden.
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1
Introduction

Time and tide wait for no man.

1.1 Aliasing

In signal processing and other related disciplines, aliasing has two meanings: (1) an ef-

fect that results in indistinguishable signals when sampled; (2) the distortion or artefact
when the reconstructed signal from samples is different from the original continuous sig-

nal. Generally speaking, aliasing happens when the signal is undersampled. According to

the Nyquist-Shannon sampling theorem1, if a signal y(t) contains no frequencies higher

than B hertz, it is completely determined by giving its ordinates at a series of points

spaced 1/(2B) seconds apart (Nyquist 1928; Shannon 1949). In other words, for a given

sample rate fs, undistorted reconstruction is guaranteed for the band-limit B < fs/2. Oth-

erwise, if the signal y(t) contains frequencies equal to or larger than half the sample rate

fs/2, aliasing occurs when reconstructing the original signal based on the samples. The

two thresholds, 2B and fs/2 are called the Nyquist rate and Nyquist frequency, respectively,

which should not be confused with each other. In the context of the aliasing problem,

Nyquist rate is the lower bound for the sample rate for alias-free signal sampling. The

Nyquist frequency is half of the sampling rate of a discrete signal processing system, also

1The name Nyquist-Shannon sampling theorem honors Harry Nyquist and Claude Shannon. The theorem
was also discovered independently by E.T. Whittaker, by Vladimir Kotelnikov, and by others.

Harry Nyquist (1889–1976), Swedish-born American electronic engineer, made important contribu-
tions to communication theory.

Claude Elwood Shannon (1916–2001), American mathematician, electrical engineer and cryptographer,
known as “the father of information theory”.

Edmund Taylor Whittaker (1873–1956), English mathematician.
Vladimir Aleksandrovich Kotelnikov (1908–2005), information theory and radar astronomy pioneer

from the Soviet Union.
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2 CHAPTER 1. INTRODUCTION

known as the folding frequency of a sampling system.

0 fs 2fs 3fs f = 3.3fs−fs−2fs−3fs

N = 6, (1)
N = 5, (1)

N = 4, (1)
N = 3

N = 2
N = 1

N = 6, (2)
N = 5, (2)

N = 4, (2)

Figure 1.1: Aliasing mechanism. The abscissa is the frequency axis. f is the original
signal frequency , which is marked by the red dot. fs is the sampling frequency. The
negative frequency axis is marked as dashed line because negative frequencies2 help
understanding equation (1.1) but are out of scope of this research. All the dots except for
the red one are the aliases of frequency f , which can be derived by equation (1.1). The
indices (1) and (2) refer to the operation differencing and getting absolute value, respectively,
according to the equation (1.1). The blue dot indicates the aliased frequency of the
frequency f detected by the sampling frequency fs.

Aliasing can occur in signals sampled in time or in space, which is referred to as temporal

aliasing and spatial aliasing, respectively. In reality, signals are commonly modelled as

the superposition of sinusoids with different frequencies and different amplitudes, for

instance with a Fourier series. Therefore, understanding aliasing of an individual sinusoid

is important for understanding the aliasing of their sum, the real signals. Figure 1.2 shows

the basic idea of aliasing when a sinusoid is sampled at different frequencies which are all

no higher than twice the original frequency. In general, when a sinusoid of frequency f

is sampled with frequency fs, the resulting number of cycles per sample is fN = f /fs, which

is also known as normalized frequency. When fN ≥ 0.5, aliasing occurs. The samples are

indistinguishable from another sinusoid, called an alias, whose normalized frequency

differs from f /fs by any positive or negative integer. That is because adding an integer

number of cycles to the samples of a sinusoid has no effect on their values. All the aliases

of frequency f with respect to sampling frequency fs can be expressed as

falias(N ) = |f −Nfs| , (1.1)
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where N is integer with unit cycles per sample. When N = 0, falias = f is the true frequency.

Figure 1.1 shows the alias mechanism expressed by equation (1.1). Suppose the red dot

indicates the original frequency, f = 3.3fs, of a sinusoid, each of the remaining dots at

positive frequencies2 indicates a possible alias of original frequency f given the sampling

frequency fs, while the blue dot indicates the alias frequency that is achieved. This

example also shows a two-step procedure when N = 4,5,6 according to equation (1.1),

that is: (1) differencing, and (2) getting absolute value.

One should notice that, if the signal frequency is unknown, the original frequency of the

blue dot can be any of the dots, black or red in this example; if the original frequency

is known, the alias frequency is unique given the sampling frequency, the blue in this

example. The tide aliasing problem belongs to the second case.

In signal processing, aliasing is generally avoided by applying low-pass filters or anti-

aliasing filtering to the analogue signal before sampling. Apart from the discussion above,

two aspects should be emphasized, see Figure 1.2 for the examples:

i) aliasing not only causes frequency distortion, but may also cause amplitude distor-

tion, e.g. scenario (A1), (A5), (B1) and (B5);

ii) sampling a signal at the same sampling rate at shifted lags (in time or in space) gives

different amplitude distortion, c.f. scenario (A1) and (B1), or scenario (A5) and (B5).

1.2 Satellite gravimetry and ocean tide aliasing

Gravitational field of the Earth is important in many senses, such as providing

the Earth’s shape, defining the reference frame, indicating the mass distribution. In

general, the global gravitational field can be expressed by spherical harmonic expansion

as (e.g. Hofmann-Wellenhof and Moritz 2006)

V (r,θ,λ) =
GM
R

∞∑
l=0

(R
r

)l+1 l∑
m=0

(
C̄lm cos(mλ) + S̄lm sin(mλ)

)
P̄lm(cosθ) (1.2)

in which

r,θ,λ = radius, co-latitude, longitude

G,M,R = gravitional constants, the Earth’s mass, mean radius of the Earth

C̄lm, S̄lm = fully normalized spherical harmonic coefficients of degree l and order m

P̄lm(cosθ) = fully normalized Legendre function of degree l and order m,

2Negative frequencies are also alias frequencies of the original frequency. Negative frequencies are
commonly used in some disciplines, in which the absolute value indicates the magnitude and the sign
indicates the direction, for instance, a wheel rotating forwards or backwards can be modelled with positive
and negative frequency. In this research, negative frequencies are out of the scope and ignored.
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(A)

(A1)

(A2)

(A3)

(A4)

(A5)

(B)

(B1)

(B2)

(B3)

(B4)

(B5)

Figure 1.2: Aliasing examples of a sinusoid. The light grey wave with one black segment
is the original signal and it is the same for all the scenarios (A1)–(B5). The black segment
indicates one cycle. The dark grey dots are samples at different sampling rates. The dark
grey line is the reconstruction from the samples. Every two corresponding scenarios in
group (A) and group (B), for instance (A1) and (B1), have the same sampling rate but
different time lags.
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with normalization factor

Nlm =

√
(2− δm0) (2l + 1)

(l −m)!
(l +m)!

. (1.3)

The complex-valued expression of (1.2) is (e.g. Sneeuw 2000)

V (r,θ,λ) =
GM
R

∞∑
l=0

(R
r

)l+1 l∑
m=−l

K̄lmȲlm(θ,λ) , (1.4)

with normalized surface spherical harmonic of degree l and order m Ȳlm(θ,λ) defined as

Ȳlm(θ,λ) = P̄lm(cosθ)eimλ , (1.5)

and the corresponding normalized spherical harmonic coefficients K̄lm expressed in complex-

valued quantities. The complex- and real-valued spherical harmonic coefficients have the

relation

K̄lm =


(−1)m

(
C̄lm − iS̄lm

)
/
√

2 , m > 0

C̄lm , m = 0(
C̄lm + iS̄lm

)
/
√

2 , m < 0

. (1.6)

Note that the normalization factor of the complex-valued expression is different from (1.3)

and one can find more details in (Sneeuw 2000). The complex conjugated of Ȳlm(θ,λ) and

K̄lm are: Ȳ ∗lm = (−1)mȲl,−m and K̄∗l,−m = (−1)mK̄lm.

Since the beginning of the 21 century, the satellite gravity missions, i.e. Challenging

Minisatellite Payload (CHAMP) (Reigber et al. 1999), Gravity Recovery and Climate

Experiment (GRACE) (Tapley et al. 2004) and Gravity Field and Steady-State Ocean

Circulation Explorer (GOCE) (Drinkwater et al. 2003), have innovatively enlarged our

knowledge of the Earth’s static and temporal gravity field. Among them, the GRACE

mission has provided a wide application in the Earth sciences, such as terrestrial water

storage (e.g. Rodell et al. 2009), ice sheets and glaciers (e.g. Luthcke et al. 2008), sea

level (e.g. Leuliette and Miller 2009), solid Earth (e.g. Davis et al. 2004), earthquakes

(e.g. Han et al. 2006). Because of the extraordinary performance of the GRACE mission,

the successor GRACE Follow-On mission was planned and launched on May 22, 2018

to carry on the work of its predecessor. Additionally, it will test an intersatellite laser

ranging instrument which has the potential to improve the precision of low-low satellite

to satellite tracking (ll-SST) tracking dramatically (Sheard et al. 2012).

Several problems need special attention to derive reasonable gravity fields by satellite

mission like GRACE, one of which is aliasing. In this work, aliasing specially refers

to the effect caused by undersampling of the high frequency temporal signals such as

ocean tides, atmosphere and non-tidal ocean (AO) signals. The aliasing of the spectrum

from higher degree to lower degree because of the real world complexity and inadequate
sampling comparing to the infinity, which was investigated by e.g. Han et al. (2002),
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is not included in this discussion. Currently, the aliasing is dealt with by subtracting

corresponding models, i.e. ocean tide model and AO model, before estimating the gravity

field. This will certainly reduce the power of aliased signal, but will not prevent the

aliasing mechanism itself. Therefore, the aliasing errors cannot be fully removed because

of the uncertainty of the models. For instance, Thompson et al. (2004) and Han et

al. (2004) showed that aliasing is a significant problem relative to GRACE measurement

noise by using numerical oceanic and atmospheric models, and Schrama (2003) suggested

that ocean tide models may contain errors that affect temporal gravity solutions derived

by GRACE observations. Therefore, different efforts are still ongoing to improve the

estimated gravity field by handling the aliasing problem. For example, Wiese et al. (2011)

promoted a method of estimating low resolution gravity fields at short interval in order

to mitigate the AO aliasing errors.

Ocean tide aliasing is a typical problem in satellite altimetry and the understanding and

handling of it are sophisticated nowadays. However, as Schrama (2003) indicated, “the
aliasing problem for a gravity mission is far more difficult to comprehend than the way tidal
modelling errors map along repeating Topex/Poseidon altimeter ground tracks”. Neverthe-

less, ocean tide aliasing errors must be tackled because if the laser ranging testing is

successfully demonstrated by GRACE Follow-On and is applied in a future ll-SST track-

ing mission, the ocean tide aliasing errors are expected to be two orders of magnitude

larger than the gravity recovery error due to laser range observation noise (Flechtner et al.

2016). That is, ocean tide aliasing errors may become one of the major factors hindering

the precision improvement of the gravity field solutions derived by the satellite missions.

Furthermore, quite a few studies have observed tidal aliasing errors even from GRACE,

which applied K-Band ranging for ll-SST (see the discussion below).

Many researchers have dealt with the ocean tide aliasing problem. Before the launch

of the GRACE mission, Knudsen and Andersen (2002) estimated the aliasing frequency

by assuming the sampling interval as half a sidereal day, and Knudsen (2003) revised the

estimated alias frequencies comparing to the estimation in (Knudsen and Andersen 2002)

by taking “the actual precession of the node” of GRACE into account. However, Ray et al.

(2003) calculated the aliasing period by considering the orbit plane precession of the

satellite with respect to the tide-raising body, without further explanation of how to do it.

Somehow, they estimated the alias periods of five solar tides, namely K2, K1, S2, S1 and

P1, and claimed that the lunar tides could be hardly problematic (Ray et al. 2003). For

some of the constituents, the aliasing periods do not coincide when comparing (Knudsen

and Andersen 2002; Knudsen 2003) with (Ray et al. 2003).

Later on, Ray and Luthcke (2006) revised their estimation of the alias periods and tidal

aliasing errors, and announced that total error budget of GRACE accepted at that time

(2006) is roughly one order of magnitude larger than the aliasing errors arising from

ocean tide modelling errors except for the lowest degree. Seo et al. (2008a) simulated the
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ocean tide errors along the GRACE groundtracks using the GRACE level 1B data provided

by Jet Propulsion Laboratory (JPL). They found that theM2 alias period is about 140 days

rather than the predicted 13.5 days because of the monthly sampling and K1 has two

alias periods of about 90 days and 7 years. Schrama and Visser (2007) estimated aliasing

errors via simulated GRACE data and showed that the signals at periods shorter than

3 months were not well retrieved due to errors in geophysical background models. Seo

et al. (2008b) investigated GRACE spatial aliasing errors due to errors in geophysical

models, such as ocean tide models, by simulation. Tourian (2013) estimated the aliasing

frequencies by using half a GRACE nodal day as the sampling period, discussed the effect

of the recovery process on the aliasing magnitude and evaluated the tidal aliasing errors

with respect to the residuals of GRACE monthly solutions.

Regarding the effect of ocean tide aliasing errors on lower degree, apart from the conclusion

mentioned in (Ray and Luthcke 2006), Seo et al. (2008b) showed S2 aliasing error to be

a possible error source of C2,0 of GRACE fields. This speculation was further confirmed

in (Chen et al. 2009), which indicated the C2,0 of RL04 solutions showing significantly

larger S2 aliasing errors than those from RL01 solutions. However, Cheng and Ries (2017)

held the opposite opinion. They insisted that the unexpected 161 day signal in GRACE

C2,0 cannot be due to aliasing from the errors in the S2 constituent. Special attention

should be paid that Cheng and Ries (2017) took one of the tidal perturbation frequencies

as the tidal aliasing frequency for each of the constituent.

Apart from the discussion on the aliasing frequency and error estimation, as well as

the probable influence on the GRACE data and the derived gravity field solutions, the

possible strategies to mitigate the ocean tide aliasing errors were also investigated by a few

researchers. For instance, Visser et al. (2010) explored three methods, i.e. constellation

design, temporal filtering of the time-series of the gravity field and spatial smoothing,

to mitigate the ocean tide aliasing errors. Hauk and Pail (2018) provided a method to

co-parametrize the ocean tides to mitigate their aliasing in the process of gravity field

retrieval.

Another natural question is whether it is possible to estimate the ocean tides from mis-

sions like GRACE. Ray et al. (2003) discussed the sampling of tidal signals by GRACE

and concluded that GRACE was never optimized for being able to observe the tidal sig-

nals as it was done by Topex/Poseidon (T/P) mission. However, Han et al. (2005) claimed

that an unmodeled ice shelf ocean tide effect of M2 and S2 is detected underneath the

Filchner-Ronne and Larsen ice shelves in the GRACE data. They detected it by looking

at certain bands around the alias periods of corresponding tidal constituents. Han et al.

(2007) derived the tidal solutions of three constituents by locally analysing the intersatel-

lite tracking data from GRACE, and found that they were in good agreement with the

in-situ measurements at several locations in Antarctica. Han et al. (2010) presented one

centimeter-level observations of diurnal tides derived from the GRACE monthly solutions
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relative to a prior ocean tide model GOT4.7. Mayer-Gürr et al. (2012) tried to derive a

global ocean tide model by combining GRACE data and ocean tide model EOT08a, which

led to a marginally improved new ocean tide model.

In view of all the research above, several problems still exist regarding the ocean tide

aliasing in satellite gravimetry:

• the precise aliasing mechanism is unclear;

• the understanding of sampling frequency and aliasing frequency for gravity mis-

sions is different from study to study;

• the influence on individual spherical harmonic coefficients, especially the lower

degree coefficients, should be further investigated;

• what is the difference between spatial aliasing and temporal aliasing?

• is there any take-away knowledge for future missions in case all the problems above

are solved?

1.3 Objective and outline

Based on the discussion in the previous section, this work aims at solving the follow-

ing problems:

1) clarifying the mechanism of the ocean tide aliasing in satellite gravimetry;

2) estimating the aliasing periods according to the aliasing mechanism and giving demon-

strations;

3) understanding the influence of aliasing on the spherical harmonic coefficients;

4) reducing the aliasing errors via data processing;

5) mitigating the ocean tide aliasing errors through orbit design for the future missions.

This work starts with introducing the basic theory of the ocean tide, its modelling and

expression in gravity field in Chapter 2. The introduction is not dedicated to cover all

the topics related to ocean tides, but to briefly present the necessary preliminaries to

understand ocean tides and following discussions.

Chapter 3 discusses the ocean tide aliasing mechanism in satellite gravimetry from dif-

ferent views. Firstly, the aliasing problems in satellite gravimetry and altimetry are

compared and distinguished. Secondly, the relation between spatial aliasing and tem-

poral aliasing is cleared up. Thirdly, a two-step tide aliasing mechanism is elaborated.

Lastly, the relation between the orbit perturbation and aliasing is discussed.
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In the subsequent Chapter 4, a spectral analysis method for detection of aliasing periods is

proposed based on simulations. The aliasing spectrum is investigated regarding different

regions, different spherical harmonic coefficients and different recovery periods. The

influence of frequency interference on aliasing is discussed.

Chapter 5 deals with the ocean tide aliasing error reduction in post-processing. Aliasing

error estimation regarding different aliasing periods is investigated in spatial and spectral

domain. The influence of the aliasing on different spherical harmonic coefficients is

discussed. Apart from that, the relation between striping and aliasing is examined.

In Chapter 6, the orbit design of future missions considering ocean tide mitigation is

discussed. Possible double-pair and triple-pair constellations are investigated. Based on

that, some suggestions are provided for ocean tide self-dealiasing.

Finally, Chapter 7 summarizes this work and discusses the prospects for future research.
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Tidal theory and modelling

OCEAN tides are important gravity signals which contribute to satellite gravimetry

observations. In order to better understand the ocean tide signal and its role in

the gravity recovery, a close look into tidal theory and tide modelling is needed. In

this chapter, the tide-generating force and potential are introduced in section 2.1 and

section 2.2. The harmonic expansion of the tide-generating potential is then discussed

in section 2.3, which leads to astronomical tidal species and constituents. Next, a brief

description of the equilibrium tide (section 2.4) is followed by a discussion of the real

response of ocean, and tidal analysis (section 2.5). In the end, a few words about ocean

tide modelling (section 2.6) and spherical harmonic analysis of tidal heights (section 2.7)

are given. Figure 2.1 describes the relationship between different topics in this chapter.

2.1 Tide-generating force

Isaac Newton’s Principia(1687) gave the first correct theory for the tide generating

forces, which are the differences between the Moon’s (Sun’s) gravitational attraction

at certain location and at the Earth’s center (Cartwright 1993). Here we take a simplified

Sun-Earth system as an example, ignoring the fact that the orbit of the Earth around the

Sun is elliptical and that the Earth rotation axis is inclined to the ecliptic, see Figure 2.2.

Hereafter, a bold character in a formula indicates a vector.

Taking the Earth as a whole, the gravitational attraction F2 at the center of mass of the

Earth is to keep the Earth in its orbit around the Sun. The corresponding force per unit

mass is ar = F2/ME, in which ME is the entire mass of the Earth. For an arbitrary mass

Ma on the side of the Earth towards the Sun, the attraction F1 is greater than Maar as it

is closer to the Sun. Since the Earth is not a rigid body, the Earth deforms towards the

11
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tide-generating force

tide-generating
potential

harmonic expansion

ocean dynamics and
tidal height analysis

equilibrium
tide theory

ocean tide modelling

spherical har-
monic analysis
of tidal heights

Figure 2.1: The relationship of the topics discussed in Chapter 2.

Sun. The deformation effect of water is more significant than that of solid Earth, as the

water is more flowable than the solid Earth. For an arbitrary mass Ma on the opposite

side of the Earth, the gravitational force F3 is smaller than Maar. Therefore, the mass on

this side of the Earth, especially the water, deforms away from the Sun. To summarize,

the tide-generating forces are the differences between the gravitational attraction at the

center of the Earth and at the target points, which vary according to the distances from

the Sun, that is,

• D1 = F1 −Maar, directed towards the Sun,

• D3 = F3 −Maar, directed away from the Sun.

All the Ds form an envelope of the tide-generating forces, see the grey shadow in Fig-

ure 2.2. It should be reminded that this symmetrical egg-shaped figure is only for the

solid Earth but not the tidal bulge of the ocean. It is the inflation that the tide-generating

bodies try to make in the ocean waters but never realize exactly because of many factors,

i.e., restriction of wave speed, irregular depths, presence of continents, bottom friction,

turbulence, and viscosity (Hicks and Szabados 2006).

The Moon-Earth system essentially gives the same pattern of tide-generating forces as

the Sun-Earth system, except for magnitudes.

According to Newton’s law of gravitation, the attraction of the tide-generating body B on

a particle P on the Earth’s surface is given by

FPB(P ) = GMPMB
rP

r3
P

, (2.1)
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D1F1 F2 D3F3
O

Figure 2.2: The envelope of tide generating forces.

in which G is the universal gravitational constant, MP and MB are the mass of P and B, rP

is the radial vector from P to body B, and rP is its magnitude (see Figure 2.3). Integrating

all the Ps on the Earth donates the force FOB, the same as F2 in Figure 2.2, which assuming

the entire mass ME of the Earth concentrated at the center of the Earth O:

FOB = GMEMB
rB

r3
B

, (2.2)

where rB is the radial vector from the Earth center O to the body B. The corresponding

FOB component on point P is

FOB(P ) = GMPMB
rB

r3
B

, (2.3)

and the difference of (2.1) and (2.3) deforms the Earth and produces the tide-generating

force Ft (D in Figure 2.2) at P:

Ft = FPB(P )−FOB(P ) = GMPMB

(
rP

r3
P

− rB

r3
B

)
. (2.4)

2.2 Tide-generating potential

The tidal acceleration at = Ft/MP, also known as force per point mass, can be derived

from a tide-generating potential Vt by:

at = ∇Vt , (2.5)
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Figure 2.3: The tide-generating force.

where ∇ is the gradient operator. The component of at along the vertical and horizontal

axes er and eZ respectively in Figure 2.3 are

ar =
∂
∂r
Vt

aZ = − ∂
r∂Z

Vt .

(2.6)

where Z is the zenith angle of the tide-generating body B (see Figure 2.3 and Figure 2.4).

It should be reminded that the vertical component of the tide generating forces plays no

role in generating tidal elevations (Smith 1999). The horizontal force aZ is responsible for

tides rather than the vertical force ar , as it is always easier to push than to lift an object.

According to (2.2), the potential at the center of the Earth due to tide-generating body B

is

Vt(O) =
GMB

r2
B

rOPcosZ +C , (2.7)

where rOP is the radius at the point P, and C is an arbitrary constant. Then the tide-

generating gravitational potential at P is

Vt(P ) =
GMB

rP
− GMB

r2
B

rOPcosZ . (2.8)

Note that the force on the Earth as a whole, namely (2.2), is balanced by the centrifugal

force due to the motion of the Earth about the common center of mass between the Earth

and tide-generating body.

In the triangle 4POB (Figure 2.3), the following relationship holds r2
P = r2

B − 2rOPrBcosZ +
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r2
OP . Hence

1
rP

=
1
rB

1− 2rOP

rB
+
r2
OP

r2
B

−
1
2

=
1
rB

∞∑
l=0

(
rOP

rB

)l
Pl(cosZ) , (2.9)

in which Pl(x) is the Legendre polynomial of degree l, with P0(x) = 1, P1(x) = x and

P2(x) = (3x2 − 1)/2. Inserting (2.9) into (2.8) gives

Vt(P ) =
GMB

rB

1 +
∞∑
l=2

(
rOP

rB

)l
Pl(cosZ)

 , (2.10)

The constant GMB/rB can be ignored because it generates no force according to (2.5). The

l = 1 term corresponds to a uniform force field with strength F = GMBMP/r
2
P, and is

compensated by the centrifugal force. For the Moon, 0.0157 ≤ rOP/rB ≤ 0.0180 and for

the Sun rOP/rB v 10−4. Thus the potential may be truncated after l = 2. Therefore, the

principal tide-generating potential at arbitrary P becomes

Vt(P ) =
GMB

rB

(
rOP

rB

)2

P2 (cosZ) . (2.11)

Hereafter, the subscript t and location indicator P are omitted for simplification, namely

Vt(P ) is written as V .

2.3 Harmonic expansion of tidal potential: tidal species and

constituents

The (apparent) movements of the Sun and the Moon are not along the equator, but in

the orbital planes inclined to it. Therefore, the direction of the tidal bulge changes

according to the declination of the tide-generating body in its orbit. Thus, it is more conve-

nient to express the tidal potential in geographical coordinates: latitude and longitude of

the observer on the Earth and the apparent longitude and latitude of the tide-generating

body. For the spherical triangle 4NBP (see Figure 2.4), the following relationship holds:

cosZ = sinφsinδ+ cosφcosδcosH . (2.12)

The angle λ − λB is called the hour angle H of the tide-generating body B, which is

measured from the observer’s local meridian positive to the west of the observer.

Inserting (2.12) into (2.13) gives the principal part of the tide-generating potential in

geographic coordinates (Doodson 1921):

V (λ,φ) =
3GMBr

2
OP

4r3
B

[(1
3
− sin2φ

)(
1− 3sin2δ

)
+ sin2φsin2δcosH + cos2φcos2δcos2H

]
.

(2.13)

The first term in the square bracket in (2.13) has no dependence on the hour angle H ,

and gives rise to a long-period potential. The second term forms a diurnal potential and
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Υ
λ

O

λb
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φ

δ

H
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N

Figure 2.4: The geographical coordinates of the tide-generating body and an observing
point P on the Earth. Here λ and φ are the geographic longitude and latitude of P. z is
the angle between the observer at P and tide-generating body B, the same as in Figure 2.3.
λb and δ are the apparent longitude and latitude (declination) of the body B with respect
to the Greenwich and equator plane accordingly. Gr stands for the Greenwich meridian.
Υ is vernal equinox, the intersection point of equator and ecliptic while the Sun travels
northward. H is the hour angle of the tide-generating body B with respect to observer P.
N stands for the north pole.

the last term indicates a semi-diurnal potential. In reality, the declination δ and orbital

distance rB vary in time. The declination changes over time because the ecliptic or the

Moon’s orbit plane around the Earth is tilted to the equator plane. The varied orbital

distance is due to elliptical orbit of the Moon around the Earth or the Earth around the

Sun. For more details, please refer to e.g. (Doodson 1921), (Smith 1999) and (Hicks and

Szabados 2006).

Variations of declination and distance to the tide-generating bodies change the potential

in (2.13). These variations can be expanded in a Fourier series and result in (1) the long-

period tides, and (2) the diurnal and semi-diurnal tides with the modulations of basic

tidal frequencies: the diurnal and semi-diurnal. To express the tide-generating potential
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into its harmonics, (2.13) can be written as:

V (λ,φ) =
(
r̄B
rB

)3 [
G

(0)
B (1− 3sin2δ) +G(1)

B sin2δcosH +G(2)
B cos2δcos2H

]
, (2.14)

in which r̄B is the mean distance between the tide-generating body and the Earth. The

superscript m on the G(m)
B stands for the tidal species, namely m = 0 for long-period tides,

m = 1 for diurnal tides and m = 2 for semi-diurnal tides. GB is the general coefficient and

defined as:

GB =
3GMBr

2
OP

4r̄3
B

, (2.15)

in which the subscript B stands for the tide-generating body. For the Moon and the Sun,

the general coefficients are usually labelled as G and Gs, respectively. G is also known as

Doodson’s tidal constant (Doodson 1921). The general coefficients appear in the terms

G
(m)
B in (2.15). These terms, which also involves the observer’s latitude φ, are called

Doodson’s geodetic coefficients (of degree l = 2) (Doodson 1921). In case of the Sun,

they will be denoted by G(m)
s (φ), and in case of the Moon by G(m)(φ). For the Moon, the

geodetic coefficients for l = 2 read:

G(0)(φ) = G
(1

3
− sin2φ

)
G(1)(φ) = Gsin2φ

G(2)(φ) = Gcos2φ.

(2.16)

The expressions of the geodetic coefficients of the Sun can be derived by replacing G by

Gs in (2.16).

The harmonic expansion of the tidal potential is to expand the function (2.14), which

depends on r̄b/rb, δ and H , into a series of harmonics. In order to make the harmonic co-

efficients being relative comparable, all the coefficients of the harmonic expansion should

be normalized with respect to the same quantity, taking G in this case. Therefore, we can

rewrite the geodetic coefficients of the Sun as Gs/G times the geodetic coefficients of the

Moon, namely G, and absorb the factor Gs/G in the coefficients of the solar harmonics

(Doodson 1921). Finally, the tidal-generating potential of the Moon and the Sun given in

(2.14) is written to a form

V (λ,φ) = V0(λ,φ) +V1(λ,φ) +V2(λ,φ) , (2.17)

with

Vm(λ,φ) = G(m) (φ)
∑
k

∣∣∣ηk∣∣∣cos(Θk(t) +χk +mλ) , (2.18)

where G(m)(φ) are the geodetic coefficients of the Moon and m = 0,1,2. ηk are the coeffi-

cients of the harmonic expansion, which contains Gs/G in case of solar harmonics. The
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summation over k is over all harmonic terms of the tidal species. The arguments Θk(t)

are the astronomical arguments or Doodson arguments at Greenwich, defined as

Θk(t) = Aτ +Bs+Ch+Dp+EN ′ +Fps , (2.19)

where A− F are integer numbers, τ is Greenwich mean lunar time and (s,h,p,N ,ps) are

five fundamental angles, cf. Table 2.1 and Figure 2.5. N ′ is by definition the negative

of N in order to make all the angles increasing eastward. Θk +mλ is called the local

argument. χk is the Doodson-Warburg phase correction (Cartwright and Edden 1973;

Dow 1988; Petit and Luzum 2010), defined by

χk =


0 for semi-diurnal and long-period tides

π/2 for diurnal tides with ηk > 0, e.g. K1

−π/2 for diurnal tides with ηk < 0, e.g.O1, P1,Q1

. (2.20)

Table 2.1: Fundamental angles.

symbol definition period

s mean longitude of the Moon 27.32 mean solar days

h mean longitude of the Sun 365.24 mean solar days

p mean longitude of the lunar perigee 8.85 tropical years

N mean longitude of the lunar node 18.61 tropical years

ps mean longitude of the solar perigee 21 000 tropical years

These fundamental angles (s,h,p,N ′ ,ps) describe the long-term motion of the Sun and the

Moon, which means periodic variations of the motion are excluded. The expressions are

given as follows (Doodson 1921), the origin of time is taken as midnight at Greenwich on

1 January, 1900:

s = 277◦.0248 + 481267◦.8906T + 0◦.0020T 2 + ...

h = 280◦.1895 + 36000◦.7689T + 0◦.0003T 2 + ...

p = 334◦.3853 + 4069◦.0340T − 0◦.0103T 2 + ...

N ′ = 100◦.8432 + 1934◦.1420T − 0◦.0021T 2 + ...

ps = 281◦.2209 + 1◦.7192T + 0◦.0005T 2 + ... ,

(2.21)

in which T is in Julian centuries counting from 1 January 1900, 0 hour Universal Time

(UT)1. All these angles are longitudinal angles and measured with respect to the vernal

equinox in the ecliptic. The angles are corresponding to five fictitious bodies moving

along the ecliptic with speeds ṡ, ḣ, ṗ, Ṅ ′ and ṗs accordingly. For instance, the mean

longitude of the Sun h represents the longitude of a fictitious Sun moving in the ecliptic

plane at an angular speed of 360◦ per 365.24 mean solar day. Mean solar time and mean

1The Universal Time, also known as mean solar time, is civil time based on the motion of the mean Sun,
see exact definition of the mean Sun and mean solar time in the text.
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Figure 2.5: Mean solar time and mean lunar time. Mean Sun S and mean Moon M define
the mean solar time and mean lunar time, respectively, which denoted by Greenwich
mean solar time t and Greenwich mean lunar time τ . Similarly, t +λ is local mean solar
time and τ +λ is local mean lunar time, in which λ is the longitude of observer location
P. s and h are mean longitude of Moon and Sun, respectively, which refer to the vernal
equinox Υ .

lunar time are defined by the mean Sun and mean Moon, respectively, see Figure 2.5. The

mean Sun is defined to move along the equator with a constant speed ḣ the same as the

fictitious Sun in the ecliptic at a certain reference epoch. The speed ḣ can be considered

as constant because the variations of ḣ is about 0◦.0006/century per century according

to (2.21), which is negligible over centuries. The time elapsed between two successive

passages of the mean Sun at the Greenwich meridian is called a mean solar day. The time

between successive passages of the mean Sun at the vernal equinox is called a tropical year,

which contains 365.24 mean solar days. Similarly, the mean Moon is defined to travel in

the equatorial plane with a nearly constant speed ṡ at certain reference epoch. A mean

lunar day is the time between successive passages of the mean Moon at the Greenwich

meridian, which equals 1.035 mean solar days. Figure 2.6 shows the relationship among

the Earth, the Moon and the Sun, with the Earth being the center of the celestial Sun-

Earth-Moon system. The mean Sun and mean Moon are the projection of the Sun and the

Moon to the equatorial plane travelling with constant speed.

According to Figure 2.5, a relation between mean solar time and mean lunar time holds

as follows:

τ = t − s+ h. (2.22)
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Figure 2.6: The Sun-Earth-Moon system. S and M are mean Sun and mean Moon, respec-
tively, which are the same as shown in Figure 2.5.

Doodson number and tidal constituents A tidal constituent is one of the harmonic

elements in the mathematical expression for the tide-generating potential. Doodson

(1921) introduced a systematic notation for classifying the tides. Before Doodson, Darwin

(1883) had given the harmonic expansion of the tide-generating potential which had

been universally used and had been of remarkable value. The discrepancies between

prediction and observation were serious at Darwin’s time and had been attributed to

harmonic constants (Doodson 1921). There was a residue composed of constituents which

were not included in Darwin’s schedule when all the “Darwinian constituents” were

removed from the tidal height. Therefore, Doodson tried to make a more thorough

development of the potential. In Doodson’s notation, each tide harmonic is denoted by a

6-digit number which is known as the Doodson number, k = k1k2k3.k4k5k6. The Doodson

number is obtained by adding 055.555 to the integer argument number ABC.DEF in

(2.19), that is

k1k2k3.k4k5k6 = A(B+ 5)(C + 5).(D + 5)(E + 5)(F + 5) . (2.23)

As the integers A−F are rarely outside the range [−4,4], adding 055.555 to the argument

number avoids the Doodson number being negative values as much as possible (Doodson

1921). Inserting (2.23) into the Greenwich astronomical argument (2.19) gives

Θk(t) = k1τ + (k2 − 5)s+ (k3 − 5)h+ (k4 − 5)p+ (k5 − 5)N ′ + (k6 − 5)ps , (2.24)

which is equivalent to

Θk(t) = Θ̇kt +Θk(t0) . (2.25)

Θ̇k is tidal frequency and Θk(t0) is the Greenwich astronomical argument at initial epoch

t0. Then

Θ̇k = k1τ̇ + (k2 − 5)ṡ+ (k3 − 5)ḣ+ (k4 − 5)ṗ+ (k5 − 5)Ṅ ′ + (k6 − 5)ṗs , (2.26)

and

Θ(t0) = k1τ(t0)+(k2−5)s(t0)+(k3−5)h(t0)+(k4−5)p(t0)+(k5−5)N ′(t0)+(k6−5)ps(t0) . (2.27)
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The index k1 corresponds to the species index m. According to Doodson (1921), the term

constituent is referred and restricted to a set of harmonics inseparable within a year. In

other words, constituent indicates those harmonics whose arguments differ by multiples

of h, but not by multiples of p, N ′ and ps, which is unable to distinguish using one year’s

observation. Therefore, the first three figure of the argument-number is called constituent-
number, and the first two figures of the argument-number is called group-number. The

following gives an example:

• argument-number: 255.555, M2 harmonic,

• constituent-number: 255, M2 constituent,

• group-number: 25, M2 group,

• species-number: 2, semi-diurnal.

However, certain symbols such as M2, S2 established by Darwin, as shown in the above

example, are still used. A list of Darwin’s symbols and the corresponding Doodson

constituent number was given in Doodson (1921) Table VI. Table 2.2 shows part of

tide constituents (Doodson 1921; Hicks et al. 2000). Hereafter, the term constituent is

used by following Darwin’s notation, which, to be precise, means corresponding tide

harmonic in the context of Doodson (1921) without further explanation. In reality, it

is not necessary to go any further than the constituent level so that a year worth of tide

gauge data can be used to define amplitude and phase of a constituent (Schrama 2011).

Nodal modulation factors are needed to be defined to properly define the amplitude and

phase of a constituent.

Table 2.2: Tide constituents in both notation.

tidal species constituent Darwin Doodson period (hr)

long period

solar annual Sa 056.555 8765.812 551 9

solar semi-annual Ssa 057.555 4382.905 208 7

lunar monthly Mm 065.455 661.309 204 9

lunisolar fortnightly Mf 075.555 327.858 968 9

diurnal

larger lunar elliptic diurnal Q1 135.655 26.868 356 7

lunar diurnal O1 145.555 25.819 341 7

solar diurnal P1 163.555 24.065 890 2

lunisolar diurnal K1 165.555 23.934 469 7

semi-diurnal

larger lunar elliptic semi-diurnal N2 245.655 12.658 348 2

principal lunar semi-diurnal M2 255.555 12.420 601 2

principal solar semi-diurnal S2 273.555 12.000 000 0

lunisolar semi-diurnal K2 275.555 11.967 234 8
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2.4 The equilibrium tide theory

The equilibrium tide theory is based on a hypothetic Earth which is totally covered

with water and has no land masses. Friction and inertia are also disregarded. In this

case, waters covering the Earth respond instantaneously to the tide-generating forces to

form a surface of equilibrium under the equilibrium theory. The theoretical tides formed

under these conditions are known as the equilibrium tides. According to Bruns’s formula

(Hofmann-Wellenhof and Moritz 2006), the vertical distance ζ can be derived by

ζ =
Vt

g
, (2.28)

where g is the Earth’s mean gravity and the Vt is the disturbing potential. In terms of

the tide heights, the disturbing potential is the tide-generating potential as indicated by

(2.17) or (2.18).

2.5 Real response to the tide-generating potential

In reality, it is unrealistic to assume that the ocean tide follows an equilibrium response

as none of the assumptions of the equilibrium theory is fulfilled. To be specific, ter-

restrial factors play an important role in shaping the observed tides at a specific location

and epoch. Some of the terrestrial factors are (Hicks and Szabados 2006):

• Earth rotation,

• irregular and restricted ocean depths,

• irregularly shaped continents,

• bottom friction,

• turbulence,

• water viscosity.

Smith (1999) discussed the unrealistic equilibrium response by summarizing several

papers. The real response of the ocean to the tide-generating potential is the result

of combined effect of the tide-generating potential and the terrestrial factors. These

phenomena can be described by ocean dynamics.

Ocean dynamics The motion of the water mass, i.e. horizontal currents (u,v), i.e. (local
east, local north) vector, and vertical tidal heights ζ, can be described by the Laplace tidal
equations which were originally established by Marquis P.S. Laplace in 1775 (Smith 1999).

Those equations are mostly valid in deep ocean2, where some terrestrial factors like bottom

friction can be ignored, see e.g. Cartwright (1993). As a consequence, the tidal equations

become linear in u, v and ζ. Therefore (u,v,ζ) have the same frequencies as presented in

the tidal generating potential, see section 2.2. However, in shallow waters, the dynamics

2The deep ocean is defined as the depths larger than about 200 m (Cartwright 1993).
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become nonlinear due to the finite water depth, advection and bottom friction (Pugh

1996). The nonlinear distortion can be modelled by compound tides and overtides, which

are higher harmonics with frequencies that are sums, differences or multiples of the fre-

quencies in the tide-generating potential (Pugh 1996). Compound tides and overtides

(e.g., M4 and 2MS2) are also called shallow water tides, as they are caused by the non-

linear distortion of major astronomical tidal constituents (e.g., M2, S2) in shallow water

(Andersen 1999). In other words, these high frequency constituents (from 3 to 13 cycles

per day) produced by combining the fundamental diurnal and semi-diurnal constituents,

are artefacts that attempt to describe the complex non-linear effects of bottom friction

and shallow water. These constituents are outside of the scope of this research work.

In this case, the real tidal heights should be derived or predicted by tidal analysis using

observations rather than by (2.28). There are mainly two tidal analysis methods: har-

monic analysis and response analysis. For the response method, it is assumed that the

ocean tides can be represented by the equilibrium tide and a weight function (Munk

and Cartwright 1966). Therefore, the equilibrium tides calculated by (2.28) serves as the

input values of the response method. The Fourier transformation of the weight function

is called the admittance, see more details in e.g. (Munk and Cartwright 1966), (Cartwright

and Ray 1991). Here, a brief introduction of the harmonic analysis method is given.

Harmonic analysis The tidal elevation of the water mass as a result of the tide-generating

forces behaves linearly in deep oceans and can be analysed according to (Schwiderski

1980a; Pugh 1996)

ζ(λ,φ,t) =
∑
k

fkξk(λ,φ)cos[Θk(t) +χk +uk − δk(λ,φ)] . (2.29)

where the summation over k includes all the constituents to be considered. Unknowns

ξk(λ,φ) and δk(λ,φ) represent the amplitude and phase lag of a particular constituent,

also known as harmonic constants, which depend on the location (λ,φ). As Θk in (2.24)

is the astronomical argument at Greenwich, δk(λ,φ) is a phase lag at location (λ,φ) with

respect to the Greenwich equilibrium tide. In other words, δk(λ,φ) expresses the time

interval between high water of the observed tide at (λ,φ) and high water of the Greenwich

equilibrium tide, at frequency Θ̇k (Schureman 1958). fk and uk are the nodal factor

and nodal angle accordingly, which are so-called nodal parameters. In practice, nodal

parameters express the dependence of constituent coefficients and constituent arguments

in terms of lunar node N (Schureman 1958). The aim of the harmonic analysis is to

determine the constants ξk and δk by least-squares estimation. For this purpose, (2.29)

can be written as

ζ(λ,φ,t) =
∑
k

[fkCk(λ,φ)cos(Θk(t) +χk +uk) + fkSk(λ,φ)sin(Θk(t) +χk +uk)] , (2.30)
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in which the constants Ck and Sk are to be estimated. The amplitude and phase lag can

be derived by

ξk =
√
C2
k + S2

k

δk = arctan
(
Sk
Ck

)
.

(2.31)

2.6 Ocean tide modelling and models

Ocean tides can be modelled in two ways3:

i) solving the oceanic tides from the hydrodynamic equations. The corresponding

model is a so-called hydrodynamic model, e.g. Schwiderski (1980b), Schwiderski

(1983) and fes. (Le Provost et al. 1994);

ii) fitting parameter model through tidal observations. The corresponding model is a so-

called empirical model, e.g. the Goddard Ocean Tide (GOT) model series (Ray 1999),

and Empirical Ocean Tide (EOT) model series (Savcenko and Bosch 2008; Savcenko

and Bosch 2012).

In this study, ocean tide models got. and eota are used. Therefore, they are briefly

introduced. Table 2.3 shows the basic information of the global tide model. An overview

of altimetry missions, from which these models have been derived, can be referred to e.g.

Table 1 in (Mayer-Gürr et al. 2012).

GOT4.7 Goddard Ocean Tide model got. (Ray 1999) is an updated version of got.
(Ray 1999), both of which provide solutions for amplitudes and phases of the global

oceanic tides. The Goddard Ocean Tide models are derived by empirical harmonic anal-

ysis of satellite altimetry relative to prior models. The prior models include regional
hydrodynamic models as well as the global hydrodynamic model fes. (Le Provost

et al. 1994; Ray 1999; Stammer et al. 2014). The got. solution depends only on the

Topex/Poseidon (T/P) and Jason-1 satellites in the deep ocean within latitudes [−66°,66°],

while in shallow seas and deep water at latitudes beyond ±66°, data from Geosat Follow-

On (GFO), ERS-1, ERS-2 and ICESat are included (Stammer et al. 2014).

EOT08a Empirical Ocean Tide (EOT) model eota is an empirical model derived

by Deutsches Geodätisches Forschungsinstitut (DGFI) based on multi-mission satellite

altimetry data. By taking the prior model fes (Lyard et al. 2006) as a reference,

eota assimilates the data of altimetry mission T/P, Jason-1, ERS-2 and Envisat (Sav-

cenko and Bosch 2008). At latitudes poleward of ±62°, which are the latitude limits

3Some researchers, e.g. Smith (1999), argued a third way: assimilating the tidal data into an existing
hydrodynamic model. The corresponding model is called a hybrid model. In essence, it is the same as the
second method.
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of ERS-2 and envisat, eota is the same as fes. Table 2.3 shows constituents

included in eota by data analysis.

Table 2.3: Basic information of ocean tide model got. and eota

tide model prior model altimetry data used constituent

GOT4.7
FES99.2 T/P, GFO, Jason-1 Q1,O1,P1,K1

local tide models ERS-1/2, ICESat N2,M2,S2,K2,M4

EOT08a FES2004
T/P, Jason-1, GFO Q1,O1,P1,K1,2N2

ERS-2, Envisat N2,M2,S2,K2,M4

In this study, eight main tide constituents, namely Q1,O1,P1,K1,N2,M2,S2,K2, are in-

cluded. The rest of the constituents are excluded for following reasons:

i) they are not modelled or commonly modelled by got. and eota, for instance

all the long period constituents listed in Table 2.2;

ii) their magnitudes are small compared to the eight main constituents and negligible

in the context of global analysis of the ocean tides;

iii) high harmonic constituents like overtones and compound tides only appear in the

shallow water which is out of the scope of this study. In the deep ocean, it is unlikely

that those constituents dominate ocean tide (Schrama 2011).

2.7 Spherical harmonic analysis of tidal heights

The ocean response of the tide-generating potential is the superposition of the tidal

heights ζk which depend on frequencies. Being the same as in previous formulas,

the subscript k refers to a particular tidal constituent. Each tidal height ζk corresponds to

a constituent. Similar to (2.18), the tidal height ζk can be written in terms of amplitude

ξk and phase lag δk at a specific location on the Earth (λ,θ) at an epoch t

ζ(λ,φ,t) =
∑
k

ζk =
∑
k

ξk(λ,φ)cos[Θk(t) +χk − δk(λ,φ)] . (2.32)

Now ζk can be written as

ζk = ξkcos(δk)cos(Θk +χk) + ξksin(δk)sin(Θk +χk) . (2.33)

Dow (1988) expanded the tidal height ζk into spherical harmonics. The in-phase and

quadrature terms ξkcos(δk) and ξksin(δk) can be expanded in spherical harmonics as

ξkcos(δk) =
∞∑
l=0

l∑
m=0

[
alm,kcos(mλ) + blm,ksin(mλ)

]
P̄lm(sinφ)

ξksin(δk) =
∞∑
l=0

l∑
m=0

[
clm,kcos(mλ) + dlm,ksin(mλ)

]
P̄lm(sinφ) .

(2.34)
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where alm,k , blm,k , clm,k and dlm,k are the corresponding normalized spherical harmonic

coefficients and P̄lm are normalized Legendre polynomials depending on degree l and

order m. Inserting (2.34) into (2.33) gives

ζk =
∞∑
l=0

l∑
m=0

−∑
+

[
C̄±lm,kcos(Θk +χk ±mλ) + S̄±lm,ksin(Θk +χk ±mλ)

]
P̄lm(sinφ) . (2.35)

The coefficients (C̄±lm,k , S̄
±
lm,k) represent normalized prograde and retrograde spherical

harmonic coefficients of the tide k at degree l and order m. Alternatively, the coefficients

can be written in terms of amplitude ˆ̄C±lm,k and phase ε̂±lm,k as

C̄±lm,k = ˆ̄C±lm,ksin(ε̂±lm,k) =
1
2
(
alm,k ∓ dlm,k

)
S̄±lm,k = ˆ̄C±lm,kcos(ε̂±lm,k) =

1
2
(
clm,k ± blm,k

)
,

(2.36)

Therefore, the tidal heights can be expressed as

ζk =
∞∑
l=0

l∑
m=0

−∑
+

ˆ̄C±lm,ksin(Θk +χk ±mλ+ ε̂±lm,k)P̄lm(sinφ) . (2.37)

The mass redistribution effect of ocean tides on the Earth’s gravitational potential is

described by

∆Vk =
GMe

re

∞∑
l=0

(
re
rOP

)(l+1) l∑
m=0

[
∆C̄lm,kcos(mλ) +∆S̄lm,ksin(mλ)

]
P̄lm(sinφ) . (2.38)

where re is the mean radius of the Earth and (∆C̄lm,k , ∆S̄lm,k) are normalized spherical

harmonic coefficients which can be derived by

∆C̄lm,k =
4πr2

e ρw

Me

1 + k′l
2l + 1

[(
C̄+
lm,k + C̄−lm,k

)
cos(Θk +χk) +

(
S̄+
lm,k + S̄−lm,k

)
sin(Θk +χk)

]
∆S̄lm,k =

4πr2
e ρw

Me

1 + k′l
2l + 1

[(
S̄+
lm,k − S̄

−
lm,k)cos(Θk +χk)− (C̄+

lm,k − C̄
−
lm,k)sin(Θk +χk

)]
,

(2.39)

in which ρw is the water density and k′l is the load Love number. The factor (1 + k′l )

accounts for both the mass redistribution due to ocean tides, as well as the effect of the

deformation of the solid Earth as a consequence of ocean mass redistribution.
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Ocean tide aliasing in satellite gravimetry

Based on the tide theory in Chapter 2, we know that the ocean tides can be modelled

by the superposition of tidal constituents. As the gravimetry satellite cannot revisit

a certain location within half a day or one day, semi-diurnal and diurnal tidal signals are

under-sampled according to the Nyquist sampling theorem and alias to longer periods.

Apart from that, gravity field solutions are derived by combining the global observations

in a certain recovery period up to a certain degree and order, which results in applying

space-time averaging to the observations. As a consequence, the gravity field solutions are

derived by “re-sampling” the observations, which may cause aliasing as well. Therefore,

in order to collect all the information to subtract tide signals from the observations, or

from the final field products, we need to know the alias periods of tidal constituents.

Tidal aliasing is a typical problem in satellite altimetry, and the estimation of the alias

periods of tidal constituents is well demonstrated by (e.g. Parke et al. 1987; Cartwright

and Ray 1990; Schlax and Chelton 1994). However, the aliasing mechanism is different

for satellite gravimetry and simply “borrowing” from satellite altimetry is not sufficient.

Three pieces of evidence support this argument:

i) altimetry satellites normally fly in repeat orbits but the gravimetry satellites do not;

ii) final products of altimetry satellites, heights, are derived “point-wise” or locally

combined, while satellite gravimetry measures a potential field and thus the sum of

mass distribution or change;

iii) each observation is considered independently as an “instantaneous” sample in satel-

lite altimetry, while time averaging is commonly used in satellite gravimetry to derive

a solution within a certain period.

27



28 CHAPTER 3. OCEAN TIDE ALIASING IN SATELLITE GRAVIMETRY

Therefore, alias period estimation in satellite gravimetry needs to be investigated specif-

ically. Chapter 1 described that by knowing signal frequency and sampling frequency,

the aliasing frequency can be estimated. As signal frequencies, frequencies of tidal con-

stituents in this case, are precisely known, finding sampling frequencies becomes the key

task. In this chapter, the mechanism of tidal aliasing in satellite gravimetry is discussed

in detail and the sampling frequencies are determined. As a result, the alias periods can

be estimated analytically.

At the beginning, spatial aliasing and temporal aliasing are discussed in general in section

3.1 and section 3.2, respectively. Next, the alias mechanism in satellite gravimetry is

investigated in two aspects: orbit sampling (section 3.3) and gravity recovery (section

3.4). Section 3.5 discusses the relation between the perturbation frequency and alias

frequency. In the end, section 3.6 summarizes the tide aliasing spectrum estimation in

satellite gravimetry.

t = 0 h t = 3 h t = 6 h

t = 9 h t = 12 h t = 15 h

Figure 3.1: Variations of ocean tides in geoid height [mm] on January 1, 2002. The tide
signals include 8 major constituents M2, N2, S2, K2, K1, O1, P1 and Q1 from tide model
eota.

3.1 Spatial aliasing

Spatial aliasing and temporal aliasing are two types of aliasing problem. In some

cases, they can be referred as two sides of the same problem, which means they are

equivalent and one can choose any of them to investigate. But in other cases, they have

nothing in common and the researcher must decide what they want to investigate and

then take the corresponding concept to carry on the study. In general, spatial aliasing

is caused by insufficient sampling of the data along the space axis and is discussed in
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Figure 3.2: Mean geoid RMS of one day of tidal signal from tide model eota and tidal
errors by eota−got..

the wavenumber space. The term wavenumber refers to the spatial frequency of a wave,

measured in cycles per unit distance or radians per unit distance.

Ocean tides are temporal-spatial signals. On the one hand, tidal height variations are

point-wise and time dependent. On the other hand, the tidal height profile of continuous

region forms a waveform in space. In satellite altimetry, the juxtaposition of the phase-

shifted aliased signals at adjacent nodes causes the spatial aliasing of tidal signals (Schlax

and Chelton 1994). These aliased tidal signals might be misinterpreted as sea surface

height or as evidence for a westward propagating Rossby wave1. For instance, Schlax

and Chelton (1994) showed that the spatial aliasing of M2 tidal error for T/P acted as a

westward propagating signal.

Tidal heights are commonly expressed in terms of spherical harmonics, as shown in

section 2.7, which are also widely used when investigating gravity signals globally. Con-

sequently, the spatial aliasing has an extended meaning. As the spherical harmonics

represent the spatial scale, mapping of the signal from higher spherical harmonics onto

lower spherical harmonics is equivalent to mapping the short-wavelength signal to the

long-wavelength signal. As a result, signals of different locations are aliased to each

other. Koop and Rummel (2007) gave examples of coarse spatial aliasing and fine spatial

aliasing based on GRACE results. An example of coarse spatial aliasing is the relative low-

precision C2,0 time series, and an example of fine spatial aliasing is localized excursions

of gravity field signals (Koop and Rummel 2007). Seo et al. (2008b) showed that errors

in component of higher harmonics of semi-diurnal tides can alias into lower harmonics,

for instance Y6,2 of S2 can alias to Y6,0, Y4,0 and Y2,0.

Due to the presence of land, ocean tides are not globally distributed signals. Therefore,

the spherical harmonic analysis of tidal heights introduces errors by nature. Figure 3.1

1Rossby wave, also known as planetary wave, is a natural phenomenon in the atmosphere and oceans of
rotating planets.
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shows geoid heights of tidal constituents expressed in spherical harmonics. Significant

“ocean tide signals”, which are errors, are present on land. However, this phenomenon can

be considered as ocean tide signal leaking to the land rather than aliasing to the land, as

no under-sampling of ocean tides is involved while applying spherical harmonic analysis

to the tidal heights. Figure 3.2 shows the magnitudes of tidal signals and errors of eight

major constituents in mean geoid RMS. Generally speaking, spatial aliasing happens when

signals are undersampled in spatial domain, while spatial leakage happens when signals

are “transferred” from their original location to other location(s) due to data processing.

3.2 Temporal aliasing

Temporal aliasing is normally discussed in the time-frequency domain. A temporal

alias is referred when the time characteristics of investigated signals are the key

information. For instance, tide modelling aims to derive the amplitude and phase lag

of an individual constituent, and the temporal height variations of tidal constituents are

important inputs. When using satellites to sample the tidal signals, tidal constituents

with short periods alias to long periods due to undersampling. In this case, aliasing
specifically refers to temporal aliasing.

An important aim of gravity field research is to investigate the temporal gravity field, e.g.

due to water storage change. Time-frequency analysis is a common strategy to approach

the task. Therefore, as an important error source of the temporal gravity field, tidal

aliasing in the satellite gravity field is better investigated in the time-frequency domain.

Actually, as ocean tides are temporal-spatial signals, tidal aliasing errors expressed in

the time domain also present themselves in the spatial domain. If the aliasing error is

removed in the time domain, its spatial effect is also removed. Therefore, the tidal aliasing

can be investigated in either time domain or spatial domain, but there is no need to deal

with them in both domains for a single aim.

The aliasing problem discussed from now on refers to temporal aliasing. Therefore,

in order to estimate the alias errors, the key is to get precise alias periods. With alias

periods, the error magnitudes of tidal constituents can be estimated. An altimeter satellite

in a repeat orbit with a period of α nodal days samples the tides at a given location

once every α nodal days, which is called repeat period. The observations are processed

at each location independently with a given spatial resolution. In this case, there is

only one-step aliasing caused by satellite orbit undersampling and the alias periods can

be calculated with the signal periods and sampling periods, i.e. the tidal constituent

periods and the repeat period α days accordingly. The ocean tide aliasing in satellite

gravimetry is different from that in satellite altimetry as discussed at the beginning of

this chapter. In view of those aspects, there is a two-step sampling and accordingly two-

step aliasing in satellite gravimetry, see Figure 3.3. The first step is primary aliasing due
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Figure 3.3: Two-step sampling in satellite gravimetry. The first diagram representing
Earth is from https://www.jpl.nasa.gov/spaceimages, and the diagram of ground track is
from http://www2.csr.utexas.edu/grace/ground/.
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to undersampling of signals by satellite orbits, and the second step is secondary aliasing

due to resampling (and undersampling) of observations during gravity recovery. The

two-step sampling will be elaborated in following sections.

3.3 Orbit sampling and primary aliasing

The observations of satellite gravimetry taken from orbits are largely related to the

signals below the orbit tracks, though not point-wise. Therefore, the ground track

pattern is directly connected to the sampling of temporal signals. If we consider a repeat

orbit, a satellite revisits the exact location after α nodal days. The satellite samples the

Earth with a frequency of 1/α. For a non-repeat orbit, or an orbit with a considerable

large repeat period and not repeating itself within a targeted time span, the samples of

a satellite along a latitude cycle can be considered jointly regardless of the local charac-

teristics, namely local amplitudes and phase lags. The corresponding sampling rate is

the orbit plane procession rate Λ̇ in the Earth-fixed frame, namely Λ̇ = Ω̇−ωE, in which

Ω̇ is nodal drift rate and ωE is the Earth rotation rate. This approximation of drift-orbit

sampling holds only when the investigated signal can be considered as longitudinal uni-
form signal. A longitudinal uniform signal specifically means the signal can be modelled as

(superposition of) spatially continuous harmonic(s) with the constant amplitudes for all

different longitudes. A longitudinal uniform signal guarantees that different orbit planes

sample the same signal in longitudinal direction, under which condition the orbit plane

procession rate can be taken as the sampling rate.

In terms of ocean tide aliasing, the above approximation is valid when we consider each

tidal constituent as a longitudinal sinusoid signal rather than a localized signal. Rewriting

(2.35) as

ζk =
∞∑
l=0

l∑
m=0

Alm,kcos
(
Θk +Φlm,k

)
P̄lm(sinφ) , (3.1)

then

Alm,kcos
(
Θk +Φlm,k

)
= Alm,kcos

(
Θ̇kt +Φlm,k

)
=
−∑
+

[
C̄±lm,kcos

(
Θ̇kt +χk ±mλ

)
+ S̄±lm,ksin

(
Θ̇kt +χk ±mλ

)]
= A+

lm,k sin
(
Θ̇kt +χk +mλ+φ+

lm,k

)
+

A−lm,k sin
(
Θ̇kt +χk −mλ+φ−lm,k

)
,

(3.2)

in which Θ̇k is the tidal constituent frequency and

A±lm,k =
√
C̄±2
lm,k + S̄±2

lm,k

φ±lm,k = arctan
C̄±lm,k
S̄±lm,k

,
(3.3)
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the amplitude Alm,k and initial phase Φlm,k are

Alm,k =
√
A+2
lm,k +A−2

lm,k + 2A+
lm,kA

−
lm,k cos

(
2mλ+φ+

lm,k −φ
−
lm,k

)
Φlm,k = arctan

A+
lm,k sin

(
χk +mλ+φ+

lm,k

)
+A−lm,k sin

(
χk −mλ+φ−lm,k

)
A+
lm,k cos

(
χk +mλ+φ+

lm,k

)
+A−lm,k cos

(
χk −mλ+φ−lm,k

) . (3.4)

Similarly, (3.1) can be further written as

ζk = Akcos
(
Θ̇kt +Φk

)
, (3.5)

the amplitude Ak and initial phase Φk can be derived by successively adding two si-

nusoidal waves, which is similar to the typical problem in physics: synthesis of simple
harmonic vibration in same direction at same frequency. In this case, the sinusoidal waves

to be added are

Alm,k P̄lm(sinφ)︸            ︷︷            ︸
amplitude

sin
(
Θ̇kt +Φlm,k +

π
2

)
, (3.6)

with the degree l and order m vary accordingly. Adding every two harmonics above will

derive a new harmonic with a similar amplitude and phase as given by (3.4) at the same

frequency Θ̇k . The addition operation continues till the generalized form (3.5) is achieved.

The generalized form (3.5) indicates that tidal height of each constituent can be expressed

as a single sinusoid wave at a given latitude λ if one ignores the longitudinal-dependent

amplitude Ak and initial phase Φk as (3.4). Note that A±lm,k and φ±lm,k do not equal Ak and

Φk , but act as the factors to calculate them by applying an equation similar to (3.4).

This idealized assumption, single wave at latitude circle, is not in line with reality when we

see the co-tidal charts or the amplitude and phase maps of constituents. However, this

single-wave assumption is justified because of two reasons:

i) the amplitudes (which will be taken care of later) are out of scope at this moment;

ii) the phase differences of the neighbouring regions at the same latitude are negligible.

In other words, the signal frequency is the only factor that matters in this step of orbit

sampling. Given the arguments above, we can assume a constant amplitude and a con-

stant phase lag for all single points at the same latitude. That is, the alias of a given tidal

constituent may be illustrated by sampling a spatially uniform harmonic with the tidal

frequency at the satellite sampling points, which is also adopted by (Schlax and Chelton

1994).

Figure 3.4 shows the basic idea of the single-wave assumption. The left diagram is a

tidal height envelope of a semi-diurnal constituent at a constant latitude viewed from

the north pole (NP). Taking the original Earth surface (the circle) as height “0”, the
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distances between deformed Earth surface (the ellipse) and the original Earth surface can

be considered as the tidal heights. If we open this tidal height envelope at o and map it

into a two-dimension space, the tidal height will unfold as vertical axis, indicated as the

right diagram of Figure 3.4. The horizontal axis can be taken as both the spatial axis and

the time axis. When taken as spatial axis, it increases from longitude 0◦ to 360◦ from o to

o and repeats afterwards. When taken as time axis, every o-to-o indicates one sidereal day.

An arrow indicates a sample. Different samples at different longitudes can be considered

as the same samples as long as they are at the same phase. For example, the samples with

dash-line arrows are the mapping of solid-line samples. In this case, samples at different

longitudes are only distinguished by tidal phases, not by locations, and the tidal height

variation is considered as a single-wave signal rather than many waves (therefore, many

signals) for different longitudes at a certain latitude circle.

This space-time change of tidal signal can be further illustrated by a simplified example in

Figure 3.5. Two sinusoids with periods of 12 hours and 24 hours represent semi-diurnal and
diurnal tides roughly. An arrow indicates a sample at one epoch. Within one day, samples

almost locate at the same phase regardless of the sampling epoch. This is because the

dominant part of tidal frequency, cf. equation (2.26), and the orbit precession in the

Earth-fixed frame are the same, namely Earth rotation rate. Therefore, the change of

tidal phase and the orbit rotation angle with respect to the Earth are synchronous. For

the real tidal constituents with not exactly 12 hours or 24 hours, the phases of samples

are expected to vary in a small range around the arrow, from which one cannot recover

the entire signal. After an adequate time length, at least one alias period, enough varied

phase information is collected to recover the original signal.

NP

Figure 3.4: The single-wave assumption.

For further understanding, orbit sampling in this context specifically means the proce-

dure that the orbit plane scans the phase of a signal while precessing relative to the Earth.

The measure of tidal phase change per longitudinal degree, φ1d , is

φ1d =
ft · Tsd

360
, (3.7)

in which ft is the phase velocity of a single constituent, and Tsd stands for a sidereal day.

For an individual constituent, it is obvious that φ1d only depends on its own frequency
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[deg]

[hour]

Figure 3.5: Orbit sampling of diurnal and semi-diurnal signals in one day.
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and is a constant. Suppose the longitude of the ascending node of the orbit plane at

t = t0 is Λ(t0) = 0◦ and the tidal phase of a constituent is φ(t0) = 0◦, the longitude of the

ascending node at t = t1, Λ(t1), will be

Λ(t1) = (Ω̇−ωE)t1 + 360◦n, (3.8)

in which n ∈ Z is an integer to keep Λ(t1) in the range of [0◦,360◦). Then the tidal phase

at t1 is

φ(t1) = φ1d ·Λ(t1) + ftt1 + 360◦n. (3.9)

Using equation (3.7), (3.8) and (3.9), we can get the similar phase change sequences as

shown in Figure 3.5.

To summarize, orbit sampling of ocean tides cause a first-step aliasing in satellite gravime-

try, and the corresponding alias frequency is called primary alias frequency, noted as f p
a .

The primary alias frequency can be estimated by applying equation (1.1) with specific

integer N satisfying

f
p

a = min
(∣∣∣∣ft −N (

Ω̇−ωE
)∣∣∣∣) . (3.10)

u-t cyclogram The estimated primary alias periods can be demonstrated by displaying

the field or its functionals along the orbit with u-t cyclogram. A u-t cyclogram shows

the observable in the domain of argument of latitude u against time t. Conventionally,

the argument of latitude of the ascending node is 0◦, and u equals 90◦, 180◦, 270◦ (or

−90◦) when a satellite is at the most Northern points, equator (descending node), the

most Southern points, accordingly. The argument of latitude u and latitude φ are related

by

sinφ = sin I sinu , (3.11)

in which I is the inclination of the satellite.

Table 3.1: Simulation and alias periods of individual tidal constituent.

constituent simulation time alias period number of cycles

[day] [day]

M2 60 13.96 4.3

N2 60 9.27 6.5

S2 363 257.51 1.4

K2 1826 (5y) 628.02 2.9

K1 1826 (5y) 1256.03 1.5

O1 60 13.81 4.3

P1 363 213.70 1.7

Q1 60 9.20 6.5
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Demonstration of f p
a In this demonstration a nominal orbit at h = 361.9 km and I = 92◦

is simulated with tidal error of individual constituent as input. A nominal orbit means

that the eccentricity of the orbit equals 0, and thus no perturbation due to perigee drift ω̇.

It should be reminded that a repeat orbit is not a necessity. The tidal error is obtained by

the difference of two tide models, namely eota andgot.. The spatial distribution

of ocean tides and the magnitudes of the tidal errors are shown in the Figure 3.1 and

Figure 3.2. The simulated observation is the acceleration difference of two satellites

projected on the line-of-sight direction, that is

(∇VB −∇VA) ·~eAB , (3.12)

in which A and B stand for two satellites flying as GRACE-type formation, and ~eAB is the

line-of-sight unit vector of the low-low satellite ranging between satellite A and B. Table

3.1 shows the estimated primary alias period according to (3.10), simulation periods and

expected cycles in the given simulation periods. Figure 3.6 and 3.7 show the observations

along the orbit for 8 major constituents. The plot on the left side shows the observation

distribution in the u-t domain, and the right side shows the RMS of observations. The red

and blue color indicate the opposite sign of observations. If one “scans” the u-t cyclogram

along a constant u, obvious alternating red-blue patterns are shown for all 8 constituents.

The number of alternations equals the number of cycles given in Table 3.1, which well

demonstrates the estimated alias period by (3.10).

3.4 Gravity recovery and secondary aliasing

Gravity field recovery from satellite missions is a process combining observations

or geopotential functionals along orbits in a certain recovery period, Tr, to derive

the spherical harmonic coefficients till a certain degree and order. In this process, data

covering most regions of the Earth and spanning several days are merged into one solution.

Therefore, after being sampled by orbits, the temporal signals are sampled in a second

time by Tr-day averaging. In general, the functionals of the geopotential, f #, can be

represented by a 2D-Fourier series (Sneeuw 2000) for a nominal orbit:

f # =
∞∑

m=−∞

∞∑
p=−∞

A#
mpe

iψmp , (3.13)

with

A#
mp =

∞∑
l=max(|m|,|p|)

H#
lmpK̄lm

ψmp = pu +mΛ = ψ̇mpt +ψmp(t0) ,

(3.14)

in which H#
lmp is transfer coefficient and K̄lm is normalized spherical harmonic coefficient

of degree l and order m. Index p is used instead of k to avoid the conflict of using k as

tidal constituent indicator. Transfer coefficients of several functionals can be found in
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Figure 3.6: Orbit sampling of the semi-diurnal constituents. The red and blue color
indicate the opposite sign of observations along orbits.
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Figure 3.7: Orbit sampling of the diurnal constituents. The red and blue color indicate
the opposite sign of observations along orbits.
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(e.g. Sneeuw 2000, p. 31). Gravity recovery is to estimate coefficients K̄lm according to f #

and corresponding H#
lmp.

The spherical harmonic coefficients of ocean tides are time variable (Petit and Luzum

2010), see (2.39), therefore

K̄lm(t) =
[
∆C̄lm + i∆S̄lm

]
(t)

=
∑
k

−∑
+

(
C±lm,k ∓ iS

±
lm,k

)
e±iΘ̇kt .

(3.15)

Comparing (3.15) to (2.39), the coefficients C±lm,k and S±lm,k can be computed as

C±lm,k =
4πr2

e ρw

Me

1 + k′l
2l + 1

ˆ̄C+
lm,k sin

(
ε̂±lm,k +χk

)
S±lm,k =

4πr2
e ρw

Me

1 + k′l
2l + 1

ˆ̄C+
lm,k cos

(
ε̂±lm,k +χk

)
.

(3.16)

Rewriting (3.15) one gets

∆C̄lm =
∑
k

−∑
+

AClm,k sin
(
Θ̇kt +ΦC

lm,k

)
∆S̄lm =

∑
k

−∑
+

ASlm,k sin
(
Θ̇kt +ΦS

lm,k

)
,

(3.17)

with

AClm,k =

√(
C+
lm,k +C−lm,k

)2
+
(
S+
lm,k + S−lm,k

)2

ASlm,k =

√(
C+
lm,k −C

−
lm,k

)2
+
(
S+
lm,k − S

−
lm,k

)2

ΦC
lm,k = arctan

(
C+
lm,k +C−lm,k
S+
lm,k + S−lm,k

)
ΦS
lm,k = arctan

(
S−lm,k − S

+
lm,k

C+
lm,k −C

−
lm,k

)
.

(3.18)

Equation (3.17) indicates that the spherical harmonic coefficient increment correspond-

ing to ocean tides can be considered as the sum of harmonics at the same frequencies Θ̇k
as the tidal constituents. After the undersampling by orbits, the original tidal signals at

frequency Θ̇k alias into primary alias frequency f p
a (3.10). Therefore, the geopotentional

functionals f # derived from orbit(s) convey the new distorted tidal signals at frequency

f
p

a . Gravity recovery with Tr day is equivalent to sampling the new distorted tidal signals

of frequency f p
a by frequency 1/Tr. If 1/Tr ≤ 2f p

a , secondary aliasing happens. The name

secondary aliasing is designated by following the primary aliasing due to orbit undersam-

pling. A secondary aliasing frequency can be estimated as

f s
a = min

(∣∣∣∣∣f p
a −N

1
Tr

∣∣∣∣∣) . (3.19)
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Similar to primary aliasing, the secondary aliasing is demonstrated as well. An analysis

method simulation-based alias spectrum analysis (SBASA) is proposed for this task, which

will be discussed specifically in next chapter.

Spherical harmonic representation of S2 A special remark should be made for the

principal solar semidiurnal constituent, S2, which represents the Earth rotation with

respect to the Sun. As the tidal potential envelope of S2 seems to perfectly coincide

with the surface spherical harmonic Y2,2 and have nothing in common with Y2,0 (see

Figure 3.8), it is easy to mistakenly think that spherical harmonic expansion of S2 can be

derived without Y2,0, or, the commensurate ∆C2,0 of S2 equals 0. This is wrong due to

an overlooked fact that the equator and the ecliptic do not coincide. The deformation of

the Earth because of the perturbation of the S2 tidal force has an ellipsoidal shape with

the semi-major axis always towards the Sun in the ecliptic, which can be expressed by

Y2,2 in the coordinate frame (θ′ ,λ′), with colatitude ecliptical θ′ and longitude λ′. The

spherical harmonic analysis of the tides is normally conducted in the coordinate frame

(θ,λ), which are the equatorial colatitude and longitude. Regardless of the complexity of

tidal amplitudes and phase lags for different locations, the S2 deformation of the Earth

can be expressed by a single Y2,2 when taking the ecliptic as reference. The connection

between the S2-perturbed Earth shape and the conventional spherical harmonics can be

achieved by rotating the ecliptic to the equator. According to representation theory, the

rotation of spherical harmonics (Sneeuw 2000), spherical harmonic in the original frame

(θ′ ,λ′) is a linear combination of harmonics of the same degree l in the rotated frame

(θ,λ). Therefore, the following relationship holds:

Y2,2(θ′ ,λ′) =
2∑

k=−2

D22k(α,β,γ)Y2k(θ,λ) , (3.20)

with rotation angle

α =
2π

24 · 3600
t − π

2
β = ε

γ =
π
2
,

(3.21)

in which t is the local time in second and ε is the obliquity of the ecliptic. The represen-

tation coefficients Dlmk(α,β,γ) and an elaborate discussion of the rotation of spherical

harmonics can be found in (Sneeuw 2000). Equation (3.20) demonstrates that the com-

mensurate ∆C20 of S2 will not be 0 in general.

3.5 Perturbation frequency and alias frequency

As discussed in section 1.2, Cheng and Ries (2017) took tide perturbation frequencies

as the aliasing frequencies of the ocean tides, which needs special attention. In

order to understand the relation between the aliasing frequency and the perturbation
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Figure 3.8: Surface spherical harmonics Y20, Y22 (top) and Earth-Sun system indicating
the S2-disturbed Earth profile (bottom). The ecliptic obliquity ε is about 23◦26′. The
Earth shape is exaggerated to show the deformation due to S2 tidal potential. Note that
the equator and the S2-disturbed Earth elliptical profile, viewed perpendicular to the
ecliptic, are not in the same plane.

frequency, a review of orbit perturbation theory is needed. In general, perturbations

are caused by the noncentral Earth’s gravitational field. Apart from these, other forces

such as the gravitational attraction of the Sun and Moon, the radiation pressure of the

Sun and the drag of the atmosphere, also cause perturbations (Kaula 2000). The Earth’s

gravitational disturbing potential can be represented by (3.13) and (3.14) with spherical

harmonic coefficients l ≥ 2, and the corresponding perturbation spectrum is ψ̇mp. Note

that a nominal orbit is assumed. Furthermore, the definition of p is different from that in

(Kaula 2000), c.f. section 3.4. Nevertheless, the assumption of nominal orbits does not

affect the analysis and the derived conclusions afterwards, compared to a more realistic

orbit setting.

Any gravitational field functional such as orbit (position and velocity, or Keplerian ele-

ments), low-low intersatellite range and range can be written as (3.13) under the assump-

tion of semi-analytical theory. For instance, satellite orbits are perturbed, relative to the

circular orbit, with dominant secular precession (zero-frequency withm = p = 0) and small
periodic oscillation at frequency ψ̇mp. Resonance occurs when ψ̇mp ≈ 0 and the periodic

variation is more significant so that there may be libration rather than secular motion

(Kaula 2000). To summarize and emphasize, forward modelling starts with a given set of
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Klm with l ≥ 2 and results in the secular and periodic functional f #. Backward modelling

is to derive the Klm, which conveys only spatial information but no temporal information for
a single solution, based on the time series f #.

Actually, the perturbation theory was initially developed based on an implied condition,

the static field. The temporal property of gravity fields started to be widely investigated

and applied only after GRACE mission was launched and the time series of the fields

were analysed. Therefore, the spherical harmonic coefficients Klm, derived from the

perturbation theory, by definition and by nature represent the spatial but no temporal

characteristic of a field.

The temporal characteristics of ocean tides can be considered by inserting (3.15) and

(3.14) into (3.13), assuming ψmp(t0) = 0. That is, the geopotential functionals due to

periodic ocean tides can be written as

f # =
∞∑

m=−∞

∞∑
p=−∞

∞∑
l=max(|m|,|p|)

H#
lmp

∑
k

−∑
+

(
C̄±lm,k ∓ iS̄

±
lm,k

)
e±iΘ̇kteiψ̇mpt . (3.22)

Rewriting (3.22) by separating retrograde and prograde waves gives

f # =
∑
l,m,p

H#
lmp

∑
k

[
K̄+
k,lme

i(ψ̇mp+Θ̇k)t + K̄−k,lme
i(ψ̇mp−Θ̇k)t

]
, (3.23)

with
∑
l,m,p =

∑∞
m=−∞

∑∞
p=−∞

∑∞
l=max(|m|,|p|), and the corresponding prograde and retrograde

coefficients of constituent k are

K̄+
k,lm = C̄+

k,lm − iS̄
+
k,lm

K̄−k,lm = C̄−k,lm + iS̄−k,lm ,
(3.24)

and the prograde and retrograde perturbation spectrum of each constituent k are

Ψ̇ +
k,mp =

(
ψ̇mp + Θ̇k

)
Ψ̇ −k,mp =

(
ψ̇mp − Θ̇k

)
.

(3.25)

Equation (3.25) indicates a richer perturbation spectrum compared to the static field, also

demonstrated by (Cheng 2002). To be specific, different constituents with prograde and

retrograde frequencies are added to the original spectrum ψ̇mp to give new perturbation

spectrum Ψ̇ +
k,mp and Ψ̇ −k,mp. This means that the forward modelling of f # depends on a

larger number of perturbation frequencies. However, the backward modelling of one set

of (K̄+
k,lm, K̄

−
k,lm), is equivalent to a sample by averaging the spatial-temporal information

of the field within a certain period.

In (Cheng and Ries 2017), the authors attempted to describe the temporal characteristics

of the gravity fields, namely fields due to periodic ocean tide variation, by the orbit

perturbation frequency. This attempt is infeasible as the temporal information of the
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fields is merged into one solution as a whole and cannot be tracked back by its resulted-

in perturbation frequencies of the functional f #. Only by analysing the time series of

the fields, can one get the (distorted) temporal information. Assuming perturbation

frequency as the alias frequency is equivalent to describe the spectral property of a time

series by a single sample, which is derived by a time series with certain frequencies. This

assumption of using a sample to indicating the spectral characteristic of the whole time

series is unreasonable in any case.

3.6 Summary

Aliasing in satellite gravimetry occurs in two steps. First, high frequency temporal

signals like ocean tides are undersampled by the satellite orbits. Second, the ob-

servations are combined globally within a recovery period to derive single gravity field

solution, which is a procedure of resampling and possible undersampling, of the signals

conveyed in the observations. Figure 3.3 shows the two-step sampling. Table 3.2 shows

the related parameters of the two-step aliasing in terms of ocean tides. It should be noted

that the secondary alias does not happen for all cases. According to the Nyquist sampling

rule, the secondary alias occurs when the recovery period Tr is no less than half of the

primary alias period 1/f p
a . For example, in some cases with a combination of certain orbit

sampling pattern and recovery period, some of the tidal constituents will suffer from

primary and secondary aliases but some of them may only have a primary alias.

Long period tidal constituents may have secondary alias, as the recovery is an undersam-

pling of original signals, but no “primary alias” as the orbit sampling is not undersam-

pling the signals. In this case, the terms primary and secondary may not be appropriate.

Nevertheless, the basic idea of aliasing in satellite gravimetry is still valid and one can

use a similar strategy demonstrated in this study.

Table 3.2: Parameters of two-step aliasing in terms of ocean tides. The frequencies fsg, fs
and fa are signal frequency, sampling frequency and alias frequency, respectively.

alias procedure due to fsg fs fa

primary alias orbit sampling ft ωE − Ω̇ f
p

a

secondary alias gravity recovery f
p

a 1/Tr f s
a

For satellite gravimetry, the spatial aliasing and temporal aliasing of the ocean tides can

be considered as the two sides of a single problem. Furthermore, perturbation frequency

cannot be considered as alias frequency, although the periodic ocean tides variation of

the spherical harmonic coefficients are taken into consideration while deriving the per-

turbation frequency.



C
h
a
p
t
e
r

4
Simulation-based aliasing spectrum

analysis

In the previous Chapter 3, the two-step aliasing mechanism in satellite gravimetry is

discussed. A brief demonstration of the primary aliasing is given in section 3.3 by

showing the distribution pattern of the observations along the orbit in the u-t domain. In

this Chapter, the secondary aliasing will be demonstrated by spectral analysis. For this

sake, an analysis method called simulation-based aliasing spectral analysis (SBASA) is

developed. It is based on the investigation of power spectral density in different regions.

Furthermore, it allows us to investigate the aliasing behaviour of a single spherical har-

monic coefficient, for instance to analyze the discussion on the 161-day signal in C2,0 of

GRACE-derived fields (e.g. Seo et al. 2008b; Chen et al. 2009; Cheng and Ries 2017):

whether it is due to ocean tide aliasing or not.

The guide-map of this Chapter is as follows:

• Section 4.1 presents the general simulation strategy and setting in this work;

• Section 4.2 introduces the method SBASA to estimate the aliasing spectrum;

• Section 4.3 demonstrates the secondary aliasing by SBASA;

• Section 4.4 investigates the aliasing spectrum for different regions;

• Section 4.5 investigates the behaviour of single spherical harmonic coefficient re-

garding aliasing;

• Section 4.6 explores the influence of the recovery periods on the aliasing further,

based on the discussion in section 4.3, 4.4 and 4.5 ;

• Section 4.7 discusses the relation between wave interference, especially beats, and

aliasing frequencies;

• Section 4.8 summarizes this chapter briefly.

45
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4.1 General simulation strategy

From this Chapter on, different simulations are conducted for different purposes. On

one hand, these simulations follow a common strategy. On the other hand, different

scenarios are designed for specific purposes. A general simulation strategy is introduced

here, and the tailored setting is introduced whenever new simulations are activated.

This work in general is to investigate the ocean tide aliasing influence on the recovered

gravity field and its functionals. In this sense, the effects of other signals and error sources

are irrelevant. In order to avoid external effects, the inputs of the simulations are purely

ocean tides, either the signals or the errors. No instrumental or observational noise is

added to the simulations. Ocean tide signals are usually acquired by one ocean tide

model, regardless of its uncertainty. Ocean tide errors are usually obtained by the dif-

ference of two ocean tide models, whose level of magnitude may be underestimated or

overestimated for different regions comparing to the true ocean tide uncertainty. Never-

theless, the above assumptions are the best approximations for the ocean tide signals and

errors which are currently available.

Normally, eight major ocean tide constituents, M2, N2, S2, K2, O1, P1, Q1 and K1 are

included in the simulations either individually or together. The minor tides are not

included for several reasons:

i) global ocean tide models have coverage of mostly the 8 major tides, the minor tides

are inferred from the major tide admittances in the presence of non-linearity, which

contains errors;

ii) such errors are known to be significant in shallow seas and near-coastal waters for

all currently existing global models, which makes the modelling of the minor tide

errors more unreliable;

iii) the magnitudes of the minor tides are relative small compared to the detection ability

of the current and near-future satellite gravimetry, which is limited by the spatial

resolution.

Another property of the simulation is that it runs in closed loop. A closed-loop simulation

means the true world is known to the simulator. Ideally, the outputs are expected to be

the same as the inputs. In reality, they cannot be the same. The errors, misclosure be-

tween outputs and inputs, indicate the limitation of designed system, satellite formation

or constellation, under the condition that no other noise is included. The simulator is a

software which simulates the observations and recovers the gravity fields. The observa-

tion is a simplified range acceleration by ignoring the correction of perpendicular velocity

terms, as already introduced by equation (3.12).
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A system in this work specially means a formation or a constellation of a satellite mis-

sion. Nominal orbits are assumed for all the scenarios. A nominal orbit satisfies the

following requirements: circular orbit, constant inclination and J2 perturbed secularly

precessing. Least-squares estimation is applied to derive the gravity field solutions. Table

4.1 summarizes the general simulation setting.

Table 4.1: General simulation setting.

input field purely ocean tide signal or error

noise no

ocean tide signal EOT08a

ocean tide error EOT08a − GOT4.7

tidal constituent M2, N2, S2, K2, O1, P1, Q1, K1

simulation property closed-loop

simulator functional observation simulation and gravity recovery

system satellite formation or constellation

orbit nominal orbit

observation simplified range acceleration: (5VB −5VA) ·~eAB
recovery method least-squares estimation

4.2 Simulation-based alias spectrum analysis (SBASA)

As discussed in Chapter 3, normally ocean tides are undersampled by satellite orbits

and then further undersampled by the recovery process when the recovery period

does not satisfy the Nyquist sampling rule. Therefore, when the input fields of the simula-

tion are pure ocean tides, the output fields are the aliased ocean tides. By spectral analysis

of the output fields, aliasing frequencies can be derived. The power spectral density is

calculated for spectral analysis. This is the basic idea to analyse the aliasing spectrum

of ocean tides based on simulations and spectral analysis. Therefore, a method called

simulation-based alias spectrum analysis (SBASA) is developed. This method estimates the

alias periods based on the recovered gravity field time series, by computing the mean

power spectral density (PSD) in terms of geoid height. Figure 4.1 shows the basic idea of

SBASA for deriving the mean PSD in terms of geoid height:

1) acquiring tidal gravity field time series with a certain time resolution based on given

orbit;

2) expressing the gravity field solutions in geoid height with specific spatial resolution;

3) forming the time series for each grid cell;

4) computing PSD for each grid cell time series;
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5) averaging the derived PSD over certain region.

    orbit  sampling

gravity  recovery

grid cells

spatial  averaging

mean PSD

Figure 4.1: Simulation-based alias spectrum analysis.
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4.3 Demonstration of secondary aliasing period

Secondary aliasing is due to the undersampling during the recovery process. In this

demonstration, two scenarios are simulated: one is a GRACE-type formation; the

other one is a Bender-type (Bender et al. 2008) constellation. A Bender-type constellation

is composed of two pairs of GRACE-type low-low satellite-to-satellite tracking formations,

with a polar pair and an inclined pair. See Table 4.2 for the parameter setting of the

simulation scenarios.

Table 4.2: Simulation scenario.

scenario single pair double pair

formation/constellation
GRACE-type Bender-type

polar pair polar pair inclined pair

β/α 172/11 172/11 460/29

inclination 92◦ 92◦ 115◦

altitude 362 km 362 km 342 km

input field ocean tide error: EOT08a − GOT4.7

tidal constituent individual M2, N2, S2, K2, O1, P1, Q1, K1

recovery period 11 days

mission duration 5 years

A repeat orbit is assumed for both GRACE-type and Bender-type scenarios, which means

the orbits repeat after α nodal days and β revolutions. The parameters α and β are

coprime positive integers. Notice that the repeat-orbit design is one way to guarantee an

absolute homogeneous distribution of groundtracks within a α nodal days. However, the

homogeneity of the groundtracks can be a relative loose constraint for the discussion of

secondary aliasing, that is, absolute homogeneity is not a necessary requirement. Therefore,

exact repeat orbits are not needed normally. Nevertheless, the repeat orbits are chosen at

this stage of demonstration to simplify the case study. More advanced scenarios will be

discussed later in this chapter and next chapter.

Figure 4.2 shows the global mean PSD of individual constituents for GRACE-type and

Bender-type scenarios. As the input field is an individual tidal constituent, the spectral

analysis of the recovered gravity fields indicates the aliasing spectrum of each corre-

sponding constituent. Table 4.3 shows the primary and secondary aliasing periods of

the simulated scenarios derived by the two-step aliasing analytical method and the main

spectral line indicated by SBASA, see Figure 4.2. It is shown that the secondary aliasing
periods of the polar pair and the inclined pair coincide with the alias period derived by SBASA
for most cases with an accuracy of up to 3 days, which demonstrates the secondary period well.
The inconsistent cases are marked in red. Comparing the T s

a to T SBASA
a , one can find that

the smaller the aliasing period is, the closer they are. This is because of the fact that, for
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Figure 4.2: Global mean PSD of individual constituents.
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the spectral analysis of the discrete signal, the ratio Rlp between the length of signal and

the period of signal affects the spectral detecting accuracy. To be specific, larger Rlp can

guarantee a better estimation of the spectrum of the discrete signal. This partly explains

why T s
a and T SBASA

a do not match for the red marked scenarios, especially for the con-

stituent K2 and K1 under the sampling of polar pair. With further insight and discussion,

the abnormal phenomena in N2 and P1 can be fully explained in section 4.4 and 4.6.

One should also notice that the secondary alias periods of every individual pair appear

for the Bender-type in most cases. In other words, although double-pair constellation

combines the data sampled from two different orbit planes, sampling of individual orbit

plane is well observed and is not coupled with each other. Therefore, the understanding

of single pair orbit sampling can be applied to double- or multi-pair constellation. See

more general discussion in section 4.7.

Table 4.3: Alias periods [day] of the simulated scenarios estimated according to the two-
step aliasing and SBASA.

constituent
polar pair inclined pair GRACE-type Bender-type

T
p
a T s

a T
p
a T s

a T SBASA
a T SBASA

a

M2 14.0 51.8 18.6 26.9 51.2 51.2 26.8

N2 9.3 58.9 11.1 1115.8 58.7 58.7 22.7

S2 257.5 257.5 71.4 71.4 256.0 256.0 72.2

K2 628.0 628.0 51.3 51.3 563.2 563.2 51.2

O1 13.8 54.0 15.8 36.4 54.2 54.2 36.6

P1 213.7 213.7 234.5 234.5 216.6 – 234.7

Q1 9.2 56.2 10.0 113.1 56.3 56.3 112.7

K1 1256.0 1256.0 102.7 102.7 1408.2 1408.2 104.3

4.4 Aliasing for different regions

The discussion above was based on the spectral densities that were globally averaged.

Figure 4.3 shows the aliasing of M2 constituent derived by mean PSD of different

regions, namely the whole globe, the Amazon, and three latitude bands. The reason to

include a purely continental catchment like Amazon is because the spherical harmonic

expression of the ocean by nature causes leakage of ocean tide signal onto the continent,

as discussed in Chapter 2 and Chapter 3. Therefore, the same alias spectrum of the ocean

tides is expected on the continent. We can see that the aliasing periods of different regions

are consistent for both GRACE-type formation and Bender-type constellation, apart from

slightly changed energy magnitude due to the averaging.

Figure 4.4 and 4.5 show the mean power spectral density of 8 constituents for different

latitudes. For each constituent, the top panel refers to the GRACE-type scenario and the
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Figure 4.3: Alias periods derived by mean PSD of different regions (left: GRACE-type,
right: Bender-type).

bottom panel to the Bender-type scenario. Please notice the different scale of the color

bars for each plot. By analysing the PSD plots in Figure 4.4 and 4.5, several characteristics

are observed.

First, all the latitudes show the same aliasing spectrum for each constituent of both sce-

narios for most cases. Less obvious lines at higher latitudes can be observed by scaling

the power spectral density (PSD) for each latitude by its maximum per latitude. See a nor-

malized PSD for M2 constituent in Figure 4.6. The high energy at some latitudes means

less reduction due to the recovery averaging process, which can be traced back to the orbit
sampling effects over the tidal constituents. The orbit sampling effect regarding individual

constituent is the combined result of two effects: (1) the density of the groundtracks,

and (2) the phase sampling over the tidal constituent. These two aspects are not totally

independent. More groundtracks raise the opportunity to improve phase sampling, i.e.

towards more homogeneous distribution, which make the resulted magnitude smaller

when averaging them, and vice versa. However, this relation is not in an absolute sense.

For example, the groundtrack density has a significant influence on the high latitude

when the orbit is polar or near polar. That is, for most constituents (M2, N2, K2, O1, Q1,

K1) of GRACE-type scenarios, the high latitude (beyond ±60◦) has relative low energy

compared to the other latitude. However, this is not exactly the case for S2 and P1. The

energy distribution of the S2 GRACE-type scenario shows asymmetry between the the

northern hemisphere and southern hemisphere, which should have the same groundtrack

pattern at the corresponding symmetry latitude. For the P1 constituent, highest energy

shows up at latitudes beyond-60◦ towards the south pole, but not at the corresponding

latitudes towards the north pole. This demonstrates that the overall tidal phases at the

sampling epochs play a very important role in magnitude reduction.

Secondly, part of the aliasing frequencies of Bender-type scenarios align with the aliasing

frequencies of GRACE-type scenarios, which shows the same pattern as the global mean



4.4. ALIASING FOR DIFFERENT REGIONS 53

M2 N2

S2 K2
power sectral density [mm2 · day] power sectral density [mm2 · day]

power sectral density [mm2 · day] power sectral density [mm2 · day]

Figure 4.4: Mean power spectral density of each latitude for semi-diurnal tides. For each
constituent, the top is from GRACE-type and the bottom is from Bender-type. Please note
the different scales in the colorbars.
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O1 P1

Q1 K1
power sectral density [mm2 · day] power sectral density [mm2 · day]

power sectral density [mm2 · day] power sectral density [mm2 · day]
×10−3

Figure 4.5: Mean power spectral density of each latitude for semi-diurnal tides. For each
constituent, the top is from GRACE-type and the bottom is from Bender-type. Please note
the different scales in the colorbars. Be aware that 10−3 multiplier is only applied on the
colorbar of Bender-type of Q1 constituent.
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Figure 4.6: Scaled power spectral density of each latitude for M2 constituent, the left one
is GRACE-type and the right one is Bender-type.

PSD distribution. Apart from that, the latitude-mean PSD is consistent with global-

mean PSD, cf. Table 4.3, Figure 4.4 and 4.5. This proves that the global mean does not

compress or distort the spectrum. Therefore, the global mean represents the spectrum

that is derived by spatial time series fields sufficiently.

Thirdly, a richer spectrum can be found in the Bender-type P1 scenario compared to the

GRACE-type, as the spectral “line” of the former is slightly wider than the latter. There-

fore, the absent aliasing period of Bender-type T SBASA
a (see Table 4.3) can be explained.

That is, the low frequency resolution of the spectral analysis “merges” the two aliasing

frequencies of inclined pair and polar pair. Actually, this follows the signal separation

quantified by the Rayleigh criterion. The Rayleigh criterion for tides argues that two

signals can be separated only when they differ in phase at least by one cycle over the

analysed time span (e.g Smith 1999):

TRay

∣∣∣fa1
− fa2

∣∣∣ ≥ 1 , (4.1)

in which TRay is called Rayleigh period, fa1
and fa2

are two aliasing frequencies. To

separate the aliasing period 213.7 days and 234.5 days, the secondary aliasing periods of

polar pair and inclined pair (see Table 4.3), more than 6.6 years are needed. A simulation

with 5 years is obviously not enough. The inconsistency ofK2 andK1 can also be explained

similarly, that is, the real secondary aliasing periods calculated by the analytical formula

cannot be separated from the virtual aliasing periods estimated with spectral analysis.

4.5 Aliasing of single spherical harmonic coefficient

One may have a question regarding the SBASA: why not calculate the aliasing period

via spectral analysis on spherical harmonic coefficients? We know that the geoid

height is a linear combination of spherical harmonic coefficients, so alias periods derived
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by mean PSD in geoid height should be equivalent to the alias period derived in spherical

harmonic domain. This section investigates the aliasing spectrum by directly analysing

the time series of spherical harmonic coefficients. Figure 4.7–4.10 show the scaled PSD

of all coefficients, the order mean and the degree mean, which are corresponding to

the left column, the middle column and the right column. The overall coefficients are

arranged in order-wise, namely Cl0, Sl1, Cl1, Sl2, Cl2 and so on. The scaling is performed

for each single coefficient, degree or order by its maximum. The scaled PSD is preferred

because the coefficient energy of different degree and order varies over several orders of

magnitude, which is not good for the visualization.

In general, the analysis of spherical harmonic coefficients presents a richer spectrum than

the spatial analysis, comparing Figure 4.7–4.10 to Figure 4.4 and 4.5. One of the reasons

could be that the normalized power spectral density makes the frequencies with weaker

energy emerged. Nevertheless, the pattern in the coefficient-frequency plots confirms

the tiny peaks in global mean PSD plots in Figure 4.2, especially the “twin” peaks, two

peaks close to each other with almost the same magnitudes, shown in the plots of e.g.

Bender-type of S2, P1 and K1 as well as GRACE-type of K1.

The spectrum lines are “fuzzy” in the all-coefficient plots (left column), which may indi-

cate a hidden pattern in degree-wise or in order-wise. This speculation is confirmed by

the degree-mean or order-mean vs frequency plots. Usually, a smoother spectrum is seen

in the middle and left column plots. That is to say, some frequencies are order-dependent

and some frequencies are degree-dependent. For example, for Bender-type of S2 scenario,

the alias period around 71.4 days is more order-dependent and the alias period about

257.5 days is more degree-dependent.

Another interesting point is that the energy does not always spread equally to the whole

degree or order span at a certain frequency. The energy can be high-degree dominant (e.g.

M2 of Bender-type), low-degree dominant(e.g. N2 of Bender-type), high-order dominant

or low-order dominant (e.g. two periods from Q1 of Bender-type). Nevertheless, this

mostly happens to the Bender-type scenarios, which may be due to the difference in

orbit sampling of inclined pair within subsequent 11-day periods. For the GRACE-type

formation, the same power of certain aliasing frequency is seen for all the coefficients for

most constituents (K2 and K1 are the exceptional). If 161 days is the aliasing period of the

S2 tide sampled by GRACE, it should persist for all the spherical harmonic coefficients,

including C2,0. Whether the corresponding tidal signal can be observed or not, depends

on the relative power of the aliasing signal to the other geophysical signal.

As two exceptions, the energy of K2 and K1 spreads out from single secondary aliasing

frequency to many frequencies even with GRACE-type scenarios. Both K2 and K1 have

relative large aliasing periods and therefore inaccurate spectral estimates, as already

discussed in section 4.3 and 4.4. The limited accuracy of frequency detection due to data
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M2

N2

scaled power spectral density

Figure 4.7: Scaled power spectral density of individual spherical harmonic coefficient,
degree mean and order mean. For each constituent, the top row is the GRACE-type
scenario, the bottom row is the Bender-type scenario.



58 CHAPTER 4. SIMULATION-BASED ALIASING SPECTRUM ANALYSIS

S2

K2

scaled power spectral density

Figure 4.8: Scaled power spectral density of individual spherical harmonic coefficient,
degree mean and order mean. For each constituent, the top row is the GRACE-type
scenario, the bottom row is the Bender-type scenario.
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O1

P1

scaled power spectral density

Figure 4.9: Scaled power spectral density of individual spherical harmonic coefficient,
degree mean and order mean. For each constituent, the top row is the GRACE-type
scenario, the bottom row is the Bender-type scenario.
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Q1

K1

scaled power spectral density

Figure 4.10: Scaled power spectral density of individual spherical harmonic coefficient,
degree mean and order mean. For each constituent, the top row is the GRACE-type
scenario, the bottom row is the Bender-type scenario.
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length may cause the energy of certain frequency leak to other frequencies while applying

spectral analysis.

4.6 Recovery periods vs orbit sampling: more complex cases

In the previous three sections, the discussion and demonstration is based on the concept

of repeat orbits. However, as already mentioned in section 4.3, repeat orbits, or

the absolute homogeneity of groundtracks, is not a necessity for the secondary aliasing

discussion. In this section, the understanding of the secondary aliasing is explained in a

more general sense.

To understand secondary aliasing fully, the first question could be what is the real mean-

ing to take the recovery period as the secondary sampling period. As we know, gravity

recovery from satellite missions combines data from different regions and different epochs

to derive global solutions. For a single solution, the maximum degree and order of the

spherical harmonic coefficients indicate the spatial resolution and the recovery period

indicates the temporal resolution. The combination can be considered as an averaging pro-

cess for the data within different spatial scales and within the recovery period. However,

the recovery period only marks the sampling interval in the time domain “automatically”,

which is naturally correct as the temporal aliasing is the research objective. The averaging

outcomes do not come automatically with a given recovery period.

Figure 4.11: Sketch map of the sampling interval.

Let us start with the most simplified situation. A simple example is given by Figure 4.11.

Suppose the horizontal line indicates a continuous signal in time domain. The constant

T’s stands for a time span between two neighbouring vertical lines. Corresponding to the

gravity recovery, T is equivalent to the recovery period and the overall representation of

this time period T is equivalent to one gravity field solution. The assumed epoch of the

solution can be anywhere within the time span T as long as the spacing of the successive

solutions is kept in T . It means either type of the marker in Figure 4.11 is accepted as the

epoch marker.

The above-mentioned example is a pure temporal sampling without consideration of the

averaging process within the period T . When a certain temporal averaging within each
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interval T is taken into account, the averaging strategies should be considered. As long as

the averaging strategies are the same for all the investigated time periods, the averaging

itself does not change the spectrum property of the signal, that is: (1) the averaged

signal has the same spectral lines as the original signal; (2) the same sampling frequency

applied to both averaged signal and original signal gave same aliasing frequencies.The

complexity of aliasing pattern increases when the averaging strategies are different for

different averaged periods, which may happen when spatial averaging is involved. This

is exactly the case of gravity recovery, which contains three aspects:

1) sampling interval: the recovery period;

2) temporal averaging within the recovery period;

3) spatial averaging based on the spatial sampling, namely the groundtrack distribution

pattern.

Notice that the above three aspects are coupled and the induced effects cannot be sepa-

rated easily. However, a discussion of individual aspect sequentially in a more general

sense helps understanding the coupled case better.

The reason of the added complexity due to spatial averaging is that it has the potential

to change the spectrum of averaged signal comparing to the original signal when the

spatial sampling is not consistent among different recovery periods. One case is that the

recovery period does not equal the repeat period of the repeat orbits. In this case, the

groundtrack pattern of different recovery periods can be either very similar or largely

different depending on whether: (1) the recovery period is a subcycle of the repeat period;

(2) the recovery period is an (approximate) integer multiple of the repeat period. If the

groundtrack pattern is similar, then the averaged signal will be similar to the original

signal in terms of spectral characteristics. Otherwise, the spectrum of the averaged signal

can be largely different from that of the original signal.

Figure 4.12 shows an example of a sinusoid wave and its averaged results depending

on different averaging strategies. The original signal, y, and its averaged, y1, y2 and y3

in time domain are shown at the top panel, the spectrum of all signals is shown at the

bottom panel. Different types of averaging are applied as follows:

• y1: moving averaging with a constant window length Lw = 2.5T ;

• y2: moving averaging with a regularly changed window length, Lw = xT , with x

varying from 0.1 to 2.5 repeatedly with a step of 0.2;

• y3: moving averaging with a randomly changing window length, Lw = xT , with x

varying randomly between 0.1 and 2.5,
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Figure 4.12: A sinusoid signal and its averaged results. The top panel is the signals in
time domain, the bottom is the spectrum of corresponding signals. Among all the signals,
y is the original signal, y1, y2 and y3 are the moving average of y, with the averaging
window length as a constant (y1), regularly changing (y2) and randomly changing (y3).
To be specific, the window length can be expressed as Lw = xT , in which T is the period
of the original signal, and x = 2.5 (y1), x changing from 0.1 to 2.5 repeatedly with a step
of 0.2 (y2) and x changing randomly between 0.1 and 2.5 (y3).
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in which T is the period of the original signal y. From Figure 4.12 we can see that in

general averaging causes a reduction in amplitude (top) and therefore a reduction of the

total energy (bottom). Averaging with consistent window length does not change the

spectral characteristics, comparing y1 with y. However, averaging with changing window

length causes the spectrum to change, comparing y2 and y3 with y.

Notice that only averaging is involved for the above example, sampling is after the av-

eraging and is conducted on the averaged signal. For the gravity field recovery, the

groundtracks pattern within each recovery period is very important. If the groundtracks

distribute inhomogeneously and inconsistently for different recovery time span, it means

different averaging strategies are applied among different recovery solutions, similar to or

even more complex than y2 and y3. Therefore, the averaged signal spectrum is different

from the original signal spectrum, normally changing from single frequency to multi

frequencies. Undersampling of the multi-frequency signal makes the aliasing much more

complex, as the multi frequencies cannot be predicted easily and therefore the aliasing

frequencies cannot be estimated accordingly.

For a specific example in gravity recovery according to the phenomenon discussed above,

the following simulations are conducted, as shown by Table 4.4. The corresponding

secondary aliasing frequency can be estimated according to the recovery period (if we

ignore the averaging effects temporarily), see Table 4.5. Figure 4.13–4.15 show the power

spectral density of the different recovery periods. From Figure 4.13 we can see that the

spectrum of the recovered fields time series is largely different among different recovery

period solutions. Except for Tsol = 14, the secondary aliasing frequencies of all other

scenarios, derived by the two-step aliasing mechanism, are all consistent with the aliasing

spectrum at low degree and order. Please be aware that the recovered fields are the

outcome of the aliasing fields of the input ocean tide errors. In other words, the spectrum

of the solution time series contains the aliasing frequencies. Figure 4.13 also shows that

the averaging reduces the total power dramatically when the recovery period increases

from 5 days gradually up to 120 days.

Figure 4.14 and 4.15 show the main spectrum as indicated by the latitude-frequency plots

(Figure 4.13) as well as other frequencies regarding individual coefficient, degree mean

or order mean. For 11-day or 22-day recovery, the “integer” times (1 or 2) of the repeat

period guarantee the same groundtracks pattern for different recovery solutions, therefore

the same spatial averaging is guaranteed for different solutions and an approximately
single aliasing frequency is seen. This is corresponding to the simplified case of y1 in

Figure 4.12. An approximately single frequency rather than an absolute single frequency

is seen because the repeat period is 11 nodal days and the recovery period is 11 or 22 solar
days. Because of the difference between nodal day and solar day, 11 and 22 solar days are

not an exact multiple of 11 nodal days. The slight difference causes the aliasing frequency

shift slightly for the coefficients with order about 10–30.
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Tr = 5 Tr = 11

Tr = 14 Tr = 22

Tr = 19 Tr = 38

Tr = 60 Tr = 120

Figure 4.13: Mean power spectral density of each latitude for different recovery periods.
Please note the different scales of the colorbars and frequency axis.
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Table 4.4: Simulation setup for different recovery periods.

scenario RPS

formation GRACE-type

β/α 172/11

inclination 92◦

altitude 362km

input field EOT08a-GOT4.7 7

tidal constituent M2

recovery period [day] 5,11,14,22,29,38,60,120

mission duration 5 years

Table 4.5: Secondary aliasing periods for different recovery periods of scenario RPS.

Tr [day] 5 11 14 22 29 38 60 120

T s
a [day] 14.0 51.8 5521.8 51.8 378.2 136.3 202.3 295.0

For the remaining recovery periods, richer spectra are shown in Figure 4.14 and 4.15.

Different from the latitude-frequency PSD, which suppresses the frequencies with low

power, the coefficient-frequency PSD shows the influence of the different groundtrack

pattern on the aliasing spectrum of coefficients. To be specific, the spectrum is separated

for different degree and order. Shorter recovery period (5 days) produces the richest

spectrum as (1) the groundtrack coverage different from solution to solution, and (2)

less averaging effect comparing to the longer recovery periods. However, although the

power is largely reduced by strong averaging, longer recovery periods still have the rich

spectrum as the groundtrack patterns of different solutions are different. Actually, the

Bender-type scenarios discussion in previous scenarios is a case in point, as the repeat

period of the inclined pair is 23 nodal days and the recovery period is 11 solar days.

To summarize, three aspects affect the secondary aliasing in satellite gravimetry:

• the recovery period,

• the temporal averaging within the recovery periods, and

• the spatial averaging within the recovery periods.

The recovery period can be easily understood as the sampling interval, i.e. the sampling

frequency. Usually, sampling is applied directly on the signal. However, in the gravity

recovery context, the sampling is applied on the averaged signal. In this case, the average

strategies should be the same among different recovery periods to keep the spectrum of

the averaged signal unchanged compared to the original signal. During gravity recovery,

the average is composed of two parts: temporal average and spatial average. Regardless

of the spatial characteristic of the gravity field, the temporal averaging remain the same
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Figure 4.14: Normalized power spectral density of individual spherical harmonic coeffi-
cient, degree mean and order mean for different recovery periods, Tr = 5,11,14,22. Please
notice the different scales of the frequency axis.
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Figure 4.15: Normalized power spectral density of individual spherical harmonic coef-
ficient, degree mean and order mean for different recovery periods, Tr = 29,38,60,120.
Please notice the different scales of the frequency axis.
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when the recovery period remain the same, for instance N -day recovery for the whole

investigated time.

Considering the spatial characteristic, one can find that the averaging strategy cannot al-

ways be kept the same when the recovery period is a constant N . The spatial distribution

of the groundtracks, meaning the spatial sampling of the original fields, must be taken

into account. Only when the groundtrack patterns are kept the same among different solu-

tions, can the average strategies be called the same. Therefore, the secondary aliasing caused
by the recovery period sampling is coupled with the orbit sampling by the overall groundtrack
sampling pattern within each recovery period. The secondary aliasing frequency estimate is

valid under the condition that the groundtrack patterns among different recovery periods

are the same to some extent. Either a changing recovery period or a changing groundtrack

pattern within a certain constant recovery period is not feasible for the secondary aliasing

frequency estimation by equation (3.19).

4.7 Beats and aliasing

It is easy to connect the double-pair sampling scheme with the phenomenon of wave
interference. Therefore, whether interference plays a role in double-pair sampling and

aliasing should be investigated. Wave interference is a phenomenon in which two waves

meet while travelling along the same medium and superpose to form a resultant wave. A

special example in case is the beats in acoustics. A beat is an interference pattern between

two waves of slightly different frequencies, perceived as a periodic variation in volume

with the rate, beat frequency, as the difference of two frequencies. Figure 4.16 shows

examples of general wave interference and beats. In the case of double-pair scenarios,

the aliasing frequency of individual pair can be considered as the frequency of a single

wave. Two assumed waves of certain aliasing frequencies can form an interference. In

terms of the resulted aliasing error magnitude, similar to the volume in acoustics, it can

be enhanced or reduced. However, in terms of the frequency of aliasing error, spectral

analysis of the interference product gives the frequency of individual wave. This is also

demonstrated by comparing column 3, 5 with 7 and 8 in Table 4.3. Therefore, although

the sampling of two different pairs can be considered as the interference of two waves for

each constituent, this interference does not change the nature of the sampling by individual
pair. The aliasing frequency can be derived individually for each pair. This can be

extended to more than two pairs: the aliasing frequency can be derived independently for
each pair which forms the multi-pair constellation.

Furthermore, nearby aliasing frequencies of two constituents sampled by the same orbit,

for instance the preliminary aliasing periods of M2 and O1 for a polar pair, can also form

beats. Beats are the summation effect and do not affect the aliasing of the individual

constituent. When two frequencies are too close, the estimated coefficients have high
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Figure 4.16: Wave interference and beats. The thick green lines are the interference
(superposition) of the thin red and the thin blue. The interfered wave (green) can be
either enhanced or reduced (top). The middle plot shows a general example of wave
interference. When the frequencies of two waves are close, a beat occurs (bottom) and
the beat frequency equals the frequency difference of the two original signals.

correlation which makes the separation of according constituents more difficult. If the

aim is to remove the aliasing errors, wave interference never hurts the results. If the aim

is to subtract the ocean tide signals, one should consider the difficulty of the separation

quantified by Rayleigh criterion (4.1).

4.8 Summary

At the beginning of this chapter, the overall simulation setting for the whole thesis is

elaborated. Following that, the SBASA method to estimate the aliasing frequency

is introduced. Afterwards, the secondary aliasing is cross-validated by the spectral anal-

ysis of the gravity field time series. The PSDs regarding global mean, latitude mean,

individual coefficient, degree mean and order mean demonstrate the secondary aliasing

estimated by two-step aliasing mechanism for most cases. The exceptional cases happen

when the simulation period is not long enough for the spectral analysis to derive a reliable

estimation of the spectrum. The underlying conditions are discussed for using equation

(3.19) to estimate the secondary aliasing frequency, that is: the spatial and temporal av-

eraging should not change the spectrum characteristic of the averaged signal comparing

to the original signal. In specific, the groundtrack patterns of different recovery periods

should not have large differences. Considering the aliasing signal as a wave with aliasing
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frequency, two waves of close aliasing frequencies can form beats. Those two waves can

be either from the same constituent sampled by two different orbits or from the different

constituents sampled by the same orbits or different constituents sampled by different

orbits. The formed beats do not affect the individual wave, and aliasing analysis can be

conducted on individual constituent and individual satellite pair.
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5
Aliasing error mitigation in

post-processing

Ocean tide aliasing errors can be mitigated in three ways: (1) co-estimating the tides

in the recovery process, (2) estimating and removing the errors in post-processing,

and (3) designing a mission with a self-dealiasing property. Co-estimating is not the

scope of this work. Orbit design will be discussed in next chapter. This chapter discusses

the tidal aliasing error mitigation based on the aliasing frequencies in post-processing. To

be specific, section 5.1 introduces the mitigation methods in the spatial domain and the

spectral domain. Section 5.2 estimates the aliasing errors for the scenarios simulated in

Chapter 4 and analyses the results. In the end, section 5.3 discusses all the cases and

summarizes the keys to better remove the ocean tide aliasing errors.

5.1 Method

Mitigation of ocean tide aliasing errors in post-processing is to remove the aliasing

errors from the recovered solutions. The aliasing errors can be estimated in two

ways: either in the spherical harmonic domain, namely based on Klm, or in the spatial

domain at individual grid cells.

Klm-based de-aliasing De-aliasing in the spherical harmonic domain is feasible because

the spherical harmonic expansion is a linear decomposition of the spatial signal, which

does not change the inherent frequencies of the decomposed signal. Given the aliasing

frequencies of each constituent, the aliasing errors can be estimated by a least-squares

analysis of the residuals of the recovered field time series (Visser et al. 2010; Liu et al.

73
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2016). To be specific, the following observation equations are applied:

Clm(t) =
N∑
n=1

[Anc,lm cos
2π
T na
t +Bnc,lm sin

2π
T na
t]

Slm(t) =
N∑
n=1

[Ans,lm cos
2π
T na
t +Bns,lm sin

2π
T na
t] ,

(5.1)

where Clm(t) and Slm(t) is the recovered field time series, t is the time in the middle of

each Tr-day recovery, T na is the aliasing period, N is the total number of aliasing periods,

amplitudes Anc,lm, Bnc,lm, Ans,lm, Bns,lm are the unknowns to be estimated. After estimating

the amplitudes, the corresponding aliasing errors Ĉalias
lm (t), Ŝalias

lm (t) can be calculated and

removed from the original fields Clm(t) , Slm(t) to get the de-aliased fields:

Ĉdealiased
lm (t) = Clm(t)− Ĉalias

lm (t)

Ŝdealiased
lm (t) = Slm(t)− Ŝalias

lm (t) .
(5.2)

As the input field is only ocean tide for the simulations in this thesis, the recovered fields

can be used at the left side of equation (5.1) directly. For real data processing, the left side

of (5.1) should be the residual fields 4Clm(t) and 4Slm(t) by removing static field, either

using the mean field of the field time series or a static gravity field model. The residual

fields are needed for a better estimation of the aliasing errors because normally the ocean

tides aliasing errors are much smaller than the static signals and even the temporal

signals like hydrology. However, it should be reminded that if the alias periods are close

to relevant periods of the interested temporal signals, the estimation can mistakenly

remove such other important signals. Accordingly, the same removed static field should

be added back after deriving the de-aliased residual fields estimated by equation (5.2).

Spatial-based de-aliasing It is straightforward in theory to estimate the aliasing errors

in the spatial domain as the ocean tides are spatial signals. However, in practice, de-

aliasing in the spatial domain needs more calculation than de-aliasing in the spherical

harmonic coefficients. The main procedure is as follows:

1) applying the spherical harmonic synthesis to derive spatial map, e.g. geoid;

2) forming the time series for each grid cell;

3) estimating the aliasing error amplitudes at given aliasing frequencies for each grid

cell;

4) calculating the aliasing errors with estimated amplitudes for each grid cell;

5) applying spherical harmonic analysis to derive the aliased spherical harmonic coeffi-

cients;
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6) subtracting the aliased coefficients from the original coefficients to get the de-aliased

solutions.

Similar equations as equation (5.1) can be applied for the step 3), with Clm(t) and Slm(t)

replaced by the grid data, e.g. geoid height N (θ,λ, t), at the left side of the equation.

Equation (5.2) changes accordingly for step 4). Similar to de-aliasing in the spherical

harmonic domain, if the recovered fields contains signals other than ocean tides, a remove-

restore procedure should be applied carefully.

5.2 Aliasing errors estimation: case studies

In this section, ocean tide mitigation in the post-processing is investigated. The scenar-

ios under discussion are the GRACE-type formation and Bender-type constellation

simulated in Chapter 4. As the input fields are ocean tide errors (see Table 4.2), the

recovered fields represent ocean tide errors too. As discussed already, the recovered

fields are the joint effect of the orbit sampling and the gravity recovery processing. Orbit

sampling affects the recovered fields in two aspects: (1) undersampling of given fields

causes aliasing, and (2) the inclination of the orbit indicates the orientation of the obser-

vation sensitivity of the ll-SST missions to the gravity fields. The second aspect causes the

well-known stripes in GRACE-derived solutions. Gravity recovery processing affects the

output fields by the temporal and spatial averaging of the observed fields. The temporal

averaging is described by the recovery periods, Tr, and the spatial averaging is described

by the spherical harmonic degree and order. Several key points need to be covered and

clarified:

• the difference or common ground of de-aliasing in spherical harmonic domain and

in spatial domain;

• the relation between aliasing and striping;

• the relation between the primary aliasing and secondary aliasing;

• the relation between the primary/secondary aliasing and the spherical harmonic

degree and order;

• the comparison between the GRACE-type formation and the Bender-type constella-

tion regarding the above-mentioned aspects.

In order to compare the Klm-based de-aliasing and spatial-based de-aliasing, scenarios

given in Table 4.2 are analysed. All the scenarios are de-aliased on spherical harmonic

coefficients and on grid cells separately using the same aliasing periods. The primary

aliasing periods T p
a and secondary aliasing periods T s

a shown in Table 4.3 (column 2, 3,

4, 5) are used for the de-aliasing procedures by applying equation (5.1) and (5.2) for Klm-

based de-aliasing and corresponding modified version for the spatial-based de-aliasing.

Figure 5.1 shows degree RMS in geoid height of two constituents, M2 and K1. The light
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grey lines indicate the recovered fields. The dark grey lines are the fields after spatial-

based de-aliasing and the dashed black lines shows the fields after Klm-based de-aliasing.

Figure 5.1 indicates that de-aliasing in spherical harmonic domain and in spatial domain is
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Figure 5.1: Error degree RMS of M2 and K1 constituent for GRACE-type formation and
Bender-type constellation. The fields are derived from: gravity recovery, de-aliasing with
respect to grid cells and de-aliasing with respect to spherical harmonic coefficients.

equivalent when using the same aliasing periods. These results are expected as the spherical

harmonic transformation is a linear operation, which does not change the spectral lines.

This is also demonstrated by the power spectral density plots in Chapter 4 showing

the same major frequencies for a given scenario, either derived regarding latitudes or

regarding spherical harmonic coefficients.

In general, de-aliasing in the spherical harmonic domain is more straightforward in

practice as (1) the gravity field solutions are usually expressed as spherical harmonic

expansion, and (2) it is more convenient to give the de-aliasing fields in spherical har-

monic coefficients for further application. By comparison, the spatial-based de-aliasing

requires additional spherical harmonic synthesis and analysis. However, de-aliasing in

spatial domain may have the advantage of separating the signals between land and ocean,

therefore avoiding the disturbance of ocean tide aliasing errors on other physical signals

which may have close periods to the aliasing periods. This possible advantage needs
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further investigation by more realistic simulations with other temporal gravity fields in-

cluded, which is out of the scope of this thesis. The de-aliasing processing is conducted in
the spherical harmonic domain from now on.
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Figure 5.2: Logarithm of mean error degree RMS in geoid height [mm] for 8 major tidal
constituents. Each constituent has four fields: GRACE-type recovery (GR), GRACE-type
de-aliasing (GD), Bender-type recovery (BR) and Bender-type de-aliasing (BD). The white
rows are to separate neigbouring constituents. The constituents are labelled at the right
side of the figure. The scatter plot in beteen shows the accumulted mean degree RMS for
each field.

Figure 5.1 gives the spectral behaviour of two constituents, in which lower error magni-

tudes are shown for the de-aliased fields in general. However, for a given constituent, the

energy distributions of the aliased fields and de-aliased fields are different for GRACE-

type formation and Bender-type constellation. For a given mission, the energy distribu-

tions of different constituents are also different. Figure 5.2 shows the mean degree RMS

in geoid height for 8 major tidal constituents. Every four rows under a white row repre-

sent four fields of one constituent, which is labelled at the right side of the figure. From

the top to the bottom, the four fields are: GRACE-type recovery (GR), GRACE-type de-

aliasing (GD), Bender-type recovery (BR) and Bender-type de-aliasing (BD). The scatter

plot shows the accumulated magnitudes in geoid height for each field. From Figure 5.2
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we can see that in general all recovery fields of the Bender-type scenarios have lower

error magnitudes than that of the GRACE-type scenarios, comparing the fields BRs with

the fields GRs at the left and the accumulated values at the right. However, the better

behaviour of Bender-type scenarios do not show up for the whole spherical harmonic

spectrum. For instance, one can see the same magnitude for degree 14–24 of M2, degree

8–29 of N2, degree 9–15 of S2, degree 24–53 of K2, degree 12–29 of O1, degree 17–28 of

P1 and degree 22–29 of Q1.

One special constituent is K1, i.e., the Bender-type scenario is better than the GRACE-type

for the whole spectrum. In general, Bender-type constellation is better than the GRACE-

type formation at higher degrees, which may be because (1) Bender-type constellations

reduce the strong correlation among degrees for a given order, which is shown in GRACE-

type fields, and (2) more observations improve the precision of the estimated fields for

small regions, corresponding to higher degree. Further investigation is shown later on.

After de-aliasing with respect to the primary aliasing periods and secondary aliasing

periods, the errors can be reduced by about 0.5 to 3 levels of magnitude in general. There

are some exceptions which show no improvement, e.g.

• GRACE-type and Bender-type of K2 for degree above 31;

• GRACE-type of Q1 for degree 6–29;

• GRACE-type of K1 for degree above 11;

• Bender-type of N2 for most degrees;

• Bender-type of O1 for degree above 31;

• Bender-type of Q1 for most degrees;

• Bender-type of K1 above degree 38.

If comparing those exceptions with the spectral distributions of individual coefficient

and the degree mean and order mean, one can find: they have more spectral lines except

for the primary and secondary frequencies. Another interesting phenomenon is that the

de-aliased fields of GRACE-type (GD’s) are quite comparable to or even better than the

recovered Bender-type (BR’s), especially for the semi-diurnal tides. This is a positive sign

to reduce the error budget by using GRACE-type formation if the error level of de-aliased

fields of GRACE-type is already below the precision of the minimum detectable gravity

signals.

To get further understanding of the different performance of the de-aliased fields with

respect to different degrees, especially the influence of stripes and aliasing on higher

degrees and orders, the recovered fields are now de-aliased separately with respect to

primary aliasing frequencies and secondary aliasing frequencies. Apart from that, de-

striping (Swenson and Wahr 2006) is applied to the recovered fields and de-aliased fields.

Taking the M2 constituent as an example, Figure 5.3 shows the error degree RMS in geoid
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height for

• recovered fields,

• de-aliased fields,

• firstly de-aliased and then de-striped fields,

• de-striped fields, and

• firstly de-striped and then de-aliased fields.
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Figure 5.3: Error degree RMS of M2 of the recovered, the de-striped and the de-aliased
fields. De-aliasing is applied with respect to the primary aliasing period T p

a (top), sec-
ondary aliasing period T s

a (middle), and both T p
a and T s

a (bottom).

We can see that the primary aliasing has more influence on the higher degrees while the
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Figure 5.4: Power spectral density of M2 for GRACE-type formation, and the frequency
is in cycle per year (cpy). De-aliasing is conducted with respect to the primary aliasing
period (top) or secondary aliasing period (middle) in sequence or together (bottom). De-
striped fields (red) and de-aliased and de-striped fields (gray) are also shown.
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secondary aliasing has a greater effect on lower degrees. Stripes have more influence on

higher degrees than lower degrees for GRACE-type formation, and are reduced largely

for Bender-type constellation, as expected. Apart from this, the order of de-aliasing and

de-striping does not influence the final estimated fields. That also means that the striping

phenomenon does not change the spectral lines of the recovered fields, and the aliasing

does not change the correlation relation among degrees.

Figure 5.4 shows error power spectral density of the recovered, de-aliased and de-striped

fields for GRACE-type formation of M2 constituent, which also demonstrates that the

de-striping processing reduces the energy over the whole spectra but does not change the

shape of the spectrum. De-aliasing with respect to the primary aliasing reduces the energy

over the whole spectra. In comparison, de-aliasing with respect to the secondary aliasing

only reduces the energy locally around the de-aliased frequency. By combining the de-

striping and de-aliasing, the error can be reduced by about two orders of magnitude.

Figure 5.5 shows mean degree rms in geoid height for all the scenarios with the following

fields: recovered field (RF), de-aliasing with respect to primary aliasing periods (D1),

de-aliasing with respect to secondary aliasing periods (D2), de-aliasing with respect to

primary and secondary aliasing periods (D12), de-striping (DS), de-aliasing with respect

to primary and secondary aliasing periods and de-striping (D12S). For the scenarios

whose primary and secondary aliasing periods are the same, only four fields are included,

namely RF, D12, DS and D12S. Figure 5.5 indicates that it is common for all the con-

stituents that the primary aliasing has a more significant influence on higher degrees than

lower degrees, while secondary aliasing periods has a more significant influence on lower

degrees than higher degrees. This phenomenon is prominent especially for the GRACE-

type formation. Apart from that, only primary aliasing periods or only secondary aliasing

periods are not enough to model the aliasing errors. The combined primary-secondary

de-aliasing is a necessity to better model the aliasing errors. In general, the magnitudes

of striping errors are smaller than the magnitudes of aliasing errors, comparing the de-

striped fields (DS’s) and the de-aliased fields (D12’s) with the recovered fields (RF’s)

individually.

Figure 5.6 shows the de-aliasing with respect to the aliasing periods from the SBASA com-

paring to the de-aliasing with respect to two-step aliasing derived aliasing frequencies.

The frequencies detected by the SBASA which are corresponding to the secondary aliasing

frequencies, are called main frequencies, with periods indicated by the 6-8th column of

Table 4.3 accordingly. The remaining frequencies detected by the SBASA apart from main

frequnecies are called side frequencies, which are shown in Figure 4.2, 4.7, 4.8, 4.9 and

4.10.

It should be reminded that according to the Nyquist sampling rules, the spectral analysis

can only detect the periods above twice of the sampling periods. For instance, the detected
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Figure 5.5: Logarithm of mean error degree RMS in geoid height [mm] for 8 major con-
stituent of GRACE-type (top) and Bender-type (bottom). The involved fields are: recov-
ered field (RF), de-aliasing with respect to primary aliasing periods (D1), de-aliasing with
respect to secondary aliasing periods (D2), de-aliasing with respect to primary and sec-
ondary aliasing periods (D12), de-striping (DS), de-aliasing with respect to primary and
secondary aliasing periods and de-striping (D12S). The remaining setting is the same as
Figure 5.2.
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Figure 5.6: Logarithm of mean error degree RMS in geoid height [mm] for 8 major con-
stituent of GRACE-type (top) and Bender-type (bottom). The involved fields are: RF,
D12, de-aliasing with respect to the main frequencies of spectral analysis (DSAM), de-
aliasing with respect to the main frequencies and primary aliasing frequencies (DSAM1),
de-aliasing with respect to the main frequencies, primary aliasing frequencies and side
frequencies (DSAM1S), de-aliasing with respect to the primary aliasing frequencies, sec-
ondary aliasing frequencies and side frequencies (D12SAS), de-aliasing with respect to
the primary aliasing frequencies, secondary aliasing frequencies, side frequencies and
de-striping (D12SASS). The remaining setting is the same as Figure 5.2.
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periods in the currently discussed simulations are above 22 days as the sampling period is

11 days. In theory, an aliased signal can be fully represented by its aliasing frequency, and

no original frequency is needed. Corresponding to the currently discussed simulations,

that is, the secondary aliasing frequencies should contain all the information of aliased

ocean tides. However, it is obviously not the case for the analysis above: de-aliasing with

respect to either secondary aliasing periods (fields D2’s in Figure 5.5) or main frequencies

derived by SBASA (fields DSAM’s in Figure 5.6) cannot fully remove the aliasing errors.

Therefore, the aliased fields contain the harmonics of primary aliasing and secondary aliasing
synchronously. This is due to the following facts:

• a certain tidal constituent has different distribution patterns for different locations,

• a certain tidal constituent experiences different orbit sampling patterns within dif-

ferent spatial scales.

The second point above induces different averaging strategies for different spatial scales,

corresponding to the spherical degree and order, when recovering the gravity fields from

the orbit samples. This also tells why the spectral analysis with respect to spherical

harmonic coefficients shows much richer spectral lines than the estimated aliasing fre-

quencies by the two-step aliasing mechanism. To summarize, the presence of primary

aliasing periods is reasonable because of the above facts and modelling of the aliasing errors
with the primary aliasing periods is a must.

As shown in Table 4.3, the main frequencies detected by SBASA can be slightly or largely

different from the secondary periods according to the Rayleigh criterion, which was dis-

cussed in Chapter 4. In general, the de-aliasing with respect to the two-step primary

and secondary aliasing periods outperforms (fields D12s in Figure 5.6), either slightly

or largely, the de-aliasing with primary aliasing periods and a substitution of secondary

aliasing periods by the main frequencies derived by SBASA (fields DSAM1’s). A distinct

exception is N2 constituent of Bender-type, where the DSAM1 field outperforms the D12

field significantly. According to the two-step aliasing mechanism, the primary aliasing of

the inclined pair is about 11.1 days (see Table 4.3), which is very close to the secondary

sampling period, 11 days. Therefore, the estimated secondary aliasing period by equation

(3.19) is about 1115.8 days. However, the power spectral density plots given by Figure 4.7

shows very strong energy at period about 22.7 days. This can be explained by the com-

plexity of the real tidal fields as well, similar to the existence of harmonics at the primary

aliasing periods. Because of the complexity, the signal with about 11.1-day period may

be present itself at a real period closer to about twice or even triple of its original 11.1-day

period. If so, the 11-day sampling is not an undersampling and the real period can be

detected. Therefore, a 22.7-day harmonic shows up rather than a harmonic with long

aliasing period of 1115.8 days. Consequently, the de-aliasing with respect to the real 22.7

days outperforms de-aliasing with respect to the fake aliasing period of 1115.8 days.
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Figure 5.7: Geoid height RMS [mm] of M2 for five fields: RF, D1, D2, D12 and D12SAS.
Each colorbar is valid for its column. Please note the different colorbar ranges for GRACE-
type scenarios and Bender-type scenarios.
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The side frequencies derived by SBASA are also evaluated by de-aliasing together with the

main frequencies and the primary aliasing frequencies (fields DSAM1S’s) or the primary

and secondary aliasing frequencies (fields D12SAS’s). It is further demonstrated when

comparing DSAM1S’s with D12SAS’s, that the main frequencies are not better than the

secondary aliasing frequencies in terms of modelling the aliasing errors. Comparing

D12SAS’s with D12’s, one can find that the side harmonics help to remove part of the

aliasing errors and improve the de-aliased results further in general, especially for the

scenarios with a rich spectrum, e.g. K1 of Bender-type improved by almost one level

of magnitude in terms of accumulated degree RMS. Despite the good performance of

de-aliasing processing, the de-striping processing further improves the fields, comparing

fields D12SAS’s and D12SASS’s. This is to say, stripes are still hidden in the fields with a
reduced magnitude and de-striping is needed when the magnitude of errors is significant

in the real data processing.
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Figure 5.8: Geoid height RMS [mm] of de-aliased fields D12 (left) and D12SAS (right) of
GRACE-type M2 scenario, the same fields as in Figure 5.7 with smaller colorbar range.

In the previous discussion, the de-aliasing performance of different aliasing periods are

investigated by comparing the mean degree RMS. What has not been shown is the spatial

pattern of the related fields and the spectral pattern of each spherical harmonic coefficient.

Based on the discussion and corresponding conclusions above, the following fields are of

highest interest to show the fine spatial and spectral patterns: RF, D1, D2, D12, D12SAS.

Taking M2 as an example, Figure 5.7 shows the spatial pattern of each field for GRACE-

type and Bender-type scenarios in terms of geoid height RMS. For both types of scenarios,

the de-aliased fields D12’s have a significant improvement globally comparing to the

recovered fields RF’s. The recovered field of GRACE-type has larger errors at low and

middle latitudes and smaller errors at high latitudes. The recovered fields of Bender-type

shows the opposite. This behaviour is expected as the GRACE-type polar pair has denser

orbit sampling at high latitude, while the added inclined pair of Bender-type brings more

sampling at low latitude within the coverage of the inclined orbits. The typical stripes

show up in the recovered fields of GRACE-type scenarios, which are not so obviously



5.2. ALIASING ERRORS ESTIMATION: CASE STUDIES 87

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60

order

0

10

20

30

40

50

60

d
e
g
re

e

-18

-16

-14

-12

-10

-60 -40 -20 0 20 40 60
order

0

10

20

30

40

50

60

de
gr

ee

-18 -17 -16 -15 -14 -13 -12 -11 -10

GRACE-type Bender-type

RF

D1

D2

D12

D12SAS

Figure 5.9: RMS of individual spherical harmonic coefficients of M2 for five fields: RF,
D1, D2, D12 and D12SAS.
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observed in the recovered fields of Bender-type scenarios. As discussed before, the de-

aliased fields are still influenced by the striping errors, with a lower magnitude though.

This can be observed when changing the colorbar into a proper range. For instance,

Figure 5.8 shows the stripe pattern of de-aliased fields, D12 and D12SAS, of GRACE-

type scenario by reducing the maximum colorbar magnitude to 0.09 mm. The other

constituents show a similar behaviour when comparing the recovered fields with the de-

aliased fields, and Bender-type scenarios with GRACE-type scenarios, see Appendix A.

Figure 5.9 gives the RMS of each spherical harmonic coefficient of M2 scenarios for differ-

ent fields. Comparing D1 and D2 with RF one can find that the secondary aliasing affects

the zonal and low order tesseral coefficients mostly, while the primary aliasing has more

influence on the remaining coefficients. To understand this behaviour, the meaning of

the two-step aliasing mechanism should be reminded:

• primary aliasing is based on the orbit sampling at the latitude circles, with the

longitudinal uniform assumption of the ocean tides;

• secondary aliasing is caused by the undersampling of the primary aliasing signals;

To emphasize, a similar spatial averaging should be followed for a certain region among

different recovered solutions to guarantee a consistent behaviour of secondary aliasing.

Naturally, the secondary sampling is better fitted in a large region than in a small region.

This was discussed in detail in section 4.6. Now if we consider the real ocean tides

within different scales corresponding to the spherical harmonics, the secondary aliasing

within a latitude band (corresponding to zonal harmonics) and large scale tesseral area

(low order tesseral harmonics) is easier and better fulfilled than a longitudinal band

(sectorial harmonics) and a small tesseral area (high order tesseral harmonics), regardless

of the influence of the ecliptical obliquity (see the discussion in section 3.5). It is also

understandable that the de-aliasing with respect to the primary and secondary aliasing

frequencies can not remove all the errors:

• the assumption of longitudinal uniform ocean tides only holds to a limited extent,

• the temporal and spatial averaging are not strictly consistent for regions at all scales.

Therefore, the side frequencies derived by the spectral analysis aid the de-aliasing to some

extent (see the further discussion below), c.f. D12SAS’s. The RMS of spherical harmonic

coefficients of the remaining constituents is given in Appendix A.

Figure 5.10 shows the overall mean geoid height RMS for all 8 major tides with GRACE-

type and Bender-type simulations. On two sides of the bars are the relative improvements

(Ip in %), in terms of mean geoid height RMS of each de-aliasing case relative to individual

recovery field, namely

Ip(F) =
RF −F
RF

, (5.3)

in which F can be D1, D2, D12 or D12SAS. From Figure 5.10 we can see that in general
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Figure 5.10: Mean geoid height RMS [mm] for 8 major tides of five fields: RF, D1, D2,
D12 and D12SAS. The left half shows the simulations from GRACE-type formation. The
right half shows the simulations from Bender-type constellation. The scatter plots shows
the improvement of each de-aliasing strategy regarding the recovery field.

the Bender-type constellation outperforms GRACE-type formation if we compare all five

fields accordingly. The statistics of improvement from a GRACE-type to a Bender-type are

not given as they vary a lot due to the different orbit design. There are several exceptions:

• the Bender-type is slightly worse than the GRACE-type for the recovery field of P1,

though the de-aliased fields are reduced largely for Bender-type, also see Figure A.8;

• the Bender-type is slightly better than the GRACE-type for the recovery field of K2,

and the de-aliased fields of both scenarios are very close, Figure A.5.

That is to say, not all constituents benefit from adding a second-pair. Although adding an

extra pair means having more samples, those samples do not always bring improvement

to the final estimated fields. Furthermore, the well de-aliased fields of GRACE-type

scenarios can be better than the recovery fields of Bender-type, for instance comparing

the D12 or even D12SAS of GRACE-type to the RF of Bender-type for M2 constituent.

Therefore, with careful treatment of the aliasing errors, the improvement of the GRACE-

type formation can be very promising.
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Another point to emphasize is that the contribution of primary aliasing and secondary

aliasing are equally important. One should always consider them together for optimal

de-aliasing. The improvement of de-aliasing with both primary and secondary aliasing

frequencies can be more than one order of magnitude for some constituent, e.g. S2.
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Figure 5.11: logarthim of mean error degree RMS in geoid height [mm] ofM2 for different
recovery periods. The involved fields are: recovered field (RF), de-aliasing with respect
to primary aliasing periods (D1), de-aliasing with respect to primary and secondary alias-
ing periods (D12), de-aliasing with respect to primary, secondary and spectral analysis
derived aliasing periods (D12SAS), and de-aliasing with respect to primary, secondary
and spectral analysis derived aliasing periods and de-striping (D12SASS). The recovery
periods are labelled at the right side of the figure. The remaining setting is the same as
Figure 5.2.

By adding the side frequencies estimated by SBASA for de-aliasing, i.e. comparing the

fields D12SAS to D12, the improvement is about 10% in general. For the most trouble-

some constituent K1, the improvement is about 30–60% for GRACE-type and 60–75% for

Bender-type. However, the overall error magnitudes are still very high compared to the

other constituents.

From section 4.6 we know that the orbit sampling and recovery periods together affect the

behaviour of aliasing spectrum. Figure 5.11 shows the recovered and de-aliased fields for

the scenarios given in Table 4.4. The pattern of scenario Tr = 5 proves that the sampling

pattern is very important. Although all the side spectral lines derived from SBASA (see
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Figure 4.14) are estimated together with the primary and secondary aliasing frequencies,

the de-aliased fields still shows large errors in the whole spectrum.

It should be reminded that the primary aliasing period of the simulated scenarios is about

14.0 days. The pattern of scenario Tr = 14 confirmed that, if recovery period is close to

the primary aliasing period, the de-aliasing with primary and secondary aliasing periods

cannot guarantee a good reduction of errors in the de-aliased fields. The spectral analysis

is needed to get the real spectral lines.
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Figure 5.12: RMS of spherical harmonic coefficients of recovered fields. The numbers at
the north west are the recovery periods.
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Long recovery periods will average out both the tidal signals and the errors, especially for

the lower degrees, comparing all the different recovery periods. In other words, the

estimation of tides will get relative small magnitudes within a large recovery period.

Figure 5.12 indicates that when the recovery periods equal the primary aliasing periods,

the zonal coefficients and low order teressal coefficients are reduced significantly due to

the averaging effect. This averaging effect can also be achieved when the recovery periods

are very large, e.g. scenario Tr = 120 days, or the recovery periods are relative large

but close to integer times of primary aliasing periods, e.g. scenario Tr = 29 whose zonal

and low tesseral coefficients in general are smaller than the corresponding coefficients of

scenario Tr = 38 and Tr = 60. This happens because the large scale regions and latitudinal

bands can easily cover the sampling homogeneously and averaging the periodic signals

into a significant reduction. For the small regions, only when the recovery period is large

enough, can this averaging effect reach a high efficiency, comparing the high degree and

order coefficients for different recovery period scenarios.

5.3 Discussion and Summary

In this Chapter, aliasing error mitigation in post-processing is investigated in detail.

Firstly, the aliasing error mitigation methods in the spatial domain and in the spher-

ical harmonic domain are introduced. Then, the de-aliasing results are analysed from

different views. The following conclusions can be drawn from the discussion in the

previous sections:

• De-aliasing in the spatial domain and in the spherical harmonic domain are equiv-

alent when applying the same aliasing periods. However, they do have some dif-

ference in the real data processing. On the one hand, the spatial-based de-aliasing

needs extra spherical harmonic synthesis and analysis than Klm-based de-aliasing.

On the other hand, the spatial-based de-aliasing may have the advantage of reduc-

ing the influence on the continental signals which have periods that are close to

aliasing periods of tidal constituents, by de-aliasing locally;

• Aliasing does not change the correlation of the degrees for a given order, which

induces stripes, and the striping does not change the aliasing spectral lines. How-

ever, the magnitudes of the striping errors are reduced after de-aliasing, and vice

versa. Some coefficients at high degree and order still have large magnitude after

de-aliasing due to the striping effects;

• The primary aliasing affects the whole spherical harmonic spectrum in general,

and the secondary aliasing affect the zonal and low order tesseral coefficients sig-

nificantly. Both primary and secondary aliasing are needed to be considered for

de-aliasing;

• The aliasing spectral lines change to different extent when the sampling patterns



5.3. DISCUSSION AND SUMMARY 93

within a recovery period vary from one recovery interval to another interval. Spec-

tral analysis needs to be applied to find the side aliasing frequencies apart from

the primary and secondary aliasing frequencies. In addition, larger recovery peri-

ods also reduce the ocean tide error magnitudes more significantly due to (1) the

periodic characteristics of ocean tides, (2) the longitudinal uniform distribution

of ocean tides to some extent, and (3) the temporal and spatial averaging of the

spherical harmonic analysis;

• The spectral analysis has limitations: (1) some side frequencies cannot be detected

when the recovery period is large according to the Nyquist sampling rules, and (2)

some frequencies are not precisely estimated according to the Rayleigh criteria;

• In general, the Bender-type scenarios have smaller magnitudes of ocean tide aliasing

errors than the GRACE-type scenarios. However, for a few constituents, adding the

second inclined pair does not always reduce the magnitudes of original aliased

fields or even the de-aliased fields. The same de-aliasing processing for single pair

can be applied to the aliasing fields due to two-pair sampling, with the aliasing

frequencies derived for the individual pairs.
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Orbit design considering ocean tide

aliasing

This work till now has clarified the ocean tide aliasing mechanism in satellite gravime-

try and discussed the reduction of the ocean tide aliasing errors in post-processing.

A further question can be posed: how can future satellite missions benefit from this newly
gained knowledge? In this chapter, future mission orbit design considering the ocean tide

aliasing will be discussed based on what has been learned in the previous chapters. One

needs to define the aims of a future mission before starting the orbit design. Regarding

ocean tides, the aim can be either aliasing error mitigation or signal extraction. Different

criteria need to be met for different aims, which may have some aspects in common, but

mostly not. It should be reminded that it is impossible to remove the aliasing errors and

to improve the ocean tide models at the same time.

For the aliasing error mitigation, the best situation is removing the ocean tide errors by or-

bit design, combining different orbit samplings in a way that the errors cancel each other.

In reality, the errors cannot be removed for all the constituents or for one constituent at

all locations. Therefore, to compensate, post-processing is needed to reduce the errors.

For that purpose, the aliasing periods should be as small as possible in order to remove

the aliasing errors as soon as possible. It was also shown that the recovery period should

avoid being too close to the primary aliasing period, e.g. less than one day difference

between them, to cause the unpredictable secondary aliasing frequencies or very low

secondary aliasing frequencies which cannot be removed easily in post-processing.

This Chapter focuses on aliasing error mitigation for future mission design. The ocean

tide signal extraction will be discussed as a trigger for future investigation in next chapter.

Specifically, section 6.1 discusses the relation between phase sampling of the ocean tides

95
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and the nodal difference of two or more orbits. Section 6.2 presents possible ways to

achieve a good groundtrack pattern. Section 6.3 shows the relations between aliasing

periods and the orbit altitude and inclination. Based on the discussion in the first three

sections, section 6.4 simulates several scenarios and analyse the results. In the end,

section 6.5 summarizes this chapter.

6.1 Phase sampling of ocean tides

As discussed in section 3.3, the sampling of an individual tidal constituent along the

orbit shows a periodic pattern in the u-t cyclogram. This characteristic can be used

to design orbits for mitigating ocean tide aliasing errors. Ideally, if the ocean tides are

sampled out-of-phase, the samples will cancel each other when combined to recover the

fields. As a result, ideally aliasing errors would not exist in the final gravity field products.

As already discussed, the periodic patterns correspond to the primary aliasing periods,

which depend on the orbital nodal rate. For a circular nominal orbit, the nodal rate is

defined only by the altitude and inclination.

In order to have the minimal ocean tide aliasing errors, the out-of-phase sampling should

be kept for the whole mission duration. This can only be achieved when the orbit pre-

cession of the satellites are the same. The easiest scenario is two pairs of satellites with

the same altitudes and inclinations, but different in argument of latitudes, ∆u, or right

ascensions of ascending nodes, ∆Ω. In theory, the out-of-phase sampling can be achieved

by either designing ∆u or ∆Ω, or even combining both of them, under the condition of

nominal orbits and two pair satellites. However, when the scenario becomes more com-

plex, real orbit or more pairs, ∆u is not so straightforward when ocean tide sampling is

considered. Therefore, ∆Ω is considered as the only variable for phase sampling design

from now on, by default setting ∆u = 0.

In terms of a double-pair mission, out-of-phase means the phase difference ∆φ, sampled

by two satellite orbits, is 180◦. The corresponding ∆Ω can be calculated as

∆Ω =
∆φ

φ1d
, (6.1)

in which φ1d can be calculated by equation (3.9) for a given constituent. The resulting

∆Ω for all 8 major constituents are shown in Table 6.1.

Table 6.1: Nodal difference of the double-pair formation.

constituent M2 N2 S2 K2 O1 P1 Q1 K1

∆Ω [deg] 93.4 95.2 90.2 90.0 194.2 181.0 202.1 180.0

Figure 6.1 shows the pattern of the observations along the orbits for S2 and K1. Tides S2

and K1 are sampled individually by two orbits with the same orbit parameters except for
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Ω = 0◦

Ω = 90◦

Ω = 0◦

Ω = 180◦

S2

K1

Figure 6.1: Phase sampling of the constituent S2 and K1.
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ascending nodes difference, ∆Ω = 90◦ and ∆Ω = 180◦ respectively, at the initial epoch.

The out-of-phase patterns are clearly seen comparing the two orbit sampling for each

constituent. For instance, the red boxes of S2 shows three layers, from top to bottom, of

red-blue-red pattern for scenario Ω = 0◦ and blue-red-blue pattern for scenario Ω = 90◦.

Similar out-of-phase patterns can be seen for the K1 constituent, e.g. red-blue pattern for

scenario Ω = 0◦ and blue-red for scenario Ω = 180◦ in the red boxes from top to bottom.
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Figure 6.2: Contour line of nodal rate Ω̇ regarding altitude and inclination.

Apart from setting the same altitudes and the inclinations for two-pair satellites, the

altitudes and inclinations can be changed in a certain way to keep the same nodal rate.

Figure 6.2 shows the contour line of nodal rate Ω̇ regarding altitude and inclination. The

following information is indicated by Figure 6.2:

• the same Ω̇ can be achieved by changing the inclination slightly while considerably

changing the altitude;

• for the same inclination variation, the altitude change should be larger for (near-)

polar orbits than for inclined orbits.

This characteristic can be interpreted further that for two satellites with large difference

in altitude, the same orbit precession can be kept by tuning the inclination within a small

range. This can be used to combine a newly designed satellite mission with a mission

already in service to form a new constellation which was not planned for the mission

already in orbit.

Table 6.1 shows that different constituents have different optimal ∆Ω’s. Therefore, a

compromise must be made for a given satellite mission as not every constituent can be
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served. Different criteria can be followed to achieve a compromise, e.g.

• minimizing the aliasing errors of the constituent with largest magnitude, namely

M2;

• minimizing the aliasing errors of the constituent which is supposed to have largest

errors in ocean tide modelling;

• minimizing the aliasing errors of the constituent whose aliasing periods are close

to the periods of important temporal signals;

• minimizing the overall aliasing errors.

Different criteria will lead to different self-dealiasing performances of the mission. The

remaining aliasing errors, if they are still significant enough compared to other error

sources or the signals, can be removed in post-processing.

Furthermore, three pairs with the same Ω̇ are considered. For a single constituent, the

periodic pattern can be modelled by a sinusoid harmonic. For a triple-pair sampling, the

object function to minimize the aliasing errors for an arbitrary constituent is

sin
(
f

p
a t +φ1

)
= −

(
sin

(
f

p
a t +φ2

)
+ sin

(
f

p
a t +φ3

))
, (6.2)

in which f p
a is the primary aliasing period of the specific constituent, and φ1, φ2 and

φ3 are the phases of the three orbits at the initial epoch. Applying the sum-to-product

formula to the right side of (6.2) gives

sin
(
f

p
a t +φ1

)
= −2sin

(
f

p
a t +

φ2 +φ3

2

)
cos

(
φ2 −φ3

2

)
. (6.3)

Rewriting equation (6.3) one gets

2cos
(
φ2 −φ3

2

)
= −

sin
(
f

p
a t +φ1

)
sin

(
f

p
a t + φ2+φ3

2

) . (6.4)

For an arbitrary epoch t, the numerator and denominator at right side of the equation

(6.4) can vary from −1 to +1, but the left side of the equation, 2cos
(
φ2−φ3

2

)
, is a constant.

Therefore, only when

2cos
(
φ2 −φ3

2

)
= ±1 , (6.5)

equation (6.4) is independent of time variation. Therefore,

sin
(
f

p
a t +φ1

)
sin

(
f

p
a t + φ2+φ3

2

) = ∓1 , (6.6)

holds accordingly. Solving equation (6.5) and (6.6) together by setting one initial value,

e.g. φ1 = 0◦, gives one set of possible initial phases

φ1 = 0◦

φ2 = 120◦

φ3 = 240◦ .

(6.7)
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Table 6.2: Right ascension of ascending nodes for triple-pair constellation, with Ω1 = 0◦.

constituent M2 N2 S2 K2 O1 P1 Q1 K1

Ω2 [deg] 62.3 63.5 60.2 60.0 129.5 120.7 134.7 120.0

Ω3 [deg] 124.5 126.9 120.3 120.0 258.9 241.3 269.4 240.0

Applying the equation (6.1) by replacing ∆φ by φ1, φ2 and φ3 accordingly gives the

corresponding right ascension of ascending nodes for individual constituent, as listed in

Table 6.2 with Ω1 = 0◦.

For a Bender-type constellation, containing a polar pair and a inclined pair, the nodal

rates Ω̇ of two orbits are different. Therefore, the constant out-of-phase sampling can not

be kept for the whole lifetime of the mission. Strictly speaking, the discussion above is

not fully applicable. However, the numerical simulation and analysis will show that a

similar idea discussed in this section also helps in the orbit design of a constellation with

orbits of different Ω̇, e.g. Bender-type.

6.2 Groundtrack patterns

Based on the discussion in section 4.6 and 5.2, the groundtack pattern within a re-

covery period, homogeneity, and among different recovery periods, consistency, is

very important for forming the aliasing frequencies and then affecting the de-aliasing

performance. Therefore, a (relative) homogeneous and consistent groundtrack pattern is

proposed for a future mission to mitigate the aliasing errors both with the self-dealiasing

orbits and in post-processing. The easy way to fulfil these requirements is a repeat orbit.

A repeat orbit means the satellite performs β revolutions and evenly samples the Earth

for each given latitude in α nodal days, which is also called a repeat cycle. After that,

the ground tracks start repeating themselves, which is the beginning of the next repeat

cycle. A repeat orbit gives homogeneous and consistent ground track pattern. However,

a repeat orbit is not the first choice for satellite gravimetry which aims at modelling the

temporal gravity fields as well as the static gravity fields, as a high spatial resolution and

a high temporal resolution can not be fulfilled at the same time for a repeat orbit. As we

know, the spatial resolution Rs and temporal resolution Rt of a repeat orbit fulfils

Rs ×Rt = C, (6.8)

which means temporal resolution and spatial resolution are inversely proportional for a

given repeat orbit.

To keep a relative high temporal resolution, meanwhile improve the spatial resolution in

a long run, Christian Siemes (personal communication) has proposed a type of drift orbit

with a constant λ-shift ∆λ, e.g. 1.3◦ within a certain time interval, called drift cycle Tdc.
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The drift is defined as

D =
∆λ
Tdc

, (6.9)

with the unit degree/cycle, e.g. 1.3◦/cycle. For this type of drift orbit, a similar ground-

track pattern among different drift cycles, the consistency, can be guaranteed as the

groundtracks within a drift cycle are shifted as a whole to one direction after a drift cycle,

by definition. The homogeneity, H , of the groundtracks, can be evaluated by the ratio of

maximum and minimum gaps, ∆λmax and ∆λmin, between neighbouring groundtracks at

the equator, namely

H =
∆λmax

∆λmin
. (6.10)

When H = 1, the orbit is a repeat orbit. The closer H is to 1, the more homogeneous

the groundtracks are. Figure 6.3 shows an example of the groundtrack homogeneity for

orbits of inclination I = 70◦ and I = 89◦, changing with the altitude and period.
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Figure 6.3: The homogeneity of the orbits with inclination of 70◦ and 89◦.

For a mission containing more than one pair of satellites, the interleaving should be con-

sidered between different orbits. In other words, one needs to put one pair of satellites

in between the groundtracks of the other pair(s) to avoid the overlap of the groundtracks

from different orbits. This consideration can guarantee a better spatial resolution. Ac-

tually, interleaving is the key to improve the spatial resolution in a given time span by

double- or multi-pair satellite missions. If this condition is not imposed, the expected

improvement of spatial resolution by adding extra pairs cannot be guaranteed.

6.3 Aliasing periods, altitude and inclination

In order to remove the aliasing errors in the post-processing in a short time, the aliasing

periods should be small. As already discussed, the primary aliasing period depends

on the nodal precession, which is decided by the orbit altitude and inclination. The
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secondary aliasing periods depend on the primary aliasing periods and the recovery

periods. In this section the distribution of the primary aliasing periods and secondary

aliasing periods are investigated with respect to orbit altitude, inclination and recovery

period.

Figure 6.4 shows the variation of primary aliasing periods with respect to the altitude and

inclination change for 8 major constituents. Figure 6.4 indicates that the altitude variation

affect the primary aliasing periods marginally and the influence of inclination variation

on primary aliasing periods are relatively significant, especially for the constituent S2,

K2, P1 and K1. In general, polar orbits induce larger primary aliasing periods than the

inclined orbits. Comparing the two constituents of each column except for the last one,

they tend to have close aliasing periods for an orbit with given altitude and inclination,

e.g. M2 and O1. In a wide sense, four constituents, M2, N2, O1 and Q1, have very close

aliasing periods. This is irrelevant for the aliasing periods removal as the errors are

removed anyway despite the correlation among the estimated coefficients of different

constituents, namely Anc,lm, Bnc,lm, Anc,lm and Bnc,lm in equation 5.1. However, a relative

long dataset is needed to separate those constituents when one wants to extract the tidal

signals. For polar and near polar orbits, primary aliasing periods of S2 and P1 are close to

the semi-annual period, which may affect the estimation of the semi-annual geophysical

signals. When the inclination is above ∼ 84◦ (K1) or ∼ 87◦ (K2), the primary aliasing

periods of K1 and K2 are more than 1 year which means more than 1 year of data is

needed to remove the corresponding aliasing errors. Special attention should be paid to

the boundary case in which the primary aliasing periods of K2 and K1 are about one year

when I ' 87◦ or I ' 84◦, respectively, which will mix into the annual geophysical signals.

As the altitude affects the primary aliasing periods marginally, an arbitrary altitude,

300 km, is taken as an example to show the pattern of secondary aliasing periods with

respect to the variation of the inclination and recovery period, see Figure 6.5. In general,

the secondary aliasing periods of M2, N2, O1 and Q1 are less than one year, except for

the cases when the recovery periods are very close to the integer multiple of the primary

aliasing periods, see the bright stripes. Those are the worst cases which should be avoided,

when designing the orbit and deciding the recovery period. This is because the errors

either alias into very low frequencies, and thus needing long time series to remove them,

or the spectral analysis should be conducted to check the possible aliasing frequencies,

as discussed in section 4.6 and 5.2. For S2, the problem of semi-annual aliasing emerges

when the orbit is near polar for the whole range of investigated recovery periods, as well

as when the orbit is about 65–75◦ and the recovery period is about 27–35 days, see the

top and the bottom right corner of the S2 plot. The secondary aliasing periods of K2, P1

and K1 are the same as their primary aliasing periods for the investigated cases, because

the recovery periods are always smaller than the primary aliasing periods.
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Figure 6.4: Primary aliasing periods variation with respect to the altitudes and inclina-
tions for 8 major tides. Please note the difference of colorbar ranges. For K1 and K2, the
colorbars stand for the logarithm of the primary aliasing periods, and the rest stands for
the primary aliasing periods themselves.
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Figure 6.5: Logarithm of secondary aliasing periods variation with respect to the inclina-
tions and recovery periods for 8 major tides.
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Table 6.3: Basic information of simulated orbits.

basic orbit altitude inclination drift cycle drift rate

BO-p 331.9 km 89◦
7 days 1.3◦/ cycle

BO-i 342.6 km 70◦

6.4 Simulations and analysis

In this section, two basic orbits are chosen to form double-pair and triple-pair constel-

lations to show the influence of phase sampling of the ocean tides on the recovered

tidal fields. The basic orbits are shown in Table 6.3. One is a polar orbit (BO-p) and the

other one is an inclined orbit (BO-i). Both of them are drifting orbits with a 7-day drift

cycle and a drift rate of 1.3◦/cycle. The drift cycle and the homogeneity are shown in

Figure 6.3.

The simulated constellations are listed in Table 6.4. The simulation includes the single-

pair GRACE-type (S-p), double-pair with two polar orbit (D*-pp), Bender-type (B*-pi),

Triple-pair (T*). The orbits are separated by the optimal nodal difference ofM2 for double-

pair (see Table 6.1) and triple-pair (see Table 6.2), being perpendicular or parallel. Please

see more information about scenario designations and brief descriptions in Table 6.4.

All the constellations in Table 6.4 are simulated with two types of inputs: (1) M2, and

(2) all 8 major tides. The simulation length is 182 days, which covers all the aliasing

periods of each constituent except for the K1 and K2 regarding polar pair, see Table 6.5.

The inputs are the ocean tide errors, EOT08a − GOT4.7, and the outputs are the aliased

fields of ocean tide errors. Therefore, smaller magnitudes of the recovered fields indicate

better self-dealiasing of the mission. The recovery period is 7 days, the same as the drift

cycle of the orbits.

Figure 6.6 and 6.7 show the recovered tidal aliased fields ofM2. The following results are

shown:

• the double-pair optimal DOP-pp performs almost the same as the perpendicular

orbits D90-pp, with the sampled phases being different only in (93.4−90)/φ1d(M2) '
1.7◦;

• the DOP-pp and D90-pp constellations are better than the constellation of parallel

orbits DPL-pp, which samples the M2 tides in phase;

• the DPL-pp field shows a similar error in magnitude as single-pair formation S-p,

which demonstrates that an added pair does not improve the recovered fields if the

orbit is not designed properly;

• no significant difference arises from the different orbit separations regarding the

Bender-type constellation, comparing BOP-pi, B90-pi and BPL-pi. This is expected
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Table 6.4: The right ascensions of ascending nodes of the simulated scenarios.

scenario designation brief description Ω1 Ω2 Ω3

S-p single pair, polar 0◦ - -

DOP-pp
double pair

0◦ 93.4◦
-

2 polar, optimal ∆Ω

DPL-pp
double pair

0◦ 180◦
-

2 polar, parallel

D90-pp
double pair

0◦ 90◦
-

2 polar, perpendicular

BOP-pi
double pair, polar + inclined

0◦ 93.4◦
-

optimal ∆Ω for same Ω̇

BPL-pi
double pair

0◦ 180◦
-

polar + inclined, parallel

B90-pi
double pair

0◦ 90◦
-

polar + inclined, perpendicular

TOP-ppp
triple pair

0◦ 62.3◦ 124.5◦
3 polar, optimal ∆Ω

T90PL-ppp
triple pair, 3 polar

0◦ 90◦ 180◦
perpendicular + parallel

T90OP-pip
triple pair

0◦ 90◦ 266.6◦polar + inclined + polar
perpendicular + optimal ∆Ω

T90PL-pip
triple pair

0◦ 90◦ 180◦polar + inclined + polar
perpendicular + parallel

T90OP-pii
triple pair

0◦ 90◦ 183.4◦polar + inclined + inclined
perpendicular + optimal ∆Ω

T90PL-pii
triple pair

0◦ 90◦ 270◦polar + inclined + inclined
perpendicular + parallel

T3POP-pip
triple pair

0◦ 62.3◦ 124.5◦polar + inclined + polar
optimal ∆Ω for same Ω̇

T90PL-pii
triple pair

0◦ 62.3◦ 124.5◦polar + inclined + inclined
optimal ∆Ω for same Ω̇
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Table 6.5: Aliasing periods [day] of 8 major constituent for each orbit.

orbit aliasing periods M2 N2 S2 K2 O1 P1 Q1 K1

BO-p
T

p
a 13.5 9.1 155.2 1035.1 13.6 167.8 9.1 2070.1

T s
a 14.6 30.9 155.2 1035.1 14.5 167.8 30.4 2070.1

BO-i
T

p
a 10.9 7.8 41.0 52.8 12.1 66.9 8.4 105.7

T s
a 19.7 69.3 41.0 52.8 16.6 66.9 41.8 105.7

as no constant out-of-phase sampling can be kept for two orbits with different nodal

rates;

• the Bender-type constellation is better than the single pair GRACE-type forma-

tion and double-pair DPL-pp, while it is worse than the double pair out-of-phase-

sampling scenarios DOP-pp and D90-pp;

• for triple-pairs with two identical polar pairs and one inclined pair, or two identical

inclined pairs and one polar pair, choosing the optimal orbit separation between

the identical orbits always produces better results than the remaining options. The

constellations with two identical orbits in parallel perform the worst;

• globally, triple-polar pairs with the optimal right ascensions of ascending nodes are

the best in terms of the ocean tide self-dealiasing;

• in general perpendicular polar orbits improve the zonal and low order tesseral

coefficients, and the perpendicular inclined orbits improve the sectoral and high

order tesseral coefficients.

The scenarios with inputs of all 8 major tides show the same behaviour as M2, which can

be explained by the dominant magnitudes ofM2 compared to the rest for 8 major tides. As

already shown in the first bullet of the above results, a small shift of the sampling phase

does not affect the results significantly. Therefore, in general, the perpendicular orbits

are better for the semi-diurnal tides and the parallel orbits are better for the diurnal

tides. Comparing the parallel orbits with the (quasi) perpendicular orbits, e.g. DPL-

pp and D90-pp, or T90PL-pip and T90OP-pip (quasi perpendicular), the perpendicular

orbits are always better than the parallel orbits. This demonstrates that the semi-diurnal

tides errors are larger than the diurnal tides and need special attention if minimizing the

overall aliasing errors is one of the aims of future missions.

6.5 Summary

This chapter discussed the future mission design in terms of ocean tide mitigation.

By making use of the orbit sampling of the ocean tide phases, a proper mission can

be designed with the property of self-dealiasing. This is a promising view to mitigate

the troublesome ocean tide aliasing errors without doing any data processing, which will

be beneficial for the recovered gravity fields, especially for the possible application with
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Figure 6.6: Geoid height RMS of the recovered fields for M2. The sketch map at the top
right of each single plot indicates the relative positions of the simulated orbits seeing
from the north pole. The letter p stands for the polar orbit BO-p, and the letter i stands
for the inclined orbit BO-i.
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Figure 6.7: RMS of the individual spherical harmonic coefficients of the recovered fields
forM2. The sketch map at the top right of each single plot indicates the relative positions
of the simulated orbits seeing from the north pole. The letter p stands for the polar orbit
BO-p, and the letter i stands for the inclined orbit BO-i.
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Figure 6.8: Geoid height RMS of the recovered fields for all 8 major tides. The sketch
map at the top right of each single plot indicates the relative positions of the simulated
orbits seeing from the north pole. The letter p stands for the polar orbit BO-p, and the
letter i stands for the inclined orbit BO-i.
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Figure 6.9: RMS of the individual spherical harmonic coefficients of the recovered fields
for all 8 major tides. The sketch map at the top right of each single plot indicates the
relative positions of the simulated orbits seeing from the north pole. The letter p stands
for the polar orbit BO-p, and the letter i stands for the inclined orbit BO-i.



112 CHAPTER 6. ORBIT DESIGN CONSIDERING OCEAN TIDE ALIASING

high timeliness, which may not allow the co-estimation or post-processing of the tides to

remove the tidal aliasing effect. By designing the orbits with a proper ∆Ω between orbits,

the aliasing errors can be mitigated significantly automatically by the constellation itself.

Same nodal rates of the orbits are needed to keep the designed out-of-phase sampling.

Therefore, in terms of a double pair constellation, well-designed two identical polar pairs

outperform the Bender-type for ocean tides self-dealiasing. In order to minimize the

overall aliasing errors by orbit design, perpendicular orbits are better than the parallel

orbits. Nevertheless, different aims can be chosen for the future mission in terms of

dealing with ocean tide aliasing, as discussed in section 6.1.
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7
Conclusion and Outlook

7.1 Conclusion

This dissertation has systematically investigated the ocean tide aliasing problem in

satellite gravimetry. Three main parts are included.

The first part, mainly covered by Chapter 3 and Chapter 4, is to understand the mecha-

nism of the ocean tide aliasing. This includes elaborating a two-step mechanism of tide

aliasing: primary aliasing and secondary aliasing. A primary aliasing is caused by the

undersampling of the oceans tides by orbits. To achieve the primary aliasing, the ocean

tides are considered as longitudinal uniform signals, which means the differences in am-

plitudes and phase lags for a given constituent at different longitudes are ignored. As

the orbit sampling depends on the orbit precession, the primary aliasing periods depend

on the orbit precession as well. The primary aliasing periods are demonstrated by the

observations along the orbits, with the clear periodic patterns shown in the u-t cyclogram.

These periodic patterns reflect the phase sampling of the the ocean tides by the orbits.

The phase sampling by orbits can be used to design future missions aiming at mitigating

ocean tide aliasing.

A secondary aliasing is due to undersampling of the primary aliased fields by gravity re-

covery process. In general, gravity recovery averages the data within the recovery periods

at different spatial scales. The secondary aliasing occurs when the recovery period is no

less than half the primary aliasing period, according to the Nyquist sampling rule. For

some constituents under a given orbit sampling, the recovery period can be much smaller

than the primary periods, e.g. K2 and K1 sampled by polar orbits. Strictly speaking,

no secondary aliasing happens in this case. However, the same periods as the primary

113
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aliasing are referred to for the secondary aliasing for better understanding and easier

discussion. Another special case is that the orbits do not undersample the ocean tides but

the recovery process undersamples them. This can happen to some long period tides with

certain orbit sampling and recovery periods, which is not discussed specifically in this

work. However, despite of the difference, those cases can follow the basic idea discussed

in this work.

The aliasing behaviour of different regions and different spherical harmonic coefficients

are investigated by spectral analysis of the recovered solutions. According to the Nyquist

sampling rule, the spectral analysis can detect the spectral lines lower than two multiples

of the recovery periods. Therefore, the spectral analysis only shows the spectrum of the

secondary aliasing. The primary aliasing spectral lines can not be seen in the spectral

analysis. Analysis shows that the energy distribution of different latitude bands are

different. However, despite of different energy magnitudes, same spectral lines are shown

for all the regions. The spectral analysis of spherical harmonic coefficients shows a richer

spectrum than the spatial-wise analysis. This is because different coefficients are related

to different spatial scales. The averaging of the orbit samplings at different spatial scales

can be different in reality because of the complexity of the real ocean tides.

More complex cases occur when the recovery periods together with the orbit samplings

generate solutions which contain different sampling combinations within different recov-

ery intervals. This can be described by two aspects:

• the homogeneity of the groundtrack pattern within the single recovery periods;

• the consistency of the groundtrack patterns among different recovery intervals.

When the homogeneity and consistency of the groundtrack patterns are not satisfied,

unique primary and secondary periods are not guaranteed. As a result, side aliasing

frequencies show up due to the complex sampling and aliasing strategies among different

solutions at different spatial scales. The side aliasing frequencies can only be detected by

the spectral analysis of the residual gravity fields. However, the spectral analysis has its

limitations:

• the residual gravity fields contain residuals from many sources other than ocean

tides, which may affect the spectral lines determination largely or slightly;

• some spectral lines can not be detected according to the Nyquist sampling rule;

• some detected spectral lines are not precise due to the limited length of the data,

according to the Rayleigh criteria.

The aliasing spectrum of the Bender-type constellation is investigated along with the

GRACE-type formation. Results show that a Bender-type constellation can be treated

as the simple stack of individual single pairs in terms of tide aliasing. In other words,

the aliasing frequencies of a Bender-type constellation can be derived by analysing the



7.2. DISCUSSION AND OUTLOOK 115

aliasing behaviour caused by each pair separately. Although the interference among

different aliasing frequencies exist as a natural phenomenon, it needs no special treatment

in terms of mitigating the aliasing errors.

The second part, covered by Chapter 5, discusses the reduction of the ocean tide aliasing

errors in post-processing for different constellations and different processing strategies.

In general, the primary aliasing affects the spherical harmonic coefficients in the whole

spectra. The secondary aliasing has more influence on the zonal and lower order tesseral

coefficients, which represent the latitude bands or large regions. This is due to the fact

that averaging within a latitude band or a large region can be more likely consistent for dif-

ferent solutions, which satisfies the consistency averaging requirements for the secondary

aliasing more precisely than the small regions and longitude bands, corresponding to the

high order tesseral and sectorial coefficients. The primary and secondary aliasing should

be estimated simultaneously to minimize the aliasing errors. In the complex cases, the

side aliasing should be considered together with the primary and secondary aliasing. In

general, about 10% of relative improvement can be expected by taking the side aliasing

frequencies into consideration.

The recovered fields regarding different recovery periods show a reduction in magnitudes

when increasing the length of the recovered period. This can be explained by the periodic

characteristic of the ocean tides. When more samples are included in the averaging

process, the averaged results are closer to the real mean.

The third part, covered by Chapter 6, is the orbit design of further missions considering the

ocean tide aliasing. Two distinct tasks can be targeted regarding ocean tides when design

further missions, namely ocean tide error mitigation and ocean tide signal extraction.

Different criteria should be followed for different aims. In this work, the optimal orbits

are investigated for mitigation of the ocean tide aliasing errors. In general, self-dealiasing

can be achieved for a constellation by setting the orbit sampling of the ocean tides out of

phase. The permanent out-of-phase sampling can be achieved only when different orbits

have the same nodal rates. The optimal nodal separations are investigated for double- and

triple-pair constellation for each single constituent, which shows the best performance of

aliasing error mitigation for an individual constituent. As all the tides are sampled by the

same orbits simultaneously in reality, a compromise should be made for different aims. In

terms of mitigating the overall aliasing errors, the perpendicular orbits are recommended

over the parallel orbits. Apart from that, the aliasing periods should be short for a fast

aliasing error reduction conducted in post-processing, if needed.

7.2 Discussion and outlook

This This work has clarified the ocean tide aliasing mechanism in satellite gravimetry,

discussed the strategies of reducing the ocean tide aliasing errors in post-processing
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and mitigating the aliasing errors by mission design. Some further questions can be

considered under the frame of the aliasing mechanism developed in this work.

Uneven sampling effect The influence of the uneven sampling of ocean tides on the

aliased fields should be evaluated. The unevenly sampling may be due to changing

orbit precession, varying recovery periods or data gaps. In theory, it can be explained

similar to the case of inhomogeneous or (and) inconsistent groundtrack patterns, which

induces more side aliasing frequencies other than primary and secondary aliasing. The

difference is that the analytical formula which needs a specific sampling frequency may

not be applicable for the uneven sampling, depending on whether the averaged sampling

frequency can be used or not. In this case, spectral analysis of the residual fields may be

the only approach to derive the aliasing spectrum. Nevertheless, the limitations of the

spectral analysis, as discussed in this work, are unavoidable.

Ocean tide signal extraction The ocean tide signal extraction can be considered in the

frame of the two-step aliasing mechanism. The first concern is that the aliasing periods of

different constituents should be distinct from each other considerably, depending on the

time span of the data (cf. Rayleigh criteria), to have a better separation of the tides. This

is can be achieved to some extent by choosing proper orbit parameters like altitude and

inclination. It is not fully achievable because (1) the lifetime of the mission is normally

limited, and (2) the choice of altitude and inclination is limited by other scientific aims

or applications.

The second concern is that the ocean tide signals should be kept other than reduced by

orbit sampling. According to the experience of the satellite altimetry, longer time span

can give a better estimation of the tides. However, it may not be true when modelling

the ocean tides with satellite gravimetry. It should be reminded that the final products

are derived point-wisely and instantaneously in satellite altimetry, while the global so-

lutions are recovered within certain periods in satellite gravimetry. This spatially and

temporally averaged solutions can reduce the magnitudes of the signals largely or slightly,

depending on the relative length between the averaged periods and the recovery periods,

as well as the spatial distribution of the signal. If one would like to extract the ocean tide

signals from the recovered field time series in post-processing, the possible reduction in

magnitude because of the spatial and temporal averaging can cause the underestimation

of the tide signal. Therefore, the reduction effect should be evaluated in advance in this

case. For the ocean tide co-estimation, no averaging effect is involved. Instead, one needs

to consider the proper maximum degree/order to be parametrized for the ocean tides.

The third concern is that the data length used for ocean tide extraction should cover

the length of the aliasing periods for individual estimated constituents. Otherwise, the

phase information is not sufficient for precisely estimating such a periodic signal for each

constituent. Further investigations are needed for all the topics mentioned above.
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Appendix 1 Mitigation in post-processing

Figures below shows the geoid height RMS and RMS of individual spherical harmonic

coefficients of S2, N2, K2, O1, P1, Q1 and K1 for the recovered fields and de-aliased fields

with respect to different aliasing periods. See the related discussion in Chapter 5.
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Figure A.1: RMS of individual spherical harmonic coefficients of S2 for three fields: RF,
D12 and D12SAS.
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Figure A.2: Geoid height RMS [mm] of S2 for three fields: RF, D12 and D12SAS. Each
colorbar is valid for its column. Please note the different colorbar ranges for GRACE-type
scenario and Bender-type scenario.
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Figure A.3: Geoid height RMS [mm] of N2 for five fields: RF, D1, D2, D12 and D12SAS.
Each colorbar is valid for its column. Please note the different colorbar ranges for GRACE-
type scenarios and Bender-type scenarios.
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Figure A.4: RMS of individual spherical harmonic coefficients of N2 for five fields: RF,
D1, D2, D12 and D12SAS.
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Figure A.5: Geoid height RMS [mm] (top panel) and RMS of individual spherical har-
monic coefficients of K2 for three fields: RF, D12 and D12SAS.
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Figure A.6: Geoid height RMS [mm] of O1 for five fields: RF, D1, D2, D12 and D12SAS.
Each colorbar is valid for its column. Please note the different colorbar ranges for GRACE-
type scenarios and Bender-type scenarios.
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Figure A.7: RMS of individual spherical harmonic coefficients of O1 for five fields: RF,
D1, D2, D12 and D12SAS.
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Figure A.8: Geoid height RMS [mm] and RMS of individual spherical harmonic coeffi-
cients of P1 for three fields: RF, D12 and D12SAS.
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Figure A.9: Geoid height RMS [mm] of Q1 for five fields: RF, D1, D2, D12 and D12SAS.
Each colorbar is valid for its column. Please note the different colorbar ranges for GRACE-
type scenarios and Bender-type scenarios.
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Figure A.10: RMS of individual spherical harmonic coefficients of Q1 for five fields: RF,
D1, D2, D12 and D12SAS.
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Figure A.11: Geoid height RMS [mm] and RMS of individual spherical harmonic coeffi-
cients of K1 for three fields: RF, D12 and D12SAS. Each colorbar is valid for its column.
Please note the different colorbar ranges for GRACE-type scenarios and Bender-type sce-
narios.


