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Abstract

Grapevine is a crop with significant economic importance. Unlike
many other crops, grapevine is a quality crop with the focus on yield
optimization instead of maximization. Regular monitoring of plant
diseases and pests is crucial, as they have the potential to cause

significant losses by the end of the season. Therefore phenotyping plays an im-
portant role not only for breeding purposes, but also for the monitoring of the
plant performance during the growth season. To ensure an optimal end product,
management decisions, such as leaf removal, berry reduction, or spraying, should
be implemented based on carefully extracted information. These measures are
crucial to mitigate the risk of losses and maximize the overall profitability of
grapevine cultivation.

Due to the perennial nature of grapevine and the often challenging terrain
situation, phenotyping procedures are still performed manually, which is labor-
intensive, expensive and subjective. To address these challenges, there has been
a growing interest in developing non-invasive, sensor-based methods. These offer
fast, affordable and reliable solutions that are objective and non-invasive.

This thesis addresses three challenges in the field of image-based high-throughput
phenotyping in viticulture. Firstly, we propose a novel instance segmentation
method for the detection and counting of grapevine berries in images captured in
the field. We evaluate our approach across two different training systems and vari-
eties, and compare it with two state-of-the-art methods. Secondly, we investigate
the potential and limitations of using the counted number of visible berries for
yield estimation. We identify the variability of the leaf occlusion as the primary
limiting factor. Finally, we present two different approaches for grapevine berry
anomaly detection. The first is a supervised classification method that produces
heatmaps with a sliding window approach. The second is a semi-supervised ap-
proach that utilizes a Variational Autoencoder (VAE) to learn the representation
of a healthy phenotype and identifies anomalies as deviations from this healthy
phenotype.

Overall, this thesis makes contributions to the field of image-based high-
throughput phenotyping in viticulture, by proposing novel solutions for grapevine
berry detection and counting, yield estimation, and anomaly detection. The ap-
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proaches we present are evaluated thoroughly and compared to state-of-the-art
methods, demonstrating their effectiveness in addressing these important chal-
lenges.
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Zusammenfassung

Die Weinrebe ist eine Kulturpflanze mit großer wirtschaftlicher Bedeu-
tung. Im Gegensatz zu vielen anderen Kulturpflanzen steht bei der
Weinrebe die Qualität im Mittelpunkt, nicht der Ertrag. Letzterer
soll optimiert und nicht maximiert werden, um ein möglichst hochw-

ertiges Endprodukt zu gewährleisten. Auch die regelmäßige Überwachung von
Pflanzenkrankheiten und von Auswirkungen von Schädlingen sind wichtig, da
sie am Ende der Saison erhebliche Verluste verursachen können. Daher spielt
die Phänotypisierung nicht nur für Züchtungszwecke eine wichtige Rolle, son-
dern auch für die Überwachung der Pflanzen während der Wachstumsphase. Auf
der Grundlage der gewonnenen Informationen müssen Managemententscheidun-
gen getroffen werden, z. B. die Entfernung von Blättern, die Reduzierung von
Beeren oder die Applikation von Fungi- und Pestiziden. Diese Maßnahmen sind
von entscheidender Bedeutung, um das Risiko von Verlusten zu mindern und die
Gesamtrentabilität des Weinbaus zu maximieren.

Aufgrund des mehrjährigen Charakters der Weinrebe und der oft schwieri-
gen Geländeverhältnisse werden Phänotypisierungsverfahren immer noch manuell
durchgeführt, was arbeitsintensiv, teuer und subjektiv ist. Um diese Heraus-
forderungen zu bewältigen, besteht ein wachsendes Interesse an der Entwicklung
nicht-invasiver, sensorbasierter Methoden. Diese bieten schnelle, erschwingliche
und zuverlässige Lösungen, die objektive und nicht-invasiv erhobene Daten liefern.

Diese Arbeit befasst sich mit drei Herausforderungen auf dem Gebiet der
bildbasierten Hochdurchsatz-Phänotypisierung im Weinbau. Erstens schlagen wir
eine neuartige Instanz-Segmentierungs-Methode für die Erkennung und Zählung
von Weinbeeren in Bildern vor, die im Feld aufgenommen wurden. Wir evaluieren
unseren Ansatz mit verschiedenen Anbau-Systemen und Sorten und vergleichen
ihn mit zwei State-of-the-Art Methoden.

Zweitens untersuchen wir die Ertragsschätzung auf Basis der Anzahl der
gezählten, sichtbaren Beeren. Dabei werden die Potentiale und Einschränkun-
gen betrachtet. Wir stellen fest, dass die Variabilität der Blattverdeckung der
wichtigste limitierende Faktor ist. Schließlich stellen wir zwei verschiedene An-
sätze zur Erkennung von Anomalien an Weinstöcken vor. Der erste ist eine
überwachte Klassifizierungsmethode, die Heatmaps mit einem Sliding-Window-
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Ansatz erstellt. Der zweite ist ein halbüberwachter Ansatz, der einen Variational
Autoencoder (VAE) verwendet, um die Repräsentierung eines gesunden Phäno-
typs zu erlernen, und Anomalien als Abweichungen von diesem zu identifiziert.

Insgesamt leistet diese Arbeit einen Beitrag zum Bereich der bildbasierten
Hochdurchsatz-Phänotypisierung im Weinbau, indem sie neue Lösungen für die
Erkennung und Zählung von Weinbeeren, die Ertragsschätzung und die Erken-
nung von Anomalien präsentiert. Die vorgestellten Ansätze werden gründlich
evaluiert und mit den State-of-the-Art Methoden verglichen, um ihre Effektivität
bei der Bewältigung dieser wichtigen Herausforderungen zu demonstrieren.
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Chapter 1

Introduction

Viticulture describes the cultivation and harvesting of grapevine (Vi-
tis vinifera). Although it is one of the oldest horticultural practices
it is still one of the most intensive cultivation systems, which requires
a substantial amount of manual labor. This is due to the often chal-

lenging terrain situations, the perennial nature of the plants and the high quality
standards that need to be achieved.

In 1.1 we will state the motivation for this thesis, then we will provide a list
of publications which contributed to this thesis in Section 1.2. In Section 1.3, we
explicitly highlight the contributions to shared first-authorship publications and
lastly, we summarize the main contributions in 1.4.

1.1 Motivation
In contrast to many other agricultural applications, vineyard management prac-
tices focus on yield optimization (Howell, 2001) instead of maximization (Ray
et al., 2013). This means, that throughout the season, actions need to be taken
based on phenotypic observations, including defoliation for the optimal sun ex-
posure of the berries or the thinning of berries to achieve the desired yield at
the end of the season. Currently, these decisions are based on the observation
of a practitioner who goes to the field and samples single plants in the vineyard.
These results are extrapolated to the whole field, without the possibility to ac-
count for any potential heterogeneity throughout the vineyard.

Consequently, objective sensor-based high-throughput phenotyping in viticul-
ture became a focus for many research projects throughout the years (Matese
and Di Gennaro, 2015). Different sensor platforms were developed, ranging from
handheld solutions (Kicherer et al., 2014; Diago et al., 2012), over semi- or fully
automatic ground vehicles (Nuske et al., 2014; Kicherer et al., 2017) to Unmanned
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Aerial Vehicles (UAVs) (Di Gennaro et al., 2019) The platforms are equipped with
different sensors, like scanners (Rist et al., 2018; Tagarakis et al., 2018; Hacking
et al., 2019) or cameras, including, RGB (Roscher et al., 2014; Nuske et al.,
2014; Millan et al., 2019), RGBD (Kurtser et al., 2020), multi- or hyper-spectral
(Gutiérrez et al., 2018; Bendel et al., 2020) cameras. With this thesis we con-
tribute to the field of image-based in-field phenotyping. We developed a novel
method to detect single grapevine berries in images and a pipeline for the row-wise
estimation of yield based on the count of visible berries in images. Furthermore,
we contributed two approaches for anomaly detection.

Depending on the region, different grapevine training systems and varieties are
popular. In Germany for example, the Vertical Shoot Positioned (VSP) system
is widespread and common. Since 2011 (Intrieri et al., 2011), the Semi Minimal
Pruned Hedge (SMPH) gained popularity, due to the mechanization potential.
For more details on the relevant training systems, we refer the reader to Sec-
tion 2.1.1). The different training systems and grown varieties all have different
challenges, including the amount of leaves, the structure of the grape bunches
or their color. Hence it is important to develop algorithms which work on in-
field images, regardless of the variety or the training system. We contributed an
image-based approach to tackle this problem.

Economically important phenotyping tasks include the early estimation of
yield as well as the detection of anomalies. For the first task, the economic sig-
nificance is apparent, since a detailed yield estimation for the whole vineyard can
guide precise management decisions with regard to berry thinning. The higher
the quality of the grown grapes, the higher the quality of the end product and
the resulting profit. For the second task, anomaly detection, the implications
are more complex. Grapevine is very vulnerable to pests and fungi, which leads
to a high usage of fungicides and pesticides. In Germany, for example, only 1%
of the arable land is used for viticulture, yet it accounts for nearly 30% of all
fungicide applications. An anomaly detection could enable a better and more
targeted management response. At the end of the season, the detected anoma-
lies could also be used for a targeted harvesting, to ensure a higher quality harvest.

In this thesis, we tackled three different topics, which contribute to high-
throughput phenotyping applications in viticulture. The first topic is presented in
Section 3.1 and tackles the problem of segmenting and counting yield components
in images, which are recorded with a field-phenotyping platform in the field. The
second part in Section 3.2 uses the method from the first part to investigate an
image-based yield estimation pipeline and identifies the challenges and limiting
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factors. Lastly, in Section 3.3, two different methods for anomaly detection are
presented.

1.2 Publications
Parts of this thesis have been published in the following peer-reviewed conference
and journal articles:

• Publication 1 (Peer-reviewed, Conference Workshop):
L. Zabawa, A. Kicherer, L. Klingbeil, A. Milioto, R. Töpfer, H. Kuhlmann,
and R. Roscher. Detection of single grapevine berries in images using fully
convolutional neural networks. In Proc. of the IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR) Workshops, pages 2571–2579, 2019b.
doi: 10.1109/CVPRW.2019.00313

• Publication 2 (Peer-reviewed, Journal):
L. Zabawa, A. Kicherer, L. Klingbeil, R. Töpfer, H. Kuhlmann, and R. Roscher.
Counting of grapevine berries in images via semantic segmentation using
convolutional neural networks. ISPRS Journal of Photogrammetry and Re-
mote Sensing (JPRS), 164:73–83, 2020. ISSN 0924-2716. doi: https://doi.
org/10.1016/j.isprsjprs.2020.04.002. URL https://www.sciencedirect.
com/science/article/pii/S0924271620300939

• Publication 3 (Peer-reviewed, Conference Workshop):
J. Bömer, L. Zabawa, P. Sieren, A. Kicherer, L. Klingbeil, U. Rascher,
O. Muller, H. Kuhlmann, and R. Roscher. Automatic differentiation of
damaged and unharmed grapes using rgb images and convolutional neu-
ral networks. In Proc. of the Europ. Conf. on Computer Vision (ECCV)
Workshops, pages 347–359. Springer International Publishing, 2020. ISBN
978-3-030-65414-6

Jonas Bömer and Laura Zabawa hold a shared first authorship

• Publication 4 (Peer-reviewed, Journal):
L. Zabawa, A. Kicherer, L. Klingbeil, R. Töpfer, R. Roscher, and H. Kuhlmann.
Image-based analysis of yield parameters in viticulture. Biosystems Engi-
neering, 218:94–109, 2022. ISSN 1537-5110. doi: https://doi.org/10.1016/j.
biosystemseng.2022.04.009. URL https://www.sciencedirect.com/science/
article/pii/S1537511022000861

• Publication 5 (Peer-reviewed, Journal):
M. Miranda, L. Zabawa, A. Kicherer, L. Strothmann, U. Rascher, and
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R. Roscher. Detection of anomalous grapevine berries using variational au-
toencoders. Frontiers in Plant Science, 13, 2022. ISSN 1664-462X. doi: 10.
3389/fpls.2022.729097. URL https://www.frontiersin.org/articles/
10.3389/fpls.2022.729097

Miro Miranda and Laura Zabawa hold a shared first authorship

The content of each publication is summarized in Chapter 3.

1.3 Collaborations
Some of the work included in this thesis has been done in collaboration with other
researchers and resulted in publications with a shared first authorship:

The publication Automatic Differentiation of Damaged and Unharmed Grapes
using RGB Images and Convolutional Neural Networks (Bömer et al., 2020) has
a shared first authorship with Jonas Bömer and was the result of a student
project. Jonas helped with the implementation of the Convolutional Neural Net-
work (CNN) and the training procedures. I supervised the student project and
supported the implementation, helped to conceptualize the work, provided and
prepared the data and wrote the majority of the manuscript.

The publication Detection of Anomalous Grapevine Berries Using Variational
Autoencoders (Miranda et al., 2022) was mainly done in collaboration with Miro
Miranda. Miro helped with the implementation of the Variational Autoencoder
(VAE), and conducted the network training. Together we designed and conducted
the analyses. I provided and prepared the data and wrote the majority of the
manuscript. The detailed contributions are also listed in the publication.

1.4 Main Contributions
In the following we will state the main contributions of each part of the thesis:

Detection and Counting
Detection and counting often pose as a preliminary task for yield estimation or
anomaly detection. Depending on the target application, other information be-
side the object number itself or the position can be of interest, for example the
object size and shape. This is particularly relevant for phenotyping applications,
where these additional information can be very valuable. To translate these re-
quirements into Machine Learning (ML) or Deep Learning (DL) terms, counting
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can be realized with many different approaches, e.g. counting with regression,
object detection or instance segmentation. Each of these problem formulations
have their own advantages and disadvantages. For example, many instance seg-
mentation approaches, like Mask-RCNN (He et al., 2017) deliver object positions,
as well as shape and size of the object. It features a complex network structure
with many parameters, which need a large amount of training data to optimize
the model. Challenging situations include the detection of small objects or large
quantities of items in images. Regression approaches on the other hand are
lightweight, but give only the object number and the position. Therefore, we de-
veloped our own instance segmentation approach, which is based on a semantic
segmentation. Besides the classes berry and background, we introduced a third
class edge to separate between single instances of the same class. The network
can be a lightweight CNN, without the need for an additional detection head or
a large number of parameters. Therefore this approach is especially suited for
small data sets. We first introduced this idea in Publication 1 (Zabawa et al.,
2019b) and extended the evaluation in Publication 2 (Zabawa et al., 2020). We
compared our method to two other approaches, including an instance segmenta-
tion and a regression approach and showed that our results outperformed both
for our particular problem (Zabawa et al., 2020).

Yield Estimation
In Germany, different wine quality levels exist, which are determined by the yield
per hectare. Therefore wine growers are interested in yield estimation methods,
to optimize the yield to the respective desired quality level. Early yield estima-
tions especially, can assist in making informed management decisions, like berry
thinning. Traditionally, these estimations are performed by skilled experts, who
sample single plants destructively in the vineyard, and estimate a yield based on
the number and weight of certain yield components, for example grape bunches.
The average achieved accuracy of these procedures is around 30% (Dunn and
Martin, 2003), meaning that the actual yield in kg deviates by 30% from the
predicted one. Hence, sensor-based approaches which can monitor the whole
vineyard came into focus. Many of the works done in this direction are in highly
defoliated vineyards, where the yield components are well visible. In Germany on
the other hand, mild defoliation or even hedge like canopies are prominent. These
types of training system or management styles highly influence the visibility of
the grape bunches. In Publication 4 (Zabawa et al., 2022), we present a pipeline
which automatically evaluates overlapping images from a whole grapevine row
and perform a yield mapping for the medium defoliated rows trained in the VSP
system. The achieved results of 27% yield variation are slightly better than the
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average industrial standard, and show potential for improvement, if the defolia-
tion is increased leading to a lower occlusion of the yield components. To quantify
this, we performed a leaf-removal experiment to investigate the leaf-occlusion in
detail. The result showed, that the leaf occlusion is the main limiting factor for
our method, especially for more bush-like canopies in the SMPH training system.

Anomaly detection
Anomaly detection is one of the key tasks in phenotyping. Anomalies can be
caused either by abiotic stress, for example drought or sunburn, or by biotic
stress like fungi and insects. For some applications it is important to identify
the exact damage cause to decide on a treatment. This can be very challenging,
since sometimes different diseases look very similar and can only be distinguished
on the molecular level (e.g. Bois noir or Flavenscence Dorée). Furthermore it is
hard to collect sufficient data for each kind of anomaly, since most of the time the
majority of the investigated plants are healthy. In other cases, the exact cause
of damage is of subordinate interest, for example if the quality of the product is
in the focus, or if a preliminary screening is enough to identify affected plants.
We contributed with two works to the latter problem. In Bömer et al. (2020) we
only defined the classes healthy and damaged and showed, that a shallow neural
network was enough to classify in-field berry patches correctly. In combination
with a sliding window approach we produced heatmaps highlighting anomalous
areas. As an extension to this work we developed a new approach which trains
only with non-anomalous plant material (Miranda et al., 2022). The network is
a VAE which learned a healthy phenotype and identifies anomalies as variations
from these. Important to note, is that we used a Feature Perceptual Loss (FPL),
which yielded superior and sharper results, compared to a pixel wise loss (Miranda
et al., 2022).
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Chapter 2

Basic Techniques

This thesis describes contributions to image-based high-throughput phe-
notyping with special focus on viticulture. We will start with intro-
ducing some important viticulture terminology in Section 2.1. In Sec-
tion 2.2 the important Deep Learning (DL) techniques will be intro-

duced, including the general idea in Section 2.2.1 and special network structures
which are used in the publications in Section 2.2.2 and Section 2.2.3. Finally the
most common evaluation metrics will be explained in Section 2.2.4.

2.1 Viticulture
In order to understand the contributions of the presented publications, it’s impor-
tant to be familiar with some of the terminology frequently used in viticulture.
Therefore, we will begin by providing a concise explanation of the two train-
ing systems discussed in the Publication 1 (Zabawa et al., 2019b), Publication 2
(Zabawa et al., 2020) and Publication 4 (Zabawa et al., 2022) in Section 2.1.1. Fol-
lowing that, we will briefly introduce the essential growth stages in Section 2.1.2.

2.1.1 Grapevine Training Systems

Training grapevines (Vitis Vinifera) involves the manipulation of the vine form
(Reynolds and Vanden Heuvel, 2009) and depends on the terrain, regional climate
and technical requirements of the vineyard. The training system influences for
example the photosynthetic capabilities of the vine, the grape bunch structure
as well as the vine microclimate. It also determines the degree of mechanization
possible within vineyard management.

The Vertical Shoot Positioned (VSP) system is one of the most common train-
ing systems in Germany, it is typically used in cooler climates (Jackson, 1997). It
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(a) VSP (b) SMPH

Figure 2.1: Schematic overview of two different grapevine training systems. Figure 2.1a shows
the VSP system. Figure 2.1b shows the SMPH.(Fig. adapted from Zabawa et al. (2020)).

features one or two perennial canes with several thinner annual shoots branching
off each season (see Figure 2.1a). After each season most canes and shoots are
removed, annual shoots become canes in the following year. During the season,
defoliation of the grape zone takes place to ensure optimal light conditions for
the development of the berries as well as fast drying after rainfall or morning
dew. This leads to a small and airy leaf wall with few but large leaves. Although
this is an advantage, it can also lead to sunburn during summer. Grape bunches
mainly occur in the bottom part of the canopy, are rarely covered by leaves and
feature a compact and homogeneous berry structure. The compactness of the
grape bunches makes them vulnerable to certain fungal diseases, e.g. Gray Mold
(Botrytis cinerea). To handle this and other risks, an extensive spraying of the
grapes is needed throughout the season.

The Semi Minimal Pruned Hedge (SMPH) is an extension to the Minimal
Pruning (MP), which became popular in the 1979s in America. The MP did
not gain the same popularity in Europe as in America and Australia, since the
farmers were not satisfied with the quality of the grown grapes (Martinez de
Toda and Sancha, 1998; Intrieri et al., 2011). The SMPH features a mechanical,
rough winter pruning of former VSP rows, resulting in a hedge-like leaf wall
with several perennial canes, in contrast to the VSP trained plants which only
have one. It has a thick canopy, with many smaller leaves which impedes the
drying of the leaf wall. The grape bunches are spread through the whole canopy
although they primarily occur in the upper part and are mainly occluded by
leaves (see Figure 2.1b). The bunches themselves have a loose structure and
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(a) BBCH75 (b) BBCH77 (c) BBCH89

(d) BBCH75 (e) BBCH77 (f) BBCH89

Figure 2.2: Riesling grape bunch at three different phenological stages. The upper row shows
a bunch from a VSP trained row, while the lower row shows one from a fine trained in the
SMPH. The images for each stage were taken at the same day for both training systems.

the berries feature an in-homogeneous size. The loose berry structure makes the
grape bunches more resilient to bunch rot diseases like Botrytis and facilitates a
mainly mechanized thinning and pruning (Molitor et al., 2019). A comparison of
the microclimate and the canopy architecture with respect to the training system
can be found in Kraus et al. (2018).

2.1.2 Relevant Growth Stages

Traditional phenotyping methods in viticulture consist of visual screening by
skilled experts in the field. The desired traits are estimated using different de-
scriptors, either the Biologische Bundesanstalt, Bundessortenamt und Chemische
Industrie (BBCH) scale (Lorenz et al., 1995) or the International Organisation
of Vine and Wine (OIV) descriptors (Alercia et al., 2009).

The OIV descriptors are a viticulture specific measure and serves to provide
a standardized and objective description of grape varieties and species (Alercia
et al., 2009). Described traits include for example shoot, leaf or berry character-
istics. For berries these include the shape, size, color or firmness of the flesh.

The BBCH scale exists for many different crops and describes the respective
growth stages of the plants. For many of our presented works, four distinct BBCH
are of great interest. The first is the BBCH75 stage. It features pea-sized berries
(see Figure 2.2a and 2.2d) and is often the stage, where decisions about berry
thinning procedures are made. BBCH77 is when the majority of the berries
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are touching each other, which is often shortly after the thinning procedures
(see Figure 2.2b and 2.2e). BBCH83 corresponds to the véraison, where the
berries develop color and get soft. This is important, since most of our developed
algorithms focus on green berries, since all grapevine varieties have green berries
before the véraison. The last stage is the BBCH89, when the grapes are ready for
harvest (see Figure 2.2c and 2.2f). At this point in time the reference measures
for the yield are taken.

Although the images for the different BBCH stages are taken at the same
time in 2.2, we can see that the berry structure is very different between the two
training systems. For the SMPH, the berries are smaller and appear to develop
slower than the ones in the VSP. Even close to harvest, the majority of the berries
in the SMPH are not touching.

2.2 Deep Learning

Deep Learning (DL) is a subdomain of Machine Learning (ML) and plays an
important role in the publications presented in this thesis. ML in general describes
algorithms which are supposed to mimic human decision making by using so called
models. These models are mathematical representations of real world problems
resulting in functions f , which turn a given input X into a desired output Y ,
given internal parameters θ:

Y = f(X , θ) (2.1)

Some of the tackled tasks include classification (the assignment of a single
label to a piece of data), regression (a continuous output from a given input) or
clustering (the grouping of similar data). To achieve this, three main components
are required: data as an input, a model for the decision making and some sort
of learning of the model. Especially in the field of Computer Vision (CV), it is
very challenging to create a model for solving tasks which are naturally easy for
humans. Viewpoint variations, object deformations, occlusions, changing illumi-
nation, background or intra-class variations are easy to handle for a human but
not for a model. Classical CV algorithms rely on hand-crafted features to break
down the high-dimensional information presented in images. In contrast to this,
DL methods, which emerged mainly after 2012, extract features directly from the
data.

Since this work mainly relies on DL methods, strictly speaking Neural Net-
works (NNs), the following section will solemnly focus on this. Classical methods
which were used in similar contexts are cited in the respective places in Chapter 3.
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Figure 2.3: Model of a neuron with two inputs i1 and i2, one output o, one non-linearity σ(.).
The parameters are the weights w1 and w2 and the bias b.

2.2.1 Neural Networks
NNs have proven to be very successful in many ML tasks, which is the reason
why we chose to use them in our publications. NNs are the base model for DL
techniques, but special models exist for different types of applications, including
CNNs, recurrent NNs or Generative Adversarial Networks (GANs). But the main
idea behind all of them is the assembly of simple processing units into layers to
approximate high dimensional functions. The smallest unit of a neural network is
called a neuron. Figure 2.3 shows a simple neuron with two inputs i. The inputs
are multiplied with weights w and a bias b is added. The last operation is the
application of a non-linearity σ(.). The output o is computed as following:

o = σ(a) = σ(i1w1 + i2w2 + b) (2.2)

Corresponding to Equation 2.1, this means that i1 and i2 correspond to the
inputs X , the trainable parameters w1, w2 and b to θ and the output o to Y . The
non-linearities σ, also called activation functions, influence the value range of the
output and can be chosen based on the respective problem. But in general, activa-
tion functions are used to counteract vanishing gradients in the training process,
and to ensure a better convergence behaviour. In our works we use either the
Rectified Linear Unit (ReLU), which are computationally efficient, counteract the
vanishing gradient problem and show a better convergence behaviour compared
to other functions like the sigmoid activation or the LeakyReLU, which is an
advancement to the ReLU. It prevents neurons to die when not activated due to
the factor α which is usually chosen to be a small value:

ReLU: σ(a) = max(0, a) (2.3)

LeakyReLU: σ(a) = max(αa, a) (2.4)
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Figure 2.4: A simple FCNN with two inputs i and one hidden layer with two hidden neuron h

and one output neuron o.

The parameters, the weights wi and bias b, can be adjusted to approximate
a simple non-linear function. Nonetheless the representational capability of one
neuron by itself is limited, but the accumulation and connection of many neurons
can approximate arbitrary functions. The most simple way to do this, is to
arrange the neurons in a feed-forward fashion in a so called Fully Connected
Neural Network (FCNN). Here, each neuron is connected with every input and
every output. Figure 2.4 shows a very simple FCNN with two inputs i and two
hidden neurons h and one output neuron o. Each neuron is modelled after the
one presented in Figure 2.3. The output can be computed as followed:

o(h1, h2) = f(wo
1h1 + wo

2h2 + bo) (2.5)

h1(i1, i2) = f(wh1
1 11 + wh1

2 i2 + bh1) (2.6)

h2(i1, i2) = f(wh2
1 11 + wh2

2 i2 + bh2) (2.7)

In short we can stack and encapsulate the layers to the following representa-
tion:

o = f (3)
(
f (2)

(
f (1)

(
x, θ1

)
, θ2

)
, θ3

)
(2.8)

Networks can be very large and complex with many layers and countless
neurons. Therefore larger networks are characterized by the number of layers,
which is called the network depth and the number of neurons in each layer, which
is called the network width.

Training of Neural Networks

To fully facilitate the potential of NNs, it is important to optimize the networks,
which is called training. The training of neural networks involves the minimiza-
tion of a training objective. This objective is called a loss function L and compares
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the network output o with the known, desired output ô. The choice of the loss
function depends on the problem which needs to be solved. Popular losses include:

Mean Absolute Error: Ll1 =
1

n

n∑
i=1

|ô− o| (2.9)

Mean Squared Error: LMSE(w, b, i) =
1

n

n∑
i=1

(ô− o)2 (2.10)

Cross Entropy: LCE =
1

n

n∑
i=1

o ∗ log(ô) (2.11)

In our Publication 1 (Zabawa et al., 2019b) and Publication 2 (Zabawa et al.,
2020), we optimize the network using the Intersection over Union (IoU), which is
a suitable loss function for a segmentation problem. The IoU will be explained in
detail in Section 2.2.4 and further details can be found in Publication 2 (Zabawa
et al., 2020). In Publication 5 (Miranda et al., 2022) we used a feature perception
loss which does not compare the output o directly with the desired output ô, but
their respective representations in a latent space.

NNs are fully differentiable functions, since they are composed of a multi-
tude of small, differentiable functions. The loss function is minimized using an
optimizer, for example Adaptive Moment Estimation (Adam) (Kingma and Ba,
2015), Adaptive Gradient Algorithm (AdaGrad) (Duchi et al., 2011) or Gradient
Descent (GD). GD is used to find the steepest descent in the parameter space
∇θ. The loss function is then iteratively minimized as followed:

θ′ = θ − ϵ∇θL(θ) (2.12)

The parameter ϵ is the learning rate, which specifies the steps length in the
direction of the steepest descent. The learning rate is a parameter which needs to
be carefully chosen. If the learning rate is to large, the convergence behaviour is
negatively affected, if it is too small, the learning process is very slow. Therefore,
the learning rate is often adjusted during the training process, starting with a
large learning rate which is decreased after some time. In Publication 3 (Bömer
et al., 2020) and Publication 5 (Miranda et al., 2022) we used constant learning
rates during the training process. In contrast to this, we used adaptive learning
rate in Publication 1 (Zabawa et al., 2019b) and Publication 2 (Zabawa et al.,
2020).

The optimization and computation of the gradients are computationally in-
tensive. As an alternative, the parameter updates are computed using randomly
sampled batches of the data. Each sample is called a mini-batch with a batch
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size B. An Epoch is processed when all mini-batches, the whole data set, was fed
through the network. The problem with this batch-wise computation is a chal-
lenging converging behaviour, since the inputs to the next layer change between
the single batches. To prevent these problems, batch-normalization is applied. It
means that the mean of the inputs is set to zero and the standard deviation is
forced to be one. A network is always trained for multiple epochs, with randomly
sampled mini-batches each epoch. Therefore, the optimization process is called
Stochastic Gradient Descent (SGD). We used batch normalization in Publica-
tion 5 (Miranda et al., 2022), to ensure a faster training time and introduce a
regularization.

2.2.2 Convolutional Neural Networks
We used CNNs in all of our publications, therefore it is important to introduce the
concepts in this section. Images have a special data structure, pixels are organized
in a regular grid with a fixed size, and local image regions are stronger correlated
with each other than far away image regions (Schmidhuber, 2015). These char-
acteristics can be exploited using Convolutional Neural Network (CNN). These
networks share similarities with FCNNs, like the layer-wise architecture, but are
highly optimized for the usage of image data. The before-mentioned neurons are
replaced by convolutions, namely image-filters.

Convolutional Layer

The basic building block of a CNN is a discrete convolution with a filter. A filter
with a predetermined size is slid across an input image with a fixed stride. The
result of the convolutional operation is the dot-product between the filter and
input values, resulting in a single value for each filter position (see Figure 2.5).
The filter values themselves are the learnable parameters of each layer. Figure 2.5
shows an example of a 3× 3 kernel applied on a 5× 5 input with a stride of one,
leading to a 3× 3 output.

Similar to FCNNs, convolutional layers are followed by an activation function
and a channel-wise batch-normalization, resulting in a single feature map. In each
layer, multiple kernels are applied to the same input producing multiple feature
maps. The aggregation of these is called a feature volume, which is the input to
the next layer. For example if we have 5 kernels in one layer, the output feature
volume would have 5 channels.

As we can see in Figure 2.5, the output has a smaller spatial dimension than
the input. If we want to keep the same spatial resolution, we need to surround the
input with a boundary, this is called zero padding. In some cases the reduction
of the spatial dimensions is desired, either for memory efficiency reasons or to
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Figure 2.5: Detailed example of a convolution. The grey 3× 3 kernel is slid over the blue 5× 5

input. The result is the green output, which is a linear transformation of the input. Image
inspired by Dumoulin and Visin (2016).

(a) Filter size: 3× 3 vs. 4× 4 (b) Stride: 1 vs. 2 (c) Zero padding: none vs. 1

Figure 2.6: Configuration options for convolutions in a CNN. Figure 2.6a shows two different
filter sizes, Figure 2.6b shows two different strides and Figure 2.6c the difference between a non
zero padded input and an input with a zero padding of 1.

enhance the information density for the following layers. This can be realized
either with a larger stride or so called pooling operations. Different pooling
operations exist, including max-pooling or mean-pooling, where the max or mean
value is copied into the down-sampled feature map. Settings which can be chosen
for each layer include the filter size, the stride or the zero padding, examples are
shown in Figure 2.6.

In general, CNNs have fewer parameters than FCNNs, since the same filters
are applied to the whole input. This leads to less complex networks and a better
generalization of the networks, reducing the risk of over-fitting.

Encoder-Decoder

Depending on the task which needs to be solved by our model, different network
architectures can be used. Classification tasks need at least one fully connected
layer at the end, since the expected output is a distinct class label (see Fig-
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(a) CNN with fully connected layers at the end
for classification. The input is an image and the
output a label.

(b) Fully convolutional NN with an encoder-
decoder structure. The input is an image and the
output a mask with the same dimension as the im-
age.

Figure 2.7: Different types of CNNs. Figure 2.7a is an example of a CNN with fully connected
layers at the end, which produces a class label x̂ given a input x. Figure 2.7b on the other hand
is a fully convolutional CNN, solving a segmentation task, where the output x̂ has the same
dimension as the input x.

ure 2.7a). Segmentation tasks on the other hand should deliver an output mask
of the same dimension as the input image (see Figure 2.7b). A so called encoder
reduces the feature volume using pooling operations and a decoder up-samples
this feature volume back to the original image dimensions. The choices for the
encoder and decoder design depend on the respective task at hand. For example
in Publication 1 (Zabawa et al., 2019b) and Publication 2 (Zabawa et al., 2020),
we use the DeepLabV3+ decoder, which was developed by Chen et al. (2018) to
refine the segmentation results with special focus on object boundaries.

2.2.3 Variational Autoencoder

In Publication 5 (Miranda et al., 2022) we developed a VAE for anomaly detec-
tion, therefore we explain the basic concept behind an Autoencoder (AE) and
the special case VAE in the following section. AEs are a special kind of NN, with
the main task to learn a data encoding in an unsupervised fashion. Tasks which
are often solved using AEs include dimensionality reduction, image denoising or
anomaly detection.

The general structure of a AE is based on the before-mentioned encoder-
decoder structure. But in this case, the encoder is used to find a very dense and
highly expressive representation of the data in the latent space (see Figure 2.8a).
In dimensionality reduction scenarios, this dense latent representation is already
the desired output, but in other cases a reconstruction of an image from the latent
representation is needed. In this case the decoder tries to revert the compression.
VAEs are a special case of a AE, where the latent representation is forced to
represent the mean and a standard deviation of the input data (see Figure 2.8b).

The training objective of AE can either be to make the output as similar to the
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(a) Convolutional Autoencoder (CAE). (b) Variational Autoencoder (VAE)

Figure 2.8: Two different kinds of AEs. The difference is the representation of the latent space.
in both cases the input x has the same dimension as the output x̂.

input as possible. This corresponds to a pixel-wise loss, which directly compares
the desired output ô to the predicted output o. Alternatively, in Publication 5
(Miranda et al., 2022) we used a subsequent CNN that can be used to fit a neural
representation of the output to the neural representation of the input. This
creates a loss based on the latent space, called Feature Perceptual Loss (FPL).

2.2.4 Evaluation Metric
We will describe the evaluation metrics which are used throughout this thesis.
This includes metrics to evaluate classification as well as segmentation problems.

Precision and Recall

The evaluation of classification tasks is often done using precision and recall.
For a binary classification problem this can be achieved by reasoning over the
classification results. In our case we will look into the classification of berry and
non-berry. True positive (TP) describes the data points which belong to the
class berry and are correctly classified as berry. True negative (TN) does the
same for the class non-berry. Data points which belong to the class berry, but
are classified as non-berry are called False negative (FN), while non-berry points
which are classified as berry are called False positive (FP).

The precision and recall are metrics which are ratios of these sets (see Fig-
ure 2.9). The precision measures how likely it is that a classifier’s prediction
is correct. It is computed as the ratio between the data points which are cor-
rectly classified as berries (TP) and all data points which were classified as berries
(sum of TP and FP), see Equation (2.13). The precision takes values between 0
and 1, values close to 1 indicate a better classifier performance. That means if
the precision is low, the classifier predicts too many berries which are in truth
non-berries.

Precision =
TP

TP + FP (2.13)
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(a) Set (b) Precision (c) Recall

Figure 2.9: Computation of precision and recall for a binary classification problem. For our
example, the empty circles in Figure 2.9a show samples belonging to the class non-berry, while
the filled circles represent berries. The filled circles in the green area show correctly classified
berries (TP), and the circles in the blue area show correctly classified non-berries (TN). The
circles in the red and orange area show wrongly classified samples (FP and FN)

The recall is also called sensitivity and measures the number of actual berries
which are found by the classifier. It is the ratio between the correctly classified
berries (TP) and all the actual berries, even the not classified ones (sum of TP
and FN). The recall takes values between 0 and 1, higher values indicate a better
classifier performance. It is computed as followed:

Recall = TP
TP + FN (2.14)

Since there is always a trade-off between the precision and recall, it is good
to have an additional measure which makes the comparison of classifiers easier.
The F1-score is a single metric that combines the two above mentioned metrics
using the harmonic mean and is computed as followed:

F1 = 2 · Precision · Recall
Precision + Recall (2.15)

Intersection over Union

First, the IoU was used to evaluate detections by computing the overlap between
Bounding Boxs (BBs) (see Figure 2.10). Later, it was used to evaluate segmen-
tation on pixel-level. But nonetheless, the IoU describes the ratio between the
area of overlap (the TP) and the union areas (the sum of TP, FP and FN).

IoU =
TP

TP + FP + FN (2.16)

The principle is the same compared to the bounding box, but the area can
have an arbitrary shape, as can be seen in Figure 2.11.
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Figure 2.10: Explanation of the general concept of IoU using BBs. The turquoise rectangle is
the ground-truth BB, the pink one the prediction. The overlap between both boxes is shown
in green and represents the TP. The yellow area is not recognized by the classifier, therefore it
represents the FN, while the orange area is recognized although it is not part of the ground-
truth, representing the FP.

(a) overlap between the ground truth
mask (turquoise) and the predicted
mask (pink). (b) IoU for an arbitrary object shape.

Figure 2.11: Example for the IoU for arbitrarily shaped objects. The turquoise object depicts
the ground truth mask and the pink one the predicted one. The TP area is shown in green, the
FP in orange and the FN in yellow.
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Chapter 3

Summary of relevant publications

The thesis can be structured into three main topics. An allocation of
the relevant publications into these topics can be seen in Figure 3.1.

Figure 3.1: Content assignment of the relevant publications to clarify their respective contri-
bution to the dissertation.

The two publications which contributed to the topic of detection and counting
are summarized in Section 3.1. The second main topic deals with the estimation
of yield and is presented in Section 3.2. The last part highlights the contribution
to anomaly detection in Section 3.3.

3.1 Detection and Counting

Object detection and counting is often an important preliminary task for other
phenotyping applications. Especially in agriculture, the objects can be very small,
appear in large quantities or close clusters. Many of these characteristics pose
challenges to state-of-the-art approaches which are very successful for other ap-
plications. Therefore an application-specific instance segmentation for large num-
bers of small objects was proposed in Publication 1 (Zabawa et al., 2019b) and
further developed in Publication 2 (Zabawa et al., 2020).
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Scientific Context

Sensor-based high-throughput phenotyping gained a lot of attention with the
development of more affordable sensors, for example RGB-, RGBD- or multi-
spectral cameras and laser scanners (Gongal et al., 2015; Tang et al., 2020).

Due to the perennial nature of grapevine, phenotypic data have to be acquired
in the field. Early approaches started to use handheld cameras for image acquisi-
tion and extract geometric structures from the images. Roscher et al. (2014) and
Nuske et al. (2011) both use a circular Hough-transform to detect round objects
(berries) in images, other works detect convex surfaces (Nyarko et al., 2018). Liu
et al. (2020) perform a detailed bunch architecture estimation from images taken
with an artificial background. Later on, field phenotyping platforms emerged for
the (semi)automatic acquisition of images. Nuske et al. (2014) developed a mov-
ing platform with a semi-automatic image acquisition and an artificial lighting
setup, which was used in a large scale phenotyping experiment. Kicherer et al.
(2014) remodelled a grapevine harvester into a field phenotyping platform with
a multi-camera system covering a large part of the vertical canopy and artifi-
cial lighting. By utilizing overlapping images, Rose et al. (2016) reconstruct 3D
point-clouds and detect berries based on their distinct color and shape features.

Especially the detection of green fruit in front of green canopy is very chal-
lenging and sometimes unavoidable. In some cases, the fruit itself is green and
stays green throughout the growth period, for example limes or green apples. In
other cases, an observation is necessary at certain growth stages, where the fruit
is still green and changes color later, for example in grapevine where the color
changes at véraison. For the detection of green apples, Wachs et al. (2010) rely
on a combination of RGB and thermal images. They define high level features
as global attributes and local features for the use of primitive parts-based filters.
Gan et al. (2020) detect green citrus fruits using thermal images in combination
with a water spraying system, taking the different temperature change rates into
account. Other works rely on a combination of color and texture or shape fea-
tures for either the detection of green citrus fruit (Kurtulmus et al., 2011) or
green apples (Linker et al., 2012).

In 2012, AlexNet (Krizhevsky et al., 2012) started the road to success for
DL methods and NNs became the state of the art for CV problems, including
classification, segmentation and image generation. Especially the development
of CNNs (Long et al., 2015) boosted this research direction. A review on deep
learning applications in agriculture was done by Kamilaris and Prenafeta-Boldu
(2018), and by Tardaguila et al. (2021) and Mohimont et al. (2022) for viticulture,
but in the following we will mainly focus on the detection and counting aspects.

Different problem formulations can be used to count objects in images. Re-
gression networks for example (Lempitsky and Zisserman, 2010; Cohen et al.,
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2017) are straightforward, do not require detailed semantic annotations and can
be trained with small data sets due to the comparably small networks used. They
showed promising results in other domains, for example the counting of penguins
(Arteta et al., 2016), cells in microscopy images (Xie et al., 2016; Guo et al., 2019)
or buildings (Lobry and Tuia, 2019). Lu et al. (2018) presented a class agnostic
approach which can be applied to different tasks. Most applications only desire
a number of objects as the output of the pipeline. Coviello et al. (2020) adapt
a crowd counting algorithms using a dilated CNN for the counting of grapevine
berries in smartphone images.

Particular instance segmentation approaches are another option for the count-
ing of objects in images. Until today, the most commonly used one is the Mask-
RCNN by He et al. (2017). The approach is comprised of two stages: the first
stage involves segmentation and region proposals, while the second stage focuses
on classification and bounding box estimation. Networks with region proposal
stages require the specification of a certain number of proposals, which makes
them hard to use if many objects are in an image. Furthermore many instance
segmentation approaches struggle with small objects. Both of the described prob-
lems are often relevant for phenotyping applications. Gené-Mola et al. (2020b)
use the Mask-RCNN on images and simultaneously compute a point-cloud using
Structure from Motion (SfM) to detect apples in the orchard. Nellithimaru and
Kantor (2019) and Yin et al. (2021) do the same for the detection of grapevine
berries followed by a sphere fitting. High defoliation was observed in both cases
and the study focused solely on detecting red grapes.

Many works rely on the detection and semantic segmentation methods to
identify grapevine berries. Aquino et al. (2016) detect circular light reflections in
images with an artificial background as berry candidates, while they later intro-
duce a NN (Aquino et al., 2018) and discard the artificial background. Bargoti
and Underwood (2017) use monocular images taken with a ground-based vehicle
for the detection of apples. They perform a semantic segmentation using a CNN
followed by a Hough-transform for the detection of single instances. Cecotti et al.
(2020) detect a grape cluster with green and red grapes. They investigate the
influence of the feature space (color or gray scale or color histograms), different
network parameters and augmentation strategies as well as the impact of pre-
training. Kurtser et al. (2020) use a RGBD camera mounted on a mobile robot
platform to estimate the cluster number, size, volume, length and width of grape
bunches based on colors.

In Publication 1 (Zabawa et al., 2019b) and Publication 2 (Zabawa et al.,
2020), we developed a novel approach to extract detailed information about
grapevine berries from images using CNNs. We chose to use CNNs because they
have proven to deliver superior results in the image domain compared to classical

22



ML methods. Classical methods are effective if the fruit has a distinct color, but
they do not work well for green fruit. Additionally, the detection of geometric
objects in images can require assumptions, such as the circle radius or the Hough-
transform (Roscher et al., 2014; Nuske et al., 2014), which is highly dependent
on the image collection setup. We circumvent these limitations by adopting a
NN based approach and achieved convincing results without the need to specify
the distinct object color or the approximate object radius. Regression methods
can provide object counts (Lu et al., 2018; Coviello et al., 2020) but they are un-
able to provide details about the object’s geometry, such as its shape. These are
information which we can provide with our method, without the computational
overhead required by instance segmentation methods. Instance segmentation
networks are generally more complex than lightweight CNNs (He et al., 2017),
making them harder to train, especially for small data sets. In contrast, we used
a very lightweight network with only around 300k parameters, which made it very
suitable for our limited data set, while outperforming the segmentation results of
the Mask-RCNN.

Publication 1 (Peer-reviewed, Conference)
L. Zabawa, A. Kicherer, L. Klingbeil, A. Milioto, R. Töpfer, H. Kuhlmann, and
R. Roscher. Detection of single grapevine berries in images using fully con-
volutional neural networks. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR) Workshops, pages 2571–2579, 2019b. doi:
10.1109/CVPRW.2019.00313

This publication focuses on the detection and counting of single grapevine
berries in images, independent from the observation time, the variety or the
training system. We chose to work on images taken before the véraison, the onset
of the ripening and color change of the berries. This has the advantage that we
can handle different varieties since all varieties have green berries before this point
in time (Section 2.1.2), but makes the overall detection more challenging, since
green berries are harder to distinguish from the green canopy in the background.
Furthermore grapevine berries look very similar to one another and appear in
large quantities.

To tackle these challenges, we propose a new instance segmentation based on
a semantic segmentation. The main idea is the introduction of a new class called
edge which helps to separate two instances of the same class. This enables the
usage of a lightweight semantic segmentation network (Milioto and Stachniss,
2019) with a classical encoder-decoder structure (Section 2.2.2), which can be
trained with a relatively small data set. We evaluate the influence of the chosen
edge-thickness and different geometric filter strategies, which take the shape and

23



area of the berries into account. We can achieve convincing results for the two
different training systems VSP and SMPH (Section 2.1.1), with 92% and 87%
correctly detected berries respectively.

Publication 2 (Peer-reviewed, Journal)
L. Zabawa, A. Kicherer, L. Klingbeil, R. Töpfer, H. Kuhlmann, and R. Roscher.
Counting of grapevine berries in images via semantic segmentation using con-
volutional neural networks. ISPRS Journal of Photogrammetry and Remote
Sensing (JPRS), 164:73–83, 2020. ISSN 0924-2716. doi: https://doi.org/10.
1016/j.isprsjprs.2020.04.002. URL https://www.sciencedirect.com/science/
article/pii/S0924271620300939

The second publication builds upon the first, by extending the investigation
with an expanded data set and improved evaluation metrics (Section 2.2.4) using
classical computer vision methods. To compare the performance of the approach,
a systematic comparison was conducted with two state-of-the-art methods: Mask-
RCNN (He et al., 2017) and a regression approach using U-Net (Ronneberger
et al., 2015).

Mask-RCNN, with 20 times more parameters compared to the Bonnet (Milioto
and Stachniss, 2019) used in this study, faced challenged in training with the
limited data set. The inference was much slower and the network struggled with
the large amount of small objects in the images. On the other hand, the regression
approach had only twice as many parameters as our network, making it easier to
train and faster at inference time. However, due to the dot detection no further
information about the berry size or shape can be extracted.

Summarized, our semantic segmentation approach outperformed both other
methods in predicting berry numbers in an image, showing a higher correlation
between the manual counting and predicted values. The Mask-RCNN performed
significantly worse, while the regression approach performed similarly.

3.2 Image-based Analysis of Yield Parameters
in Viticulture

Yield estimation is a major research area for agriculture. Many applications have
the goal to maximize the yield under given circumstances and therefore need to
monitor the plants throughout a whole season to achieve this. However, in viti-
culture yield optimization is the key challenge, not maximization (Howell, 2001).
Winegrowers try to achieve an optimal yield per hectare to ensure a high quality
end product. Therefore, an early yield estimation is of great interest, to guide
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informed decisions on berry thinning procedures. The current industrial stan-
dard involves sampling of single vines and extrapolation to the whole vineyard,
which is labor-intensive and at the time error-prone due to the limited sample
size. Hence sensor-based, especially image-based systems are in the focus of many
research applications.

Scientific Context
Yield optimization is a crucial task for grapevine growers, as it directly impacts
the quality and quantity of grapes produced per hectare. In the context of wine
production, yield optimization is especially important, as regulations exist to
ensure that only quality wine is produced. In the German state of Rheinland-
Pfalz, for instance, regulations mandate a yield range of 105 - 125 hectoliters per
hectare (hl/ha) for quality wine production (Landwirtschaftskammer Rheinland-
Pfalz, 2012). While it may be tempting for growers to maximize yields in order
to increase profits, there are potential downsides to doing so. Overly high yields
can result in lower grape quality, as the vines are forced to produce more grapes
than they can support. This can lead to diluted flavors and lower sugar levels,
which can negatively impact wine quality. In addition, high yields can put stress
on the vines and make them more susceptible to disease and pests. Overall,
yield optimization is a delicate balancing act for grapevine growers. They must
strive to achieve optimal yields that meet regulatory requirements for quality wine
while also ensuring that grape quality is not compromised. This requires careful
attention to a wide range of factors, from grape variety selection to vineyard
management practices, in order to achieve the best possible results.

Traditional forecasting methods in viticulture include the counting and weigh-
ing of sampled yield components in the field (Clingeleffer et al., 2001), as well
as the usage of historic data relating to weather conditions. The estimation can
be performed at different points in time, taking different yield components into
account. For example, de la Fuente et al. (2015) compare different methods for
grapevine yield prediction between fruit-set and véraison and found that estima-
tion methods at the véraison yielded the most promising results.

Using CV, counting or detection is often a preliminary step for the yield
estimation, and often the count itself is used as the yield estimate. For example,
Dorj et al. (2017) detect yellow citrus fruits in images using a color threshold, and
use the fruit count as a proxy for the yield. Similarly, Bargoti and Underwood
(2017) segment apples in images using a CNN, followed by a Hough-transform to
distinguish and count the single instances. Wang et al. (2019) developed a video
based tracking approach for the counting of mango adapting a deep learning
detection network called YOLO and a Kalman-Filter. They as well only count
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the fruits and do not estimate a yield in kg. This seem reasonable for crops
which are sold per unit, like apples or mango, but is not sufficient for grapevine.
In addition to using YOLO, Shen et al. (2023) incorporate SORT to enable multi-
object tracking in video sequences. In most cases, the argumentation is that a
better detection enables a better yield estimation (Kurtser et al., 2020). Kalantar
et al. (2020) take the step from fruit detection to the estimation of yield in kg.
They detect melons in drone images using a CNN, estimate geometric features
and directly regress a weight for each melon. Sayago and Bocco (2018) go even
further and directly estimate corn and soybean yield from satellite images without
the detection of single fruits. For a more detailed review of deep learning based
yield estimation methods for different fruits, we refer the reader to Koirala et al.
(2019a), Anderson et al. (2021) and Darwin et al. (2021).

For viticulture, observed yield components can include the cluster number
and size, as well as the volume, length or width (Kicherer et al., 2014; Di Gen-
naro et al., 2019; Kurtser et al., 2020). Under laboratory conditions, a detailed
investigation of single grape bunches was performed by Ivorra et al. (2015) using
a stereo camera and Hacking et al. (2019) using a RGBD camera respectively.
Obtaining these results in the field can be challenging due to various environmen-
tal factors, such as occluded bunches. To overcome these challenges, researchers
have developed a handheld laser scanner, as demonstrated by Rist et al. (2018),
which can be used both in the laboratory and in the field.

Instead of focusing on the counting of yield components, Diago et al. (2012)
perform a supervised pixel-wise classification of red grapes in a highly defoliated
system using the Mahalanobis-distance and correlate the number of berry pixels
with the yield. Silver and Monga (2019) estimate grape yield from smartphone
images directly, comparing 5 different CNNs. Their approach also focuses on red
grapes in front of green canopy. Di Gennaro et al. (2019) developed an unsuper-
vised approach for the estimation of cluster number and size from high-resolution
RGB images collected with a low-cost UAV. The approach works for red grapes
with a high degree of defoliation. Palacios López et al. (2022) perform a yield
estimation, based on a count of visible berries, for 6 different grapevine varieties
achieving yield estimations, or rather a counting accuracy, between 16% and 40%
depending on the variety.

Fruit occlusion is one of the biggest challenges of yield estimation methods,
especially for horticultural environments. Different strategies were developed
to handle these problems. Especially in greenhouse environments, the usage
of robotic arms with real-time viewpoint planning strategies were investigated
(Kurtser and Edan, 2018a,b; Harel et al., 2020). In other cases, where the ap-
plication of robotic arms is difficult, multi-camera systems or multi-viewpoint
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approaches were developed (Hemming et al., 2014; Koirala et al., 2019b). Gené-
Mola et al. (2020a) and Nellithimaru and Kantor (2019) proposed a forced airflow-
system to move occluding canopy out of the way. Gao et al. (2020) on the other
hand estimate occlusion classes for detected fruits for the planning of different
picking strategies.

Another strategy involves the estimation of occlusion factors, to correct for
invisible or only partly visible fruits. Koirala et al. (2019b) estimate an occlu-
sion correction factor, which they determine beforehand by investigating manual
counts on the tree. In a following work Koirala et al. (2021) compare 5 different
methods for the estimation of mango fruit yield and show that the estimation
of a yield occlusion factor is only possible per tree, since the variability of the
occlusion is too large. Also their approach works only for one season but is not
expendable to a new one. Kierdorf et al. (2022) use the same data as our occlu-
sion experiment to estimate the unseen berries behind the leaves, using a GAN,
showing promising results to bypass the need for a distinct occlusion factor.

Yield estimation for grapevines traditionally involves manual sampling, re-
liance on historical knowledge, and scaling up to the whole vineyard. However,
this process heavily relies on the experience and expertise of the person per-
forming the estimation, making it challenging to achieve accurate estimates at
the optimal time. On average, traditional methods achieve an accuracy of only
around 30% (Dunn and Martin, 2003). In contrast to these traditional methods,
we offer a sensor-based solution, which does not depend on historic weather data
or personal experience, only a berry weight factor for the variety. This also sets
us apart from methods, which only provide fruit counts, like Bargoti and Un-
derwood (2017), Wang et al. (2019) or Diago et al. (2012). Many works in the
field of grapevine yield estimation also focus on red grapes (Di Gennaro et al.,
2019; Silver and Monga, 2019), which makes the detection easier. While other
works have achieved even better yield estimations compared to our method, they
have typically observed highly defoliated canopies with excellent visibility of the
yield components (Aquino et al., 2016; Nuske et al., 2011). In contrast, our ex-
periments were conducted under realistic conditions in German vineyards, where
moderate defoliation is more common. We also conducted leaf removal experi-
ments, which showed that the variability of leaf occlusion was the limiting factor
for our method.

Publication 4 (Peer-reviewed, Journal)
L. Zabawa, A. Kicherer, L. Klingbeil, R. Töpfer, R. Roscher, and H. Kuhlmann.
Image-based analysis of yield parameters in viticulture. Biosystems Engineering,
218:94–109, 2022. ISSN 1537-5110. doi: https://doi.org/10.1016/j.biosystemseng.
2022.04.009. URL https://www.sciencedirect.com/science/article/pii/
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The publication describes an automated framework for estimating grapevine
yield from geo-referenced image sequences captured using a semi-automatic plat-
form equipped with a multi-camera system. The system captures three vertically
overlapping images at each point in time to observe the whole grapevine canopy.

To account for the appearance of objects in multiple images, the pipeline
selects horizontally, minimally overlapping images along the driving direction by
taking the sensor position and the distance to the canopy into account. The
vertical overlap is taken into account by matching image patches showing the
same grape bunch in both images.

The most significant challenge in yield estimation is the variable leaf occlusion,
which also varies between different training systems (Section 2.1.1). To quantify
this, a large leaf occlusion experiment was conducted over two years. However,
the correlation between the number of visible berries and yield could not be
established for the SMPH system, since the leaf occlusion varied extremely. As
a result, the yield estimation was only performed on plants trained in the VSP
system, yielding results comparable to the industrial standard (Dunn, 2010).

3.3 Grapevine Anomaly Detection
The monitoring of plants throughout the growth season is one of the main aspects
in precision agriculture. The identification of anomalies, e.g. diseases, nutrient
deficiencies or water stress, can help farmers to take action at the appropriate
moments in time. In some cases, the main goal is an early detection of a certain
disease to take action, for example the application of fungicides or pesticides.
For other applications the exact kind of damage is of subordinate importance.
Furthermore, it is hard to design classifiers which handle multiple kinds of diseases
or crop damages at the same time, since it’s often hard to acquire sufficient data
for all cases. Publication 3 (Bömer et al., 2020) and Publication 5 (Miranda et al.,
2022) are works which contributed anomaly independent classifiers for application
in vineyards.

Scientific Context
Regular monitoring of the plant performance is crucial to ensure the optimal
growth of fruits and crops. This is especially important for fruits, since the
climate change causes more extreme and on average higher temperatures, in-
creased water and drought stress, higher CO2 concentrations in the atmosphere,
and changing abundance of pests (Jones, 2007). In some cases it is important
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to know and react to certain diseases or damages, but in some cases it is only
important to remove damaged or diseased plant material before the harvest, to
produce a fine wine (Charters and Pettigrew, 2007).

Imaging sensors are very suitable for this task (Khirade and Patil, 2015; Ma
et al., 2019). Especially hyper-spectral cameras showed a great potential for dis-
ease classification in laboratory environments (Behmann et al., 2015; Foerster
et al., 2019). These cameras are very expensive and hard to operate under field
conditions, therefore most research focuses on multi-spectral or RGB cameras
instead. For example, Bendel et al. (2020) investigate the detection of Esca, first
with a hyper-spectral camera mounted on a ground vehicle. They identify relevant
channels to transfer the approach to a multi-spectral camera on a UAV. Simi-
larly, Di Gennaro et al. (2016) use multi-spectral images collected with a UAV to
estimate Esca symptoms. They found a high correlation between the Normalized
Difference Vegetation Index (NDVI) and the expression of the symptoms. An-
other anomaly, the infestation with Phylloxera and the respective symptoms was
detected by Vanegas et al. (2018) in UAV multi-spectral images.

The identification of diseases can be achieved with different problem formu-
lations, for example detection, classification or segmentation. Many of these
approaches are trained in a supervised manner (Kaur et al., 2019), which require
many costly and labor-intensive annotations. Yadhav Yegneshwar et al. (2020)
for example use a shallow CNN to detect diseases by performing a multi-class
classification, while Amara et al. (2017) use a LeNet to detect diseases on banana
leaves. Foerster et al. (2019) forecast symptoms of powdery mildew with the use
of multi-spectral images acquired in a laboratory using a cycle consistent GAN.
Many of these works were trained on the same data set, the PlantVillage data
set (Hughes and Salathé, 2015), which shows single leaves in front of an artificial
background.

Since it is very hard to acquire enough data samples showing diseased plants,
unsupervised approaches came into focus. Un- or semi-supervised approaches are
used to train on non-anomalous data only, forcing a network to learn a repre-
sentation of the normal state. Anomalies are then found as deviations from this
normal state (Pang et al., 2021). This bypasses the need for expensive annotations
of anomalous examples and the need to fully capture the variability of anomalies.
For example Akçay et al. (2018) use a Convolutional Autoencoder (CAE) for
the detection of anomalies in flight luggage, and Baur et al. (2019) use a deep
auto-encoding models for anomaly segmentation in magnetic resonance images
(MRI) of brains. In the agricultural domain, Pardede et al. (2018) use a CAE as
a feature extractor and detected plant diseases with a Support Vector Machine
(SVM). Strothmann et al. (2019) did a reconstruction based anomaly detection
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using a CAE and compared the reconstructed image patches with the original
ones to find deviations from the learned healthy phenotype. For a more in depth
literature review, including research in the medical field (Shvetsova et al., 2021)
or landmine detection (Picetti et al., 2018), we refer the reader to the respective
publications.

Agricultural disease and anomaly detection is often studied in laboratory con-
ditions using hyper- or multi-spectral sensors (Behmann et al., 2015; Foerster
et al., 2019) or limited data sets like the PlantVillage data set (Hughes and
Salathé, 2015), where single leaves are presented in front of an artificial back-
ground. However, only a few studies have investigated the use of RGB cameras
in the field, such as in the works of Amara et al. (2017), Publication 3 (Bömer
et al., 2020), and Publication 5 (Miranda et al., 2022). In order to restrict the
problem to regions of interest, we used the berry detection from Publication 2
(Zabawa et al., 2020), allowing for in-field applications.

In Publication 3 (Bömer et al., 2020), we demonstrated that a lightweight
classification CNN and a broad anomaly definition in the data set can achieve
convincing results. We defined a single class for damaged grapevine berries and
were able to detect a variety of damages, ranging from sunburn to fungus infec-
tions. In contrast to defining a class for each disease type (Kaur et al., 2019),
which requires more complex models, our approach simplified the process. Fur-
thermore, comprehensive anomaly description and labeling is often challenging
for methods that define a class for each disease type.

In Publication 5 (Miranda et al., 2022), we took the step further and elimi-
nated the need for labeled anomaly data altogether by using a VAE trained on
non-anomalous data only. Unlike other studies that used a pixel-wise loss (Akçay
et al., 2018; Baur et al., 2019; Strothmann et al., 2019), we used a feature-wise
perceptual loss, which resulted in qualitatively and quantitatively better results.
Other studies, for example Pardede et al. (2018) used the extracted features from
the CAE and classified using an SVM, bypassing the reconstruction step and
yielding only classification results. In contrast, we compared the reconstructed
image patches directly with the original ones and used the pixel-wise differences
for the classification.

Publication 3 (Peer-reviewed, Conference)
J. Bömer, L. Zabawa, P. Sieren, A. Kicherer, L. Klingbeil, U. Rascher, O. Muller,
H. Kuhlmann, and R. Roscher. Automatic differentiation of damaged and un-
harmed grapes using rgb images and convolutional neural networks. In Proc. of
the Europ. Conf. on Computer Vision (ECCV) Workshops, pages 347–359. Springer
International Publishing, 2020. ISBN 978-3-030-65414-6
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The detection of damaged grapevine berries is crucial for winegrowers, as there
are various factor that can cause damage. These factors include diseases, pests
and abiotic stress like sun damage or damages caused by mechanical machines.
However, identifying the underlying cause of the damage can be challenging,
as the visual symptoms can be similar and may only be distinguishable by a
trained experts. Furthermore, the same disease can manifest differently, making
it challenging to develop a model that can account for all variations. To address
this problem in the field of grapevine berry anomaly detection, we decided to
only label two classes, healthy and damaged berries, using data from different
grapevine varieties.

Our goal is to detect anomalies and guide farmers to damaged plant regions
for further investigation, rather than to identify every type of damage. We realize
this, by creating heatmaps indicating damaged berries in image. First we identify
image regions containing berries and extract image patches containing these using
a sliding window approach. We trained a shallow Convolutional Neural Network
(CNN) (Section 2.2.2) to classify each patch and produce heatmaps showing image
regions containing damaged berries.

Our approach was successful in identifying various types of damage, including
cracked berry skin, withered berries, and color variations. We found that a shal-
low, non-pretrained NN outperformed a deeper, ImageNet pre-trained network.
Our model was able to detect damaged plant material in images in the field under
natural illumination, regardless of the grapevine variety. Overall, our approach
provides a practical solution for detecting damaged grapevine berries and can
help guide farmers to investigate potentially problematic areas.

Publication 5 (Peer-reviewed, Journal)
M. Miranda, L. Zabawa, A. Kicherer, L. Strothmann, U. Rascher, and R. Roscher.
Detection of anomalous grapevine berries using variational autoencoders. Fron-
tiers in Plant Science, 13, 2022. ISSN 1664-462X. doi: 10.3389/fpls.2022.729097.
URL https://www.frontiersin.org/articles/10.3389/fpls.2022.729097

In this publication, we went beyond the previous work by elimination the
need for labelled anomalous data altogether. Instead, we trained a Variational
Autoencoder (VAE) (Section 2.2.3) using a Feature Perceptual Loss (FPL) exclu-
sively on healthy data acquired in the field using a modified grapevine harvester.
The measurements were collected in a closed chamber with artificial lighting. We
used images from different varieties and growth stages and employed a method
from Publication 2 (Zabawa et al., 2020) to identify regions containing berries to
limit complexity.

To evaluate our approach, we compared it with an Autoencoder (AE) using a

31

https://www.frontiersin.org/articles/10.3389/fpls.2022.729097


pixel-wise loss, Structural Similarity Index Measure (SSIM), and the same FPL
used in the VAE. Our results showed that the performance of the FPL improved
the performance of the AE, but the combination of VAE and FPL produced the
best results.

The anomaly detection itself is realized by comparing the reconstructed image
patch with the original image patch using different losses, the Least Absolute De-
viations (L1), Binary Cross Entropy (BCE) and the Mean Squared Error (MSE).
Using a iterative optimization strategy for the loss histograms, we determined a
threshold to distinguish healthy and anomalous image patches.

Overall, our framework generated heatmaps that indicate areas with diseased
or damaged berries, providing an effective solution for anomaly detection without
the need for labelled anomalous data.
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Chapter 4

Conclusion and Outlook

High-throughput phenotyping plays a crucial role in enhancing the
profitability and sustainability of vineyards. However, the current
practice of relying on skilled experts for screening often yields sub-
jective outcomes, heavily influenced by historical data and personal

experiences. Additionally, conventional sampling strategies fail to consider the
spatial variability within vineyards, leading to potential inaccuracies. To address
these challenges, image-based methods offer a more comprehensive and objec-
tive approach, empowering winegrowers and breeders to make informed decisions
regarding vineyard management.

This thesis presents contributions to three key challenges in viticulture phe-
notyping: Detection and counting, yield estimation and anomaly detection. In
the first part of the thesis we presented a novel instance segmentation approach
for the detection and counting of single grapevine berries in images. This method
was used in the subsequent works, either to provide the number of visible yield
components, in this case grapevine berries, for a yield estimation, or to identify
regions of interests for berry anomaly detection.

The following sections provide a concise summary of our contributions to each
of the three main phenotyping tasks. Furthermore, an outlook on future research
directions will be presented.

• Detection and Counting

In Section 3.1 we presented a lightweight and novel instance segmentation
approach which is highly suited for the detection of grapevine berries. The
main concept is to enhance the semantic segmentation by introducing an
additional class for edges, which facilitates the differentiation of individual
instances within a particular class. The data annotation strategy is com-
patible with various semantic segmentation networks, however, we found
that utilizing a lightweight network architecture like the MobileNetV2 can
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deliver both rapid and reliable results. Our method outperforms a state-
of-the-art instance segmentation network, the Mask-RCNN and achieves a
higher correlation between the actual and predicted count of grapevine
berries in images. Furthermore, it offers significant advantages over a
regression-based approach, as it can extract more comprehensive traits like
the berry size and shape. Our studies have shown that the method delivers
robust performance across two different training systems and three different
grapevine varieties, even under realistic conditions in German vineyards.

One promising area for future research is to enhance the robustness of fruit
detection in varying environments and with different sensors. Currently, the
method has been developed primarily for a limited dataset collected with
a field phenotyping platform with an artificial background and lighting.
Although we showed, that the algorithm is able to detect fruits in images
taken with a handheld camera and natural background, the performance is
significantly worse compared to the original data set. Other studies have
explored domain adaptation techniques for agricultural applications, specif-
ically for crop-weed segmentation in images. These approaches utilized
methods such as GANs (Gogoll et al., 2020) and Fourier transforms (Vas-
concelos et al., 2021) to investigate transferability across different cameras,
study sites and growth stages. Results showed, that transfer across different
cameras and platforms was possible, but difficulties were encountered when
transferring across growth stages. Bertoglio et al. (2023) directly compared
the approaches and came to similar results. It is worth exploring how those
techniques perform when transferring from an artificial background to a
natural one, as well as simulating various lighting conditions.

• Yield estimation

In Section 3.2 we presented an image-based analysis of yield parameters for
viticultural applications. Our experiments were conducted under realistic
conditions in German vineyards, where a moderate defoliation is custom-
ary. This sets them apart from many other works which operate on highly
defoliated vines, enabling a very good visibility of the yield components.
Our work identified leaf occlusion variability as the most critical limiting
factor, especially for the Semi Minimal Pruned Hedge (SMPH) system. De-
spite this challenge, we achieved an image-based yield estimation for vines
trained in the Vertical Shoot Positioned (VSP) that is slightly better (27%
yield variation) than the average industrial standard (30 %), without the
need of a highly specialized expert with years of experience and the incor-
poration of historic data.
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To address this limitation and improve our yield estimation accuracy, one
potential future direction is to build upon the work of Kierdorf et al. (2022),
who successfully generated images of berries hidden behind leaves. Their
approach demonstrated better performance compared to using a pre-set
occlusion factor, which is unable to account for the high variability of oc-
clusion in the field. By using machine learning techniques to generate im-
ages of occluded yield components, we may be able to improve our yield
estimation accuracy. In addition to improving our methodology, we also
need to conduct a large-scale experiment to demonstrate the superiority of
our machine-learning-based approach compared to traditional sample-based
methods. This requires collecting more data and reference measurements,
as well as conducting row-wise measurements to better capture variability
across the vineyard. Another critical aspect of our work is the transferabil-
ity of our approach across different sites and varieties. To address this, we
could draw inspiration from the work of Ma et al. (2021), who proposed
an adaptive adversarial domain adaptation method for corn yield estima-
tion using satellite data. By developing a general yield estimation method,
that can work across different varieties and locations, we can significantly
enhance our ability to estimate yield in different vineyard settings.

• Anomaly detection

In Section 3.3 we presented two different approaches for the detection of
anomalous grapevine berries in images. Both rely on the assumption that
it is highly improbable for all possible expressions of different diseases or
damages to be fully defined and accounted for in a data set. In Publication
3 (Bömer et al., 2020) we established two classes: healthy and damaged, and
demonstrated, that a shallow Neural Network (NN) can accurately classify
image patches into these two categories. By utilizing a sliding window ap-
proach, we were able to generate heatmaps that identify the locations of
damages across entire grape bunches. We made a deliberate decision not to
specify distinct classes of damage or disease, as it would have been impossi-
ble to collect data representing all potential types of damage. By taking this
approach, we aimed to avoid the potential for incomplete or biased data,
and instead focused on identifying common patterns and characteristics
across a broad range of damage scenarios. In Publication 5 (Miranda et al.,
2022), we build upon these ideas and take them further by eliminating the
need for anomalous data in our network training process. We proposed the
usage of a Variational Autoencoder (VAE) in combination with a Feature
Perceptual Loss (FPL). The network is designed to learn the characteristics
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of a healthy phenotype and use this knowledge to identify any deviations
from the norm as anomalies.

One potential research direction to improve the current approach is to de-
velop an AE that can jointly handle the region of interest and complex
backgrounds. This could lead to more accurate and robust anomaly detec-
tion on whole images, including leaves or other plant material. In addition
to the need for improved anomaly detection models, there is also a growing
demand for uncertainty measures to facilitate practical applications. While
research in this area is primarily focused on life-safety applications like au-
tonomous driving or medical image processing (Dolezal et al., 2022), uncer-
tainty estimation is also critical in the field of agriculture. Several methods
can be used to estimate uncertainty, including dropout, deep ensembles,
and test time augmentations. A comprehensive review of uncertainty esti-
mation research for deep learning techniques can be found in Mena et al.
(2021) and Abdar et al. (2021). By incorporating uncertainty measures
into our anomaly detection models, we can provide more transparent and
reliable decision-making for practical applications in agriculture.

Although we have made significant contributions to the field of high-throughput
phenotyping in viticulture, practical applications that can be used by winemak-
ers and vineyard managers still pose significant challenges. Robust, reliable, and
transferable algorithms are necessary, but scalability, standardization, and cost-
effectiveness must also be addressed. Developing smaller, more agile field phe-
notyping platforms is essential. Addressing these challenges will require further
research and development to refine and optimize high-throughput phenotyping
methods for use in the wine industry. Collaboration between researchers, wine-
makers, and other stakeholders can identify specific needs and opportunities for
improvement. Ongoing validation and testing of new methods in real-world set-
tings will be crucial to this endeavor.
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Chapter 5

List of further publications

This chapter gives a chronological overview of further publications in
which the author of this dissertation was involved. The publications
listed here are excluded from the main contributions as they are not
directly related to this thesis or the author of the thesis participated

only as a coauthor.

Peer-reviewed publications:
• L. Zabawa, A. Kicherer, L. Klingbeil, A. Milioto, R. Töpfer, and H. Kuhlmann.

Detektion von Weintrauben in Bildern mit Hilfe von Fully Convolutional
Neural Nets. In Leibniz Institut für Agrartechnik und Bioökonomie e.
V. (ATB) Potsdam, Michael Pflanz, Michael Schirrmann, Marius Hobart,
Lasse Klingbeil, and Jan Behmann, editors, 25. Workshop Computer und
Bildanalyse in der Landwirtschaft, 17. April 2019, Bonn, pages 15–20, 2019a

• J. Kierdorf, L. Zabawa, L. Lucks, L. Klingbeil, and H. Kuhlmann. Erken-
nung und Zählung von Weizenähren mit Hilfe bodengestützten Bildaufnah-
men. In Leibniz Institut für Agrartechnik und Bioökonomie e. V. (ATB) Pots-
dam, Michael Pflanz, Michael Schirrmann, Marius Hobart, Lasse Klingbeil,
and Jan Behmann, editors, 25. Workshop Computer und Bildanalyse in der
Landwirtschaft, 17. April 2019, Bonn, pages 158–167, 2019

• S. Yang, L. Zheng, X. Chen, L. Zabawa, M. Zhang, and M. Wang. Transfer
learning from synthetic in-vitro soybean pods dataset for in-situ segmen-
tation of on-branch soybean pods. In Proc. of the IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, pages 1665–
1674, 2022. doi: 10.1109/CVPRW56347.2022.00173
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• J. Kierdorf, I. Weber, A. Kicherer, L. Zabawa, L. Drees, and R. Roscher.
Behind the leaves: Estimation of occluded grapevine berries with condi-
tional generative adversarial networks. Frontiers in Artificial Intelligence,
5, 2022. ISSN 2624-8212. doi: 10.3389/frai.2022.830026. URL https:
//www.frontiersin.org/articles/10.3389/frai.2022.830026

Open Source Contributions
Besides the peer-reviewed papers, the data set used in Publication 1 (Zabawa
et al., 2019b) and Publication 2 (Zabawa et al., 2020) was published:

• L. Zabawa and A. Kicherer. Segmentation of wine berries, 2021. URL
https://www.openagrar.de/receive/openagrar_mods_00067631 The data
set is available online at: https://www.openagrar.de/receive/openagrar_
mods_00067631
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Acronyms

AdaGrad Adaptive Gradient Algorithm.

Adam Adaptive Moment Estimation.

AE Autoencoder.

BB Bounding Box.

BBCH Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie.

BCE Binary Cross Entropy.

CAE Convolutional Autoencoder.

CNN Convolutional Neural Network.

CV Computer Vision.

DL Deep Learning.

FCNN Fully Connected Neural Network.

FN False negative.

FP False positive.

FPL Feature Perceptual Loss.

GAN Generative Adversarial Network.

GD Gradient Descent.

IoU Intersection over Union.

L1 Least Absolute Deviations.

ML Machine Learning.
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MP Minimal Pruning.

MSE Mean Squared Error.

NDVI Normalized Difference Vegetation Index.

NN Neural Network.

OIV International Organisation of Vine and Wine.

ReLU Rectified Linear Unit.

SfM Structure from Motion.

SGD Stochastic Gradient Descent.

SMPH Semi Minimal Pruned Hedge.

SSIM Structural Similarity Index Measure.

SVM Support Vector Machine.

TN True negative.

TP True positive.

UAV Unmanned Aerial Vehicle.

VAE Variational Autoencoder.

VSP Vertical Shoot Positioned.
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