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Abstract

The digital information revolution offers rich opportunities for scientific progress; however, the

amount and variety of data available require new analysis techniques in order to adequately ad-

dress the growing complexity of processes. These requirements have influenced the development

of networks and integrated their application in various disciplines.

This thesis addresses the detection of changes in networks, combining network theory and sta-

tistical process monitoring to create improved techniques for network monitoring. Considering

networks as graph-structured data with either fixed or dynamic nodes and edges or as a model

based on artificial intelligence, three directions of network monitoring are identified, namely,

random network monitoring where the networks represent random variables, fixed network moni-

toring where the networks are assumed to be fixed structures, and monitoring of artificial neural

networks. The idea of using different modelling techniques and control charts to monitor network-

related processes connects contributions in this thesis to the outlined monitoring directions.

The first developed approach shows how multivariate control charts can be used to detect changes

in dynamic networks of various types generated by the temporal exponential random graph model

in an online manner. This monitoring procedure allows for many applications in different disci-

plines which are interested in analysing networks of medium size.

Next, the monitoring framework to detect anomalies in the network with a given structure but

a random process on it by combining the generalised network autoregressive model with node-

specific time series exogenous variables and the cumulative sum control chart based on residuals

is presented. This approach can be of particular interest for guaranteeing the safety of the infras-

tructure but also for foreseeing possible accidents.

The third contribution is dedicated to the development of a monitoring procedure for artificial

neural network applications that applies a non-parametric multivariate control chart based on ranks

and data depths. The core idea is to monitor a low-dimensional representation of input data called

embeddings that are generated by artificial neural networks to detect nonstationarity in a processed

data stream.

In addition to the development of three monitoring approaches, a fourth contribution, namely the

extension from the pure detection of the change point to the identification of its cause is presented.

The investigation includes a proposal for an automated inspection procedure, bringing together a

control chart for quantile function values and a graph convolutional network.

Keywords: Artificial Neural Networks, Change Point Detection, Control Charts, Machine Learn-

ing on Graphs, Processes on Networks, Statistical Network Modelling, Statistical Network Moni-

toring, Statistical Process Monitoring.





Kurzfassung

Die digitale Informationsrevolution bietet reichhaltige Möglichkeiten für den wissenschaftlichen

Fortschritt; die Menge und Vielfalt der verfügbaren Daten erfordert jedoch neue Analysetech-

niken, um die wachsende Komplexität der Prozesse angemessen darstellen zu können. Diese

Anforderungen haben die Entwicklung von Netzwerken beeinflusst und ihre Anwendung in ver-

schiedene Disziplinen integriert.

Diese Arbeit befasst sich mit der Erkennung von Änderungen in Netzwerken, wobei die Netzwerk-

theorie und die statistische Prozessüberwachung kombiniert werden, um verbesserte Techniken für

die Netzwerküberwachung zu schaffen. Betrachtet man Netzwerke als graphenstrukturierte Daten

mit entweder festen oder dynamischen Knoten und Kanten oder als ein auf künstlicher Intelli-

genz basierendes Modell, können drei Richtungen der Netzwerküberwachung identifiziert werden,

nämlich die Netzwerküberwachung, bei der die Netzwerke Zufallsvariablen darstellen, die Net-

zwerküberwachung, bei der die Netzwerke als feste Strukturen angenommen sind, und die Über-

wachung künstlicher neuronaler Netzwerke. Die Idee, verschiedene Modellierungstechniken und

Kontrollkarten aus der statistischen Prozessüberwachung zur Überwachung der netzbezogenen

Prozesse zu verwenden, verbindet die Beiträge zu den skizzierten Überwachungsrichtungen.

Der erste entwickelte Ansatz zeigt, wie multivariate Kontrollkarten verwendet werden können, um

Veränderungen in dynamischen Netzwerken verschiedener Arten, die durch das zeitliche expo-

nentielle Zufallsgraphenmodell erzeugt werden, in Echtzeit zu erkennen. Dieses Überwachungs-

verfahren ermöglicht zahlreiche Anwendungen in verschiedenen Disziplinen, die an der Analyse

von Netzwerken mittlerer Größe interessiert sind.

Als nächstes wird der Überwachungsansatz zur Erkennung von Anomalien in einem Netzwerk

mit einer festen Struktur und einem Zufallsprozess auf seinen Kanten durch die Kombination des

verallgemeinerten autoregressiven Netzwerkmodells mit knotenspezifischen exogenen Zeitreihen-

variablen und der auf Residuen basierenden kumulativen Summenkontrollkarte vorgestellt. Dieses

Verfahren kann von besonderem Interesse für die Gewährleistung der Infrastruktursicherheit, aber

auch für die Vorhersage möglicher Ausfälle sein.

Der dritte Beitrag widmet sich der Entwicklung eines Überwachungsverfahrens für künstliche

neuronale Netze, das eine nichtparametrische multivariate Kontrollkarte auf der Grundlage von

Rängen und Datentiefen anwendet. Die Kernidee besteht darin, die niedrigdimensionale Repräsen-

tation der Eingabedaten, sogenannte embeddings, zu überwachen, die von künstlichen neuronalen

Netzen erzeugt werden, um Nicht-Stationarität in einem Datenfluss zu erkennen.

Neben der Entwicklung von drei Überwachungsansätzen wird als vierter Beitrag die Erweiterung

von der reinen Detektion des Änderungspunktes zur Identifikation seiner Ursache vorgestellt.

Die Untersuchung umfasst einen Vorschlag für ein automatisiertes Inspektionsverfahren, das eine

Kontrollkarte für Quantilsfunktionswerte und ein künstliches neuronales Netz für Graphen zusam-

menführt.

Schlagworte: Künstliche neuronale Netze, Erkennung von Änderungspunkten, Kontrollkarten,

Maschinelles Lernen auf Graphen, Prozesse auf Netzen, Statistische Netzmodellierung, Statistis-

che Netzüberwachung, Statistische Prozessüberwachung.
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1 Introduction

Network representation is fascinating. It conveys complexity by introducing a relational structure

between objects, facilitating the integration of diverse information. Its origins trace back to the

18th century when Leonhard Euler solved the Königsberg bridge problem. Since that milestone,

network science has developed into a substantial field of research. The broad interest of the sta-

tistical community in graph-based data analysis arose in the last century with the development of

theory on random graphs and respective models such as the Erdős-Rényi model (cf. Erdős and

Rényi, 1959) introducing a probabilistic view of the problem.

Another significant factor in the growing popularity of networks is the availability of extensive

data sources. The present era of big data provides a unique opportunity to gain remarkable insight

into molecular, social, economic, and many other systems (cf. O’Malley and Marsden, 2008;

Schweitzer et al., 2009; Grennan et al., 2014). To be precise, the focus lies in analysing a relational

structure between entities, e.g. an economic network with entities being banks, a communication

network consisting of users or a chemical reaction network having chemical elements as entities

(cf. De Masi and Gallegati, 2007; Khrabrov and Cybenko, 2010; McDermott et al., 2021). An

example of a relation between two entities could be an occurrence of a transaction or a fixed,

physically defined connection.

Besides the rise of big data, the rapid advancement of Artificial Intelligence (AI) has encouraged

practitioners in various scientific fields to examine the benefits and challenges of Machine Learn-

ing (ML) algorithms in their research. For instance, in astronomy, the separation of astrophysical

objects such as stars and galaxies can be performed by applying decision trees (Ball et al., 2006);

reliable forecasts of energy consumption using support vector machines are extensively studied in

civil engineering (Gao et al., 2019); in biology, Artificial Neural Networks (ANNs) are applied

for predicting molecular traits (Angermueller et al., 2016). Together with the emergence of big

data and the increased capability of computers, the development of ANNs has received particu-

larly broad attention (cf. Chiroma et al., 2018). Current ANNs, consisting of many hidden layers

and being called deep learning models, have achieved impressive results in many areas, such as

finance, linguistics, or photogrammetry (cf. Aldridge and Avellaneda, 2019; Otter et al., 2020;

Heipke and Rottensteiner, 2020).

From the highlighted trends related to big data and AI at least two perspectives on defining a

network can be derived: network being either a graph-structured data or an AI-based model.

The additional third stream can be identified in current research trends, namely graphical mod-

els, where the network structure is used to represent conditional dependencies between random

variables (Schweinberger et al., 2021). In this thesis, the focus is on the first two points of view,

being network as graph-structured data and network as AI-based model, which are summarised

in Figure 1.1.

An important problem in studying network data is the detection of anomalous behaviour. Also,

a frequent deployment of models based on ANNs reveals the necessity of the models’ control

and monitoring, as currently the attention to the occurrence of critical flaws is often diminished.

Considering the first point of view on networks, i.e. graph-structured or network data, one can

have networks with either a fixed structure (for example, an infrastructural network such as an

1



2 1 Introduction

Figure 1.1: Network perspectives explored in this thesis.

electrical transmission system or a road network) or a changeable, random structure (an e-mail

network within an institution). Hence, the methods for detecting the deviations in the networks

would differ due to the differences in their origin. Considering a network to be an AI-based model,

its application also requires an alternative approach to perform monitoring for detecting possible

changes.

Thinking about change detection from a statistical angle, there is a well-established concept known

as Statistical Process Monitoring (SPM) whose original aim was to monitor and control industrial

processes, ensuring their operation within specified requirements and compliance with quality

standards (Stoumbos et al., 2000). However, among the new streams in expanding the usage of

SPM tools, the field of statistical process monitoring of networks or in short network monitoring

has arisen (Woodall and Montgomery, 2014). Statistical network monitoring is defined as a form

of surveillance procedure to detect deviations from a so-called in-control state of a network, i.e.

the state when no unaccountable variation of the network is present (Stevens et al., 2021b).

Currently, one usually distinguishes between two types of network monitoring in the statistical

community, differentiating the treatment of nodes and links, namely random network monitoring

and fixed network monitoring (cf. Jeske et al., 2018; Leitch et al., 2019). However, in this thesis,

a framework for monitoring applications based on ANNs is additionally proposed, separating it

into a further monitoring direction called monitoring of ANNs. Thus, in Figure 1.2 three monitor-

ing directions discussed in this thesis are shortly described, with a corresponding indication of a

chapter where the contribution to a particular area is presented.

Classical SPM methods can be remarkably powerful for the surveillance of networks. However,

due to the complex structure and potentially large size of the network data or also of the data

stream processed by ANNs, traditional tools for multivariate process monitoring cannot directly

be applied, as the data complexity must be reduced first. Moreover, the central assumption about

independent and identically distributed observations or consideration of a specific distribution is

also violated when one works with networks (cf. Stevens et al., 2021a). However, there are

solutions to overcome these limitations. For instance, this can be done by statistical modelling of

the network data or the data stream passed through ANNs. The choice of the model is crucial as
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Figure 1.2: Network monitoring directions discussed in this thesis.

it determines the constraints and simplifications of the original process which later influence the

types of changes one is able to detect.

Although there are substantial differences in viewing the three types of network monitoring illus-

trated in Figure 1.2, the main stages in the developed monitoring concepts remain consistent. In

each of the proposed frameworks, the same technique from the ensemble of SPM tools is applied,

namely control charts. Their universality and efficiency in monitoring the process online, meaning

in real time, offer technical advantages as well as enable a clear-cut interpretation.

The purpose of applying control charts in network monitoring is to detect the time point when a

significant change from the target state of a network has occurred. However, it is often the case

that a monitoring statistic is aggregated from several observations which were collected within a

specific time frame. That means, if the change point is identified, it is possible that only a few

samples were anomalous and the rest not. To be precise about which data points truly deviate

from the target state, one would need to inspect the entire batch. Still, the question of a possible

cause that has led to a change remains, often leading to a manual inspection. Consequently, it

becomes important to retrieve the control part being originally the central component of the SPM

(cf. Montgomery, 2009) into statistical network monitoring. Hence, this thesis also raises the topic

of auxiliary procedures that automatically identify potential causes and anomalous observations

after a control chart has identified a change in a network process.

The outline of the thesis is as follows: It begins with the revision of central theoretical foundations

in Chapter 2 and proceeds with the presentation of the related research as well as the identification

of scientific lacuna in Chapter 3. Afterwards, the contribution to random network monitoring in

Chapter 4 is presented, being published in Malinovskaya and Otto (2021). It is followed by the

method related to fixed network monitoring in Chapter 5 which is issued in Malinovskaya et al.

(2023a). Then, the focus is changed from networks as graph-structured data to networks being a

type of AI-based models, so that the thesis proceeds with presenting a framework for monitoring of

ANNs in Chapter 6 which is published in Malinovskaya et al. (2023b). The last technical Chapter 7

considers the proposal of an auxiliary procedure after a change point was detected during network

monitoring which is based on the publication Malinovskaya et al. (2022). Chapter 8 summarises

scientific directions related to the achieved outcomes that need future investigation.





2 Theoretical Foundations

According to Figure 1.1, one encounters networks from two major perspectives in this thesis:

Graph-structured data and AI-based models. Thus, in the subsequent Sections 2.1.1 and 2.1.2,

the basics of both kinds of networks are introduced. Afterwards, the foundations of network

monitoring, especially the definitions of change point detection and control charts are provided in

Sections 2.2.1 and 2.2.2, respectively.

2.1 Representation of Networks

In this section, the mathematical notation to describe networks is accompanied by the prelimi-

nary theory of their modelling, separating networks with random structure from networks with

fixed structure. Next, the basics of artificial neural networks are given. In general, to distinguish

between a network as graph-structured data and the neural network approach, a full name or the

abbreviation for the latter is used, e.g. artificial neural network or ANN.

2.1.1 Networks as Graph-Structured Data

Regarding networks as a structure of data, such representation is strongly shaped by the discipline

of discrete mathematics called Graph Theory (cf. Diestel, 2017). A graph (interchangeably called

network) G = (V,E) is defined by a set of nodes (also known as vertices) vi ∈ V , where i =
1, . . . ,|V | with |V | representing the total number of nodes, and a set of edges ei, j ∈ E with ei, j

being an edge (also called link or tie) between vertices vi and v j, j ̸= i. Usually, the network

is defined by a binary or weighted adjacency matrix YYY ∈ R
|V |×|V |. Two vertices are adjacent if

they are connected by an edge. If we consider a binary adjacency matrix, then Yi j = 1, otherwise,

Yi j = 0. In the case of an undirected network, YYY is symmetric.

To illustrate these definitions, a small social network consisting of four colleagues is designed

in Figure 2.1, left side. Consequently, if the graph representation is considered to display the

interactions within this group, one would obtain a network positioned in the centre of Figure 2.1.

In this case, edges represent connections between two colleagues if they work on the same project.

The same network can be expressed in the form of an adjacency matrix as shown in Figure 2.1,

right side. Additionally, nodal or edge attributes can be assigned. For example, if a graph is

weighted, weights can be incorporated as one of the edge attributes. To create a weighted network

of the case presented in Figure 2.1, the straightforward extension of that graph could be to include

the number of projects the colleagues work on jointly as the edge weight.

In some applications, alternative representation techniques from Graph Theory can be more suit-

able. For instance, in Chapter 5 the focus lies on the network edge processes, where edges become

nodes by using a line graph definition (also known as edge-to-vertex dual graph) L(G) of G. The

line graph L(G) is constructed on E, where (i, j) ∈ E are adjacent as nodes if and only if they are

adjacent, i.e. share a common node, as edges in G (Diestel, 2017). In Figure 2.2 an example of a

graph and its transformation into a line graph is displayed.

5
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Figure 2.1: An example of a social network that consists of four colleagues (left side). In the centre, the graph

represents the relations between the colleagues, where an edge defines working on the same project. Here, the vertex

set consists of V = {v1, v2, v3, v4}, meaning v1 is the colleague A up to v4 being the colleague D. Consequently, the

edge set is defined as E = {e1,2, e1,4, e2,3, e3,4}. On the right side is the representation of the social network as a

binary adjacency matrix. The illustration is retrieved from Malinovskaya et al. (2022).
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Figure 2.2: Example of a line graph.

To learn more about a particular network, several descriptive statistics, such as degree distribution,

i.e. number of connections every node has to other nodes in the network, clustering coefficient,

and average path length are widely applied to characterise network topology (cf. Kolaczyk and

Csárdi, 2014). However, as soon as the interest in monitoring effectively a particular network

arises, the computation of descriptive statistics to summarise network properties concisely but

also thoroughly might not be sufficient anymore. Thus, mathematical modelling of networks

becomes necessary. Hence, in the next section, the general concept of network modelling is

described and famous frameworks for random networks are introduced. Afterwards, the modelling

of multivariate time series is briefly discussed, being a foundation of the approach developed in

Chapter 5 for monitoring fixed networks.
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2.1.1.1 Random Graph Models

In the literature, there are usually two ways of regarding network models: either subdividing them

into mathematical models and statistical models (cf. Kolaczyk and Csárdi, 2014) or describing

them jointly under one category called random graph models (cf. Avrachenkov and Dreveton,

2022). The former subdivision emphasises the existence of more suitable modelling approaches

for statistical inference, which are capable of realistically representing complex data, remaining a

member of a later, broader category of random graph models. Nevertheless, mathematical random

graph models, e.g. the Erdős-Rényi model, serve as the origin of the network modelling area,

remaining equally important for statistical analysis of networks.

Formally, a network model is defined as a collection

{Pθ (G), G ∈ G : θθθ ∈ Θ},

where Pθ is a probability distribution on the ensemble G and θθθ is a vector of parameters, ranging

over possible values in a subset of p-dimensional Euclidean space Θ ⊆ IRp with p ∈ IN (Kolaczyk,

2009b). In the case of a directed graph, where the edges have a direction assigned to them,

this stochastic mechanism determines which of the |V |(|V |− 1) edges are present, i.e. it assigns

probabilities to each of the 2|V |(|V |−1) graphs (cf. Cannings and Penman, 2003). For the undirected

case, the number of possible edges decreases to
|V |(|V |−1)

2
.

Starting with a classical random graph model from a mathematical domain, the Erdős-Rényi model

G(|V |,p) generates edges between nodes independently with probability p (Erdős and Rényi,

1959). Hence,

P(Yi j) =

{

p for Yi j = 1

1−p for Yi j = 0
,

and can be rewritten for the associated adjacency matrix YYY as

P(YYY ) =
∏

i< j

pYi j(1−p)1−Yi j = (1−p)
|V |(|V |−1)

2

(

p

1−p

)|E|
.

The result follows by obtaining number of edges as |E| =
∑

i< j Yi j (Avrachenkov and Dreveton,

2022). Moreover, the restriction i < j is necessary because of the symmetry of the adjacency

matrix. As one can observe, Yi j are independent and identically distributed (i.i.d.) Bernoulli

random variables with parameter p. Additionally, Yii = 0 for all i (no self-loops are allowed in this

model). Although a useful theoretical abstraction, Erdős-Rényi graphs produce an oversimplified

structure for modelling real graphs that have a heavy-tailed degree distribution and not a binomial

one (cf. Barabási and Albert, 1999). Still, as shown in Section 5.4, in some applications the

G(|V |,p) model provides high usefulness.

Coming to the direct extension of Erdős-Rényi model, the Stochastic Block Model (SBM), ini-

tially introduced by Holland et al. (1983), is discussed. It enriches the previously described model

by allowing the edge probability to depend on the node’s membership to a particular group. Hence,

by defining SBM, one considers a symmetric matrix BBB ∈ R
k×k, for k ≪ |V |, together with a map

C : {1, . . . , |V |} → {1, . . . ,k}, such that P(Yi j) = BC(i),C( j). That means, |V | nodes are grouped

into k blocks or communities Q1, . . . ,Qk, with labels provided by the map C which assigns to each
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node a community label. Consequently, the distribution of the adjacency matrix YYY with C(i) = r

and C( j) = d is as follows

P(YYY ) =
∏

r,d∈
{1,...,k}

∏

i∈Qr

∏

j∈Qd
j ̸=i

B
Yi j

r,d(1−Br,d)
1−Yi j ,

where the Erdős-Rényi model G(|V |,p) can be recovered by setting the values of Br,d to p.

The SBM offers flexibility in representing various community structures such as assortative and

disassortative patterns within a network (Yan et al., 2014). However, SBM assumes nodes within

the same community to have the same expected number of connections, contrary to the inhomoge-

neous degrees observed in many real-world networks (Zhao et al., 2018). When fitting an SBM to

such networks, it becomes necessary to separate one community into two in case it includes mem-

bers with both high and low degrees. This solution, however, introduces distortions to the original

community structure. Consequently, an extension of the SBM has been developed to accommo-

date heterogeneous degrees, namely degree-corrected SBM (cf. Karrer and Newman, 2011). Lee

and Wilkinson (2019) comprehensively review further extensions of the SBM. Nevertheless, for

some applications as presented in Section 5.4, the initial version of SBM remains useful.

In this thesis, the particular interest lies in the modelling and monitoring of directed graphs (or di-

graphs), as proposed in Chapter 4. Initially, a framework for digraphs defined as the p1 model was

proposed by Holland and Leinhardt (1981), for the first time accounting for mutual and asymmet-

ric relationships between nodes. Relaxing the central assumption about the independence of dyads

(pair of nodes), Frank and Strauss (1986) introduce Markov Graphs applying the Hammersley-

Clifford theorem (cf. Besag, 1974). This progress led to the generalisation of the approach by

Frank (1991) and Wasserman and Pattison (1996), who developed the p∗ model. Later this model

obtained a more common name as the Exponential Random Graph Model (ERGM) (cf. Wasser-

man and Pattison, 1996; Handcock, 2003) as it belongs to the exponential family of distributions.

The functional representation of ERGM is given by

Pθθθ (YYY ) =
exp[θθθ ′sss(YYY )]

c(θθθ)
, (2.1)

where YYY ∈Y is the adjacency matrix of an observed graph, belonging to the ensemble of possible

network states Y , with sss : Y → IRp being a p-dimensional statistic describing the essential

properties of a network based on YYY (cf. Frank, 1991; Wasserman and Pattison, 1996). The network

terms sss(YYY ) are sufficient statistics that summarise the network structure by counting the existence

of different network terms so that the inference about the model parameters θθθ depends on the

graph data YYY only through the values of sss(YYY ). There are several types of network terms, including

dyadic dependent terms, for example, a statistic capturing transitivity, and dyadic independent

terms, for instance, a term describing graph density (Morris et al., 2008). A selection of network

terms that could occur in a directed network is presented in Figure 2.3. It is also possible to include

nodal and edge attributes in the statistics, whose variety depends on the type of network, i.e. either

directed or undirected graph structure.

The model parameters θθθ can be defined as respective coefficients of sss(YYY ) which are of consider-

able interest in understanding the structural properties of a network. They reflect, on the network

level, the tendency of a graph to exhibit certain sub-structures relative to what would be expected

from a model by chance, or, on the tie level, the probability of observing a specific edge, given
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Figure 2.3: Example of triangular network terms as well as terms that describe asymmetric and mutual behaviour.

the rest of the graph (Block et al., 2018). The last interpretation follows from the representation

of the problem as a log-odds ratio. The normalising constant in the denominator ensures that

the sum of probabilities is equal to one, meaning it includes all possible network configurations

c(θθθ) =
∑

YYY∈Y
[expθθθ ′sss(YYY )] in the ensemble Y . The application of the model’s temporal extension

called TERGM is a major part of the monitoring framework proposed in Chapter 4, where it is

introduced in detail in Section 4.3.1.

2.1.1.2 Modelling of Multivariate Time Series

Although one remains in the field of network analysis, as soon as a fixed network structure with

a random process on it is considered, alternative modelling methods are required. They differ

from the previously described random graph models and originate from the classical time series

modelling approaches.

Consider a stochastic process {Xt , t ∈ Z} to be a univariate time series. In the case of a network,

e.g. for analysing a nodal attribute, one would have a separate time series Xi,t for each node i. In

terms of a whole graph, one obtains |V | time series variables to be X1,t , . . . ,X|V |,t . A multivariate

time series is defined as XXX of size |V |×T , where T is the number of time points. That is, the i-th

row of XXX is Xi,t , and for any time t, XXX t = (X1,t , . . . ,X|V |,t)
′.

A prominent model to represent such data is to apply the Vector Autoregressive (VAR) model of

order q. Based on the description in Lütkepohl (2005), with the assumption about the mean values

of nodes µµµ = (µ1, . . . ,µ|V |)
′ to be µµµ = 000, VAR(q) is specified as

XXX t =









X1,t

X2,t
...

X|V |,t









=

q
∑

κ=1











φ1,1,κ φ1,2,κ · · · φ1,|V |,κ
φ2,1,κ φ2,2,κ · · · φ2,|V |,κ

...
...

. . .
...

φ|V |,1,κ φ|V |,2,κ · · · φ|V |,|V |,κ



















X1,t−κ

X2,t−κ
...

X|V |,t−κ









+









u1,t

u2,t
...

u|V |,t









,

or in a compact notation as

XXX t =

q
∑

κ=1

ΦκXXX t−κ +uuut , (2.2)
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Figure 2.4: A feedforward neural network consisting of four fully connected layers (left side) and the computation

of a value for the neuron j in the first hidden layer (right side). For simplicity, the bias term is not included. The

illustration is retrieved from Malinovskaya et al. (2022).

where Φκ are fixed (|V |×|V |) coefficient matrices, uuut =(u1,t , . . . ,u|V |,t)
′ is a |V |-dimensional white

noise or innovation process. That is, E(ut) = 0, E(utu
′
t ′) = Σu, for t ̸= t ′. The covariance matrix

Σu is assumed to be non-singular if not otherwise stated.

However, here each nodal attribute would depend on the recording of the same attribute of all

other nodes in the network, distorting the actual dependency structure reflected in the adjacency

matrix YYY . Moreover, it makes the calculation mathematically and computationally intricate due to

a large number of parameters, requiring a high number of T available observations for a precise

estimation that restricts the application of the VAR model substantially. Hence, in Chapter 5 an

alternative modelling framework is introduced that accounts for network properties and which

possesses computational advantages, serving as a suitable candidate for designing an efficient

monitoring procedure.

2.1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) represent a large class of advanced computational models

whose (often multilayer) structure was initially inspired by the biological brain, however, nowa-

days developed beyond this neuroscientific perspective. ANNs serve as prominent examples of

deep learning algorithms, being a group of advanced machine learning methods that can learn

gradually a large number of parameters in an architecture composed of multiple non-linear trans-

formations.

In Figure 2.4 an example of a simple feedforward neural network consisting of four fully con-

nected layers is displayed. Each layer is composed of separate processing elements that are known

as neurons. Here, each neuron in one layer is connected to every neuron in the subsequent layer.

Looking at the left side of Figure 2.4, the input layer (yellow) has three neurons, the two consec-

utive hidden layers (grey) have four neurons, and the output layer (blue) consists of one neuron.

The goal of a neural network is to process the incoming data that is entered as the input layer

up to the output layer, where a corresponding result known as target (e.g. a class label) is re-

turned. Meanwhile, the hidden layers combine learned data representations from previous layers,

abstracting irrelevant details and extracting useful features for generating the output.

The right side of Figure 2.4 illustrates calculations for obtaining a value of a particular neuron

in a hidden layer. The input I j of the neuron j corresponds to the weighted sum (applying the
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parameters ϑ
(1)
i j , where the (1) subscript refers to the layer being calculated, i defines the input

neuron and j describes the hidden layer neuron) of values from neurons in the previous layer.

Next, a non-linear function ω(·) also known as the activation function is used, with the final

value of the neuron j being O j = ω(I j). To minimise the error between the desired and computed

outputs in the final layer of a neural network, the parameters (in the case of Figure 2.4, they are the

weights displayed on the arrows connecting respective neurons) are estimated during the training

phase. Thus, the main goal of training ANNs is to estimate the parameters ϑ of a highly nonlinear

function f (·,ϑ) : Rl →R
u, mapping a l-dimensional input (i.e. observed data) to a u-dimensional

output (i.e. class labels).

Some changes in the number of nodes, layers, and types of connections lead to new ANN ar-

chitectures. To handle high-dimensional data efficiently, specific types of ANN models have

been developed. For instance, convolutional ANNs enable image data processing, while recur-

rent ANNs are suitable for working with temporal sequences (cf. Shrestha and Mahmood, 2019).

It is worth noting that designing ANNs usually follows the trial-and-error principle (Emambocus

et al., 2023). Nevertheless, some strategies are recommended by the experts, e.g. how to start

choosing hyperparameter values (cf. Smith, 2018). Goodfellow et al. (2016) and Calin (2020)

provide a broader overview of how to design and train ANNs.

2.2 Preliminaries for Statistical Network Monitoring

The goal that one usually pursues when conducting network monitoring is to identify the time

point when a network (including the perspective of a network-related process) becomes spurious.

To be precise, the aim is to test over time the null hypothesis

H0,t : The network observed at time point t is in its target state

against the alternative

H1,t : The network observed at time point t deviates from its target state.

The time point when an abrupt change in the process happens is also known as a change point.

Thus, in the next section, the definitions of change point detection as well as of control charts

being a prominent tool for performing it are presented.

2.2.1 Change Point Detection

Looking at network monitoring from the change point detection perspective, one is particularly

interested in identifying those points in time when a significant change or shift occurs in the

statistical properties of a process (Aminikhanghahi and Cook, 2017). For instance, it could result

in a sudden increase or decrease in the mean or variance of a process.

Consider ssst = (s1(Gt), . . . ,sp(Gt))
′ as a collection of p network statistics which is derived from

a graph G at time point t. Following, let F0 be the in-control or target distribution and Fτ the

out-of-control distribution. One refers to τ as a change point for a stochastic process ssst , if

ssst ∼
{

F0 if t < τ
Fτ if t ≥ τ.
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Figure 2.5: A typical control chart as presented in Montgomery (2009).

However, as indicated in each of the chapters, the definition of a change point varies from appli-

cation to application due to differences in the form of how one regards the network. Consistent in

each context is the endeavour to detect τ as soon as possible.

In the field of change detection, according to Basseville and Nikiforov (1993), there are three

classes of problems: online (real-time) detection of a change, offline hypotheses testing and offline

estimation of the change time. The methods developed in this thesis refer to the first class, meaning

that the change point should be detected as soon as possible after the change has occurred. In this

case, real-time monitoring of complex structures becomes necessary: for instance, if the network

is observed every minute, the monitoring procedure should be faster than one minute.

To perform online surveillance, i.e. a real-time change detection, the efficient way is to use tools

from the SPM that were originally developed for industrial purposes to achieve process stability

and variability reduction (cf. Montgomery, 2009). A technique which particularly fits the require-

ment of real-time change point detection and belongs to the leading SPM methods is a control

chart (e.g. Kan, 2003; Celano et al., 2013; Psarakis, 2015; Perdikis and Psarakis, 2019). Thus, the

theory behind control charts is provided subsequently.

2.2.2 Control Charts

The purpose of control charts is to identify occurrences of unusual deviation of the observed pro-

cess from a prespecified target (or in-control) process, distinguishing common from special causes

of variation (cf. Johnson and Wichern, 2007). They graphically display how a corresponding pro-

cess variable changes over time. Figure 2.5 illustrates a typical control chart, which includes a

Central Line (CL) that defines the average of the process variable and two horizontal red lines –

the Upper Control Limit (UCL) and the Lower Control Limit (LCL) (Montgomery, 2009). When

the process is in control, the control or test statistic is plotted close to the CL within the area de-

fined by the control limits. As soon as unusual variability occurs, the observations start appearing

on or outside the control limits. This practice is known as signalling, meaning that the control

chart signals or detects an out-of-control state, informing about the need for an investigation of

the process.
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There is a strong connection between control charts and hypothesis testing, as it repeatedly tests at

different points of time t the null hypothesis H0,t against the alternative H1,t . Taking the example

from the previous section, if one is interested in monitoring the deviation of the network statistics

ssst from its expected value sss0, then one specifies

H0,t : E(ssst) = sss0 against H1,t : E(ssst) ̸= sss0 .

A hypothesis H0,t is rejected if the control statistic is equal to or exceeds the value of one of the

control limits.

Usually, the are two phases involved in the implementation of control charts. Phase I corresponds

to the exploration and calibration period, where the control chart parameters are estimated (Jones-

Farmer et al., 2014). It is based on the assumption that the process during this phase is in control or

in its target state, i.e. stable, predictable and repeatable (Vining, 2009). In Phase II, the monitoring

of a system starts which is assumed to stay in control, and the functionality of the control chart

with respect to detected anomalies is examined, i.e. to out-of-control states that correspond to

unusual variation of a process, and to false alarms – when no abnormality is presented but the

chart signals a change. The more precise the estimation of the parameters in Phase I, the more

reliable the performance of the control chart in Phase II. The desired operation of control charts

during Phase II is a quick detection of the process when it experiences an out-of-control state. At

the same time, one strives for a long-running scheme without false alarms occurring, meaning the

case when the process actually remains in control but the scheme signals a change. This translates

to a balance between small control limits for fast detection and large control limits for small false

alarm rates.

There are several ways to classify control charts. In terms of the number of variables, there

are univariate and multivariate control charts. An example of multivariate control charts can be

found in Chapter 4 and univariate ones in Chapter 5. Another grouping is related to monitoring

either the process average (mean) or the process variability (variance). There are also control

charts, where the monitoring of both quantities is possible, highlighting the non-parametric control

charts presented in Chapter 6. Consequently, the opposite type relates to parametric control charts

applied in the remaining technical chapters. Further differentiation happens by accounting for the

batch size, where there are alternative control charts in case more than one sample is observed in

time stamp t. An application of such a control chart is provided in Section 6.5.4.2.

After revising the main theoretical concepts that serve as a foundation for the presented contribu-

tions in Chapters 4-7, the overview of the related research together with the identification of the

scientific lacuna is provided in the next chapter.





3 Related Research and Identified Scientific Lacuna

Although many points have been demonstrated and researched in the area of statistical network

monitoring, there are still open questions, some of which are the focus of this thesis. Covering

more than one type of network monitoring (see Figure 1.2), the literature review as well as identi-

fication of the knowledge gaps are subdivided into several sections, following the thematic order

of the subsequent Chapters 4-7.

3.1 Statistical Analysis of Networks

Since graphs are powerful abstractions, there are numerous applications of them, including se-

mantic, transportation, document citation, protein-protein interactions networks and many others

(cf. Chen et al., 2015; Brevier et al., 2007). Consequently, the focus of the statistical analysis

of random networks varies from obtaining descriptive properties of a graph up to implementing

inferential modelling (cf. Kolaczyk and Csárdi, 2014). Thus, in this section, solely the topic of

random network monitoring is discussed.

According to Woodall et al. (2017), one can classify statistical monitoring methods of networks

into the following four categories: 1) Bayesian methods; 2) Scan methods; 3) Time series models;

4) Control chart and hypothesis testing methods. The Bayesian methods are based on two stages:

The first stage involves the application of Bayesian models for discrete time counting processes

on observed connections between nodes, assessing the normality of their behaviour; in the sec-

ond stage, standard network inference techniques are used on a substantially reduced subset of

potentially anomalous nodes (Heard et al., 2010). The scan-based monitoring is known in the en-

gineering literature as moving window analysis; Priebe et al. (2005) adapt the concept of scanning

a particular region of data to digraphs, calculating a standardised statistic for specified metrics

for each time window. Pincombe (2005) illustrates the idea of modelling graph topology distance

measures with conventional time series models, comparing the graph for a given period with the

graph from previous periods; Then the detection of changes happens by using residuals and a

decision threshold.

The fourth category, being the focus of this thesis, is control chart and hypothesis testing methods.

Existing in various forms in terms of the number of variables, data type and statistics being of

interest, there are multiple application variations of these methods. As Multivariate Cumulative

Sum (MCUSUM) and Multivariate Exponentially Weighted Moving Average (MEWMA) charts

are used to propose a new monitoring framework in Chapter 4, the summary of research based on

a similar choice of control charts is provided below.

The monitoring of network topology statistics by applying the Cumulative Sum (CUSUM) chart

and illustrating its effectiveness in the analysis of military networks was presented by McCul-

loh and Carley (2011). Wilson et al. (2019) use the degree-corrected stochastic block model to

generate networks and then perform surveillance over the maximum likelihood estimates using

the Shewhart and Exponentially Weighted Moving Average (EWMA) charts. The combination

of the Exponential Random Graph Model (ERGM) in the form of a Markov Graph together with

EWMA and Hotelling’s T 2 charts was proposed by Sadinejad et al. (2020). Farahani et al. (2017)

15
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evaluate the application of MEWMA and MCUSUM together with the Poisson regression model

for monitoring social networks. Hosseini and Noorossana (2018) apply EWMA and CUSUM

to degree measures for detecting outbreaks in a weighted undirected network. A comprehensive

study of different network characteristics, which are monitored with EWMA control charts for

finding various types of changes in a network, is provided by Flossdorf and Jentsch (2021). The

distribution-free MCUSUM is introduced by Liu et al. (2019) to analyse longitudinal networks.

Salmasnia et al. (2019) present a comparative study of univariate and multivariate EWMA for

social network monitoring. An overview of further control chart-based studies is provided by

Noorossana et al. (2018).

Regarding other hypothesis testing methods, Azarnoush et al. (2016) propose monitoring the un-

derlying network edge-formation mechanism via attributes, applying logistic regression and a

likelihood-ratio test. The incorporation of vertex attributes that lead to better detection perfor-

mance is also presented in Miller et al. (2013).

The combination of statistical network models and control charts still offers many research oppor-

tunities and has not reached its depth yet. Especially, the development of approaches suitable for

various types of networks in terms of the edge direction and topology, enabling the integration of

covariates and temporal dependence has not been explored substantially yet. Thus, in Chapter 4 a

monitoring framework that covers the stated requirements is proposed.

3.2 Statistical Analysis of Processes on Networks

It is worth noting that compared to an established research field of statistical analysis and espe-

cially monitoring of networks, the analysis of processes on networks is currently an emerging

research direction. The reasons could be twofold: The processes on networks, where networks

are often physically or technically arranged fixed structures, i.e. between server and client com-

puters such as data traffic in internet networks, have a strong technical scope that requires precise

knowledge of constraints and rules posed by the system (e.g. Thottan and Ji, 2003; Kim et al.,

2004; Zhang, 2009; Li et al., 2021b). On the contrary, the goal of analysing processes on net-

works from a statistical perspective is to model and monitor any time series with an underlying

relational component, without imposing any specific constraints. Thus, although the term fixed

network monitoring has been introduced by Stevens et al. (2021a), it has not been widely ex-

ploited yet. Thus, this section covers general methods for modelling and analysing time series

where an underlying network dependency structure is taken into account.

Zhu et al. (2017) introduce a Network Autoregressive (NAR) model that remedies the deficiencies

of the VAR model with a considerable number of parameters to be estimated, assuming that each

node’s response at a given time point is a linear combination of its previous value, the average of its

connected neighbours, a set of node-specific covariates and an independent noise. As a real-world

application, they model social network data with a fixed followee-follower relationship, choosing

the node’s response to be the length of a published post. Knight et al. (2020) propose a Generalised

Network Autoregressive (GNAR) model, enriching the previous model definition by enabling the

consideration of a higher-stage neighbourhood and weighted edges, although neglecting node-

specific covariates. Consequently, Nason and Wei (2022) extend GNAR to GNARX, accounting

for node-specific time series exogenous variables. As an empirical example, Nason and Wei

(2022) model and forecast the Purchasing Managers’ Indices, incorporating COVID-19 mitigation

stringency indices and COVID-19 death rates as nodal covariates.
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Although the developed models offer high utility, the common application is based on time series

belonging to nodes. However, for some processes, the focus on the response coming from edges

is considered to be more relevant or the only one recorded. Thus, in Chapter 5, a monitoring

framework suitable for processes on networks, where the time series belong to edges, is developed.

3.3 Nonstationarity Detection in Machine Learning Applications

Considering supervised learning tasks such as regression or classification, data with a known

relationship between the input and the output is required. During training, the algorithm minimises

the error between the model’s output and the target. After the parameter estimation and the testing

phase, the model is deployed on new data, promising a stable performance. However, if the

distribution of input data changes, it violates the stationarity assumption and adversely impacts

the predictive performance (cf. Huang et al., 2011).

In computer science1, concept drift refers to the problem of changes in the data distribution that

render the current prediction model inaccurate or obsolete (Demšar and Bosnić, 2018). In statis-

tics, nonstationarity describes time series with changing statistical properties. Additionally, nov-

elty can occur, e.g. when the data stream introduces instances of a new class, being not present

during the training and testing periods (cf. Masud et al., 2009; Garcia et al., 2019). Model re-

vision is necessary to address these issues, ranging from retraining with new data to algorithm

replacement. Strategies handling nonstationarity without explicit detection exist (cf. Gama et al.,

2014), but current research highlights several benefits of employing drift detection methods dur-

ing the model deployment (cf. Piano et al., 2022; Zhang et al., 2023). This minimises redundant

adjustments and maintains prediction accuracy.

Detecting nonstationarity can be explored from different perspectives. In statistics, one would

usually look at change point detection methods (cf. Ali et al., 2016), while in computer sci-

ence, these techniques are rather known as concept drift, anomaly, or out-of-distribution detection

(cf. Žliobaitė et al., 2016; Fang et al., 2022; Yang et al., 2022b). In general, approaches to de-

tect nonstationarity in ML applications can be subdivided into two groups: performance-based

methods and distribution-based methods (Hu et al., 2020). The first group relies on labelled in-

stances, monitoring the classification error rate or other performance metrics (cf. Klinkenberg

and Renz, 1998; Klinkenberg and Joachims, 2000; Nishida and Yamauchi, 2007), for example,

by conducting sequential hypothesis tests based on the ideas of control charts (cf. Gama et al.,

2004; Baena-Garcıa et al., 2006; Kuncheva, 2009; Mejri et al., 2017). Mejri et al. (2021) propose

a two-stage time-adjusting control chart for monitoring misclassification rates, which updates the

control limits in the first stage, and validates the detected changes in the second stage. How-

ever, in practice, labelled data is usually not available when ANNs are applied. Thus, the idea of

adapting performance-based approaches to a confidence-related output produced by a model was

introduced (Haque et al., 2016; Kim and Park, 2017). If a classifier processes the anomalous data,

it is expected that the model’s confidence about the affinity of a data point to a certain class would

change so that the unusual behaviour could be detected (cf. Hendrycks and Gimpel, 2016).

Anomaly detection in distribution-based methods involves the analysis of metrics related to the

distribution. A considerable number of techniques applies a sliding window approach on either a

one-dimensional data stream or on several features individually, comparing the data distribution

of the current window to the reference sample obtained from the training dataset (cf. Bifet and

1The overview is retrieved from Malinovskaya et al. (2023b).



18 3 Related Research and Identified Scientific Lacuna

Gavalda, 2007; Bifet et al., 2018; Gemaque et al., 2020). However, the underlying reason related

to the notable performance of ANNs is their generalisation ability in complex high-dimensional AI

tasks such as object or speech recognition (Goodfellow et al., 2016), meaning that the detection

of nonstationarity from the original data would not be appropriate due to the excessive number

of features. Considering novelty detection, it can be based on parametric density estimates (e.g.

using Gaussian mixture models (Roberts and Tarassenko, 1994) or hidden Markov models (Yeung

and Ding, 2003)), and nonparametric estimates (e.g. based on k-nearest neighbours (Guttormsson

et al., 1999), kernel density estimates (Yeung and Chow, 2002) or string matching (Forrest et al.,

1994)). These methods usually require heuristically chosen thresholds to decide about the novelty.

A more detailed review is provided by Markou and Singh (2003a,b).

By considering embeddings – a latent representation of the original data stream generated by

ANNs, outlier and anomaly detection methods based on distance metrics and nearest neighbour

approaches were shown to be suitable and efficient in detecting nonstationary samples (cf. Lee

et al., 2018; Sun et al., 2022). Particularly beneficial is their capability of providing an overall

outlying score that would consider all data features together, leading to a more explicit decision

about the observed abnormalities. Alternatively, other ML algorithms for drift detection such as

Support Vector Machine (SVM) (Krawczyk and Woźniak, 2015) or autoencoders as specific types

of ANNs (Pidhorskyi et al., 2018) can be applied for change detection. Another suggestion is

to use ensemble models consisting of, for instance, several decision trees with a majority voting

mechanism (Li et al., 2015). In particular cases, the detection methods can be enhanced through

large-scale pre-training techniques, leading to remarkably informative embeddings (Fort et al.,

2021).

Although the introduction of SPM tools to monitor ML applications is an existing research di-

rection, e.g. the reviewed performance-based methods that implement control charts, there is no

competitive usage of control charts for monitoring applications based on advanced ML algorithms

such as ANNs. Thus, in Chapter 6 a monitoring framework to supervise the quality of ANN ap-

plications in a realistic setting is developed. That means one relaxes any assumptions on the

availability of additional data for applying any pre-training techniques or specific model architec-

tures that pose constraints on the distribution of the embeddings. Moreover, one accounts for the

limited availability of labels, namely the ground truth exists only during the model training and

test phases but not during its deployment. These considerations play a vital role in the monitoring

approach being used by practitioners, however, there is only a limited number of suitable methods

that fulfil these criteria, creating a research field that offers new perspectives for SPM.

3.4 Machine Learning Methods in Statistical Process Monitoring

Practically, four directions for complementing SPM instruments with ML algorithms and creating

enhanced hybrid monitoring approaches can be identified in the current research: 1) Dimensional-

ity reduction and feature selection; 2) Inductive learning for improving the detection precision; 3)

Pattern detection of the control chart statistic as an early warning system; 4) Bypass of statistical

assumptions, e.g. in case of the autocorrelation (cf. Kang and Park, 2000; Fountoulaki et al., 2011;

Psarakis, 2011). As presented in comparative studies, ML-based SPM approaches often outper-

form traditional control charts in predicting when the process becomes out of control (Psarakis,

2011; Khoza and Grobler, 2019). A currently popular direction is to enhance control charts by

deep learning models (cf. Chen and Yu, 2019; Zan et al., 2020; Li et al., 2021a; Kim and Ha,

2022). A comprehensive methodological review of how SPM has been enriched by the available

statistical learning methods is provided by Weese et al. (2016). For a specialised literature review
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either on the application of support vector machines or kernel methods in SPM, it is recommended

to refer to Apsemidis and Psarakis (2020) or Apsemidis et al. (2020), respectively.

Overall, the main scientific goal in integrating ML methods into SPM procedures is the improve-

ment of detection precision in the nowadays challenging data environment. However, there is

no introduction to this area of research from the perspective of statistical network monitoring.

Moreover, there is a lack of contribution to the area of augmenting SPM with automated post-

monitoring procedures based on ML methods for identifying the cause of the change point. Diren

et al. (2020) propose to integrate ML techniques for classifying the out-of-control signals based

on fault types, facilitating the undertaking of effective corrective measures, instead of solely de-

tecting the variables that caused out-of-control signals (cf. Murphy, 1987; Mason et al., 1995;

Kourti and MacGregor, 1996; Li et al., 2008). Thus, the idea of enhancing the SPM of networks

by combining it with advanced ML algorithms for simplifying the inspection step after a change

point was detected has not been an explored concept yet. The procedure described in Chapter 7

tends to close this literature gap.





4 Monitoring of Networks with Changeable Structure

This chapter1 concentrates on modelling and monitoring of networks with randomly generated

edges across time, developing a surveillance method that accounts for temporal dependence in the

network structure and enables the detection of significant changes in real time. In other words,

this chapter is dedicated to the field of Random Network Monitoring.

4.1 Main Intent

To monitor the network data effectively, it is important to account for its complex structure and

possibly high computational costs. The proposed approach for mitigating these issues and simul-

taneously reflecting the stochastic and dynamic nature of network models is to model graphs by

applying a temporal random graph model. Afterwards, one proceeds with a “compressed” version

of the graph, using it in the change point detection part. A general class of Exponential Ran-

dom Graph Models (ERGM) (cf. Frank and Strauss, 1986; Robins et al., 2007; Schweinberger

et al., 2020) is considered, which was originally designed for modelling cross-sectional networks

and briefly described in Section 2.1.1.1. This class includes many prominent random network

configurations such as dyadic independence models and Markov random graphs, enabling the

ERGM to be generally applicable to many types of complex networks. Furthermore, if a network

has many covariates (also called attributes), i.e. variables that provide additional information

about the graph’s edges and nodes, it can be both computationally and theoretically challenging

to recognise meaningful patterns. In this case, it is beneficial to apply ERGM which facilitates

data reduction by summarising the network in the form of sufficient statistics that capture relevant

features of a network. Knowing the observed values of sufficient statistics, one can derive the

model parameters from the network data and make inferences.

Hanneke et al. (2010) propose a dynamic extension based on ERGM which is known as the Tem-

poral Exponential Random Graph Model (TERGM). This model contains the overall functionality

of the ERGM, while additionally enabling time-dependent covariates. To perform real-time de-

tection of changes, multivariate control charts are chosen, being an efficient and versatile tool for

this task. It relies on exponential smoothing and cumulative sums to track network behaviour over

time, which is generated using TERGM. Subsequently, one starts defining the framework with the

definition of the change point and the respective monitoring statistic.

4.2 Definition of the Change Point

Consider a network presented by its adjacency matrix YYY := (Yi j)i, j=1,...,|V |, where |V | represents

the total number of nodes. In a dynamic setting, a random sequence of YYY t for t = 1,2, . . . with

YYY t ∈ Y defines a stochastic process for all t, where Y denotes the ensemble of possible network

1This chapter is based on the publication Malinovskaya, A., Otto, P. Online network monitoring. Statistical Methods &

Applications, Special Issue on Statistical Analysis of Networks, 30(5), 1337-1364, (2021). Available online: https:

//link.springer.com/article/10.1007/s10260-021-00589-z . Published under Creative Commons licence CC BY.
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states. The overall concept presented in this chapter is valid for both directed and undirected graph

types, however, from now on directed graphs are explicitly considered.

Although the monitoring procedure can be constructed by supervising YYY t directly, this approach

is likely to become computationally intricate as it depends on the order of a graph, leading to the

curse of dimensionality. In the case of network models considered in this chapter, there are two

reasonable choices for network monitoring, namely, it can be performed either in terms of the

(normalised) network statistics or the model parameters whose dimension remains independent

from the network evolvement.

To obtain a time series of the corresponding estimates, the application of the moving window

approach with the window size z is proposed. More precisely, one takes into account the past z

observations of the network {YYY t−z+1, . . . ,YYY t} to estimate the respective quantities at time point t.

Let θθθ be the true model parameters and θ̂θθ t their estimates at time point t based on the last z

network states. Similarly, the expected value of the network statistics Eθθθ (sss(YYY )) can be estimated

as

ŝsst =
1

z

z−1
∑

n=0

sss(YYY t−n). (4.1)

Concerning the choice of monitoring the network statistics or the model parameters, it is worth

noting that there is a one-to-one relationship between θθθ and Eθθθ (sss(YYY )). That is, for every θθθ , there

is only one expectation of sss(YYY ). Hence, one can monitor the network based on the estimates of

either θθθ or Eθθθ (sss(YYY )). Since the monitoring procedure is identical for θ̂θθ t and ŝsst , a new notation ĉcct

for the estimates of the network characteristics is introduced. Consequently, ccc corresponds either

to θθθ or to Eθθθ (sss(YYY )).

Let p be the number of network terms, which describe the in-control state and can reflect the

deviations in the case of an out-of-control state. Thus, at time point t there is a p-dimensional

vector ĉcct = (ĉ1t , . . . ,ĉpt)
′ that estimates the network characteristics ccc. Moreover, let Fccc0,ΣΣΣ be the

target distribution of these estimates with ccc0 = E0(ĉ1, . . . ,ĉp)
′ being the expected value and ΣΣΣ the

respective p× p variance-covariance matrix of the network characteristics (Montgomery, 2009).

Thus,

ĉcct ∼
{

Fccc0,ΣΣΣ if t < τ
Fcccτ ,ΣΣΣ if t ≥ τ,

(4.2)

where τ denotes a change point to be detected and cccτ ̸= ccc0. If τ = ∞ or t < τ the network is said

to be in control, whereas it is out of control in the case of τ ≤ t < ∞. Furthermore, one assumes

that the estimation precision of the parameters does not change across t, i.e. ΣΣΣ is constant for

the in-control and out-of-control state. Hence, the monitoring procedure is based on the expected

values of ĉcct . In fact, one can specify the corresponding hypothesis as follows

H0,t : E(ĉcct) = ccc0 against H1,t : E(ĉcct) ̸= ccc0 .

4.3 Monitoring Framework

The proposed monitoring procedure for random network monitoring consists of two steps: 1)

Network modelling using the TERGM that is described in Section 4.3.1; 2) Process monitoring

using a multivariate control chart presented in Section 4.3.2. To determine the most satisfactory
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monitoring setting in terms of performance, two kinds of control charts are compared, namely

cumulative sum and exponentially weighted moving average control charts.

4.3.1 Temporal Exponential Random Graph Model

To conduct surveillance over YYY t , one considers only the dynamically estimated characteristics of

a graph in order to reduce computational complexity and allow for real-time monitoring. In most

cases, the dynamic network models serve as an extension of well-known static models. Similarly,

the discrete temporal expansion of the ERGM is known as TERGM (cf. Hanneke et al., 2010)

and can be seen as a further advancement of a family of network models proposed by Robins and

Pattison (2001).

The TERGM defines the probability of a network at the discrete time point t both as a function of

subgraph counts in t and by including the network terms based on the previous graph observations

until the particular time point t − v. That is

Pθθθ (YYY t |YYY t−1, . . . ,YYY t−v,θθθ) =
exp[θθθ ′sss(YYY t ,YYY t−1, . . . ,YYY t−v)]

c(θθθ ,YYY t−1, . . . ,YYY t−v)
, (4.3)

where v represents the maximum temporal lag, capturing the networks which are incorporated into

the θθθ estimation at t, hence, defining the complete temporal dependence of YYY t that corresponds

to the Markov structure of order v ∈ IN (Hanneke et al., 2010). In Sections 4.4 and 4.5, v = 1 is

assumed, leading to (YYY t ⊥⊥ {YYY 1, . . . ,YYY t−2}|YYY t−1), where ⊥⊥ defines conditional independence.

To model the joint probability of z networks between the time stamps v+1 and v+ z, one defines

Pθθθ based on the conditional independence assumption as

Pθθθ (YYY v+1, . . . ,YYY v+z|YYY 1, . . . ,YYY v,θθθ) =
v+z
∏

t=v+1

Pθθθ (YYY t |YYY t−1, . . . ,YYY t−v,θθθ). (4.4)

Regarding the network statistics in the TERGM, sss(·) includes memory terms such as dyadic stabil-

ity or reciprocity (Leifeld et al., 2018). To distinguish the processes leading to the dissolution and

formation of links, Krivitsky and Handcock (2014) presented Seperable TERGM (STERGM). To

be precise, the STERGM is a subclass of the TERGM class, which can reproduce any transition

process captured by the parameters θθθ = (θθθ+,θθθ−) and the network terms sss = (sss+,sss−), where θθθ+

and sss+ belong to the formation model, θθθ− and sss− to the dissolution model.

The careful selection of the network statistics is relevant from several points of view. First of all,

under the maximum likelihood estimation, the expected value of the network statistics is equal

to the observed value, i.e. Eθθθ (sss(YYY )) = sss(YYY obs) (cf. Van Duijn et al., 2009). To be precise, on

average, the observed network YYY obs is reproduced in terms of sufficient statistics sss(YYY ). Second,

the selected network statistics determine the understanding of the network formation, combining

the available knowledge about the important terms to recover the graph structure with the interest

of including additional statistics for monitoring. The dimension of the sufficient statistics can

differ over time, however, one assumes that in each time stamp t the same configuration sss(·) is

given. In general, the selection of terms extensively depends on the field and context, although the

statistical modelling standards such as avoidance of linear dependencies among the terms should

be also considered (Morris et al., 2008). It is also helpful to perform goodness of fit tests, which

enable one to find a compromise between the model’s complexity and its explanatory power.
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An improper selection of the network terms can often lead to a near-degenerate model, resulting in

algorithmic issues and lack of fit (cf. Handcock, 2003; Schweinberger, 2011). In this case, apart

from the fine-tuning of how statistics are configured, one can modify some settings which design

the estimation procedure of the model parameters. Considering the Markov Chain Monte Carlo

(MCMC) maximum likelihood estimation, for example, the run time, the sample size or the step

length could be adjusted (Morris et al., 2008). Another possible improvement would be to add

some stable statistics such as Geometrically-Weighted Edgewise Shared Partnerships (GWESP)

(Snijders et al., 2006). However, the TERGM is less prone to degeneracy issues compared to the

ERGM as ascertained by Hanneke et al. (2010) and Leifeld and Cranmer (2019). Overall, one

assumes that most of the network surveillance studies can reliably estimate beforehand the type of

anomalies which are possible to occur. This assumption guides the choice of terms in the models

throughout the chapter.

4.3.2 Multivariate Cumulative Sum and Exponentially Weighted Moving Average Control Charts

The strength of the multivariate control chart over the univariate control chart is the ability to mon-

itor several interrelated process variables at once. It implies that the corresponding test statistic

should take into account the correlation of the data and be dimensionless as well as scale-invariant,

as the process variables can considerably differ from each other. The squared Mahalanobis dis-

tance, which represents the general form of the control statistic, fulfils these criteria and is defined

as

D
(1)
t = (ĉcct − ccc0)

′
ΣΣΣ
−1(ĉcct − ccc0), (4.5)

being part of the respective data depth expression – Mahalanobis depth that measures a deviation

from an in-control distribution (cf. Liu, 1995). Hence, D
(1)
t maps the p-dimensional characteristic

quantity ĉcct to a one-dimensional measure. It is important to note that the characteristic quantity at

time point t is usually the mean of several samples at t, but in the discussed case, only one network

is observed at each instant of time. Thus, the characteristic quantity ĉcct is the value of the obtained

estimates and not the average of several samples.

In Sections 4.4 and 4.5, two control chart types are applied and compared in their performance

to monitor networks. Firstly, multivariate CUSUM (MCUSUM) charts (cf. Woodall and Ncube,

1985; Joseph et al., 1990; Ngai and Zhang, 2001) are discussed. One of the widely used versions

was proposed by Crosier (1988) and is defined as follows

Ct =
[

(rrrt−1 + ĉcct − ccc0)
′
ΣΣΣ
−1(rrrt−1 + ĉcct − ccc0)

]1/2
, (4.6)

where

rrrt =

{

000 if Ct ≤ k,

(rrrt−1 + ĉcct − ccc0)(1− k/Ct) if Ct > k,

given that rrr0 = 000 and k > 0. The respective chart statistic is

D
(2)
t = rrr′tΣΣΣ

−1rrrt , (4.7)

and it signals if

√

D
(2)
t is greater than or equals the upper control limit UCL. The lower control

limit LCL = 0 because the chart statistic obtains non-negative values so only the UCL has to be

determined. Certainly, the values k and UCL considerably influence the performance of the chart.

The parameter k, also known as reference value or allowance, reflects variation tolerance, taking

into consideration δ – the deviation from the mean one aims to detect, which is measured in the
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standard deviation units. According to Page (1954) and Crosier (1988), the chart is approximately

optimal if k = δ/2.

Besides, multivariate charts based on exponential smoothing (EWMA) are considered. Lowry

et al. (1992) propose a multivariate extension of the EWMA control chart (MEWMA), which is

defined as follows

lllt = λ (ĉcct − ccc0)+(1−λ )lllt−1 (4.8)

with 0 < λ ≤ 1 and lll0 = 000 (cf. Montgomery, 2009). The corresponding chart statistic is

D
(3)
t = lll′tΣΣΣ

−1
lllt

lllt , (4.9)

where the covariance matrix is defined as

ΣΣΣlllt
=

λ

2−λ

[

1− (1−λ )2t
]

ΣΣΣ. (4.10)

Here, the control chart signals if D
(3)
t ≥ UCL. Together with the MCUSUM, the MEWMA is an

advisable approach for detecting relatively small but persistent changes. However, the detection

of large shifts is also possible by setting the reference parameter k or the smoothing parameter

λ high. For instance, in the case of the MEWMA with λ = 1, the chart statistic coincides with

D
(1)
t . Thus, it is equivalent to Hotelling’s T 2 control procedure, which is suitable for the detection

of substantial deviations. It is worth mentioning that the discussed methods are directionally

invariant, therefore, the investigation of the data at the signal time point is necessary if the change

direction is of particular interest.

4.3.2.1 Estimation of In-Control Parameters

In practice, the in-control parameters ccc0 and ΣΣΣ are usually unknown and therefore have to be

estimated. Thus, one subdivides the sequence of network observations into Phase I and Phase II.

In Phase I, the process must coincide with the in-control state so that the true in-control parameters

ccc0 and ΣΣΣ can be estimated by the sample mean vector c̄cc and the sample covariance matrix SSS from

ĉcct .

It is important that Phase I replicates the natural behaviour of a network so that possible dynamics

related to its growth or changes in its topological structure are considered. Similarly, if the network

is prone to remain constant, this fact should be captured in Phase I for reliable estimation and later

network surveillance. After the estimates of ccc0, ΣΣΣ and the UCL are obtained, the calibrated control

chart can be applied to the actual data in Phase II.

4.3.2.2 Computation of Control Limits

If D
(2)
t or D

(3)
t is equal to or exceeds the UCL, it means that the charts signal a change. To deter-

mine the UCL values, one typically assumes that the chart has a predefined (low) probability of

false alarms, i.e. signals when the process is in control, or a prescribed in-control Average Run

Length denoted as ARL0 that represents the number of expected time stamps until the first signal.

To compute the UCL values corresponding to ARL0 theoretically, a prevalent number of multivari-

ate control charts require a normally distributed target process (cf. Johnson and Wichern, 2007;

Porzio and Ragozini, 2008; Montgomery, 2009). Here, this assumption would need to be valid

for the estimates of the model parameters/the network statistics. However, while there are some
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studies on the distributions of particular network statistics sss(YYY ) (cf. Yan and Xu, 2013; Yan et al.,

2016; Sambale and Sinulis, 2020), only a few results are obtained about the parameter estimates

of θθθ . Primarily, the difficulty in determining the distribution is that the assumption of independent

and identically distributed data is violated in the ERGM case. In addition, the parameters depend

on the choice of the model terms and network size (He and Zheng, 2015). Kolaczyk and Krivitsky

(2015) proved asymptotic normality for the maximum likelihood estimators in a simplified context

of the ERGM, pointing out the necessity to establish a deeper understanding of the distributional

properties of parameter estimators.

In case the normality assumption is violated to a slight or moderate degree, the control charts still

will remain robust (Montgomery, 2009). The most crucial assumption that needs to be satisfied

is the independence of the observations at different time points (Qiu, 2014). If the data is auto-

correlated, the theoretically derived UCL values become invalid, so their implementation would

lead to inaccurate results. However, here networks which are dependent over time are considered.

Moreover, networks used for the estimation of the characteristics ĉcct are overlapping due to the ap-

plication of the moving window approach. As shown in Section 4.4.2, the characteristics that are

based on the averaged network statistics ŝsst can violate this assumption substantially. Regarding

the estimates θ̂θθ t , if their computation does not involve overlapping of the networks by the sliding

window approach of size z, i.e. each graph is involved only once in the estimation of θθθ , and the

size of z is enough for recovering the temporal dependence completely, then the estimates become

uncorrelated. Nonetheless, as one designs an online monitoring procedure, one supports the idea

of computing ĉcct immediately as soon as a new data point is available. In this case, one needs to

account for the correlation between the estimated characteristics ĉcct .

There are several works which apply control charts in the presence of autocorrelation, advising

either using the residuals of the time series models as observations, calculating theoretical control

limits under autocorrelation or designing a simulation study to determine the control limits cor-

responding to the desired ARL0 (cf. Montgomery and Mastrangelo, 1991; Alwan, 1992; Runger

and Willemain, 1995; Schmid and Schöne, 1997; Zhang, 1997; Lu and Reynolds Jr, 1999, 2001;

Sheu and Lu, 2009). It is worth noting that the residual charts have different properties from the

traditional charts, which are considered in this chapter. Hence, the UCL values are determined via

Monte Carlo simulations described in Section 4.4.2.

4.4 Simulation Study

To verify the applicability and effectiveness of the proposed approach and also to determine the

UCL values, a simulation study is designed, followed by the surveillance of real-world data in

Section 4.5 with the goal of obtaining some insights into its temporal development.

4.4.1 Generation of Network Time Series

To compute c̄cc and SSS a certain number of in-control networks is required. For this purpose, 2500

temporal graphs of desired length T < τ are generated, where each graph consists of |V | = 100

nodes, meaning that the simulation is repeated 2500 times to estimate the respective parameters

and control limits in Section 4.4.2. The simulation of synthetic networks is based on the Markov

chain principle: The network observation in time point YYY t is simulated from its previous state

YYY t−1 by selecting randomly a fraction φ of elements of the adjacency matrix and setting them to

either 1 or 0, according to a specified transition matrix MMM. This setting allows for the inclusion of

the memory term during the estimation of the TERGM that reflects the stability of both edges and
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non-edges between the previous and the current network observation. The in-control values are

φ0 = 0.01 and

MMM0 =

(

m00,0 m01,0

m10,0 m11,0

)

=

(

0.9 0.1
0.4 0.6

)

,

where mi j,0 denotes the probability of a transition from i to j in the in-control state.

At the beginning of each sequence, a directed network which is called the base network is simu-

lated by applying an ERGM with predefined network terms and corresponding coefficients so that

it is possible to control the network creation indirectly. This procedure helps to guarantee that the

temporal networks have a stochastic but analogous initialisation. Hence, three network statistics

are selected, namely an edge term, a triangle term and a parameter that defines asymmetric dyads.

These terms are used later for estimating network characteristics. Subsequently, a new graph is

produced by applying the in-control fraction φ and the transition matrix MMM.

Next, one needs to confirm that the generated samples of networks behave according to the re-

quirements of Phase I, capturing only the usual variation of the target process. For this purpose,

one can exploit Markov chain properties and calculate its steady state equilibrium vector πππ , as

it follows that the expected number of non-edges and edges is given by πππ . Using eigenvector

decomposition, the steady state is found to be πππ = (0.8,0.2)′. Consequently, the expected number

of edges in the graph in its steady state is 1980. However, the network density is only one of the

aspects to define the in-control process, as the temporal development and the topology are also

involved in the network creation. Hence, a suitable start of the considered network sequence is

identified by computing the network statistics sss(YYY t) over multiple network time series. By plotting

the behaviour, one determines that all four terms become stable by t = 1000. Thus, 1000 network

observations are simulated in a burn-in period so that the in-control sequence of network states

starts at t = 1001. In total, T = 1600, where the length of Phase II amounts to 600 time points.

4.4.2 Calibration of the Charts in Phase I

After the generation of temporal networks, one computes θ̂θθ t by fitting the TERGM and ŝsst by

applying Equation (4.1) with a certain window size z using the four network terms, namely edge

term, a triangle term, a term that defines asymmetric dyads and a memory term which describes

the stability of both edges and non-edges over time with the temporal lag v = 1. Currently, there

are two widely used approaches to estimate the TERGM: Maximum Pseudolikelihood Estima-

tion (MPLE) with bootstrapped confidence intervals and MCMC maximum likelihood estimation

(Leifeld et al., 2018). The chosen estimation method to derive θ̂θθ t is the bootstrap MPLE which

is appropriate to handle a relatively large number of nodes and time points (Leifeld et al., 2018).

Next, the in-control parameters c̄cc and SSS are calculated for both monitoring cases. Finally, different

control charts are calibrated by obtaining the UCL values with respect to the predefined ARL0

via the bisection method. For two window sizes z = {7,14}, Tables 4.1 and 4.3 summarise the

obtained results for surveillance of θθθ , and Tables 4.2 and 4.4 for surveillance of sss(YYY ) with the

MEWMA and MCUSUM charts respectively. If one wishes to apply the TERGM with the same

network terms and a similar window size, the presented UCL values can be used directly. Other-

wise, it is necessary to conduct different Monte Carlo simulations that address the specific settings

of the TERGM.

As both network characteristics describe the same process, one would expect the UCL results to

be similar. However, in Figure 4.1 the analysis of the autocorrelation functions applied to the
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z ARL0/λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

50 39.32 35.76 31.04 26.52 22.58 19.22 16.46 14.10 12.14 10.46

7 75 45.76 41.03 35.20 29.81 25.27 21.61 18.53 15.86 13.66 11.72

100 50.52 45.30 38.58 32.56 27.62 23.48 20.00 17.13 14.71 12.66

50 55.14 43.44 33.80 26.96 21.98 18.16 15.16 12.76 10.76 9.15

14 75 65.63 50.94 39.29 31.23 25.26 20.68 17.24 14.50 12.20 10.32

100 73.85 56.20 42.97 33.97 27.44 22.52 18.72 15.69 13.21 11.15

Table 4.1: Upper control limits for the MEWMA chart based on the estimates θ̂θθ t and ARL0 ∈ {50,75,100} for two

different windows sizes z = 7 and z = 14.

z ARL0/λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

50 65.03 43.79 32.23 25.29 20.36 16.72 13.91 11.66 9.85 8.31

7 75 82.40 52.41 38.13 29.52 23.59 19.23 15.88 13.23 11.13 9.42

100 96.23 59.39 42.92 32.96 26.19 21.24 17.58 14.69 12.32 10.35

50 71.09 45.47 32.66 24.81 19.51 15.80 12.95 10.74 8.96 7.53

14 75 89.03 55.26 38.71 29.06 22.85 18.40 15.07 12.46 10.35 8.66

100 103.00 62.73 43.73 32.56 25.40 20.40 16.65 13.73 11.43 9.57

Table 4.2: Upper control limits for the MEWMA chart based on the estimates ŝsst and ARL0 ∈ {50,75,100} for two

different windows sizes z = 7 and z = 14.

z ARL0/k 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

50 21.01 19.36 17.75 16.21 14.83 13.52 12.25 11.10 9.99 9.00 8.03

7 75 25.19 22.90 20.82 18.95 17.33 15.91 14.47 13.19 11.94 10.74 9.61

100 28.25 25.59 23.31 21.18 19.38 17.67 16.12 14.67 13.27 11.96 10.73

50 30.10 27.84 25.64 23.67 21.69 19.83 17.92 16.17 14.44 12.75 11.06

14 75 37.35 34.60 31.91 29.25 26.86 24.53 22.37 20.20 18.14 16.19 14.32

100 43.06 39.52 36.20 33.15 30.45 27.84 25.43 23.16 20.97 18.81 16.77

Table 4.3: Upper control limits for the MCUSUM chart based on the estimates θ̂θθ t and ARL0 ∈ {50,75,100} for two

different windows sizes z = 7 and z = 14.

z ARL0/k 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

50 51.85 47.41 42.96 38.27 33.87 29.71 25.94 22.51 19.01 15.79 13.06

7 75 75.93 69.26 62.97 56.83 50.79 44.82 39.02 33.73 29.05 24.95 20.95

100 97.58 89.46 81.68 73.51 65.78 59.01 52.43 45.96 39.96 34.40 29.23

50 55.72 51.27 46.63 41.90 37.54 33.29 29.18 25.46 21.69 18.21 15.36

14 75 80.28 73.70 67.32 61.13 54.75 48.86 43.15 37.76 32.81 28.26 24.20

100 102.34 94.25 85.88 78.05 70.90 63.96 57.03 50.65 44.31 38.71 33.39

Table 4.4: Upper control limits for the MCUSUM chart based on the estimates ŝsst and ARL0 ∈ {50,75,100} for two

different windows sizes z = 7 and z = 14.
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Anomaly Type Description Case

Type A Change in the transition matrix MMM A.1
m00,1 = 0.89 (m00,0 = 0.9)

m01,1 = 0.11 (m01,0 = 0.1)

A.2
m10,1 = 0.6 (m10,0 = 0.4)

m11,1 = 0.4 (m11,0 = 0.6)

A.3
m00,1 = 0.5 (m00,0 = 0.9)

m11,1 = 0.5 (m11,0 = 0.6)

Type B Change of the fraction φ0 = 0.01 B.1 φ1 = 0.009

B.2 φ1 = 0.015

B.3 φ1 = 0.02

Type C Increase of the proportion C.1 ζ = 0.005

of mutual edges by ζ C.2 ζ = 0.01

C.3 ζ = 0.05

Table 4.5: Anomaly cases.

estimates of one of the generated network time series shows that the dependence structures of

θ̂θθ t and ŝsst considerably differ. While the elimination of the overlap in the calculation procedure

removes correlation in the case of the parameter estimates θ̂θθ t , there is only a slight improvement

regarding the averaged network statistics ŝsst . Thus, the UCL values are different for both cases.

4.4.3 Design of the Anomalous Behaviour

To test how well the proposed control charts can detect the changes in the networks’ development,

it is necessary to compose different anomalous cases and generate samples from Phase II. Since

the focus is on the detection of shifts in the process mean, an anomalous change can occur either in

the proportion of the asymmetric edges, in the fraction of the randomly selected adjacency matrix

entries φ or in the transition matrix MMM. Thus, these scenarios are subdivided into three different

anomaly types which are briefly described in the flow chart presented in Figure 4.2.

One defines a Type A anomaly as a change in the values of MMM. That is, there is a transition matrix

MMM1 ̸= MMM0 when t ≥ τ . Similar to Type A, Type B anomalies are created by introducing a new

fraction value φ1 in the generation process when t ≥ τ . Both types are instances of a persistent

change (also known as simply a change), where the abnormal development continues for all t ≥ τ
(Ranshous et al., 2015). Anomalies of Type C differ from the previous two types as they represent

a point change (also referred to as an event) – the abnormal behaviour occurs only at a single point

of time τ but its outcome may also affect subsequent network states in the considered case due to

the Markov property. One recreates this type of anomaly by converting a fraction ζ of asymmetric

edges into mutual links. This process happens at time point τ only. Afterwards, the new network

states are created similar to Phase I by applying MMM0 and φ0 up until the anomaly is detected. The

considered cases are summarised in Table 4.5.

4.4.4 Performance of the Charts in Phase II

In the next step, the performance of the proposed charts is analysed in terms of their detection

speed. As a performance measure, the Conditional Expected Delay (CED) of detection is com-

puted, conditional on a false signal not having occurred before the (unknown) time of change τ
(Kenett and Pollak, 2012). For this simulation, τ = 101 is chosen. Using 250 simulations, the
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(a) ACF of the estimates θ̂θθ t on the example of triangle, asymmetric and memory network terms.
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(b) ACF of the estimates ŝsst on the example of triangle, asymmetric and memory network terms.

Figure 4.1: Comparison of the Autocorrelation Function (ACF) values when the network characteristics are estimated

with a sliding window approach of size z = 7 containing (left) and not containing (right) overlapping network states.
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Figure 4.2: Anomaly types for the generation of observations in Phase II and calculation of the associated run length.

CED is estimated based on the UCL values with ARL0 = 50 for each setting. That means one

would expect CED = 50 if no change happened and it should be considerably smaller in the case

of an anomaly. Figures 4.3, 4.4 and 4.5 present the results of the simulation for anomalies of Type

A, B and C, respectively.

There are several aspects to assess fully the obtained results. First of all, the comparison of

performance between the MCUSUM and the MEWMA control charts. In most of the cases, the

CED of the MEWMA chart is smaller compared to the corresponding MCUSUM chart. However,

for the best choice of the reference parameter k or the smoothing parameter λ , both charts are

competitive. The respective values are indicated by the large dots indicating the minimum on the

CED curve. For instance, the weakest change of Type A.1 (Figure 4.3, (a)) is detected quicker by

the MCUSUM chart with the low parameters k. In contrast, the MEWMA charts perform better

for bigger changes such as in Cases 2 and 3.

Generally speaking, one observes that the CED is decreasing if the shift size or the intensity of

the change is increasing. Moreover, if the reference parameter k or the smoothing parameter λ
is smaller, less intense anomalies can be detected. If in practical implementation the detection of

larger changes is required, these parameters should also be higher. It is worth reminding that the

MEWMA chart coincides with Hotelling’s T 2 chart if λ = 1, i.e. the control statistic depends only

on the current value.

The disadvantage of both approaches is that small and persistent changes are not detected quickly

when the parameters k or λ are not optimally chosen. For example, considering Case A.1 in

Figure 4.3 (b), one can notice that at the high values of the parameter λ the CED slightly exceeds

the ARL0 reflecting the poor performance. However, a careful selection of the parameters can

overcome this problem. Also, the choice of the window size plays a significant role in detecting

the anomalies reliably, being a trade-off between a precise description of the process and the

ability to reflect the sudden changes in its behaviour.

Regarding the differences in results with respect to the quantities θ̂θθ t and ŝsst , a similar performance

is noticed in Anomaly Types A and B. It is interesting that in most of the cases, the MEWMA

control charts work better for ŝsst and the CUSUM control charts for θ̂θθ t . However, looking at the

detection of anomaly Type C.2, one notes a considerable advantage of applying θ̂θθ t rather than ŝsst .
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MCUSUM with ŝt, z = 14, min = 23.21 at k = 1.5

MCUSUM with θ
^

t, z = 7, min = 25.35 at k = 0.5

MCUSUM with θ
^

t, z = 14, min = 25.42 at k = 0.5

(a) MCUSUM, Case A.1

0.2 0.4 0.6 0.8 1.0

2
0

2
3

2
6

2
9

3
2

3
5

3
8

4
1

4
4

4
7

5
0

5
3

λ

C
E

D
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Figure 4.3: Conditional expected delays for anomalies of Type A for MCUSUM (left) and MEWMA (right) together

with the different choices of the reference parameter k and the smoothing parameter λ , the window sizes z = 7 and

z = 14, and the network estimates ŝsst (solid lines) and θ̂θθ t (dashed lines). Black points indicate the minimum CED for

each setting.
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MEWMA with ŝt, z = 14, min = 15.45 at λ = 0.3

MEWMA with θ
^

t, z = 7, min = 17.69 at λ = 0.2

MEWMA with θ
^

t, z = 14, min = 18.16 at λ = 0.9

(b) MEWMA, Case B.1

0.6 0.8 1.0 1.2 1.4

2
3

4
5

6
7

8
9

1
0

1
1

1
2

k

C
E

D
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Figure 4.4: Conditional expected delays for anomalies of Type B for MCUSUM (left) and MEWMA (right) together

with the different choices of the reference parameter k and the smoothing parameter λ , the window sizes z = 7 and

z = 14, and the network estimates ŝsst (solid lines) and θ̂θθ t (dashed lines). Black points indicate the minimum CED for

each setting.
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MCUSUM with ŝt, z = 7, min = 1.94 at k = 1.5
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Figure 4.5: Conditional expected delays for anomalies of Type C for MCUSUM (left) and MEWMA (right) together

with the different choices of the reference parameter k and the smoothing parameter λ , the window sizes z = 7 and

z = 14, and the network estimates ŝsst (solid lines) and θ̂θθ t (dashed lines). Black points indicate the minimum CED for

each setting.
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CED ŝsst θ̂θθ t

Case C.1 C.2 C.3 C.1 C.2 C.3

Parameter ζ 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05

MEWMA with

z = 7

Min. 36.26 17.83 1.85 1.00 29.70 3.16 1.00 1.00

λmin 0.1 1.0 1.0 0.7 0.2 0.5 0.9 0.4

Max. 42.55 25.62 7.16 2.26 36.36 8.92 2.56 1.60

λmax 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1

MEWMA with

z = 14

Min. 35.92 24.26 3.57 1.00 35.60 8.60 1.00 1.00

λmin 0.1 0.3 0.9 1.0 0.2 0.3 1.0 0.5

Max. 43.78 28.75 9.90 3.25 42.21 12.94 3.49 1.89

λmax 1.0 0.1 0.1 0.1 1.0 0.1 0.1 0.1

MCUSUM with

z = 7

Min. 29.59 23.20 6.66 1.94 29.17 5.52 2.10 1.22

kmin 0.5 1.1 1.5 1.5 1.0 1.5 1.5 1.5

Max. 40.38 26.19 18.70 5.07 33.68 12.51 3.91 2.32

kmax 1.5 1.5 0.5 0.5 1.4 0.5 0.5 0.5

MCUSUM with

z = 14

Min. 29.11 23.56 9.45 2.98 30.57 10.88 3.14 1.72

kmin 0.7 1.0 1.5 1.5 0.6 1.4 1.5 1.5

Max. 36.62 27.58 18.86 7.04 35.22 14.56 6.19 3.00

kmax 1.4 1.4 0.5 0.5 1.2 0.5 0.5 0.5

Table 4.6: Summary of the CED results to detect anomalies of Type C with the additional test case ζ = 0.02. The

corresponding smoothing and reference parameters λ and k are provided under the respective CED. The minimum

CED for each case and the control chart group are underlined. The maximum CED represents the “worst-case”

scenario. In case several values of the parameter λ correspond to the CED result, only the smallest value is reported.

To confirm that this behaviour is supported by another example, an additional test case with ζ =
0.02 is created. These results as well as the others from Type C anomalies are summarised in

Table 4.6. As one can observe, if the change is too small, then both groups of control charts

created on the basis of θ̂θθ t and ŝsst need relatively long to detect it. In the case when ζ = 0.05,

representing a substantial anomaly, the change is identified quickly by both options. However,

when the change is of a moderate degree, for example, ζ = 0.02, then the control charts based

on θ̂θθ t signal the anomalous behaviour considerably quicker. Whether the main reason for such

difference is the particular type of anomaly, namely it is an example of a point change, cannot

be said generally as additional variations of such anomalies should be examined. However, from

the obtained evidence, the hypothesis is that the estimates θ̂θθ t might be more suitable for general

network monitoring when it is assumed that a point as well as a persistent change can occur.

Nevertheless, the comparison between the performance of θ̂θθ t and ŝsst is worth further investigation.

To summarise, the effectiveness of the presented charts in detecting structural changes depends

significantly on the accurate estimation of the anomaly size one aims to detect. Thus, to ensure that

no anomalies are missed, it can be effective to apply paired charts and benefit from the strengths

of each of them to detect varying types and sizes of anomalies if the information on the possible

change is not available or not reliable.
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April 1, 2018 April 1, 2019 April 1, 2020

Figure 4.6: Illustration of the flight network on April 1 of each year excluding isolated vertices. It can be seen that

the topology of the network has changed. The red coloured nodes represent the 30 busiest airports.

4.5 Empirical Illustration

To demonstrate the applicability of the described method, the daily flight data of the United States

(US) published by the US Bureau of Transportation Statistics is monitored using the parameter

estimates θ̂θθ t . Each day can be represented as a directed network, where nodes are airports and

directed edges define flights between airports. In Figure 4.6, examples of flight network data in

2018, 2019 and 2020 are presented.

Flexibility in choosing the network terms, according to the type of anomalies one would like

to detect, enables different perspectives on the same network data. In this section, one aims to

identify considerable changes in network development. The intuition of how the flight network

usually operates guides the choice of its terms. Due to the Coronavirus disease (COVID-19)

pandemic in the year 2020, some regions have paused the operation of transport systems with

the aim of reducing the number of new infections. However, the providers enabled mobility

by establishing connections through territories which allow travelling. That means, instead of

having a direct journey from one geographical point to another, the route passes through several

locations, which can be interpreted as nodes. Thus, the topology of the graph has changed: instead

of directed mutual links, the number of intransitive triads and asymmetric links starts to increase

significantly. One can incorporate both terms, together with the edge term and a memory term

(v = 1), and expect the estimates of the respective coefficients belonging to the first two statistics

to be close to zero or strongly negative in the in-control case.

Initially, one needs to decide which data is suitable to define observations coming from Phase I,

i.e. the in-control state. There were no considerable events which would seriously affect the US

flight network in the year 2018, therefore, this year is chosen to characterise the in-control state.

Consequently, the years 2019 and 2020 (until the end of April) represent Phase II. To capture the

weekly patterns, a time window of size z = 7 was chosen, so that the first instant of time when the

monitoring begins represents January 8, 2018. In this case, Phase I consists of 358 observations

and Phase II of 486 observations. To guarantee that only factual flight data are considered, cases

when a flight was cancelled are removed. Additionally, multiple edges are eliminated. The main

descriptive statistics for Phase I and II are reported in Table 4.7. There are no obvious changes
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2018 2019 2020

Phase I II II

Number of nodes 358 360 354

Min. 0.031 0.033 0.022

Density Median 0.037 0.038 0.038

Max. 0.039 0.040 0.041

Min. 0.97 0.96 0.89

Reciprocity Median 0.99 0.99 0.99

Max. 1.00 1.00 1.00

Min. 0.315 0.322 0.263

Transitivity Median 0.339 0.339 0.326

Max. 0.357 0.354 0.345

Table 4.7: Descriptive statistics of the flight network data. Density is calculated on networks without multiple edges.

when considering the descriptive statistics. Hence, control charts, which are only based on such

characteristics, could fail to detect the possible changes in 2019 and 2020. When considering

the estimates θ̂θθ t of the TERGM described by a series of boxplots in Figure 4.7, one can observe

substantial changes in the values.

Before proceeding with the analysis, it is important to evaluate whether a TERGM fits the data

well (Hunter et al., 2008). For each of the years, one period of the length z is randomly selected

and 500 networks are simulated based on the parameter estimates from each of the correspond-

ing networks. Figure 4.8 depicts the results for the time frame April 3-9, 2019, where the grey

boxplots of each of the statistics represent the simulations, and the solid black lines connect the

median values of the observed networks. Despite the relatively simple definition of the model,

some typical network characteristics such as the distributions of edge-wise shared partners, the

vertex degrees, various triadic configurations (triad census) and geodesic distances (the value of

infinity replicates the existence of isolated nodes) match the observed distributions of the same

statistics satisfactory.

To select appropriate control charts, one needs to take into consideration the specifications of

the flight network data. Firstly, it is common to have 3-4 travel peaks per year around holidays,

which are not explicitly modelled, so that one can detect these changes as verifiable anomalous

patterns. It is worth noting that one could account for such seasonality by including nodal or edge

covariates. Secondly, as one aims to detect considerable deviations from the in-control state, one

is more interested in sequences of signals. Thus, k = 1.5 is chosen for MCUSUM and λ = 0.9 for

the MEWMA chart. The target ARL0 is set to 100 days, therefore, one can expect roughly 3.65

in-control signals per year by the construction of the charts.

Figure 4.9 depicts the results of both charts for monitoring the US flight network data. In Phase

I there are slightly more in-control signals than expected, which are left without investigation

as they occur as single instances. Considering Phase II, there are several anomalous behaviours

which were detected. The first series of signals in summer 2019 is due to a particularly increased

demand for flights during the holidays. The second sequence of signals corresponds to the devel-

opment of the COVID-19 pandemic. On March 19, the State Department issued a Level 4 “do not

travel” advisory, recommending that United States citizens avoid any global travel. Although this

security measure emphasises international flights, it also influences domestic aerial connections.

The continuous sequence of the signals in the case of the MEWMA begins on March 21, 2020.
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Figure 4.7: Distribution of the estimated coefficients θ̂θθ t in 2018, 2019 and 2020.
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Figure 4.8: Illustration of the goodness of fit assessment for the TERGM. The considered networks belong to the

period April 3-9, 2019.

In the case of the MCUSUM, the start is on March 24. Although in both cases the control statis-

tic resets to zero after each signalling, the repeated violation of the upper control limit is a clear

indicator of this shift in network behaviour.

To identify smaller and more specific changes in the daily flight data of the US, one could also

integrate nodal and edge covariates, which would refer to further aspects of the network. Addi-

tionally, control charts with smaller k and λ can be applied.

4.6 Discussion

In this chapter, the approach of how multivariate control charts can be used to detect changes in dy-

namic networks of various types generated by the TERGM in an online manner is developed. This

monitoring procedure allows for many applications in different disciplines which are interested in

analysing networks of medium sizes, such as sociology, political science, engineering, economics

and psychology (cf. Carrington et al., 2005; Ward et al., 2011; Das et al., 2013; Jackson, 2015;

Fonseca-Pedrero, 2018).

Despite the benefits of the TERGM, such as the incorporation of the temporal dimension and

representation of the network in terms of its sufficient statistics, there are several considerable

drawbacks. Other than the difficulty in determining a suitable combination of the network terms,

the model is not applicable to networks of large size (Block et al., 2018). Furthermore, the tem-

poral dependency statistics in the TERGM depend on the selected temporal lag and the size of the

time window over which the data is modelled (Leifeld and Cranmer, 2019). Thus, the accurate

modelling of the network strongly relies on the analyst’s knowledge about its nature.
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red line corresponds to the upper control limit and the red points to the occurred signals.
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A helpful extension of the approach would be the implementation of the STERGM. In this case,

it could be possible to subdivide the network monitoring into two distinct streams, so that the

interpretation of changes in the network would become clearer. Another topic that demands con-

sideration is the determination of cases when it is reliable to use the averaged network statistics ŝsst

to construct the monitoring procedure and not the parameter estimates θ̂θθ t , as their calculation is

more complex than of ŝsst . Also, it could be beneficial to consider other estimators to compute ŝsst

and compare their effectiveness in detecting anomalies.





5 Monitoring of Networks with Fixed Structure

This chapter1 is devoted to the modelling and monitoring of networks with fixed structures across

time. A surveillance method is developed for processes that happen on a network to detect sig-

nificant changes related to the network itself. In other words, this chapter is dedicated to the

contribution in the field of fixed network monitoring.

5.1 Main Intent

Currently, the modelling and monitoring of networks are usually focused on detecting changes

and anomalies reflected in the geometric properties of a graph, falling under the type of random

network monitoring. Illustrative studies include the monitoring of e-mail communication (Perry,

2020) or the daily flights within a country presented in the previous chapter, Section 4.5 for the

sake of detecting unusual connectivity patterns. However, some networks might also reach a

point of saturation. That means, the development of connections or inclusion of new nodes is

either no longer possible (for instance, due to physical or geopolitical constraints) or would not

be of considerable monitoring interest anymore due to the context or regulations that hinder its

further expansion or interconnectivity. Thus, what becomes of interest and great importance are

processes that happen within or on the network, basically the information along the connection.

This is denoted as an attributed network. The monitoring of a process happening on a network

might reveal whether the network remains in control, i.e. in the state that corresponds to a known

standard, or whether it experiences abnormality.

The type of network considered in this chapter is an attributed network where the monitored

process takes place on fixed edges and can be seen as an edge covariate. This type of monitoring

is considered an emerging research direction (Jeske et al., 2018) and offers advancement in the

field of fixed network monitoring for such cases as threat detection in information technology

networks (cf. Stevens et al., 2021b). Due to a particular concentration on the variables attributed

to the network edges which are observed over time, from now on the reference to those networks

is Temporal Edge Network (TEN) processes.

In general, the integration of nodal or edge attributes for improving the modelling of the underly-

ing network formation mechanism and in turn the network monitoring itself is not a new concept

(Azarnoush et al., 2016; Shaghaghi and Saghaei, 2020). However, in existing research, the at-

tributes are considered to regulate the presence or absence of an edge, discovering a different

angle of how a network structure arises. In other words, the contextual information available

either on vertices or edges is viewed as an extra dimension to the graph helping to explain the

likelihood of the observed links (Miller et al., 2013). In contrast, the process happening on edges

is considered as the primary or only source of information about the network state.

1This chapter is based on the preprint Malinovskaya, A., Killick, R., Leeming, K., Otto, P. Statistical monitoring of European

cross-border physical electricity flows using novel temporal edge network processes. arXiv preprint: 2312.16357, (2023).

Available online: https://doi.org/10.48550/arXiv.2312.16357.

43
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Figure 5.1: Visual illustration of a TEN process (top) for two time points with an adapted representation (bottom)

described in Section 5.3.1.1.

For network monitoring, a model and a monitoring procedure should be defined. For modelling,

as described in Section 3.2, there are recently developed models for modelling time series with

an underlying network dependency structure, however, their primary focus lies on nodal response

variables. Thus, to use the Generalised Network Autoregressive model with time-dependent ex-

ogenous covariates (GNARX) as introduced in Section 5.3.1, one needs to adapt the representa-

tion of TEN processes (see Section 5.3.1.1). For monitoring, it is vital to determine the particular

framework in which it is going to be performed. One possibility is to monitor the estimates of the

model parameters although this is computationally intensive as discussed in Section 4.6. A more

efficient alternative is to perform monitoring based on the residuals. For instance, Miller et al.

(2013) compute graph residuals as the difference between the observed graph and its expected

value. According to Alexopoulos et al. (2004), who offer a detailed introduction to SPM and es-

pecially to the forecast-based monitoring methods, when the model or prediction is accurate, the

prediction errors are uncorrelated. Thus, one can apply traditional SPM techniques such as control

charts to these forecast errors. A technique that is particularly suitable for the monitoring part of

the proposed framework is a residual-based control chart described in Section 5.3.2.

5.2 Definition of the Change Point

Before proceeding with the definition of the change point in the considered setting, the notation

of the temporal edge network is specified. Consider a network G = (V,E), where the elements

of V represent vertices (or nodes) and E – edges (or links). Further, a fixed structure of G over

time is assumed which is described by an adjacency matrix YYY := (Yi j)i, j=1,...,|V |, with |V | being the

number of nodes. To each existing edge e ∈ E a time series {xe,t}, where t = 1, . . . ,T , being the

attributed process of G, is related. The complete representation XXX = (Xe,t)e=1,...,|E|,t=1,...,T , where

|E| denotes the number of edges, and the graph G form a Temporal Edge Network (TEN) process

illustrated in Figure 5.1 (top) for two time stamps.
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It is beneficial to distinguish general random processes one regards on the fixed network structures

from specific areas of analysis of processes on networks. The first well-established perspective is

the analysis of spatial point patterns on networks (cf. Baddeley et al., 2021), where the accurate

location of the object on the physical network is of importance. The second area concerns the

analysis of network flows (cf. Ahuja et al., 1993; Kolaczyk, 2009a), where the physical constraints

of a network structure and the flow itself play a vital role. In this work, however, one could think

of the analysed process as being a collection of flows with no associated constraints unless they

are imposed explicitly.

As the monitoring part is based on the residuals obtained by finding the difference between the

actual process and the predictor at each flow, it is vital to obtain an accurate model before the

monitoring starts. The objective is then to test

H0,t : The observed TEN process coincides with the fitted GNARX model

against the alternative

H1,t : The observed TEN process does not coincide with the fitted GNARX model

for each t. Now the question arises which variable to use for the test statistic that could provide

the information about when H0 is violated; therefore, the change point τ is defined as

xxxt ∼
{

F(µµµ,Σ) if t < τ
Fτ(µµµτ ,Στ) if t ≥ τ,

where xxxt = (x1,t , . . . ,x|E|,t)
′, µµµ and Σ define the mean vector and variance-covariance matrix of the

network flow distribution F , respectively. The change in mean or/and in variance of the raw data

would lead to the respective changes in the forecast errors (Grundy, 2021). Hence, by constructing

a test statistic based on uuut = (u1,t , . . . ,u|E|,t)
′, one can accordingly determine the time point τ when

the change has occurred. Following, the change point detection framework specified by Grundy

(2021) is introduced and the respective test statistic for applying residual-based Cumulative Sum

(CUSUM) control chart is discussed.

5.3 Monitoring Framework

After the introduction of the original GNARX model in Section 5.3.1, its extension from nodal

time series to time series on network edges is presented in Section 5.3.1.1. Subsequently, the

residual-based CUSUM control chart as well as the monitoring scope are specified in Section

5.3.2.

5.3.1 Generalised Network Autoregressive Model with Time-Dependent Exogenous Variables

In this section, consider {xi,t} to be a time series related to each node i. The GNARX model

(p,sss,qqq) with H exogenous regressors {zh,i,t:h=1,...,H, i∈V, t=1,...,T} and the autoregressive order p,

where (p,sss,qqq) ∈ N×N
p
0 ×N

H
0 holding for all vertices i ∈V , is specified as

xi,t =

p
∑

l=1

(

αi,lxi,t−l +

sl
∑

r=1

βl,r

∑

j∈N(r)(i)

ωi, jx j,t−l

)

+
H
∑

h=1

qh
∑

q=0

γh,qzh,i,t−q + εi,t . (5.1)



46 Monitoring of Networks with Fixed Structure

Figure 5.2: Stage-1 (blue) and stage-2 (green) neighbourhood of the orange node.

The order p also determines the maximum order of neighbour time lags, i.e. sss = (s1, . . . ,sp) with

sl being the maximum stage of neighbour dependence for time lag l. For example, s1 = 2 means

that nodes depend on their first and second-stage neighbours in G in the first time lag. Similarly,

the maximum time lag of the h-th exogenous regressor {zh,i,t} is defined as qh and collectively as

qqq = (q1, . . . ,qH). In case qh = 0, the current value of the exogenous variable is considered at time

point t.

The noise is denoted by εi,t and is assumed to be independent and identically distributed at each

vertex i with mean zero and variance σ2
i . The parameters αi,l, βl,r, γh,q ∈ R define autoregressive

influence, neighbouring influence and external influence from regressors, respectively. It is possi-

ble to estimate a global-α model, where αi,l = αl , assuming the same autoregressive process for

all nodes.

The set N(r)(i) denotes the r-th stage neighbourhood set of node i ∈ G. For instance, the stage-1

neighbours of a node i ∈ V are the adjacent nodes j ∈ V , connected by an edge. Further, the

stage-2 neighbourhood set of a node i ∈ V is the stage-1 neighbours of the adjacent nodes j ∈ V

as can be seen in Figure 5.2. Moreover, there are weights ω ∈ [0,1] associated with every pair of

nodes that, in this case, depend on the size of the neighbour set and are usually set as the inverse

of some prior notion of distance between vertices as explained by Knight et al. (2020).

By fitting the GNARX model, one obtains the estimates of the parameters αi,l, βl,r, γh,q that can

be used for predicting the x̂i,t+1 value from {xi,t}. The one-step-ahead forecast errors are then

determined as

ui,t+1 = xi,t+1 − x̂i,t+1 (5.2)

which can be utilised in the proposed monitoring framework. However, the GNARX model is

defined for time series related to nodes. Thus, one needs to extend the representation of TEN

processes to enable a correct application of the GNARX model for performing the monitoring.

5.3.1.1 Extension to TEN Processes

There are different ways of thinking about why an alternative representation is required. First, the

main focus lies in discovering changes happening between and within the streams, i.e. a process
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captured on the edges. Thus, one actually indirectly considers it to be a network not of single

nodes anymore but of pairs of nodes. Second, the influence from node to node and the influence

from one stream to its neighbouring stream portray two distinct standpoints. In the case of depen-

dency between two flows, more than two nodes are involved so that other underlying mechanisms

determine the exchange and its strength. Therefore, one needs a different adjacency matrix to

describe this novel dependency structure.

For distinguishing between G and YYY , and the novel representation of the TEN process as G′,
the notation for the new adjacency matrix is introduced as YYY ′. Now, as displayed in Figure 5.1

(below), the edges e ∈ E from the original graph G become vertices ι ∈ V ′ with the number of

nodes being |V ′| = |E| so that the time series {xe,t} placed on edges e ∈ E are now placed on

the nodes, becoming {xι ,t}. Consequently, one would also have new edges ξ ∈ E ′. Considering

the connectivity structure captured by the adjacency matrix, without any expert knowledge, the

natural choice for creating YYY ′ would be to use a model for generating random graphs. A potential

candidate is Erdős-Rényi model, where all graphs on a fixed vertex set with a fixed number of

edges are equally likely. Another possibility is to consider sampling from a stochastic block model

which produces graphs with a community structure. For example, links within a community may

be more probable than between communities. Both of those options are tested in Section 5.4.

There is, however, an additional approach in choosing a new connectivity structure by referring

to other types of graphs from graph theory. In this case, a deterministic approach to construct

YYY ′ is used. One relevant representation technique is the line (also known as edge-to-vertex dual)

graph L(G) of G. As introduced in Section 2.1.1, L(G) is constructed on E, where e ∈ E are

adjacent as nodes ι ∈ V ′ if and only if they share a common node as edges in G (Diestel, 2017).

In Figure 5.1 (bottom) this connectivity structure is adapted to the original TEN process shown

above. Such formation can suit well real-world applications as it offers a more logical structure

in case of limited knowledge about any existing communities or insufficiency of a connectivity

structure generated from a random graph model.

After redefining the representation of TEN processes, one can proceed with their modelling by

applying the GNARX model and monitoring using a residual-based control chart introduced in

the next section.

5.3.2 Residual-based Cumulative Sum Control Chart

In real-world applications, it is usually unknown which properties, e.g. mean or variance, of a

process may change. Thus, an important criterion for selecting a suitable control chart is its ability

to track many types of change simultaneously. Another point considers the decision about what

exactly to monitor – the data itself or some process related to it. As discussed by Grundy (2021),

the monitoring of the data directly might deteriorate in case of temporal dependency, complex

trends or seasonality effects within its structure. However, monitoring forecast residuals of the

process omits these issues and is capable of reflecting changes in either the process mean or the

process variance.

As under the real settings it is usually unknown whether the change occurs in a mean and/or

variance of the process, a more general type of Page’s CUSUM detector is utilised, which is based

on the (centred) squared data and is able to detect a combination of the mean and/or variance

change in the original data. For monitoring forecast errors uι ,t obtained for each flow ι , Grundy
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(2021) adapts Page’s CUSUM test statistic (cf. Page 1954) to the centred squared forecast errors

as follows

Qι(m,k) =
m+k
∑

t=m+1

(uι ,t − b̂)2 − k

m

m
∑

t=1

(uι ,t − b̂), (5.3)

where m corresponds to the length of Phase I, k is the current time point in Phase II and b̂ is

the mean estimate of the forecast errors computed from Phase I. From that, according to Grundy

(2021), the control chart statistic is calculated as

Dι(m,k) = max
0≤a≤k

|Q(m,k)−Q(m,a)|, (5.4)

and the corresponding upper control limit is given by

UCL = σ̂ιζδ g(m,k,ν), (5.5)

with ζα being the critical value of the distribution with the significance level of δ = 0.05 in this

chapter and σ̂ι the estimate of the standard deviation of the centred squared forecast errors be-

longing to the flow ι . The part g(m,k,ν) defines the weighting function with the tuning parameter

ν as

g(m,k,ν) =
√

m

(

1+
k

m

)(

k

m+ k

)ν

, (5.6)

which is described in detail in Horváth et al. (2004) and Grundy (2021). The tuning parameter ν
enables practitioners to adjust the stopping time based on the anticipated change. For instance, if

the change is expected early in the process, increasing ν will accelerate detection. In this chapter,

one considers ν = 0. The current time point k = τ , i.e. the control chart detects a change point if

Dι(m,k) ≤ UCL. It is worth noting that no lower control limit is defined as the control statistic,

obtaining non-negative values only, has its natural lower control limit which is zero.

5.3.2.1 Monitoring Scope and Performance Function

The considered CUSUM chart belongs to the univariate control charts, meaning that only one

process variable is monitored by the scheme. In this case, it means that one simultaneously im-

plements n = |V ′| control charts to monitor the TEN process completely. Consequently, it is also

possible to perform monitoring locally and control the behaviour of only one essential flow from

a complete TEN process.

Here, however, the interest lies in proposing a monitoring procedure suitable for tracking the

complete TEN process. Thus, as a performance metric, a cumulative intensity function of a change

is introduced as

IX(T ) =
T
∑

k=1

∑n
ι=1 1[UCL,∞)[Dι(m,k)]

n
, (5.7)

presenting a cumulative sum of flows which trigger a change at a time point t by exceeding a

specified threshold W . When in one flow ι a change was detected, the monitoring of this flow

stops, resulting in max(I) = 1. Thinking about how a signal is produced by computing I(T ), one

needs to define a suitable threshold W based on expert knowledge or system requirements.
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Figure 5.3: Representation of two different connectivity types: A graph structure generated by an Erdős-Rényi model

(left) vs. by a SBM (right).

In the subsequent section, a simulation study that handles different cases of changes as well as

compares monitoring results with respect to the selected model for constructing the adjacency

matrix YYY ′ is presented.

5.4 Simulation Study

The reason for conducting a simulation study is twofold: First, one aims to quantify the change

detection speed in the effects captured by the parameters of the GNARX model. Second, there are

different possibilities to construct the adjacency matrix YYY ′ as introduced in Section 5.3.1.1. Here,

two distinct random graph models are examined that cover both the availability and absence of

expert knowledge about a suitable sampling technique. If a TEN process is well understood, the

application of a Stochastic Block Model (SBM), where the flows should be first subdivided into

clusters, is a good choice. Alternatively, it is possible to run a clustering algorithm. If the cluster

structure is not suitable or no specific knowledge about the TEN process is available, the structure

of G′ can be sampled by applying the Erdős-Rényi model. An example of both structure types is

presented in Figure 5.3.

In the next part, the design of the conducted simulation study is explained along with the presen-

tation of the results as well as their comparison with regard to the generated graph structure.

5.4.1 Experimental Setting

To perform a simulation study, one has to decide on the design of a TEN process, the initial

parameters and the test cases. To keep the study simple for reproducing it but comprehensive for

designing different anomaly types as well as testing two distinct YYY ′ structures, a TEN process with

10 flows and a medium connectivity strength is created. That means, for sampling YYY ′ from the

Erdős-Rényi model, the number of nodes is set to be 10 and the number of connections to be 30,

considering that everything else is random. For sampling from an SBM, one separates the flows
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Procedure 1 Simulation steps for one iteration for the test case β +0.3

1. Setting: Choose the lengths of the burn-in period (300), model fitting period (600), Phase I (200) and

Phase II (100) subdivided into in-control (50) and out-of-control (50) parts. Set the data-generating

parameters of the GNARX model: αι ,l =α = 0.2, βl,r = β = 0.3 with p= 1 and sss= (1), γh,q = γ1 = 2

and γ2 = 3 with qqq = (0,0). Select the change strength: βτ = β +0.3.

2. TEN Generation:

a) Generate the adjacency matrix YYY ′ := (Y ′
ιυ)ι ,υ=1,...,|V ′| either by sampling from the Erdős-Rényi

model with |V ′|= 10 and |E ′|= 30 or the SBM with Pc1c2
= Pc2c1

= 0.2 and Pc1c1
= Pc2c2

= 0.8.

b) For each t = 1, . . . ,1200 generate the GNARX process:

i. Sample error values ει ,t , where ει ,t ∼ N (0,1).
ii. Sample covariate values z1,ι ,t ∼ N (0,1) and z2,ι ,t ∼ N (0,1).

iii. For ι = 1 to ι = |V ′|
A. If t ≤ 1150, generate the data with α,β ,γ1 and γ2 parameters:

xι ,t = αxι ,t−1 +β
∑

υ∈N(1)(ι)

ωι ,υxυ ,t−1 + γ1z1,ι ,t−1 + γ2z2,ι ,t−1 + ει ,t .

B. If t ≥ 1151, generate the data with α,βτ ,γ1,γ2 parameters having an effect either on all

flows or only on flows from c1, adjusting the equation in A.

3. TEN Modelling:

a) Fit the GNARX model with p = 1 and sss = (1) using the first 600 generated observations after

discarding the burn-in period t = 1, . . . ,300.

b) Save the estimated parameters α̃,β̃ ,γ̃1 and γ̃2.

4. TEN Monitoring:

a) Phase I: Estimate the target process by using α̃,β̃ ,γ̃1 and γ̃2 parameters to compute forecast

residuals uι ,t and calibrate the CUSUM control chart described in Section 5.3.2.

b) Phase II: Run monitoring using the calibrated CUSUM control chart and compute the cumu-

lative intensity function provided in Equation 5.7. Save the time stamp t when a change is

detected.

into two clusters c1 and c2 of equal size. Additionally, one needs to define probabilities P that the

flows are connected within a cluster or between the clusters.

Regarding the settings for sampling from a GNARX model, a process with a global autoregressive

effect of order p = 1 is designed. Also, the stage-1 neighbourhood is considered together with

two exogenous regressors and corresponding time lags qqq = (0,0). To be precise, one generates

separate data for estimating the GNARX model (600 observations) before designing Phase I with

200 observations and Phase II with 100 observations which is subdivided into 50 in-control and

50 out-of-control samples. The detailed description of each simulation step is presented in Pro-

cedure 1. In total, 500 iterations for each test case are conducted, whose outcomes are presented

subsequently.

5.4.2 Results and Comparison of Connectivity Structures

As explained in Section 5.3.2.1, the goal is to detect changes in the whole TEN process, i.e. the

anomalous network states. Therefore, the cumulative change intensity given in Equation 5.7 is

computed. For summarising the performance in the simulation study, for each time point in Phase

II the values of the cumulative change intensity function are averaged, so that a mean cumulative

change intensity is obtained. It is worth noting that no threshold W is defined here, letting the focus
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to be on the general detection capability of the approach as well as fluctuation in the performance.

It is important to note that as soon as the control chart signals for a particular flow, the monitoring

of that flow stops. It means, that no multiple change points for the same flow are possible.

For each parameter α,β and γ1 there are three test cases of changes whose values gradually in-

crease. Comparing the different types of sampling the adjacency matrix YYY ′, the initially estimated

parameters are exchanged with anomalous either for all flows or only for flows being part of c1.

In the following Figures 5.4, 5.5 and 5.6 the monitoring results in Phase II (PII) are displayed. The

blue area defines the in-control and the red the out-of-control part. First, in all plots, one can notice

the same pattern: The curve that shows the simulation with YYY ′ sampled from the SBM stays below

another curve that corresponds to the setting with an adjacency matrix generated from the Erdős-

Rényi model. That corresponds to the way the change in the effects was implemented: While in

the case of the SBM structure, only one community (half of the flows) was affected by anomalous

parameters, the simulation that involves the Erdős-Rényi structure experiences the change in the

complete network, i.e. all flows were affected. Thus, the cumulative intensity change reaches a

value of only 0.5 which is the normalised size of a community with 5 flows that exhibit anomalous

behaviour when using the SBM. Second, one can clearly recognise that the most difficult type of

anomaly for the proposed approach is the change in the neighbourhood effects captured by the

parameter β . It can be seen from the wider uncertainty span and longer run length to detect the

implemented change in β . Overall, the simulation study reveals that the monitoring approach is

highly effective, meaning that no signals occur when no actual change has been introduced but is

only efficient in detecting quickly the change point if the underlying structure of G′ is known, or

the aim is to detect medium or large anomalies in a process.

In case one specific flow reflects the state of the whole system or is particularly relevant for the

flawless functionality of a network, one could focus solely on its monitoring. For that, the CUSUM

control chart would be directly applied, determining the change point. Visually, a possible out-

come could look as displayed in Figure 5.7.

In the following section, as a real-world illustration, the monitoring of cross-border physical elec-

tricity flows across Europe is discussed.

5.5 Empirical Illustration

Cross-country analysis of electricity trade, especially in the context of renewable energy, is a rele-

vant field of study that can contribute to the evaluation of transmission infrastructure policies (cf.

Abrell and Rausch, 2016). It is worth noting that the cross-border physical flow network indi-

cates the actual flow of electricity that corresponds to the laws of physics and could differ from

the scheduled commercial exchanges, which reflect the economic relations between the market

parties. Thus, such network process is of a particular technical importance, allowing for the flaw-

less electricity trade across Europe. As there are no studies related to the change point detection

in European Cross-Border Physical Flows (CBPFs), the monitoring of this process is described

below.

5.5.1 Data Description

The European Network of Transmission System Operators for Electricity (ENTSO-E) provides

data about the cross-border physical flow and scheduled commercial electricity exchanges of more
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Figure 5.4: Simulation study: Visualisation of the mean of cumulative change intensity functions I(T ) over 500

iterations with differences in α .
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Figure 5.5: Simulation study: Visualisation of the mean of cumulative change intensity functions I(T ) over 500

iterations with differences in β .
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Figure 5.6: Simulation study: Visualisation of the mean of cumulative change intensity functions I(T ) over 500

iterations with differences in γ1.
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Figure 5.7: Simulation study: Example of monitoring one specific flow from a TEN process.

than 40 countries2. It offers the data for each hour for years starting from 2014. However, after

careful investigation of the amount of missing data, the decision is to concentrate on the monitor-

ing period from January 1, 2018, to November 27, 2022, and to use a weekly aggregation of the

electricity values given in megawatts.

The graph in Figure 5.8 (a) represents the aggregated quantity of electricity which was transmitted

in the year 2019 so that the thickness of the edges reflects the total amount of power which was

passed between the two countries. The higher this value is, the thicker the edge between two

nodes. However, what one can also notice is the existence of parallel edges, i.e. one flow f1

coming from France (FR) to Spain (ES) and another flow f2 back. If one decides to directly apply

a new representation as introduced in Section 5.3.1.1, one would obtain a network that would

be considerably bigger than the original graph. Hence, the aggregation of both flows f1 and f2

is required, so that only one vertex can be taken to represent a country pair. There are different

possibilities for doing it, in this chapter three of them are discussed subsequently.

5.5.2 Phase I Modelling

To avoid a considerable expansion in the new representation of the CBPFs (see Section 5.3.1.1)

but still consider the distinctive behaviour of in- and outgoing edge directions, three different ag-

gregation strategies of both flows f1 and f2 are introduced, leading to three models being fitted and

compared, respectively. The first statistic is the Box-Cox transformation of the sum of both flows

M1 = ln( f1 + f2 + 1) with λ1 = 0 and λ2 = 1 (cf. Box and Cox, 1964) that reflects the overall

strength of the exchange. The second statistic measures the asymmetry in both flows as the dif-

ference of the Box-Cox transformed variables f1 and f2: M2 = ln( f1 +1)− ln( f2 +1). It implies

whether it is more common for one country to import or export electricity. The third statistic cap-

2Central collection and publication of electricity generation, transportation and consumption data and information for the pan-

European market. ENTSO-E Transparency platform (2023). https://transparency.entsoe.eu
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(b) The size of the nodes implies the strength of the electricity exchange and the colour its

proportion of electricity generated with renewable energy sources (light green corresponds to

the higher proportion, blue corresponds to the missing information).

Figure 5.8: Conventional representation of the cumulated cross-border physical electricity flow in the year 2019 (a)

and new representation (b) following the description in Section 5.3.1.1.
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Model M1 Model M2 Model M3

α̃ 000...888999666∗∗∗ 000...999000444∗∗∗ 000...999111000∗∗∗

(0.005) (0.005) (0.005)

β̃ 000...000999444∗∗∗ 000...000111999· 000...000222000·

(0.006) (0.011) (0.011)
γ̃1 000...000000333· −−−000...000333444∗∗∗ −−−000...000000333∗∗∗

(0.002) (0.006) (0.001)
γ̃2 000...000000555· 000...000333222∗∗∗ 000...000000333∗∗∗

(0.002) (0.006) (0.001)

M̄ 10.84 0.14 0.03

σ̃M 2.00 6.81 0.84

RMSE 0.89 2.75 0.34
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p ≤ 0.1

Table 5.1: Phase I modelling.

tures proportionally differences in both flows, being M3 = f1− f2
f1+ f2

. No additional transformation

is required in this case as M3 ∈ [−1,1] \ {0}. Figure 5.8 (b) illustrates a new representation of

CBPFs, where the new adjacency structure is constructed using the rules of a line graph described

in Sections 2.1.1 and 5.3.1.1.

As no exceptional events are known in year 2018 and 2019 that could considerably disturb the

CBPF network, the decision is to select these two years as Phase I. Testing different model set-

tings, the final set-up involves a global autoregressive parameter α̃ with p = 1, 1-stage neighbour-

hood β̃ and two covariates that correspond to the Box-Cox transformed total amount of electricity

generated by renewable energy sources from both countries with the effects γ̃1 and γ̃2, having

qqq = (0,0).

Table 5.1 presents the results of estimating the parameters for each choice of the aggregation

statistic M using 7828 observations (76× (52×2− p)), where 76 defines the number of bilateral

exchanges. As one can observe, the GNARX model fits the data in Phase I well and confirms

the relevance of accounting for the network structure as well as external effects when modelling

TEN processes. Using the displayed coefficients, one can proceed with the monitoring of Phase

II which consists of the years 2020–2022.

5.5.3 Phase II Monitoring

Figures 5.9, 5.10 and 5.11 display the monitoring results during Phase II. Out of 76 country pairs,

between 27 and 39 pairs have had a change point according to the implemented CUSUM control

chart based on either M1, M2 or M3 statistics. Two periods during Phase II are highlighted:

The period related to severe situations due to the COVID-19 pandemic and the period starting in

February 2022 where several crises were expected or happened due to the Russian-Ukrainian war.

Considering the threshold W , it is selected as W = 0.2, i.e. when in at least 16 bilateral exchanges

a change point has been detected.

Comparing three different aggregation methods, similarities in detecting changes during the pan-

demic are noticed. However, starting from June 2021 the behaviour of the control chart signif-

icantly differs. Inspecting the results with M1, one notices that the time between two defined

periods remains relatively stable compared to two other outcomes with M2 and M3. Then, the
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Figure 5.9: Results of monitoring M1, obtaining in total 27 change points.

first detection on March 6, 2022 (aggregating the days February 28 – March 6) considers the be-

ginning of the war between Russia and Ukraine. Surprisingly, another country pair experiences a

change in the same week, namely Belarus and Ukraine. Later, another change detection occurs at

the end of May in the pair Russia and Estonia, reflecting the political agreement of the Baltic states

to stop any energy trade with Russia. The same date and reason are also given in the control chart

with M3 in the pair Russia and Lithuania3. In terms of the signal in the pair Ukraine and Moldova

(control chart with M2), it could be related to the launch of the planned commercial exchanges

announced at the end of June 2022 and further being increased at the beginning of autumn4.

Overall, one can notice that without expert knowledge of the CBPF network, it is challenging to

reflect a particular reason for the change point, however, one can also see a reliable performance

of the proposed framework in detecting major events such as the pandemic and the energy crisis

related to the begin of the Russian-Ukrainian war. The caveat to be aware of is the interpretation

of the chosen aggregation statistic M1,M2,M3 as in some of the cases the signalled anomalies

considerably differ.

5.6 Discussion

The network with a given structure but a random process on its edges that is defined as a Temporal

Edge Network (TEN) can be of particular interest for guaranteeing the safety of the infrastructure

but also for foreseeing possible accidents. Beyond the application to the bilateral electricity flows

across Europe, the proposed framework could potentially be applied for monitoring traffic flows

on roads or rail systems to optimise transportation infrastructure as well as within the computer

3https://enmin.lrv.lt/en/news/no-more-russian-oil-gas-and-electricity-imports-in-lithuania-from-sunday
4https://www.entsoe.eu/news/2022/09/04/transmission-system-operators-of-continental-europe-decide-to-further-increase-

trade-capacity-with-the-ukraine-moldova-power-system/
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Figure 5.10: Results of monitoring M2, obtaining in total 33 change points.
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Figure 5.11: Results of monitoring M3, obtaining in total 39 change points.
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communication domain, aiding in cybersecurity. In an environmental context, TENs may be use-

ful in evaluating water transfers between areas or companies, contributing to sustainable water

resource management.

There might still exist the question of why monitoring networks with a fixed structure needs

special treatment. For example, why not try to “randomise” the connections? The explanation is

straightforward: It could be possible to select a flow threshold for creating dynamics in the graph

by deleting or adding the links, however, the anomalies which would be detected in this case are

similar to those which are the focus of the random network monitoring. Here, the interest lies

rather in anomalies occurring in the edge process, e.g. changes in the flow’s strength or some

other temporal deviations. Hence, the representation of TEN processes where edges become the

main focus of both modelling and monitoring parts should be considered in this case.



6 Monitoring of Artificial Neural Networks

In this chapter1, networks are considered to be not a structure for representing a dataset but a model

based on artificial intelligence and inspired by the nervous system. In particular, a monitoring

procedure for Artificial Neural Networks (ANNs) that are trained in a supervised manner for

performing classification tasks is designed.

6.1 Main Intent

In an ANN, data flows through hidden layers, each containing neurons that perform nonlinear

transformations, ultimately producing predictions in the output layer (Hermans and Schrauwen,

2013). Neurons within the ANN, as demonstrated by Wang et al. (2019), possess two crucial

properties: stability and distinctiveness. For smooth classification surfaces or prediction func-

tions, nearby samples should activate similar neurons, leading to similar output values. However,

in the presence of nonstationary data, such as from an unknown class, neuron values may de-

viate beyond the typical activation range. In this case, its interim representation generated by

ANN before the output layer would be different compared to the interim representation of the data

that correctly belongs to a predicted class. Commonly represented by a low-dimensional vector,

the learned latent feature representation, also called embedding, comprises a dense summary of

the incoming sample. Alternatively, sliced-inverse regression can reduce dimensionality without

specifying a regression model (Li, 1991). It projects predictors onto a subspace while preserving

information about the conditional distribution of the response variable(s) given the predictors. Var-

ious methods have been proposed that utilise the inverse relationship between the variables (Cook

and Ni, 2005; Wang and Xia, 2008; Wu, 2008), or sparse techniques facilitating the interpretation

(Li and Nachtsheim, 2006; Li, 2007; Lin et al., 2019). Both ways of reducing the dimensionality

and compressing the knowledge about a data sample are suitable for SPM.

The majority of multivariate SPM methods are based on the assumption that the observed pro-

cess follows a specific distribution. In the general case of ANNs, however, the distribution of

embeddings is unknown. Although the network could be trained in a way such that the embed-

dings follow a certain distribution, this concept is too restrictive in practice. Thus, the focus is

on developing a nonparametric SPM approach using a data depth-based control chart, making no

assumptions about the ANN type and the distribution of embeddings.

6.2 Definition of the Change Point

Although the whole chapter is presented from the classification scope, the proposed monitoring

technique can also be applied to ANNs which solve regression tasks by grouping the predicted val-

ues into a set of classes. Thus, consider yt ∈ {1, . . . ,v} to be class labels, where the v-dimensional

1This chapter is based on the publication Malinovskaya, A., Mozharovskyi, P., Otto, P. Statistical Process Monitoring of Artificial

Neural Networks. Technometrics, (2023). Copyright American Statistical Association. Available online: https://www.

tandfonline.com/doi/full/10.1080/00401706.2023.2239886.

61



62 Monitoring of Artificial Neural Networks

(a) The FNN with two hidden layers in the toy example (b) Produced embeddings in the toy example

Figure 6.1: The FNN architecture displayed in (a) and embeddings from B: Hidden layers visualised in (b). Grey-

framed nodes represent the last hidden layer. Blue and green points denote training data references, while magenta

points represent out-of-control data embeddings. For more details, see Section 6.4.3.

output of the algorithm contains the discriminant scores for each of the given classes. In super-

vised learning, one assumes that true class labels are known for the training period t = 1, . . . ,T ,

which is used for estimating the parameters ϑ . Thus, ŷt = argmax f (xxxt ,ϑ̂) for a set of input vari-

ables xxxt is the prediction of ANNs, i.e. the most probable class, where ϑ̂ defines the learned

parameters during the training, such that ŷt coincides with yt in most cases for all t = 1, . . . ,T .

Consider a toy example of a feedforward ANN (FNN) which defines the basic family of ANN

models as presented in Figure 6.1 (a). The network consists of four layers with two hidden layers,

where each circle represents a neuron or node that stores a scalar value. Consequently, a layer is

a ki-dimensional vector with ki being the number of nodes contained in the i-th layer. Here, the

input layer is a k1-dimensional vector xxxt ∈ R
7 (first layer), and its first neuron is defined as xt,1.

For monitoring ANN applications, the usage of embeddings is proposed that are illustrated in

Figure 6.1 (b). Usually, they have a vector form which is denoted by mmmt ∈ R
k with k being the

dimension of the hidden layer that produces the embeddings (see Figure 6.1 (a)). This represen-

tation is observed every time ANNs are applied, i.e. for historical (training) and new data. Thus,

embeddings implicitly depend on xxxt , but also on the fitted parameters ϑ , so that changes associated

with ANN’s data quality and performance can be detected. The proposed monitoring technique

can also be applied to ANNs which solve regression tasks by grouping the predicted values into a

set of classes.

In succeeding parts, one refers to the set {mmmt : t = 1, . . . ,T} as historical data with correctly known

labels {yt : t = 1, . . . ,T} and to the set {mmmi : i = T +1,T +2, . . .} as incoming data instances with

the predicted class label ŷi obtained from f (mmmi,ϑ̂). Moreover, one considers that the true label of

yi is not available and historical data are stationary. Additionally, one assumes that mmmt follows a

certain distribution Fmmmt |yt=c depending on the true class yt . These conditional distributions Fmmmt |yt=c

are denoted by Ξc for all classes c ∈ {1, . . . ,v}. Based on historical data, it is possible to estimate

the distribution Ξc empirically that can be used to determine whether a possible change in the data
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stream occurred, i.e. whether the current observation mmmi is generated from a different distribution

than Ξyi
. Hence, in this chapter, one defines a change point τ as

mmmi ∼
{

Ξyi
if i < τ

Ξτ if i ≥ τ.

In other words, a change point τ is the time stamp when the analysis of an embedding generated

from the incoming data indicates that the data sample belongs to a different unknown distribution

Ξτ .

Consequently, one can regard this situation as a change in the class definition and formulate a

sequential hypothesis test of each sample i for detecting changes in the ANN application as follows

H0,i : Ξyi
= Ξŷi

against

H1,i : there is a location shift and/or a scale increase in Ξyi
.

The alternative hypothesis could be true due to (1) misclassification by the model, i.e. ŷi ̸= yi = a,

where a ∈ {1, . . . ,v}, leading to Ξŷi
̸= Ξa, or (2) nonstationarity of the data stream, i.e. ŷi ̸= yi = b

with b /∈ {1, . . . ,v} and Ξŷi
̸= Ξb because i ≥ τ . The accurate distinction between those cases is

crucial for reliable change point detection. Labelled data in Phase II helps achieving this, but a

practical solution without labelled data is discussed in Section 6.5.1.3.

To test repeatedly whether the process is in control over time, i.e. whether the data assigned to a

particular class does not deviate from the rest in this class, one can apply a multivariate control

chart. Since the class distributions {Ξc : c = 1, . . . ,v} are unknown and can be estimated only

empirically, a nonparametric monitoring technique that relaxes any distributional assumptions is

necessary. Alternatively, the nonparametric kernel density estimates can be used, namely Parzen

window estimators (Parzen, 1962; Breiman et al., 1977). Moreover, kernel density estimates also

have been proven beneficial for classification tasks (e.g. Ghosh et al., 2006).

Several multivariate nonparametric (distribution-free) charts are based on rank-based approaches.

These approaches can be divided into two categories: control charts using longitudinal ranking

and those employing cross-component ranking (Qiu, 2014). The first group includes compo-

nentwise longitudinal ranking (Boone and Chakraborti, 2012), spatial longitudinal ranking (Zou

et al., 2012), and longitudinal ranking by data depth (Liu and Singh, 1993). While the first two

subgroups are moment-dependent, control charts based on data depth offer flexibility by not im-

posing moment requirements. For instance, geometric and combinatorial depth functions, such as

Simplicial depth and Halfspace depth, are considered and discussed in Section 6.3.1.

The depth-based control charts allow simultaneous monitoring for location shifts and scale in-

creases in the process. The depth functions discussed in this chapter are affine invariant and satisfy

important axioms such as monotonicity, convexity (except for Simplicial depth), and continuity

(Mosler and Mozharovskyi, 2022). These characteristics make them suitable for the considered

monitoring problem, leading to the usage of nonparametric control charts based on data depth for

online monitoring.

6.3 Monitoring Framework

In terms of effective monitoring, ANNs input space is usually too complex to identify distribu-

tional changes directly from the input data (layer A, Figure 6.1 (a)), whereas output does not
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always contain enough information for this purpose as demonstrated in Section 6.4 (layer C, Fig-

ure 6.1 (a)). A sufficient but not excessive amount of information can be obtained by intercepting

the input propagation on an intermediate layer of the neural network (layer B, Figure 6.1 (a)),

e.g. to estimate prediction uncertainty which requires rarely accessible supervised training data

(see Corbière et al., 2019). While several layers can be considered to account for more complex

dependencies, one would normally take those which are closer to the output, achieving the highest

dimensionality reduction (see, e.g. Parekh et al., 2021). Outputs of the intermediate layers con-

stitute an Euclidean space, where, in the unsupervised setting, anomaly-detection techniques can

be applied. These can constitute a neural network themselves (e.g. autoencoder), belong to (sta-

tistical) ML like a Local Outlier Factor (Breunig et al., 2000), one-class Support Vector Machine

(SVM) (Schölkopf et al., 2001), isolation forest (Liu et al., 2008), or be based on data depth as

proposed in this chapter.

The application of data depth in quality control was originally introduced by Liu and Singh (1993),

resulting in the design of Shewhart-type multivariate nonparametric control charts based on the

Simplicial depth (Liu, 1990, 1995). According to recent publications on data depth-based control

charts (cf. Cascos and López-Dı́az, 2018; Barale and Shirke, 2019; Pandolfo et al., 2021), the

careful choice of data depth notion is crucial for a satisfactory monitoring performance. Thus,

several notions of data depth are compared, and their effectiveness is discussed in Section 6.4,

looking at computational costs in Section 6.5.5.

6.3.1 Notion of Data Depth

A data depth is a concept for measuring the centrality of a multivariate observation mmmi (cf. Zuo

and Serfling, 2000; Liu et al., 2006; Mosler and Mozharovskyi, 2022) with respect to a given

reference sample Rc = {mt := 1, . . . ,|R|, yt = c}, where |R| defines its size which is assumed to be

the same for all considered classes. In other words, it creates a center-outward ordering of points

in the Euclidean space of any dimension. There are various notions of data depth, each of them

providing a distinctive center-outward ordering of sample points in a multidimensional space. In

this chapter, four data depth notions are considered: Halfspace, Mahalanobis, Projection, and

Simplicial depths.

First, the Halfspace depth (originally known as Tukey depth) introduced by Tukey (1975) and

further developed by Donoho and Gasko (1992) is defined as the smallest number of data points

in any closed halfspace with boundary hyperplane through mmmi (Struyf and Rousseeuw, 1999). That

is,

Dc
H(mmmi, Rc) =

1

|R| min
∥ppp∥=1

|{b : ⟨ ppp,mmmb⟩ ≥ ⟨ ppp,mmmi⟩}|,

where | · | denotes the cardinality of the set B with mmmb ∈Rc, ppp are all possible directions with ∥ppp∥=
√

⟨p, p⟩ being the Euclidean norm and ⟨·,·⟩ the inner product. Here, its robust version HDr is

considered which is proposed by Ivanovs and Mozharovskyi (2021) and calculated approximately,

offering some advantages in being strictly positive and continuous beyond the convex hull of the

observed samples.

Second, the Mahalanobis depth is presented which is based on the Mahalanobis distance (cf.

Mahalanobis, 1936). It is derived as

Dc
M(mmmi, Rc) =

1

1+(mmmi −µµµmmm)
′ΣΣΣ−1(mmmi −µµµmmm)

,
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where µµµmmm is the mean vector of the embeddings in the reference sample and ΣΣΣ
−1 is the covariance

matrix, estimated by the sample mean and the sample covariance matrix, respectively.

Third, the Projection depth proposed by Zuo and Serfling (2000) is specified as

Dc
P(mmmi, Rc) =

(

1+ sup
∥ppp∥=1

|⟨ppp,mmmi⟩−med(⟨ppp,Rc⟩)|
MAD(⟨ppp,Rc⟩)

)−1

with ⟨ppp,mmmi⟩ denoting the inner product and the projection of mmmi to ppp if ∥ppp∥ = 1. The notation

med(E) defines the median of a univariate random variable E and MAD(E) = med(|E−med(E)|)
is the median absolute deviation from the median. As the exact computation of Projection depth

is possible only at very high computational costs (cf. Mosler and Mozharovskyi, 2022), the al-

gorithms that enable its calculation approximately are used. Dyckerhoff et al. (2021) provide

the implementation and comparison of various algorithms. In this chapter, one studies the per-

formance of control charts based on three different algorithms to compute the Projection depth

of both symmetric and asymmetric types. In particular, coordinate descent (PD1), Nelder-Mead

(PD2), and refined random search (PD3) for the symmetric type; for the asymmetric type, PDa
1,

PDa
2, and PDa

3 are considered.

Fourth, the Simplicial depth (Liu, 1990) is calculated as

Dc
S(mmmi,Rc) =

( |R|
k+1

)−1
∑

⋄
IS(mmmt | t∈Rc, yt=c)(mmmi),

where S(mmmt |t ∈ Rc, yt = c) defines the open simplex consisting of vertices {mmmt,1, . . . ,mmmt,k+1} from

all observations t in the reference sample Rc. The ⋄ notation means that one validates all possible

combinations to construct an open simplex with (k+1) vertices. One specifies IA(x) as the indica-

tor function on a set A returning 1 if x ∈ A and 0 otherwise. Both Simplicial (SD) and Mahalanobis

(MD) depths are computed with algorithms provided by Pokotylo et al. (2019).

Related to the classification problem of multivariate data, there exist depth-based classifiers (cf.

Vencálek, 2017) such as the depth-vs-depth plot (DD-plot) designed by Li et al. (2012) or the DD-

alpha procedure proposed by Lange et al. (2014). Also, the field of outlier or anomaly detection

is a widespread area for data depth usage (cf. Dang and Serfling, 2010; Baranowski et al., 2021).

Combining these two perspectives, a data depth-based Shewhart-type r control chart for single

observations (see Section 6.3.2) and a batch-wise Q control chart (see Section 6.5.4.2) developed

by Liu (1995) are applied for detecting nonstationarity in a data stream.

6.3.2 The r Control Chart

As stated in Section 2.2.2, the data in Phase I does not have to coincide with the full training data

of the ANN but could rather be its subset. That is, the sets Rc ⊆ {mmmt : t = 1, . . . ,T, yt = c} of size

|R| create the Phase I data where it is essential to consider only correctly classified data samples.

Successively, in Phase II, the control chart statistic is plotted for each embedding mmmi with i > T .

Figure 6.2 displays the introduced periods and sets.
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Figure 6.2: Summary of the introduced notation and data subdivision.

Considering the r control chart proposed by Liu (1995), the scheme is based on ranks of multivari-

ate observations, which are obtained by computing data depth. To determine whether mmmi belongs

to Ξc, the following control chart statistic is used

rc
· (mmmi) =

|{Dc
· (mmmt)≤ Dc

· (mmmi) : t ∈ Rc, yt = c}|
|{t ∈ Rc : yt = c}|

that defines the rank of the observed depth related to the observations in the reference sample

with a class c. Thus, the r control chart monitors the values of rc
· over time. Considering the

interpretation of ranks, one can state that rc
· (mmmi) reflects how outlying mmmi is with respect to the

reference sample. If rc
· (mmmi) is high, then there is a considerable proportion of data in the reference

sample that is more outlying compared to mmmi (Liu, 1995).

Regarding the control limits, there is no need to introduce the UCL as rc
· belongs to the continuous

interval [0,1]. Considering the LCL, it coincides with the significance level of the hypothesis test,

here defined as α . Thus, the process is considered to be out of control if rc
· (mmmi)≤α . The choice of

α depends on the specification of Average Run Length (ARL) – the expected number of monitored

data points required for the control chart to produce a signal (Stoumbos et al., 2001). In the case

of the Shewhart-type control charts, the reciprocal of ARL corresponds to the False Alarm Rate

(FAR) in the in-control state of a process. Technically speaking, since the r control chart is a

Shewhart control chart, FAR = α , where α is interpreted as the probability of a false alarm in

Phase I (Stoumbos et al., 2001).

According to Liu (1995), the r control chart can be applied with affine-invariant notions of data

depth, explicitly mentioning Simplicial depth, Mahalanobis depth, and Halfspace depth. Since

Projection depth is also affine-invariant (cf. Mosler, 2013), both r and Q control charts can be

combined with each of the data depth functions introduced in Section 6.3.1.
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6.4 Simulation Study

In the following section, the effectiveness of the proposed monitoring framework is analysed by

designing a simulation study in the form of a toy example. The discussion begins with a descrip-

tion of the considered benchmark methods, followed by the introduction of the selected perfor-

mance measures in Section 6.4.2. Further, the performance of different approaches is compared

in Section 6.4.3.

6.4.1 Benchmark Methods

Due to the independent development of comparable approaches (cf. Mozharovskyi, 2022; Yang

et al., 2022b) and their focus on different scenarios/perspectives, there is no unified benchmark.

Hence, to select a benchmark for ANN monitoring, one needs to consider the available options.

Three possibilities arise: inspecting the initial input, the model’s embeddings, or the final output

(here softmax score) represented by layers A, B, and C in Figure 6.1 (a). Monitoring the initial

data quickly becomes limited due to the complexity of typical datasets analyzed by ANNs. On

the contrary, using intermediate layers reduces data dimensionality and storage requirements since

only the embeddings from the training phase need to be saved. Therefore, only B and C options are

considered as monitoring options. Furthermore, as a benchmark, the focus is on methods that can

operate within the introduced framework. Specifically, one seeks methods capable of detecting

nonstationarity in (1) individual samples (batch size of one), (2) without the need for labels in

Phase II, and (3) working with or without available time stamps. To ensure comparability, the

same SPM framework of the r control chart is utilised.

Based on the recent reviews (cf. Goldstein and Uchida, 2016; Villa-Pérez et al., 2021; Yang et al.,

2022b), a Kernel Density Estimation Outlier Score (KDEOS) defined by Schubert et al. (2014), a

distance-based Local Outlier Factor (LOF) developed by Breunig et al. (2000), and an ensemble-

based outlier detection method such as isolation Forest (iForest) proposed by Liu et al. (2008)

are chosen as a common benchmark coming from distribution- and distance-based methods. Both

LOF and KDEOS compare the densities within local neighbourhoods. However, while LOF

is based on the reachability distance of the point to its neighbourhood for density estimation,

KDEOS uses classic kernel density estimates, e.g. based on Gaussian or Epanechnikov kernels.

The iForest represents an ensemble of binary decision trees, where the points placed deeper in

the trees are less likely to be outliers as they require more splits of space to isolate them. On the

contrary, the samples which are allocated in shorter branches would rather be anomalous.

When considering option C in Figure 6.1 (a), the proposed approach is compared with monitoring

the softmax scores. They are normalised between 0 and 1, and their length is equal to the number

of neurons in the final layer. The neuron that has the maximum score corresponds to the predicted

class. It is important to note that the softmax output is widely considered as a measure of the

model’s confidence (cf. Gawlikowski et al., 2023; Moon et al., 2020); however, there is substantial

research into the area of alleviating overconfident prediction issue (Gawlikowski et al., 2023),

e.g. by redesigning a loss function that leads to more trustful confidence estimates (Moon et al.,

2020). Nevertheless, directly using the softmax output for nonstationarity detection is considered

to perform reasonably well (Pearce et al., 2021). Thus, as benchmark techniques, Mahalanobis

distance (MDis) which is well-known for detecting concept drift in similar settings (cf. Lee et al.,

2018; Yang et al., 2022b) and a Natural Outlier Factor (NOF) based on the Natural Neighbour

principle, where calculation of the factor is parameterless (Huang et al., 2016), are selected.
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Evaluation Size |R| Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

100 I In-control FAR 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Toy example 100 II In-control SR 0.08 0.00 0.10 0.08 0.04 0.06 0.06 0.08 0.10

mmmi ∈ R
3 100 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 0.10 0.06 0.14

Table 6.1: Performance of r control charts (α = 0.05) in the toy example with reference samples R being predicted

classes. The underlined numbers indicate the suggested method for an entire monitoring period, based on the trade-

off between SR and CDR.

6.4.2 Performance Measures

A well-operating control chart has a low false alarm rate (when it signals a change incorrectly)

and a high rate of correctly detected out-of-control points. The performance of control charts is

typically assessed by ARL. It measures the time until a false alarm when the process is in control

and the speed at which the chart detects an actual change when the process is out of control.

Alternatively, the False Alarm Rate (FAR) evaluates performance in Phase I, while the Signal

Rate (SR) and Correct Detection Rate (CDR) assess performance in Phase II. All three metrics

range between 0 and 1, providing the relative number of false or correct signals.

Regarding the SR value, a proportion of false alarms given the total length of the considered in-

control part is calculated. In the case of the CDR value, it is computed as a proportion of correctly

detected out-of-control data points given the total length of the designed out-of-control part. To

account for a possible discrepancy between the class proportions of the predicted data in Phase II,

the weighted mean of the occurred signals is computed, accounting for the number of data points

in each predicted class within the observed period. In the case of FAR, one uses the sample mean

because the reference sample sizes are identical.

If a tested control chart operates as desired, then FAR of Phase I equals the chosen probability of

a false alarm α . In Phase II, ideally, one would expect SR to be similar to FAR for the in-control

samples (neglecting the potential misclassification effect), while the CDR should be as large as

possible for the out-of-control samples. If the CDR is low, i.e. close to 0, one would conclude

that the control chart does not accomplish its primary purpose – to detect nonstationarity in a data

stream.

6.4.3 Toy Example

To present the idea in a controllable environment, a toy example visualised in Figure 6.1 is created.

Assuming one has a classification problem with two classes, an ANN with a one-dimensional

output layer (last layer) that provides a score for the input to belong to Class 2 is constructed.

When the output exceeds a threshold (often 0.5), the input is predicted as Class 2, otherwise

Class 1.

As data stream, two 7-dimensional Gaussian random variables xxx
(1)
t and xxx

(2)
t with µµµ1 = 000 and

µµµ2 = 10 ·1117, where t = 1, . . . ,100 and 111n is the n-dimensional vector of ones are simulated. Both

variance-covariance matrices ΣΣΣ1 and ΣΣΣ2 have σii = 1 but with σi−1, j = σi, j−1 = 0.3 in the case

of ΣΣΣ1, and σi−1, j = σi, j−1 = −0.3 in case of ΣΣΣ2 for all i, j = 1, . . . ,7 (in respective cases i, j > 1),

where the remaining entries are zero. Considering the out-of-control data, one samples from a

new multivariate Gaussian distribution with µµµτ = 5 ·1117 and ΣΣΣ1.

A reference sample of size |R| = 100 for each of the classes is used, i.e. the entire training data

because there were no misclassified data points. In Phase II, the in-control data corresponds to

50 new observations with the same distribution as used for training, while the out-of-control 50
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mmmi ∈ R mmmi ∈ R
16

Evaluation Size |R| Phase Observed process Metric

MDis NOF KDEOS LOF iForest PD
(a)
2

100 I In-control FAR 0.05 0.05 0.05 0.05 0.05 0.05

Toy example 100 II In-control SR 0.08 0.04 0.00 0.04 0.12 0.04

100 II Out-of-control CDR 1.00 1.00 1.00 1.00 1.00 1.00

Table 6.2: Comparison study: Performance of r control charts (α = 0.05) in the toy example. In the case of MDis and

NOF, the data points represent the model’s softmax output (mmmi ∈ R). The underlined numbers indicate the suggested

method based on the trade-off between SR and CDR.

Experiment 1 2 3

Complexity High Medium Low

Data type Image Sentence Signal in [0,1]
Type of ANN CNN LSTM FNN

Number of classes 10 4 2

Phase I, in-control (Training data) 50000 2800 170

Phase II, in-control (Test data) 10000 600 38

Phase II, out-of-control (Nonstationary data) 400 60 30

Results Section 6.5.1 Section 6.5.2 Section 6.5.3

Table 6.3: Summary of experiments: Data size indicates the total number of samples across all classes.

data points correspond to the out-of-control distribution. The embedding layer consists of three

neurons, i.e. mmmi ∈ R
3. The visualisation of the embeddings that correspond to both reference

samples and out-of-control data is displayed in Figure 6.1 (b).

Table 6.1 summarises the results from depth-based control charts. As one can observe, all versions

apart from symmetric Projection and Simplicial depths can be successfully applied in this setting.

The reason why symmetric Projection depths fail is the asymmetric distribution of the processed

data (see Figure 6.1 (b)). Regarding the Simplicial depth, there are 24% of data points in the

reference sample of Class 2 with SD(mmmt) = 0. That can be explained by Simplicial depth assigning

zero to every point in the space outside the sample’s convex hull (Francisci et al., 2019). Moreover,

because all out-of-control samples received the predictions of Class 2, the control chart based on

SD could not detect the out-of-control samples. Comparing the best result from Table 6.1 which

is PDa
2 to the benchmark in Table 6.2, one notices that the LOF and NOF achieved similar results,

while the KDEOS and iForest did not hold their size of α = 0.05 in Phase II.

6.5 Empirical Illustration

In this section, the applicability of the suggested monitoring approach is tested to real data. In

total, three experiments were conducted. In decreasing complexity, the first experiment is about

a ten-class classification of images, applying Convolutional ANN (CNN), followed by a four-

class classification of questions, using ANN with a Long Short-Term Memory layer (LSTM) and

finished with a binary classification of sonar data performed with an FNN. Table 6.3 provides a

summary of the conducted experiments. The models’ training aims to maximise overall classifica-

tion accuracy, respectively tuning the hyperparameters and the ANN architectures. Additionally, it

is worth noting that balanced datasets are used for training the ANN, ensuring an equal represen-

tation of samples from each class. In addition, the construction of reference samples (see Sections

6.5.1.1 and 6.5.1.2) as well as the misclassification effect in Section 6.5.1.3 are examined.
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Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

Figure 6.3: Image examples and class labels of the CIFAR-10 dataset.

6.5.1 Experiment 1: Multiclass Classification of Images

In this experiment, one works with the CIFAR-10 dataset2, containing colour images of the size

32×32 pixels (Krizhevsky and Hinton, 2009), which is often applied for testing new out-of-

distribution detection methods (cf. Yang et al., 2022a). In total, there are 60,000 images which

correspond to 6000 pictures per class. Figure 6.3 shows examples of each category. For the out-

of-control samples, the CIFAR-100 dataset2 is considered. It contains 100 image groups, and

from them four distinctive classes are selected, namely Kangaroo, Butterfly, Train and Rocket.

From each category 100 images were randomly chosen, having in total 400 samples for the out-

of-control part in Phase II.

To construct a classifier for predicting to which of the ten groups an input image belongs, a CNN

is trained with a deep layer aggregation structure as proposed by Yu et al. (2018). A specification

of such architecture is a tree-structured hierarchy of operations to aggregate the extracted features

from different model stages. A detailed introduction to CNNs is given in O’Shea and Nash (2015).

The embedding layer has 16 neurons, so one obtains a monitoring task of mmmi ∈ R
16. The perfor-

mance metrics such as validation loss and accuracy are used to determine the number of epochs,

i.e. training cycles in which the model learns from the data and updates the parameters. Following

that, the CNN model was trained for 88 epochs, achieving 90.43% accuracy on the test images.

As this dataset has a sufficient number of samples to perform some advanced experiments such

as presented in Section 6.5.1.2 and is considered to be the most complex dataset out of three, it is

used for conducting the same comparison study as for the toy example.

6.5.1.1 Choice of Reference Samples and Monitoring Results: Confidence-related Formation

Below, the effect of different reference samples is investigated, particularly concentrating on their

size. To guarantee a well-chosen reference sample for each class, it is constructed by choosing |R|
data points that obtained the highest softmax scores. The analysis of applying randomly created

reference samples is provided in the subsequent section. To illustrate the application of the r

control chart in Figure 6.4, PD2 with |R|= 4000 is depicted. While there are 3 signals in Phase I

(green points), where FAR = 5%, a considerably larger number of signals is observed in Phase II

2https://www.cs.toronto.edu/~kriz/cifar.html
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Evaluation Size |R| Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

2000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05

2000 II In-control SR 0.51 / 0.54 0.49 0.49 0.50 0.48 0.47 0.48

SR|M 0.97 / 0.98 0.96 0.97 0.97 0.96 0.96 0.96

SR|C 0.46 / 0.49 0.44 0.44 0.45 0.43 0.42 0.42

2000 II Out-of-control CDR 0.92 / 0.93 0.92 0.92 0.92 0.91 0.91 0.89

Experiment 1 3000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05

mmmi ∈ R
16 3000 II In-control SR 0.43 / 0.46 0.40 0.41 0.41 0.41 0.39 0.39

SR|M 0.95 / 0.95 0.92 0.92 0.93 0.93 0.92 0.92

SR|C 0.38 / 0.40 0.35 0.35 0.35 0.35 0.33 0.33

3000 II Out-of-control CDR 0.88 / 0.90 0.86 0.87 0.86 0.87 0.86 0.84

4000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05

4000 II In-control SR 0.34 / 0.37 0.32 0.31 0.31 0.33 0.31 0.30

SR|M 0.88 / 0.91 0.83 0.84 0.83 0.86 0.83 0.83

SR|C 0.29 / 0.32 0.26 0.26 0.26 0.27 0.25 0.25

4000 II Out-of-control CDR 0.79 / 0.83 0.78 0.79 0.78 0.78 0.78 0.73

Table 6.4: Performance of r control charts (α = 0.05) in Experiment 1 with reference samples R being predicted

classes. The underlined numbers indicate the suggested method for an entire monitoring period, based on the trade-

off between SR and CDR. The rows indicating SR|M and SR|C metrics are related to misclassification diagnostic and

are discussed in Section 6.5.1.3. The calculation of SD does not happen due to the computational complexity being

O(nk+1).

mmmi ∈ R mmmi ∈ R
16

Evaluation Size |R| Phase Observed process Metric

MDis NOF KDEOS LOF iForest PD
(a)
2

2000 I In-control FAR 0.05 0.05 0.05 0.05 0.05 0.05

2000 II In-control SR 0.57 0.60 0.07 0.56 0.53 0.47

2000 II Out-of-control CDR 0.92 0.92 0.05 0.93 0.93 0.91

3000 I In-control FAR 0.05 0.05 0.05 0.05 0.05 0.05

Experiment 1 3000 II In-control SR 0.44 0.47 0.07 0.48 0.46 0.39

3000 II Out-of-control CDR 0.87 0.86 0.07 0.87 0.89 0.86

4000 I In-control FAR 0.05 0.05 0.05 0.05 0.05 0.05

4000 II In-control SR 0.33 0.36 0.07 0.39 0.38 0.31

4000 II Out-of-control CDR 0.79 0.78 0.10 0.77 0.83 0.79

Table 6.5: Comparison study: Performance of r control charts (α = 0.05) in Experiment 1. In the case of MDis and

NOF, the data points represent the model’s softmax output (mmmi ∈ R). The underlined numbers indicate the suggested

method based on the trade-off between SR and CDR.

without novelty (i.e. in-control, purple points). A substantial part of these signals occurred on the

misclassified samples, marked by the asterisks. In the out-of-control part in Phase II (red points),

one notices the highest number of signals, signifying correctly detected nonstationarity.

Looking at the results shown in Table 6.4, one can recognise the following patterns: First, with

increasing reference sample size, the number of false alarms in Phase II decreases. For instance,

MD and HDr lead to SR being over 50% when |R|= 2000, but the outcome has improved by over

15% when the size of the reference sample was increased. Second, the larger the reference sample,

the less precise becomes the out-of-control detection. Here, the CDR values remain moderately

high while doubling the size of the reference samples. Hence, it is beneficial to agree on such a

reference sample size that slightly decreases CDR and, at the same time, improves the performance

of the control chart during the in-control state. With this strategy, both PDa
2 and PD2 suit the entire

monitoring period well.

Similar behaviour can be noticed for the benchmark methods presented in Table 6.5. Comparing

the best depth-based monitoring result of PD
(a)
2 with the benchmark, one recognises that it out-

performs all other algorithms. Nevertheless, the SR values remain generally high, which could be

due to misclassified observations being flagged as anomalous samples or because the dispersion
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Figure 6.4: An example of the r control chart based on PD2 using the data from Experiment 1. Colours correspond

to the phases illustrated in Figure 6.2. The dashed line represents the control limit α = 0.05, the signals are shown

in dark red, and the misclassified samples in Phase II (in-control) are indicated with an asterisk.

of the test data is large compared to the reference samples. To better understand these issues, the

data from Phase II is analysed more closely in Section 6.5.1.3.

6.5.1.2 Choice of Reference Samples and Monitoring Results: Monte Carlo Study

To examine the influence of how the reference samples are formed, a Monte Carlo study is con-

ducted. Here, reference samples for each class are created by randomly picking data points from

correctly classified training data without considering the confidence-related outcomes of the ANN.

The obtained results based on 10 runs are summarised in Table 6.6. Due to the extensive compu-

tational resources involved, the study for only one type of Projection depth is conducted, namely

for the symmetric case. For each choice of the data depth notion, the standard deviation does not

exceed 0.01, meaning that the small number of iterations is sufficient for the investigation. The

control charts based on HD achieve the highest CDR among all proposed in-control charts. Fur-

thermore, the control charts based on PD2 and PD3 are more reliable during Phase II (In-control),

resulting in SR of 0.18.

In contrast to the results where the reference samples are selected according to the softmax scores,

one observes low fluctuation in performance with the changing size |R| and lower CDR values.

Thus, it is appropriate to choose the reference sample based on the intended purpose of the mon-

itoring. When accepting higher signal rates in the in-control phase (potentially due to misclassi-

fication), reference samples should be chosen based on the softmax scores. In turn, this leads to

more sensitive detection of out-of-control samples.

6.5.1.3 Misclassification and Data Diagnostic

To investigate the effect of misclassification, one refers to the wrongly classified images from the

test data (Phase II, in-control), which constitute 958 data points. By calculating the signal rates

conditional on misclassified SR|M and correctly classified samples SR|C for each depth notion and
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Evaluation Size |R| Phase Observed process Metric MD SD HDr PD1 PD2 PD3

2000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05

2000 II In-control SR 0.21 / 0.23 0.19 0.18 0.18

2000 II Out-of-control CDR 0.62 / 0.64 0.58 0.59 0.59

3000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05

Experiment 1 3000 II In-control SR 0.21 / 0.23 0.20 0.18 0.18

mmmi ∈ R
16 3000 II Out-of-control CDR 0.62 / 0.64 0.59 0.59 0.59

4000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05

4000 II In-control SR 0.21 / 0.23 0.20 0.18 0.18

4000 II Out-of-control CDR 0.62 / 0.65 0.60 0.60 0.59

Table 6.6: Monte Carlo study: Performance of r control charts (α = 0.05) in Experiment 1 with reference samples

R being predicted classes that were randomly constructed. The underlined numbers indicate the suggested method

based on the trade-off between SR and CDR. The calculation of SD does not happen due to the computational

complexity being O(nk+1).

Figure 6.5: Visualisation of the data from Experiment 1 with |R|= 2000. V1, . . . ,V16 define anchors which correspond

to neurons that produced embeddings mmmi ∈ R
16. Density contour plots outline respective classes.

reference sample size in Table 6.4, one finds that the average SR|M is 91.58%. At the same time,

SR|C values are considerably lower and approach 25% for bigger reference samples, compared to

the original SR results.

To investigate another reason for high SR values, the in-control data in Figure 6.5 is visualised.

One uses Radial Coordinate Visualisation (Radviz), where the variables are referred to as anchors,

being evenly distributed around a unit circle (cf. Hoffman et al., 1999; Caro et al., 2010; Abraham

et al., 2017). Their order is optimised to place highly correlated variables next to each other.

Correspondingly, data points are projected to positions close to the variables that have a higher

influence on them. As one can see in Figure 6.5, there is a comparably large section opposite the

anchor V15 where the test data does not overlap with any of the reference samples. At the same

time, a fraction of the out-of-control samples is located within reference samples, leading to more

challenging detection. Hence, this analysis and the evaluation of the misclassification effect could

facilitate the understanding of SR > FAR and provide insight into CDR.

A possible solution for mitigating the misclassification effect and challenges in choosing a rep-

resentative reference sample for each class (especially with a sparse availability of labels) could
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Class Example

Numeric values What is the size of Argentina?

Description and abstract concepts What is artificial intelligence?

Entities What is the tallest piece on a chessboard?

Human beings Who invented basketball?

Table 6.7: Question examples and respective four categories of the TREC dataset used for training the ANN in

Experiment 2.

be the creation of a merged reference sample. In other words, one could neglect the condition of

having class-specified reference samples and perform the computation of depths with respect to

a grouped reference sample only. However, according to the results presented in Section 6.5.4.1,

such construction of reference samples could eliminate misclassification and sample selection is-

sues but work only for less complex cases. Moreover, the computation time would increase rapidly

for high-dimensional problems (see Section 6.5.5), meaning that the proposed framework of us-

ing individual reference samples retrieved from each class would also be more suitable from this

perspective.

6.5.2 Experiment 2: Multiclass Classification of Questions

For the second experiment, the Text Retrieval Conference (TREC) dataset is used which consists

of fact-based questions divided into six broad semantic categories3 (cf. Voorhees and Harman,

2000). The model was trained with the four classes: Numeric values, Description and abstract

concepts, Entities and Human beings. Examples of such questions can be found in Table 6.7. The

classification task is to assign an incoming question to one of four categories.

The trained neural network contains three hidden layers: a word embedding layer, a Long Short-

Term Memory (LSTM) layer, and a fully connected layer which is used as the embedding genera-

tor of the size 1×8. After that, the output layer returns softmax vector 1×4, where the maximum

value corresponds to the label of the predicted category. It is worth noting that here the word em-

bedding layer is not a part of the proposed monitoring approach but a Natural Language Processing

(NLP) technique that enables the model to associate a numerical vector to every word so that the

distance between any two vectors is related to the semantic meaning of the encrypted words (cf.

Yin and Shen, 2018). To obtain a comprehensive introduction to neural networks for NLP tasks,

publications such as Goldberg (2016) and Nammous and Saeed (2019) are recommended.

In total, 700 data points of each category were used as the training data. After 25 training epochs,

the achieved accuracy is 81.17% on the test dataset that contains 150 unseen samples of each class.

The 60 out-of-control samples were taken from two other semantic categories that were not used

for training, namely Abbreviations and Locations.

6.5.2.1 Monitoring Results

Considering the results of Experiment 2 in Table 6.8, a decreasing SR is given when the size of

reference samples increases. Nevertheless, the SR values remain substantially high for considered

control charts. Although the further increase of reference samples might improve monitoring

3https://cogcomp.seas.upenn.edu/Data/QA/QC/
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Evaluation Size |R| Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

400 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05

400 II In-control SR 0.68 / 0.69 0.64 0.62 0.64 0.65 0.65 0.66

400 II Out-of-control CDR 0.58 / 0.67 0.48 0.50 0.50 0.52 0.53 0.55

500 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Experiment 2 500 II In-control SR 0.45 / 0.60 0.45 0.43 0.44 0.44 0.45 0.46

mmmi ∈ R
8 500 II Out-of-control CDR 0.45 / 0.58 0.43 0.37 0.37 0.40 0.38 0.45

600 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05

600 II In-control SR 0.35 / 0.37 0.34 0.34 0.33 0.32 0.32 0.33

600 II Out-of-control CDR 0.30 / 0.42 0.32 0.30 0.30 0.30 0.30 0.30

Table 6.8: Performance of r control charts (α = 0.05) in Experiment 2 with R being the predicted class. The under-

lined numbers indicate the suggested method based on the trade-off between SR and CDR. The calculation of SD

does not happen due to the computational complexity being O(nk+1).

Evaluation Size |R| Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

400 SR|M 0.86 / 0.87 0.81 0.82 0.84 0.83 0.86 0.86

Experiment 2 400 SR|C 0.63 / 0.65 0.60 0.57 0.60 0.61 0.60 0.61

500 SR|M 0.80 / 0.84 0.79 0.76 0.76 0.76 0.78 0.79

mmmi ∈ R
8 500 SR|C 0.37 / 0.55 0.37 0.35 0.36 0.37 0.37 0.38

600 SR|M 0.69 / 0.72 0.64 0.65 0.61 0.65 0.64 0.64

600 SR|C 0.28 / 0.29 0.26 0.26 0.26 0.25 0.25 0.26

Table 6.9: Summary of signal rates under the condition that the samples were misclassified (SR|M) or correctly

classified (SR|C) in Phase II. The calculation of SD does not happen due to the computational complexity being

O(nk+1).

during the in-control state, it negatively affects the detection of anomalous data. As one can

observe in the case of HDr, the CDR is reduced by 25%, changing from |R|= 400 to |R|= 600.

Overall, one notices that either a paired control chart or another procedure to decide confidently

when the data points are in- or out-of-control is required to improve the performance in Experi-

ment 2. However, to understand what could be the underlying reasons for unsatisfactory results,

the misclassification effect is inspected as well as the in- and out-of-control data are visually com-

pared.

6.5.2.2 Misclassification and Data Diagnostic

There are 113 samples from the test data that were misclassified, and the softmax output serves as

a model’s confidence about its prediction. Looking at the density plots in Figure 6.6, an evident

difference in distributions between correctly classified and misclassified samples in Phase II (in-

control) can be noticed. Remarkably, the scores of out-of-control samples are rather high and

resemble the scores of the in-control samples from Phase II. This behaviour can be explained by

the similarity of the out-of-control data and the reference samples. More precisely, the network is

trained to distinguish the phrases based on features that are identical for both the in-control and

out-of-control samples.

The Radviz shown in Figure 6.7 reveals that this issue is present in this case: the out-of-control

data often overlaps with the reference samples. Moreover, most of the in-control (test data) re-

gions are not covered by the reference samples. However, to answer the question of whether the

high signal rate is partially due to the misclassified samples, conditional sample rates on misclas-

sification (SR|M) and correct prediction (SR|C) are computed, respectively.

As shown in Table 6.9, the additional information about misclassified samples could considerably

improve the SR results (cf. the outcome for |R| = 600 of SR|C). Moreover, one notices that the

majority of the misclassified samples would be flagged as anomalous, with the signal rates declin-
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Figure 6.6: Kernel density estimates of the score distributions in Phase II for the in-control (test data) and out-of-

control samples.
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Figure 6.7: Visualisation of the Reference Samples (RS) {R1, . . . ,R4} with |R| = 400 and the data from Phase II,

in-control part (test data) from Experiment 2. V1, . . . ,V8 define anchors which correspond to neurons that produced

embeddings mmmi ∈ R
8. Density contour plots outline respective classes.
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Evaluation Size |R| Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

50 I In-control FAR 0.04 0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04

50 II In-control SR 0.26 0.00 0.61 0.16 0.16 0.05 0.00 0.05 0.05

50 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

60 I In-control FAR 0.05 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Experiment 3 60 II In-control SR 0.16 0.00 0.50 0.26 0.24 0.16 0.00 0.00 0.00

mmmi ∈ R
3 60 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

70 I In-control FAR 0.04 0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04

70 II In-control SR 0.05 0.00 0.37 0.00 0.05 0.03 0.11 0.11 0.11

70 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6.10: Performance of r control charts (α = 0.05) in Experiment 3 with R being the predicted class. The

underlined numbers indicate the suggested method based on the trade-off between SR and CDR.

ing when the reference sample size grows. Hence, the combination of the proposed monitoring

approach with an additional misclassification detection technique could lead to a more reliable

nonstationarity detection.

6.5.3 Experiment 3: Binary Classification of Sonar Signals

In the third experiment, a binary classification problem of sonar data (Dua and Graff, 2019) is con-

sidered. This dataset summarises sonar signals collected from metal cylinders and cylindrically

shaped rocks (Gorman and Sejnowski, 1988). There are 208 samples in total, comprising 111

metal cylinders and 97 rock returns. Each sample consists of a series of 60 numbers ranging from

0.0 to 1.0, representing a normalised spectral envelope. The task of the classifier is to distinguish

which samples are from scanning a rock and which are from a metal cylinder.

The chosen model is an FNN with the architecture 60 → 30 → 15 → 3 → 1 that comprises four

fully connected layers reducing the complexity 1 × 60 of the input data by first processing it

through the hidden layers that have 30 and 15 neurons. Afterwards, the compressed data repre-

sentation enters the layer with 3 neurons whose output is also used for creating embeddings of

size 1×3 for the monitoring procedure. Then, to obtain the class prediction, the interim output is

transformed from size 1×3 to 1×1. As a binary classification problem is given, only one neuron

in the output layer together with the sigmoid activation function that is centred around 0.5 is used,

returning the probability of the processed sample belonging to Class 2. Thus, if the result of the

output layer is 0.5 or higher, one concludes that the processed sample is a part of Class 2 (rock)

and of Class 1 (metal cylinder) otherwise. Due to the small size of the dataset, only 38 samples

(24 of Class 1 and 14 of Class 2) are allocated to the testing stage which is later used in Phase II

as the in-control data. Consequently, the remaining 85 metal cylinders and 85 rock examples are

taken for training the FNN. Regarding the training, the FNN model was trained for 39 epochs and

achieved 81.58% accuracy on the test data.

To create out-of-control samples, after flattening the input, one estimates the parameters of a beta

distribution for each class (i.e. α̃1, β1 of Class 1, and α̃2, β2 of Class 2). Afterwards, one randomly

samples from a beta distribution with parameters α̃τ = α̃1/α̃2 and βτ = β1/β2, obtaining 30 out-

of-control observations.

6.5.3.1 Monitoring Results

Studying the outcomes of Phase I in Experiment 3 (Table 6.10), one recognises that although

α = 0.05 is chosen, FAR sometimes equals 0.04. This happens due to rounding, thus, FAR =
0.04 for |R| = 50 and |R| = 70 coincides with the expected value. Consequently, the expected
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Figure 6.8: Reference samples (|R| = 70) and out-of-control embeddings from Experiment 3. Blue-coloured points

belong to Class 1, green-coloured to Class 2, and magenta-coloured are out-of-control samples. The size of the points

is proportional to the value of Simplicial depth and the grey-coloured points highlight the data samples that received

SD(mmmt) = 0.

value of FAR is reached for each notion of data depth except Simplicial depth. The reason for

that is the large number of data points in the reference sample with SD(mmmt) = 0. That can be

explained by Simplicial depth assigning zero to every point in the space that lies outside the convex

hull of the sample (Afshani et al., 2016; Francisci et al., 2019), similar to the results in the toy

example, Section 6.4.3. In Figure 6.8, the visualisation of the dispersion of the data and how many

samples obtained SD(mmmt) = 0 is displayed. All out-of-control samples received the predictions of

Class 1, meaning that their depth is determined with respect to the blue point cloud. Overall, the

control charts operate well with |R|= 50 and the symmetric Projection depth, especially with PD2

and PD3. Alternatively, one can choose MD with |R| = 70 because of correctly reached SR and

similarly high CDR.

6.5.4 Additional Examination

In this section, additional results that have not outrun the performance in already discussed settings

but are still relevant for the completeness of the analysis are presented. First, one tests how the

monitoring approach behaves when constructing reference samples in the form of merged classes,

and whether there are significant changes in performance by applying an alternative control chart.

6.5.4.1 Reference Sample in the Form of Merged Classes

In this analytical part, the data in each of the three experiments is monitored by creating the

reference samples without conditioning on the (predicted) class c. That is, the Phase II samples

are compared to a joint embedding distribution from Phase I, being independent of the class labels.

The benefit of this approach is that no predictions are needed, meaning that if the ANN model

provides an incorrect class label, the possible negative effect of misclassification is excluded.



6.5 Empirical Illustration 79

Evaluation Size |R| Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

30000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Experiment 1 30000 II In-control SR 0.15 / 0.20 0.10 0.09 0.08 0.09 0.09 0.09

mmmi ∈ R
16 30000 II Out-of-control CDR 0.19 / 0.24 0.02 0.02 0.01 0.02 0.02 0.02

1600 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Experiment 2 1600 II In-control SR 0.66 / 0.08 0.02 0.00 0.00 0.02 0.08 0.00

mmmi ∈ R
8 1600 II Out-of-control CDR 0.63 / 0.05 0.00 0.00 0.00 0.02 0.02 0.02

140 I In-control FAR 0.05 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Experiment 3 140 II In-control SR 0.08 0.00 0.00 0.03 0.05 0.05 0.08 0.08 0.08

mmmi ∈ R
3 140 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6.11: Performance of r control charts (α = 0.05) in the presented experiments with R being merged classes.

The underlined numbers indicate the suggested method based on the trade-off between SR and CDR. The calculation

of SD occurs for R3 only, as the computational complexity is O(nk+1).

Additionally, the application of merged reference samples implies that if a data point is flagged as

out of control, it would remain out of control compared to the entire reference data.

Reporting one case for each experiment in Table 6.11, one can observe satisfactory performance

in Experiment 3. In Experiments 1 and 2, the results are less convincing during the out-of-control

part. The reason is that the data depth values of reference sample points in a merged case are

considerably lower than in a case of individual classes, leading to a less sensitive detection of

nonstationary samples. On the contrary, the SR values are reduced compared to the case when the

reference sample relates to the predicted class only.

Although the calculation of the data depth with respect to the merged reference sample eliminates

the misclassification problem, for high-dimensional problems in the conducted empirical study,

the detection results of spurious data by using predicted classes on their own are substantially

better. For low-dimensional cases such as Experiment 3, it is recommendable first to examine

the performance of the monitoring based on the merged reference sample of different sizes, and

then, if it is not operating acceptably, to apply the method with the reference samples of predicted

classes.

6.5.4.2 The Q Control Chart (Batch Size > 1)

Similarly to the r control chart, the Q control chart proposed by Liu (1995) is based on ranks of

multivariate observations which are obtained by computing data depth. The test statistic of the Q

control chart is the average of consecutive subsets of rc
· (mmmi), being

Qc
· (mmmi) =

1

b

b
∑

j=1

rc
· (mmmi j)

with the batch size b (Liu, 1995). The interpretation of the ranks in the Q control chart is similar

to the interpretation in the case of the r control chart.

To compute the control limit, the equation

LCL =
(b!α)1/b

b

is used, given that α ≤ 1
b!

(Stoumbos et al., 2001). However, if α > 1
b!

, the LCL has to be computed

numerically by solving the polynomial equation provided by Liu (1995). In general, the process

is considered to be out of control if Qc
· (mmmi)≤ LCL.
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Evaluation Batch size Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

3 I In-control FAR 0.08 / 0.09 0.07 0.08 0.08 0.08 0.08 0.08

Experiment 1 3 II In-control SR 0.58 / 0.59 0.55 0.56 0.56 0.55 0.54 0.55

mmmi ∈ R
16 3 II Out-of-control CDR 0.98 / 0.98 0.98 0.97 0.97 0.98 0.96 0.97

|R|= 3000 5 I In-control FAR 0.10 / 0.13 0.10 0.10 0.11 0.10 0.10 0.11

5 II In-control SR 0.75 / 0.76 0.72 0.73 0.73 0.71 0.71 0.71

5 II Out-of-control CDR 1.00 / 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 I In-control FAR 0.15 / 0.16 0.13 0.11 0.11 0.15 0.14 0.14

Experiment 2 3 II In-control SR 0.73 / 0.75 0.72 0.71 0.72 0.73 0.72 0.72

mmmi ∈ R
8 3 II Out-of-control CDR 0.67 / 0.72 0.62 0.57 0.62 0.67 0.57 0.72

|R|= 400 5 I In-control FAR 0.19 / 0.19 0.17 0.15 0.16 0.20 0.18 0.18

5 II In-control SR 0.74 / 0.77 0.74 0.74 0.74 0.74 0.75 0.74

5 II Out-of-control CDR 0.80 / 0.90 0.80 0.70 0.80 0.80 0.80 0.80

Experiment 3 3 I In-control FAR 0.07 0.00 0.11 0.02 0.02 0.02 0.04 0.04 0.04

mmmi ∈ R
3 3 II In-control SR 0.36 0.00 0.34 0.18 0.18 0.18 0.36 0.36 0.27

|R|= 70 3 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6.12: Performance of Q control charts (LCL = 0.22 for b = 3 and LCL = 0.29 for b = 5) in the presented

experiments with R being the predicted class. The underlined numbers indicate the suggested method based on the

trade-off between SR and CDR. The calculation of SD occurs for R3 only, as the computational complexity is O(nk+1).

To evaluate the performance of Q control charts, those |R| were chosen which achieved the most

satisfactory (trade-off) performance with r control charts. Due to the small size of the dataset in

Experiment 3, The Q control charts are computed with the batch size b = 5 for Experiments 1 and

2 only.

Considering the results in Table 6.12, one notes that (apart from SD) the SR values are excessively

high. The increase can be explained by a substantial change in control limits. Referring to the

previous description, for b = 3, LCL = 0.22 is obtained, and for b = 5, LCL = 0.29. At the

same time, in all possible consolidations, the Q control chart achieves notable results during the

out-of-control period, considerably improving the CDR values in Experiment 2 for Projection

depth. Thus, if a supplementary procedure can be developed for detecting and filtering signals

successfully when the process remains in control, the Q control chart would outperform the r

control chart.

6.5.5 Computation Time

For performing online surveillance, the computation time of the monitoring statistic is of particular

importance. As the most time-consuming part of the developed approach is the derivation of data

depth values, the execution time of different algorithms to obtain the depth of one data point

is studied. To provide a concise summary, one compares running times for the middle sizes of

reference samples, namely |R| = {3000,500,60}, and for the cases displayed in Table 6.11. In

the case of Projection depth, the results of the symmetric type with three applied algorithms are

presented.

Regarding these algorithms to approximate Projection depth, the running times remain similar

when comparing them against each other in every experiment (Figures 6.9, 6.10 and 6.11). In

Figure 6.11, one can see that Simplicial depth requires considerably longer to be computed than

other notions of data depth. Despite the increased complexity of experiments, Mahalanobis depth

is characterised by a stable and low running time. On the contrary, the running time of HDr

increases noticeably with the growing size of reference samples as well as additional dimensions.

To summarise, if the performance of MD is excluded, the computation of data depth in R
16 for one

point with |R|= 3000 would usually take more than 10 seconds. In statistics, such results seem to

be acceptable. However, taking into account the current applications of ANNs, for example, the
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(b) Merged reference samples of size |R|= 30000

Figure 6.9: Distribution of computation time for different data depths in Experiment 1. The order is symmetric

Projection Depth with Coordinate Descent, Nelder-Mead and Refined Random algorithms, Robust Halfspace and

Mahalanobis Depths.

image classification applying a CNN, the time required to process one image is under 0.1 second

(cf. Shi et al., 2022). Thus, one should critically consider the running times for the computation

of data depth, striving for their improvement and guaranteeing the applicability of the proposed

framework to monitor state-of-the-art models based on AI by improving the software for data

depth computation.

6.6 Discussion

This chapter proposes a monitoring procedure designed for ANN applications that applies non-

parametric multivariate control charts based on ranks and data depths. The core idea is to mon-

itor the low-dimensional representation of input data called embeddings that are generated by

ANNs. The proposed monitoring methodology has great potential and often outperforms bench-

mark methods in realistic experiments.

Overall, one notices that the asymmetric Projection depth works most reliably among the exam-

ined depths. The reason for that is twofold: First, it considers the geometry of the points, i.e. their

asymmetric positioning. Second, as one usually aims to diagnose the outlyingness of the points

that are outside of the convex hull, one needs to be able to order them. By obtaining positive depth

values outside the convex hull, one can better recognise which points are anomalous. On the

contrary, the Simplicial or symmetric Projection depths underperform, if many points are placed

outside the convex hull (an issue for SD) or the data is asymmetrically spread (an issue for PD).

Hence, under the trade-off between computation time and monitoring effectiveness, it is advisable

to use the asymmetric Projection depth and compute it with the Nelder-Mead algorithm. In case

the embeddings are scattered symmetrically, symmetric Projection depth can be used instead.
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(b) Merged reference samples of size |R|= 1600

Figure 6.10: Distribution of computation time for different data depths in Experiment 2 on a logarithmic scale. The

order is symmetric Projection Depth with Coordinate Descent, Nelder-Mead and Refined Random algorithms, Robust

Halfspace and Mahalanobis Depths.

3e−04

1e−03

3e−03

1e−02

3e−02

CD NM RR RH SD MD

Data Depth

T
im

e
 i
n
 s

e
c
o
n
d
s

Name

CD

NM

RR

RH

SD

MD

(a) Single class reference samples of size |R|= 60

1e−03

1e−02

1e−01

1e+00

CD NM RR RH SD MD

Data Depth

T
im

e
 i
n
 s

e
c
o
n
d
s

Name

CD

NM

RR

RH

SD

MD

(b) Merged reference samples of size |R|= 140

Figure 6.11: Distribution of computation time for different data depths in Experiment 3 on a logarithmic scale. The

order is symmetric Projection Depth with Coordinate Descent, Nelder-Mead and Refined Random algorithms, Robust

Halfspace, Simplicial and Mahalanobis Depths.
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As soon as a change has been detected, various actions could be implemented. Lu et al. (2018)

introduce the idea of Concept Drift Understanding before its adaptation. They stress that it is vital

to answer how severe and in which data region the concept drift occurred before implementing

further actions. Afterwards, the model can be either adjusted or rebuilt, resulting in a new cycle

of training and validation.





7 Enhanced Network Monitoring with an Automated Inspection Procedure

In the previous three chapters, different types of network monitoring, proposing various ap-

proaches for effective identification of the time points when a significant change took place in

a network (process) were intensively discussed. In this chapter1, the focus is on the stage coming

after a change has been detected, namely the inspection phase. By combining control charts and

advanced machine learning algorithms, an automated and complete network monitoring procedure

is offered in this chapter.

7.1 Main Intent

Many powerful techniques based on statistical inference exist to perform network monitoring.

However, when a change is detected, i.e. the time point when the control chart has identified

a considerable deviation of the process to its target state, the investigation of a possible reason

happens manually. If one considers the surveillance of graph-structured data that can be partic-

ularly voluminous and challenging to process in its raw format, the task of identifying the cause

of the signal and, if applicable, resolving the issue may become extremely time-consuming. An-

other problem arises due to the aggregation of the observations into one sample so that prior to

identifying the reason for a change, one needs to determine which of the observations were truly

anomalous. To improve the actions in the post-monitoring phase, an enhanced application of the

control charts is proposed. In the case of a signal, it is followed by a graph machine learning

algorithm that can operate on graphs to classify the cases and identify the reasons which led to the

out-of-control state.

Depending on a particular application, the inspection happens either on the aggregated data, e.g.

daily observations accumulated to a weekly sample, or on a single observation directly used in the

monitoring. As the former type of data used for test statistics prevails, by starting an inspection

to identify the cause of the change, one first needs to determine which single observations exhibit

anomalous behaviour. Thus, before coming to the methodological part, one begins with a general

discussion of anomaly detection in terms of graphs.

7.2 Anomaly Detection

It is worth mentioning that there is no unique definition of the problem anomaly detection. Akoglu

et al. (2015) use change point detection as a synonym for the anomaly detection problem for dy-

namic graphs. On the contrary, Ranshous et al. (2015), who also provide an extensive methodolog-

ical overview, introduce change point detection as a subcategory of anomaly detection problems.

The reason for the considerably different points of view is that a meaningful definition can only

be established after a context and particular application are specified, otherwise, the interpretation

1This chapter is based on the publication Malinovskaya, A., Otto, P., Peters, T. Statistical Learning for Change Point and

Anomaly Detection in Graphs. In: Steland, A., Tsui, KL. (eds) Artificial Intelligence, Big Data and Data Science in Statistics.

Springer, Cham, (2022). Reproduced with permission from Springer Nature Switzerland AG. Available online: https://

link.springer.com/chapter/10.1007/978-3-031-07155-3_4.
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is ambiguous. Here, under anomaly one understands an abnormal activity being a sudden and sig-

nificant change in the interaction patterns of a network Zhao et al. (2018). Consequently, anomaly

detection defines the task to find those network states that significantly differ from the majority of

the reference states, and, if applicable, to ascertain the type of an anomalous behaviour.

In contrast to the introduced definition of anomalous observation in the form of a whole graph, one

can also define the anomaly detection problem in terms of edges or vertices. In other words, the

aim is to find a subset of nodes/edges such that every element in this subset presents an uncommon

evolution compared to other nodes/edges in the network. Another possible task is to identify

anomalous subgraphs.

Considering recent advancements in the area of machine learning on graphs to detect anomalies,

impressive results were achieved by applying the Graph Convolutional Network (GCN) frame-

work (cf. Zheng et al., 2019; Kumagai et al., 2021; Wang et al., 2021). However, to extract

necessary information and provide substantial results, the neural network needs the graph data to

be constructed as a set of low-dimensional learned continuous vectors (called embeddings) with-

out neglecting the relational structure and corresponding attributes. This task can be fulfilled by

the graph representation learning techniques, which are briefly discussed together with the GCNs

in the following section.

7.3 Graph Representation Learning

Undeniably, hand-engineered graph statistics are useful in analysing graph-structured data in

terms of interpretation and computational costs. However, the manual selection of which fea-

tures should be incorporated into the metrics, and further determination of statistics can be a time-

consuming process. Moreover, this approach is restrictive because neither the selection of features

nor metrics can be adapted through a learning process, which crucially constrains the effective-

ness of machine learning-based algorithms. An alternative that encodes the network structure

compactly and without losing any relevant information is Graph Representation Learning (GRL).

In contrast to conventional methods, where the selection and design of graph statistics are seen as

a preprocessing step, GRL techniques regard the problem of learning embeddings as a machine

learning task. To be more precise, the goal is to learn and optimise a mapping that embeds vertices,

edges or entire (sub)graphs as points in a low-dimensional vector space R
d such that geometric

relationships in this latent space reflect the structure of the initial graph (Hamilton et al., 2017). If

one considers node embedding, the main purpose is to find a projection

fΘ : vi → zzzi ∈ R
d,

where d ≪ |V |, meaning new dimension d is much smaller than the number of vertices in the

graph, zzzi = {z1,z2, . . . ,zd} represents the embedded vector that captures the graph position of node

vi and the structure of its local graph neighbourhood; fΘ is a mapping function parametrised by

Θ. Depending on the embedding method, the incorporation of edge and nodal attributes into the

latent representation zzzi of the node vi is also possible. Afterwards, the learned representation can

be used as input for the main machine learning task, for example, classification.

Related examples are shallow embedding approaches that define the encoder mapping function f

as an embedding lookup. In this case, the set of trainable parameters is optimised directly, meaning

that Θ = ZZZ, with ZZZ ∈ R
d×|V | being a matrix, where each column defines node embeddings zzzi for

each vertex vi. The best-known techniques are either based on matrix factorisation (e.g. Laplacian
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Figure 7.1: An example of a convolutional neural network solving a binary classification task. The last four layers

coincide with the feedforward neural network architecture presented in Figure 2.4. The input to this part of the

network is a long array, which is obtained by flattening the tensor consisting of final feature maps.

eigenmaps) or random-walk statistics (e.g. DeepWalk and node2vec) (Hamilton et al., 2017).

However, shallow embedding approaches have some considerable limitations. The first issue is

that there is a unique embedding for each node in the graph, meaning that no parameters are

shared across vertices resulting in the absence of generalisation. Another problem is the ability

to generate embeddings only for nodes that were present during the learning process. That means

the graph structure should remain unchanged for the method to work correctly, which is highly

unrealistic in many applications. To overcome these limitations, an alternative framework was

proposed, namely graph convolutional networks that is presented in the subsequent section.

Further encoding techniques which do not only focus on node representation together with the

discussion of recent challenges in the GRL can be found in Hamilton et al. (2017), Cai et al.

(2018), Chen et al. (2020), Gogoglou et al. (2020) and Hamilton (2020).

7.4 Graph Convolutional Networks

To facilitate the understanding of GCNs, a detailed explanation of how a conventional Convo-

lutional Neural Network (CNN) works, using the most popular data format they are applied on,

namely images, is provided below.

7.4.1 Convolutional Neural Networks

Consider a binary classification of the letters into vowels and consonants. Figure 7.1 provides a

schematic illustration of a CNN for this machine learning task. First of all, the input is an image

displaying the letter A. To start extracting the necessary features for learning whether this letter

is a vowel or a consonant, one applies a convolutional layer that is represented by four filters

(also known as feature detectors or kernels) with different weights of size 5× 5. These filters

are applied sequentially to the image, sliding over all pixels and performing convolution of the
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filter weights and respective neighbouring pixels. After the introduction of nonlinearity by using

a suitable activation function which is applied after each layer in the neural network, the interim

output consists of four feature maps combined into a single four-dimensional representation. As

one can notice, the width and height of the initial image do not coincide with the size of the new

output. The reason is the standard application of a pooling operation after the convolutional layer

that reduces the size of the produced feature maps, accelerating the data processing and affirming

some of the detected features. Next, another convolutional layer comes, this time with five filters

of size 3×3×4. The convolution is performed in the same way as in the previous layer, taking into

consideration that the kernel size must be adjusted to the size of the previously produced interim

output. As a result, one obtains five feature maps connected to a single tensor. Subsequently, the

convolutional operations are followed by the usage of an activation function and pooling operation

(these steps are not represented in Figure 7.1 due to the space limitation).

Now feature extraction is completed, and the classification step comes. To proceed, the final

feature maps should have a one-dimensional form due to the subsequent application of fully con-

nected layers. To obtain the desired dimension, one applies the operation called flatten, reshaping

the obtained tensor to an array (the yellow neurons in Figure 7.1). The motivation for applying

exactly this structure for determining the class label is the global consideration of the extracted

features: The information flow between the fully connected neurons enables the mixing of sig-

nals. In contrast, the convolutional layers are particularly useful for data preprocessing due to their

focus on the regions of adjacent pixels. Reaching the output layer of the CNN in Figure 7.1, as

one has a binary classification, only one neuron (coloured blue) is provided, which would return

a class label, meaning the letter A is either a vowel or a consonant.

Coming back to the network structure as an input, one needs to exchange the image with a graph.

Consequently, instead of pixels, one considers nodes and their local neighbourhoods. However,

a graph is an example of non-Euclidean data (Asif et al., 2021), therefore, the CNN cannot be

directly applied to network data. Thus, the field geometric deep learning has emerged, whose

aim is to develop deep learning models for irregular data structures (Bronstein et al., 2017). The

pioneer framework is known as Graph Neural Networks (GNNs) which establishes the idea of

including the neighbourhood information of a node into its latent representation, applying neural

message passing form (Scarselli et al., 2008). The earliest GNN variations were limited in cov-

ering edge features and were also restricted in the choice of trainable parameters. Consequently,

many advanced models arose, one of the examples being GCNs (Kipf and Welling, 2017).

Both GNNs and GCNs belong to a more general category which is message passing neural net-

works (Gilmer et al., 2017). For reading about other neural network architectures which operate

on graphs, Wu et al. (2020) is suggested as a helpful reference.

7.4.2 Application Phases of Graph Convolutional Networks

The GCN framework generalises the concept of CNNs which is especially popular in image pro-

cessing, as shown in the previous section. The application of GCNs is structured into two main

phases: the message passing phase and the readout phase (Zhou et al., 2020). The goal of the first

phase is to propagate the information across nodes in order to create a new representation of the

whole graph. In the readout phase, the obtained graph representation is used to solve a particular

task such as classification.

In the first phase, consider k = 0, . . . ,K to be the number of message passing iterations. In fact,

K equals the number of graph convolutional layers in the neural network. Next, one defines a
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Figure 7.2: An example of the procedure to generate the embedding zzz1 of the vertex v1 during the message passing

phase. The attributes of node vi are specified by xxxi. The sets N(3), N(4) and N(7) define the neighbourhood of

the nodes v3, v4 and v7 respectively. The δ (k) functions correspond to the message aggregation functions, the φ (k)

functions are the message creation functions and the γ(k) define the update functions.

set N(i) to contain the neighbouring nodes of vi. In contrast to an image input as presented in

Figure 7.1 where each pixel has a constant number of neighbouring pixels (see the blue areas),

the size of the sets N(i) may vary for each node as shown in Figure 7.2. Similar to the feature

map as a latent representation of an image, in the GCN one has a collection of feature vectors

HHH(k) ∈R
d×|V |, where hhh

(k)
i defines a d-dimensional hidden embedding of node vi. At each iteration

k, hhh
(k)
i incorporates the aggregated information (called message) from N(i). As it can be seen

in Figure 7.2, initially at k = 0, hhh
(0)
i = xxxi that represents the input features of the node vi. For

example, considering node v1 in Figure 7.2, one iterates the aggregation and updates process of

the node embedding for k = 2, so that the final learned representation is zzz1 = hhh
(2)
1 , which includes

the information about the stage-2 neighbourhood.

To summarise, one has a step that creates a message for a vertex vi based on the knowledge about

N(i)

mmmk
i = δ k

(

φ k(hhhk−1
i ,hhhk−1

j ,llli, j) : j ∈ N(i)
)

,

where δ k defines a differentiable, permutation invariant function of the k-th convolutional layer,

e.g. sum or average, and φ (k) is a differentiable function that creates messages between the vertex i

and the nodes in N(i), incorporating the edge features llli, j. For instance, this could be a multi-layer

perceptron or a complex filter function defined by Gaussian mixture models. In Figure 7.2, these

functions are represented by grey boxes. Similar to a filter in the CNN displayed in Figure 7.1,

the weights of the functions φ (k) stay unchanged for the whole input in the layer k. The message

passing is followed by the update step

hhhk
i = γk(hhhk−1

i ,mmmk
i ),
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where γ specifies another differentiable function – the activation function such as Rectified Linear

Unit (ReLU).

In the readout phase, one aggregates node features from the final iteration to obtain the entire

graph representation hhhG

hhhG = ζ (hhhK
i ,vi ∈V ),

where function ζ should satisfy the same conditions as δ , e.g. being invariant to graph isomor-

phism. An example could be a particular pooling operation. This representation is then used for

the final task, for instance, graph classification.

Depending on the types of graph convolutions (the creation and propagation of messages), one can

categorise GCN into spectral-based and spatial-based models. The GCNs defined in the spectral

domain (e.g. the Chebyshev Spectral GCN) are based on the graph Fourier transform, starting

with the construction of the frequency filtering, whereas the spatial domain methods are specified

directly on the graph, operating on groups of spatially close neighbours (Zhang et al., 2019). In the

following section, a spatial-based GCN with the Gaussian mixture model convolutional operator

is applied.

7.5 Potential Application

As motivation of where the proposed approach could be particularly helpful, system-relevant net-

works are considered. The failure of those networks could lead to irreparable harm. An example

could be a network, where particular nodes represent ambulance or fire and rescue stations. To

guarantee proper functionality, these services are obliged to satisfy a strict policy regarding the

time limit for arriving at the accident epicentre. For instance, in emergency medical cases, the

ambulance must reach a patient without exceeding the legally prescribed response time.

The fundamental part of the maximum allowed response time is appointed to the travelling time

and in some places is not allowed to exceed 12 minutes in 95% of cases. The monitoring of

compliance with this rule can be performed by using the control chart for quantile function values

(Grimshaw and Alt, 1997). One possibility is to create a test statistic based on the 0.95 and 0.97

quantiles so that the monitoring procedure corresponds to an early warning system and possible

deviation towards the maximum limit is detected quicker. However, in the case of a signal, it

remains unclear what led to its occurrence unless one inspects the network state. One of the sup-

portive methods in this task would be a GCN which can classify the network states in predefined

categories, providing the first insight into a possible issue. This motivation guides the following

application demonstrated on the simulated graph-structured data.

7.5.1 Data Simulation

Consider a simplified road network shown in Figure 7.3 whose topology is based on an existing

city map. It can be graphically represented by |V |= 18 vertices and |E|= 25 edges. Various nodal

and edge attributes are specified which are described by XXXV and LLLE , respectively. In particular,

xxxi defines attributes of node vi and llli, j contains attributes of edge ei, j. To differentiate between

an ambulance node and a patient region, the vertex attribute Role is introduced. One assumes

that the ambulance station can serve only one patient at once and that two fixed vertices in total

define available ambulance stations. Also, which patient needs help from an ambulance is decided

randomly. Thus, another vertex attribute Involvement in an accident is included that describes

whether an ambulance station provides help (in this case, the value is set to 1) or is free (the value
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Figure 7.3: An example of a small road network which is derived from an existing city map available on Stamen

Maps with two arbitrarily placed ambulance stations (left) and its undirected graph representation (right). Different

colours of edges replicate the travelling time along the road, where a darker colour means longer travelling time.

The red nodes define ambulance stations.

equals 0). Considering the patient nodes, as soon as a patient is involved in an accident, the value

is set to 1. It remains 0 if no help is needed or obtained from the ambulance service. Both nodal

attributes are contained in XXXV ∈ R
2 and can be found in Table 7.1.

Regarding the edges, one models two characteristics LLLE ∈ R
2 that reflect distinct types of roads.

The first continuous attribute defines travelling time in minutes LE
1 (1, 2, 3 and 5 minutes are

selected to be the expected values for passing respective roads), which is generated by applying

lognormal distribution with different µ and σ . The selected values of µ and σ parameters dis-

played in Table 7.1 reflect the target state of the network. The second attribute LE
2 defines the level

of construction works on the roads. Here, the in-control state is dominated by the attribute values

0 or 1, which means no or minor roadworks are observed.

7.5.1.1 Generation of the Response Time Data

For monitoring the travelling time from the ambulance station to the patients, some assumptions

considering the simulation of the response time data are made. Daily, as soon as there is a patient

call with the need for help, the travelling time of the ambulance which is closer to a patient is

registered together with the current network situation. Sometimes, the number of accidents can be

higher than one at the same time, so the network situation is captured once in this case. However, if

the network is in control, the maximum number of simultaneous accidents equals two, otherwise,

there exists a personnel shortage. One assumes that the ambulance follows the most efficient route,

being the shortest path in terms of travelling time between the ambulance station and the patient.

For its calculation, Dijkstra’s algorithm is applied.

By the end of the day, the recorded response times are collected so that the 95 % and 97 %

quantiles can be derived for defining the test statistic. If the test statistic exceeds the control

limit, the collected network data isprovided to the trained GCN that classifies the scenes into four

different groups: a stable condition of the road network (label 0), an unstable condition due to the
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Type Attribute Value

Edge
Travelling time

(in minutes)

E(1) ∼ F (0.1,0.052)
E(2) ∼ F (0.7,0.052)
E(3) ∼ F (1.1,0.052)
E(5) ∼ F (1.6,0.052)

with F (·) = Lognormal(µ,σ2)

Level of road blocking

due to construction work

Free: 0

Low: 1

Middle: 2

High: 3

Node Role
0: Patient

1: Ambulance

Involvement in an accident
0: No involvement

1: Help is provided, obtained or needed

Table 7.1: Edge and nodal attributes.

manpower shortage (label 1), an unstable condition due to the construction works (label 2) and

an unstable condition due to the traffic jams (label 3). It is important to include the class label

0 graphs which dominate in the definition of the in-control state for the identification of possible

false alarms. To proceed with the application of the control chart itself, first, the explanation about

how different label groups are designed is given.

7.5.1.2 Road conditions

To discuss the four condition classes, one should concentrate on the problem from the angle of

what the neural network should learn in terms of the main differences between the specified sce-

narios. Considering the reliable state, the neural network needs to distinguish between the prob-

lems on the roads, which affect the travelling time so that it potentially leads to the out-of-control

case, and which do not, as the patient was still reached on time. It means, despite the obstacles on

the roads that can be modelled by increased values of edge attributes, each time the patient was

reached by ambulance in or under 12 minutes (simply because the route to the patient was not

affected considerably), the graph obtains the label 0.

The class with the label 1 defines the problem of manpower shortage, meaning the reason for

longer travelling times is due to the imbalance in the capacity of the ambulance service and the

number of patients who need help. In this case, a higher number of patients is generated, i.e. more

nodes with Role = 0 are involved in an accident ( XV
2 = 1). As soon as both ambulance stations

provide help and some further patients are not treated yet, the travelling time to these nodes is

calculated as E(LE
1 ) ·2 ·2, where E(LE

1 ) defines the expected value of the edge feature Travelling

time multiplied with the number of roads to pass on average and the need to travel first to the

ambulance station and then to the patient. In this case, the network is out of control due to the

considerably increased travelling time to the third and further patients.

Creating some unreliable situations on roads due to some construction works (label 2), a particular

group of roads which come from one or several travelling time distributions is selected and higher

values of the second edge attribute LE
2 are assigned to these roads. Thus, the µ and σ parameters

are changed accordingly, so that the higher attribute value corresponds to a longer travelling time

along the road.
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Figure 7.4: The schematic architecture of the applied GCN. Each block represents a single layer where the first stage

(blue blocks) contains graph convolutional layers with layer normalisations for learning the feature representation

and the second stage (yellow, orange and green blocks) consists of dense layers for classification.

For modelling the traffic jam (label 3), LE
2 is set low (0 or 1), and some values describing the trav-

elling time of specific roads are generated from a different distribution that implies their increase.

The examples from groups with labels 2 and 3 do not necessarily lead to an out-of-control state if

the patients are still reached under the critical time prescription.

After defining the network composition and specifying possible in- and out-of-control scenarios,

one can collect the quantile observations for the calibration of the control chart and the graph

representations of different classes in order to train the neural network.

7.5.2 Training of the Neural Network

In this simulation study, one is interested in the classification of collected graphs that belong to a

change point. The goal is to assign a given graph to one of the predefined categories by learning the

feature representation from the provided training data which contains class labels. Consequently,

one has to define the GCN architecture so that it can solve the specified task. Also, the graph

convolutional operator should be capable of integrating the node, as well as edge attributes into

the message passing process because they encompass valuable information about the network’s

condition.

Figure 7.4 presents the architecture of the applied GCN. The first three graph convolutional lay-

ers, each encoding the input in a feature vector of size 18× 10, perform three propagation steps

and effectively convolve the stage-3 neighbourhood of every node. The Gaussian mixture model

convolutional operator described in Monti et al. (2017) has been chosen which is implemented in

the programming framework provided by Fey and Lenssen (2019). Each convolutional layer is

followed by the ReLU activation function. Afterwards, the dropout operation is applied, which
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randomly sets the processed input units to 0 with a specified frequency ξ (here ξ = 25%) during

the training time, preventing the model from overfitting, i.e. learning from the training dataset

without its generalisation. Before the convolution begins, the inputs across the features are nor-

malised; this technique is known as layer normalisation (cf. Ba et al., 2016).

After the message passing phase, a readout layer that is defined by a global mean pooling operation

transforms the latent vertex representations to a graph representation as a fixed-size vector. Here,

the interim output is averaged across each hidden node dimension so that the graph-level output

size is 1× 10. Next, two fully connected layers are attached to increase the ability to learn a

complex function and solve the classification task. Consequently, the second layer predicts the

final class probability distribution of size 1×4 followed by the softmax activation function. The

ReLU activation function cannot be applied here as it provides continuous output in the range

[0;∞]. In the final stage, the output needs to be in the finite range [0;1] for interpreting its results

as probabilities, with the highest value corresponding to the predicted class.

After defining the architecture of the GCN, one can start with training or fitting the neural network.

This procedure involves the usage of a training dataset to update the model parameters (weights

and biases) so that one obtains a reliable mapping between the input (a graph) and the output (a

class label). For the training dataset, 2500 graphs are generated. It is important to avoid class

imbalance during the training process, therefore, each label is represented by the same number

of examples. Another vital part of the training process is the loss function. It calculates the

difference between the computed output from the input data (this process is known as forward

pass) and the value provided as ground truth. Here, the negative log-likelihood loss is chosen,

which is appropriate for a multiclass classification problem. It defines the objective function that

is minimised while updating the model parameters.

The results that are provided by the loss function are applied in the optimisation step of the

parameters, which are based on gradient computation (known as backpropagation or backward

pass). The negative log-likelihood is minimised using the Adaptive Moment Estimation (known

as Adam) function with a learning rate of 10−3 (Kingma and Ba, 2014).

The execution of the backward and forward pass together defines one iteration. During one itera-

tion, usually, a subset of the dataset known as a mini-batch is passed. In case one decides to pass

all data at once, it is called batch. Here, one trains the neural network using the mini-batch with

size 16, i.e. in every iteration, 16 graphs are processed together. As soon as the entire dataset is

passed, one epoch is completed.

As a performance metric that supports the selection of the best model, one computes the weighted

F-score after each epoch. Figure 7.5 (left side) illustrates the training and validation history of the

applied GCN. To test how well the network generalises to unseen data, one applies the holdout

validation method. The validation set, which contains more complex samples, i.e. new examples

which belong to the classes but are not included in the training dataset, was designed with a size

of 800 graphs.

In order not to overtrain the network, one uses early stopping after the 100-th epoch is reached

with respect to the F-score improvement of the validation dataset, which terminates the training

process if the value has not increased within ten epochs. The optimal model was obtained at epoch

101 with 93.4% and 87.5% being the weighted F-score of the training and the validation dataset,

respectively. However, to see whether the model functions correctly, one needs to test it on a new

dataset coming from the monitoring procedure.
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Figure 7.5: The training progress (left) shown on the training (blue curves) and validation sets (green curves). The

confusion matrix (right) presents the performance of the trained GCN in Phase II. The numbers on the diagonal define

the proportions of correctly classified examples (compared to the size of the complete dataset from Phase II), and the

off-diagonal entries correspond to the proportions of the misclassified graphs.

7.5.3 Monitoring and Inspection

In this section, one combines the implementation of a multivariate control chart together with

testing the trained GCN. In Phase I, the parameters of the control chart are computed, and in

Phase II the monitoring as well as inspection of the detected changes in the road network are

performed.

7.5.3.1 Control Chart for Quantile Function Values

In the simulation study, a multivariate control chart for quantile function values is applied. To be

precise, the control chart introduced by Grimshaw and Alt (1997) is considered. Other examples

of control charts that involve the application of quantile function and recommendations about

the chart’s calibration can be found in Kanji and Arif (2000), Ning and Wu (2011), Park et al.

(2020) and Hwang (2021). To estimate quantile function values of a random variable at the time

point t, one needs to obtain a sample of respective observations. In other words, the choice of a

control chart for quantile function values indicates that outcomes from a specified period of the

random variable are aggregated at each time stamp. In this case, one is interested in the response

time of ambulance service, meaning one derives sample quantile function values exactly from this

quantity. Although only one process characteristic is employed, the control chart is a multivariate

chart due to the specification of two quantile values (i.e. c = 2) for the calculation of the test

statistic in this application.

To calculate daily 95% and 97% quantile values, one randomly simulates between 10 and 100

accidents which are repeatedly assigned to different patients. Next, the shortest path between

an available ambulance station and the selected patient is found and the travelling time is saved.
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Figure 7.6: The control chart for quantile function values on a logarithmic scale. The horizontal red line corresponds

to the control limit. The green areas are designed by the cases with the label 0, the dark orange by the label 1, followed

by the labels 2 and 3. The incorporation of graphs with different properties such as construction works (triangular

symbols) or traffic jams (orange-coloured edges) defines the availability of additional information to understand the

reason for the detected change point.

Using the control chart presented in Grimshaw and Alt (1997), the test statistic is defined as

follows

at = (Q̂QQt −QQQ0)
′
ΣΣΣ
−1
0 (Q̂QQt −QQQ0),

where Q̂QQt =
(

Q̂0.95,t ,Q̂0.97,t

)′
and the length of Q̂QQt is denoted by c. In Phase I, the expected value

QQQ0 is estimated by the empirical mean and ΣΣΣ0 by the sample covariance matrix with 2500 in-

control samples. For a sufficiently large number of samples, at follows the χ2 distribution with

c degrees of freedom, if the sample at time point t corresponds to the specified in-control state.

Hence, the control limit can be defined by χ2
α(c), selecting α with respect to the in-control ARL0

using α = 1/ARL0. Here, ARL0 = 1000 is chosen, therefore, χ2
0.001(2) = 13.816.

7.5.3.2 Results

For Phase II, one defines the length of the monitoring period to be 100 days, where the network

in the first 30 and the last 10 days is considered to be in control. The out-of-control period is

designed in the remaining days, where the process is exposed to the personnel shortage (10 days),

excessive construction works (30 days) and an increase in traffic jams (20 days). After simulating

the cases and calculating the quantiles, one obtains the control chart presented in Figure 7.6. In

terms of potential false signals, there are several points that are close to the control limit. The

possible reason may be the high variance in the in-control data. One can also notice that not all

the test statistics show the out-of-control state in the period when the network was exposed to an

increased number of traffic jams. However, they do not define missing signals; as it was mentioned

in Section 7.5.1.2, if the ambulance services were still able to reach the patients within the allowed

time, then no out-of-control state is given.
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Normally, one would apply the neural network only in the out-of-control state to gain insight into

the cause. Nevertheless, the primary aim here is to evaluate the performance of the trained GCN

to classify provided graph observations in general. Hence, a test dataset using the data from Phase

II displayed in Figure 7.6 is created, i.e. from the 100 generated days that include both in-control

and out-of-control periods and examples from each of the four classes. As one can observe in

Figure 7.5 (right side), the GCN can almost flawlessly identify classes 1, 2 and 3. However, class

0 seems to be not well learned, possibly due to a lack of clarity in its representation. Overall, the

model achieves a weighted F-score of 82.9% being an encouraging result.

7.6 Discussion

This chapter uncovers the possibility of bringing together statistical process monitoring and deep

learning algorithms to monitor efficiently and profoundly graph-structured data. It is a natural

question to consider whether one could expand the use of algorithms such as GCNs to encompass

the whole monitoring procedure, omitting control charts altogether. Although an appealing idea,

the complexity of the model required for real-world data, combined with the amount of train-

ing time necessary, would severely limit the applicability of this approach. Applying a hybrid

method allows taking advantage of the efficiency of classical techniques while using modern ma-

chine learning algorithms in order to specify more subtle network characteristics, which normally

require human-lead scrutiny to determine.

Although this chapter was presented from the perspective of monitoring and inspecting graph-

structured data, the proposed framework is equally applicable for monitoring ANN applications

described in Chapter 6. Samples from the data stream that were determined as being anomalous

could be passed through a suitable neural network model designed to classify the cause of the

detected change.
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The development of monitoring methods that operate on networks is only a stepping stone on the

path toward a significant expansion in gaining insight from available big data and in understand-

ing better our environment. Besides the topic of how to unify statistics and network science for

offering progressive monitoring frameworks, there are many other fundamental open questions

in this area from the statistical perspective. How to represent the graph data and convolve the

information in a unified form, how to identify a suitable modelling approach to a specific network

problem, when to yield machine learning methods for assisting the change point detection: These

and many other challenges are yet to be conquered.

This thesis is concerned with bringing together network theory and statistical process monitoring

to create enhanced frameworks for network surveillance. Before anything else, it is vital to gain an

initial sense of the context in which the network of interest arises, so that an appropriate statistical

foundation for its analysis could emerge. Here, all technical chapters are unified by the idea of first

compactly representing the considered network-related process either by modelling or applying

other dimensionality reduction techniques and then proceeding with its monitoring using control

charts. Overall, choosing a particular control chart depends on the specific problem, requiring a

compromise between the number of signals in Phase II (in-control part) and correctly detected

out-of-control samples. As soon as one concludes what is important, e.g. computation time or

robustness, the proposed monitoring approaches can be customised to satisfactorily support any

network-related applications.

With respect to monitoring networks as graph-structured data, there are several future research

directions that are relevant for both fixed and random types of network monitoring. First of all,

the discovery of scalable monitoring methods or ways to scale recently proposed approaches is

vital. As it can be derived from the empirical illustrations in Chapters 4 and 5, the currently

suitable sizes of networks in presented monitoring frameworks vary from small to medium. It

would be challenging to perform real-time surveillance of larger networks. Another crucial point

is the time scale: In this thesis, only the observations corresponding to discrete time stamps are

considered. However, a realistic network system evolves continuously, so that the inspection of

when this aspect begins playing a significant role in the quality of monitoring is decisive.

Regarding the design of control charts, a possible extension is to create a monitoring process

when the values of the variance-covariance matrix can vary between the in-control and out-of-

control states during the application of multivariate parametric control charts as used in Chapter

4. Whether this factor would beneficially enrich the surveillance remains open for future research.

Moreover, further development of adaptive control charts as presented in Section 4.4 for both

random and fixed network monitoring is interesting as they could remarkably improve the perfor-

mance of the change detection (cf. Sparks and Wilson, 2019).

Having a network where the number of vertices differs over time, the current TERGM framework

would model it by either removing or incorporating particular nodes as structural zeroes. However,

the development of alternative solutions to address this issue (for instance, Krivitsky et al. (2011)

introduce an offset term for the ERGM) as well as the expansion of the presented approach for

monitoring the node composition, is subject to future research.
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As an empirical illustration in Section 5.5, monitoring of bilateral electricity flows across Europe

is presented, where a static network structure that fits well with the considered process is selected.

However, thinking of potential processes with a changing underlying structure over time, it is

important to determine whether the monitoring framework would experience substantial changes

in terms of re-estimating the parameters in Phase I when some nodes or edges disappear with

time. Moreover, the effectiveness of the proposed monitoring procedure strongly relies on the

assumption of the GNARX model being suitable to the considered data. Thus, in case the data

cannot be well represented by the GNARX model, i.e. the count data are given, an alternative

modelling approach or an extension to the currently existing model is required.

Another potential aspect that could benefit the monitoring field is the usage of advanced network

representations. An alternative way of seeing a connection within a network demands extensive

study of its benefit for monitoring complex, especially technical systems. For example, multi-

dimensional networks, where a network is created by multiple layers with entities being inter-

and intraconnected, or k-networks (an edge running not between 2 but between k entities) could

serve as useful construction mechanisms. However, for developing reliable and efficient statistical

monitoring approaches for technical systems, stronger cooperation and effective communication

between different scientific communities is required. Currently, there is considerable potential for

improvement in this regard (cf. Stevens et al., 2021a).

Coming to the monitoring of artificial neural networks, for some applications, which process

autocorrelated data streams, an alternative definition of a (rank-based) test statistic with temporal

dependency could be beneficial. Moreover, the examination of the reference samples, especially

the influence of their size and the construction method, has shown that a bigger reference sample

is not automatically related to a better detection capability. In particular, there are open questions

about attaining a reliable reference sample. It is advisable to research in more detail how the

statistical process monitoring techniques such as the multivariate mean-rank chart (Bell et al.,

2014), could support the analysis of Phase I data. In addition, it is subject to future research when

the reference sample should be updated or continually augmented with recent observations while

preventing contamination with the out-of-control data.

It could be shown that the proposed approach in Section 6.3 would achieve a better performance

if additional misclassification information was available. In general, understanding when a data

point has obtained a wrong prediction is indispensable and requires an additional method to be

developed that could be later combined with the designed monitoring procedure. Moreover, one

could investigate whether subdividing the data stream in moving windows would enhance the

monitoring performance.

In the presented experiments in Section 6.5, the data points of the training and the test datasets are

chosen following a convention by randomly dividing the dataset. In the future, it is recommend-

able to examine whether an optimal splitting of data into training and testing which preserves

distributional similarity improves the performance of models based on artificial intelligence as

well as leads to more reliable monitoring (cf. Vakayil and Joseph, 2022). Additionally, the field of

data splitting and data compression, i.e. how to find a trade-off between reliable but fast training

and a well-chosen training set that uses only a fraction of the initial dataset, is relevant for future

research.

During the entire Chapters 6 and 7 well-balanced classification problems are considered. However,

class imbalance is a frequent challenge in training ANNs and needs to be considered in future

research (cf. Ghazikhani et al., 2013). Furthermore, whether the proposed methodology could be

applied to monitoring semi-supervised or unsupervised learning models remains open. Despite
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the challenges in designing a universal monitoring scheme for AI-based approaches, extending

the presented framework to other AI algorithms seems to be a promising field. Additionally, there

are different types of concept drift or nonstationarity (cf. Hu et al., 2020), meaning that further

development of methods and their comparison is of practical importance.

The extension introduced in Chapter 7 devotes attention to the development of a monitoring proce-

dure that incorporates the stage of automatically detecting the truly anomalous observations in the

aggregated data samples and the identification of a cause that led to a signal. Currently, these both

stages are usually researched separately, but the scientific direction of developing a unified method

for change identification that combines change detection and change inspection steps suggests it

to be worth investigating as an emerging research area.

Concluding the thesis, it is worth making a statement related to the discussion about the coexis-

tence of statistics and machine learning methods. This thesis is based on the strong belief that

a better way to understand the relationship between both frameworks is that machine learning is

the logical next step in response to the growing volume of data. Thus, it is beneficial to see the

successes in artificial intelligence applications not as an attempt to replace the traditional statisti-

cal methods but as a direction towards their enhancement, making statistics even more powerful.

As presented in Chapter 6, statistical process monitoring can also enhance artificial intelligence

applications by guaranteeing the reliability of their results but in turn they offer an efficient in-

spection procedure as a supplement to the actual monitoring as introduced in Chapter 7. Hence,

continuing to develop approaches that use the synergy effects from both frameworks seems to be

the solution for creating meaningful and powerful innovations for statistical process monitoring

of networks and beyond.
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Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A., 2014. A survey on concept drift adaptation. ACM

computing surveys (CSUR) 46 (4), pp. 1–37.

Gao, X., Pishdad-Bozorgi, P., Shelden, D. R., Hu, Y., 2019. Machine learning applications in facility life-cycle cost

analysis: A review. Computing in Civil Engineering 2019: Smart Cities, Sustainability, and Resilience, pp. 267–

274.

Garcia, K. D., Poel, M., Kok, J. N., de Carvalho, A. C., 2019. Online clustering for novelty detection and concept

drift in data streams. In: EPIA Conference on Artificial Intelligence. Springer, pp. 448–459.

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R.,

2023. A survey of uncertainty in deep neural networks. Artificial Intelligence Review 56 (Suppl 1), pp. 1513–1589.

Gemaque, R. N., Costa, A. F. J., Giusti, R., Dos Santos, E. M., 2020. An overview of unsupervised drift detection

methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 10 (6).

Ghazikhani, A., Monsefi, R., Yazdi, H. S., 2013. Ensemble of online neural networks for non-stationary and imbal-

anced data streams. Neurocomputing 122, pp. 535–544.

Ghosh, A. K., Chaudhuri, P., Sengupta, D., 2006. Classification Using Kernel Density Estimates: Multiscale Analysis

and Visualization. Technometrics 48 (1), pp. 120–132.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., Dahl, G. E., 2017. Neural message passing for quantum

chemistry. International Conference on Machine Learning.

Gogoglou, A., Bruss, C. B., Nguyen, B., Sarshogh, R., Hines, K. E., 2020. Quantifying Challenges in the Applica-

tion of Graph Representation Learning. In: 2020 19th IEEE International Conference on Machine Learning and

Applications (ICMLA). IEEE, pp. 1519–1526.

Goldberg, Y., 2016. A primer on neural network models for natural language processing. Journal of Artificial Intelli-

gence Research 57, pp. 345–420.



Bibliography 111

Goldstein, M., Uchida, S., 2016. A comparative evaluation of unsupervised anomaly detection algorithms for multi-

variate data. PloS one 11 (4).

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning. MIT Press.

Gorman, R. P., Sejnowski, T. J., 1988. Analysis of hidden units in a layered network trained to classify sonar targets.

Neural networks 1 (1), pp. 75–89.

Grennan, K. S., Chen, C., Gershon, E. S., Liu, C., 2014. Molecular network analysis enhances understanding of the

biology of mental disorders. Bioessays 36 (6), pp. 606–616.

Grimshaw, S. D., Alt, F. B., 1997. Control Charts for Quantile Function Values. Journal of Quality Technology 29 (1),

pp. 1–7.

Grundy, T. D., 2021. On Aspects of Changepoint Analysis Motivated by Industrial Applications. Lancaster University

(United Kingdom).

Guttormsson, S. E., Marks, R., El-Sharkawi, M., Kerszenbaum, I., 1999. Elliptical novelty grouping for on-line

short-turn detection of excited running rotors. IEEE Transactions on Energy Conversion 14 (1), pp. 16–22.

Hamilton, W. L., 2020. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning 14 (3), pp. 1–159.

Hamilton, W. L., Ying, R., Leskovec, J., 2017. Representation learning on graphs: Methods and applications. arXiv

preprint: 1709.05584.

Handcock, M. S., 2003. Assessing degeneracy in statistical models of social networks. Working Paper No. 39, Center

for Statistics and the Social Sciences, University of Washington, Seattle.

Hanneke, S., Fu, W., Xing, E. P., 2010. Discrete temporal models of social networks. Electronic Journal of Statistics

4, pp. 585–605.

Haque, A., Khan, L., Baron, M., Thuraisingham, B., Aggarwal, C., 2016. Efficient handling of concept drift and

concept evolution over stream data. In: IEEE 32nd International Conference on Data Engineering (ICDE). IEEE,

pp. 481–492.

He, R., Zheng, T., 2015. GLMLE: graph-limit enabled fast computation for fitting exponential random graph models

to large social networks. Social Network Analysis and Mining 5, pp. 1–19.

Heard, N. A., Weston, D. J., Platanioti, K., Hand, D. J., 2010. Bayesian anomaly detection methods for social net-

works. The Annals of Applied Statistics 4 (2), pp. 645–662.

Heipke, C., Rottensteiner, F., 2020. Deep learning for geometric and semantic tasks in photogrammetry and remote

sensing. Geo-spatial Information Science 23 (1), pp. 10–19.

Hendrycks, D., Gimpel, K., 2016. A baseline for detecting misclassified and out-of-distribution examples in neural

networks. arXiv preprint: 1610.02136.

Hermans, M., Schrauwen, B., 2013. Training and analysing deep recurrent neural networks. Advances in neural

information processing systems 26, pp. 190–198.

Hoffman, P., Grinstein, G., Pinkney, D., 1999. Dimensional anchors: a graphic primitive for multidimensional mul-

tivariate information visualizations. In: Proceedings of the 1999 workshop on new paradigms in information

visualization and manipulation in conjunction with the eighth ACM internation conference on Information and

knowledge management. pp. 9–16.

Holland, P. W., Laskey, K. B., Leinhardt, S., 1983. Stochastic blockmodels: First steps. Social networks 5 (2), pp. 109–

137.

Holland, P. W., Leinhardt, S., 1981. An Exponential Family of Probability Distributions for Directed Graphs: Rejoin-

der. Journal of the American Statistical Association 76 (373), pp. 62–65.



112 Bibliography
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Villa-Pérez, M. E., Alvarez-Carmona, M. A., Loyola-Gonzalez, O., Medina-Pérez, M. A., Velazco-Rossell, J. C.,
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Žliobaitė, I., Pechenizkiy, M., Gama, J., 2016. An overview of concept drift applications. Big Data Analysis: New

Algorithms for a New Society, pp. 91–114.

Zou, C., Wang, Z., Tsung, F., 2012. A spatial rank-based multivariate EWMA control chart. Naval Research Logistics

(NRL) 59 (2), pp. 91–110.

Zuo, Y., Serfling, R., 2000. General Notions of Statistical Depth Function. Annals of Statistics 28 (2), pp. 461–482.



Acknowledgements

First and foremost I express my profound gratitude to my supervisor and mentor, Doktorvater

Prof. Dr. Philipp Otto. You taught me that exceptions might indeed become the rule if you

find those who believe in you and support you in all situations. Your expertise and vision have

propelled me to a place I once could only dream of, thank you very much for it.

With equally high appreciation I thank Prof. Dr.-Ing. habil. Monika Sester and apl. Prof. Dr.-Ing.

Claus Brenner for their unwavering guidance, support, and encouragement throughout my doc-

toral journey. Feeling like a statistical “exotic” at the Institute of Cartography and Geoinformatics

(IKG), I am particularly grateful for the welcoming atmosphere I found here.

This nurturing environment is remarkably owed to the friendly relationship of both current and

former colleagues at IKG to me. The intellectual and casual conversations shared every day

made my office and our library a home for me. Thank you for the personal support in IT and

geoinformatics – I valued it greatly.

Reflecting on the milestones of the past four years, I acknowledge explicitly the invaluable help

and guidance of my main collaborators, Prof. Rebecca Killick and Prof. Dr. Pavlo Mozharovskyi.

Visiting you was the pinnacle of my doctoral journey, an experience for which I am endlessly

grateful.

My professional growth owes much to the opportunities provided by the Graduate Academy,

where I found enriching support, professional training, and financial aid during my research stay

in Lancaster and the final phase of my doctoral study.

Completing this thesis would not have been possible without the encouragement, faith and bound-

less optimism of those close to me – family, friends and significant individuals who have left an

indelible mark on this stage of my life. To all who accompanied me on this path and ensured its

completion, I extend my heartfelt gratitude.

My acknowledgements would not have been complete without thanking Hannover, the city whose

scenery has been a constant backdrop behind my office window. Its green spaces and waterways

provide respite from work-related thoughts, a sanctuary I deeply appreciate.





Anna Malinovskaya

Curriculum Vitae

Personal Data

Date and Place of Birth: 23.06.1996, Kustanai, Kasachstan

Education

05.2024 Doctoral Candidate

11.2019 Leibniz University Hannover, Germany

Institute of Cartography and Geoinformatics

Thesis Topic: “Statistical Process Monitoring of Networks”

Supervisor: Prof. Dr. Philipp Otto

05.2019 Study of International Business Administration (Bachelor of Science)

10.2015 European University Viadrina, Frankfurt (Oder), Germany

Specialisation in Statistics, Finance and Accounting

Grade: 1.2 (with honours)

12.2017 Semester Abroad

09.2017 Manchester Metropolitan University, United Kingdom

Specialisation in Finance and Accounting

Scientific Career

11.2023 Research Associate

07.2019 Leibniz University Hannover, Germany

Institute of Cartography and Geoinformatics

Today Adjunct Lecturer

03.2022 Teaching of Statistics III Course

Leibniz University of Applied Sciences, Germany

02.2023 Research Collaborator

01.2023 STOR-i Centre for Doctoral Training

Lancaster University, United Kingdom

02.2022 Research Collaborator

Team “ Signal, Statistique et Apprentissage”

Information Processing and Communications Laboratory, Télécom Paris,
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