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Abstract

The geometric changes in the real world can be captured by measuring and comparing the
3D coordinates of object surfaces. Traditional point-wise measurements with low spatial
resolution may fail to detect inhomogeneous, anisotropic and unexpected deformations, and
thus cannot reveal complex deformation processes. 3D point clouds generated from laser
scanning or photogrammetric techniques have opened up opportunities for an area-wise
acquisition of spatial information. In particular, terrestrial laser scanning (TLS) exhibits rapid
development and wide application in areal geodetic monitoring owing to the high resolution
and high quality of acquired point cloud data. However, several issues in the process chain
of TLS-based deformation monitoring are still not solved satisfactorily. This thesis mainly
focuses on the targetless registration and deformation analysis of TLS point clouds, aiming to
develop novel data-driven methods to tackle the current challenges.

For most deformation processes of natural scenes, in some local areas no shape deformations
occur (i.e., these areas are rigid), and even the deformation directions show a certain level of
consistency when these areas are small enough. Further point cloud processing, like stability
and deformation analyses, could benefit from the assumptions of local rigidity and con-
sistency of deformed point clouds. In this thesis, thereby, three typical types of locally rigid
patches — small planar patches, geometric primitives, and quasi-rigid areas — can be gener-
ated from 3D point clouds by specific segmentation techniques. These patches, on the one
hand, can preserve the boundaries between rigid and non-rigid areas and thus enable spatial
separation with respect to surface stability. On the other hand, local geometric information
and empirical stochastic models could be readily determined by the points in each patch.

Based on these segmented rigid patches, targetless registration and deformation analysis of
deformed TLS point clouds can be improved regarding accuracy and spatial resolution.
Specifically, small planar patches like supervoxels are utilized to distinguish the stable and
unstable areas in an iterative registration process, thus ensuring only relatively stable points
are involved in estimating transformation parameters. The experimental results show that
the proposed targetless registration method has significantly improved the registration
accuracy. These small planar patches are also exploited to develop a novel variant of the
multiscale model-to-model cloud comparison (M3C2) algorithm, which constructs prisms
extending from planar patches instead of the cylinders in standard M3C2. This new method
separates actual surface variations and measurement uncertainties, thus yielding lower-
uncertainty and higher-resolution deformations. A coarse-to-fine segmentation framework is
used to extract multiple geometric primitives from point clouds, and rigorous parameter
estimations are performed individually to derive high-precision parametric deformations.
Besides, a generalized local registration-based pipeline is proposed to derive dense dis-
placement vectors based on segmented quasi-rigid areas that are corresponded by areal
geometric feature descriptors. All proposed methods are successfully verified and evaluated
by simulated and/or real point cloud data. The choice of proposed deformation analysis
methods for specific scenarios or applications is also provided in this thesis.






Kurzfassung

Die geometrischen Veranderungen in der realen Welt konnen durch Messung und Vergleich
der 3D-Koordinaten von Objektoberflachen erfasst werden. Herkommliche punktuelle
Messungen mit geringer rdumlicher Auflésung konnen inhomogene, anisotrope und
unerwartete Verformungen nicht erkennen und somit komplexe Verformungsprozesse nicht
aufdecken. 3D-Punktwolken, die durch Laserscanning oder photogrammetrische Verfahren
erzeugt werden, haben die Moglichkeit eroffnet, raumliche Informationen flachendeckend
zu erfassen. Insbesondere das terrestrische Laserscanning (TLS) weist aufgrund der hohen
Auflésung und Qualitdat der gewonnenen Punktwolkendaten eine rasche Entwicklung und
breite Anwendung in der flichenhaften geodatischen Uberwachung auf. Allerdings sind
einige Probleme in der Prozesskette der TLS-basierten Deformationsiiberwachung noch
nicht zufriedenstellend gelost. Diese Arbeit konzentriert sich hauptsachlich auf die
Zielzeichen-freie Registrierung und Deformationsanalyse von TLS-Punktwolken und zielt
darauf ab, neue datengestiitzte Methoden zu entwickeln, um die aktuellen
Herausforderungen zu bewaltigen.

Bei den meisten Deformationsprozessen natiirlicher Szenen treten in einigen lokalen
Bereichen keine Formveranderungen auf (d. h. diese Bereiche sind starr), und selbst die
Deformationsrichtungen sind, wenn die Bereiche klein genug gewahlt sind, konsistent. Die
weitere Verarbeitung von Punktwolken, wie Stabilitats- und Deformationsanalysen, konnte
von den Annahmen der lokalen Starrheit und Konsistenz der deformierten Punktwolken
profitieren. In dieser Arbeit werden daher drei typische Arten von lokal starren Flachen —
kleine ebene Flachen, geometrische Primitive und quasi-starre Bereiche — aus 3D-
Punktwolken durch spezielle Segmentierungsverfahren erzeugt. Diese Patches konnen
einerseits die Grenzen zwischen starren und nicht-starren Bereichen erkennen und
ermoglichen so eine rdumliche Trennung in Bezug auf die Oberflichenstabilitit.
Andererseits konnen lokale geometrische Informationen und empirische stochastische
Modelle anhand der Punkte in jedem Patch leicht bestimmt werden.

Auf Grundlage dieser segmentierten starren Flichen kann die Zielzeichen-freie
Registrierung und Deformationsanalyse von deformierten TLS-Punktwolken hinsichtlich der
Genauigkeit und der rdaumlichen Auflésung verbessert werden. Insbesondere werden kleine
ebene Flachen wie Supervoxel verwendet, um die stabilen und instabilen Bereiche in einem
iterativen Registrierungsprozess zu unterscheiden und so sicherzustellen, dass nur relativ
stabile Punkte in die Schatzung der Transformationsparameter einbezogen werden. Die
experimentellen  Ergebnisse zeigen, dass die vorgeschlagene Zielzeichen-freie
Registrierungsmethode die Registrierungsgenauigkeit erheblich verbessert hat. Diese kleinen
ebenen Flachen werden auch genutzt, um eine neuartige Variante des Algorithmus fiir den
Multiscale Model-to-Model Cloud Comparison (M3C2) Algorithmus zu entwickeln, der
Prismen konstruiert, die sich von ebenen Flachen aus erstrecken, anstatt Zylinder im
Standard-M3C2. Diese neue Methode trennt tatsachliche Oberflachenvariationen und
Messunsicherheiten, was zu Deformationen mit geringerer Unsicherheit und hoherer
Auflosung fithrt. Eine grob-zu-fein Segmentierung wird verwendet, um mehrere
geometrische Primitive aus Punktwolken zu extrahieren. Strenge Parameterschatzungen
werden individuell durchgefiihrt, um hochprazise parametrische Deformationen abzuleiten.



Auflerdem wird eine verallgemeinerte, auf lokaler Registrierung basierende Methode
vorgeschlagen, um dichte Verschiebungsvektoren abzuleiten, die auf segmentierten, quasi-
starren Bereichen basieren, die durch flaichenhafte geometrischen Merkmalsdeskriptoren
beschrieben werden. Alle vorgeschlagenen Methoden werden durch simulierte und/oder
reale Punktwolkendaten erfolgreich verifiziert und bewertet. Die Entscheidung fiir eine der
vorgeschlagenen  Deformationsanalysemethoden fiir  spezifische Szenarien oder
Anwendungen wird in dieser Arbeit ebenfalls vorgestellt.
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1 Introduction

1.1 General Background

We live in a dynamic 3D world with ubiquitous geometric changes occurring on object sur-
faces induced by internal or external physical mechanisms. Accurate detection and analysis
of these geometric changes enable investigating their distribution and pattern, and thus
reasoning causative factors (e.g., gravity) or influences (e.g., temperature changes) and pre-
dicting potential trends. When these objects involve, for example, engineering structures (e.g.,
buildings or bridges), industrial infrastructures (e.g., power stations or radio telescopes), or
natural environment (e.g., landslides or glaciers), measuring and quantifying their geometric
changes between several epochs can be regarded as a geodetic deformation monitoring task
in engineering geodesy (Heunecke et al., 2013). The spatial data acquired from the geodetic
monitoring campaign can be further used for deformation analysis, safety maintenance, and
predictive alarming (Moore, 1992; Mukupa et al., 2017).

Traditional point-wise geodetic monitoring strategies using measuring techniques like level-
ing, total station, or Global Navigation Satellite System (GNSS) can provide high-precision
deformation results with rigorous statistical analyses, benefiting from convenient acquisi-
tions of identical points and their stochastic information. Nevertheless, the representative
measured points require a careful selection with a priori knowledge of the expected defor-
mations, and usually result in a sparse distribution of derived deformations (Harmening,
2020). Besides, accessing these points with measuring instruments (e.g., GNSS antennas) or
signalized targets (e.g., prisms) is time- and labor-intensive, especially for objects with large
scales or complex deformations (Li ef al., 2015). In order to overcome these drawbacks and
limitations, area-wise (areal) geodetic monitoring strategies have been proposed and widely
applied in engineering geodesy (Heunecke et al., 2013; Kuhlmann et al., 2014). They are real-
ized by sampling with negligibly small discretization intervals instead of carefully planning
single measurements on the surfaces of monitored objects (Kuhlmann et al., 2014). Densely
distributed measurements (e.g., 2D pixels or 3D points) are thereby yielded from these areal
acquisitions within a short time. In most cases, these area-wise monitoring methods do not
need to attach signalized targets on monitored surfaces. This contactless acquisition way
enables a quasi-continuous representation of measured surfaces but brings more challenges
for the following processing and analyses due to the absence of semantic information of the
observations (Harmening, 2020).

3D point clouds are one of the most common and straightforward modalities of area-wise
spatial data, which can be fast generated from laser scanning or photogrammetric techniques
(Qin et al., 2016; Gojcic, 2021; Stilla and Xu, 2023). Figure 1.1 presents an overview of the
current approaches to acquiring point clouds and some of their common properties. Point
clouds acquired from different sensors (e.g., cameras or laser scanners) on different plat-
forms (e.g., tripods or vehicles) display generally similar representations (i.e., scenes in the
form of a set of points lying on objects” surfaces (Gojcic, 2021)) but with dissimilar geometric
or radiometric characteristics (e.g., point density, accuracy, intensity, etc.). The choice of
methods for capturing point clouds of object surfaces depends on the requirements of data
qualities (e.g., resolution and accuracy) as well as the geometry of monitored objects (e.g.,
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measuring distance or object scales). For instance, terrestrial laser scanning (TLS) is normally
employed to detect small deformations of engineering constructions or infrastructures due to
its high accuracy and high resolution (Kermarrec et al., 2020), while airborne laser scanning
(ALS) is often used to monitor geomorphological changes in large-scale mountain areas for
its wide scanning coverage and fast acquisition (Xiong et al., 2018).

Terrestrial Laser Mobile Laser Airborne Laser
Scanning (TLS) Scanning (MLS) Scanning (ALS)

Static Acquisition  Dynamic Acquisition

w_/

Laser Scanning

Coordinates (X,y,z)

Synthetic-a perture Distributions (spatial coverage)
Radar (SAR) Geometric Density (point spacing)
% Information Resolution (capability to resolve objects)

Position errors (systematic & random)

3D Point Clouds

ﬂ Amplitude intensity

cecnne Radiometric Reflectance intensity

Information RGB color
Photogrammetry
Structure from Multi-View
Depth Camera Motion (SfM) Stereo (MVS)

Figure 1.1: Typical acquisition methods of 3D point clouds and their common properties.

On the one hand, point cloud-based change detection and deformation analysis has been
rapidly developed in the geodetic as well as geographic, photogrammetric, and remote sens-
ing domains in the last three decades (Vosselman and Maas, 2010; Holst and Kuhlmann, 2016;
Qin et al., 2016; Eitel et al., 2016). In the field of computer vision/graphics, on the other hand,
advanced and efficient algorithms for 3D point cloud processing, like semantic or instance
segmentation and automatic feature detection, have provided more possibilities to cope with
the limitations and challenges in the point cloud-based areal geodetic monitoring (Xie ef al.,
2020; Yang et al., 2016a; Yang et al., 2016b; Poiesi and Boscaini, 2021; Gojcic, 2021; Zahs et al.,
2022). In particular, dense point clouds generated by laser scanning or LiDAR (Light Detec-
tion And Ranging) technologies, especially by TLS for its high accuracy and resolution, have
been widely exploited for high-precision deformation monitoring. The relevant theoretical
developments and practical applications have also become the research highlights in engi-
neering geodesy in the recent two decades (Schifer et al., 2004; Lindenbergh et al., 2005;
Tournas and Tsakiri, 2008; Wunderlich et al., 2016; Harmening et al., 2021; Medic et al., 2022).
In these contexts, this thesis mainly focuses on TLS point clouds and aims to improve the
performance of associated data processing arising from TLS-based deformation monitoring.

1.2 Motivation and Objectives

With the continuous development of sensor performance and data processing strategies,
TLS-based deformation monitoring is moving rapidly to a mature state. Its processing chain
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is depicted in Figure 1.2, where a brief description of each part is given by Harmening (2020).
The post-processing procedures after the data acquisition include the two most crucial parts:
registration/georeferencing and deformation analysis which are highlighted in red.

For the geodetic monitoring using TLS, at least two-epoch scanning has to be carried out so
as to detect and quantify the changes or deformations between two-epoch surfaces repre-
sented by point clouds. In addition, more than one scanning viewpoint may be required
within an epoch in order to achieve a complete acquisition of the monitored areas. However,
each point cloud is generated on the basis of a local coordinate system of the scanner due to
different viewpoints and initial scanning orientations. In such cases, the resulting scans are
rotated and translated with respect to each other and thus must be transformed into a com-
mon local (i.e., registration) or global (i.e., georeferencing) framework (Vosselman and Maas,
2010; Paffenholz, 2012; Wujanz, 2016).

Choice of |:> Scanner |:> Optimization of |:> Data
scan ner callbratlon scanning configuration acquisition
Deformation Analysis : @
1

Deformation I:II]:I Deformation / I<:| Data <:| Registration /
guantification change detection : preprocessing georeferencing

Figure 1.2: Processing chain of TLS-based deformation monitoring (Harmening, 2020).

Deformation analysis, as the final essential part of the processing chain, consists of change
detection and deformation quantification. The former provides a binary result to answer if
the monitored object is deformed (or changed) or not (Lindenbergh and Pietrzyk, 2015).
From the geodetic perspective, it answers whether the deformation is significant or not by
considering the associated stochastic model of estimated deformation values. The latter gives
the magnitudes of detected deformations or changes by means of a specified algorithm, and
associated directions or signs of deformations can also be output along with the displace-
ment vectors or surface distances.

Numerous methods for the registration and deformation analysis for TLS point clouds have
been proposed and successfully applied in man-made or natural scenes from the geodetic
domain. Nevertheless, there are still some challenges and room for improvements, such as
the targetless registration for deformed point clouds and the detection of small-magnitude
deformations under complex topographies. These challenges are often caused by more
common issues like the identification of identical points (correspondences) between epochs
without semantic information and the establishment of a realistic stochastic model of TLS
point clouds (Holst and Kuhlmann, 2016; Wunderlich ef al., 2016). Detailed descriptions of
these challenges are depicted in Section 2.2.3 and Section 2.3.3.

Even though the deformation process of the natural objects may be inhomogeneous and
anisotropic reflected in both deformation magnitudes and directions, on the one hand, the
elements (points) within a local area (neighborhood) on the deformed object show high
levels of (local) regularity or consistency on stability and deformation behaviors (Gojcic,
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2021). On the other hand, although each measurement (laser point) is individually generated
by angle and distance observations from the laser scanner, local similarities exist among
neighboring points with respect to local orientations, reflectance intensities, standard devia-
tions, etc., and thus a certain level of spatial correlations arise between these neighbors.
Besides, some local areas like geometric primitives and individual objects display as rigid
bodies in the deformation process, i.e., no distortion occurs within the area. Benefiting from
the potential local rigidity and consistency of deformed objects, therefore, spatial division or
separation can be performed on TLS point clouds representing the deformed surfaces of the
monitored objects, which means the point cloud can be segmented into smaller and as-
sumed-rigid sub-clouds called patches. Afterward, stability analysis and deformation analysis
can be individually performed on each patch.

Taking into account current challenges in TLS-based deformation monitoring and potential
characteristics inherent in TLS point clouds (e.g., local consistency and rigidity), this thesis is
dedicated to the development of efficient point cloud segmentation methods for generating
rigid patches. The primary objectives of this thesis are utilizing these segmented patches to
enhance the algorithmic performance of (1) targetless registration and (2) deformation
analysis for TLS point clouds in challenging contexts (e.g., point clouds with large-area
deformations and complex topographies).

1.3 Main Contributions

This thesis aims to improve two essential parts — targetless registration and deformation
analysis of TLS point clouds — in the processing chain of TLS-based deformation monitoring
by using patch-based segmentation techniques. To improve the readability of the thesis, the
main contributions are briefly summarized as follows:

(1) The concept and assumptions of rigid patches in 3D point clouds are defined (see Section
3.1). Three typical types of rigid patches — small planar patches, geometric primitives,
and quasi-rigid areas — can be generated using specified patch-based segmentation
strategies (see Section 3.2). Supervoxel-based over-segmentation is adopted to achieve an
adaptive spatial division of 3D point clouds, generating small, planar and locally con-
sistent patches. Besides, a simple and efficient coarse-to-fine segmentation framework
tailored to extract multiple geometric primitives from point clouds is presented, based
on the combination of 3D region growing and Random Sample Consensus (RANSAC).
Furthermore, a segmentation-and-validation strategy is proposed for detecting quasi-
rigid areas between epochs by exploiting 3D clustering algorithms and correlation esti-
mations between area-wise geometric feature descriptors of associated patches. These
generated rigid patches are further employed in the following targetless registration and
deformation analysis of TLS point clouds.

(2) A fully automatic targetless registration pipeline is proposed to align two partially de-
formed point clouds, simultaneously identifying the stable areas during the registration
process (see Chapter 4). In this method, coarsely registered point clouds are firstly over-
segmented and represented by supervoxels based on the local consistency assumption of
deformed objects. A confidence interval based on an approximate assumption of the sto-
chastic model is considered to determine the local minimum detectable deformation for
the identification of stable areas. The significantly deformed supervoxels between two
scans can be detected progressively by an efficient iterative process, solely retaining the
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stable areas to be utilized for the fine registration. The experimental results show that the
proposed algorithm exhibits a higher registration accuracy compared with the existing
voxel-based method and two robust Iterative Closest Point (ICP) variants.

(3) Based on the segmented small planar patches, a novel M3C2 variant called patch-based
M3C2 is proposed (see Section 5.1). This new method constructs prisms from planar
patches instead of cylinders in standard M3C2 (Lague ef al., 2013) and quantifies surface
distances between projected points on the patch plane, avoiding the bias and over-
smoothing effect on deformation quantifications in standard M3C2. The definition of
Level of Detection is also modified by using projected standard deviations along defined
deformation directions instead of the local roughness in standard M3C2 and considering
the spatial correlations between measurements. Lower uncertainty and higher resolution
are achieved to detect small-magnitude deformations under complex surface topogra-
phies, thus enabling a better point cloud-based deformation analysis. For segmented ge-
ometric primitives and quasi-rigid areas from 3D point clouds, rigorous parameter esti-
mations and local registration are utilized to derive parametric deformations (see Section
5.2) and dense displacement vectors (see Section 5.3) respectively, followed by associated
statistical significance tests. The correspondences in the two approaches are established
from parametric space or feature space instead of Euclidean space, thus generating real
displacements rather than the surface distances by point cloud comparison techniques.
All proposed deformation analysis methods are verified and evaluated by simulated
and/or real point cloud data, and the choice of three proposed methods for specific sce-
narios or applications is also provided.

It should be noted that the methodologies presented in this thesis are mainly developed for
TLS point clouds considering their extensive use in geodetic monitoring. Nevertheless, the
proposed approaches to targetless registration and deformation analysis have the potential
to be applied to ubiquitous 3D point clouds captured from other kinds of sensors or plat-
forms (e.g., ALS point clouds or photogrammetric point clouds) under the appropriate pa-
rameter or model selections.

1.4 Thesis Outline

This thesis is organized into six chapters, schematically shown in Figure 1.3. Chapter 1 de-
picts the motivation, objectives, and structure of the thesis and highlights the main contribu-
tions of the work. Chapter 2 mainly introduces the theoretical basis and related work of TLS-
based deformation monitoring, particularly focusing on point cloud registration and point
cloud-based deformation analysis as well as respective current challenges. As the basis of the
following two chapters, Chapter 3 systematically describes the concept, implications, and
generation methods of rigid patches in 3D point clouds and proposes three typical types of
rigid patches that could be segmented from point clouds: Small planar patches, geometric
primitives and quasi-rigid areas. In Chapter 4, a supervoxel-based targetless registration
method is proposed to align two deformed point clouds, using locally planar and rigid
patches to separate the boundaries of surface stabilities. The pipeline is demonstrated on two
datasets acquired from an indoor scene and a natural scene. Based on well-registered TLS
point clouds, rigorous deformation analyses by means of these segmented rigid patches are
presented in Chapter 5. The methodologies of deformation analyses elaborated in Sections
5.1, 5.2, and 5.3 are developed based on the above three types of rigid patches, respectively.
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In particular, the proposed registration algorithm in Chapter 4 is further employed in the
local registration-based method presented in Section 5.3. All proposed approaches are exper-
imentally validated and evaluated by simulated and/or real point cloud data in related sec-
tions. Chapter 6 concludes this thesis by summarizing the connections of contributions and
discussing the limitations and future investigations.

Chapter 1
Introduction
Chapter 2
Related Work & Challenges

L 4

Chapter 3
Patch-based Segmentation

p
Section 3.1
Assumptions and Types of Patches

L 2

Section 3.2 ]

Segmentations of Rigid Patches

e

Section 3.2.1 Section 3.2.2 Section 3.2.3
Small Planar Patches | | Geometric Primitives | | Quasi-rigid Areas

Chapter 4 \ Chapter 5
Targetless Registration of Deformation Analysis Based on
Deformed Point Clouds Rigid Patches
2 N
Section 4.1—4.3 Section 5.1 .
Supervoxel-based Targetless Patch-based M3C2
Registration Method
{ ™\
\ Section 5.2 \| Section 5.4
‘\ Geometric Primitive-based Method Choice
z
\? \
Section 5.3
Chapter 6 o /
Local Registration-based
Conclusions & Outlook e

Figure 1.3: The general structure of the thesis (block arrows indicate the recommended reading order;
the same colors and dashed arrows indicate potential connections).



2 Fundamentals, Related Work and Challenges of
TLS-based Deformation Monitoring

21 TLS-based Deformation Monitoring

Terrestrial laser scanning, also referred to as terrestrial LiDAR, acquires 3D coordinates
(XYZ) of numerous points on land by emitting laser pulses or carrier waves with known
wavelength towards these points and measuring the horizontal and vertical angles and
distance from the device (sensor) to the object (Vosselman and Maas, 2010). The acquisition
way of scanning could be 2D (e.g., profile scanner) or 3D (e.g., panorama scanner), thus
generating point clouds distributed on a 2D profile or 3D surface, respectively. Figure 2.1
demonstrates the basic principle of a TLS system.
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Figure 2.1: The measuring principle of a TLS system.

The measured distance p from the scanner center to the object surface can be acquired by
time-of-flight (TOF) or phase difference technology (Vosselman and Maas, 2010). The rang-
ing process of the first method can be simplified into the model of Equation (2.1), where c is
the speed of electromagnetic wave and T is the TOF of the laser pulse. The phase difference
method measures the whole length of modulated carrier wave by computing the phase
difference Ag,, and the number of integer wavelengths n,,, as denoted in Equation (2.2)
where A, is the wavelength of the modulated signal (Shan and Toth, 2018).

c-T
Pror = BN 1)

_ Ag,
P phase_diff = 7[’% + gj (2:2)
The final 3D coordinates (in the scanner-defined local coordinate system O, — X Y.Z ) meas-
ured by the scanner are calculated in Equation (2.3) where 85 and ¢, are the vertical and
horizontal angles. The absolute coordinates in the world coordinate system O, - X Y, Z, can
be obtained by a georeferencing process using fixed artificial targets mounted on stable areas
or by means of external sensors (see Section 2.2.2). Detailed measuring principles of TLS and
its applications can be found in Vosselman and Maas (2010) and Shan and Toth (2018).
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x=p-cosf, -cosep,
y=p-cosd, -sing, (2.3)
z=p-siné,

The modern laser scanners are able to acquire data in a significant higher speed (e.g., up to
1.1 million measurements/second can be acquired by Z+F IMAGER® 5016), compared to
conventional surveying instruments (e.g., total station) (Abellan ef al., 2011). Moreover, a TLS
system can capture the intensity of the reflected pulsed laser and even RGB color infor-
mation of the object surface with an integrated camera, which allows for a more detailed
representation of the monitored objects. These radiometric data are output as relevant attrib-
utes along with the 3D coordinates.

In TLS-based deformation monitoring, deformations and changes are detected and analyzed
based on the generated 3D point clouds (attached radiometric information may also be uti-
lized) from different epochs. As presented in Figure 1.2, registration (georeferencing can be
regarded as a global registration) and deformation analysis are two crucial data processing
parts in the pipeline of TLS-based deformation monitoring. Incorrect or inaccurate registra-
tion or deformation analysis will directly fail the monitoring task, thus leading them to the
most investigated processes. The following two sections present the fundamentals and relat-
ed work of point cloud registration and deformation analysis, and discuss their main chal-
lenges in some application scenarios.

2.2 Point Cloud Registration

Accurate and robust point cloud registration is a prerequisite for accurate deformation anal-
ysis in TLS-based deformation monitoring. The registration methods can be basically classi-
fied into relative registration and absolute registration, as summarized in Figure 2.2. The
former is also called point cloud alignment and rotates and translates one point cloud

P={p.}", (namely the source cloud with n points p;) to the other reference point cloud

0=1{q j}};f:l (namely the target cloud with m points q;) for achieving a unification of two local

coordinate systems (Holz ef al., 2015). The latter is also called georeferencing and transforms
the local coordinate systems of point clouds into a global or a superior system (e.g., a nation-
al or a world coordinate system). It should be noted that this thesis solely focuses on the rigid
registration (i.e., the size and shape of the source point cloud are not changed after the rigid
transformation), thus the non-rigid point cloud registration (i.e., the size or shape of the
source point cloud may be changed after the non-rigid transformation) is not included in the
classification categories. Interested readers are referred to Huang et al. (2008) and Dyke ef al.
(2019) for more details about the non-rigid registration of 3D point clouds.

Except for the direct georeferencing way, both absolute and relative registration can be im-
plemented by establishing corresponding elements between two scans and performing a
coordinate transformation based on these correspondences (for georeferencing a connection
to the superior coordinate system is needed). These correspondences could be identical
points or other corresponding geometric features like lines and planes. The goal of point
cloud registration is to estimate transformation parameters, including three rotation angles
and a translation vector in 3D, that minimize the spatial distances between these correspond-
ences, thus unifying the two coordinate frames (locally or globally) as accurately as possible.
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Figure 2.2: Classification of TLS point cloud (rigid) registration.

A transformation matrix T can be constructed by incorporating the rotation matrix R and

translation vector t. The determination of 7" is normally achieved by an optimal-estimation
process based on an objective function defined as (Holz et al., 2015)

A

R R ¢ & ,
I=\7 | =aemin 2[Ry +t—4(p.0) (24)

1x3

where ¢(p,, Q) is a correspondence function that maps p; in the source cloud P to its corre-

sponding point in target cloud Q, and N is the number of correspondences.

The translation vector ¢ and the rotation matrix R can be denoted by Equation (2.5) and
Equation (2.6), respectively.

_ T
t=[t 1, 1] (2.5)
1 0 0 cosR, 0 sinR, ||cosR —sinR, 0
R=RRR =0 cosR, —sinR, 0 1 0 sinR, cosR, 0
0 sinR, cosR, ||—sinR 0 cosR, 0 0 1
i cos R cosR, —Ccos R, sin R, sinR,

. . . . . . : 2.6
=| sinR sinR cosR, +cosR sinR, —sinR sinR sinR +cosR cosR, —sinR cosR, (2.6)

—COsR sinR cosR +sinR sinR, cosR sinR sinR +sinR cosR, COSR CosR,

}/‘11 }/'12 }/‘13 when‘R‘.,Rr,RZ 1 _Rz Ry
are small

=Ty T s = R, 1 —-R,

1731 T I3z _Ry R, 1

Correspondences in the form of identical points can be artificial signalized targets mounted
within the scanned area (normally used in indirect georeferencing and target-based registra-
tion), feature points extracted from point clouds (normally used in coarse registration), or
nearest neighboring points (normally used in ICP-based fine registration (Besl and McKay,
1992)), etc. The quantity and quality of correspondences have a significant influence on the
accuracy of registration results (Fan ef al., 2015; Janfien ef al., 2019).
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The optimal transformation parameters are typically solved by linear least squares (when
rotation angles are small) (Low, 2004), nonlinear least squares (where an iterative process is
required) (Gruen and Akca, 2005), or singular value decomposition (SVD) by which the
solution can be fast achieved (Kabsch, 1976). Notably, if available, a variance-covariance
matrix (VCM) for correspondences could be integrated into linear least squares and nonline-
ar least squares. The registered point cloud Q' can be readily obtained with the transfor-

mation parameters or matrix by

' q" x q X
qjix qjix qf_ qj_
q, ,|=R|q, , |+t or q{—y =T qf—y (2.7)
’ Jj_z Jj_z
Qj_z qj_z ]1 1

The following subsections present detailed principles and related work of relative and abso-
lute registration, respectively.

2.2.1 Relative Registration (Point Cloud Alignment)

In most geodetic monitoring cases where absolute positions are not necessarily required, the
deformation magnitudes between epochs are quantified independently of the absolute coor-
dinate system. The derived movements or distortions relative to the reference epoch can also
indicate the deformation behaviors on the point cloud surface in the local coordinate system.
Therefore, a relative registration (i.e., alignment) of one point cloud to another is basically
enough for revealing the expected deformation information in the scene, assuming the moni-
tored surface in the reference epoch is stable.

The typical relative registration is conducted on pairwise point clouds with overlapping
areas. These pairwise point clouds can be acquired (1) in the same epoch while from different
viewpoints, or (2) from the same viewpoint but in different epochs, or even (3) from different
viewpoints and in different epochs. Figure 2.3 shows strategies to register multi-viewpoint
and multi-epoch point clouds into a common frame/epoch (i.e., the reference frame/epoch).
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Figure 2.3: Registration strategies for multiple scans from different viewpoints and epochs: (a) Scans
acquired from different viewpoints and epochs with overlapping areas; (b) Possible registration
sequences of scans to the reference frame/epoch (each arrow indicates a transformation matrix).
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For multiple point clouds captured from different viewpoints and epochs, the registration
between pairwise point clouds should be performed stepwise based on fixed artificial targets
or the stable point cloud surfaces within overlapping areas. For deformed point clouds from
monitoring epochs, alignment is normally conducted between spatially adjacent scans (with
larger overlaps) first in one epoch and then between epochs. Point clouds are ultimately
registered to the reference cloud (frame) after the former step and unified to the reference
epoch after the latter step. The choice of two scans for alignment depends on the number and
distribution of common fixed targets or the dimension of common stable areas.

Typically, relative registration can be achieved by target-based or targetless methods. Placing
a certain number of artificial targets (e.g., signalized planar boards, corner reflectors, or
spheres, etc.) evenly distributed within the scanned area is one of the most popular ap-
proaches to register multi-station and multi-epoch laser scans in geodetic monitoring tasks.
The identical points estimated from these signalized targets directly derive reliable corre-
spondences between two TLS point clouds as long as these targets keep stable. However,
several downsides of the target-based registration strategy are evident in spite of its superi-
orities of high accuracy and high reliability (Janfsen ef al., 2019; Janfsen et al., 2022), such as the
necessity to access the monitored areas, which may be cumbersome, dangerous or even
impossible (Wujanz, 2016). Besides, the stability of target positions between epochs cannot be
guaranteed due to possible movements of their located regions and other unexpected inter-
ferences like the wind (Friedli, 2020). Stable and distinct geometric or radiometric features in
the scanned scene can also be utilized as so-called natural targets to construct correspond-
ences. However, the usage of these artificial targets needs prior knowledge with respect to
their stability and distinction between epochs. Thereby, targetless registration solely based
on the point cloud data has been of great research interest since the beginning of the 1990s
(Vosselman and Maas, 2010).

There are numerous algorithms aiming to register one point cloud to another without artifi-
cial targets in the scanned scene. These methods are generally under a coarse-to-fine proce-
dure (Cheng et al., 2018) and can be roughly divided into three categories including feature-
based (Rusu ef al., 2009; Yang et al., 2016a), four-points congruent set (4PCS)-based (Aiger et
al., 2008; Theiler et al., 2014), and ICP-based methods (Besl and McKay, 1992; Park and Sub-
barao, 2003). The former two strategies are mainly employed for coarse registration in which
only several points or features are utilized, while ICP or its variants are the most commonly
used for fine registration owing to its conceptual simplicity and high usability. Nevertheless,
the standard ICP framework is only capable of deriving accurate transformation parameters
under the condition of no or merely negligible deformations occurring between two scans
even if a good initial alignment is given (Wunderlich et al., 2016). Significant deformations
may cause incorrect correspondences in the ICP algorithm, resulting in erroneous registra-
tion of two scans, ultimately leading to a wrong deformation analysis. Hence, the unstable
areas must be rejected from the respective point cloud in the registration process (Wujanz,
2016; Friedli, 2020). It should be noted that the unstable areas incorporating deformations,
movements and non-overlapping areas (i.e., the areas are not measured in all epochs) are
normally unknown in a point cloud without a priori knowledge. Thus, automatic identifica-
tion of the stable areas in two unregistered point clouds plays a significant role in targetless
registration, especially in complex natural scenes where the stable and unstable regions are
difficult to be distinguished manually.
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2.2.2 Absolute Registration (Georeferencing)

The georeferencing process can be direct or indirect. A direct georeferencing of TLS meas-
urements is typically implemented by using external sensors to acquire the 3D position (e.g.,
by GNSS or total station) and orientations (e.g., by inertial measurement unit or compass) of
the scanner. This approach has been widely applied in MLS and ALS where the scanner
keeps a dynamic state when measuring (Meng ef al., 2017; Klingbeil et al., 2017). Other effi-
cient direct georeferencing methods are also used in TLS. For example, Paffenholz (2012)
utilized two GNSS antennas attached on the laser scanner to estimate its position and orien-
tations, while PandZic et al. (2017) adopted a “station-orientation” procedure by a backsight
target assuming that the scanner only rotates by the Z-axis. Different to the direct way, indi-
rect georeferencing of TLS point clouds is implemented by a coordinate system transfor-
mation based on at least three points (i.e., control points) well-distributed in the scans. The
absolute positions of these control points are known in a geodetic network or can be ac-
quired by other sensors (e.g., total station or GNSS). The measurement of target positions can
be carried out while acquiring the scans, which ensures a successful registration in cases
where targets move between scanning epochs (Glira ef al., 2013).

Since this thesis only focuses on the quantification of relative deformations between two TLS
point clouds, absolute registration will not be discussed in the following chapters. Detailed
background and related work of georeferencing can be found in Vosselman and Maas (2010),
Scaioni (2005), Paffenholz (2012) and Pandzi¢ et al. (2017).

2.2.3 Challenges of Targetless Registration of Deformed Point Clouds

As stated in Section 2.2.1, only stable (relative to the reference point cloud) areas or points
should be involved in the registration of deformed point clouds. To tackle the challenge of
targetless registration of deformed point clouds, a variety of solutions have been proposed to
avoid employing unstable areas to estimate transformation parameters. Two typical strate-
gies are commonly used: Stable feature-based and robust ICP-based.

The first strategy concentrates on the construction of invariant features between two scans.
These features include hand-crafted feature points, lines, planes, etc. (Yang et al., 2015; Yang
et al., 2016a; Chen et al., 2020). The RANSAC algorithm considering the geometric constraints
could then be used to extract the identical features without movements and deformations so
that the wrong and deformed correspondences could be rejected (Theiler et al., 2014). How-
ever, these feature-based methods are typically used for coarse registration due to the poten-
tial errors of feature extraction and matching, and the distribution of extracted features di-
rectly influences the registration accuracy. The stable geometric features are easily extracted
from the scenes incorporating man-made objects like buildings, whereas for natural scenes in
particular the smooth surfaces lack of corners and edges, there would be few detectable
geometric features for establishing correspondences. Besides, respective structures in the
scans may fail the right correspondence establishment as well.

The second strategy is the robust variant of standard ICP algorithm. The basic idea of these
variants is to reweight (soft rejection) or remove (hard rejection) the correspondences com-
prised of the points in unstable areas of two scans in the calculation of transformation pa-
rameters. The Generalized-ICP (G-ICP) proposed by Segal et al. (2009) exhibits better robust-
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ness against wrong correspondences by introducing an empirical VCM for each point, as-
suming that the variance along the surface normal direction is lower than that along the local
plane. Accordingly, correspondences where the surface orientations of two points are incon-
sistent make a much smaller contribution to the transformation estimation. Nevertheless, G-
ICP cannot weaken the influence of unstable areas moving along the normal direction, and
the assumed stochastic model is unrealistic. Chetverikov ef al. (2005) proposed a method
called Trimmed-ICP (Tr-ICP) which directly rejects a certain percentage of incorrect corre-
spondences in each iteration by setting a specified ratio (also called overlapping parameter).
Although this approach is fast and easily implementable, it is hard to determine the overlap-
ping parameter without prior information in a complex scenario.

In the field of engineering geodesy, Wujanz et al. (2016) and Friedli and Wieser (2016) have
proposed surface-based targetless registration methods by using a voxel-based segmentation
strategy. Each segment (i.e., voxel derived from an octree-based spatial index structure) is
represented by its centroid or uniform subsampling. Spatially equal-sized voxels that are
subject to deformation will not be employed to compute the transformation parameters. The
voxel-based partition for point clouds has dramatically improved the computational efficien-
cy compared to a single point-based strategy. However, the equal-sized segments containing
deformed parts may still be regarded as stable areas if these deformed points have a tiny
influence on the calculated centroid due to their symmetric geometric distribution in one
voxel. These retained voxels incorporating outliers will eventually affect the transformation
estimation. A uniform subsampling strategy adopted by Wujanz et al. (2016) allows for a
better description of one segment, but a mixed partition including both stable and unstable
points may be classified as an unstable voxel, resulting in insufficient or poorly distributed
points for the following transformation estimation. Therefore, the equal-sized spatial parti-
tion strategy is unreasonable when coping with the targetless registration of point clouds
containing irregularly distributed deformations and changes.

In addition to the above methods, techniques like robust registration by efficient outlier
removal strategies (Bustos and Chin, 2017; Yan et al., 2023) and neural network-based regis-
tration (Gojcic et al., 2020a; Huang et al., 2022) applied in the field of computer vision show
better performance but bring higher complexity and time consumption.

2.3 Point Cloud-based Deformation Analysis

Multitemporal 3D point clouds generated from laser scanning or photogrammetric tech-
niques are widely exploited to reveal geometric surface changes in the real world (Qin ef al.,
2016; Stilla and Xu, 2023). Two-epoch point cloud comparison under a unified georeferenc-
ing frame can directly detect and quantify geometric changes of the monitored surface be-
tween monitoring epochs. In the field of engineering geodesy, this process is formulated as
“point cloud-based deformation analysis” (Kuhlmann et al., 2014; Holst and Kuhlmann,
2016), where the term “deformation” herein, including both rigid-body movement and shape
deformation (or distortion), has equivalent implications to “change” used in the geoscientific
domain. The analytical results of the former are typically displayed via displacement vectors
(or displacement fields), while the shape deformation could be directly reflected by the cal-
culations of surface distances (for a point) or volume changes (for an area) by point cloud
comparison techniques (Girardeau-Montaut ef al., 2005). In addition, there is another geo-
metric change: Existing objects disappear, or new objects appear in the scanned scene (in this
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case, correspondences of these objects do not exist between epochs). This kind of changes can
be regarded as the movement out of the scene (i.e., movements with unknown directions and
magnitudes), and they could be analyzed by simply calculating the Euclidean distances (EDs)
or volume changes between two point clouds. A general category of the geometric changes
of object surfaces is summarized in Figure 2.4.
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Figure 2.4: General types of geometric surface changes.

The difference between the distance and displacement calculated on a point should be em-
phasized. Displacement vectors are derived to show the real movement between correspond-
ing elements in two epochs, while surface distances are calculated under specific criteria
(e.g., the distance between the nearest points or the distance along a defined direction).
Thereby, the distance value (Dist) from one epoch to the other may differ from the distance
in reverse sequence, while the displacement magnitude (Disp) will not be affected by the
sequence of comparison, as illustrated in Figure 2.5. However, real displacement vectors can
be derived only when realistic corresponding elements exist in point clouds from both
epochs. Hence, for the areas with high distortions or object appearance/disappearance, real
displacements cannot be calculated in the absence of realistic correspondences. In such cases,
surface distances are usually utilized to represent the magnitudes of surface changes.
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Figure 2.5: The difference between surface distances and real displacements.
To detect and quantify the significant deformations between two point clouds, numerous

methods have been proposed and applied for monitoring infrastructural (Kermarrec ef al.,
2020), industrial (Holst ef al., 2019), and environmental objects (Zhong et al., 2021). The adop-
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tion of specific algorithms depends on the objectives of deformation analysis (e.g., to obtain
3D displacement vectors or directly measure the spatial distances between two surfaces) and
the geometric information of acquired point clouds (e.g., point density, topographical com-
plexity, surface roughness, etc.).

Similar to the point-wise geodetic monitoring, the prerequisites of point cloud-based defor-
mation analysis are (1) registering two scans into one local or global coordinate system and
(2) determining the corresponding elements within successive point clouds in explicit or
implicit ways (Wunderlich ef al., 2016; Gojcic, 2021). Then, the EDs of these correspondences
will be calculated as the deformation values. Therefore, the strategies of point cloud-based
deformation analysis can be classified according to the types or definitions of these explicit
or implicit correspondences between two scans.

2.3.1 Classification of Strategies According to Correspondence Types

The geometric types of correspondences in point cloud-based deformation analysis can be in
the form of point-to-point, point-to-surface (point-to-model), or surface-to-surface (model-to-
model) (Mukupa et al., 2016), as listed in Table 2.1. The points in one point cloud can be
original measured points, extracted feature points, or estimated points from parameterized
geometric primitives, while the modeled surfaces of another point cloud are usually derived
by meshing or parameterization techniques.

Table 2.1: Three categories of point cloud-based deformation analysis by the correspondence type.

Methods General principles Representative algorithms
Point to point- Calculating EDs between the corresponding C2C (Girardeau-Montaut et al., 2005)
based points in two point clouds (PCs). F2S3 (Gojcic et al., 2020b)
Point to surface- Calculating EDs between the points in one PC C2M (Cignoni et al., 1998)
based and the modeled surface of another PC. B-spline surface (Harmening, 2020)
Calculating EDs between the generated points M2M (Aspert et al., 2002)
Surface to surface- Lo .
based from modeled surfaces or estimating parametric M3C2 (Lague et al., 2013)
changes between the models of two PCs. B-spline surface (Harmening, 2020)

The simplest way of point to point-based methods is to directly compute EDs between the
individual points of the source point cloud and their respective closest neighbors in the
target point cloud. These individual points could be original measured points or the cen-
ters/centroids of divided voxels of point clouds (adopted by Girardeau-Montaut et al., 2005).
The methods based on the correspondence in the form of point-to-point are generally called
cloud-to-cloud (C2C). While C2C exhibits the highest simplicity and computational efficien-
cy, EDs between these nearest points are only sensitive to out-of-plane deformations and not
able to denote realistic displacements between corresponding points over epochs. Besides, a
large point spacing makes the distance undesirably overestimated. Thereby, distance calcula-
tions between constructed (hand-crafted or learned) feature points that are regarded as
identical elements become another option, especially for detecting in-plane movements. For
example, Gojcic et al. (2020b) proposed feature-to-feature supervoxel-based spatial smooth-
ing (F2S3) that describes feature points solely by the point clouds’ geometric information and
establishes correspondences between epochs in the feature space under a deep learning
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framework. Wagner ef al. (2017) utilized the color information from captured images along
with the laser scans to detect identical elements in different-epoch point clouds by image-
based feature points.

In point-to-surface correspondences, the reference point cloud is approximated by a surface
which can be a mesh or a parametric model. The EDs between the points in the other point
clouds and this surface are computed as deformations. The distance between a point to a
surface implies that an interpolated point may be generated from the surface or model as the
corresponding point for obtaining the shortest distance. Thus, a point to surface-based meth-
od is finally transferred into the point-to-point way. For example, a cloud-to-mesh (C2M)
method takes the closest facet (triangle) or edge in the triangulated mesh of the reference
point cloud to compute the point-to-plane distance (Cignoni ef al., 1998), or the distances
between points to an approximating B-spline surface can be calculated by resampling dense
points from the parametric surface (Harmening, 2020).

Similarly, the surface to surface-based methods can be transferred into a point to surface-
based or even point to point-based methods by generating points from one or two surfaces.
A mesh-to-mesh (M2M) method calculates the distances between vertices of one meshed
point cloud to their closest facet (triangle) or edge of the other meshed point cloud (Aspert ef
al., 2002). Lague et al. (2013) proposed the multiscale model-to-model cloud comparison
(M3C2) to calculate the distance between two average positions of their local neighborhoods
in two point clouds captured by a cylinder along the normal direction. In addition, deriving
control points from modeled B-spline surfaces of two point clouds and calculating the dis-
tance between corresponding control points have become an efficient approach to detect and
quantify deformations between the point clouds with high measurement noise and non-
uniform point densities (Harmening ef al., 2021).

It should be noted that not all existing approaches can be clearly assigned into these three
classes (Harmening, 2020). Therefore, a new classification of point cloud-based deformation
analysis according to the definition of correspondences instead of their geometric types may
allow for including more existing methods.

2.3.2 Classification of Strategies According to Correspondence Definitions

Different from the categorization by other relevant literatures (Ohlmann-Lauber and Schafer,
2011; Qin et al., 2016; Neuner et al., 2016; Wunderlich et al., 2016; Harmening, 2020), herein
the existing methods of point cloud-based deformation analysis are classified according to
their explicit or implicit definitions of correspondences which also indicate the deformation
directions, as shown in Table 2.2. The correspondences defined in these methods may be
realistic (e.g., feature-based methods), unrealistic (e.g., nearest neighbor-based methods used
for highly rough surfaces), or potentially realistic (e.g., defined direction-based methods with
appropriate definitions of deformation directions).

Among the above methods, the closest points between two point clouds are regarded as the
correspondences in C2C and local ICP, which are the exemplary algorithms of nearest neigh-
bor-based and local registration-based methods, respectively. C2M or M2M are based on the
same principle but take the closest facet or edge in the triangulated mesh as the correspond-
ence. The deformations calculated by this kind of correspondence, however, merely repre-
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sent the minimum distance between two surfaces and may underestimate actual deformation
magnitudes in variable surface topographies.

Table 2.2: Five categories of point cloud-based deformation analysis by the correspondence definition.

Methods General principles Representative algorithms
Nearest neighbor- Calculating EDs of the points in one point cloud C2C, C2M (Cignoni et al., 1998)
based (PC) to their nearest neighbors in another PC. M2M (Aspert et al., 2002)

F2S3 (Gojcic et al., 2020b)
CD-PB M3C2 (Zahs et al., 2022)
Image-based correlation (Travelletti et al., 2014)
Image-based feature points (Holst ef al., 2021)

Calculating EDs of feature elements (e.g., points
Feature-based and planes) extracted and matched from two
PCs or their converted 2D images.

Calculating changes of parametric elements (e.g.,
Parameter-based normals of planes or centers of spheres) estimat-
ed by the parameterization of PC surfaces.

Geometric primitives (Yang ef al., 2021)
B-spline surface (Harmening ef al., 2021)

Defined direction- Calculating EDs of constructed corresponding DoD (Lane et al., 2003)
based points from two PCs along defined directions M3C2 (Lague et al., 2013)
(e.g., gravity direction or surface normal). MB3C2-EP (Winiwarter ef al., 2021)

Local registration- Performing a registration procedure locally on
based selected subsets of two PCs to derive the trans- Local ICP (Teza et al., 2007)
formation matrix and displacement vectors.

The feature-based methods are capable of finding realistic corresponding elements, so as to
output actual surface displacement vectors. These algorithms are sensitive to both in-plane
and out-of-plane deformations. Nevertheless, the correspondences like identical points with-
in point clouds are either not measured between two scans or cannot be readily identified
without prior knowledge (Wunderlich et al., 2016), especially when shape deformations or
non-overlapping areas (i.e., the areas are not measured in all epochs) occur during geodetic
monitoring. Besides, the uncertainties of these features used for a significance test are still
challenging to be estimated. F2S3 introduces learned 3D feature descriptors instead of hand-
crafted feature points and establishes correspondences in the feature space. This neural
network-based technique has dramatically improved the detection and matching of features
in 3D point clouds from natural scenes. However, annotated training dataset incorporating
ground-truth correspondences is needed, and smooth or highly deformed surfaces and
surfaces with lots of repetitive structures are still challenging for this pipeline (Gojcic et al.,
2021). Correspondence-driven plane-based M3C2 (CD-PB M3C2) proposed by Zahs et al.
(2022) extracts individual planar surfaces from point clouds by region growing-based seg-
mentation and establishes corresponding planes between epochs via a random forest classifi-
er based on defined plane parameters (as similarity measures). M3C2 distances are then
calculated between corresponding planes, and lower uncertainties can be achieved by bene-
fiting from these segmented planes (Zahs ef al., 2022). In addition, constructing correspond-
ences in the converted 2D images from 3D point clouds based on digital image correlation
(Travelletti ef al., 2014) or feature detection in hillshade images (Holst ef al., 2021) has also
become an efficient way to derive dense displacement vectors. The converted image solely
exploits the 3D coordinates of measured points, and thus its quality entirely relies on the
point cloud (regarding surface geometries, point densities, etc.).

The parameter-based methods are able to estimate parametric changes. The types of these
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parametric changes depend on the definitions of estimated parameters, which can be angle
differences between surface orientations in two epochs when parameters are direction vec-
tors, real displacements of geometric primitives when parameters are their 3D positions, or
spatial distances between two parameterized surfaces (e.g., when taking the control points in
B-spline surfaces as the parameters (Harmening ef al., 2021)), etc. The choice of parameters to
be estimated should mainly consider the requirements of monitoring tasks and application
scenarios. Since the variances (or the variance-covariance matrices) of estimated parameters
could be derived from the adjustment process, significance tests can be performed on these
parametric changes.

In the defined direction-based methods, correspondences are constructed implicitly along
defined directions that are assumed to be consistent with the deformation directions. For
example, DEM of difference (DoD) simply calculates the vertical distances of corresponding
pixels of the generated DEM from point clouds (Lane et al., 2003). As one of the most com-
monly used algorithms for point cloud-based change detection, M3C2 adopts multi-scale to
estimate the local surface normal and take it as the deformation direction. The correspond-
ences are constructed by averaging the sub-clouds captured by a cylinder the axis of which is
along the defined deformation direction (Lague ef al., 2013). A variant of standard M3C2
called M3C2-EP extends the estimation of the Level of Detection (i.e., LoDetection defined in
Lague et al. (2013)) by error propagation that integrates the uncertainties of the measure-
ments themselves and the registration of two scans to achieve a more appropriate LoDetec-
tion (Winiwarter ef al., 2021). Notably, these defined direction-based methods are developed
mainly for quantifying distances between point clouds rather than the real displacements on
monitored surfaces. Nonetheless, the derived distance values have the potential to agree
with the magnitudes of actual movements, provided reasonable definitions of deformation
directions with prior knowledge. Besides, the spatial resolution of quantified deformations
(distances) by defined direction-based methods will not be limited by the spatial coverage
and distribution of feature-based or parameter-based correspondences, which means the
respective deformation calculation can theoretically be carried out for all measured points.

To explain the definitions of these correspondences and their implications in 3D point clouds
more clearly, an intuitive schematic diagram is presented in Figure 2.6. Besides, Table 2.3
summarizes the main characteristics, advantages/disadvantages and applicable scenarios of
the five types of point cloud-based deformation analysis methods.
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Figure 2.6: A schematic illustration of five kinds of correspondence definitions.



2.3 Point Cloud-based Deformation Analysis 19

Table 2.3: Main characteristics, pros and cons of five types of point cloud-based deformation analysis
classified by the correspondence definition.

T f derived By g
Methods ype o e.r1 ve Advantages Limitations Applicable scenes
deformations
Nearest neigh- . Simple, fast and easy Deformation values are Any kind of point
Surface distances X . .
bor-based to be implemented  sometimes underestimated clouds
Displacement Real displacements Low spatial resolution and ~ Point clouds with

Feature-based d incorrect correspondences in  distinct and corre-

vectors (fields) vectors can be derive - :
repetitive structures sponding features

Parametric changes . Point clouds with
. & Parameters of interest Prior knowledge for global . L.

(e.g., distances, . . . 2~ geometric primitives,
Parameter-based . and their uncertainties or local parameterization is .
displacements, or parametric chang-

can be estimated required .
angles, etc.) es are required
Introducing defined Deformation values are Any kind of point
Defined direc- . directions for defor-  under- or over-estimated if clouds with assump-
. Surface distances . e . S . .
tion-based mation quantifications defined directions are tions of deformation
with high resolution unrealistic directions
Local registra- Displacement Dense displacement E?<t'1‘act1ng cor’respond%ng Point clouFls W?t}}
tion-based vectors (fields) fields can be derived  Tigid areas without prior  corresponding rigid

knowledge is challenging areas

2.3.3 Challenges for Detecting Small Deformations under Complex Topographies
and Deriving High-resolution Displacement Vectors

Natural like landslides or rockslides normally display high variability and roughness and
incorporate both rigid and non-rigid areas. The acquired multi-temporal 3D point clouds
from geomonitoring procedures may contain varying point densities or data missing in non-
overlapping areas due to occlusion and changes (Lague et al., 2013). Therefore, deformation
analysis between these geomorphic surfaces requires accurate detection and quantification of
deformations of different magnitudes under complex surface geometries and high measure-
ment noise. Besides, calculations in non-overlapping areas should be avoided where spuri-
ous results may yield by the nearest neighbor-based methods. In addition, in the absence of
prior knowledge of the stochastic model of point clouds, statistical significance tests can only
be performed by empirically estimating the uncertainties of quantified deformations.

High measurement noise of point clo