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Abstract

In the advent of automated driving, numerous system architectures to reach this goal are
currently being developed. In this process, safety and modularity criteria are becoming
increasingly important. This opens up new opportunities in the system design, but also
creates new challenges. All functions or services in an automated vehicle are affected by
this, including the estimation of the vehicle’s dynamic state. Requirements for the Vehicle
Dynamic State Estimation demand integrity measures and high system reliability, which
can often only be achieved by redundant structures.

A federated data fusion architecture with integrity monitoring is presented in this
work to fulfill the aforementioned requirements for the Vehicle Dynamic State Estimation
in automated driving. It inputs several redundant multi-sensor data fusion filters in a
first fusion layer whose results are combined in a second fusion layer. This second layer
implements plausibility checks and combines voting and data fusion, both utilizing the
integrity measures of the redundant data fusion filters in the first layer.

To compute such integrity measures, three integrity monitoring concepts are developed
which differ substantially in their error modeling and complexity. The first concept
represents the traditional approach and relies on the fusion filter’s estimated covariances
assuming that the error is normally distributed. The second concept models the errors in
the fusion filter’s output as the sum of errors from the filter’s inputs. The error of each
input is modeled as a multi-variate Student distribution and propagated through the filter.
Utilizing the resulting error distribution, the integrity measures are computed. The third
concept is based on the principle of Multiple Hypothesis Solution Separation. Subsets
consisting of parts of the available filter inputs are formed and the fusion for each of these
subsets is computed. Integrity measures are deducted by comparing the subset’s results
with each other. Each of the three concepts outputs a protection level, which is compared
to an alert limit for integrity monitoring.

Additionally, one of the redundant multi-sensor data fusion filters used in the federated
fusion architecture is presented in this work. An Error-State Extended Kalman Filter
is implemented to fuse the observations of three sensor types: a dual-antenna Global
Navigation Satellite System Receiver, an Inertial Measurement Unit and wheel odometry
sensors measuring wheel speeds and steering angles. The implementation includes sensor

v



error models providing suitable error covariances for the filter’s measurement updates
and Fault Detection & Exclusion methods to increase the filter’s robustness. Besides
the measurement updates from the mentioned sensor types, also zero updates, i.e., zero
velocity and zero angular rate updates, are part of the implementation, which are executed
when a standstill of the vehicle is detected.

In order to evaluate the performance of the presented fusion filter, integrity algorithms
and fusion architecture, an extensive set of measurements with a total duration of more
than 23 hours is used. Themeasurements are divided into four categories according to their
environmental and satellite reception conditions, since these have a strong influence on
the filter’s performance. All in all, the integrity requirements are met by all implemented
algorithms in favorable satellite reception conditions. However, only the second concept
using multi-variate Student distributions for error modeling does so in all measurement
categories, from ideal satellite reception conditions in the test track category to very
challenging environments in the urban category. The federated data fusion architecture
also fulfills the integrity requirements with only one minor exception, maintaining or even
reducing the empirical integrity risk depending on the measurement category. Additionally,
the accuracy and availability is improved significantly in most cases, compared to the
fusion filters in its first layer.

Finally, the usability of the developed concepts is demonstrated by applying them in
a prototype vehicle of the research project UNICARagil. The integration in the system
architecture and the interaction with other services is presented. In measurements from
the commissioning tests the functionality is illustrated.
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Zusammenfassung (in German)

Im Rahmen der Entwicklungsarbeiten zum hochautomatisierten Fahren werden zahlreiche
Systemarchitekturen entwickelt, um dieses Ziel zu erreichen. Die Aspekte Sicherheit und
Modularität gewinnen dabei stetig an Bedeutung. Dies eröffnet neue Möglichkeiten bei der
Systemgestaltung, schafft aber auch neue Herausforderungen. Davon sind alle Funktionen
oder Dienste im Fahrzeug betroffen, auch die Schätzung des Fahrdynamikzustands. In
Bezug auf die Fahrdynamikzustandsschätzung werden Integritätsmaße gefordert und
hohe Anforderungen an die Zuverlässigkeit gestellt, die häufig nur durch redundante
Strukturen erreicht werden können.

In dieser Arbeit wird eine föderierte Datenfusionsarchitekturmit Integritätsüberwachung
vorgestellt, um die zuvor genannten Anforderungen an die Fahrdynamikzustandsschätzung
im hochautomatisierten Fahren zu erfüllen. Mehrere redundante Multi-Sensor-Daten-
fusionsfilter werden in einer ersten Fusionsschicht angeordnet. Eine zweite Fusions-
schicht empfängt deren Ergebnisse und prüft die Plausibilität. Anschließend werden
Abstimmungsalgorithmen sowie eine weitere Datenfusion eingesetzt, die beide die In-
tegritätsmaße aus der ersten Fusionsschicht nutzen.

Um diese Integritätsmaße zu berechnen, wurden drei Konzepte entwickelt, die sich
hauptsächlich in Bezug auf ihr Fehlermodell sowie ihre Komplexität unterscheiden. Das
erste Konzept entspricht dem traditionellen Ansatz, die im Fusionsfilter geschätzten
Kovarianzen zu verwenden, wobei normal verteilte Fehler angenommen werden. Im
zweiten Konzept werden die Fehler am Filterausgang als Summe der Fehler, die aus
den Filtereingängen resultieren, modelliert. Die Fehler jedes Filtereingangs werden als
mehrdimensionale Student-Verteilung modelliert und durch den Filter propagiert. Auf
Basis der resultierenden Fehlerverteilung werden die Integritätsmaße berechnet. Im
dritten Konzept werden Teilmengen der verfügbaren Filtereingänge gebildet und die
Fusion wird für jede dieser Teilmengen berechnet. Die Integritätsmaße werden basierend
auf einem Vergleich der Ergebnisse aus den Teilmengen ermittelt. Alle drei Konzepte
geben eine obere Schranke für den Fehler als Integritätsmaß aus, die mit einer Warngrenze
für die Integritätsüberwachung verglichen wird.

Außerdem wird einer der redundanten Fusionsfilter aus der ersten Fusionsschicht der
föderierten Datenfusionsarchitektur vorgestellt. Es wird ein erweitertes Kalman Filter
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verwendet, das die Fehler des Zustandsvektors schätzt und die Beobachtungen von drei
Sensortypen einbezieht: ein Navigationssatellitenempfänger mit zwei Antennen, eine
inertiale Messeinheit und Odometrie-Sensorik, die Raddrehzahlen und Radlenkwinkel
misst. Die Implementierung enthält eine geeignete Modellierung der Sensor-Fehler sowie
Mechanismen zur Erkennung von Ausreißern, um die Robustheit des Filters zu erhöhen.
Zusätzlich zu den Messupdates der genannten Sensoren werden sogenannte Null-Updates
für die Geschwindigkeit und Drehrate durchgeführt, wenn ein Stillstand erkannt wird.

Zur Validierung des entwickelten Fusionsfilters, der Integritätsmaße und Fusionsar-
chitektur wird ein umfangreicher Datensatz von Messungen mit einer Gesamtdauer von
mehr als 23 Stunden verwendet. Die Messungen sind anhand ihrer Umgebungs- und
Satellitenempfangsbedingungen in vier Kategorien eingeteilt, da diese Bedingungen einen
starken Einfluss auf die Leistungsfähigkeit des Fusionsfilters haben. Alle entwickelten
Integritätsmaße erfüllen die Anforderungen in günstigen Satellitenempfangsbedingun-
gen. Allerdings erfüllt nur das zweite Konzept mit der Fehlermodellierung basierend auf
Student-Verteilungen in allen Kategorien, von idealen Bedingungen auf der Teststrecke bis
zu herausfordernden Situationen im städtischem Umfeld, die Integritäts-Anforderungen.
Die föderierte Datenfusionsarchitektur erfüllt diese Anforderungen ebenfalls mit nur einer
geringfügigen Ausnahme, wobei das Integritätsrisiko – je nach Kategorie der Messung –
gesenkt oder gehalten werden kann. Des Weiteren wird die Genauigkeit und Verfügbarkeit
im Vergleich zu den Filterergebnissen aus der ersten Fusionsschicht in den meisten Fällen
deutlich verbessert.

Abschließend werden die entwickelten Konzepte in den Prototypenfahrzeugen des
Forschungsprojekts UNICARagil angewendet. Die Integration in die Systemarchitektur
und die Interaktionmit anderen Dienstenwird vorgestellt. Im Rahmen der Inbetriebnahme-
Tests wird die Funktionsfähigkeit demonstriert.
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Notation

The notation used in this work builds upon the book of Groves (2013) and the work of
Reuper (2020).

Scalars

a a scalar
ă a true quantity (usually unknown)
ã a measured quantity
â an estimated quantity
δã = ã− ă a measurement error
δâ = â− ă an estimation error
a− an a-priori quantity
a+ an a-posteriori quantity
ak a quantity a, given at a discrete time epoch k

Scalar Operations

ȧ, ä, ...a time derivatives of a
exp {a} equivalent to ea

Vectors

a a vector
ao a vector a, resolved in the o-frame
aopq a vector quantity a of q with respect to p, resolved in the o-frame
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Vector Operations

a× b cross product
[a×] cross product-forming matrix, [a×]b = a× b

[a∧] skew-symetric matrix of vector a,

[a∧] =

⎛⎝ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎞⎠ with a =

⎛⎝a1a2
a3

⎞⎠
∂a
∂b

⃓⃓⃓⃓
c

partial derivative of a with respect to b, evaluated at c

Matrices

A a matrix
0m×n zero matrix with dimensions m× n

0m zero matrix with dimensions m×m

0 zero matrix (where the context gives the dimensions)
Im identity matrix with dimension m
I identity matrix (where the context gives the dimension)

Matrix Operations

AT matrix transpose
A−1 matrix inverse
A

1
2 square root of a matrix such that A

1
2 A

1
2 = A

A′ a matrix from previous step / iteration of KIPL algorithm

(︃
A B
C D

)︃
a block matrix, consisting of four submatrices

det (A) determinant of matrix A
diag (a) diagonal matrix of vector a
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eA matrix exponential eA =
∑︁∞

k=0

1

k!
Ak with A0 = I

tr(A) trace of matrix A
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List of Symbols

The symbols used in this work are inspired by the book of Groves (2013) and the work of
Reuper (2020).

Coordinate Frames

a antenna frame
b body frame
e Earth-centered Earth-fixed frame
f , r individual wheel frame front/rear for single-track model
fl, fr, rl, rr individual wheel frame front left/front right/rear left/rear right
i Earth-centered inertial frame
n local navigation frame
w arbitrary wheel frame

ybpq,F , ybpq,L, ybpq,U front/left/up component of vector ybpq
ynpq,E , ynpq,N , ynpq,U east/north/up component of vector ynpq
yopq,x, yopq,y, yopq,z x/y/z-component of vector yopq

IMU

ba 3D vector of accelerometer biases
bω 3D vector of gyroscope biases
fib specific force acting on the b-frame with respect to the i-frame
gib gravity vector of the b-frame with respect to the i-frame
wa accelerometer measurement noise
wω gyroscope measurement noise

xvii



Kalman Filter

If not stated otherwise, all following symbols relating to the Kalman Filter are given as
their discrete-time version.

h measurement function, z̃ = h(x) +wm

H measurement matrix, H = ∂h
∂x

K Kalman gain matrix
n state function, ẋ = n(x) + w̌s

N continuous-time system matrix, N = ∂n
∂x

P error covariance matrix
Q, Q̌ system noise/continuous-time system noise covariance matrix
R measurement noise covariance matrix
wm measurement noise vector
ws, w̌s system noise/continuous-time system noise vector
x total state vector
z, z̃ error state formulation/total measurement vector

δx error state vector
δz− measurement innovation, δz− = z− h(x̂−)
δz+ measurement residual, δz+ = z− h(x̂+)
τ time interval
τs state propagation interval
Φ transition matrix

Kinematics

apq acceleration vector of q with respect to p
Cpq direction-cosine matrix, vp = Cpqvq, vq = CpqTvp

heq ellipsoidal height of q, e.g., heb height of origin of body frame
ppq position vector of q with respect to p
RE ellipsoidal radius of curvature in east-west direction, i. e., transverse

radius of curvature
RN ellipsoidal radius of curvature in north-south direction, i. e., merid-

ian radius of curvature
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vpq velocity vector of q with respect to p

ηpq roll angle of the q-frame with respect to the p-frame
λeq ellipsoidal longitude of q, e.g., λeb ellipsoidal longitude of origin of

body frame
νpq pitch angle of the q-frame with respect to the p-frame
ϕeq ellipsoidal latitude of q, e.g., ϕeb ellipsoidal latitude of origin of

body frame
ψa antenna offset defined as angle in xb-yb-plane between xb-axis

and line connecting primary with secondary antenna, positive if
connecting line points right of vehicle

ψpq yaw angle of the q-frame with respect to the p-frame
ψpq attitude vector of the q-frame with respect to the p-frame,

ψpq = (ηpq νpq ψpq)
T

ω a scalar rotation rate
ωpq rotation rate vector of q with respect to p
Ωpq = [ωpq ∧] skew-symmetric matrix of rotation rate vector ωpq

ωen transport rate (due to motion in a curvilinear frame)
ωie scalar Earth rotation rate
ωie Earth rotation rate vector

Odometry

fpq specific force acting on q with respect to p
Fpq force acting on q with respect to p
hcog height of center of gravity above road surface (along zb-axis)
l wheelbase
lf , lr distance from center of gravity to front/rear axle along xb-axis
mv vehicle mass
rd dynamic tire radius
rd vector containing all dynamic tire radii

α tire side slip angle
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β vehicle side slip angle
δf mean steering angle at front axle for single-track model
δfl, δfr front left wheel/front right wheel steering angle
κx longitudinal tire slip correction factor
λx longitudinal tire slip
µ friction coefficient
ωw wheel rotation rate

Parameter Estimation

S power spectral density

ρ correlation factor
σq standard deviation of q
σpq covariance of p and q

Integrity Monitoring

Am matrix used as interim result in KIPL algorithm in Equation (5.16)
and Equation (5.22)

B Beta function B(x, y) =
∫︁ 1
0 t

x−1(1− t)y−1 dt, R(x) > 0, R(y) > 0

B error bound
d dimension of covariance matrix R
fNm(Rm) multi-variate Student distribution
k scalar factor
Nm degree of freedom for measurement type m
NS number of subsets for ARAIM algorithm
p parameter of a polynomial function
PFA probability of false alarm
P (Hi) probability of a fault Hi present
PHMI probability of an integrity event with HMI
PL protection level
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q counter
Q complement of CDF of normal distribution
Rm covariance matrix for measurement type m
S matrix used as interim result in KIPL algorithm in Equa-

tions (5.18)–(5.21)
Ti threshold for subset i of ARAIM algorithm
tm1 , tm2 , tm scalar values used as interim results in KIPL algorithm in Equa-

tions (5.17)–(5.20)
trm trace of matrix Rm
ym measurement residual vector

α integrity risk
αi tuning parameter of ARAIM algorithm
β tuning parameter of KIPL algorithm
Γ Gamma function Γ(z) =

∫︁∞
0 xz−1 e−x dx, R(z) > 0

ρm tuning parameter of KIPL algorithm
ρm tuning matrix of KIPL algorithm, ρm = ρm I
ω tuning parameter of KIPL algorithm

Second Fusion Layer

d distance
ns number of filters in first fusion layer
Tmin threshold for approval voting
T matrix to store results of approval voting
w weight
y output of second fusion layer
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1. Introduction

Automated driving brings numerous promising benefits for future transportation. Watzenig
et al. (2017, p. 3) name for example improvements in the areas of passenger safety by
reducing driving errors caused by human failures, traffic flow, fuel consumption and carbon
emissions as well as mobility of people who are unwilling or unable to drive themselves.
A multitude of research projects in academia and the industry (e.g., Eberle et al., 2019;
Urmson et al., 2008; Ziegler et al., 2014) is motivated by these benefits (Gottschalg et al.,
2020). Depending on the specific requirements and objectives of the research project,
the system architectures differ substantially. Nevertheless, there is a need to estimate the
vehicle’s dynamic state in all projects, since this information is needed in several essential
functions, e.g., the trajectory control (Gottschalg & Leinen, 2021).

This work details a federated multi-sensor fusion architecture to estimate the vehicle’s
dynamic state and monitoring its integrity for an application in automated driving. In the
following Sections, the motivation for this work and its objectives are presented, then the
structure is explained.

1.1. Motivation1

As mentioned, system architectures for automated driving are diverse. However, they can
be grouped by certain characteristics. With respect to the information flow, Yurtsever et
al. (2020) distinguish between modular and end-to-end driving systems. In the latter,
processing of all sensor data and computing of the control outputs for the actuators is
concentrated in a single function. In contrast to that, modular systems split the tasks into
separate modules or functions, e.g., environmental perception, behavioral and trajectory
planning, vehicle dynamic state estimation and trajectory control.

While one can find some projects using end-to-end driving systems in combination
with artificial intelligence (e.g., Lee and Ha, 2020), modular systems are becoming
more and more popular. As an overview of modular system architectures for automated
driving, Ulbrich et al. (2017) present a general functional system architecture. One of the
1This Section is based on a previous work written by the author (Gottschalg et al., 2021, Section 1).
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modules in such an architecture is the ego-motion estimation or Vehicle Dynamic State
Estimation (VDSE), which is needed in every project as mentioned before. Regarding the
modularity inside the VDSE and the used sensors, there is again a great variety within
the different projects across academia and the industry. Commonly, the VDSE is designed
as a single function evaluating all sensor data, e.g., by Arribas et al. (2017). However, a
modular approach for the VDSE comes with decisive opportunities regarding safety and
practicality, which will be discussed in detail later on using the system architecture of a
specific project as an example, namely the research project UNICARagil.

In the research project UNICARagil, more than 100 researchers from eight universities
and eight industrial partners collaborate to develop disruptive modular architectures for
agile automated vehicle concepts (Woopen et al., 2020). More information about the
research project UNICARagil will be given in Section 2.5. The system architecture in
UNICARagil is orientated towards modularity and safety, which also holds true for the
VDSE. Figure 1.1 depicts the simplified system architecture of the VDSE in UNICARagil,
which implements a federated multi-sensor data fusion consisting of two fusion layers.
In Chapter 6, details about this fusion architecture and reasons why it was chosen will
be given. In the First Fusion Layer (FFL), sensor data from two Inertial Measurement
Units (IMUs), one Global Navigation Satellite System (GNSS) receiver and wheel odometry
sensors is fused in three redundant multi-sensor data fusion filters, which are developed
by independent teams and provide integrity information (Buchholz et al., 2020). In the
Second Fusion Layer (SFL), the VDSE’s output is computed based on the FFL’s results.
Fault Detection and Exclusion (FDE), plausibility and integrity checks are used to increase
the VDSE’s robustness.

In order to take advantage of the benefits of such system architectures, suitable fusion
filters and concepts for the integrity monitoring as well as for the SFL are needed. These
are the objectives of this work, which are detailed out in the following Section.

1.2. Objectives

The overall goal of this work is to develop and evaluate a multi-sensor data fusion with
integrity monitoring, which is used as VDSE for automated driving in projects orientated
towards modularity and safety, e.g., the previously mentioned research project UNICARagil.
The state of current research lacks such a data fusion, which can be used in a modular
system architecture and is providing integrity information, as it will be shown later on in
Chapter 3. To meet this need, a fusion architecture implementing a federated multi-sensor
data fusion consisting of two layers is designed. For the first layer, a multi-sensor data
fusion inputing information from a Real-Time Kinematic (RTK)-GNSS receiver, a Micro-
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Figure 1.1.: Simplified system architecture for the Vehicle Dynamic State Estimation
in UNICARagil (Figure based on previous version published by the author
in Buchholz et al., 2020)

Electro-Mechanical System (MEMS)-IMU and wheel odometry sensors is implemented.
To evaluate the output’s integrity, three integrity monitoring concepts are developed and
compared regarding their empirical Integrity Risk (IR), meaning their ability to provide a
Protection Level (PL) which is bounding the respective error according to the specified IR.
For the second layer of the fusion architecture, a combination of voting and data fusion is
designed which utilizes the integrity information. All developed concepts are evaluated
using measurement data from driving experiments in diverse conditions.

In summary, the main objectives of this work are:

• design and implementation of a multi-sensor data fusion filter inputing information
from a GNSS receiver, an IMU and wheel odometry sensors;

• development and comparison of integrity monitoring concepts for such a filter;

• development and evaluation of a federated multi-sensor data fusion architecture
using several redundant fusion filters with integrity monitoring concepts as afore-
mentioned for an application as VDSE for automated driving.
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1.3. Outline

The remainder of this work is structured as follows: Chapter 2 explains the necessary
background knowledge in terms of coordinate frames, sensors used for the estimation
of the vehicle’s dynamic state and integrity monitoring. Besides that, information about
the research project UNICARagil is provided. Afterwards, the relevant state of current
research for this work is discussed in Chapter 3, including an analysis of its deficiencies.
Subsequently, the multi-sensor data fusion filter developed in this work is explained in
Chapter 4. After that, integrity monitoring concepts for such filters are compared in
Chapter 5. Chapter 6 is about the developed two-layer fusion architecture and Chapter 7
presents the results corresponding to the three previous Chapters. After that, the appli-
cation of the developed VDSE in the research project UNICARagil is shown in Chapter 8.
Finally, a conclusion and an outlook over future work is given in Chapter 9.
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2. Background

This Chapter provides an overview of relevant background knowledge regarding the topics
discussed in this work. First of all, the used coordinate frames are explained in Section 2.1.
Then, sensors used for VDSE in automated driving are discussed in Section 2.2. Afterwards,
the used sensor setup and test scenarios are described in Section 2.3. Subsequently,
fundamental concepts and definitions regarding integrity monitoring are explained in
Section 2.4. Finally, the research project UNICARagil is introduced in Section 2.5.

2.1. Coordinate Frames

In the remainder of this work, several coordinate frames are used, among others to explain
the multi-sensor data fusion filter in Chapter 4. Since the fusion filter builds upon the
results from Reuper (2020), the coordinates frames are adopted. The original basis is
Groves’ book (2013, Ch. 2) in which more details about the used coordinate frames can
be found and the notation used in this work is introduced.

Three coordinate frames are involved to describe Cartesian position, velocity, accelera-
tion and angular rate: “The frame whose motion is described, known as the object frame,
α; The frame with which that motion is respect to, known as reference frame, β; The set
of axes which that motion is represented, known as the resolving frame, γ” (Groves, 2013,
p. 44).

The notation follows as

xγβα

“where the vector, x, describes a kinematic property of frame α with respect to frame β,
expressed in the frame γ axes” (Groves, 2013, p. 44). As Groves (2013, p. 44) points out,
for the attitude only the frames α and β are involved. If any of the coordinate frames is
irrelevant, it may be omitted (Reuper, 2020, p. 7). Additionally, this notation is also used
in a generalized way to describe other vector quantities, e.g., forces (Reuper, 2020, p. 7).

Five coordinate frames are used in this work. Their axes form right-handed orthogonal
sets. Each coordinate frame is defined in a dedicated Subsection in the following.
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2.1.1. Earth-Centered Inertial Frame

A definition of the Earth-Centered Inertial (ECI) frame is given for example by Groves (2013,
p. 25–26) on which this paragraph is based. Inertial frames do not accelerate or rotate
with respect to the rest of the Universe. In this work, the ECI frame is treated as such
an inertial frame, even though it is only approximately an inertial frame (see Groves,
2013, p. 25–26 for details). It is denoted by the symbol i and centered at the Earth’s
center of mass. The zi-axis is orientated to the Earth’s spin axis, the xi- and yi-axis form
a right-handed coordinate system where the xi-axis points from the Earth to the Sun at
the vernal equinox. In navigation, inertial frames are important because inertial sensors
measure motion with respect to these frames.

2.1.2. Earth-Centered Earth-Fixed Frame

The Earth-Centered Earth-Fixed (ECEF) frame is similar to the ECI frame: While the
origin and z-axis are the same, x- and y-axis are fixed with respect to the Earth (Groves,
2013, p. 26). Therefore, it is denoted by the symbol e. The xe-axis points towards the
intersection of the equator with the prime meridian, for which the reference meridian of
the International Earth Rotation and Reference Systems Service (IERS) is taken (Reuper,
2020, p. 8). The ye-axis completes the right-handed coordinate system. With respect to
the ECI frame, the ECEF frame rotates along the common ze-axis with the rotation rate
ωie (Reuper, 2020, p. 8). The ECEF is important in navigation, since the users want to
know their position relative to the Earth (Groves, 2013, p. 27).

In many applications ellipsoidal coordinates (latitude λe, longitude ϕe and height he)
are used, which approximate the Earth’s surface by a reference ellipsoid. One example of
a reference ellipsoid is defined by the Geodetic Reference System 1980 (GRS80) (Moritz,
2000). It is used in several Coordinate Reference Systems (CRS), e.g., in the European
Terrestrial Reference System 1989 (ETRS89). A definition of ETRS89 is given by Al-
tamimi (2018), who explains that it is attached to the stable part of the Eurasian tectonic
plate and therefore the coordinates of a fixed point in Europe do not change over time.
ETRS89 is used exclusively as CRS in this work, unless stated otherwise.

2.1.3. Navigation Frame

The navigation frame (also known as local navigation or topocentric frame) is denoted by
the symbol n and has its origin at the user’s point of interest, as given by Groves (2013,
p. 27–28) on which this paragraph is based. In this work, the point of interest is the IMU’s
reference point, unless stated otherwise. The axis of the navigation frame align with the
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topographic directions East-North-Up (ENU), where the vertical axis is defined as normal
to the surface of the reference ellipsoid pointing away from the Earth. The yn-axis is
the line from the user to the north pole projected in the plane orthogonal to the zn-axis
and the xn-axis completes the right-handed coordinate system. The navigation frame
is important in navigation since the users are interested in their attitude relative to the
directions east, north and up.

2.1.4. Body Frame

The body frame (also known as vehicle frame) is denoted by the symbol b and shares its
origin with the navigation frame. The xb-axis points forward (in the usual direction of
travel), the zb-axis points upwards (opposite to the usual direction of gravity) and the
yb-axis completes the right-handed coordinate system (Groves, 2013, p. 29). Summarized,
the axis directions can be described as Front-Left-Up (FLU).

To express the difference in orientation between the navigation and the body frame,
Euler angles are used in this work, as given by Reuper (2020, p. 8–10) on which the
following paragraphs are based. The Euler angles are the roll angle ηnb ∈ (−π, π], pitch
angle νnb ∈

[︁
− π

2 ,
π

2

]︁
and yaw angle ψnb ∈ (−π, π] and can be summarized in the attitude

vector ψnb:

ψnb =

⎛⎝ ηnb
νnb
ψnb

⎞⎠ . (2.1)

To transform a vector y from the body into the navigation frame and vice versa, the
direction-cosine-matrix Cnb is computed from ψnb and the following formulas are used:

yn = Cnb yb (2.2)

yb = Cbnyn = (Cnb )
T yn. (2.3)

In the following, this transformation concept is generalized to any other coordinate frames
replacing the indices n and b. The order of the rotations from the navigation to the body
frame is defined as yaw, pitch, roll. All Euler angles are defined according to the right-hand
screw rule around their respective axis. While roll and pitch angle are zero when the body
frame is aligned to navigation frame, the yaw angle is zero when the forward axis of the
body frame points towards east.
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2.1.5. Wheel Frame

With the symbol w, the wheel coordinate frame is denoted. Its definition is based on
Reuper (2020, p. 15): The wheel coordinate frame’s origin lays in the center of the tire
contact patch. The xw-axis points forward, meaning it is aligned with the xb-axis in case
of a wheel’s steering angle of zero. The yw-axis points left and is parallel to the wheel’s
rotation axis. Together with the zw-axis, which points up, normal to the road, they form a
right-handed orthogonal set.

2.2. Sensor Types Used for Vehicle Dynamic State Estimation in
Automated Driving

A variety of sensors is used in automated driving. As one example, Figure 2.1 depicts the
sensors of the vehicles developed in the research project UNICARagil, where the different
sensor types are indicated by colored circles if they are in direct sight or by colored
arrows otherwise. These include GNSS receivers, IMUs, wheel odometry sensors as well
as Mono- and Stereo-Cameras, Light Detection and Ranging (LiDAR), Radio Detection
and Ranging (RADAR) and ultra-sonic sensors. In the literature, these sensors are used
in different combinations for several applications, including to estimate the vehicle’s
dynamic state (Gottschalg & Leinen, 2021; Kocic et al., 2018). Additionally, infrared
beacons (Kampmann et al., 2021) and the mobile data network 5G (Wymeersch et al.,
2017) are used for localization. This Section introduces the sensor types used in this work,
which are GNSS, IMU and wheel odometry sensors.

2.2.1. Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS) are used for a variety of Position, Navigation,
and Timing (PNT) applications, including automated driving. In the following, relevant
foundations about GNSS positioning are reviewed. Further information about GNSS can
be found e.g., in (Langley et al., 2017) on which this Subsection is based.

In general, a GNSS consists of three components. The space segment includes a
constellation of satellites orbiting the earth and broadcasting navigation signals on multiple
carrier frequencies in the so-called L band (1GHz to 2GHz) (Reuper, 2020). The control
segment is formed by a group of monitoring stations in charge of maintenance and
provision of required navigation data. The user segment contains GNSS receivers using
the GNSS signals. Currently, there are four GNSS in operation: GPS (US), GLONASS
(Russia), Galileo (EU) and BeiDou (China).
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Figure 2.1.: Example of sensors used in automated driving – depicted prototype vehicle
(autoCARGO) developed in research project UNICARagil (photo by the author)

A GNSS receiver computes the Position, Velocity and Time (PVT) solution using pseudo-
range, Doppler and carrier-phase measurements. Pseudo-range measurements use the
time difference between satellite clock at transmission and receiver clock at reception.
Doppler measurements rely on the change in the received frequency by the Doppler
effect. For carrier-phase measurements, the phase shift is obtained by comparing the
received signal to a reference signal of the nominal frequency. To convert this into a range
measurement, the accumulated number of zero-crossings has to be obtained, which is
called integer ambiguity problem. In differential GNSS, double differences of carrier-phase
measurements between a pair of receivers and a pairs of satellites are formed. Usually,
Least Squares (LS) or Kalman Filter (KF) estimation is employed to solve the integer
ambiguity problem and resolve the position difference between the two receivers. If
one receiver’s position is known, the other receiver’s position can be computed. For RTK
positioning, this concept is used. A network of reference stations is transmitting correction
data to a rover receiver, e.g., via mobile data. When the integer ambiguities are solved, the
rover’s position can be estimated with high accuracy (standard deviation in the range of
centimeters). For GNSS receivers with two antennas (dual-antenna receivers), the concept
of differential GNSS is employed as well. Double differences are formed to compute the
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vector between the two antennas (also known as baseline vector) and thus the baseline
direction, which is utilized e.g., to determine a vehicle’s attitude.

A GNSS receiver’s PVT solution is influenced by a variety of error sources, which can
be grouped into Signal-in-Space Range Error (SISRE) and User Equipment Error (UEE).
While SISRE relates to errors in the space and control segment (e.g., satellite orbit and
clock errors), UEE describes error contributions specific to the user’s equipment and
environment. These are e.g., multipath, Non-Line-of-Sight (NLOS) signal reception,
unmodeled ionospheric and tropospheric delays as well as receiver noise. Besides these
error sources, the receiver-satellite geometry also influences the accuracy of the PVT
solution, which is represented by the Dilution of Precision (DOP) factor. Higher DOP
values indicate a worse receiver-satellite geometry and therefore a lower accuracy.

Another important information about a GNSS receiver’s solution accuracy is the solution
type. When only pseudo-range measurements are used, the solution type is called Single
Point Positioning (SPP). RTK positioning mainly relies on carrier-phase measurements
and has two solution types, depending on whether the integer ambiguities are solved
(RTK-fixed) or not (RTK-float).

2.2.2. Inertial Measurement Units

An Inertial Measurement Unit (IMU) typically combines three accelerometers and three
gyroscopes with a processing unit and some peripheral equipment, e.g., a temperature
sensor and a calibration-parameters store. The accelerometers measure the specific
force and the gyroscopes the angular rate. Both sensor triads are usually mounted with
orthogonal sensitive axes. The IMU processing unit prepares the output for the user,
including the application of calibration parameters and transformation of observations to
the IMU reference point. This Subsection about IMUs is based on the book of Groves (2013,
Ch. 4).

In inertial navigation, the observations of accelerometers and gyroscopes are used in the
navigation equations to compute velocities, positions and attitudes. Different versions of
these navigation equations for different applications can be found in Groves’ book (2013,
Ch. 5). The navigation performance of an IMU highly depends on the measurement
principle used by its sensors, especially the gyroscope. In this work, gyroscopes based
on MEMS technology and Ring Laser Gyroscopes (RLGs) are used. While the former is
substantially cheaper in its production and smaller in its packaging, the latter offers a
significantly higher performance. Further information about the different measurement
principles, sensor types and IMUs in general is given by e.g., Groves (2013, Ch. 4).

For many navigation applications including automated driving, IMUs and GNSS receivers
are often combined because of their complementary characteristics regarding their benefits
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and drawbacks (Groves, 2013, p. 149, 559): IMUs offer a high output rate (typically
between 100Hz and 1000Hz) and a high short-term accuracy. GNSS receivers provide
outputs at a lower rate (typically around 10Hz) but with a high long-term accuracy.

2.2.3. Odometry

Groves (2013, p. 233) defines odometry as “the determination of a land vehicle’s speed and
distance traveled by measuring the rotation of its wheels”. Wheel Speed Sensors (WSS)
are used to observe the rotation rate of the vehicle’s wheels and combined in many
applications with sensors to observe the wheel’s steering angles which are potentially
different for each wheel. In order to determine the vehicle’s speed and distance traveled
from this information, odometry models are used (Reuper, 2020, p. 14). Depending on
the complexity of the odometry model, the dynamic tire radii rd as well as the longitudinal
slip λx and the lateral slip angle α are estimated for each wheel. Definitions for these
quantities are given in Section A.2 in the Appendix.

Outputs of the odometry model are usually the wheel speeds in the body frame at
each wheel, which are utilized by the sensor data fusion. Further information about
odometry sensors and odometry models are given by e.g., Groves (2013, Ch. 6) and
Guo (2018), respectively. Besides the traditional (wheel) odometry, there are also new
forms of odometry, e.g., visual odometry using cameras or LiDAR odometry which are not
implemented in this work.

2.3. Sensor Setup and Test Scenarios Used in This Work

This Section describes the sensor setup and the measurement data which are used in
the remainder of this work. All measurements were recorded with the measurement
vehicle of the Chair of Physical and Satellite Geodesy at the Technical University of
Darmstadt (TU Darmstadt). Chapter 8 represents an exception, the differences in the
sensor setup for the application in the research project UNICARagil are mentioned in the
referred Chapter.

2.3.1. Sensor Setup

In Table 2.1 the sensor setup used for the implemented fusion filter is depicted. Ob-
servations from a MEMS-IMU and a dual-frequency, multi-constellation, dual-antenna
RTK-GNSS receiver are used. Precisely, GPS signals on frequencies L1, L2, Galileo signals
on E1, E5b as well as GLONASS signals on G1, G2 are used. Additionally, the fusion filter
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Table 2.1.: Sensors and processing of fusion filter and of reference solution (Table based
on Gottschalg and Leinen, 2021)

Implemented Fusion Filter Reference Solution

Processing
Real-time capable Post-processing

(MATLAB code) (NovAtel WayPoint’s Inertial Explorer 8.90)

IMU

Micro-Electro-Mechanical System Ring Laser Gyroscope

(Sensonor STIM300 /
(iMAR iNAV-RQH1003)

Analog Devices ADIS 16465-1)

GNSS

dual-frequency, multi-frequency,

multi-constellation, multi-constellation,

dual-antenna single-antenna

RTK-GNSS receiver RTK-GNSS receiver

(NovAtel OEM7720) (NovAtel OEM729)

Odometry
production-line odometry

–
(Volkswagen T5)

uses odometry observations from the production line sensors of the measurement vehicle,
a Volkswagen T5 produced in 2008.

Figure 2.2 depicts the measurement vehicle mounted with the used sensor setup, where
the white GNSS antennas and the black antennas for the cellular data connection to
receive RTK corrections from the Internet via a mobile data connection are visible on the
vehicle’s roof.

The IMU for the measurements was changed in October 2020. Measurements before
26 October 2020, use a STIM300 (Sensonor AS, Horten, Norway) and after this date an
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Figure 2.2.: Measurement vehicle of the Chair of Physical and Satellite Geodesy in May
2021 on TU Darmstadt airfield in Griesheim, Germany (photo by the author)

ADIS 16465-1 (Analog Devices Inc., Cambridge, MA, United States). These two IMUs
belong to the same performance class where the STIM300 performs slightly superior
according to its data sheet (see Table A.1 in the Appendix for a comparison of the used
IMU’s key characteristics). Both IMUs output observations with 500Hz. However, five
values are averaged and labeled with the time stamp of the end of the interval to reduce
the amount of data and speed up processing, among other reasons, in order to fulfill the
real-time requirements on the given hardware in the research project UNICARagil. This
procedure of summarizing IMU observations is based on functions of Reuper’s fusion filter
implementation (Reuper, 2020).

Furthermore, the sensor setup of the reference solution is depicted in Table 2.1 which
is needed to compute the estimation errors. The reference solution is obtained from
a post-processing evaluation in the software NovAtel WayPoint’s Inertial Explorer 8.90
(NovAtel Inc., Calgary, AB, Canada), using observations from a navigation grade RLG-IMU
(iMAR Navigation GmbH, St. Ingbert, Germany) and a multi-frequency, multi-constellation
RTK-GNSS receiver (Gottschalg & Leinen, 2021). This GNSS receiver tracks signals from
GPS, Galileo and GLONASS satellites on three frequencies.
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Note that the odometry observations are not used for the reference solution. Experiments
with typical trajectories including GNSS-denied areas showed that the reference solution
does not benefit from these observations. On the one hand, the accuracy of the production-
line odometry sensors in the measurement vehicle is not sufficient (in comparison to the
employed RLG-IMU) to reduce the estimation error. On the other hand, odometry outliers
were not reliably detected by used post-processing software.

In the Appendix in Section A.3 the quality of the reference solution is analyzed showing
that the errors are approximately a magnitude smaller than the estimation errors of the
developed fusion filter. Therefore, the errors of the reference solution are neglected and
the difference between the two solutions is assumed to be the estimation error.

2.3.2. Experiments

In this work, there are two sets of measurement data. A first data set is used for testing
during the development and parameter tuning of the implemented fusion filter and
integrity algorithms. Additionally, an extensive data set is used for the evaluation of the
implemented algorithm’s performance. It contains representative scenarios for automated
driving, which were recorded repeatedly to generate a higher statistical significance.

For further analysis of the results, the data sets are divided into four categories (Gott-
schalg & Leinen, 2021, Section 5.2): test track, highway, country road and urban. These
categories represent typical environments for automated vehicles containing a variety of
different GNSS reception conditions, which are especially relevant for the implemented
fusion filter (Chapter 4) since it relies heavily on the performance of GNSS positioning.

Regarding the GNSS reception conditions, the test track represents the ideal environ-
ment with open sky view, while the difficulty increases in the highway category with
bridges and overhead sign structures. On country roads the GNSS reception conditions are
more challenging with vegetation, smaller buildings and tunnels, which is exceeded by the
urban category with additionally higher buildings causing signal obstruction, multipath
and NLOS reception.

Data Set for Parameter Tuning

The first data set consists of a single driving experiment recorded on 7 May 2019. It
contains four rounds driving on a test track, a former military airport (August-Euler-
Flugplatz) in Griesheim, Germany used by the TU Darmstadt as test track, and a drive
through the city of Darmstadt, Germany including passing twice through a tunnel. The
total duration of the measurement is about 1h 20min, of which around 13min are spent
on the test track. In the Appendix, Figure A.3 depicts a map of the driven trajectory.
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Extensive Data Set for Performance Evaluation

The extensive data set consists of 20 driving experiments recorded between May 2019 and
May 2021 with a total duration of about 23h 40min. It was recorded on the previously
mentioned test track in Griesheim, in the city of Darmstadt, on a mountain range with
forest areas next to Darmstadt, the Odenwald, and in the city of Frankfurt, Germany.
Using the aforementioned categories, the key information about the extended data set is
summarized in Table 2.2.

Maps of the driven trajectories are depicted in the Appendix in Figures A.4, A.5, A.6,
A.7 and A.8. The GNSS reception conditions are indicated by colors, where yellow marks
an observed Position Dilution of Precision (PDOP) value smaller than two, orange / purple
stands for PDOP values smaller / greater than four. Only the epochs used for evaluation
are shown in this trajectories. In two driving experiments, parts of the reference trajectory
could not be processed with the expected accuracy (about a magnitude better than the
analyzed system), because of software defects in NovAtel WayPoint’s Inertial Explorer 8.90.
In both cases, the reference trajectory contained jumps in the position solution with a
magnitude of several decimeters. This might be caused by a failure to detect outliers but

Table 2.2.: Characteristics of extensive data set divided in four categories

Test Track Highway Country Road Urban

GNSS

reception

conditions

Ideal

(open sky

view)

Good

(bridges and

overhead sign

structures)

Mixed

(vegetation and

small towns,

including tunnels)

Challenging

(downtown,

including

tunnels)

Locations

TU Darmstadt

airfield Griesheim,

Germany

Highway A5

near Darmstadt,

Germany

Odenwald near

Heppenheim,

Germany

Darmstadt and

Frankfurt,

Germany

Duration 5h 41min 1h 56min 7h 56min 8h 7min
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cannot be verified since the source code is not disclosed. Therefore the respective epochs
had to be excluded from the evaluation and are not depicted in the mentioned Figures.

2.4. Integrity Monitoring1

The performance of a navigation system, like the VDSE in automated driving, can be
quantified by four parameters given by Pullen (2008): accuracy, integrity, continuity and
availability. In this work the following definitions based on Pullen’s work (2008) are used:

• Accuracy expresses the deviation of the estimated position from the unknown true
position2. (This definition applies analogously to other quantities, e.g., the velocity.)

• Integrity describes the level of trust that can be placed in the navigation system’s
outputs, meaning the reliance that gross errors are avoided.

• Continuity relates to the navigation system’s reliability, where the continuity risk
describes the probability that the navigation system will stop providing outputs of a
specified quality during a given time interval.

• Availability describes the average probability that certain requirements with respect
to the other three performance parameters are met. In this work, a navigation system
is available as long as it outputs a solution and its integrity monitoring declares this
solution as safe to use (meaning the solution is not declared unavailable).

Since a major focus of this work is the integrity of navigation systems in automated
driving and how to monitor it, in the following, relevant definitions and background
information regarding this topic are given.

As defined by Groves (2013, p. 701), integrity monitoring systems fulfill two tasks: On
the one hand, they implement different levels of fault detection and mitigation. These
range from detecting a fault and warning the user (Fault Detection) through recovering
the navigation solution (Fault Detection & Recovery) or isolating it from the fault (Fault
Detection & Isolation) to excluding the fault and verifying that the solution is free from
faults (Fault Detection & Exclusion). On the other hand, integrity monitoring systems
implement solution protection, i.e., to determine whether one can safely use the navigation
solution.

Four parameters are used in integrity monitoring which are explained in the European
Space Agency’s online encyclopedia (ESA Navipedia, 2011), using the Position Error (PE)
as an example:
1This Section is based on a previous work written by the author (Gottschalg & Leinen, 2021, Section 2).
2Note that thus precision and trueness contribute to the accuracy (Schwarz & Hennes, 2016, p. 7).
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• Alert Limit (AL): “The alert limit for a given parameter measurement is the error
tolerance not to be exceeded without issuing an alert.”

• Time to Alert (TTA): “The maximum allowable time elapsed from the onset of the
navigation system being out of tolerance until the equipment enunciates the alert.”

• Integrity Risk (IR): “Probability that, at any moment, the position error exceeds the
Alert Limit.”

• Protection Level (PL): “Statistical bound error computed so as to guarantee that the
probability of the absolute position error exceeding said number is smaller than or
equal to the target integrity risk.”

In this work, a stricter definition for the IR based on Pullen’s work (2008) is used which
describes the IR as the probability that an error exceeds its respective PL at any time.

The Stanford Diagram (also known as Stanford Integrity Diagram or Stanford Plot) is
a common way to visualize these parameters. Figure 2.3 depicts such a diagram, using
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Figure 2.3.: Stanford Diagram (Figure based on ESA Navipedia, 2011)
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the PE as an example. On the abscissa of the Stanford Diagram, the PE is plotted and the
corresponding PL on the ordinate. As defined before, the PL is intended to bound the
PE, which is the case in the area above the diagonal. The colors indicate the different
operation modes of the navigation system. When the PL is smaller than the AL, the
system operates normally. If the PL exceeds the AL, the integrity monitoring reports the
system as unavailable. In case the PE is not bounded by the PL, the operation is called
misleading, which is represented by the area under the diagonal. If additionally the PE
actually exceeds the AL, this becomes a hazard, which is indicated by the color red. In
this way, the Stanford Diagram gives a quick and clear overview of the systems integrity
performance (ESA Navipedia, 2006).

2.5. Research Project UNICARagil

The research project UNICARagil started in 2018 and is funded by the Federal Ministry
of Education and Research of Germany (Woopen et al., 2018). Eight universities and
eight industrial partners collaborate to develop disruptive modular architectures for agile
automated vehicle concepts, which are demonstrated in four fully automated and driver-
less vehicle prototypes of different characteristics (Woopen et al., 2018). Figure 2.4
depicts a conceptional drawing of the four prototypes. From left to right in the mentioned
Figure, their use cases are a shuttle similar to buses in public transport (autoSHUTTLE), a
delivery car (autoCARGO), a taxi (autoTAXI) and a privately owned vehicle (autoELF).

Automation, safety, security, verification & validation and modularization are the focus
areas of the project UNICARagil (Woopen et al., 2018). Regarding the system design,
the UNICARagil vehicles differ from traditional approaches, especially because of their
focus on modularization and safety. Tasks are distributed between different modules
which communicate via Ethernet using the Automotive Service-Oriented Software Archi-
tecture (ASOA), which is developed within the project and explained in further detail by
Mokhtarian et al. (2020).

Looking at the domain of automation, the system architecture can be summarized as
given by Buchholz et al. (2020): A set of sensors is installed in sensor modules on each
corner of the vehicle, including LiDAR and RADAR sensors as well as cameras. These
are used for environment perception and modeling which enables on the one hand a
video-based localization and on the other hand the behavior and trajectory planing. This
trajectory is sent to the motion control which consists of the VDSE, the trajectory control
and the Offset-Correction. The VDSE uses sensor data from a dual-antenna RTK-GNSS
receiver with two antennas mounted on the roof of the vehicle, two MEMS-IMUs inside the
VDSE’s ECU and wheel odometry sensors. It performs a sensor data fusion to estimate the
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Figure 2.4.: Conceptional drawing of UNICARagil vehicles (copyright by RWTH Aachen
University as project coordinator)

vehicle’s dynamic state. Additionally, the VDSE provides integrity information about the
estimated states to other services, including the self-perception module. With the Offset-
Correction, it is possible to take advantage of both localization functions in UNICARagil,
namely the VDSE and the video-based localization. It removes inconsistencies between
the localization functions and extracts their benefits as explained by Homolla et al. (2020).
The trajectory control receives the vehicle’s dynamic state from the Offset-Correction
and compares it to the planned trajectory. In case the normal trajectory cannot be used
anymore or if a critical fault occurs, a fall-back solution is activated. The Safe Halt module
provides an alternative trajectory which is used by the trajectory control, together with
the VDSE’s outputs.

Further details about the integration of the VDSE in the automation domain of
UNICARagil will be given in Chapter 8. More information about the project UNICARagil
in general, including a list of publications, can be found on the project website: https:
//www.unicaragil.de/en/.
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3. State of Current Research

This Section gives an overview of the current state of research in the three areas relevant
for this work: multi-sensor data fusion filter for VDSE (Section 3.1), integrity monitoring
for multi-sensor data fusion (Section 3.2) and multi-layer data fusion (Section 3.3).
Subsequently, the deficiencies in the state of current research are analyzed (Section 3.4).

3.1. Multi-Sensor Data Fusion Filter for Vehicle Dynamic State
Estimation

The vehicle’s dynamic state needs to be estimated in a variety of applications, including
aviation for example in navigation of airplanes and Unmanned Aerial Vehicles (UAVs),
marine applications like navigation of vessels and submarines, and automotive applications,
e.g., Advanced Driver Assistance Systems (ADAS) and automated driving. Most often this
estimation is based on a data fusion using several sensors, as mentioned in Section 2.2.
For the data fusion itself, different approaches can be found in the literature (Gottschalg
& Leinen, 2021): They can be grouped as filtering for example KF, snapshot methods like
LS and other methods, e.g., Artificial Neural Networks (ANNs).

For automated driving, the vehicle’s dynamic state is required in real-time as an input
to subsequent functions like the trajectory control. Jin et al. (2019) present an overview
of estimation techniques for the VDSE in automated driving which (depending on their
implementation) fulfill this requirement. A similar grouping to the one previously intro-
duced for the estimation methods is applied and a variety of different filtering approaches,
including KF, Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), snapshot
methods, including Recursive Least Squares (RLS), and other methods, such as ANN,
is reviewed. Guo et al. (2018) also give an overview of VDSE concepts in automated
driving, elaborating further on vehicle models and odometry processing. Both mentioned
references include lists of sensor setups, estimation techniques and vehicle model com-
binations implemented in the literature. This illustrates the abundance of concepts and
implementations regarding this topic.

Besides the applied estimation method, VDSE concepts can also be differentiated by
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the used sensor setup. Certain combinations such as GNSS+IMU are chosen frequently
because of their complementary benefits as pointed out in Section 2.2. Since in this work
a combination GNSS+IMU with additional measurement updates from wheel odometry
sensors is implemented, the focus in the following is on combinations of GNSS+IMU+X.
For this sensor setup, detailed explanations about the sensors itself, the processing of
these sensor’s observations, corresponding fusion algorithms and architectures are given
in the books of Groves (2013) and Wendel (2007), which are considered as state-of-the-art
for this work. In addition to the already quoted topics from these books, the challenges
of preprocessing sensor data including the determination of sensor noise (sensor error
models), Fault Detection and Exclusion (FDE), handling of delayed availability of sensor
observations and real-time capability are particularly relevant in the context of this Section.

In order to differentiate system architectures using the sensor combination GNSS+IMU
with respect to the way how GNSS observations are used, the terms loosely, tightly and
deeply coupled integration are commonly used in the literature. These terms relate to
the integration domain of the data fusion, as given by Groves (2013, p. 561): For a
loosely coupled GNSS+IMU filter the position domain is used. This means a cascaded
architecture is implemented in which the GNSS observations are processed in a navigation
filter. This filter outputs the position and velocity solution which are the inputs to the
GNSS+IMU filter. In contrast to that, in a tightly coupled GNSS+IMU filter the integration
is performed in the range domain. The GNSS pseudo-range, pseudo-range-rate and carrier-
phase observations are used as inputs to the GNSS+IMU filter, instead of the GNSS position
and velocity solution. If even the tracking of GNSS signals is included in the GNSS+IMU
filter, the integration is performed in the tracking domain and is called deeply coupled.

In terms of processing GNSS observations, decisive improvements have been made in
the recent years. First of all, the number of GNSS constellations and frequencies usable
for civil users have increased to four constellations with each at least two frequencies (ESA
Navipedia, 2014). About ten years ago, many (automotive) applications were implement-
ing SPP using code observations from one GNSS constellation on one frequency, typically
GPS L1 C/A, e.g., the fusion filters presented by Gupta (2009) and Steinhardt (2014).
In this way, standard deviations for the position solution in the range of meters were
achieved. Nowadays, multi-constellation multi-frequency GNSS receivers are deployed,
which take advantage of carrier-phase observations implementing typically Precise Point
Positioning (PPP) or RTK positioning. Standard deviations for the position solution in
the range of centimeters can be achieved under optimal circumstances, e.g., the imple-
mentations presented by Zhu et al. (2019) and Takanose et al. (2020). While PPP and
RTK positioning, both need additional information supplementing the GNSS observations,
only RTK positioning can solve the integer ambiguity quickly, usually instantaneous or
within seconds for multi-constellation applications (Odijk & Wanninger, 2017, p. 772). In
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contrast to that, implementations of PPP typically need up to 15min or more till a fixed
solution is found (Kouba et al., 2017, p. 723). However, RTK positioning requires at least
one reference station in a suitable distance with a permanent data link in order to operate
properly, while PPP does not have this requirement, since the correction data (precise
satellite orbits and clocks) is valid globally and can be downloaded in regular intervals.

For automotive applications, Reid et al. (2019) investigate the performance of RTK
positioning on 30 000 km of highways in the US and conclude that multi-frequency GNSS
receivers with RTK corrections achieve in over 90% of the recorded epochs an accuracy
better than 0.3m compared to a reference solution, which allows to determine whether
the vehicle is in its lane. In urban areas, additional challenges affect the performance of
GNSS receivers including reduced satellite visibility, multipath or NLOS signal reception
for example in urban canyons. Gakne and O’Keefe (2018) approach this challenge by
combining a sky-pointing camera with a tightly-coupled GNSS+IMU filter. The camera
is used to reduce NLOS satellite signal reception and for visual odometry. The use of
wheel odometry to overcome the challenges for automotive applications in urban areas
is discussed by Arribas et al. (2017). In the previously cited papers by Jin et al. (2019)
and Guo et al. (2018) an overview of suitable vehicle models and implementations for
odometry integration in the VDSE is given. Another concept for urban areas is presented
by Meng et al. (2017) in which information from a point cloud based localization using a
LiDAR sensor is combined with a GNSS, IMU and wheel odometry fusion. LiDAR sensors
can also be used for automotive localization in combination with a high-definition map as
shown e.g., by Wang et al. (2017).

One example of an implementation of a VDSE in automated driving is presented by
Urmson et al. (2008) in context of the Defense Advanced Research Projects Agency
(DARPA) Urban Challenge organized by the US Department of Defense. In this project,
the localization relies on a particle filter, which inputs data from several sensors including
GNSS, IMU, odometry sensors and laser scanners. Another implementation for VDSE in
automated driving is presented by Ziegler et al. (2014) for Mercedes Benz’ project “Making
Bertha Drive”. There, the localization is solely vision-based using a high-definition map
taking advantage of features recognized in the camera images as well as lane-markings.
Besides that, Wan et al. (2018) present their implementation of the VDSE in automated
driving for the ApolloAuto project. The authors implement an EKF to fuse sensor data
from GNSS, IMU and LiDAR sensors. These are only a few examples for this use case,
many more can be found in the literature. In the following, the focus will be on the sensor
setup used for this work.

Steinhard (2014) implements a sensor data fusion based on GNSS, IMU and odometry
using an Error-State Extended Kalman Filter (ES-EKF) and presents his results also
together with Leinen (2015) in the context of ADAS. Reuper (2020) builds upon these
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results, extends the GNSS processing to multi-frequency/multi-constellation GNSS and
improves the odometry processing.

This work builds upon the results of Reuper (2020), whereby several changes in the
GNSS processing were made, including the usage of a RTK-GNSS receiver in loose coupling.
However, the main innovations of this work are the integrity monitoring and the additional
fusion layer using the integrity information. Even though Reuper implements an a-
posteriori variance factor to improve the integrity performance, this technique did not
provide meaningful integrity information in his analysis (Reuper, 2020, Section 7.3),
meaning the errors in position, velocity and yaw angle are not bound with the specified
probabilities. The topic of an additional fusion layer is not discussed in Reuper’s work.
Details about the mentioned two main innovations of this work are explained in Chapter
5 and 6. The current state of research regarding these two topics is presented in the
subsequent two Sections.

3.2. Integrity Monitoring for Multi-Sensor Data Fusion1

Integrity monitoring of estimated states is applied in a variety of research fields, including
aviation, marine and automotive. Several names are used in the context of integrity
monitoring, including integrity evaluation, estimation of data integrity and data reliability.
In the literature an abundance of material can be found regarding this topic, wherefore
the following literature review is restricted to integrity concepts which are relevant to
this work. Since the field of application of this work is navigation and multi-sensor data
fusion using GNSS receivers, the focus of the literature review will be on this area and
the nomenclature from the domain of navigation is used.

The topic of integrity monitoring is intensively researched in aviation with a focus on
the integrity of the estimated position solution. Initially, this estimation was implemented
as a LS algorithm using sensor data from a single-frequency single-constellation (typically
GPS L1 C/A) GNSS receiver as the only sensor (Yang & Xu, 2016). For GNSS, the integrity
can be monitored at the system level, e.g., Satellite-Based Augmentation System (SBAS),
Ground-Based Augmentation System (GBAS), or at the user level (Hassan et al., 2020).

Since the user has only influence on the integrity monitoring on his side, this work
focuses on the user level. To evaluate the integrity at this level, Receiver Autonomous
Integrity Monitoring (RAIM) methods are applied, which take advantage of the redundant
measurements in the LS algorithm, meaning the overdetermined position solution com-
puted from GNSS pseudo-range observations, to perform consistency checks (Kuusniemi,
2005). Additionally, Detection, Identification and Adaption (DIA) procedures are applied,
1This Section is based on a previous work written by the author (Gottschalg & Leinen, 2021, Section 3).
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meaning a certain statistical distribution is assumed and a global test to detect outliers
as well as, depending on the implementation, a local test to identify them is performed
(Steinhardt, 2014).

In the decades following the initial use of RAIM methods in aviation, on the one hand,
GNSS evolved and more constellations as well as more frequencies became operational
and accessible for civil users. On the other hand, integrity requirements became stricter as
technology advances. In this way, drawbacks of the first RAIM algorithms were identified,
which include the use of a single-frequency single-constellation GNSS receiver and the
general assumption of only one outlier present per epoch (Blanch et al., 2018; Tu et al.,
2011).

As a result, researchers work on further developments and extensions of the original
RAIM algorithm. In order to address the second drawback, several studies extend the
concept of RAIM to multiple outliers, e.g., Tu et al. (2011) present a RAIM scheme based
on a random sample consensus. Besides that, other researchers focus on the extension
of RAIM to multi-constellation multi-frequency GNSS. Many studies in this field are
carried out by the Stanford GPS Laboratory and are categorized as Advanced Receiver
Autonomous Integrity Monitoring (ARAIM). A baseline version of ARAIM, which is an
extension of RAIM to multi-constellation dual-frequency GNSS, is presented by Blanch
et al. (2015). This LS version of ARAIM was adapted by Gunning et al. (2018) to a KF
version for PPP. The concept was further developed by Gunning et al. (2019) to integrate
IMU observations and perform a sensor data fusion for an improved position estimation.
The concept of ARAIM was developed for aviation but can also be used for automotive
applications as presented by Pullen et al. (2018), who describe the integration of ARAIM
in the Globalstar Connected Car Program.

Furthermore, there are several other extensions of the original RAIM concept to
GNSS+IMU data fusion algorithms, which focus on detecting outliers. For example,
for a tightly coupled GNSS+IMU fusion Hewitson et al. (2010) present their concept of
extended RAIM (eRAIM). Liu et al. (2010) also implement a tightly coupled GNSS+IMU
fusion and categorize outliers in slowly/quickly growing or step errors and develop dedi-
cated testing methods for each category. Another approach to integrate IMU observations
into the integrity monitoring is proposed by Bhatti (2007) and referred to as piggyback
architecture in which the IMU observations are converted to range measurements so they
can be treated in the same way as GNSS observations.

In contrast to RAIM methods, which were originally developed for a system architecture
implementing a LS algorithm using a single sensor, another group of integrity algorithms
has been developed in the recent years, especially for multi-sensor data fusion. For
different system architectures, multiple studies can be found in the literature, e.g., by
Kumar et al. (2006) for detecting erroneous sensor data in a sensor data fusion using
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Bayesian method and by Tanil et al. (2018) using sequential integrity monitoring for KF
applications.

For a multi-sensor data fusion used as VDSE in automated driving, a dedicated approach
to compute PLs is developed by GMV company and its partners. The basis therefor is the
Isotropy-Based Protection Level (IBPL) introduced in a patent by Azaola Sàenz (2009),
which is designed for a LS algorithm using GNSS pseudo-ranges. The PL is computed based
on the LS residuals, scalar factors stemming from the DOP, the number of observations
and the number of estimated states (Azaola Sàenz, 2009).

Further developments of IBPL led to an extension of this concept for system architectures
based on a KF, which is referred to as Kalman Integrated Protection Level (KIPL). It is
disclosed in a patent by Navarro Madrid (2016) and can be summarized as follows:
All influences, meaning the error in each measurement input to the KF, are modeled
dynamically by a multi-variate Student distribution for every input to the KF and are fused
subsequently to a total error distribution, which is used eventually to compute the PL
(Welte, 2017, Section 3.5). Tijero et al. (2018) present the results of applying KIPL in the
ESCAPE (European Safety Critical Applications Positioning Engine) research project as an
integrity layer providing PLs for a multi-sensor data fusion using a KF with sensor data
from a GNSS receiver implementing PPP as well as IMUs, cameras and odometry sensors.

Another approach which is popular in the field of integrity monitoring is referred to
as overbounding. In this concept, the actual empirical error distribution is bounded by a
simpler distribution, e.g. a Gaussian distribution. This is advantageous since PLs and IRs
can be computed easier from the overbounding distribution (Blanch et al., 2019). The
baseline approach is to inflate a zero-mean Gaussian distribution to overbound all errors,
which is practical since it leads to simple calculations for the integrity parameters such
as the PL and IR (Blanch et al., 2005). A variety of publications can be found regarding
this approach, which differ mainly in the combination of distributions used and their
concept to determine them. For example, Blanch et al. (2005) combine several Gaussian
distributions to overbound GNSS pseudo-range errors and apply their concept to compute
an improved vertical PL for the Wide Area Augmentation System (WAAS) in aviation.
Different overbounding strategies are compared by Rife et al. (2004).

As mentioned in the beginning of the Section, this literature review aims to give an
overview of the most relevant developments in the field of integrity monitoring for multi-
sensor data fusion in the application of VDSE. Further references can be found in the
studies of Zabalegui et al. (2020), Zhu et al. (2018) and Hassan et al. (2020).
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3.3. Multi-Layer Data Fusion2

As mentioned in the motivation (Section 1.1), modular system architectures provide
several benefits but also create new challenges. In case of the VDSE in UNICARagil, one of
these challenges is the processing of FFL’s filters results and the determination of a distinct
output of the VDSE (see SFL in Figure 1.1). This challenge can be described as data fusion
on several levels or multi-layer data fusion. In general, there are several approaches in
the literature to solve this challenge, which can be categorized in voting, for example
majority voting, and data fusion algorithms, e.g., KF. In this context, many key words are
used, including cascaded and federated filters as well as voting schemes. These will be
explained in more detail in the next paragraphs.

Groves (2013, Section 16.1) presents a variety of multi-layer data fusion architectures,
including e.g., cascaded and federated filtered integration architectures. Figure 3.1 depicts
a simplified representation of a cascaded integration architecture. Each sensor is processed
in a dedicated processor, which can be implemented as a snapshot method or filtering.
The outputs are processed in the SFL. Depending on the choice of algorithm for this
layer, the architecture is called cascaded single-epoch or cascaded filtered integration
architecture according to the definitions of Groves (2013, Section 16.1).

Figure 3.1.: Cascaded integration architecture (Figure based on Groves, 2013, p. 652)

2This Section is based on a previous work written by the author (Gottschalg et al., 2021, Section 2).
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Similar to the cascaded integration architecture, in Figure 3.2 there is also an SFL
algorithm processing the outputs of FFL processors. The differences lay in the inputs of
the FFL processors: In contrast to before, the FFL processors are not dedicated to only
one sensor but input data from several sensors. Typically, there is a reference navigation
system or a certain sensor which is used by all FFL processors. In the nomenclature of
Groves (2013, Section 16.1) this is called a federated integration architecture. In other
references, this architecture with KFs as FFL and/or SFL is called federated KF. Then, the
FFL filters and the SFL filter are referred to as local filters and master filter, respectively.

Figure 3.2.: Federated integration architecture (Figure based on Groves, 2013, p. 656)

For an application in aviation, Carlson et al. (1994) present simulation results and
a comparison of different setups of federated KFs for a navigation system using GNSS,
IMU and RADAR sensors. Ilyas et al. (2008) extend the concept of federated KF to
the Unscented KF and apply it for a state estimation of satellites flying in Low Earth
Orbits (LEOs). Guan et al. (2012) introduce the federated Cubature KF where the local
filters in the FFL are Cubature KFs. The master filter in the SFL is implemented as weighted
average and uses the FFL’s local filter’s covariances as weights, i.e., the master filter’s
covariance is computed as weighted average of the local filter’s covariance using their
magnitude relatively to the other filters’ covariances as weights.

While in filtered integration architectures all FFL filters have an influence on the SFL’s
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output, this is not necessarily the case in system architectures based on voting schemes.
Generally, voting algorithms can be categorized by the taxonomy of voting schemes
presented by Parhami (1996). Parhami introduces four dichotomies, which are depicted
in Figure 3.3.

Figure 3.3.: Classification of voting schemes by Parhami (Figure based on Parhami, 1996)

The following explanation of these dichotomies is based on Parhami (1996): The first
dichotomy relates to the flexibility of the values, meaning if they represent inflexible
(exact) values or a flexible ‘neighborhood’ (range of values). The way how the voting
algorithm chooses one output is described by the second dichotomy, i.e., if the voting
algorithm chooses one output based on consensus or if a value in-between the inputs is
chosen, e.g., the median of real-valued inputs. The third dichotomy relates to the weights
of the voting algorithm, specifically if they are fixed or if they change dynamically. The
last dichotomy characterizes if a certain threshold of votes has to be reached to determine
the output or if the output with the highest support from the inputs is chosen.

Furthermore, Parhami (2005) also introduces the term of approval voting. In this
concept, each input votes for all outputs meeting certain criteria, i.e., one input sup-
ports multiple outputs, which splits the possibilities into acceptable and unacceptable
outputs (Parhami, 2005).

For the case of a data fusion of several sensors measuring redundantly, e.g., a velocity
measured by a GNSS receiver and by an odometry sensor, Blank et al. (2010) compare
different fusion architectures, including weighted average, KF and different voting algo-
rithms (threshold, median and fuzzy voter). They name this case redundant multi-sensor
data fusion and conclude after a comparison in simulation that voting algorithms are
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usually more robust than the simpler solution of computing a weighted average (Blank
et al., 2010). For the application of KFs, they point out that the variances and correlations
of the inputs have to be determined or known in advance, which might be a disadvantage
for certain applications (Blank et al., 2010). For the fusion of fusion filter’s outputs or SFL
data fusion in an application for navigation of land vehicles, Lan et al. (2020) compare
KF and voting algorithms in simulation. They analyze the integrity of the output and
conclude that both system architectures can fulfill this task but further analysis has to be
carried out to identify the optimum areas of application for each system architecture.

Another application of multi-layer data fusion with a special focus on FDE is presented
by Jurado et al. (2020) on which this paragraph is based on. The authors form subsets
of the available sensors using all but one sensor for each subset. These subsets are
processed in dedicated sub-filters. A test statistic is introduced to identify faulty sensors
by determining the consistency of the sensor’s observation with the filter’s prediction
before the measurement update. In a 2D simulation, the authors achieve promising results
which have to be confirmed in experiments with real-world data.

As for the whole Chapter, this Section does not aim to include all research in its field, but
focuses on the most relevant results for this work. Further information about multi-layer
data fusion architectures and voting schemes in general are given by Groves (2013, Ch. 16)
and Parhami (2005), respectively.

3.4. Analysis of Deficiencies in the State of Current Research

In this Section, the deficiencies in the state of current research regarding the objectives of
this work are analyzed in order to underline the motivation of this work and enable the
deduction of requirements in the following Chapters.

As pointed out in Section 3.1, there is an abundance of concepts and implementations
for data fusion algorithms in the literature. However, the state of current research lacks a
fusion architecture which combines the following characteristics.

First of all, the fusion architecture is required to be usable as VDSE for automated
driving in real-time and providing meaningful integrity information. While several of the
mentioned projects and works in Section 3.1 aim at a usage in automated driving, currently
none of them provides meaningful integrity information in an automotive application.

As pointed out in Section 3.2, the majority of the integrity algorithms in the current
state of research is designed for snapshot fusion methods like LS algorithms, and only uses
a single sensor, e.g., a GNSS receiver. The concepts compatible with multi-sensor data
fusion, are so far not investigated for an application in automated driving with the sensor
setup of this work, consisting of a RTK-GNSS receiver, an IMU and odometry sensors.
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Additionally, known fusion architectures are typically implemented as end-to-end sys-
tems. In contrast to that, modular system architectures exhibit several advantages, which
are discussed in detail in Section 6.1. The current state of research lacks a fusion architec-
ture combining the mentioned characteristics with a modular structure, e.g., a multi-layer
fusion structure.

All in all, the deficiencies in the current state of research mentioned in the three previous
paragraphs correspond to the three objectives of this work (see Section 1.2). Each of
them is treated in a dedicated Chapter in the following (Chapters 4, 5, 6), where the
requirements are deducted based on the results of the analysis from this Section.
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4. Multi-Sensor Data Fusion Filter for Vehicle
Dynamic State Estimation

This Chapter describes the multi-sensor data fusion filter developed in this work. First
of all, an overview is given in Section 4.1 by discussing the filter’s use case and system
architecture as well as its flowchart. Afterwards, the implementation is explained in more
detail (Section 4.2–4.3).

4.1. Overview

In this Section, the filter’s use case for an application in automated driving is analyzed
and central requirements are derived. Subsequently, the system architecture and design
choices are discussed. Finally, an overview of the filter’s implementation is given.

4.1.1. Use Case

The filter developed in this work is intended to be used in an automated vehicle to estimate
its dynamic state. As mentioned in the introduction (Chapter 1), eventually all autonomous
vehicles need to estimate their dynamic state as an input for subsequent services, especially
for the motion controller (Gottschalg & Leinen, 2021). In order to enable these subsequent
services to work properly, certain requirements have to be fulfilled.

For the general case of a VDSE used in automated driving, Steinhardt and Leinen (2015)
summarize these requirements as follows:

• real-time capability and causal filter behavior,

• known latency which is as low and as stable as possible,

• robustness against sensor errors,

• resolution of the trade-off between accuracy and availability,

• output of consistent states for all subsequent tasks,
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• output of integrity information.

Additionally, Steinhardt and Leinen (2015) list challenges for the VDSE with respect to
the available measurement data:

• synchronous or asynchronous measurements with respect to other information
sources or other sensors,

• different measurement resolutions,

• different sampling rates, which might not be constant,

• latency between the measurement itself and the availability of the measured values,

• changing availability of measured values,

• dependence on environmental conditions,

• dynamically changing measurement accuracy during operation.

Depending on the system architecture of the automated vehicle, the VDSE is integrated
into another module or implemented as a dedicated unit. For this work, a modular system
architecture similar to the one of the research project UNICARagil is assumed. The VDSE
implements in the specific case of UNICARagil three redundant multi-sensor data fusion
filters whose outputs are sent to an SFL algorithm as mentioned in the introduction in
Figure 1.1.

Next, the previously mentioned general requirements are adapted for this work. Note
that the developed filter can be used in system architectures like in UNICARagil but also
in other projects or setups. These alternative setups potentially do not implement the
mentioned SFL algorithm but rather use only one filter as VDSE. To give an overview,
Table 4.1 depicts the central requirements for the multi-sensor data fusion filter devel-
oped in this work in an abbreviated form. This list is intended to give a structure for
the following discussion by introducing reference numbers for the mentioned central
requirements. It does not aim to be comprehensive as details for example regarding the
concrete implementation and interfaces are omitted for brevity.

The first requirement (R1), relates to the real-time capability of the filter. The filter’s
behavior has to be causal, meaning that only past measurements can be used for processing
in the actual filter step. Additionally, the computational load has to allow an operation in
real-time on the use case’s hardware. For UNICARagil, this means running on a µController
board, which is discussed later on in Chapter 8. In order to fulfill the requirement of
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Table 4.1.: Overview of central requirements for the multi-sensor data fusion filter devel-
oped in this work

Number Description

R1 The filter needs to run in real-time on the hardware given in the specific use case
such that the outputs can be provided at the specified rate.

R2 The filter has to be compatible with the use case’s sensor setup and the data provided
by these sensors.

R3 All required outputs have to be provided with sufficient accuracy and availability to
enable subsequent services to operate properly.

R4 The filter’s robustness against sensor errors has to be sufficient to operate in urban
environments.

R5 The filter’s outputs have to contain meaningful integrity information.

operating in real-time, it is for this work sufficient to provide the filter’s outputs with the
specified rate. For UNICARagil, this is 100Hz.

Besides that, the filter also has to be compatible with the given sensor setup which is
the second requirement (R2). Precisely, this means the filter has to include a compatible
sensor data processing for the given sensors, including sensor error models. Additionally,
potential challenges with respect to the available sensor data have to be resolved which
include the previously mentioned points from Steinhardt and Leinen (2015). For the
sensor setup in UNICARagil, this means that the filter uses sensor information from a
dual-antenna RTK-GNSS receiver, a MEMS-IMU and from odometry sensors. This is also
the sensor setup used in this work as described in Section 2.3.

In order to enable subsequent services to work properly, the filter has to not only provide
the required outputs at the specified rate (see requirement R1) but also with sufficient
accuracy and availability, which is mentioned in requirement R3. For UNICARagil, the
VDSE needs to provide the three-dimensional position, velocity, acceleration, attitude and
angular rate of the vehicle. Since the accuracy and availability requirements were not
determined at the start of the project, in the remainder of this work assumptions for the
accuracy requirements are introduced (see Chapter 5, 7) and an availability as high as
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with the given setup possible is aimed for (best effort).
For the VDSE in automated driving, the environmental conditions have a crucial impact

on the accuracy of the estimated states. In challenging environments, certain sensor
observations may contain significant errors, e.g., GNSS observations in urban canyons.
The fourth requirement (R4) states that the filter has to stay operational when sensor
errors such as those that occur in challenging urban environments are present.

The requirement R5 relates to the need of integrity information regarding the estimated
states. For subsequent services to know how much they can trust in the estimated states,
this information is necessary. This topic will be motivated and discussed in detail in
Chapter 5, after the explanation of the filter itself in this Chapter. In this context, also the
topic of availability will be analyzed. Even though it is not explicitly mentioned in the
table of requirements, it is a natural objective to maximize the filter’s availability while
fulfilling all other requirements.

4.1.2. System Architecture

For the fusion filter developed in this work a system architecture consisting of a prepro-
cessing block for each sensor, the filter itself and an integrity layer is chosen, as depicted in
Figure 4.1. In the following, the design choices leading to this architecture are discussed.

As mentioned before, the fusion filter in this work builds upon Reuper’s PhD the-

Figure 4.1.: Block diagram of fusion filter developed in this work (Figure based on Gott-
schalg and Leinen, 2021)
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sis (2020). Steinhardt’s work (2014) served Reuper as basis and is therefore also used as
reference here. Besides that, the textbooks of Groves (2013) and Wendel (2007) form the
state of the art and are also used as basis for this work. Main differences to the fusion
filter of Reuper are the GNSS processing and the integrity layer. Besides that, there are
several smaller additions, e.g., the Zero Velocity Update (ZVU) and Zero Angular Rate
Update (ZARU) (Gottschalg & Leinen, 2021).

For this work, a sensor setup similar to the one in UNICARagil is used. Therefore, the
fusion filter inputs sensor data from a GNSS receiver, an IMU and odometry sensors. In
contrast to the implementation of Reuper (2020), in this work a dual-antenna RTK-GNSS
receiver is used. Besides a PVT solution, the receiver also provides a heading solution (yaw
angle). In order to take advantage of the already implemented RTK-GNSS processing in
the receiver and its heading solution, a loose coupling of GNSS and IMU is chosen. This
means the data fusion is performed in the position domain, i.e., the PVT and heading
solution of the receiver are inputs to the fusion filter. The uncertainties provided by the
GNSS receiver for these values are corrected in the GNSS processing module in form of a
GNSS error model to fulfill the accuracy requirements, especially in challenging GNSS
reception conditions like in urban areas.

The IMU observations (3D accelerations and angular rates) are fed into the Strapdown
algorithm which implements the navigation equations to compute the dynamic state of
the vehicle. An ES-EKF is chosen to estimate the errors of 19 states, which are depicted in
Table 4.2. Based on these, the sensor biases can be computed, which are then fed back
into the Strapdown algorithm. An EKF is used since the underlaying system dynamics
are non-linear. By estimating only the errors of the states, in an ES-EKF, the influence of
these non-linearities is limited. In an investigation of Zhao (2015) for a similar sensor
setup (GPS+MEMS-IMU), he analyzed and compared different filter algorithms. From his
conclusions it becomes clear that the additional computational load of non-linear filtering
methods like Cubature Kalman Filter (CKF), Particle Filter (PF) or Unscented Kalman
Filter (UKF) is only justified for higher non-linearities than the ones present in the use
case of this work. In this way, also the requirement for real-time capability on the given
hardware, which is assumed to be a µController like in UNICARagil, is satisfied.

As preprocessing for the odometry observations, an odometry model computes the
velocities at the wheel contact patches using the estimated dynamic tire radii. These
are then fed as measurement updates into the ES-EKF. For conventional vehicles, as the
measurement vehicle mainly used for this work, the odometry model of Reuper (2020) is
used. For the application in the prototype vehicles of UNICARagil, this model needs to be
modified (see Chapter 8).

In order to increase the filter’s accuracy, so-called zero-updates are implemented. ZVU
and ZARU are triggered when a standstill of the vehicle is detected by the odometry
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Table 4.2.: States of Error-State Extended Kalman Filter (Table based on Gottschalg and
Leinen, 2021)

State Dimension Unit Description

δψnb 3 rad Misalignment

δvnen 3 m/s Velocity error

δpn
en 3 m Position error

δbω 3 rad/s Gyroscope offset error

δba 3 m/s2 Accelerometer offset error

δrd 4 m Dynamic tire radius error

sensors, meaning that for more than 0.5 s all odometry sensors observe a velocity of zero
(Gottschalg & Leinen, 2021). Additionally, a three layer outlier detection for the GNSS
and odometry measurement update is implemented, which builds upon the results of
Reuper (2020). First of all, the sensor data needs to pass a plausibility check. Innovation
and residual monitoring form the second and third step, respectively.

Since the observations from the GNSS receiver and odometry sensors need to be trans-
mitted to the fusion filter, they might arrive later than the following processing step of
the ES-EKF. This challenge is referred to as delayed availability of measurement data. An
approach based on the results of Reuper (2020) is used to resolve this challenge. Details
about the implementation of this and the other parts of the explained system architecture
are given in the remainder of this Chapter.

4.1.3. Implementation

This Section gives an overview of the implementation of the fusion algorithm developed
in this work, whose flowchart is depicted in Figure 4.2. In the following Sections, the
elements of this flowchart are explained. For the steps in boxes with double lines on the
left and right side, there is a more detailed flowchart which is shown later in this Chapter,
e.g., for IMU processing in Figure 4.3.
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Figure 4.2.: Flow chart of fusion filter developed in this work
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In general, the development and testing of this work’s code is performed in MATLAB
(Natick, MA, United States), partly also in MATLAB Simulink. For the subsequent appli-
cation in real-time on a µController, C++ code is generated with MATLAB Coder and
supplemented by a C++ wrapper handling the interfaces to sensors and subsequent
services as well as to functions saving the results for debugging and evaluation purposes.

When a new set of IMU observations (3D accelerations and angular rates) is received, a
new iteration of the fusion filter is started. Before each iteration, there is a preparation
step to reset the temporary variables (used in the previous iteration) and save the received
measurement data. Afterwards, the IMU observations are processed, which is explained
in Section 4.2. In that step, also the initialization of the filter is performed, if necessary.
Subsequently, the measurement updates for GNSS and odometry are executed if new
observations are available. Additionally, zero updates are performed if the vehicle is in
standstill. These measurement updates are discussed in Section 4.3. If any measurement
updates are executed in this iteration, the computed corrections will be implemented,
which is also described in Section 4.2. To conclude the iteration, the integrity monitoring
is performed, which is discussed in Chapter 5, and the outputs are set.

4.2. Processing of IMU Data and System Model

This Section deals with the processing of IMU observations. Before that, the basics of the
ES-EKF’s implementation in this work including the system model and its initialization
are explained.

4.2.1. Implementation of Error-State Extended Kalman Filter

According to the definitions of Groves (2013, Ch. 3) the fusion filter implements an ES-EKF
in a closed-loop architecture estimating the error state vector δx, which is defined as

δx = x̂− x̆ (4.1)

with the estimated value of the total state vector x̂ and the true total state vector x̆. For
the implementation of the ES-EKF the following equations are used (Reuper, 2020, p. 17):

Prediction step:

δx̂−k = 0 (4.2)
P−
k = ΦkP+

k−1Φ
T
k +Qk (4.3)
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Measurement update:

Kk = P−
k H

T
k

(︂
HkP−

k H
T
k + Rk

)︂−1
(4.4)

δx̂+k = δx̂−k + Kk
(︁
zk −Hkδx̂−k

)︁
(4.5)

P+
k = (I− KkHk)P−

k (I− KkHk)
T + KkRkKT

k. (4.6)

In Table 4.3, the matrices and vectors used in these equations are explained. Estimated
quantities are marked with ,̂ the superscripts − and + indicate a-priori and a-posteriori
quantities, respectively. The superscript ˘ indicates true values, while measured quantities
are marked with .̃ The subscript denotes the temporal relation: k means that this quantity
is given at the discrete epoch k.

To obtain the transition matrix Φk, a partial derivative of the state function n with
respect to the total state vector x is formed (Reuper, 2020, p. 17):

ẋ = n(x) + w̌s (4.7)

Nk =
∂n
∂x

⃓⃓⃓⃓
x̂−k

(4.8)

Φk = eNkτs,k (4.9)

with the state propagation interval at epoch k, τs,k = tk− tk−1, and the matrix exponential
function e. Analogously, the measurement vector z and the measurement matrix H are
obtained (Reuper, 2020, p. 17–18):

zk = ẑk − z̃k
= h(x̂−k )− z̃k

(4.10)

Hk =
∂h
∂x

⃓⃓⃓⃓
x̂−k

. (4.11)

Note that

δz− = z̃− h(x̂−), (4.12)
δz+ = z̃− h(x̂+) (4.13)

are called measurement innovation and residual, respectively, and that

δz−k = −zk (4.14)
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Table 4.3.: Symbols used in equations of Error-State Extended Kalman Filter (in the order
of appearance)

Symbol Description

δx Error state vector

P Error state covariance matrix

Φ Transition matrix

Q Covariance matrix of system noise vector ws

ws System noise vector

K Kalman gain matrix

H Measurement matrix

R Covariance matrix of measurement noise vector wm

wm Measurement noise vector

z Measurement vector

n(x) State function

N System matrix

h(x) Measurement function

holds true in the error state formulation, unless a sequential measurement update is
performed (Reuper, 2020, p. 18). For the measurement updates, it is assumed in this
work that their measurement noise covariance matrices are uncorrelated and that the
difference between batch and sequential measurement updates can be neglected, such that
sequential measurement updates can be used to reduce the computational load (Reuper,
2020, p. 87).
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4.2.2. System Model

The state vector x consists of 19 states and is given as:

x =

⎛⎜⎜⎜⎜⎜⎜⎝

ψnb

vnen
peen
bω
ba
rd

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.15)

The error state vector δx is defined as difference between the true state vector x̆ and the
estimated state vector x̂ as given in Equation (4.1). However, in this implementation there
is an exception for the position to improve the conditioning of the error state covariance
matrix P: The error state entry δpnen is resolved in the navigation frame in the unit meter,
while the total state entry peen is resolved in the ECEF frame and formed by latitude ϕe,
longitude λe and height he in the units radian, radian and meter (Reuper, 2020, p. 88).
The position of the IMU is chosen to be the reference point for the estimation in the fusion
filter to simplify the equations. In case another position is needed for subsequent services,
the outputs are transformed as given in the Appendix in Section B.5. The update of the
total state for the position estimate is given as (Reuper, 2020, p. 88):

ϕ̂+
e = ϕ̂−

e −
δr̂n,+en,N

RN + h−e
(4.16)

λ̂
+

e = λ̂
−
e −

δr̂n,+en,E(︁
RE + h−e

)︁
cosϕ−

e
(4.17)

ĥ
+

e = ĥ
−
e − δr̂n,+en,U . (4.18)

Another special case is the attitude

ψnb =

⎛⎝ηnbνnb
ψnb

⎞⎠ , (4.19)

consisting of the three Euler angles roll ηnb, pitch νnb, yaw ψnb. The attitude is needed for
the Strapdown algorithm as direction-cosine matrix, whose computation is described in
the Appendix in Section B.6. Its update is computed as given by Groves (2013, p. 564):

Ĉn,+b = δĈn,+b
T
Ĉn,−b , (4.20)
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where δĈn,+b is computed as direction-cosine-matrix of δψ̂
+
nb as implemented by Reu-

per (2020, p. 88).
The state vector in this work is identical to the one used by Reuper (2020, p. 88), except

for the three states for the GNSS clock errors which are not needed in this work since here
a loose coupling of GNSS and IMU is implemented. Therefore, also the system model is
adopted, which is shown in the Appendix in Section B.1. For the system noise, the concept
of Reuper (2020, p. 90–91) is adapted to the use case in this work by removing the not
used states and updating the values from the IMU data sheets. Details about the system
noise are also given in Section B.1 in the Appendix.

4.2.3. Initialization

In order to initialize the fusion filter, the following conditions have to be fulfilled:

• Initialization is requested, meaning filter is not initialized so far.

• Solutions of the GNSS receiver for position and velocity from the primary antenna as
well as heading from the dual-antenna solution are available with fixed ambiguities.

• The magnitude of the GNSS velocity (3D norm) is small enough, such that a standstill
can be assumed. This value is calibrated depending on the application and the used
hardware. In this work a value of 0.1m/s is used.

• The GNSS solution is plausible according to the plausibility criteria, which are
depicted in Table B.2 in the Appendix for the use case of this work in automated
driving.

The initialization itself consists of six steps, where the first three steps are based on
Reuper’s work (2020, p. 89–90). These consist of the initialization of the IMU biases
according to the data sheet, initialization of the tire radii and their standard deviation
according to the vehicle’s tires and their wear over a lifetime as well as the initialization
of the roll and pitch angle using a technique called leveling described in Groves (2013,
Section 5.6.2). As a fourth step, the yaw angle is initialized using the GNSS heading
solution. For the position initialization, the GNSS position solution is used in combination
with the lever arm from the primary GNSS antenna to the IMU. To initialize the velocity,
the GNSS velocity solution is assumed to be also valid at the IMU’s position since the
vehicle is standing still, as required in the third condition for initialization. Finally, the
error state covariance matrix is initialized with the values given in Section B.4 in the
Appendix.
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4.2.4. Processing of IMU Data

The processing of IMU data is depicted in the flowchart in Figure 4.3. First of all, the
plausibility of the IMU observations is checked by verifying their value range and sensor
status. Secondly, the IMU observations are corrected by using the estimated biases, which
are defined as

ãbib = ăbib + ba +wa (4.21)
ω̃
b
ib = ω̆

b
ib + bω +wω, (4.22)

where (ãbib,ω̃bib) are the acceleration and angular rate values observed by the IMU, (ăbib,ω̆
b
ib)

are the true values, (ba,bω) are the sensor biases and (wa,wω) are the measurement noise
terms (Reuper, 2020, p. 85).

Figure 4.3.: Flow chart of processing IMU data

Subsequently, the Strapdown algorithm according to the description in Groves (2013,
Section 5.4) is implemented in the navigation frame with the equations given by Reu-
per (2020, p. 86–87) to obtain the a-priori estimates of the latitude ϕ−

e,k, longitude λ
−
e,k,

height h−e,k and the velocity v̂n,−en,k as well as of the direction-cosine matrix Ĉn,−b,k :
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Attitude update:
Ĉn,−b,k = Ĉn,+b,k−1eΩ

b
nbτi,k (4.23)

Velocity update:

v̂n,−en,k = v̂n,+en,k−1 + τi,k

[︄
Ĉn,+b,k−1 + Ĉn,−b,k

2
abib − (2ω

n
ie + ω

n
en)× v̂n,+en,k−1 − gnib

]︄
(4.24)

Position update:

h−e,k = h+e,k−1 +
τi,k
2

[︂
vn,+en,U,k−1 + vn,−en,U,k

]︂
ϕ−
e,k = ϕ+

e,k−1 +
τi,k
2

[︄
vn,+en,N,k−1

RN + h+e,k−1

+
vn,−en,N,k

RN + h−e,k

]︄
(4.25)

λ−e,k = λ+e,k−1 +
τi,k
2

⎡⎣ vn,+en,E,k−1(︂
RE + h+e,k−1

)︂
cosϕ+

e,k−1

+
vn,−en,E,k(︂

RE + h−e,k

)︂
cosϕ−

e,k

⎤⎦ .
In the attitude update, Ωb

nb is the skew-symmetric matrix of the rotation rate vector ω
b
nb,

which is obtained from ω̃
b
ib by applying corrections for the gyroscope bias bω, the Earth

rotation rate ω
b
ie and the transport rate ω

b
en (Reuper, 2020, p. 86). Note that the matrix

exponential function e has to be used in the attitude update. In the velocity update, abib
represents the IMU’s acceleration observation, corrected for the accelerometer bias ba,
(2ω

n
ie + ω

n
en)× v̂n,+en,k−1 is the Coriolis correction and gnib represents the gravity correction

(Reuper, 2020, p. 86). Additionally, the mean of Ĉn,+b,k−1 and Ĉn,−b,k is implemented in the
velocity update to account for the attitude change during the current IMU measurement
interval τi,k = ti,k − ti,k−1 (Reuper, 2020, p. 86).

This procedure is adapted analogously in the position update for the a-posteriori values
from the previous epoch and the already updated a-priori values from the current epoch to
account for the velocity change during the current IMU measurement interval τi,k (Reuper,
2020, p. 87). Furthermore, note that the reference ellipsoid’s radius of curvature in north-
south and east-west direction (meridian and transverse radius of curvature, respectively)
RE and RN are computed based on the a-posteriori position estimate from the previous
epoch p̂e,+en,k−1 (Reuper, 2020, p. 87).

Afterwards, the ES-EKF’s prediction step is performed as explained in the beginning
of this Subsection. To conclude the IMU processing, the total state vector is saved in
a ring buffer for computations which are performed later on to deal with the delayed
availability of measurements, which is discussed together with the measurement updates
in the following Subsection.
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4.3. Preprocessing and Measurement Models

In this Section the different types of measurement updates of the fusion filter are explained,
which are the GNSS and odometry measurement updates as well as the zero updates, ZVU
and ZARU. For each of them, the measurement vector z and the measurement matrix H
as introduced in Equation (4.10)–(4.11) as well as the corresponding covariance matrix
R are discussed. In case several updates can be executed in the same iteration, sequential
measurement updates are used as mentioned before. To improve the readability in this
Section, the reference to the iteration number k is omitted. Moreover, the outlier detection,
which is implemented for GNSS and odometry measurement updates, is discussed in
Section 4.3.4.

Since the used sensors are not necessarily synchronized and the communication with
them is usually not instantaneous, the time stamp of the measurement vector z̃ often
differs from the time stamp of the fusion filter’s total state vector x̂ and therefore also of
the predicted measurement vector ẑ (Reuper, 2020, p. 94). This challenge is referred to
as delayed availability of measurement data and is solved in this work by the approach
described by Steinhardt (2014, Section 4.8.2): It is assumed that the changes in the
error state for the time span of the delay td can be neglected such that corrections
from the measurement’s epoch can be implemented in the actual epoch and the error
covariance matrix of the actual epoch is also valid for the measurement’s epoch. The used
quantities from the total state vector are interpolated linearly to perform the measurement
update (Reuper, 2020, p. 94). These quantities are the position p̂een, velocity v̂nen, angular
rates ω̂

b
eb, ω̂

b
ib and direction-cosine-matrix Ĉnb estimates. Both used angular rates are

included here for practicality reasons to avoid the transformation between the two. The
mentioned quantities are hold in a ring buffer of n elements, which are all corrected after
each measurement update by the computed corrections to keep them up-to-date. For
this work, n = 100 is chosen which allows a maximum delay of 1 sec with a fusion filter’s
frequency equal to 100Hz. Observations with a delay greater than this limit are discarded.
This approach is applied for all GNSS and odometry measurement updates. Further details
about the approach can be found in Steinhardt’s work (2014, Section 4.8.2) and in the
implementation of Reuper (2020, Section 6.3.4).

4.3.1. GNSS

Three measurement updates are based on the GNSS receiver’s outputs. Based on the PVT
solution, position and velocity updates are performed and the dual-antenna solution is
used for the heading update. In Figure 4.4, the flowchart of processing GNSS observations
in the fusion filter is depicted. Each decision in the flowchart is made separately for the
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Figure 4.4.: Flow chart of processing GNSS data
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three mentioned updates, e.g., it is possible that the position solution is not plausible and
is therefore not used while the velocity solution is plausible and used.

The plausibility check is the first step in the flowchart (Figure 4.4). As a basis, the value
range of the GNSS receiver’s outputs is checked with the criteria given in Table B.2 in
the Appendix as well as the special case if all values are zero, which would indicate the
initialization phase of the receiver. Additional application specific checks can be added.

To prepare the ES-EKF’s measurement update as given in Equation (4.4)–(4.6), in the
second step the measurement vector z is computed. For the position update, the GNSS
receiver outputs the position solution of the primary antenna in ellipsoidal coordinates
as latitude ϕ̃ea, longitude λ̃ea, height h̃ea, where the subscript a indicates that values at
the antenna’s phase center are meant. The measurement vector is computed using the
equations given by Wendel (2007, p. 208) adapted to the navigation frame east-north-up
and adding the lever arm from the IMU to the primary antenna’s phase center pbba:

zpos =

⎛⎝zpos,Ezpos,N
zpos,U

⎞⎠
=

⎛⎜⎝(λ̂
−
eb − λ̃ea)(RE + ĥ

−
eb) cos(ϕ̂−

eb)

(ϕ̂−
eb − ϕ̃ea)(RN + ĥ

−
eb)

ĥ
−
eb − h̃ea

⎞⎟⎠+ Ĉn,−b pbba

(4.26)

with the a-priori estimates for the latitude ϕ̂eb, longitude λ̂eb, height ĥeb and the direction-
cosine-matrix Ĉn,−b . The equations for the velocity update given by Wendel (2007, p. 209)
are adapted analogously:

zvel =

⎛⎝zvel,Ezvel,N
zvel,U

⎞⎠
= v̂n,−en + (Ĉn,−b ω̂

b,−
ib × pbba)− ṽnea

(4.27)

with the a-priori estimates of the velocity v̂n,−en , angular rate ω̂
b,−
ib and direction-cosine-

matrix Ĉn,−b as well as the velocity solution of the GNSS receiver ṽnea. The heading
measurement vector can be computed simply as difference between the estimated yaw
angle ψ̂−

nb and the measured value ψ̃nb minus an antenna offset ψa, if present, as given by
Angrisano (2010, p. 102):

zhdg = ψ̂
−
nb − ψ̃nb − ψa. (4.28)
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The lever arm pbba and the antenna offset ψa need to be calibrated beforehand, e.g., by a
photogrammetric survey as done in this work for the measurement vehicle of the Chair of
Physical and Satellite Geodesy at TU Darmstadt.

After computing the measurement vectors, the innovation monitoring is performed.
This step will be explained together with the residual monitoring in Section 4.3.4. In
case of not passing the monitoring checks, the respective measurement update is either
not performed (innovation monitoring) or not used meaning its error state is discarded
(residual monitoring).

Along with the measurement vector z, the measurement matrix H is needed to perform
the ES-EKF’s measurement update in Equation (4.4)–(4.6). For the position update, the
equations given by Wendel (2007, p.207) are adapted:

Hpos =
(︁
Hpos,ψ 03×3 I3 03×3 03×3 03×4

)︁
(4.29)

with

Hpos,ψ = −
[︂(︂

Ĉn,−b pbba
)︂
×
]︂
, (4.30)

where 0m×n represents a m× n zero matrix and In stands for a n dimensional identity
matrix. The symbol [a×] represents the crossproduct matrix of the vector a. Analogously,
the velocity update is implemented by adapting the equations given by Wendel (2007,
p. 209–210):

Hvel =
(︁
Hvel,ψ I3 03×3 Hvel,bω 03×3 03×4

)︁
(4.31)

with

Hvel,ψ = −
[︂(︂

Ĉn,−b ω̂b,−ib pbba
)︂
×
]︂
, (4.32)

Hvel,bω = Ĉn,−b
[︂
pbba×

]︂
. (4.33)

For the heading update, Groves (2013, p. 618) presents the equations which are adapted
to the coordinate frames of this work:

Hhdg =
(︁
Hhdg,ψ 01×3 01×3 01×3 01×3 01×4

)︁
(4.34)

with

Hhdg,ψ =
(︁
0 0 1

)︁
. (4.35)
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Besides the measurement vector itself also a covariance matrix of the measurement
noise R is needed for the measurement updates. In general, the standard deviations put
out by the GNSS receiver are used here and non-correlated noise is assumed such that,
e.g., the position measurement noise covariance follows as

Rpos = diag
(︁
σ2pos,E , σ

2
pos,N , σ

2
pos,U

)︁
=

⎛⎝σ2pos,E 0 0

0 σ2pos,N 0

0 0 σ2pos,U

⎞⎠ ,
(4.36)

with the standard deviations in east, north, up direction, σpos,E , σpos,N , σpos,U , respectively.
The velocity and heading measurement noise covariances Rvel andRhdg follow analogously

Rvel = diag
(︂
σ2vel,E , σ

2
vel,N , σ

2
vel,U

)︂
(4.37)

Rhdg = σ2hdg. (4.38)

Unfortunately, these standard deviations from the internal processing of the used GNSS
receiver are over-optimistic, especially in challenging GNSS reception conditions like urban
canyons, as several practical experiments showed. In order to enable the fusion filter to
operate properly under these conditions, the received standard deviations from the GNSS
receiver are modified. Additionally, the GNSS position update is only performed if the
integer ambiguities are fixed, which is inspired by an implementation by El-Mowafy (2018).
GNSS velocity updates are not restricted in this way, since they are effected less by typical
error sources in urban environments, e.g., NLOS or multi-path signal reception. For the
GNSS heading update, the procedure is similar to the position, the observation is only
used for the respective update if the integer ambiguities for the dual-antenna solution are
solved.

For the position measurement noise covariance matrix Rpos, a dynamic scaling factor and
a lower bound for the standard deviations put out by the GNSS receiver is introduced. The
scaling factor depends on the GNSS reception conditions characterized by the PDOP and
the number of used satellites nsat as shown in Table B.3 in the Appendix. Each component
(east, north, up) has a separate scaling factor. The mentioned characteristics are observed
in the data set for parameter tuning. The scalar factors are fitted to represent the actual
errors in this data set and then fixed for future use. The lower bounds aim to prevent over-
optimistic standard deviations and are 0.02m for the latitude’s and longitude’s standard
deviation and 0.05m for the height’s standard deviation. Note that the lower bound is
applied after the dynamic factor.
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For the GNSS velocity solution, the experiments show that there is no need for a dynamic
factor here, so only a lower bound of 0.4m/s for the standard deviation in east, north
direction σvel,E , σvel,N , and 0.5m/s for the standard deviation in the upwards direction
σvel,U is introduced.

Similarly for the heading’s standard deviation σhdg, only a lower bound is introduced,
which in this case is dynamic and depending on the number of satellites used for the
dual-antenna solution. It was developed in a Bachelor’s thesis by Bahle (2020) supervised
by the author. The equation to compute this lower bound is

σhdg,min =
a1

a2 + nsat,2
, (4.39)

with the tuning parameters a1 = 2.2306 °, a2 = −1.0493 and the number satellites used in
the dual-antenna solution nsat,2, where σhdg,min again has a lower bound at 0.08 °.

4.3.2. Odometry

Figure 4.5 depicts the flowchart for the odometry measurement update. It is analogous
to the GNSS measurement update except for the preprossing, which implements the
odometry model.

As for any other sensor, the odometry preprocessing needs to be adapted to the used
set of sensors. In this work, measurements from two vehicles with different odometry
sensors are used. For the development of the fusion filter presented in this work, several
measurements were conducted with a conventional vehicle described in Section 2.3.1. In
this vehicle, the sensors for the Electronic Stability Control (ESC) can be accessed via the
Controller Area Network (CAN) bus. Only the wheels at the front axle are driven and can
be steered. In contrast to that, in the prototype vehicles of the research project UNICARagil
all four wheels are driven and steered individually. The odometry observations are taken
from sensors at the steering actuator and from an encoder at the electric motor. In any
case, the wheel rotation rates computed internally either in the ESC’s Electronic Control
Unit (ECU) or in the respective ECU in UNICARagil are preferred (rather than the wheel
ticks) because of their higher resolution, as explained by Reuper (2020, p. 53).

For the odometry measurement update, the three-dimensional velocity vector

vbew =

⎛⎝vbew,Fvbew,L
vbew,U

⎞⎠ (4.40)

is computed by the preprocessing module (odometry model) for each wheel (Reuper, 2020,
p. 54). In the following, the steps to do so are explained. The component in upwards
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Figure 4.5.: Flow chart of processing odometry data
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direction vbew,U cannot be measured by the odometry sensors and is therefore not used in
the fusion filter but included to keep the notation consistent (Reuper, 2020, p. 54). In
order to compute

vbew = Cwb
Tvwew, (4.41)

the rotation matrix Cbw is needed to transform the vector vwew to the body frame. This
rotation matrix is different for each wheel and determined based on the wheel’s steering
angle, which is either given directly as in UNICARagil or computed based on the steering
wheel angle as given by Reuper (2020, p. 54) for the used conventional vehicle. The
velocity at each wheel in its frame vwew is determined as given by Reuper (2020, p. 54)
using the slip definition for the longitudinal tire slip correction factor κ and the lateral
slip angle α explained in Section A.2 in the Appendix:

vwew =

⎛⎝vwew,xvwew,y
vwew,z

⎞⎠ =

⎛⎝ 1
− tan α̂

0

⎞⎠ωwr̂
−
d κ̂x (4.42)

with the wheel rotation rate ωw and the a-priori estimation of the dynamic tire radius r̂−d ,
which is modeled as random walk simplifying its propagation to

r̂−d,k = r̂+d,k−1. (4.43)

For the use case in conventional vehicles, a linear slip estimation based on the odometry
model of Reuper (2020, Section 4.2) is implemented, which is explained in Section B.8
in the Appendix. Modifications for the use case in UNICARagil are addressed again in
Section 8.1.

The odometry measurement vector is computed for a single wheel zodo as

zodo = ẑodo − z̃odo
= v̂bew − ṽbew

= Ĉnb
T
v̂nen + ω̂

b
eb × pbbw − Cwb

T

⎛⎝ 1
− tan α̂

0

⎞⎠ωwr̂dκ̂x,

(4.44)

with the lever arm from the IMU to the respective wheel contact patch pbbw (Reuper, 2020,
p. 94). As for the lever arm to the GNSS antenna, the lever arms to the wheel contact
patches also need to be calibrated beforehand.
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Correspondingly, the measurement matrix is computed as

Hodo =
(︁
Hodo,ψ Hodo,vel 03×3 Hodo,ω 03×3 Hodo,rd

)︁
(4.45)

with

Hodo,ψ = Ĉnb
T
[v̂nen×] (4.46)

Hodo,vel = Ĉnb
T

(4.47)

Hodo,ω =
[︂
pbbw×

]︂
(4.48)

Hodo,rd =

⎛⎝Cwb
T

⎛⎝−1
tan α̂
0

⎞⎠ωwκ̂x 03×1 03×1 03×1

⎞⎠ , (4.49)

where the Earth’s rotation rate is neglected to compute the dependency of the measure-
ment vector on the gyroscope offset error (ω̂

b
eb ≈ ω̂

b
ib = ω̃

b
ib − b̂ω) and the non-zero

entries of Hodo,rd are shifted to the column corresponding to the used wheel, as given by
Reuper (2020, p. 94).

For the odometry measurement noise covariance matrix Rodo, the procedure is analogous
to the slip estimation, meaning the approach of Reuper (2020, Section 4.3) is taken for
conventional vehicles (explained as well in Section B.8 in the Appendix), which includes
reducing the measurement vector from twelve to six entries by summarizing the lateral
velocity components per axle and discarding the vertical velocity components as mentioned.
The summation of lateral velocities is not fitting to the use case in UNICARagil where each
wheel is steered individually and therefore will not be applied in this use case.

4.3.3. Zero Updates

If the fusion filter detects that the vehicle is in standstill, zero updates are performed.
These aim to maintain the fusion filter’s alignment and IMU calibration (Groves, 2013,
p. 638). As mentioned before in Section 4.1.2, the standstill detection in this work is
performed by the odometry sensors, i.e., if for more than 0.5 sec all odometry sensors
observe a velocity of zero, the vehicle will be considered in standstill and zero updates can
be executed (Gottschalg & Leinen, 2021). Two types of zero updates are implemented,
ZVU and ZARU, which use the information that during standstill, the vehicle does not
move (velocity is zero) and does not turn (angular rate is zero), respectively.

The measurement vector for the ZVU is formed as the difference between the a-priori
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velocity estimate v̂nen and the velocity during standstill which is zero:

zZVU = ẑZVU − z̃ZVU
= v̂nen − 03×1.

(4.50)

The corresponding measurement matrix HZVU is implemented as given by Groves (2013,
p. 639):

HZVU =
(︁
03×3 I3 03×3 03×3 03×3 03×4

)︁
. (4.51)

Note that there is no negative sign here for HZVU,vel since Groves’ measurement vector uses
an opposite sign definition. In order to perform this measurement update, a measurement
noise covariance matrix RZVU is needed which is chosen as diagonal matrix

RZVU = diag
(︁
σ2ZVU,E , σ

2
ZVU,N , σ

2
ZVU,U

)︁
(4.52)

with the corresponding components of the standard deviations in east, north and up
direction σZVU,E , σZVU,N , σZVU,U which are all set to 0.1m/s in this work.

For the ZARU, the measurement vector is computed as difference between the a-priori
angular rate estimate ω̂

b
ib and the angular rate during standstill which is assumed to be

zero, neglecting the Earth’s rotation (for other than MEMS-IMUs this assumption has to
be reconsidered):

zZARU = ẑZARU − z̃ZARU
= ω̂

b
ib − 03×1.

(4.53)

Groves (2013, p. 641) provides the corresponding measurement matrix HZARU

HZARU =
(︁
03×3 03×3 03×3 −I3 03×3 03×4

)︁
. (4.54)

Note that in this case the sign for HZARU,ω is as given by Groves since Groves does not
only defines the gyroscope offset but also the measurement vector with the opposite sign
compared to the convention used in this work. For the measurement noise covariance
matrix RZARU, a diagonal matrix analogously to RZVU is chosen,

RZARU = diag
(︁
σ2ZARU,F , σ

2
ZARU,L, σ

2
ZARU,U

)︁
(4.55)

with the corresponding components of the standard deviations in front, left and up
direction σZVU,F , σZVU,L, σZVU,U which are all set to 0.5 °/s in this work.
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4.3.4. Outlier Detection

To detect outliers in the observations for the GNSS and odometry measurement update,
an outlier detection procedure is implemented. It consists of three steps: plausibility
checks, innovation monitoring and residual monitoring. In the subsequent paragraphs,
these steps are explained.

First of all, the plausibility of the observations is checked. This step mainly includes
verifying the value range of all received quantities. An example for the value range for
the GNSS measurement update is given in Table B.2 in the Appendix. Besides that, a
cold-start or reset of the sensor is detected by checking if several outputs are exactly zero
at the same epoch. Additionally, application specific checks are performed, which analyze
for example the frame counter of the message containing the observation.

Secondly, innovation monitoring as presented by Reuper (2020, p. 95–96) is imple-
mented by comparing the ES-EKF’s innovation δz− with its covariance matrix Σδz−:

δz− = z̃− h
(︁
x̂−
)︁

(4.56)
Σδz− = HΣδx− HT + R, (4.57)

where the covariance matrix of the total state vector Σx− is replaced by the covariance
matrix of the error-state vector Σδx− to account for the non-zero error-state δx− during
sequential measurement updates. The elements of the innovation vector δz− are nor-
malized by dividing them by their standard deviation σδz−j meaning the corresponding
entry of the main diagonal of Σδz− , which leads to a standard normal distribution for this
quantity if the KF assumptions hold (Reuper, 2020, p. 96):

δz−,∗j =
δz−j
σδz−j

. (4.58)

This normalized quantity is subsequently compared to a threshold, which is six for the
GNSS position measurement update and three for the other measurement updates. The
special treatment of position innovations is justified by their error distribution which is
over-bounded in this way (more details about the measurement error distributions are
given in Chapter 5). If any of the elements of δz−,∗ has an absolute value greater than
the threshold, the corresponding measurement will be discarded and this measurement
update will not be executed.

Residual monitoring forms the third step and is implemented analogously to innovation
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monitoring. The measurement residual δz+ is compared with its covariance Σδz+:

δz+ = z̃− h
(︁
x̂+
)︁

(4.59)
Σδz+ = R−HΣx+ HT, (4.60)

wherefore the measurement residual vector is normalized

δz+,∗j =
δz+j
σδz+j

, (4.61)

as given by Reuper (2020, p. 96–97). The same comparison with a threshold is performed
as for the innovation monitoring. In case an outlier is detected, the result of the respective
measurement update meaning the error state and its covariance will be discarded and the
values from before this measurement update will be used to proceed.

Note that innovation and residual monitoring are not used in certain exceptional cases
for example during the initial and transient phase after a cold start of the filter (Reuper,
2020, p. 95). A full list of these exceptions is given in Section B.9 in the Appendix.
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5. Integrity Monitoring for Multi-Sensor Data
Fusion Filter

This Chapter describes the implemented integrity monitoring measures. First of all, the use
case is analyzed and requirements are derived in Section 5.1. Secondly, suitable integrity
concepts are identified in Section 5.2, whose implementation is discussed subsequently
in Sections 5.3 to 5.5. Finally, the implemented concepts are compared in Section 5.6 in
order to decide which concepts to employ in the remainder of this work.

5.1. Use Case1

In order to chose a suitable integrity concept and design it appropriately, it is important
to keep the intended use case in mind. In this work, an integrity concept for the fusion
filter described in Chapter 4 is developed, which therefore leads to the same use case as
for the fusion filter in a VDSE for an application in an automated vehicle. The integrity
layer is implemented as separate module of the fusion filter as shown in Figure 4.1 in
Section 4.1.2.

Consequently, certain general requirements for the fusion filter (mentioned in Sec-
tion 4.1.1) also apply to the integrity layer. These include operation in real-time on the
hardware given (R1) and compatibility with the use case’s sensor setup (R2). The re-
quirement R5 from Section 4.1.1 describes the main purpose of the integrity layer, which
is providing integrity information for the fusion filter’s outputs. The implementation
contains an integrity layer for all outputs. However, the comparison and analysis in this
work focuses on the horizontal position, velocity and yaw estimate as these are considered
crucial for automated driving and collision avoidance in road traffic.

Besides that, there are requirements specific to the integrity layer in this use case, which
relate to the integrity parameters defined in Section 2.4. Even though several different
representations of integrity information can be found in the literature, in this work a
constant AL with a PL put out by the integrity layer is preferred. This representation is
1This Section is based on a previous work written by the author (Gottschalg & Leinen, 2021, Section 2).
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consistent with the previously (in Section 2.4) introduced Stanford Diagram, which is
used for visual analysis of the results.

In order to determine the required values for the AL of the VDSE for an application in an
automated vehicle, one has to clarify the definition of the PL and set the corresponding IR
first. In the literature, one- and two-dimensional PLs are applied with different assumptions
about the road geometry of the use case and the acceptable IR.

On the one hand, Reid et al. (2019) derive ALs for different types of vehicles and roads
in the US using a one-dimensional PL and an IR of 10−8/h. From the applications analyzed
in this reference a passenger vehicle on US local roads is the most similar one to the use
case in this work and the research project UNICARagil. Reid et al. (2019) specify the ALs
for this application as 0.29m in lateral and longitudinal direction of the vehicle, as 1.40m
in vertical direction, and as 1.5 ° for the attitude angles roll, pitch and yaw.

On the other hand, there are requirements for automated driving reported by the
European GNSS Agency (2019). These include accuracy requirements in terms of 95%-
quantiles for the localization of 0.20m horizontally (two-dimensional) and 2m vertically
as well as integrity requirements in terms of ALs of 10m to 15m with an IR of 10−7.

As shown by these two examples, the existing integrity requirements for the VDSE in an
application for automated driving are not consistent and there is no common understanding
in the community so far. Moreover, the accuracy requirements are still a challenge for
localization functions developed up to now for an application in automated driving, as
pointed out by Reid et al. (2019).

Therefore, a compromise of the mentioned requirements is chosen as working hypothesis.
It includes an AL of 0.6m for the two-dimensional horizontal PE and 1.0 ° as AL for the
yaw angle or Heading Error (HE) with an IR of 10−2. Additionally, an AL of 0.6m/s for
the two-dimensional horizontal Velocity Error (VE) is considered. These ALs are chosen
as an intermediate of the mentioned values from the literature. However, the IR is set
less restrictive than the mentioned references since these values are inspired by aviation
applications and at the moment not realistic for GNSS-based VDSE fusion filters in an
application of automated driving in urban areas. Other researchers, for example Gupta and
Gao (2021), make similar assumptions for an application in automated driving including
an IR of 10−2.

Since no requirement for a TTA is known for the use case of automated driving, it is
assumed that integrity alarms have to be reported immediately. This means, if the PE
exceeds the AL, the PL has to show this incident in the same epoch. In other words, the
PL has to bound the PE in all epochs with exceptions in no more cases than specified by
the IR.
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5.2. Concept2

This Section describes the selection of integrity monitoring concepts implemented in
this work. As mentioned in Section 2.4, integrity monitoring systems fulfill two tasks,
namely fault detection & mitigation and solution protection (Groves, 2013, p. 701). In
this work, the former task is included in the fusion filter as outlier detection described in
Section 4.3.4. Therefore, the integrity monitoring concepts in this Chapter focus solely on
the latter task solution protection.

In order to structure the literature review of Section 3.2, the integrity monitoring
concepts are categorized. Properties of the data fusion algorithm are used to do so, since
the integrity monitoring concepts are usually adapted to the data fusion algorithm. The
chosen properties are the system architecture (e.g., filtering or snapshot methods) and
the used sensors. In order to decide which integrity concepts from the literature review
are further analyzed in this work, these grouping criteria are applied in a decision tree,
which is depicted in Figure 5.1.

Figure 5.1.: Decision tree for integrity concepts (representation not comprehensive, Figure
based on previous version published by the author in Gottschalg and Leinen,
2021)

2This Section is based on a previous work written by the author (Gottschalg & Leinen, 2021, Section 3).
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Taking the use case into account, only integrity concepts for multi-sensor data fusion
algorithms are considered in this work. Besides that, the concepts have to be compatible
with a filtering system architecture, since the fusion filter in this work is implementing an
ES-EKF.

Therefore, only three concepts remain, namely overbounding, ARAIM and KIPL. These
serve as the basis for the implemented integrity algorithms, which are explained in the
three subsequent Sections. Overbounding is combined with the traditional approach of
using the ES-EKF’s error covariance matrices in Section 5.3, while the implementations
and modifications of KIPL and ARAIM are explained in Sections 5.4 and 5.5, respectively.

5.3. Traditional Approach – kSigma3

The first integrity algorithm is implementing the traditional approach of using the esti-
mated error covariances from the ES-EKF to characterize the uncertainty of the fusion
filter’s outputs and compute confidence levels for these. Therefore, in this algorithm a
Gaussian distribution (normal distribution) of the errors is assumed, which is inflated by
a factor k to overbound the actual error distribution. Thus, the algorithm is referred to as
kSigma in the remainder of this work.

Consequently, the equations for the PLs of the horizontal position and velocity,
PLkSigma,posH and PLkSigma,velH , as well as the yaw estimate, PLkSigma,ψ, are given by

PLkSigma,posH = kposH σposH (5.1)
PLkSigma,velH = kvelH σvelH (5.2)
PLkSigma,ψ = kψ σψ (5.3)

with

σi,H =

⌜⃓⃓⃓
⎷σ2i,E + σ2i,N

2
+

⌜⃓⃓⎷(︄σ2i,E + σ2i,N
2

)︄2

+ σ2i,EN , i ∈ {pos, vel} , (5.4)

where the subscripts E, N and EN stand for the east, north and the east-north component
of the variance, respectively (Oliveira & Tiberius, 2009). The subscripts pos and vel
refer to the position and velocity estimate. The scalar factors kposH and kvelH are set to
three, which represents an IR of approximately 0.3% when normally distributed errors
are assumed. For kψ, experiments showed that a higher factor is needed. Therefore, an
empirically defined factor of nine is chosen to not exceed the specified IR.
3This Section is based on a previous work written by the author (Gottschalg & Leinen, 2021, Section 4.2.1).
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In order to prevent over-optimistic PLs, lower bounds for the used standard deviations
are introduced. A lower bound of 0.03m for σposH , 0.02m/s for σvelH and 0.05 ° for σψ
is applied before the PLs of the Equations (5.1)–(5.3) are computed. These values are
obtained from the data set for parameter tuning described in Section 2.3.2, precisely
from the part on the test track. The results represent the best possible performance of
the fusion filter, which therefore serves as a lower limit for the estimation error in this
algorithm.

Since the IMU was changed after the recording of the data set for parameter tuning
as mentioned in Section 2.3.1, an additional empirical factor for the kSigma PLs of two
is implemented. Only for the measurements with the new IMU (Analog Devices ADIS
16465-1), this factor is applied to the PLs of the Equations (5.1)–(5.3). The factor was
found in initial tests with this IMU in which it showed a weaker performance than the
previous one (Sensonor STIM300). This is also confirmed by the values in the data sheets,
e.g., the gyroscope in-run bias variation is increased by a factor four (see Table A.1).

5.4. Kalman Integrated Protection Level

While the aforementioned explained integrity algorithm kSigma is rather simple and
straightforward in its error modeling and equations, the second algorithm uses a more
sophisticated approach: It includes an implementation of the previously mentioned Kalman
Integrated Protection Level (KIPL) method, wherefore it is referred to as KIPL in the
following (Gottschalg & Leinen, 2021).

Before the implementation and the computation of the PLs is outlined in Section 5.4.2,
the used error modeling is discussed in Section 5.4.1. In Section 5.4.3, the selection of
tuning parameters for this algorithm is explained.

5.4.1. Error Modeling

This Section discusses the error modeling assumptions of the KIPL integrity algorithm.
In the KIPL integrity algorithm, the errors of each input to the ES-EKF are modeled as a
multi-variate Student distribution, which are afterwards fused to a total error distribution
to compute the PLs (Navarro Madrid et al., 2015).

The probability density function of a zero-mean multi-variate Student distribution tNm

with the vector θ as input is given as

fNm(Rm)(θ) =
Γ
(︁
Nm+d

2

)︁
Γ
(︁
Nm
2

)︁
N

d
2
m π

d
2 (det (Rm))

1
2

(︃
1 +

1

Nm
θT R−1

m θ

)︃−Nm+d
2

, (5.5)
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using the degree of freedom Nm, the covariance matrix Rm and its dimension d (Welte,
2017, p. 30). In comparison to a Gaussian distribution, the Student distribution has
heavier tails, which leads to a more realistic representation of the measurement errors
and increases the robustness against outliers (Navarro Madrid, 2016).

To investigate the actual measurement error distribution, the data set for parameter
tuning introduced in Section 2.3.2 is used. It contains a variety of different environments
from ideal conditions on a test track to challenging GNSS reception conditions in urban
areas. Representatively, the latitude component of the position and east component of
velocity GNSS solution are analyzed as well as the GNSS heading solution.

Figure 5.2 depicts a histogram of the measurement errors in the GNSS latitude solution
in comparison to the reference solution in the mentioned measurement. The errors are
normalized using the empirical standard deviation. Only epochs with RTK reception are
depicted since only these position solutions are used as input to the filter (see Section 4.3).
Besides the normalized errors, also the probability density functions of a standard normal

Figure 5.2.: Errors of GNSS latitude (normalized by empirical standard deviation, only
RTK solutions) compared to Gaussian and Student Distribution – depicted
part indicated as rectangle in overview plot in upper left corner
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distribution (Gaussian, zero-mean, σ = 1) and a zero-mean Student distribution with a
degree of freedom Nm = 1, a dimension d = 1 and a covariance matrix of Rm = I are
depicted in Figure 5.2. In this Figure, the ordinate limit is chosen to focus on the tails
of the distributions (wherefore their peaks are not depicted here). As one can see, the
outliers greater than 3σ are better represented by the Student distribution.

Analogously, the east component of the GNSS velocity and heading solution are analyzed,
depicted in Figures C.1 and C.2 in the Appendix. For the velocity, all epochs are used since
they are all input to the fusion filter, while for the heading solution only epochs with fixed
integer ambiguities for the dual-antenna solution are used for the filter as mentioned in
Section 4.3 and therefore also for the plot here. The conclusion is similar to the position
errors in the previous paragraph, even though the heading errors’ histogram differs from
the other two by containing a higher concentration of outliers.

For the odometry observations, Reuper (2020, Section 4.3.2) conducts a detailed analysis
of the measurement noise. From his evaluation and plots, it can be inferred that velocity
errors greater than 3σ are rare which leads to a probability distribution without heavy
tails, probably rather similar to a Gaussian. This can also be represented by the Student
distribution which converges to a Gaussian distribution as the degrees of freedom increase,
Nm → ∞ (Tracey & Wolpert, 2018, p. 4). The same applies to the zero updates, since
they rely on odometry observations to detect a standstill of the vehicle.

All in all, the assumed error distribution in the KIPL integrity algorithm seems plausible.
In the subsequent Section, the implementation of this integrity algorithm is explained.

5.4.2. Implementation and Computation of Protection Levels4

As mentioned before, the estimation error of the ES-EKF is modeled in this algorithm as
the sum of its contributions meaning the filter’s measurement inputs (Navarro Madrid
et al., 2015). As given by Welte (2017, p. 31), these contributions are categorized by their
measurement type m, whereby each of them is modeled by a zero-mean multi-variate
Student distribution tNm(Rm).

In the use case of this work, which is the fusion filter presented in Chapter 4, there are
six measurement types, namely the GNSS position, GNSS velocity, GNSS heading angle,
and odometry velocity observations, as well as the zero updates, ZVU and ZARU. This
leads to six Student distributions contributing to the resulting PLs.

In the following, first the base algorithm is explained, then some empirically motivated
modifications are discussed.
4This Subsection (including its two Subsubsections) is based on a previous work written by the author (Gott-
schalg & Leinen, 2021, Section 4.2.2).
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Base Algorithm

All computations for this integrity algorithm are performed analogously for the position,
velocity and heading or yaw PL. Differences in the parameters for the respective cases
are indicated with the subscripts, pos, vel and ψ, respectively. Since the position and
velocity estimation of the fusion filter are both three-dimensional and the yaw angle is
one-dimensional, the parameter d follows as dpos = dvel = 3 and dψ = 1.

After the ES-EKF’s measurement update step, meaning after Equation (4.4)–(4.6), the
KIPL integrity algorithm is executed, which includes three computation steps. In the
first step, two zero-mean multi-variate Student distributions tNm1(Rm1) and tNm2(Rm2)
are computed, which represent the estimation errors of the filter in the prediction and
measurement update step, respectively (Welte, 2017, p. 30). Secondly, their sum is
approximated. Thirdly, the resulting PL is computed based on the updated distribution.
In the following equations, the subscript m is used to indicate the correspondence to a
certain measurement type for which the computations are performed analogously, unless
stated otherwise.

For the first step, Equation (5.6)–(5.14) to compute Nm1 , Rm1 , Nm2 and Rm2 are imple-
mented, which are based on a patent by Navarro Madrid (2016), with the measurement
matrix Hm, the error-state covariance matrix P, the measurement noise covariance matrix
Rmeasm , the transition matrix Φ from the ES-EKF and the tuning parameters β and ρm.
Note that the measurement residual δz+ for the respective measurement typem is denoted
here with ym to increase the readability.

Nm1: Nm1 = nm + β N ′
m1

(5.6)
nm = nobsm − tr(Hm Km)− tr(ρmHm Km) (5.7)
Km = PHT

m S−1
m (5.8)

Sm = Hm PHT
m + Rmeasm (5.9)

Rm1: Rm1 = r2m Km Sm KT
m (5.10)

r2m =
(︂
yTm S−1

m ym + β N ′
m1
r′m

)︂ 1

Nm1

(5.11)

Nm2: Nm2 = N ′
m (5.12)

Rm2: Rm2 = UR′
m UT (5.13)

U =

(︄
I−
∑︂
m

KmHm

)︄
Φ (5.14)

In general, A′ stands for the value of matrix A from the previous step, a transpose of
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matrix A is represented by AT, I and 0 are the identity and zero matrix, respectively. To
initialize the KIPL integrity algorithm, the values depicted in Table 5.1 are used. The
parameter nobsm is determined by the number of observations in a measurement type
m, leading to three for the three-dimensional GNSS position and velocity, and to one for
the GNSS heading solution. For the odometry, there are six velocity observations, since
only the horizontal velocity is considered together with only one lateral velocity per axle,
as described in Section 4.3.2. For ZVU and ZARU, the detection of vehicle standstill is
considered as one observation.

Table 5.1.: Initial values for KIPL integrity algorithm (values based on Navarro Madrid,
2016)

Parameter Nm Nm1 Rm Am rm

Value 1 1 0 0 0

The second step contains the approximative sum of tNm1
(Rm1) and tNm2

(Rm2), which is
computed by

Rm = Rm1 + Rm2 + Dm + DT
m (5.15)

with

Dm = rm Km S−
1
2

m A′
m U′ (5.16)

and solving

N
d−2
2

m t2−dm

(︁
1 + t−2

m

)︁−Nm+d−2
2 =

N
d−2
2

m1 t
Nm1
m1 exp

{︃
(Nm1 +Nm2)Nm1

2Nm2

t2m2

}︃
+N

d−2
2

m2 t
Nm2
m2 exp

{︃
(Nm1 +Nm2)Nm2

2Nm1

t2m1

}︃
(5.17)
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numerically5 for Nm with

tm1 =

[︃
Nm1 tr(Rm1)

tr(S)

]︃ 1
2

, (5.18)

tm2 =

[︃
Nm2 tr(Rm2)

tr(S)

]︃ 1
2

, (5.19)

tm =

[︃
Nm tr(Rm)

tr(S)

]︃ 1
2

, (5.20)

S = (1 + ω) (Nm1Rm1 +Nm2Rm2) (5.21)

and the tuning parameter ω (Welte, 2017, p. 32–33). In this step, also the update of the
matrix Am is computed as disclosed in the patent (Navarro Madrid, 2016) by

Am = rm ρm S
1
2
m K′

m + ρm A′
m U′. (5.22)

To obtain the PL in the third step, the sum of the error bounds Bm from each measure-
ment type m is computed as

PLKIPL =
∑︂
m

Bm (5.23)

using
Bm = k(α,Nm) bm (5.24)

with

bm =

(︃
trm
d

)︃ 1
2

, (5.25)

where the symbol trm represents the trace of the matrix Rm over the states for which the
PL is computed for, meaning for example the three PE states in case of the position PL,
and solving

2

B
(︁
2
d ,

Nm
2

)︁ ∫︂ ∞

k

ud−1

(1 + u2)(Nm+d)/2
du = α (5.26)

numerically6 for k(α,Nm) with the chosen integrity risk α = 0.01 and the beta function
B(x, y) (Navarro Madrid, 2016). Note that the PL stays constant in-between measurement
updates. If an error bound Bm is not updated, it will be taken from the previous step.
5To solve this equation numerically in the implementation in MATLAB, the function ‘fsolve’ is used with the
‘trust-region-dogleg’ algorithm and a tolerance of 10−8 for function and variable changes. Details about
this algorithm can be found in the MATLAB documentation (The Mathworks, Inc., 2021).

6Here, the same implementation as mentioned before for Nm is used.
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The used set of values for the parameters ω, β and ρm as well as the way how they are
chosen is given in Section 5.4.3.

Empirically Motivated Modifications

Motivated by the results from experiments with real-driving measurement data during
the development and implementation of the integrity algorithm, an empirical factor of
two is applied to the position PL from Equation (5.23). Additionally, the one-dimensional
position and velocity PL is multiplied by

√
2 to obtain the two-dimensional horizontal PLs

PLKIPL,posH and PLKIPL,velH .
Besides that, three empirically motivated measures to prevent over-optimistic values for

the PLs are introduced. The first two are a dynamic lower bound to take difficult GNSS
reception conditions into account and a dynamic buffer to account for high dynamics.
While the former is used for the position and the yaw PL, PLKIPL,posH and PLKIPL,ψ, the
latter is only applied to the position PL, since in the experiments, the influence of high
dynamics is only observed on the position PL. The other PLs like the velocity PL PLKIPL,velH
are not modified by these measures. The third measure consists of constant offsets, which
are introduced as 0.05m/s and 0.2 ° for the velocity and heading PL, respectively.

For the dynamic lower bound Blow, a quadratic function in the form

Blow(qcnt) = p2 q
2
cnt + p1 qcnt + p0 (5.27)

is used with the counter qcnt and the parameters p0, p1, p2, which are depicted in Table 5.2.
This form is chosen because the error in the position estimate with no GNSS reception
grows approximately like a quadratic function with respect to time. The heading error
grows approximately linear with respect to time, wherefore the parameter p2 is set to zero
for the lower bound of the heading PL.

Table 5.2.: Parameters for dynamic lower bound for KIPL integrity algorithm (Table based
on Gottschalg and Leinen, 2021)

Parameter p2 p1 p0 qreset

Position 0.003m/s2 0.075m/s 0.075m 5 s

Heading 0 0.013deg/s 0.35deg 5 s
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The dynamic lower bound is needed in two kinds of situations with respect to the GNSS
reception conditions, namely in case there is no RTK-GNSS solution or if there is no GNSS
solution at all available as input to the fusion filter. This leads to two dynamic lower
bounds, Blow, noGNSS(qcnt, noGNSS) and Blow, noRTK(qcnt, noRTK), which each have a separate
counter. Both counters, qcnt, noGNSS and qcnt, noRTK, count time in seconds and are initialized
with zero.

The counter qcnt, noGNSS starts to count, if there is no GNSS reception for one epoch,
meaning that the GNSS receiver does not output a position solution to the fusion filter, or
if the GNSS position solution is considered as an outlier (by the outlier detection described
in Section 4.3.4) and is therefore not used for the measurement update. This counter
continues to count until there is RTK-GNSS reception for long enough to stabilize the
fusion filter’s outputs, i.e., for a time longer than qreset (given in Table 5.2), which leads to
a reset of qcnt, noGNSS to zero. If qcnt, noGNSS is equal to zero, the counter qcnt, noRTK will be
activated and count the time since the last RTK-GNSS solution, but will only be used if it
is higher than the threshold qreset. As soon as there is an epoch with RTK-GNSS reception,
qcnt, noRTK will be reset to zero. Finally, the two lower bounds Blow, noGNSS(qcnt, noGNSS) and
Blow, noRTK(qcnt, noRTK) are summed up before their application to PLKIPL,posH and PLKIPL,ψ.
The corresponding formulas are given after the following paragraph about the dynamic
buffer.

The dynamic buffer consists of a scalar factor kposH,buffer of 0.2 and a moving average
from the past five seconds of the horizontal acceleration observed by the IMU afiltered,H :

Bbuffer,posH = kposH,buffer afiltered,H . (5.28)

Figure 5.3 depicts a flow chart of the described procedure and concludes with the
following Equations

PLKIPL,posH,mod =

{︄
PLKIPL,posH +Bbuffer,posH PLKIPL,posH ≥ Blow,posH

Blow,posH +Bbuffer,posH PLKIPL,posH < Blow,posH
(5.29)

PLKIPL,ψ,mod =

{︄
PLKIPL,ψ PLKIPL,ψ ≥ Blow,ψ

Blow,ψ PLKIPL,ψ < Blow,ψ
(5.30)
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using

Blow,posH =

{︄
Blow,posH,noGNSS(qcnt, noGNSS) +Blow,posH,noRTK(qcnt, noRTK) qcnt,noRTK ≥ qreset

Blow,posH,noGNSS(qcnt, noGNSS) +Blow,posH,noRTK(0) qcnt,noRTK < qreset

(5.31)

Blow,ψ =

{︄
Blow,ψ,noGNSS(qcnt, noGNSS) +Blow,ψ,noRTK(qcnt, noRTK) qcnt,noRTK ≥ qreset

Blow,ψ,noGNSS(qcnt, noGNSS) +Blow,ψ,noRTK(0) qcnt,noRTK < qreset
.

(5.32)

Figure 5.3.: Flow chart of KIPL integrity algorithm PL computation (Figure based on Gott-
schalg and Leinen, 2021)
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5.4.3. Parameter Tuning

As mentioned in the previous Section, the KIPL integrity algorithm can be adapted to
the specific use case by three parameters, namely ω, β and ρm. For the scalar tuning
parameter ω, Welte (2017, p. 33) points out, that it has to be greater than one and a value
of ten represents high-confidence levels (Gottschalg & Leinen, 2021). As described in
the patent (Navarro Madrid, 2016), the other scalar parameter β is also an empirically
found tuning parameter, whose value range is given as 0 ≤ β < 1 and a non-zero-value
represents the influence of statistics of previous epochs on the characterization of the
error noise at the present epoch (Gottschalg & Leinen, 2021). Regarding the matrix ρm,
Navarro Madrid explains in the patent (2016), that it is in most cases diagonal and its
entries ρm,i represent the temporal correlation of the measurement noise. Therefore, ρm
is chosen as a diagonal matrix with the dimension nobsm .

To determine the set of values for the three mentioned parameters, an analysis with the
data set for parameter tuning is carried out. This data set is described in Section 2.3.2
and contains a variety of different environments from ideal conditions on a testing ground
to challenging GNSS reception conditions in urban areas.

In a first step, a suitable subset of the value range for the mentioned parameters is
chosen. The subset’s value range is limited by the requirement of numerical stability of the
algorithm and reasonable integrity performance of the algorithm in terms of availability
and integrity risk. It is found as 2 ≤ ω ≤ 50, 0.5 ≤ β ≤ (1 − 10−4) and 0.5 ≤ ρm,i ≤
(1 − 10−4). Values outside of this subset lead to unreliable results, since difficulties
in solving the Equations (5.17) and (5.26) occurred repeatedly leading to numerical
instability of the integrity algorithm. These subsets are discretized in five steps using
a logarithmic scale with minor adjustments, especially for β and ρm to focus on areas
with better integrity performance empirically found during testing and implementation.
Only the position estimate is analyzed here, since the experiments showed that it is the
most challenging PL. To reduce the complexity of the subsequent evaluation, one set of
parameters, ω, β and ρm, is chosen for the six measurement updates in the fusion filter of
this work. Besides that, the entries of the diagonal matrix ρm are set to a scalar value ρm,
meaning

ρm = ρm I. (5.33)

This leads to 125 parameter combinations for which the integrity performance in terms
of empirical IR and availability is computed using the mentioned data set and depicted
in Figure C.37 in the Appendix. Even though, a subset of the value range was chosen,

7This Figure and the following Figure 5.4 were created with a preliminary version of the fusion filter. The
afterwards applied changes are not expected to have a major effect on the results.
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only 69 of the 125 possibilities led to numerically stable results. The analysis showed that
the influence of the parameter ρm on the integrity performance is significantly stronger
than the influence of ω and β. The variation of the later two influenced the availability by
less than ±5 percentage points and the empirical IR by less than ±0.5 percentage points.
Therefore, the focus is laid on ρm and the results are compressed by averaging the results
with identical values for ρm (but different values for ω and β). Figure 5.4 depicts the
availability and empirical IR computed in this way.
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Figure 5.4.: KIPL position integrity performance in terms of availability and empirical
integrity risk (eIR) depending on parameter ρm analyzed in data set for pa-
rameter tuning

The objective during the parameter tuning is to reach an availability as high as possible
while the empirical IR is minimized, but fulfilling at least the integrity requirement of being
smaller than 10−2. Since the empirical IR in the Figure 5.4 is smaller than 10−2 = 1% for
all evaluated values of ρm, next the availability is analyzed. For ρm greater than 0.9, the
availability decreases rapidly. Therefore this value is chosen as compromise between high
availability and low empirical IR (Gottschalg & Leinen, 2021). For the less influential
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parameters ω and β, the values 10 and 0.99 are chosen (Gottschalg & Leinen, 2021). The
value for ω is proposed by Welte (2017, p. 33) for high confidence levels. The parameter
β has a slight influence on the numerical stability and is therefore set as a compromise
between stability and performance.

5.5. Advanced Receiver Autonomous Integrity Monitoring

The third integrity algorithm includes an implementation of Advanced Receiver Au-
tonomous Integrity Monitoring (ARAIM). First of all, the concept of this integrity al-
gorithm and the way how it is implemented is discussed in Section 5.5.1. Secondly, the
computation of PLs is explained in Section 5.5.2. Finally, the parameter tuning is described
in Section 5.5.3.

5.5.1. Concept8

The implementation of ARAIM in this work builds upon the results of the Stanford GPS
Laboratory presented by Gunning et al. (2018). In this integrity concept, errors in the
measurements are characterized by a nominal error model, which describes the expected
measurement errors in case no faults are present, and a threat model, which is a collection
of all possible faults and their probabilities (Gunning et al., 2018). The principle of
Multiple Hypothesis Solution Separation (MHSS) is used, which includes to run a bank of
(sub-)filters, where each filter is fault tolerant to a fault or set of faults (Gunning et al.,
2018). Based on the differences between the outputs of the filters in this bank, a PL is
computed, which is explained in Section 5.5.2.

The ARAIM implementation of Gunning et al. (2018, 2019) differs from the use case of
this work, since it is designed for a PPP implementation with a tight IMU coupling. This
stands in contrast to the RTK-GNSS solutions used in a loose coupling in the use case of
this work.

In this work, RTK-GNSS solutions are computed for ARAIM as one-out subsets, meaning
solutions with all but one of the satellites in sight. Additionally, the all-in-view solution
using all available satellites is computed. Since the used GNSS receiver does not allow
configurations like this, the raw GNSS observations (pseudo-ranges, range rates, etc.)
are exported to Receiver Independent Exchange Format (RINEX) files. The computations
are performed with the open-source software RTKLIB, version demo5_b33c provided by
Everett (2020), which is based on the original RTKLIB version 2.4.3 by Takasu (2019).

8This Subsection is based on a previous workwritten by the author (Gottschalg & Leinen, 2021, Section 4.2.3).
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For the RTK solution, additional information in form of GNSS correction data and
ephemerids is required. To keep the algorithm real-time capable (even if the imple-
mentation of ARAIM in this work is only used in post-processing), ultra rapid orbit and
clock corrections (clk and sp3 files) are chosen, which are downloaded from the Geo-
ForschungsZentrum (GFZ) Potsdam, Germany. Broadcast ephemerids are used, which are
obtained from the German Federal Agency for Cartography and Geodesy (BKG).

After the GNSS solutions are computed, the fusion filter described in Chapter 4 is
executed for all subsets and the all-in-view solution. As inputs, the GNSS position solution
and its standard deviation computed as just described, are combined with the yaw (only
for initialization) and velocity values of the real-time solution provided by the RTK-GNSS
receiver as well as the odometry observations. Since the GNSS position solution differs
from the one used in Chapter 4, the GNSS error model is adapted. Here, a constant factor
of three is chosen as a simple empirically motivated approach.

5.5.2. Computation of Protection Levels9

The PLs of ARAIM are computed by the same set of formulas for all estimated quantities.
The standard deviations from the fusion filter for the respective estimated quantity of the
ith subset σi, and of the all-in-view solution σ0, are used. Similar to the implementation
of kSigma, a constant lower bound for the estimated standard deviation for the position
solution of 0.015m is introduced to prevent over-optimistic results.

Using the equations given by Gunning et al. (2018), the PLs of ARAIM are computed as

PLARAIM = max
i

(︃
Ti +Q−1

(︃
PHMI

NS P (Hi)

)︃
σi
)︃

(5.34)

with the threshold
Ti = Q−1(αi PFA)σ

i
SS (5.35)

using (︁
σiSS
)︁2

=
(︁
σi
)︁2 − (︁σ0)︁2 , (5.36)

the number of subsets NS, the complement of the cumulative distribution function of a
normal distribution Q and its inverse Q−1. The chosen set of values for the parameters αi,
PHMI, PFA and P (Hi) is given in Section 5.5.3. Finally, the horizontal PLs for the position
and velocity solution are computed as

PLARAIM =
√︂
PL2

ARAIM,E + PL2
ARAIM,N (5.37)

9This Subsection is based on a previous workwritten by the author (Gottschalg & Leinen, 2021, Section 4.2.3).
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with its components in east and north direction, PLARAIM,E and PLARAIM,N from Equa-
tion (5.34), while the heading PL is directly given in the mentioned Equation.

In order to account for challenging GNSS reception conditions, additional empirically
motivated measures are implemented. The quality level put out by RTKLIB is used as an
indication for these conditions. According to the RTKLIB documentation (Takasu, 2013),
the integer ambiguity for the RTK-GNSS solution is only solved properly, when a quality
level of one is put out. Therefore, a factor of three for the position and heading PL, and of
five for the velocity PL is used, in case a quality level unequal to one is put out. Besides
that, a constant value of 0.1 °, 0.1m/s is added to the heading, velocity PL, respectively.

5.5.3. Parameter Tuning

In order to set the three parameters of the ARAIM algorithm, the error modeling using
the nominal and threat model is taken as a starting point. For the nominal error model a
normal distribution of errors is assumed using standard deviations to describe the errors,
computed by the fusion filter, which are inflated to overbound the actual errors. Regarding
the thread model, an assumption is made by Gunning et al. (2018), that the probability
of a fault present is P (Hi) = 10−5, which is adopted for the implementation of this
work (Gottschalg & Leinen, 2021). Besides that, a probability of false alert PFA is used,
which can be allocated to the subfilters by the parameter αi with

∑︁
i αi = 1 (Gunning et al.,

2018). Here, the assumption of Gunning et al. (2018) is adopted to set the probability of
false alarm to PFA = 1

3 10
−6 and allocate this probability equally to the subfilters, meaning

αi =
1
NS

with the number of subfilters NS (Gottschalg & Leinen, 2021). The factor 1
3

corresponds to the three dimensions of the estimated quantities meaning the position,
velocity, etc. (Gunning et al., 2018).

Eventually, also a probability of events with Hazardous Misleading Information (HMI)
PHMI is needed to compute the PLs. A variation of this parameter is depicted in Figure 5.5,
where the data set for parameter tuning is used analogously to the KIPL parameter tuning
in Section 5.4.3. A description of this measurement is given in Section 2.3.2. Empirical IR
and availability increase when PHMI increases. As a compromise between low empirical IR
and high availability, a value of PHMI =

1
3 10

−7 is chosen, which is also used by Gunning
et al. (2018). It is the highest value of PHMI for which the empirical IR is lower than 2%.
Therefore, it comes close to the integrity requirement of 1%, keeping in mind that the
used measurement contains challenging urban environments including a tunnel. This is a
design choice which might need to be changed for other use cases. Lower values of PHMI
lead to a even lower availability while the empirical integrity risk only decreases slightly.
The Figure also shows that the integrity requirement can be hardly fulfilled in this data
set. Theoretically, the value of PHMI should be identical to the requested IR. This is not the

76



10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

P
HMI

 in 1

50

55

60

65

70

75

80

85

A
v
a
ila

b
ili

ty
 i
n
 %

10
-1

10
0

10
1

10
2

e
IR

 i
n
 %

Figure 5.5.: ARAIM position integrity performance in terms of availability and empirical
integrity risk (eIR) depending on parameter PHMI analyzed in data set for
parameter tuning

case here because of the heavy tail of the distribution of errors as shown in Section 5.4.3,
which is overbound in ARAIM by a Gaussian distribution.

5.6. Comparison

In order to decide which integrity algorithms are used and further analyzed in the
remainder of this work, a preliminary comparison is performed in this Section. The
data set for parameter tuning described in Section 2.3.2 is also used for this preliminary
comparison. Since the position PL is found to be the most challenging in comparison to
the other estimated values, this analysis is restricted to the position. For the following
plots, the frequency of the results is reduced to 1Hz to facilitate the processing, i.e., the
data rate is reduced to one epoch per second.
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Figure 5.6 depicts Stanford Integrity Diagrams of the position PL computed with the
three implemented integrity algorithms for the mentioned data set, which is divided in a
part on the test track and in a part in an urban environment as described in Section 2.3.2.
In the part on the test track with ideal GNSS reception conditions, the PLs bound the
errors at all times and stay under the defined AL, which leads to an empirical IR of 0%
and an availability of 100%. In the urban environment with challenging GNSS reception
conditions, kSigma and KIPL fulfill the requirement of an empirical IR under 1%. The
kSigma algorithm reaches a higher availability than the KIPL algorithm (about 92% versus
71%) but also leads to a higher empirical IR (about 0.6% versus 0%). In contrast to these,
the performance of ARAIM is significantly worse, with an empirical IR of more than 24%.

The weak performance of ARAIM in the urban scenario is caused by disadvantages in
its implementation. The GNSS solution is computed with RTKLIB in post-processing in
comparison to the live output of the NovAtel GNSS receiver for the other two integrity
algorithms, as mentioned in Section 5.5.1. Unfortunately, the performance of the GNSS
solution, especially in urban environments, is significantly worse than the real-time output
of the NovAtel GNSS receiver, since RTKLIB does not solve the integer ambiguities for
the RTK solution reliably in this scenario. Besides that, the employed error model using
standard Gaussian distributions apparently struggles in urban environments, which seems
plausible since the actual error distribution is rather heavy tailed as shown in Section 5.4.1.

All in all, only kSigma and KIPL exhibit an acceptable performance in challenging
environments. Therefore, only these two algorithms are used for the multi-layer fusion in
Chapter 6 and further evaluated in Chapter 7.
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Figure 5.6.: Stanford Integrity Diagrams for protection level of horizontal position error
analyzed in data set for parameter tuning in following algorithm – category
combinations: (a) test track – kSigma, (b) urban – kSigma, (c) test track –
KIPL, (d) urban – KIPL, (e) test track – ARAIM, (f) urban – ARAIM
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6. Federated Multi-Sensor Data Fusion
Architecture

In this Chapter, the multi-layer data fusion architecture for the VDSE, which was shortly
introduced in Section 1.1, is explained. First of all, background information including the
motivation for such a system architecture is given, together with a description of the use
case in Section 6.1. Secondly, the chosen concept is discussed in Section 6.2. Thirdly, the
implementation is explained in Section 6.3.

6.1. Background and Use Case

As mentioned in the introduction (Section 1.1), system architectures for automated
driving are diverse, which also holds true for the VDSE. Modular system architectures are
becomingmore popular, splitting the tasks into separate modules or functions. Even though
the VDSE is commonly implemented as a single function fusing all sensor information,
the concept of modularity is also applied here. In the use case of this work, the VDSE is
implemented as a fusion architecture consisting of two fusion layers. For the general case,
this is depicted in a simplified representation in Figure 6.1.

The First Fusion Layer (FFL) consists of several redundant fusion filters developed by
independent teams. This leads to decisive benefits, which will be discussed later on. In
this work, one of these fusion filters is the one explained in Chapter 4. Each filter inputs a
subset of the available sensor data, where the subsets can be chosen in multiple ways.

For the detection of erroneous sensor data, it is advantageous to systematically form
subsets that include all but one sensor, which are called one-out-subsets then, as imple-
mented for example by Jurado et al. (2020). If multiple errors should be detected at the
same time, smaller subsets have to be formed respectively.

In this work, all filters use the GNSS receiver, which slightly contradicts this strategy. This
is compensated by using different receiver outputs and processing methods as described
later on in Section 6.2. With the use of a common reference sensor, this architecture is
called a federated fusion or integration architecture. For example, Groves (2013, p. 656)
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Figure 6.1.: Simplified representation of multi-layer data fusion architecture for Vehicle
Dynamic State Estimation

calls a similar structure a federated no-reset integration architecture.
Besides that, each filter provides integrity information which is used by the Second

Fusion Layer (SFL). In this layer, the VDSE’s outputs are computed based on the estimated
states of the FFL and the integrity information provided.

Such a multi-layer fusion architecture offers various benefits in comparison to the
common solution of fusing all sensor observations in a single function. First of all, it
increases the VDSE’s robustness against outliers: In case erroneous sensor data is not
detected by the implemented FDE measures in the FFL, it corrupts the output of the
respective fusion filter on the FFL. Plausibility and integrity checks on the SFL increase
the chances to detect these situations and mitigate the influence of erroneous sensor data
on the VDSE’s output.

Furthermore, the proposed multi-layer fusion architecture also offers safety benefits:
If the fusion filters are implemented on different pieces of hardware, for example on
different µController boards, a hardware defect in one of them will not lead to an outage
of the VDSE since the SFL can continue to operate with the remaining FFL filters. The
same applies to the case if a fusion filter’s software crashes due to a programming error
or similar reasons. Since the fusion filters are developed by independent teams, the risk
of simultaneous error occurrences stemming from hidden design flaws in the FFL fusion
filters is minimized (Buchholz et al., 2020). In case a piece of hardware of the SFL breaks
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down or a programming error or similar leads to a crash of the SFL software, the outputs
of one fusion filter in the FFL are used as fall-back solution to prevent an outage of the
VDSE.

Additionally, a modular structure facilitates the distribution of tasks when working in
larger teams, since the FFL filters can be developed in parallel independently of each
other.

Along with the mentioned benefits come certain requirements which have to be fulfilled.
First of all, the general requirements for the fusion filters in the FFL discussed in Sec-
tion 4.1.1 (R1–R5) have to be met. Besides that, the prerequisites for the aforementioned
advantages have to be given: The FFL fusion filters and the SFL need to be implemented
on different pieces of hardware. A minimum of three FFL filters is needed in order to
operate this architecture properly. For the development of these filters, independent teams
are needed. Last but not least, the VDSE as an entire unit also has to fulfill the general
requirements (R1–R5) discussed in Section 4.1.1.

One example of an application is the research project UNICARagil, in which such an
approach using a fusion architecture with two layers is chosen for the VDSE as depicted in
Figure 6.2. Specifically, the concept of the VDSE in UNICARagil contains three FFL fusion
filters which are implemented on three separate µController boards and input different

Figure 6.2.: Simplified system architecture for the Vehicle Dynamic State Estimation in
UNICARagil (Repetition of Figure 1.1, based on previous version published by
the author in Buchholz et al., 2020)
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subsets of the available sensor data. The first filter inputs observations from the first IMU,
from all four odometry sensors and from the GNSS receiver. The other two filters also use
the GNSS receivers’ observations but only one odometry sensor together with the first or
second IMU, respectively. On a fourth µController board, the SFL and additional functions
for communications with other services are implemented. Further details about the actual
implementation in UNICARagil are given in Chapter 8.

The described use case in this work is inspired by the circumstances in the research
project UNICARagil. Therefore, the implementation in this work is also using a setup with
three FFL fusion filters. The chosen concept for this work is described in the subsequent
Section.

6.2. Concept1

This Section discusses the chosen concept for the SFL, whose implementation is explained
in the subsequent Section. As mentioned before, the SFL inputs the estimated states
from the FFL filters together with integrity information about these in form of PLs. All
operations are performed separately for each state. The operation of the SFL can be
summarized in three steps, which are characterized by the keywords plausibility checks,
approval voting and PL-weighted averaging. The first two steps aim to increase the VDSE’s
robustness against outliers and the third step determines the VDSE’s output.

First of all, plausibility checks are preformed in order to identify erroneous state
estimates outside of the usual value range. The value range needs to be configured
beforehand according to the specific use case. This step prevents gross errors to corrupt
the following steps.

The second step contains an analysis of the input’s integrity. According to the definition
of Parhami (2005), this step implements the concept of approval voting. In general, this
concept means that the participants vote for a subset of candidates who meet their criteria
rather than voting for only one candidate, or in other words the participants approve a
subset of candidates (Parhami, 2005). In the following, this approval of one participant
given to another candidate is called support, i.e., a participant supports a certain group
of candidates (Parhami, 2005). Applied to the use case of this work, the integrity of the
inputs is used as criteria in the following way: An input A of the SFL supports another input
B’s solution if the difference between these two solutions is smaller than the respective PL
provided by input A.

Using the example of the position solution, Figure 6.3 depicts this concept. In the
horizontal plane (abscissa direction east, ordinate direction north) three inputs from FFL
1This Section is based on a previous work written by the author (Gottschalg et al., 2021, Section 3).
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Figure 6.3.: Concept of approval voting – depicted as an example for the position solution
(true position as triangle, inputs as dots and protection levels as dashed lines,
chosen way of visualization inspired by Jurado et al., 2020)

filters are shown as dots in the colors blue, green and purple. Their respective PLs are
drawn as dashed lines. The true position is marked by a black triangle. All PLs indicate
that the true position is less than the PL away from their solution, meaning they operate
correctly. The distance between the blue dot and the green dot is smaller than the blue
PL, therefore the blue input supports the green one. The other two inputs do not support
any other input in this example.

Depending on the specific use case, a threshold Tmin is defined. An input needs the
approval of at least Tmin of the other inputs in order to be considered for the third step.
For this work, the experiments showed that a value of Tmin = ns−1

2 with the number of
SFL inputs ns is appropriate to fulfill the requirements, i.e., an input needs the approval of
at least half of the other inputs. For example, for the case of three FFL filters, this means
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an input needs the support of at least one other input in order to be considered in the
following steps. In the example of Figure 6.3 this means that only the green input is used
and the other two are discarded as outliers in this epoch. Summing up, the second step
identifies outliers caused e.g., by design flaws or software bugs in the FFL fusion filters, or
by erroneous sensor data which were not detected by the FFL filter’s FDE measures.

Thirdly, the SFL’s outputs are determined. Similar to the federated KF architecture
proposed by Guan et al. (2012) for a multi-sensor fusion using a variation of the KF,
a weighted average is implemented to compute the output of the SFL. Instead of the
estimated covariance, the squared PL of the respective quantity is used to determine
the weights. In this way, the uncertainties in the estimated states are represented more
accurately taking their potentially heavy tailed error distributions into account. Details
about how these steps are implemented are described in the subsequent Section.

All in all, the novelty of the proposed concept for the SFL lies in the use of the FFL’s
integrity information, namely the FFL’s PLs, for the implemented combination of voting
and data fusion in the SFL. The use of PLs in the second and third step distinguishes
the proposed concept from state of the art multi-layer data fusion architectures such as
cascaded filtered integration architectures or multi-layer neural networkmodels. These use
estimated states and covariances or trained weights, respectively, instead of PLs (Jurado et
al., 2020). Additionally, these concepts generally do not include plausibility and integrity
checks. By these checks in the proposed concept for the SFL and by the FDE measures in
the FFL filters, the VDSE’s robustness is increased, which is shown in the experimental
results in Section 7.3.

6.3. Implementation2

This Section explains the SFL’s implementation. The three Subsections discuss the FFL,
the integrity algorithms implemented in this layer and the SFL, respectively.

6.3.1. First Fusion Layer

As system architecture to evaluate the performance of the proposed concept, a setup
similar to the VDSE in the research project UNICARagil is chosen, which is depicted in
Figure 6.4. There are three multi-sensor data fusion filters, which input different subsets
of the available sensor data. All fusion filters have in common that they implement a
GNSS+IMU+odometry sensor data fusion in a loose coupling of GNSS and IMU.
2This Section (including its Subsections) is based on a previous work written by the author (Gottschalg
et al., 2021, Section 3).
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Figure 6.4.: Multi-layer system architecture of Vehicle Dynamic State Estimation including
three redundant fusion filters as first fusion layer (Figure based on Gottschalg
et al., 2021)

The first fusion filter (Filter 1) inputs the PVT solution as well as the attitude solution
of the dual-antenna RTK-GNSS receiver (see Section 2.3.1). Additionally, odometry
information of all four wheels and the steering wheel angle are used in this filter. The
fusion filter developed in this work is employed as implementation for the first fusion
filter (Filter 1). Its programming code is executed in MATLAB in post-processing even
though the fusion filter is real-time capable and was developed for an implementation in
real-time on a µController (see Chapter 4).

The remaining two fusion filters (Filter 2 and Filter 3) are implemented as post-
processing in NovAtel WayPoint’s Inertial Explorer (IE) 8.90, in order to implement
the aforementioned principle to use fusion filters developed by independent teams. First
of all, the RTK-PVT solution is computed based on the Receiver Independent Exchange
Format (RINEX) observation files from the GNSS receiver. Note that the two filters use
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different GNSS antennas. Secondly, the loosely coupled processing as forward-filtered is
executed. In this way, all three fusion filters are real-time capable. With respect to the
odometry, Filter 2 and Filter 3 use each one non-steered wheel – Filter 2 rear left, Filter 3
rear right – since only a single odometer can be processed in IE 8.90.

All filters estimate the vehicle’s dynamic state including the three-dimensional position,
velocity, acceleration, attitude and angular rate. The performance evaluation is focusing on
horizontal position, velocity and attitude (yaw angle) since these are crucial for automated
driving functions such as collision avoidance. Besides the estimated states, each fusion
filter provides integrity information in form of PLs. The computation of these is explained
in the following Subsection.

6.3.2. Integrity Algorithms

For the algorithm in the SFL to work properly, meaningful PLs for the estimated states of
the three FFL filters are needed. The integrity algorithms presented in Chapter 5 are used
to fulfill this requirement.

As shown in the preliminary comparison in Section 5.6, the proposed implementation
of the KIPL algorithm (see Section 5.4) exhibits the most promising results, especially in
difficult environments regarding the GNSS reception conditions. This first impression will
be confirmed in the extensive analysis in Chapter 7. In order to implement this algorithm,
access to intermediate values of the KF, e.g., the measurement matrices, measurement
residuals and transition matrix, is necessary. Since Filter 1 is implemented by the author in
MATLAB, this access is given. Therefore, for Filter 1 the proposed KIPL integrity algorithm
as explained in Section 5.4 is used to compute the PLs for the estimated states.

For Filter 2 and Filter 3, the mentioned access to intermediate values of the KF is not
given, since there is no such option in IE 8.90. Hence, the proposed implementation
of the more traditional integrity algorithm kSigma is used here. The PLs are computed
as explained in Section 5.3 but with a slightly different set of parameters adapted for
usage with IE 8.90. The parameters kposH and kvelH are set to three, representing an IR of
approximately 0.3%, assuming normally distributed errors. For kψ an empirically defined
factor of fifteen is chosen to fulfill the requirements for the IR. The lower bounds are also
empirically chosen as 0.15m for the position PL, 0.06m/s for the velocity PL and 0.25 ° for
the heading PL.

Additionally, the experiments showed that the PLs of Filter 2 and 3 are decreasing
promptly after weak GNSS reception conditions. This leads to over-optimistic results,
since the quality of GNSS positioning is typically reduced immediately after reacquisition
of GNSS signals. Therefore, a function is implemented to prevent the PLs of Filter 2
and 3 from decreasing rapidly in these circumstances. When in the last thirty seconds
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RTK-GNSS reception was not available, then the PL’s decrease is limited to one percent
of it’s value per second. As soon as there are thirty seconds of uninterrupted RTK-GNSS
reception, this restriction is removed and the PL goes instantaneously to its original value,
computed normally as described before.

6.3.3. Second Fusion Layer

Summarizing the concept for the SFL, Figure 6.5 depicts the SFL’s flow chart with the
implemented steps, which are explained in this Subsection. As mentioned before, the
evaluation in this work is focusing on the horizontal position, velocity and the yaw angle.
Thus, all steps are performed separately for these three quantities.

Figure 6.5.: Flow chart of second fusion layer including plausibility and integrity checks
(Figure based on Gottschalg et al., 2021)
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After receiving the inputs from the FFL filters, plausibility checks are performed by
verifying the value range of all inputs. According to the specific use case, the acceptable
value range needs to be configured beforehand. As an example of a VDSE for automated
driving, Table D.1 in the Appendix depicts a possible choice for the value ranges used in
this step.

In a second step, the integrity of the inputs is analyzed. As discussed in the previous
Section, approval voting is implemented here. Therefore, the differences between the
inputs need to be computed. For the horizontal position and velocity this means a
difference in navigation coordinates (east-north-up in m or m/s, respectively) and for the
heading solution simply the one dimensional difference (in rad) is taken. As one example,
the formulas for the position are given and are analogously applied for the other two
quantities as well. An input A supports an input B’s position solution if

dposH,AB < PLposH,A (6.1)

with the horizontal position PL of input A PLposH,A and the horizontal position difference
dposH,AB given as

dposH,AB =
√︂
d2posE,AB + d2posN,AB, (6.2)

where dposE,AB and dposN,AB are the distance in east and north direction between the
position solutions of the inputs A and B, respectively.

To store the results of the approval voting, a matrix T is introduced, similarly to the
test statistic matrix used by Jurado et al. (2020). The rows of matrix T store the approval
for other inputs, while the columns are associate with received support. This means that,
e.g., if input two supports input three, T(2, 3) = 1 holds true. In Figure 6.6 this principle
is shown as one example for the case of three inputs.

As discussed in the previous Section, an input needs the support of at least half of the
other inputs, meaning in the use case of this work with three FFL filters, an input needs the
support of at least one of the other inputs to be considered for the following computations.
Thus, the value Ti for each input i, which describes the overall support of the input i,

Ti =

n∑︂
j=1

T(j, i) (6.3)

has to be greater or equal to the threshold Tmin = ns−1
2 = 1 to pass the approval voting

step, with the number of inputs to the SFL ns = 3. In this process, each quantity has its
own matrix T, meaning there are three matrices Tpos, Tvel, Tψ, for the position, velocity
and heading approval voting results, respectively.
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Figure 6.6.: Explanation of Matrix T which stores approval voting results, depicted here
as one example for the case of three inputs

Subsequently, the outputs of the SFL are computed. The previously (in Section 6.2)
described weighted average is formed by using the PL PLui of the inputs ui from the FFL
filters to determine the weights wi. The SFL’s output y is computed as

y =

ns∑︂
i=1

wui ui (6.4)

with
wui =

PL−2
ui∑︁ns

k=1 PL
−2
uk

, (6.5)

where ns is the number of FFL filters meaning inputs to the SFL. Note that the chosen
weights wui satisfy the condition

ns∑︂
i=1

wui = 1. (6.6)

If an input ui did not pass the plausibility check or did not reach a value of Ti ≥ Tmin in
the approval voting step, its corresponding weight wui is set to zero. To derive the PL of
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the SFL’s outputs, variance propagation is used. In general, the variance σ2z of a scalar
random variable z =

∑︁n
i=1 ai xi with the scalar factor ai and the scalar random variable

xi and its variance σ2xi can be computed as3

σ2z =

n∑︂
i=1

a2i σ
2
xi +

n∑︂
i=1

n∑︂
j=1

i ̸=j

ρij ai aj σxi σxj (6.7)

using the correlation factor
ρij =

σxixj
σxi σxj

(6.8)

and σxixj as covariance of xi and xj . Together with the assumption, that PLs behave like
standard deviations and therefore squared PLs can be treated like covariances, the PL of
the SFL’s output PLyi results as

PLy =

⌜⃓⃓⃓
⎷⃓

ns∑︂
i=1

(wui PLui)
2 +

ns∑︂
i=1

ns∑︂
j=1

i ̸=j

ρwui wuj PLui PLuj (6.9)

with a constant correlation factor ρ. Here, a conservative assumption is made by setting
ρ = 1.

To implement the SFL, all computations are performed analogously for each dimension of
the three outputs in focus, horizontal position, velocity and attitude (yaw angle), replacing
the generic output y in Equation (6.4) and using the respective PL in Equation (6.9).

3The equations for the covariance propagation are given in a similar form by Sciacchitano et al. (2016).
Further details can be found in the book of Niemeier (2008, Ch. 2).
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7. Results

In this Chapter the results corresponding to the implemented concepts of Chapters 4,
5 and 6 are presented. The extensive data set of in total 23h 40min introduced in
Section 2.3.2 is used here. The sensor setup is given in Section 2.3.1, where also the
reference solution is explained. As mentioned in that Section, the difference between the
reference solution and the estimated solution is considered as estimation error.

As criteria for performance evaluation, the previously introduced performance criteria
for navigation from Pullen (2008) – accuracy, integrity, continuity and availability – are
taken as a starting point. For the accuracy, the 95% quantile of the estimation error is used.
The integrity is investigated by computing the empirical IR. Together with the availability
(fraction of epochs with PL smaller AL), it is analyzed in the Stanford Integrity Diagram
as introduced in Section 2.4. The continuity is inspected according to the definition given
in Section 2.4, with no further requirements on the solution quality besides solution
completeness, meaning the SFL provides all evaluated outputs in the analyzed epochs.

First of all, the implemented fusion filter is analyzed as single-layer fusion regarding its
accuracy in Section 7.1 as well as its integrity and availability in Section 7.2. Afterwards,
the multi-layer fusion is evaluated in Section 7.3 regarding all four mentioned performance
criteria.

The multi-sensor data fusion implemented in this work estimates the full three dimen-
sional dynamic state of the vehicle. However, only the horizontal position and velocity as
well as the yaw estimate will be analyzed in this Chapter as explained in Section 5.1. For
brevity, the three quantities are referred to as position, velocity and attitude, even though
precisely only the horizontal part of them is meant.

7.1. Multi-Sensor Data Fusion Filter

The implemented multi-sensor fusion filter is evaluated in post-processing in MATLAB
even though the algorithm is real-time capable as explained in Chapter 4. The results
originate from an evaluation using the extensive data set and are analyzed in the four
measurement categories introduced in Section 2.3.2.

93



Figure 7.1 depicts the Cumulative Distribution Function (CDF) of the error in the position
solution computed by the implemented multi-sensor data fusion filter. The introduced
measurement categories test track, highway, country road and urban are indicated by the
colors blue, green, yellow and purple, respectively. The limit on the abscissa is chosen to
be the AL used in the following Section to focus on the relevant area. Colors and abscissa
limit are chosen for all CDF plots in this Section in this way.

For about 70% of the epochs the performance in the four categories is rather similar
with errors under 0.07m for the first three categories and 0.09m for the urban category.
Afterwards, differences between the categories become visible. While the 95% quantile is
reached at 0.139m for the test track category, this values increase to 0.352m and 0.217m
for the highway and country road category, respectively. In the urban category, the
95% quantile is outside of the plotted area at 1.007m. While a significantly degraded
performance in the urban category is expected, the results for the highway and country
road category might be striking. On country roads, the position error is only slightly
higher than on the test track since the GNSS reception conditions are in general favorable
leading to a high GNSS accuracy. In the highway category, many bridges and overhead
sign structures lead to problems with the ambiguity fixing in the used GNSS receiver,
explaining the slightly degraded performance.
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Figure 7.1.: Cumulative distribution function of horizontal position error computed by
implemented multi-sensor data fusion filter in four measurement categories
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For the error in the estimated velocity, the CDF is depicted in Figure 7.2. The perfor-
mance is very similar in all four categories with values for the 95% quantile between
0.037m/s and 0.068m/s. The unfavorable GNSS reception conditions in the urban cate-
gory have no noticeable influence on the velocity accuracy. The results in the country road
and highway category are slightly better which can be explained by the higher driving
speeds in these categories leading to a better accuracy of the odometry sensors, compared
to the other two categories (test track and urban).

The estimation error for the attitude exhibits a similar performance with respect to the
four measurement categories. Its CDF is plotted in Figure 7.3. The values for the 95%
quantile are between 0.24 ° and 0.42 °. Again the performance on highway and country
roads is superior to the other two categories due to the higher driving speeds, where the
measurement updates from the odometry sensors lead to a good heading accuracy. In
the urban category, the performance is degraded by about 0.1 ° compared to the other
categories regarding the 95% quantile.

All in all, the performance of the multi sensor data fusion filter meets the expectations.
Table 7.1 summarizes the results for the position, velocity and attitude solution in the
four measurement categories. Compared to previous works with a similar sensor setup,
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Figure 7.2.: Cumulative distribution function of horizontal velocity error computed by
implemented multi-sensor data fusion filter in four measurement categories
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Figure 7.3.: Cumulative distribution function of horizontal attitude error computed by
implemented multi-sensor data fusion filter in four measurement categories

for example the work of Reuper (2020), the accuracy is improved. First of all, the
position accuracy as 95% quantile is compared. For ideal reception conditions, the value
decreased from around 0.33m to 0.139m. For country roads, the improvement is more
significant from around 1.12m to 0.217m. These improvements are mainly due to the
usage of RTK-GNSS, which was not used in Reuper’s work. In urban environments, the
improvement regarding the position error is smaller (from more than a meter to about one
meter), since here RTK-GNSS is more often not available than in the other measurement
categories. For the velocity and attitude error no significant improvement compared to
values stated by Reuper is observable. Note that this comparison to Reuper’s results is
approximative since the measurement conditions are never identical even though similar
trajectories have been driven. Additionally, the quoted numbers from Reuper’s work relate
to single driving experiments, while in this work the 95% quantile is computed based on
parts of several driving experiments of one category.

Regarding the requirements for the fusion filter defined in Section 4.1.1, the real-time
requirement (R1) is fulfilled as will be shown in Section 8.2. The second requirement R2
is fulfilled since the filter is compatible with the used sensors. The fulfillment regarding
accuracy and availability (R3) will be discussed further together with the requirement

96



Table 7.1.: Accuracy of implemented fusion filter’s horizontal position, velocity and atti-
tude solution in comparison to the reference solution using an extensive data
set divided into four categories

Test Track Highway Country Road Urban

PE95% (m) 0.139 0.352 0.217 1.007

VE95% (m/s) 0.064 0.043 0.037 0.068

HE95% (°) 0.33 0.29 0.24 0.42

regarding the performance in urban environments (R4) in the following Sections. The fifth
requirement (R5) is analyzed in the next Subsection regarding the integrity monitoring
performance.

7.2. Integrity Monitoring

In this Section the performance of the integrity monitoring algorithms implemented in
this work is analyzed using the extensive data set, as introduced in Section 2.3.2 and
also used above for the analysis of the fusion filter. As for the fusion filter, the results
are generated in post-processing in MATLAB, even though all integrity algorithms are
real-time capable.

In the comparison and intermediary conclusion in Section 5.6, two integrity monitoring
algorithms were selected for the following analysis. The traditional approach based on
covariances estimated by the fusion filter named kSigma and the implemented version of
the more sophisticated approach, which is called KIPL and is using Student distributions
for modeling the errors of the KF’s outputs. The parameters are chosen as explained in
Chapter 5 and the assumptions for the analysis (e.g., for the AL and IR) are as explained
in the analysis in Section 5.1.

To begin, the focus is on aggregated data over the extensive data set in the four intro-
duced measurement categories. Each measurement category is inspected using Stanford
Integrity Diagrams (e.g., Figure 7.4) as explained in Section 2.4. Subsequently, typical
situations in which the implemented integrity algorithms output misleading information
are analyzed. Finally, the results are summarized.
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Figure 7.4.: Stanford Integrity Diagrams for the protection level of the horizontal position
error (a) and (b), horizontal velocity error (c) and (d), heading error (e) and (f)
in measurements in the test track category – results for kSigma on the left
(a), (c), (e), KIPL on the right side (b), (d), (f)
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For plotting the results in Stanford Integrity Diagrams, the frequency of the results is
reduced to 1Hz to facilitate the processing, as mentioned in Section 5.6. The Figures for
the Stanford Integrity Diagrams of one measurement category consist of six diagrams and
have the following structure: The left column depicts the results for the kSigma integrity
algorithm, the right column for the KIPL algorithm. The first row represents the results
relating to the position error and its protection level. The following rows are for the
velocity and attitude, respectively.

To speed up the processing of the extensive data set, the numerical solving of equations
for the KIPL integrity algorithm (Equations (5.17) and (5.26) in Section 5.4.2) is replaced
by an interpolation from saved data points, which is called using a look-up-table. The
inputs for the table to compute Nm in Equation (5.17) are the right side of this Equation
and the term tr(Rm)/ tr(S). Two tables are used for Nm, one for d = 1 and one for
d = 3. Nm and d are the inputs for the table of k in Equation (5.26). To generate the
look-up-tables, the first two minutes of the data set for parameter tuning are processed
and all mentioned inputs as well as the values for the table’s outputs Nm and k are saved
as data points. To compute the output, the values are linearly interpolated in-between
the saved data points1. Empirical analysis showed that this replacement only marginally
effects the results (no noticeable impact on the put out PL), but significantly reduces the
processing time (more than factor two on the used hardware for post-processing).

First of all, ideal GNSS reception conditions represented by the test track category
are inspected. Figure 7.4 depicts the Stanford Integrity Diagrams for this category. As
expected, both algorithms (kSigma and KIPL) perform very well in ideal GNSS reception
conditions on the test track. The empirical IR, computed as percentage of epochs with a PE
greater than the computed PL, is below the configured value of 1% for all three analyzed
quantities. However, only for the KIPL algorithm the empirical IR stays zero for the position
and velocity solution. For the kSigma outputs, in certain epochs the PL is not bounding the
respective error, but there are no epochs with Hazardous Misleading Information (HMI) in
this category. This also holds true for the attitude, where the empirical IR is slightly higher
for both algorithms than for the position and velocity outputs, staying still well below
the configured IR. Regarding the availability, the velocity solution is highly available for
both algorithms (kSigma – 99.9%, KIPL – 100%). For the position solution, this is only
the case for kSigma with around 99.9%, while the value for KIPL is with around 78.9%
significantly lower. For the attitude, the opposite is observable, the KIPL solution is highly
available (100%) and the kSigma result amounts to around 86.4%.

Secondly, the highway category is analyzed. In Figure 7.5, the respective Stanford

1In the implementation in MATLAB, the function ‘scatteredInterpolant’ is used to perform the interpolation
implementing a Delaunay triangulation of the saved data points (The Mathworks, Inc., 2022).
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Figure 7.5.: Stanford Integrity Diagrams for the protection level of the horizontal position
error (a) and (b), horizontal velocity error (c) and (d), heading error (e) and (f)
in measurements in the highway category – results for kSigma on the left
(a), (c), (e), KIPL on the right side (b), (d), (f)
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Integrity Diagrams are depicted. Here, the GNSS reception conditions are not ideal
anymore due to bridges and over-head sign structures. These degrade the GNSS receiver’s
– and therefore also the fusion filter’s – performance as the analysis in Section 7.1 showed.
This strongly affects the integrity performance of the kSigma algorithm with respect to the
position solution. As seen in the mentioned Figure, the configured value for the IR cannot
be met for the position solution using kSigma, since the empirical IR amounts to 2.7%.
Within the epochs with PE > PL, there are ten epochs with HMI, which could be safety
issues depending on the application. For the velocity solution this impact is not observed,
the empirical IR is zero. For the attitude, the kSigma algorithm also fulfills the integrity
requirement with an empirical IR of around 0.2% and there are no epochs with HMI. In
contrast to the kSigma algorithm, the KIPL algorithm is less affected by the non-ideal
conditions. It can deliver a performance similar to the test track category. The empirical IR
stays zero for all three quantities and there are no epochs with HMI. For both algorithms,
the availability for the position and velocity solution is only slightly reduced compared
to the test track category. The decrease amounts to less than five percentage points for
the kSigma algorithm and less than two percentage points for the KIPL algorithm. For
the attitude, this decrease in availability is more significant, especially for the kSigma
algorithm with a decrease of about 38 percentage points (KIPL algorithm: 15 percentage
points).

Thirdly, the country road category is analyzed using the Stanford Integrity Diagrams
depicted in Figure 7.6. In this category, the GNSS reception conditions are also not ideal
with a similar amount of degradations compared to the highway category. An important
difference is the low amount of bridges and overhead sign-structures on country roads.
This leads to a better filter performance compared to the highway category as shown
in Section 7.1 and facilitates the integrity monitoring. Both algorithms perform well in
the country road category. They meet the integrity requirement and reach values for
the empirical IR below configured IR in all three depicted quantities. There are also no
epochs with HMI, except for one epoch for the position output of KIPL which is equivalent
to less than 0.004%. In general, the empirical IR of the KIPL algorithm is lower than for
the kSigma algorithm in this category, amounting to 0.014% for the position and zero for
the velocity and the attitude. For the kSigma algorithm, these values are slightly higher
with 0.01% for the velocity and 0.05% for the attitude. Only for the position output,
the empirical IR is recognizably higher and amounts to 0.65% staying still under the
configured limit. Looking at the availability, the kSigma algorithm performs similarly
to the highway category, except for the attitude where the availability is with 93.5%
significantly higher. For the KIPL algorithm the availability is increased for the position
compared to the highway category with 83.1% but decreased for the velocity and attitude
with 93.2% and 74.8%, respectively.
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Figure 7.6.: Stanford Integrity Diagrams for the protection level of the horizontal position
error (a) and (b), horizontal velocity error (c) and (d), heading error (e) and (f)
in measurements in the country road category – results for kSigma on the
left (a), (c), (e), KIPL on the right side (b), (d), (f)
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Lastly, a closer look at the results in the urban category is taken. Figure 7.7 depicts the
respective Stanford Integrity Diagrams. In this category, the GNSS reception conditions are
challenging due to frequent degradation of the GNSS reception. Among other unfavorbale
circumstances, tunnels and multi-storage buildings on both sides of the road creating
so-called urban canyons cause signal obstruction as well as multipath and NLOS reception.
The filter performance for the position solution is degraded as shown in Section 7.1. This
explains why in this measurement category, the kSigma algorithm is not able to fulfill the
integrity requirement for the position. Its empirical IR amounts to 2.5% which is higher
than the configured limit of 1%. However, it can fulfill the requirement for the velocity
and attitude with values for the empirical IR of 0.2% and 0.6%, respectively. The KIPL
algorithm performs also in this especially challenging environment of the urban category
better than the kSigma algorithm with respect to the empirical IR of the position solution.
The value for the KIPL algorithm amounts to 0.8%. For the other two quantities, the
configured limit for the IR is kept as well. Compared to the kSigma algorithm, the value
for the empirical IR for the velocity is slightly higher with 0.8% and similar for the attitude
with 0.6%. Looking at the number of epochs with HMI, the KIPL algorithm exhibits a
better performance than the kSigma algorithm in all three quantities. For the position, the
number of these epochs amounts to 0.2% compared to 0.6% for the kSigma algorithm.
For the velocity this difference is less significant (KIPL: 0.05% – kSigma: 0.08%). For
the attitude both algorithms do not output any HMI in this category. When inspecting
the availability, the difficulty of this measurement category is reflected in the reduced
values compared to the country road category. For the position, the values amount to
83.9% for the kSigma algorithm and 68.3% for the KIPL algorithm. For the velocity, these
values are less affected by the mentioned difficulties (kSigma: 98.8% – KIPL: 85.6%).
The attitude availability of kSigma is reduced in the urban category to 60.9%, while the
KIPL algorithm shows a higher attitude availability of 75.5%.

Before summarizing the results of this Section, a brief analysis of circumstances in which
the PLs do not bound the respective error is given. Since the position solution has been
found to be the most challenging, this quantity is in focus here. During the evaluation of
measurements used in this Section, three typical situations have been identified in which
the integrity algorithms tend to output misleading information, meaning a PL below the
actual error.

Unfavorable GNSS reception conditions have a strong impact on the performance of the
kSigma algorithm as mentioned before. For the first situation, a part of the measurement
recorded on 9 May 2019 in a forest in the south of Darmstadt, Germany is selected. In
Figure E.1 in the Appendix, the PE put out by the implemented filter and the respective
PLs of the kSigma and KIPL algorithm as well as the PDOP and number of used satellites
put out by the used GNSS receiver are depicted. During the first part of the shown extract,
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Figure 7.7.: Stanford Integrity Diagrams for the protection level of the horizontal position
error (a) and (b), horizontal velocity error (c) and (d), heading error (e) and (f)
in measurements in the urban category – results for kSigma on the left (a),
(c), (e), KIPL on the right side (b), (d), (f)
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PDOP and number of satellites are volatile indicating quickly changing GNSS reception
conditions, which is due to the obstruction by vegetation on this road. This leads to a raise
in both PLs. When the reception conditions worsen after about 398 800 s of the respective
GPS week, meaning less satellites are used and the PDOP increases, the PE increases as
well. While the KIPL algorithm bounds this increased error by its PL, the kSigma algorithm
underestimates the error which leads to misleading information put out by the kSigma
algorithm.

The second situation to be mentioned here includes a total obstruction of GNSS in
a tunnel in the city center of Darmstadt, Germany in a measurement recorded on 26
October 2020. Figure E.2 in the Appendix depicts the respective values for PE, PLs, PDOP
and number of used satellites. At around 142 720 s of the respective GPS week, no GNSS
solution is available since no signals from satellites reach the GNSS receiver in the tunnel.
Obviously, this impacts the position solution of the fusion filter and leads to an increasing
error. In the beginning, the kSigma algorithm bounds this error by its PL. Towards the end
of the tunnel, around the time when a GNSS solution becomes available again, the kSigma
algorithm underestimates the error which leads to a PL smaller than the PE meaning to
an output of misleading information. The KIPL algorithm outputs a significantly higher
PL wherefore the error is bound by its PL in this situation.

Another challenge for the integrity algorithms are wrongly fixed integer ambiguities
in the GNSS receiver. These represent the third typical situation in which misleading
information tends to be put out. Figure E.3 in the Appendix depicts the respective values
for this situation, extracted from a measurement in the north of Darmstadt, Germany
recorded on 9 May 2019. The respective street is a tree avenue, which leads to unfavorable
GNSS reception conditions. Due to the obstruction created by the vegetation starting
around 400 840 s of the respective GPS week, both PLs increase. When the reception
gets better, the kSigma algorithm falls back quickly on a lower PL. At around 400 875 s
of the respective GPS week, it seems like the GNSS receiver wrongly fixed the integer
ambiguities to determine the RTK-GNSS solution, maybe due to a cycle slip. The GNSS
receiver does not output the ambiguities or further information about the RTK solution,
so an explanation is not possible at this point. This leads to a jump in the position error
by about one meter which is not prevented by the outlier detection and also not corrected
in the directly following epochs due to difficult GNSS reception conditions. Both integrity
algorithms do not detect this increased error and output misleading information for several
epochs.

These three situations emphasize that the GNSS reception conditions have a strong and
dominant impact on the performance of the integrity monitoring algorithms. Potential for
improvement is found for example in the described situations and also in the aim for a
higher availability. The mentioned points need to be further investigated in future work
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and are taken up again in the outlook at the end of this work (see Section 9.2).
To summarize the results of this Section regarding the integrity monitoring performance

of the kSigma and KIPL algorithm in the four measurement categories, Table 7.2 depicts
their values for the empirical IR and availability. All in all, the KIPL algorithm fulfills
the integrity requirement of an empirical IR under the configured limit of 1% in all four
measurement categories and in all three inspected quantities. For the kSigma algorithm,
this also holds true with exceptions for the position solution in the highway and urban
category, which can be explained by the degraded filter performance regarding the position
solution in these measurement categories. In these two categories, the different error
modeling in the KIPL algorithm leads to a better performance and therefore a lower
IR, fulfilling the integrity requirement. On the other hand, the KIPL algorithm outputs
generally higher PLs than the kSigma algorithm (with the chosen parameter set) and can
therefore be described as more conservative. This leads to a lower availability than for
the kSigma algorithm. The attitude availability represents an exception to the general
statements in the previous sentences. Here, overall the KIPL algorithm has a higher

Table 7.2.: Results of the integrity monitoring algorithms with respect to the empirical
integrity risk (IRe) and availability (Av) in the four described categories

Position Velocity Heading

IRe Av IRe Av IRe Av

(%) (%) (%) (%) (%) (%)

Test kSigma 0.15 100.00 0.01 100.00 0.41 86.84

Track KIPL 0.00 78.94 0.00 100.00 0.24 100.00

High- kSigma 2.70 94.46 0.00 99.91 0.17 48.23

way KIPL 0.00 77.51 0.00 98.59 0.00 85.09

Country kSigma 0.65 94.50 0.01 99.80 0.06 93.53

Road KIPL 0.01 83.07 0.00 93.18 0.00 74.78

Urban
kSigma 2.52 83.95 0.22 98.79 0.60 60.90

KIPL 0.80 68.26 0.35 85.57 0.63 75.45
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availability, still keeping a lower or about equal empirical IR.

7.3. Federated Multi-Sensor Data Fusion

This Section deals with the analysis of the multi-layer data fusion architecture’s perfor-
mance, which is abbreviated as multi-layer fusion in the following. The implementation is
given in Section 6.3: Filter 1 is the fusion filter developed in this work running in MATLAB,
Filter 2 and 3 are evaluated in IE 8.90. The implementations of the integrity algorithms
are described in Section 6.3.2: For Filter 1 the KIPL algorithm is used, Filter 2 and 3 use
the kSigma algorithm. The results are generated in post-processing using MATLAB and
IE 8.90, even though all used algorithms are real-time capable.

As before, the extensive data set introduced in Section 2.3.2 is used and all four men-
tioned performance criteria (accuracy, integrity, continuity and availability) are inspected.
Unfortunately, a change in the configuration of the GNSS receiver implemented in October
2020 reduces the output of the second antenna to a dual-antenna solution computed in
the GNSS receiver. The recording of RINEX observation files from the second antenna
was not possible after this date. Therefore, Filter 3 has to use the observations from the
first antenna only for the driving experiments after the mentioned date.

To analyze the accuracy, the 95% quantile for the position, velocity and attitude error is
inspected. Table 7.3 depicts the values for the three fusion filters in the first layer (F1–F3)
as well as for the output of the second layer. Note that the data processed in MATLAB
and IE 8.90 needed to be aligned (cut-off of non-overlapping epochs and interpolation)
for processing in the second fusion layer. Therefore, the results differ slightly from the
previously quoted results for the FFL alone in Section 7.1 and 7.2.

Looking at the values for the position error in the four measurement categories, the
multi-layer fusion shows an improved performance compared to its inputs, the three fusion
filters in the first layer. Not only in favorable conditions, also in the urban measurement
category, the 95% quantile of the position error is lower for the output of the SFL than
for any of the FFL filters. For the velocity solution, this also holds true except for the
test track scenario where the SFL’s performance is similar to the one of Filter 2 and 3
in the FFL. For the attitude solution, the accuracy is also improved in three out of four
measurement categories by using the SFL over only FFL filters. Only in the country road
category, no improvement is reached. Overall, the SFL performs significantly better in
terms of accuracy. While there are no exceptions for the position solution, in one out of
four measurement categories, this does not hold true for the velocity and attitude solution.

Besides that, Table 7.3 also depicts the empirical IR and the availability (meaning the
percentage of epochs where the put out PL is lower than the specified AL) for the three
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quantities of interest. To go into further detail for these two performance quantities,
Stanford Integrity Diagrams are used. For each of the three outputs (position, velocity and
attitude), one Figure is included in the following. Each of these Figures, e.g., Figure 7.8
for the position, depicts the results of the four measurement categories, each of them in
a separate diagram. In the upper left corner, the results for the test track category are
depicted. The highway, country road and urban category follow in the upper right, lower
left and lower right corner, respectively. In each Stanford Integrity Diagram, the respective
PL is plotted against the corresponding error as explained in Section 2.4.

As for the FFL filters, the GNSS reception conditions have a strong influence on the
integrity performance of the multi-layer fusion. When looking at the results for the SFL’s
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Figure 7.8.: Stanford Integrity Diagrams for the protection level of the horizontal position
error of the second fusion layer output in measurements in the test track (a),
highway (b), country road (c) and urban (d) category
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position solution in Figure 7.8, a very good performance is observed in the test track
category in Subfigure (a). As expected, there are no epochs with misleading information
and the availability is superior with more than 99.9%. The values in Table 7.3 confirm that
not only the accuracy could be increased compared to the FFL filters but also the availability
while keeping an empirical IR of zero. In the highway category in Subfigure (b), the
integrity performance of the multi-layer fusion does not worsen. There are still no epochs
with misleading information. The availability decreases slightly compared to the test track
category. The values in Table 7.3 show that the availability is again higher than the one of
the FFL filters. On country roads depicted in Subfigure (c), there are about 0.07% of the
epochs with misleading information but no epochs with HMI. The integrity requirement
of an emprical IR smaller than one percent is fulfilled with a margin of more than one
order of magnitude. The SFL’s empirical IR is smaller than the majority of the values
from the filters in the FFL. The SFL’s availability decreases compared to the previous
measurement category, resulting in a value similar to the performance of FFL filters. In
the urban category depicted in Subfigure (d), the GNSS reception conditions are strongly
degraded. This leads to a weaker integrity performance of the Filter 3 (F3) in the FFL. With
an empirical IR of around 1.17% the third filter exceeds the requirement of one percent.
The multi-layer fusion depends on FFL filters and is therefore influenced by this. The
SFL’s empirical IR amounts to around 1.1% and is sightly higher than requirement. About
0.2% of the epochs contain HMI. Here, it becomes clear that the multi-layer fusion might
not fulfill the integrity requirement if the filters in the FFL do not fulfill this requirement.
Regarding the availability (and also accuracy as mentioned before), the multi-layer fusion
outperforms the filters in the FFL even in this challenging measurement category.

The results for the SFL’s velocity solution are depicted in Figure 7.9. They confirm the
very good impression pointed out in the previous paragraph while the performance is
improved. In terms of the integrity, the requirement of an empirical IR smaller than one
percent can be kept in all four measurement categories. The empirical IR is zero in three
out of the four measurement categories and smaller than 0.1% in the challenging urban
category. Overall, there are also no epochs with HMI. Additionally, the empirical IR is
lower than the one of the FFL filters while the availability is higher in all four measurement
categories.

For the heading solution of the multi-layer fusion, the integrity requirement of an
empirical IR smaller than one percent is also fulfilled in all four measurement categories
as depicted in Figure 7.10. In the test track category, the SFL’s PL is slightly over-optimistic
leading to about 0.7% of the epochs with misleading information. The two filters imple-
mented in IE 8.90 (F2 and F3) are not fulfilling the integrity requirement in this category
which leads to this counter-intuitive result. Nevertheless, this shows that the multi-layer
fusion can fulfill the integrity requirement, even though two filters in the FFL are exceed-
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Figure 7.9.: Stanford Integrity Diagrams for the protection level of the horizontal velocity
error of the second fusion layer output in measurements in the test track (a),
highway (b), country road (c) and urban (d) category

ing it slightly. In the other three measurement categories, the integrity requirement is also
fulfilled, here with a margin of at least one order of magnitude. The overall availability of
the heading solution is high with values over 97% in the first three categories and over
92% in the urban category. The SFL increases the availability compared to the FFL filters
in the country road and urban category.

Furthermore, a closer look at the continuity of the SFL’s outputs is taken. In the analyzed
measurements, the multi-layer fusion provides a solution in all epochs, i.e., there were no
outages. Theoretically, a situation might occur where no input to the SFL confirms any
other input. The approval voting described in Section 6.3.3 will set all weights wui to zero
in this case. To prevent that no output of the SFL is computed, further measures have to
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Figure 7.10.: Stanford Integrity Diagrams for the protection level of the horizontal attitude
error of the second fusion layer output in measurements in the test track
(a), highway (b), country road (c) and urban (d) category

be taken. One option is to define one filter of the FFL as fall-back solution beforehand,
which is selected in this special case. If all weights wui were set to zero by the approval
voting, the SFL would output this filter’s outputs then. Depending on the use case, a
warning or error message should be issued.

In summary, the performed analysis showed several advantages of the multi-layer fusion
in comparison to single-layer filters as they are used in the FFL. In terms of accuracy
analyzed using the 95% quantile of the error in the position, velocity and attitude solution,
the multi-layer fusion leads to a significant improvement. For the position, the accuracy
is better than for the filters on the FFL in all measurement categories and for the other
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two quantities this holds true in three out of four categories. Regarding the integrity,
the multi-layer fusion fulfills the specified requirement in all measurement categories,
with only one exception for the position in the challenging urban category. This can be
explained by a violation of the integrity requirement by one of the inputs in this category.
The empirical IR is always lower for the SFL’s ouputs than for the ones of the FFL, with
only one slight exception for the heading output. In the vast majority of the cases, the
availability is also increased by the SFL. Only in three out of twelve quantity-category
combinations, the availability is not increased but on a similar level compared to the FFL.

If this performance is sufficient for the desired use case, will depend on the concrete
requirements. For this work, the requirements mentioned earlier in Table 4.1 in Sec-
tion 4.1.1 are used. The fulfillment of the first three of them was already discussed in
Section 7.1. The fifth one relates to the integrity information which are provided and fulfill
the specified requirement as mentioned before. The remaining fourth requirement talks
about the operation in urban environments. Here, the performance of the implemented
VDSE alone might not be sufficient for the use case of automated driving. Therefore, it
is proposed to combine the implemented multi-layer fusion with a second localization
function using environmental sensors (e.g., camera, LiDAR) to fulfill the requirements.
This will be discussed in the following Chapter, which explains the application of the
implemented VDSE in the research project UNICARagil.
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8. Application in the Research Project
UNICARagil

In this Chapter, the application of the developed multi-layer data fusion in the VDSE
of the research project UNICARagil is discussed as one example how the implemented
algorithms can be applied to the use case of automated driving. A general introduction
into the project is given in Section 2.5. First of all, the integration of the developed
multi-layer fusion as VDSE in the automation domain is described in Section 8.1. Secondly,
the commissioning tests of the VDSE including first results are presented in Section 8.2.
Afterwards, a short summary regarding the status of the VDSE in the still ongoing research
project UNICARagil including an outlook over the remaining duration of the project is
given in Section 8.3.

8.1. Integration

This Sections explains how the algorithms developed in this work are applied in the
VDSE of the research project UNICARagil. To begin, the general system architecture in
the automation domain is discussed in Section 8.1.1. Then, the interaction of the two
localization functions in UNICARagil with the Offset-Correction is described in further
detail in Section 8.1.2. Afterwards, the implementation of the VDSE itself is explained in
Section 8.1.3.

8.1.1. System Architecture of Automation Domain

In the automation domain of UNICARagil, as explained by Buchholz et al. (2020), several
services work together as depicted in Figure 8.1. The video-based localization outputs
a pose (position and attitude) relative to a high-definition map and sends it via the
Automotive Service-Oriented Software Architecture (ASOA) to the trajectory planer. Here,
decisions about the behavior of the vehicle are made and the target trajectory is computed.
The trajectory control receives this trajectory and aims to minimize the tracking error,
meaning the difference between the actual vehicle state and the state included in the
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Figure 8.1.: System architecture of automation domain in the research project UNICARagil
(Figure based on content of Homolla et al., 2020)

target trajectory. To do so, the trajectory control computes suitable control outputs for
the dynamics modules. These implement the inputs and actually drive the vehicle in the
desired way.

To enable the trajectory control to compute the tracking error, which is needed to
determine the control outputs, it needs to know the actual vehicle state, including its pose,
velocity, acceleration and angular rate. Since the trajectory control is running with 50Hz,
it needs to receive the actual vehicle state with at least this rate.

In Figure 8.1, the colors mark the affiliation of services to one of the three layers
of the computational architecture in UNICARagil, which are the cerebrum, brainstem
and spinal cord. These layers are based on the human brain structure as described in
detail by Woopen et al. (2018). The colors in Figure 8.1 also indicate the update rate
of the respective services. Those services colored in black are running on the cerebrum,
which allows computationally challenging operations but limits the update rate to 10Hz.
Services marked with the color gray are affiliated with the brainstem, which allows higher
update rates for computationally less expensive operations. The trajectory control and
the Offset-Correction run directly on the real-time core of the brainstem ECU with 50Hz,
while the VDSE is implemented on a dedicated ECU and is running with 100Hz. (The
dynamics module is colored in white, since it is affiliated with the spinal cord.)

In the following Section, details about the interaction of the two localization functions
(video-based localization and VDSE) as well as the need for the use of the Offset-Correction
are explained.
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8.1.2. Interaction with Video-based Localization and Offset-Correction1

The system architecture presented in the previous Section contains two localization
functions, the video-based localization and the VDSE. As pointed out by the author together
with Homolla and Winner (2020), unintended system behavior caused by inconsistencies
in the outputs of these functions needs to be prevented. Together with other requirements,
including the need for the trajectory control’s inputs in the correct update rate, the
Offset-Correction is derived as solution for this challenge and explained in the mentioned
reference. In the following, the concept of the Offset-Correction is briefly described based
on the mentioned reference and on the patent application filed by the author together
with Homolla and Winner (2021).

The Offset-Correction consists of three functional parts. The first one of these computes
the offset between the poses put out by the two localization functions. To do so, the pose
of the VDSE is compared to the pose from the video-based localization which was used
for computing the target trajectory. From a ring-buffer storage for the VDSE’s pose in the
Offset-Correction, the pose with the correct time stamp is interpolated. A new offset is
computed every time a new target trajectory is sent to the trajectory control. The second
function applies this offset to the vehicle state put out by the VDSE, transforming the
vehicle state and the target trajectory in a common reference system. This function is
called every time before executing the trajectory control. Besides that, there are additional
functions of the Offset-Correction, which treat special cases leading to unusual jumps in
the VDSE’s pose, e.g., measurement updates after a longer period with degraded GNSS
signal reception or a (re-)initialization of the VDSE. If one of these special cases is detected,
the first function to recompute the pose offset will be executed directly to prevent using
an outdated value for the pose offset. Furthermore, the pose offset computed in the
Offset-Correction is used as input to the self-perception module in UNICARagil for its
monitoring of the vehicle’s capabilities.

All in all, the Offset-Correction enables the use of the chosen system architecture
in UNICARagil with two localization functions as depicted in Figure 8.1 by preventing
unintended behavior caused by inconsistencies in-between the localization functions.
A localization function relying on environmental perception and high-definition maps
(video-based localization) is combined in this way with the VDSE. Details about the
implementation of the VDSE in UNICARagil are given in the next Section.

1This Section is based on a previous work written with author’s collaboration (Homolla et al., 2020).
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8.1.3. Implementation of Vehicle Dynamic State Estimation

In UNICARagil, the VDSE is implemented on a dedicated ECU (product name: iNAT-
4C – data sheet: iMAR Navigation GmbH, 2019) manufactured by the project partner
iMAR Navigation GmbH (iMAR). The ECU contains four µController boards with ARM-
based processors, two IMUs and a GNSS receiver module. Both IMUs are MEMS based
but IMU A, an ADIS 16465-1 (Analog Devices Inc., Cambridge, MA, United States),
has a better performance according to its classification as mid performance MEMS-IMU
in comparison to IMU B, a BMI160 (Bosch Sensortec GmbH, Reutlingen, Germany),
classified as consumer grade MEMS-IMU. In Table A.1 in the Appendix, the used IMU’s
key characteristics are compared confirming the superior performance of IMU A according
to the information from the manufacturer’s data sheets. The used GNSS receiver module
is the previously mentioned dual-frequency, multi-constellation, dual-antenna RTK-GNSS
receiver OEM7720 (NovAtel Inc., Calgary, AB, Canada). To complete the sensor setup,
odometry information from the dynamics modules is received via the ASOA.

In Figure 8.2, the system architecture of the VDSE in UNICARagil is depicted containing
all mentioned sensors. Besides that, three fusion filters are shown which run each on one
of the four µController boards and are developed by independent teams. The remaining
fourth µController board is used for the SFL to determine the VDSE’s outputs and for a
communications module to send and receive messages via the ASOA.

Each filter inputs a subset of the available sensor information, as depicted in Figure 8.2.
Filter 1 inputs odometry information from all four wheels and observations from IMU
A as well as from the GNSS receiver. Filter 2 and 3 also use the GNSS receiver but only
odometry information from one wheel as single odometer. In contrast to the others, Filter
2 inputs the observations of IMU B.

All programs on the µController boards are implemented in C++. For Filter 1, the
fusion filter described in Chapter 4 is converted to C++ code using MATLAB Coder and
supplemented by a wrapper to handle the interfaces. Filter 2 and 3 are developed and
implemented by iMAR. Their implementation is not disclosed but Filter 2 and 3 differ
only with regard to the configuration for the used sensor setup. The concept for the SFL
corresponds to the explanations in Chapter 6.

At the time of writing (April 2022), the research project UNICARagil is not completed yet
(final demonstration scheduled for May 2023). Currently, only Filter 1 and 2 are realized
and running on the VDSE’s ECU. Since the SFL is intended to be used with three or more
filters in the FFL, a preliminary version for the commissioning tests is used, which can be
configured to output the results of one FFL filter. Furthermore, the implemented version of
Filter 1 in the UNICARagil vehicles contains minor differences (e.g., regarding the GNSS
measurement model) compared to the description in Chapter 4, since the development
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Figure 8.2.: System architecture of Vehicle Dynamic State Estimation in UNICARagil
(Figure based on previous version published by the author in Buchholz et al.,
2020)

of the fusion filter continued after the VDSE’s commissioning tests in 2021. Besides
that, the time-stamped odometry information is not yet available via the ASOA in the
UNICARagil vehicles. Therefore, the odometry measurement update in the fusion filters is
deactivated at this stage. Modifications with respect to the odometry measurement update
in comparison to conventional vehicles concern mainly the slip estimation and stochastic
modeling. These modifications will be developed and tested as soon as the odometry data
is available in the UNICARagil vehicles. In order to resolve the mentioned restrictions,
updates to the VDSE’s software are planed in the further course of the research project
UNICARagil.

8.2. Commissioning and Measurement Results

In this Section, insights into the commissioning of the UNICARagil vehicles with respect
to the VDSE are provided. First of all, the condition of the prototype vehicles at the time
of commissioning and the selected procedure are described in Section 8.2.1. Secondly,
measurement results from the commissioning tests are discussed in Section 8.2.2.
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8.2.1. Commissioning and Condition of Protype Vehicles

During the year 2021, the commissioning of the VDSE in UNICARagil has been performed.
In each of the four prototype vehicles, a first version of the VDSE’s software (including
fusion filters, SFL and communications module) has been deployed, which will be updated
in the further course of the research project. For the VDSE’s commissioning tests, the
prototype vehicles are driven manually by an operator (manual mode). In this operation
mode only the front wheels are steered and the rear wheels are fixed, as in conventional
vehicles. Note that the UNICARagil vehicles can steer all four wheels but only in the
automated mode which includes using the trajectory planning and trajectory control. The
velocity of the vehicles is restricted to a maximum of 5 km/h at this stage of commissioning.
Figure 8.3 depicts three UNICARagil vehicles during testing in January 2022 on the TU
Darmstadt airfield in Griesheim, which is used as test track.

Figure 8.3.: UNICARagil vehicles (autoTAXI, autoELF and autoSHUTTLE – from left to
right) during testing on 6 January 2022 on TU Darmstadt airfield in Griesheim,
Germany (photo by Patrick Pintscher)

The commissioning begins with flashing the software on the VDSE’s ECU. Afterwards,
a set of preliminary test during standstill to verify that all hardware components are
working and communicating in the correct way is performed. Subsequently, dynamic
commissioning tests are carried out. At this stage, only the VDSE is analyzed without
considering connecting services, e.g., the trajectory control or Offset-Correction. The inter-
action with these services will be investigated in following tests during the further course
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of the research project UNICARagil. Results of the commissioning tests are presented in
the next Subsection.

8.2.2. Measurement Results From Dynamic Commissioning Tests

The aim of the dynamic commissioning tests is to verify the VDSE’s real-time capability and
outputs. Regarding the former point, there have been no abnormalities during any of the
tests performed. The VDSE has been able to provide its outputs reliably at a rate of 100Hz.
Regarding the latter point, a thorough analysis of the VDSE’s performance in comparison
to a reference solution has already been performed before the commissioning of the
UNICARagil vehicles and is presented in Chapter 7. Therefore, the purpose of the dynamic
commissioning tests is to detect mistakes during the VDSE’s integration or configuration.
Examples for such mistakes are in the areas of lever arm configuration, confusion of cable
connections (e.g., for the two GNSS antennas) or coordinate systems (e.g., body and
navigation coordinate system). For the VDSE’s outputs, these mistakes would lead to gross
errors. The plausibility checks aim to uncover these errors by dynamically stimulating the
sensors within the limits of possible operation at this stage. A trajectory in the shape of
an eight is chosen, which is driven in both directions, to combine sensor stimulations in
different directions.

In a first step, the position outputs of the VDSE’s fusion filters are plotted in a horizontal
plane and inspected visually, one by one, to analyze their plausibility. Figure 8.4 depicts
the trajectories of Filter 1 and 2 during a commissioning test with the autoSHUTTLE
recorded on 13 October 2021 on TU Darmstadt airfiled in Griesheim, Germany in Google
Earth.

A typical example of an erroneous output to look out for at this stage would be a jagged
trajectory which obviously does not correspond to the driven path. This is not the case
here, the trajectories seem plausible. No conspicuities are visible.

In a second step, the plausibility checks go into further detail. Since Filter 1 and 2
have been implemented, validated and configured by two independent teams, a com-
mon implementation or configuration error is considered as not probable (validation of
Filter 1 in this work, Filter 2 in other projects of project partner iMAR). Therefore, the
second step contains a comparison between the fusion filter’s outputs. Figure F.1 in the
Appendix depicts the differences between the trajectories of the two shown filters in this
measurement. The differences are computed at the reference point of the vehicle, after
a constant position bias of roughly 0.15m has been removed (coming from an error in
the configuration which was resolved afterwards). In UNICARagil, the reference point is
the intersection of the wheel’s contact patches at the height of the VDSE ECU’s reference
point. The differences’ Root Mean Square (RMS) amount to around 0.04m, 0.03m/s and
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Figure 8.4.: Commissioning tests of VDSE in UNICARagil recorded on 13 October 2021
on TU Darmstadt airfield in Griesheim, Germany: Trajectories of two fusion
filters, red – filter develop by project partner, yellow – filter developed in this
work (Screenshot taken from Google Earth Pro)

0.49 ° for the horizontal position, velocity and attitude differences, respectively. These
results confirm the consistency of the two fusion filters inside the VDSE.

As mentioned in Section 8.1.3, the odometry has not been available during the commis-
sioning tests of the VDSE (it will be added in the further course of the research project).
This difference to the implementation used in Chapter 7, impacts mainly the filter’s
performance in GNSS denied environments. To analyze this impact, a GNSS outage is
simulated in a Software in the Loop (SiL) setup. Obviously, transient phases of weak
GNSS reception (but not complete GNSS denial) including effects like multipath reception
as they are typically present in e.g., urban areas, cannot be tested in this way. However,
this is not a concern here, since these effects have been analyzed in Chapter 7 already.

For the simulated GNSS outage the previously discussed measurement of 13 October
2021 is used. Figure 8.5 depicts the trajectories for this scenario in Google Earth. The
yellow trajectory is identical to Figure 8.4, meaning it is the output of the filter running
in real-time on the VDSE’s ECU during the commissioning test. The green trajectory
is generated by replaying the mentioned measurement in MATLAB and executing the
fusion filter there. The simulated GNSS outage effects the PVT and attitude solution for a

122



Figure 8.5.: Commissioning tests of VDSE in UNICARagil recorded on 13 October 2021
on TU Darmstadt airfield in Griesheim, Germany: Simulated GNSS outage,
yellow – filter running in real-time without GNSS outage, green – SiL with
simulated GNSS outage (Screenshot taken from Google Earth Pro)

duration of 30 s. In the Figure, its start and end are indicated by a dotted line.

Naturally, the fusion filter’s trajectory diverges during the simulated GNSS outage from
the trajectory put out during normal operation, as depicted in the mentioned Figure.
However, the trajectory stays in a plausible shape and diverges slowly. Figure F.2 in the
Appendix depicts the differences to the outputs for the horizontal position, velocity and
attitude solution over time. At time zero, the simulated GNSS outage begins and at 30 s it
ends. The differences stay within expected limits and do not exceed 1m, 0.1m/s, 0.1 °
for the horizontal position, velocity and attitude solution, respectively. After integrating
the odometry, these values are expected to decrease significantly. After the end of the
simulated GNSS outage, the differences in the horizontal position and velocity solution
are resolved within a few seconds. For the attitude solution, this reswing takes slightly
more than a minute, which can be explained by the rather small deviation during the
simulated GNSS outage in comparison to its accuracy in this environment (95% quantile
of the attitude error is about 0.3 ° in the test track category, see Section 7.1).
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8.3. Summary

In this Chapter, one application of the developed multi-layer data fusion as VDSE in
automated driving is presented. The integration in the unique system architecture of
the research project UNICARagil is discussed. At the time of writing (April 2022), the
research project UNICARagil is not completed so far, wherefore there are open tasks and
restrictions which need to be resolved in the further course of the research project.

Nevertheless, a preliminary version of the VDSE, based on the algorithms developed
in this work and by the project partner iMAR, is running in the four prototype vehicles
of the research project UNICARagil. In this way, the VDSE’s outputs are provided via the
ASOA such that commissioning of subsequent services (e.g., the trajectory control) is made
possible.

Both fusion filters running in the mentioned preliminary version of the VDSE have
been validated before in other vehicles: Filter 1 in this work and Filter 2 by the project
partner iMAR in other projects. Therefore, the commissioning tests have been reduced
to plausibility checks. These have been passed without conspicuities, wherefore the
commissioning of the VDSE is successfully completed.

Till the final demonstration of the research project UNICARagil, which is scheduled for
May 2023, optimizations of the VDSE including the removal of the mentioned restrictions
will be performed. Together with the results from further testing including the interaction
with other services, this will lead to a continuous improvement of the VDSE’s software
deployed by regular updates.
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9. Conclusion and Outlook

This Chapter summarizes the achieved results and draws conclusions with respect to the
objectives set in the introduction. Afterwards, further research directions are indicated.

9.1. Conclusion

Three main objectives of this work have been defined in the introduction. The first
objective relates to the design and implementation of a multi-sensor data fusion filter as
basis for the second and third objective. A real-time capable filter was developed inputing
sensor observations from a GNSS receiver, an IMU and wheel odometry sensors, which
corresponds to the sensor setup planned in the research project UNICARagil. To achieve a
high accuracy, a RTK-GNSS receiver is used for which a corresponding error model was
developed. Additionally, zero velocity and zero angular rate updates as well as measures
to detect outliers were implemented.

In favorable GNSS reception conditions, the 95% quantile of the horizontal position
error amounts to less than 0.14m. For the horizontal velocity and attitude, these values
are below 0.07m/s and around 0.4 °, respectively. In more challenging environments, e.g.,
in urban areas, the performance of the velocity and attitude solution can be maintained
with similar error amounts, while the mentioned value for the position error increases to
around one meter (for the data sets evaluated in this work).

To monitor the integrity of such a filter’s outputs, as specified by the second objective
of this work, three concepts were developed. The first one (kSigma) uses a traditional
approach based on the covariances estimated by the implemented KF. The second con-
cept (KIPL) includes modeling the errors of the fusion filter’s inputs as multi-variate
Student distributions and propagating them through the filter. Multiple Hypothesis Solu-
tion Separation is the foundation for the third concept (ARAIM) in which subsets of the
filter’s inputs are processed in a bank of filters and the difference in their outputs forms
the basis for the integrity measures.

The comparison showed that in favorable conditions, all three implemented integrity
concepts provide PLs with an empirical IR below the specified threshold of one percent.
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However, only the first two concepts are able to output meaningful PLs in more challenging
environments. Compared to the velocity and attitude, the position solution is the most
challenging with regard to integrity monitoring in these environments (only horizontal
components of the mentioned quantities are in focus here). On the one hand, the tradi-
tional approach maintains a high availability for the position solution with around 95%
on highways and country roads, and about 84% in urban areas (using an alert limit of
0.6m). On the other hand, the second concept using an error modeling with multi-variate
Student distributions is the only one fulfilling the mentioned integrity requirement in
all tested environments including urban areas with an availability between 11 and 21
percentage points below the traditional approach, due to being more conservative in its
computation of integrity measures.

Building upon these results, a federated data fusion architecture with integrity moni-
toring was introduced. It contains a first layer with several redundant multi-sensor data
fusion filters like the one presented in this work. These filters input subsets of the available
sensor data and output integrity information for their estimated states computed with an
integrity concept as the ones developed in this work. A second layer of this multi-layer
fusion implements plausibility checks, approval voting and a data fusion, where the latter
two steps are based on the integrity measures computed in the first layer. This fusion
architecture offers several safety benefits compared to using one filter to fuse all sensor
data, which include a higher reliability by the increased redundancy and an improved
FDE performance realized by the approval voting in the second layer.

Besides that, the data fusion architecture’s performance is significantly better compared
to the outputs of the first layer’s fusion filters. The position accuracy is higher in all
categories, which also holds true for the velocity and heading solution in three out of four
categories. In the test track category, the 95% quantile of the horizontal position error
amounts to less than 0.08m. On highways, this performance can be maintained and also
on country roads the mentioned measure stays lower than before with about 0.20m. In
the urban category, it amounts to less than 0.79m, an improvement of more than 0.2m
compared to any of the filters in the first layer.

Furthermore, the integrity requirement of an empirical IR below one percent is fulfilled
in all quantity-category combinations with only one slight exception (by one tenth of a
percentage point) for the position in urban areas which is caused by one of the filters
in the first layer not fulfilling their integrity requirement. The second fusion layer also
decreases the empirical IR with one minor exception for the heading solution. Additionally,
the availability is increased, for the position solution in all cases, for the velocity and
heading solution in three out of four categories. In this way, availabilities for the position
solution of more than 99.9% in the test track category and about 94%, 80% and 71% in
the highway, country road and urban category are achieved.
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All in all, with the implemented data fusion a high accuracy is achieved, resulting in
e.g., a 95% quantile of the horizontal position error under a decimeter in favorable GNSS
reception conditions. Meaningful integrity measures were computed by the implemented
concepts, fulfilling the set integrity requirement and enabling the user to assess the data
fusion’s capabilities during operation, even in challenging environments, e.g., urban areas.
The developed federated data fusion architecture combines several fusion filters and uses
the integrity information. In this way the performance is significantly improved in terms of
higher accuracy, lower empirical IR and higher availability in the vast majority of the cases
(otherwise keeping it similar, compared to the fusion filters in the first layer). Besides
that, this architecture brings a higher redundancy among other safety benefits.

However, there are some limitations to the application of the presented data fusion.
First of all, the GNSS reception conditions limit the achievable performance. With the set
requirements in terms of accuracy, the availability is only sufficient for automated driving
in certain areas determined by the GNSS reception conditions. A possible solution to
overcome this challenge is presented in the application for the research project UNICARagil.
The introduced Offset-Correction is used to integrate a second localization function.
This second localization function does not depend on GNSS but rather relies on camera
observations and high-definition maps, which leads to a better performance in GNSS
denied areas. On the other hand, the weaknesses of such an approach (e.g., a lower
output data rate, no velocity estimation) are complemented by the VDSE presented in this
work. Another limitation to the achievable performance is the given sensor setup. In this
work, only the three mentioned sensor types (GNSS, IMU, odometry sensors) are used but
no sensors for Signals of Opportunity (SOP), e.g., cellular data used for localization, or
environmental sensors, e.g., cameras, LiDAR, are integrated in the sensor fusion. Among
others, these points are discussed further in the following Section, indicating future
research directions.

9.2. Outlook

Building upon the results of this work, it is advised to conduct further research, whose
directions are indicated in this Section.

First of all, the implementation of the presented concepts and algorithms in the research
project UNICARagil will be continued. Besides the fusion filter with integrity monitoring,
all functionalities of the second fusion layer will be implemented in C++ on a µController
board to run in real-time in the UNICARagil vehicles. Further testing and optimization of
the VDSE in interaction with other services will be carried out till the final demonstration
(scheduled for May 2023).
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Additionally, the limitations mentioned in the previous Section with respect to the
developed fusion filter need to be further analyzed. As the GNSS reception conditions
were identified as decisive influence on the filter’s performance, new ways of processing
GNSS observations focusing on challenging environments may have a significant impact.
One option is to implement RTK-GNSS processing techniques as presented by Humphreys
et al. (2018) to improve the integer ambiguity fixing leading to a higher RTK-GNSS
availability in urban environments. Alternatively, new PPP methods or combinations of
PPP and RTK methods to process the GNSS observations may be used as proposed e.g.,
by Li et al. (2021). An implementation independent of the fusion filter for loose coupling
or integrated in it as tight coupling is possible.

Another option to enhance the accuracy in urban environments is to include additional
sensors. Environmental sensors, e.g., cameras, LiDAR and RADAR sensors, potentially
in combination with corresponding high-definition maps offer additional observations
unaffected from satellite reception conditions and may be used for state estimation
as shown by e.g., Ziegler et al. (2014) or Wan et al. (2018). Furthermore, sensors to
receive SOP, e.g., cellular data (5G), may be integrated as additional measurement updates
to the fusion filter, which aim to improve the filter’s availability in urban environments as
shown e.g., by Jia et al. (2021).

Besides the improvements with respect to the filter’s accuracy, the mentioned options are
also expected to lead to a better integrity performance. A higher redundancy by additional
sensors and therefore more measurement updates might enhance the outlier detection and
reduce the empirical IR. To do so, further testing of the developed integrity algorithms
with additional sensors will be necessary. The error characteristics of each sensor need
to be analyzed in order to decide about a suitable error modeling approach. Moreover,
supplementary experiments with varying configurations of the integrity requirements in
terms of IR and AL depending on the intended application are recommended. If there are
requirements for the continuity including a minimum solution quality for the application,
a further analysis focusing on an investigation of the continuity risk is needed.

Moreover, enhancements of the integrity measures itself are of interest. In this work,
the integrity information in terms of PLs is analyzed as horizontal and vertical part. It
remains to be investigated how the cross-track PL differs from the along-track one, since
the former is more critical for automated driving as pointed out e.g., by Welte (2017,
p. 35).

Additionally, the developed integrity concepts might be combined depending on the
available computational resources. This means that inside the integrity layer different
algorithms are used for the different output quantities. As the position solution showed a
heavy tailed error distribution, the second concept (KIPL) using an error modeling with
multi-variate Student distributions might be used here, while the velocity and attitude PL

128



might be computed by the traditional approach (kSigma) based on covariances estimated
by the KF, for example. Alternatively, the integrity concepts might be combined depend-
ing on the environmental conditions. In favorable conditions, the traditional approach
(kSigma) could be used since the errors are expected to be normally distributed here.
In challenging environments, the second concept (KIPL) could be used to output more
conservative integrity measures taking the heavy tailed error distribution into account. A
high-definition map or a sky-pointing camera are examples of how the conditions might
be identified for the GNSS reception.

With respect to the developed data fusion architecture, in this work an implementation
with three filters in the first layer was analyzed because of the chosen application. Another
option to enhance the data fusion architecture’s performance is to investigate implementa-
tions with a higher number of redundant fusion filters in the first layer. Together with the
previously mentioned approach to extend the sensor setup, new possibilities for forming
subsets of sensor data in the first layer open up further opportunities for improvement.

Moreover, the use of two localization functions as implemented in the research project
UNICARagil might be reconsidered depending on the specific application. Instead of a
relative localization function inputing environmental sensors such as the video-based
localization in UNICARagil and one absolute localization function such as the multi-layer
fusion implemented in this work, all sensors might be integrated in one multi-layer fusion:
Combinations of relative and absolute sensors form the mentioned subsets of sensor data
for the fusion filters in the first layer, which send their outputs and integrity measures to
a second fusion layer as presented in this work.

Before the indicated research directions are pursuit, it is crucial to precisely specify
the application’s requirements. For the use case of the implemented data fusion as state
estimation in automated driving, the requirements in terms of the navigation performance
criteria (accuracy, integrity, availability, continuity) given by Pullen (2008) are not gener-
ally agreed on so far, as mentioned in Section 5.1. Refining the requirements is advised in
order to identify objectives for future research.

Lastly, the presented data fusion architecture with integrity monitoring for state es-
timation was developed for an application in automated driving but is not limited to
this field. Any application of state estimation can benefit from the results of this work,
including applications in e.g., other land vehicles like for precision agriculture applications
in automated farming, marine vessels such as automated cargo ships, aerial vehicles for
example UAVs, household and garden devices like vacuum robots or robot lawn mowers.
Depending on the specified requirements and the available hardware in the chosen appli-
cation, adaptations of the configuration and parameter tuning might be necessary as well
as extensive testing in simulation and in real-world experiments together with an analysis
of the performance with respect to the decisive quantities.
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Appendices

A. Additional Material Regarding the Background Chapter

A.1. Extract from IMU Data Sheets

Table A.1.: Key characteristics of used IMU’s from their data sheets (Analog Devices
Inc., 2018; Bosch Sensortec GmbH, 2020; Sensonor AS, 2013), converted into
same units for easier comparison

Sensonor Analog Devices Bosch Sensortec

STIM300 ADIS 16465-1 BMI160

Gyroscope Range ±400 °/s ±125 °/s ±250 °/s

Gyroscope Bias Range ±250 °/h ±500 °/h ±10 800 °/h

Angular Random Walk 0.15 °/
√
h 0.15 °/

√
h 0.42 °/

√
h

Gyroscope In-Run Bias Variation 0.5 °/h 2 °/h 252 °/h

Accelerometer Range ±10 g ±8 g ±8 g

Accelerometer Turn-On Bias ±0.75mg ±0.5mg ±25mg

Velocity Random Walk 0.06m/s/
√
h 0.012m/s/

√
h 0.106m/s/

√
h

Accelerometer In-Run Bias Variation 0.05mg 0.0036mg 1.8mg
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A.2. Wheel Slip Definition

With the wheel’s velocity components with respect to the ECEF frame along the xw- and
yw-axis, vwew,x and vwew,y, the wheel slip definitions are given as (Reuper, 2020, p. 15):

λx =

⎧⎪⎪⎨⎪⎪⎩
ωwrd − vwew,x

vwew,x
for ωwrd ≤ vwew,x (braking)

ωwrd − vwew,x
ωwrd

for ωwrd > vwew,x (acceleration)
(A.1)

α = − arctan
vwew,y
vwew,x

. (A.2)

For the special case of vehicle’s standstill, meaning ωw = vwew,x = vwew,y = 0, the slip angles
are set to λx = α = 0 (Reuper, 2020, p. 15).

In linear tire models, the longitudinal slip λx and the lateral slip angle α are modeled
as proportional to the friction coefficients µx and µy

µx = cλλx (A.3)
µy = cαα (A.4)

with the longitudinal slip stiffness cλ and the lateral slip stiffness cα as proportionality
constants and the definition of the friction coefficients

µx =
Fwew,x
Fwew,z

(A.5)

µy =
Fwew,y
Fwew,z

(A.6)

using the longitudinal, lateral tire force Fwew,x, Fwew,y and the tire force normal to the road
surface Fwew,z (Reuper, 2020, p. 15).

In order to facilitate the usage of the longitudinal slip and to avoid the distinction of
cases, the longitudinal tire slip correction factor κ is introduced (Reuper, 2020, p. 54):

κx =

⎧⎨⎩
1

1 + λx
for ωwrd ≤ vwew,x (braking)

1− λx for ωwrd > vwew,x (acceleration).
(A.7)
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A.3. Quality of the Reference Solution

In this Subsection the quality of the reference solution is analyzed. As mentioned in
Section 2.3, the reference solution is based on the observations of a RLG-IMU and a
RTK-GNSS receiver. The evaluation is performed in NovAtel WayPoint Inertial Explorer
8.90 using forward and backward processing as well as smoothing to improve the accuracy.

The weakness of this reference solution is its dependence on satellite reception. Even
though the RLG-IMU minimizes the drift while there is no GNSS reception, a certain
drift is inevitable. Since no external reference with a sufficient accuracy was available, a
GNSS outage is simulated to analyze the errors of the reference solution in challenging
environments.

For the simulated GNSS outage, a measurement in ideal GNSS reception conditions
on the TU Darmstadt airport in Griesheim, Germany recorded on 7 May 2019, with the
measurement vehicle described in Section 2.3 is chosen. Two outages are simulated and
evaluated separately. The first one lasts 30 s while the vehicle is driving in a straight
line, while the second outage lasts 13 s while the vehicle is driving a turn of about 90 °.
The driven velocity for both cases is about 50 km/h, with a slight decrease of velocity
in the turn. These situations represent typical scenarios with no GNSS reception in the
measurements used for this work.

Figure A.1 and A.2 depict the results for these simulated outages, where the dashed lines
mark the start and end of the outage which happens at time zero. In both situations, the
horizontal position error amounts to less than 0.06m. The error in the vertical component
is negligible wherefore the two- and three-dimensional error appear almost identical in
these Figures. For brevity, the respective graphs for the velocity and attitude are not
shown here but these errors stay in both simulated outages below 0.005m/s and 0.01 °,
respectively. In both Figures, the influence of the forward and backward processing is
visible, the error reaches its maximum in the middle of the simulated outage (and not at
the end as it would be with only forward processing). In the turn, this processing method
also leads to the slightly increased error a few seconds before and after the outage.

These GNSS outage simulations aim to analyze the quality of the reference solution
in challenging reception conditions, where GNSS outages in this durations appear. In
these conditions, the developed fusion filter’s 95% quantile of the horizontal position
error amounts to more than 0.6m (see results in Chapter 7). Accordingly, the reference
solution’s accuracy is one order of magnitude better than the developed data fusion.
Therefore, the errors of the reference solution are neglected in the evaluations of this
work.
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Figure A.1.: Position error of the reference solution during a simulated GNSS outage
while driving in a straight line (outage start and end indicated by dashed line,
outage at time zero)
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Figure A.2.: Position error of the reference solution during a simulated GNSS outage
while driving in a 90 ° turn (outage start and end indicated by dashed line,
outage at time zero)
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A.4. Experiments – Maps of Driven Trajectories

Figures A.3, A.4, A.5, A.6, A.7 and A.8 on the following pages depict the driven trajectories
(only the analyzed epochs are shown).
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B. Additional Explanations Regarding the Fusion Filter

B.1. System Model

The system model describes the continuous time derivative of the estimated states ẋ and
is used for the prediction step to form the transition matrix Φk (see Section 4.2.1). As
mentioned in Section 4.2.2, the system model is adopted from Reuper’s work (2020,
Section C.1), who based his version on Groves’ book (2013, Section 14.2.4):

ẋ =
d
dt

⎛⎜⎜⎜⎜⎜⎜⎝

ψnb

vnen
peen
bω
ba
rd

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

N11 N12 N13 −Cnb 0 0
N21 N22 N23 0 −Cnb 0
0 I N33 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

ψnb

vnen
peen
bω
ba
rd

⎞⎟⎟⎟⎟⎟⎟⎠ , (B.8)

where Cnb is the direction cosine matrix from body to navigation coordinates and the
values for Nij are

N11 = − [(ωnie + ωnen)×] (B.9)

N12 =

⎛⎜⎝ 0 1
RN+he

0

− 1
RE+he

0 0

− tanϕe

RE+he
0 0

⎞⎟⎠ (B.10)

N13 =

⎛⎜⎜⎜⎝
0 0 − vnen,N

(RN+he)
2

0 ωie sinϕe

RN+he

vnen,E

(RE+he)
2

0 −ωie cosϕe

RN+he
− vnen,E

(RE+he)(RN+he) cos2 ϕe

vnen,E tanϕe

(RE+he)
2

⎞⎟⎟⎟⎠ (B.11)

N21 = −
[︂
Cnb f

b
ib×
]︂

(B.12)

N22 = − [vnen×]N12 − [(2ωnie + ωnen)×] (B.13)
N23 = N23,A + N23,B (B.14)

N33 =

⎛⎜⎝0
vnen,E tanϕe

RN+he
− vnen,E

RE+he

0 0 − vnen,N

RN+he
0 0 0

⎞⎟⎠ (B.15)
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N23,A = [vnen×]

⎛⎜⎜⎜⎝
0 0

vnen,N

(RN+he)
2

0 −2ωie sinϕe

RN+he
− vnen,E

(RE+he)
2

0 2ωie cosϕe

RN+he
+

vnen,E

(RE+he)(RN+he) cos2 ϕe
−vnen,E tanϕe

(RE+he)
2

⎞⎟⎟⎟⎠ (B.16)

N23,B =

⎛⎜⎝0 0 0
0 0 0

0 − 1
RN+he

∂gnib,U
∂ϕe

−∂gnib,U
∂he

⎞⎟⎠ (B.17)

∂gnib,U
∂ϕe

= ge cosϕe
[︁
2cϕ2 sinϕe + 4cϕ4 sin3 ϕe + 6cϕ6 sin5 ϕe + 8cϕ8 sin7 ϕe

]︁
+ 2cϕhhe sinϕe cosϕe (B.18)

∂gnib,U
∂he

= −
[︁
ch1 − cϕh sin2(ϕe)

]︁
+ 2ch2he, (B.19)

and the values for cϕk are taken from Moritz (2000, p. 132):

cϕ2 = 5.2790414 · 10−3 (B.20)
cϕ4 = 2.32718 · 10−5 (B.21)
cϕ6 = 1.262 · 10−7 (B.22)
cϕ8 = 7 · 10−10. (B.23)

(B.24)

B.2. System Noise

The system noise matrix is given in continuous time as Q̆, which can be converted to
discrete time by multiplication with the state propagation interval τs,k,

Qk = Q̆ τs,k, (B.25)

where τs,k is equal to 10ms (Reuper, 2020, p. 90). The matrix Q̆ consists of blocks for
each state, which are independent of each other:

Q̆ = diag
(︁
Q̆(ψnb), Q̆(vnen), Q̆(peen), Q̆(bω), Q̆(ba), Q̆(rd)

)︁
. (B.26)

As mentioned in Section 4.2.2, the system noise matrix in this work is adapted from
Reuper’s thesis (2020, p. 90–91) using his approach including to obtain it from Power
Spectral Densities (PSDs) denoted as S:
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• Q̆(ψnb) = Srg I with Srg as PSD of the gyroscopes random noise. The value for the
Angular Random Walk (ARW) is given in Table B.1 and needs to be squared to
obtain Srg.

• Q̆(vnen) = Sra I with Srg as PSD of the accelerometers’ random noise. The value for
the Velocity Random Walk (VRW) is given in Table B.1 and needs to be squared to
obtain Sra.

• Q̆(peen) = 0.

• Q̆(bω) =
σ2
bg

τbg
I using the standard deviation of the gyroscopes’ in-run bias variation

σbg given in Table B.1 and its correlation time τbg, which is assumed to be 60 s as
given by Groves (2013, p. 152).

• Q̆(ba)
σ2
ba
τba

I using the standard deviation of the accelerometers’ in-run bias variation
σba given in Table B.1 and its correlation time τba, which is assumed to be 60 s as
given by Groves (2013, p. 152).

• Q̆(rd) is taken from Reuper’s work (2020, p. 91) as

Q̆(rd) =

⎛⎜⎜⎝
1 0.25 0.25 0.25

0.25 1 0.25 0.25
0.25 0.25 1 0.25
0.25 0.25 0.25 1

⎞⎟⎟⎠ Srd (B.27)

with
Srd = 5.1 · 10−14m2s−1. (B.28)

To the matrices Q̆(ψnb), Q̆(vnen), Q̆(bω), Q̆(ba), an empirical factor of two is applied to
account for un-modeled dynamics and additional error sources. If there is no GNSS
measurement update for longer than expected during normal operation (meaning for
more than 1.1 s since the GNSS receiver in this work outputs its solution with 1Hz), then
this empirical factor will be five to account for non-linearities and further error sources
which appear when the filter’s errors grow to higher values without GNSS measurement
updates. As soon as there is a GNSS measurement update, the empirical factor for these
matrices is reverted to two.
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Table B.1.: Power Spectral Densities for system noise matrix, values taken from Sensonor
IMU’s data sheet (Sensonor AS, 2013) and from an in-house calibration of
iMAR Navigation GmbH for the Analog Devices IMU performed on 5 October
2020.

Parameter Sensonor STIM300 Analog Devices ADIS 16465-1

Angular
I3 · 0.15 °/

√
h diag(0.0841, 0.1099, 0.1114) °/

√
h

Random Walk

Velocity
I3 · 0.06m/s/

√
h diag(11.7, 11.8, 16.5)µg/Hz

Random Walk

Gyroscope
I3 · 0.5 °/h diag(0.6365, 1.4461, 1.4668) °/h

In-Run Bias Variation

Accelerometer
I3 · 0.05mg diag(2.03, 2.28, 22.31)mg

In-Run Bias Variation
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B.3. GNSS Plausibility Check

Table B.2.: Plausibility check for GNSS PVT and attitude solution from dual-antenna
receiver – value range for inputs to be accepted for a use case in automated
driving (values marked with ∗ are arbitrarily chosen to limit the value range)

Category Parameter Unit Lower limit Upper limit

Position Ellipsoidal longitude rad −π π

Position Ellipsoidal latitude rad −0.5π 0.5π

Position Height m −10000∗ 10000∗

Velocity Each direction, e.g., earth, north, up m/s −100 100

Attitude Yaw rad −π π

Timestamp GPS seconds of week s 0 604800

Timestamp GPS weeks weeks 0 10000∗

B.4. Initial Error State Covariance Matrix

The error state covariance matrix P is initialized as diagonal matrix Pinit:

Pinit =
(︁
Pinit,ψ, Pinit,vnen , Pinit,peen , Pinit,bω , Pinit,ba , Pinit,rd

)︁
. (B.29)

This structure and the entries Pinit,ψ, Pinit,vnen , Pinit,peen , Pinit,rd are adopted from Reuper’s
work (2020, Section 6.2.1) and Reuper’s programming code for his fusion filter:

Pinit,ψ =
(︂π
3
rad
)︂2

I

Pinit,vnen =

(︃
33

3
m/s

)︃2

I

Pinit,peen =

(︃
0.2π

180 · 3
rad
)︃2

I

Pinit,rd =

(︃
0.005

3
m
)︃2

I,
(B.30)

where these values are chosen such that three standard deviations (3σ) for the misalign-
ment, velocity, position and tire radii are π, 33m/s, 0.2 ° and 5mm, respectively. The
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remaining values for Pinit,bω , Pinit,ba are set using the values for the gyroscope bias range
and the accelerometer turn-on bias from the used IMU’s data sheets depicted in Table A.1,
leading to the following values e.g., for the Sensonor STIM300 IMU:

Pinit,bω =

(︃
250π

180 · 3600
rad/s

)︃2

I (B.31)

Pinit,ba =
(︁
0.00075 · 9.81m/s2

)︁2 I. (B.32)

B.5. Transformation of Outputs

The fusion filter developed in this work outputs by default the vehicle’s dynamic state
with respect to the IMU’s reference point. Often a transformation to another reference
point is needed as e.g., in the research project UNICARagil, where a common reference
point is defined as intersection of the wheel’s contact patches at the height of the VDSE
ECU’s reference point (see Chapter 8). In the following, this transformation is explained,
where the subscript r indicates the new reference point of the outputs.

The vehicle is assumed to be a rigid body, wherefore the angular rate stays the same at
all points in the vehicle. The attitude is assumed to be the same for the new reference
point and the IMU and is therefore also unchanged during this transformation. The lever
arm to the vehicle’s reference point is known as pbbr.

Using small angle approximation (distance between new reference point and IMU is
small compared to radius of the earth), the ellipsoidal position of the IMU, ϕeb, λeb, heb, is
converted into the position of the new reference point, ϕer, λer, her, as given by Groves (2013,
p.77):⎛⎝ϕerλer

her

⎞⎠ ≈

⎛⎝ϕebλeb
heb

⎞⎠+

⎛⎝1/ (RN (ϕeb) + heb) 0 0
0 1/ [(RE(ϕeb) + heb) cos(ϕeb)] 0
0 0 1

⎞⎠Cnb pbbr.

(B.33)
The velocity at the new reference point vner in the navigation frame is obtained by (Groves,
2013, p.77):

vner = vnen + Cnb
(︂
ωbeb ∧ pbbr

)︂
. (B.34)

The acceleration of the new reference point is computed as (Groves, 2013, p.77):

abir = abib + ωbib ∧
(︂
ωbib ∧ pbbr

)︂
+
(︂
ω̇bib ∧ pbbr

)︂
. (B.35)

Depending on the application, final steps like computation of the side slip angle from the
transformed velocity and the attitude or transformation of the velocity, acceleration and
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angular rate to the required coordinate frames (from body to navigation frame or vice
versa) might be necessary.

B.6. Direction-Cosine-Matrix

To describe transformations between body and navigation coordinates, Euler angles ψnb

are used in this work (see Equation (2.1)). To perform the transformations as given in
Equations (2.2) and (2.3), the direction cosine matrix Cnb is needed, which is given by
Groves (2013, p. 38):

Cnb =

⎛⎝c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞⎠ (B.36)

with

c11 = cos(νnb) cos(ψnb) (B.37)
c12 = − cos(ηnb) sin(ψnb) + sin(ηnb) sin(νnb) cos(ψnb) (B.38)
c13 = sin(ηnb) sin(ψnb) + cos(ηnb) sin(νnb) cos(ψnb) (B.39)
c21 = cos(νnb) sin(ψnb) (B.40)
c22 = cos(ηnb) cos(ψnb) + sin(ηnb) sin(νnb) sin(ψnb) (B.41)
c23 = − sin(ηnb) cos(ψnb) + cos(ηnb) sin(νnb) sin(ψnb) (B.42)
c31 = − sin(νnb) (B.43)
c32 = sin(ηnb) cos(νnb) (B.44)
c33 = cos(ηnb) cos(νnb). (B.45)

B.7. GNSS Error Model

Table B.3 depicts the used factors for the GNSS position error model, which were deter-
mined using the data set for parameter tuning described in Section 2.3.2.
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Table B.3.: Factors for GNSS position standard deviation depending on PDOP and number
of used satellites nsat

PDOP Number of used satellites nsat East North Up

PDOP < 2

nsat < 10 1.94 2.78 2.08

10 ≥ nsat < 20 1.79 2.33 2.08

20 ≥ nsat 1.92 2.91 1.94

2 ≥ PDOP < 5

nsat < 10 1.71 1.94 1.62

10 < nsat < 20 1.72 2.67 2.06

20 ≥ nsat 1.77 3.25 1.28

5 ≥ PDOP

nsat < 10 1.25 1.68 1.20

10 ≥ nsat < 20 0.95 1.41 0.91

20 ≥ nsat 1 1 1

B.8. Odometry Model For Conventional Vehicles

This Subsection summarizes the tire slip estimation given by Reuper (2020, Section 4.2)
using a linear tire model and a single-track model to estimate the tire’s longitudinal and
lateral slip for conventional vehicles, specifically for the used measurement vehicle from
the Chair of Physical and Satellite Geodesy (see Figure 2.2). For the computations, the
position of the vehicle’s Center of Gravity (CoG) is assumed to be invariant and known
as pbbc, laying above the line connecting the two wheels of the single-track model in
height hcog above the road surface (Reuper, 2020, p.55). A rigid body is assumed and the
computations are performed using specific forces which are formed as force Fpq divided
by the vehicle’s mass mv (Reuper, 2020, p.56):

fpq =
Fpq
mv

. (B.46)
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First of all, the corrected IMU observations f bib and ωbib are transferred to the vehicle’s CoG
by

f bic = f bib + ωbib ×
(︂
ωbib × pbbc

)︂
+ ω̇bib × pbbc, (B.47)

where f bic is the specific force acting on the CoG with respect to the ECI frame (Reuper,
2020, p.56). In the following, ω̇bib is neglected and the same origin is assumed for ECEF
and ECI frame, yielding to f bic = f bec and ωbic = ωbec, wherefore the wheel load estimation
uses the components of f bec:

f bef,U = f bec,U
lr
l
− f bec,F

hcog
l

(B.48)

f ber,U = f bec,U
lf
l
+ f bec,F

hcog
l
, (B.49)

where f bef,U and f ber,U denote the specific wheel loads for the single-track model’s front
and rear wheel, and l, lf , lr are the wheel base, distance from the vehicle’s CoG to the
front / rear axle along the xb-axis, respectively (Reuper, 2020, p.56). The lateral specific
forces are computed as

f bef,L = f bec,L
lr
l

(B.50)

f ber,L = f bec,L
lf
l
, (B.51)

assuming steady-state cornering (ψ̈nb = 0), and the longitudinal components are computed
as

f bef,F =

⎧⎨⎩f
b
ec,F for f bec,F ≥ 0

f bec,F
fbef,U
fbec,U

for f bec,F < 0
(B.52)

f ber,F =

⎧⎨⎩0 for f bec,F ≥ 0

f bec,F
fber,U
fbec,U

for f bec,F < 0.
, (B.53)

assuming a brake force distribution between the single-model’s front and rear wheel
according to the wheel load (Reuper, 2020, p.56):

f bef,F

f ber,F
=
f bef,U

f ber,U
for f bec,F < 0. (B.54)
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The resulting specific force f bef needs to be rotated to obtain f fef in the front wheel
coordinate system using the rotation matrix Cfb computed from the mean steering angle
δf , while the counter-part for the rear axle does not need this rotation f ber = f rer, since the
rear axle is not steered in this vehicle (Reuper, 2020, p.57). From the components of f fef
and f rer, the longitudinal and lateral friction coefficients are computed

µx,f =
ffef,x

ffef,z
µx,r =

f rer,x
f rer,z

(B.55)

µy,f =
ffef,y

ffef,z
µy,r =

f rer,y
f rer,z

, (B.56)

which are used to estimate the longitudinal and lateral tire slip applying a linear tire
model (Reuper, 2020, p.58):

λ̂x,f =
µx,f
cλ,f

λ̂x,r =
µx,r
cλ,r

(B.57)

α̂f =
µy,f
cα,f

α̂r =
µy,r
cα,r

. (B.58)

The slip stiffnesses cλ,f = 41.8, cλ,r = 42.5 and cα,f = 7.7 rad−1, cα,r = 16.0 rad−1

are given by Reuper (2020, p.59) for the used vehicle with the standard deviations
σcλ,f = σcλ,r = 0.9 and σcα,f

= 0.08 rad−1, σcα,r = 0.18 rad−1.
To determine the measurement noise covariance matrix for the odometry measurement

update Rodo, the procedure introduced by Reuper (2020, Section 4.3) is applied. Variance
propagation is used to derive the noise for individual wheels starting at the calculation
of ṽbew (see Equation (4.44)), assuming that the rotation matrix Cωb is error-free, not
including the variance of r̂−d since its contained in the filter, and α̂, κ̂x and ωw are uncor-
related (Reuper, 2020, p.64). The variance of ωw is obtained by an experiment of driving
in a straight line as linear function with a lower limit (Reuper, 2020, p.64). Afterwards,
an empirically found correlation between the observations from the four wheels is used
to reduce the odometry observation vector from twelve to six dimensions by removing
the vertical component and reducing to one lateral velocity per axle. Details about this
procedure are given by Reuper (2020, p.63–70).
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B.9. Exceptions for Use of Outlier Detection

To prevent unintended behavior, the outlier detection for GNSS and odometry measure-
ment updates is deactivated if one of the following conditions applies:

• The initialization of the filter is not completed (see Section 4.2.3).

• The transient phase after the initialization is not completed. This phase consists of
three parts. The first one is the first minute after the initialization is completed. The
second part continues until the vehicle has reached a speed of more than 3m/s for
the first time. The third part lasts 20 s and starts after the completion of the second
part.

Additionally, the outlier detection for the GNSS measurement update is deactivated if one
of the following conditions applies:

• High dynamics occur, meaning accelerations greater than 10m/s2 or angular rates
greater than 0.25 rad/s – the outlier detection is deactivated for these epochs with
high dynamics.

• Favorable GNSS reception conditions are present but the last GNSS measurement
update was more than 20 s ago. In this case, the outlier detection is reseted by
deactivating it for one minute. Favorable GNSS reception conditions are defined
here as uninterrupted RTK-GNSS reception for more than 20 s.

• The vehicle moves at very low speeds, meaning less than 0.3m/s – this leads to a
deactivation of the outlier detection for 10 s.

• The vehicle has just made a fast turn, meaning the angular rate exceeded 0.1 rad/s
– this leads to a deactivation of the outlier detection for 15 s.

These exceptions are empirically motivated and were found during an analysis with the
data set for parameter tuning described in Section 2.3.2.
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C. Additional Results Regarding the Integrity Monitoring

C.1. KIPL Integrity Algorithm – Error Modeling

Figure C.1.: Errors of GNSS velocity (normalized by empirical standard deviation, east
component) compared to Gaussian and Student Distribution – depicted part
indicated as rectangle in overview plot in upper left corner
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Figure C.2.: Errors of GNSS heading (normalized by empirical standard deviation, only
epochs with fixed integer ambiguities for the dual-antenna solution) com-
pared to Gaussian and Student Distribution – depicted part indicated as
rectangle in overview plot in upper left corner
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C.2. KIPL Integrity Algorithm – Parameter Tuning
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Figure C.3.: KIPL position integrity performance depending on tuning parameters for
parameter tuning data set
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D. Additional Explanations Regarding the Second Fusion Layer

D.1. Plausibility Check

Table D.1.: Plausibility check in second fusion layer of developed data fusion architec-
ture – examplary value range for inputs to be accepted for a use case in
automated driving (values marked with ∗ are arbitrarily chosen to limit the
value range)

Category Parameter Unit Lower limit Upper limit

Position Ellipsoidal longitude rad −π π

Position Ellipsoidal latitude rad −0.5π 0.5π

Position Height m −10000∗ 10000∗

Velocity Each direction, e.g., earth, north, up m/s −100 100

Acceleration Each direction, e.g., front, left, up m/s2 −20 20

Attitude Roll rad −π π

Attitude Pitch rad −0.5π 0.5π

Attitude Yaw rad −π π

Angular rate Each direction, e.g., front, left, up rad/s −2π 2π

Timestamp GPS seconds of week s 0 604800

Timestamp GPS weeks weeks 0 10000∗
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E. Additional Plots of the Results Chapter

E.1. Integrity Monitoring

See Figures E.1, E.2, E.3 on the following pages.
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Figure E.1.: Example 1 of situationswithmisleading information, part of ameasurement in
a forest recorded on 9 May 2019 in Darmstadt, Germany: Horizontal Position
Error and Protection Level of kSigma and KIPL (upper plot), PDOP and number
of used satellites (lower plot), both plots against time in GPS seconds of
week
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Figure E.2.: Example 2 of situations with misleading information, part of a measurement
with a tunnel recorded on 26October 2020 in Darmstadt, Germany: Horizontal
Position Error and Protection Level of kSigma and KIPL (upper plot), PDOP
and number of used satellites (lower plot), both plots against time in GPS
seconds of week
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Figure E.3.: Example 3 of situations with misleading information, part of a measurement
on a tree avenue recorded on 9 May 2019 in Darmstadt, Germany: Horizontal
Position Error and Protection Level of kSigma and KIPL (upper plot), PDOP
and number of used satellites (lower plot), both plots against time in GPS
seconds of week
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F. Additional Results Regarding the Application in the Research
Project UNICARagil

F.1. Commissioning and Measurement Results
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Figure F.1.: Commissioning tests of VDSE in UNICARagil recorded on 13 October 2021
on TU Darmstadt airfield in Griesheim, Germany: Difference in trajectories of
the filter developed by project partner and the filter developed in this work
(difference at reference point)
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Figure F.2.: Commissioning tests of VDSE in UNICARagil recorded on 13 October 2021 on
TU Darmstadt airfield in Griesheim, Germany: Difference at reference point
in trajectories of the fusion filter with simulated GNSS outage (at time zero,
realized in SiL) to fusion filter without this outage (real-time)
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