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Abstract

Optical remote sensing provides invaluable data for monitoring the Earth and its
vegetation. However, cloud cover hinders the acquisition of images and leads to data
gaps. While radar remote sensing can penetrate clouds, different sensing principles
and data characteristics prevent a direct data transfer between the two modalities.
This thesis aims to bridge this gap by translating synthetic aperture radar (SAR) data
into the most commonly used optical vegetation index, the normalized difference
vegetation index (NDVI).

First, the relationship between SAR backscatter and NDVI values is explored as a
basis for a potential translation. This is done for three globally distributed agricultural
study areas covering a range of environmental conditions. The analysis includes data
from several SAR sensors with different frequencies, including C-, S-, X- and L-band
data. The investigation reveals a notable relationship between S- and C-band data,
but also demonstrates the influence of numerous factors on this relationship, limiting
generalization.

Building on the previously established relationship, the next step is to demonstrate
the estimation of NDVI images from SAR backscatter data. For this purpose, a U-Net,
a deep learning model, is trained. To allow a global application, a comprehensive
dataset is created, named SEN12TP, consisting of close temporal pairs of Sentinel-1
and Sentinel-2 images from over 1200 different areas with a balanced distribution
considering land cover, climate, and seasonality. The evaluation demonstrates the
low error and good spatial detail of the trained U-Net. Further, it is shown that the
model is globally applicable, outperforming a region-specific model.

Time series can be generated from the SAR-estimated NDVI images, but their utility
would be considerably enhanced by integrating them with the available sparse op-
tical data. Consequently, a flexible approach to fuse remotely sensed time series is
presented as the third and final aspect of this dissertation. This approach is based on
an RNN. For training purposes, a dataset consisting of 1.5 years of data and regions
from the SEN12TP dataset was created. The results demonstrate the successful fusion
of SAR-estimated and optical NDVI time series. A low error is achieved for both
short and long gaps while allowing for the global application of this method.

Overall, this thesis presents a comprehensive framework to overcome the inherent lim-
itations of optical, cloud-affected vegetation indices. This is achieved by augmenting
the indices with information derived from SAR data.
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Kurzfassung

Die optische Fernerkundung liefert wertvolle Daten zur Überwachung der Erde
und ihrer Vegetation. Bewölkung verhindert jedoch die Aufnahme von Bildern und
führt zu Lücken in den Daten. Obwohl die Radarfernerkundung Wolken durch-
dringen kann, verhindern unterschiedliche Messprinzipien und Bildeigenschaften
eine direkte Übertragung zwischen den beiden Modalitäten. Ziel dieser Arbeit ist
es, diese Lücke zu schließen, indem synthetic aperture radar (SAR)-Daten in den
am häufigsten verwendeten optischen Vegetationsindex, den normalized difference
vegetation index (NDVI), übersetzt werden.

Als erster Schritt und Grundlage für eine mögliche Übersetzung wird der Zusam-
menhang zwischen SAR-Rückstreuung und NDVI-Werten für drei weltweit verteilte
landwirtschaftliche Studiengebiete untersucht. Für diese Gebiete weden sowohl
optische als auch SAR-Daten (C-, S-, X- und L-Band) analysiert. Die Untersuchung
zeigt einen Zusammenhang zwischen dem NDVI und S- sowie C-Band-Daten, ver-
deutlicht aber auch den Einfluss zahlreicher Faktoren auf diese Beziehung, was eine
allgemeingültige Aussage einschränkt.

Aufbauend auf dieser ermittelten Beziehung wird in einem weiteren Schritt die
Abschätzung von NDVI-Bildern aus SAR-Rückstreudaten demonstriert. Dazu wird
ein U-Net, ein tiefes neuronales Netz, trainiert. Um eine globale Anwendung zu
ermöglichen, wird ein umfangreicher Datensatz mit dem Namen SEN12TP erstellt,
der aus zeitlich eng gekoppelten SAR- und optischen Bildern von über 1200 Gebieten
besteht. Die Evaluierung des trainierten U-Nets zeigte geringe Fehler und eine gute
räumliche Auflösung. Es zeigte sich, dass das Modell global anwendbar ist und
einem regional angepassten Modell überlegen ist.

Aus den SAR-geschätzten NDVI-Bildern können Zeitreihen generiert werden, deren
Nützlichkeit durch die Integration mit den verfügbaren unregelmäßigen optischen
Daten zusätzlich verbessert werden könnte. Daher wird als letzter Aspekt dieser
Arbeit ein flexibler Ansatz zur Fusion von Satellitenbildzeitreihen vorgestellt. Dieser
Ansatz basiert auf einem rekurrenten neuronalen Netzwerk (RNN). Die Auswertung
zeigt die erfolgreiche Fusion von SAR-abgeleiteten und optischen NDVI-Zeitreihen.
Sowohl für kurze als auch für längere Lücken konnte ein geringer Vorhersagefehler
erzielt werden und gleichzeitig die globale Anwendbarkeit dieser Methode gezeigt
werden.

Insgesamt stellt diese Arbeit einen zuverlässigen Ansatz zur Verbesserung der durch
Bewölkung gestörten optischen Vegetationsindizes aus SAR-Daten dar.
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1 Introduction

1.1 Motivation

The observation of Earth from space is an invaluable tool for understanding the
complex systems that characterize our planet. Monitoring the status of vegetation on
a global scale is of particular importance, as this has become critical for numerous
applications in light of the pressing global challenges humanity currently faces.
Climate change, desertification, and food security are just a few examples of these
issues. Therefore, understanding the health and dynamics of plant ecosystems,
including agricultural crops and natural forests, has never been more vital. Effective
vegetation monitoring allows humanity to predict crop yields, assess the impact of
deforestation, and estimate carbon sinks and sources, all of which are essential for
informed environmental management.

In this context, multispectral optical data serves as a powerful tool, offering detailed
insights into plant health and growth patterns. The wavelengths utilized by optical
sensors are highly informative about vegetation, and there are well-established tech-
niques for analyzing such data. Furthermore, the data allows for straightforward
visual interpretation by humans, and, as a method established at an early stage,
long-term archives of optical data are available. One particularly common tool for
vegetation monitoring is the normalized difference vegetation index (NDVI). The
NDVI combines red and infrared spectral bands to provide an easily interpretable
value of the plant health, vegetation state, and its ”greenness”.

While optical sensors offer numerous advantages for vegetation monitoring, they do
have a significant limitation: their operating principle is hindered by cloud cover.
This challenge is particularly pronounced in tropical regions, where the monthly
mean cloud fraction often exceeds 80 %. However, it is also evident in moderate
climates, such as that of Germany, where the mean daily cloud cover remains above
50 % during the summer months (King et al. 2013). Moreover, subtropical regions
encounter this issue during the rainy season, when cloud cover is very high just as
vegetation growth is reaching its peak.

For monitoring purposes, these data gaps can exceed 30 days across extensive regions
of the tropics and subtropics (Flores-Anderson et al. 2023). An illustrative example
of these long-term gaps is presented in Figure 1.1, which shows that nearly all images
of an area in Burkina Faso in subtropical Africa between June and October are at least
partially obscured by clouds. This period corresponds to the rainy season, which
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1 Introduction

is also the primary growing season (Belesova et al. 2017), highlighting the critical
importance of capturing data during this period for effective vegetation and crop
research. Thus, relying solely on optical sensors that require clear skies can lead to
significant data loss, underscoring the need for alternative monitoring methods.

Figure 1.1: Sentinel-2 RGB images of an area next to the city Gaoua in southern
Burkina Faso. Clouds prevent the monitoring of the area between June
to October, the rainy and single growing season in that region (Belesova
et al. 2017). Completely white images are fully covered with clouds.

Synthetic aperture radar (SAR) sensors offer a potential solution to this dilemma.
They utilize microwave radiation, which is capable of penetrating cloud cover and
are active sensors, enabling the imaging of the Earth’s surface during both day and
night. While SAR sensors offer great advantages, they use a different part of the
electromagnetic spectrum and sense different properties of a surface than optical
sensors. This leads to some challenges for their use: relationships and algorithms
designed for optical data need to be redeveloped and adjusted to accommodate SAR
data. Furthermore, the more complex processing of SAR data and its less intuitive
interpretation hinder the adoption and usage by researchers and practitioners. Finally,
no long-term data archives of easily comparable SAR data exist limiting the use for
long-term studies.

The limitations of both optical and SAR sensors underscore the necessity of a com-
bined approach to leverage their respective strengths while addressing their respec-
tive shortcomings. For vegetation monitoring, one way to achieve this is by using the
optical NDVI as a proxy of vegetation status and translating SAR data into NDVI data.
This integration preserves the usage of the established NDVI while mitigating the
impact of cloud-induced data gaps, thereby facilitating more reliable and continuous
monitoring of vegetation dynamics.

2



1.2 Objectives and structure of this thesis

1.2 Objectives and structure of this thesis

The primary goal of this dissertation is to demonstrate that NDVI data availability can
be improved by translating SAR backscatter into NDVI values, ultimately improving
vegetation and agricultural monitoring. The first two chapters, Chapter 2 and Chap-
ter 3, provide an overview of the essential knowledge required to understand the
proposed approach, as well as related research. Chapter 4 analyses the relationship
between SAR backscatter and NDVI values, thereby establishing the foundation of
the proposed approach. Having established a relation, NDVI images are estimated
using SAR images of a single date (Chapter 5), before using this and combining
dense SAR-estimated NDVI time series with the sparser, but accurate, optical NDVI
time series. The result are dense, cloud-independent time series (Chapter 6). The
thesis is discussed in Chapter 7, followed by a summary and suggestions for future
work in Chapter 8.
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2 Space-Borne Remote Sensing of
Vegetated Surfaces

What you’ll learn This chapter provides a brief overview of the fundamental
concepts that are necessary to understand the work described in this thesis.
It covers remote sensing of the Earth’s surface using optical and microwave
sensors, the derivation of vegetation indices from this data, and the principle
and architecture of deep learning methods.

The Earth’s surface is highly dynamic, constantly transforming due to natural pro-
cesses and human activities. Remote sensing provides a powerful tool to capture
and monitor these changes systematically and quantitatively. This chapter aims to
provide a comprehensive understanding of the fundamentals of remote sensing,
with a particular focus on the principles of optical and synthetic aperture radar
(SAR) imaging, as well as the deep learning techniques that will be employed in the
subsequent chapters.

Remote sensing encompasses a variety of technologies designed to sense various
properties of the Earth’s surface. By utilizing different parts of the electromagnetic
spectrum, these technologies provide crucial data that can be used to monitor vege-
tation health, assess land use changes, and evaluate environmental conditions.

The electromagnetic spectrum available for remote sensing spans from visible light
to infrared (IR) and thermal waves and additional microwave frequencies. While
the sun emits some ultraviolet (UV) light, this cannot be used for remote sensing,
as the atmosphere and more specifically its oxygen and ozone, absorb it. Similarly,
large parts of the infrared (IR) and long radio waves do not penetrate through
the atmosphere. The parts of the electromagnetic spectrum where waves can pass
through the atmosphere are called atmospheric windows. They are depicted in
Figure 2.1. For these windows, different sensors can capture various features of
the Earth’s surface. This thesis focuses on images captured in optical light (visible,
near-infrared (NIR), and shortwave infrared (SWIR)) with wavelengths from 400 to
2200nm and radar frequencies (with wavelengths from 1 to 100 cm).

Data is acquired using space-borne platforms which allow global coverage and
consistent monitoring. Space-borne sensors can provide data at various spatial,
temporal, and spectral resolutions, making it possible to effectively monitor and
analyze vegetated surfaces across the globe. For the work in this thesis, imagery with
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Figure 2.1: Opacity of Earth’s atmosphere for electromagnetic waves and the atmo-
spheric windows used for remote sensing. Three areas of the spectrum
are used, which are denoted with orange: optical and infrared radiation
with wavelengths from 400 to 2000nm, thermal radiation of the Earth
around 10µm, and microwaves with wavelengths of 1 to 100 cm for radar
sensors.

a medium spatial resolution (on the order of tens of meters) and a medium temporal
resolution (with revisits every few days) are used.

2.1 Optical Sensors and Data

Optical sensors are fundamental tools in remote sensing, capturing the amount of
sunlight reflected by the Earth’s surface. Since they are passive sensors they rely
on the sun to illuminate the Earth. One important property characterizing them
(next to spatial resolution and temporal revisit) is their spectral resolution and their
ability to detect light at different wavelengths. Thereby, they can be categorized into
panchromatic, multispectral, and hyperspectral sensors with one, tens, and hundreds
of spectral bands, respectively.

Optical sensors are designed to operate within a specific portion of the electromag-
netic spectrum, which encompasses the range of wavelengths from ultraviolet to
infrared light. The visible light with a wavelength from ∼400nm to ∼750nm, en-
compassing the colors blue, red, yellow, and green, is commonly used. In addition,
near infrared (NIR) and short wave infrared (SWIR) light is of significant value
for the assessment of vegetation and its moisture, and therefore it is frequently cap-
tured by optical sensors. Their wavelengths go from ∼750nm to ∼1000nm and from
∼1000nm to ∼2500nm, respectively. The boundaries between these ranges are grad-
ual and there is some overlap between them. These spectral bands, in conjunction
with the opacity of the atmosphere, are illustrated in Figure 2.2.

The sensed signal is dependent on various factors, mainly absorption, scattering,
and reflection. As the light has to pass through the atmosphere, the atmospheric
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Figure 2.2: Part of the electromagnetic spectrum that is utilized by optical sensors. It
shows the wavelengths for ultraviolet, visible, NIR, and SWIR light. The
opacity of the atmosphere is included.

window, for which the absorption by atmospheric gases is minimal enough for signal
capture from space, is important. Therefore, some wavelengths are unsuitable for
space-borne earth observation. On the Earth’s surface, each material reflects and
absorbs light differently, which is captured in the spectral reflectance curves of each
material as shown exemplarily for water, soil, and green vegetation in Figure 2.3.
Therefore, having information about the reflectance of a surface for different wave-
lengths allows to distinguish surface types. Thereby, different spectral bands can
capture complementary information about each surface. To illustrate this, an example
is given in Figure 2.4: combining different spectral bands allows one to visualize
different properties of a surface.

Figure 2.3: Spectral reflectance curves of water, green vegetation, and soil (Flores
et al. 2019).

Optical sensors on satellite platforms typically follow sun-synchronous orbits, passing
over the same part of the Earth at roughly the same local solar time. This allows a
simple comparison of images taken on different days without having to correct for
widely varying lighting conditions. The overfly time at the equator is usually before
noon, a time chosen to balance good illumination conditions with minimal shadows
and decreased cloud and haze built up compared to noon or afternoon.

The raw data captured by optical sensors undergo several processing steps to become
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useful for analysis. The first step is to include radiometric corrections to address
sensor-specific anomalies, geometric corrections to align the image with geographic
coordinates, coregistration of different spectral bands, and conversion from digital
numbers (DNs) to reflectance values. This results in Level-1C data also referred
to as top of atmosphere (TOA) reflectance values. To acquire surface reflectance
values (also called bottom of atmosphere (BOA) reflectances or Level-2A data),
additional processing steps are applied. This primarily corrects for the influence of
the atmosphere, which accounts for the absorption of water vapor, dust, and other
molecules, but can also include corrections for multi-path scattering.

Across one image and for images of different acquisitions, the angle between the
surface, sun, and sensor is changing. As most surfaces are anisotropically and not
Lambertian, e.g. the reflectance is dependent on the sun-target-sensor geometry,
the same surface appears different across one image or for images of different ac-
quisitions. This geometry dependence is described by the bi-directional reflectance
distribution function (BRDF) and can be corrected, which results in synthetic nadir
BRDF-adjusted reflectance (NBAR) values.

2.2 Microwave Sensors and Data

Radar (radio detection and ranging) sensors rely on microwave radiation instead of
visible or infrared light like optical sensors. Microwave radiation has a wavelength
considerably longer than optical light and therefore almost no interaction with clouds
or rain which allows weather-independent usage. Additionally, they are active
sensors that emit electromagnetic waves and capture the returning signals. Therefore,
they don’t rely on the sun’s illumination and allow imaging day and night.

Synthetic aperture radar (SAR) sensors are a special kind of radar sensor, which
synthesizes a large antenna by using a moving platform and appropriate signal
processing to achieve a high resolution. The resolution in azimuth direction 𝛿𝑎 (also
called along-track direction) is only dependent on the antenna aperture in azimuth
direction 𝐷𝑎 for these systems:

𝛿𝑎 =
𝐷𝑎
2 . (2.1)

The slant range resolution 𝛿𝑟 (or across track resolution) is inversely related to the
transmitted signal duration 𝜏 or directly related to the bandwidth 𝐵 used for trans-
mission:

𝛿𝑟 =
𝑐 ⋅ 𝜏

2 =
𝑐

2𝐵. (2.2)

The relationship between pulse duration and bandwidth can be explained using
the Fourier analysis, which shows that a shorter pulse duration 𝜏 corresponds to a
broader bandwidth 𝐵, and vice versa.
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(a) RGB (B4, B3, B2) (b) NDVI (B8, B4)

(c) SWIR false color (B12, B8A, B4) (d) Scene classification layer

Figure 2.4: Different visualizations of multispectral optical data of a scene around
Kigali (Rwanda) on 2024-01-27. Located in the upper left is Kigali, ob-
scured by some clouds. Sentinel-2 data is used and B3, ... denote the used
band. The used data includes a scene classification layer, classifying most
of the area as vegetated or non-vegetated , but also denoting clouds

, and their shadows as well as water .

Satellites equipped with SAR sensors are typically in sun-synchronous orbits, po-
sitioned along the day-night boundary to ensure that the solar panels are always
illuminated, meeting the high power requirements of the sensors. This yields local
overpass times in the morning and evening.

Because SAR sensors are side-looking the slant range resolution given in Equation 2.2
is not the same as when the image is projected onto the ground, which is illustrated
in Figure 2.5. Instead, the slant range resolution 𝛿𝑟 and the ground (projected) range
resolution 𝛿𝑔 are related through simple trigonometry and the incidence angle 𝜃𝑖.
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2 Space-Borne Remote Sensing of Vegetated Surfaces

Figure 2.5: Relationship between slant range resolution 𝛿𝑟 and ground projected
range resolution 𝛿𝑔. 𝜃𝑖 denotes the incidence angle.

The ground range resolution is always lower than the slant range resolution and
typical incidence angles of 20°, 30°, or 40° result in a 2.9, 2, or 1.6 times higher ground
range resolution.

2.2.1 Factors Affecting SAR Backscatter

The radar response of a surface depends on numerous factors that collectively in-
fluence its appearance in a SAR image. Key determinants include roughness and
dielectric properties of a surface, as these define the predominant interaction of
electromagnetic waves with it. The difference in dielectric constants between two
mediums dictates whether transmission or reflection, also termed scattering, pre-
dominates. A higher difference in dielectric constants results in more energy being
reflected at the boundary, with less energy penetrating into the second medium. In
the context of remote sensing sensors, where the initial medium is air, the second
medium is determining which effect dominates. As such, the second medium’s
composition is the key factor of the received radar signal. Thereby, water and the
water content play a crucial role for most natural surfaces like vegetation or soil, as
it strongly influences the dielectric constant of the surface. For instance, almost all
signal energy is reflected from water surfaces or wet soils, whereas in contrast for dry
soils more signal energy enters the soil and is scattered there. Absorption is another
factor that affects radar response; it converts radar energy into thermal energy rather
than reflecting it back to the sensor, leading to attenuation of the radar signal.

Surface roughness and orientation also determine the type of scattering that occurs.
In general, rough surfaces reflect more energy back to the sensor, while smooth
surfaces reflect more energy away from the sensor, which is illustrated in Figure 2.6.
This can be observed well for water surfaces: a calm sea leads to virtually no signal
detected while for a rough sea the sensor can receive a response.

If there is not a simple surface and the transmitted signal is scattered multiple times
before returning to the sensor, two other scattering types can occur. Double bounce
occurs when the signal is scattered off two surfaces before returning to the sensor.
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Figure 2.6: Influence of the surface roughness on radar scattering. Smooth surfaces
(left) behave like specular mirrors, reflecting electromagnetic waves away
from the sensor. Conversely, for intermediately rough (middle) and
rough surfaces (right) the sensor can receive a scattered signal. The
categorization of a surface as smooth or rough is influenced by the radar
wavelength and the incidence angle. Figure from Flores et al. (2019) and
modified.

This mainly occurs forman-made buildings like in urban areas, but also for inundated
vegetation, where the water surface acts as a mirror and standing vegetation like tree
trunks reflects the signal. Another important scattering type is volumetric scattering.
This occurs when the radar signal is scattered numerous times in a complex manner,
for instance in vegetation. There, not a single medium border is present, but instead
a multitude of differently oriented surfaces at different positions. Therefore, radar
waves are scattered multiple times at each air–leaf surface before eventually being
received by the sensor. This type of scattering redistributes the radar energy in various
directions, often resulting in complex signal returns. Additionally, depolarization
occurs, where the polarization of the incoming wave is changed to another one. The
different types of scattering are shown in Figure 2.7. Other special cases exist, like
facade, Bragg, or dihedral corner reflector scattering, but they are in general not
relevant, especially for vegetation monitoring.

Another important sensor parameter influencing the radar response is the used radar
wavelength. Different frequency ranges of the electromagnetic spectrum are divided
into frequency bands, with commonly used ones for SAR systems listed in Table 2.1.
The wavelength determines how opaque or transparent objects appear, because many
objects and radar waves are similar in size, ranging from centi- to decimeters. For
instance, X-band radar waves interact directly with the uppermost leaves of a tree
because of the short wavelength of 3 cm, whereas C-band waves already penetrate
deeper into a tree and interact with branches. L- or P-band waves interact less with
leaves and the tree canopy and more with the tree branches and trunk. This is
illustrated in Figure 2.8.

Another factor significantly affecting the received radar response is the polarization of
the radarwaves, which determines the orientation inwhich the electromagneticwaves
are transmitted and received. SAR sensors predominantly transmit linear polarized
waves – either horizontal (H) or vertical (V) – though they can also emit circular
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Figure 2.7: Scattering types of radar waves that are received back at the sensor. For
non-vegetated surfaces, rough surface scattering occurs, whereas for veg-
etation and trees volumetric scattering occurs. Double-bounce scattering
is dominant for urban areas and man-made structures but also happens
for tree trunks. Figure from Flores et al. (2019).

Figure 2.8: Illustration of the penetration depth of radar waves into trees in depen-
dence on the used wavelength (Flores et al. 2019).

polarized waves. During reception, SAR systems can differentiate between the two
polarizations, resulting in data that can be classified into four types: VV (vertical
transmit, vertical receive), VH (vertical transmit, horizontal receive), HH (horizontal
transmit, horizontal receive), and HV (horizontal transmit, vertical receive). When
data includes all four polarizations, it is referred to as quad-polarized. Data with
only two polarizations, typically featuring one transmit and two receive polarizations
such as VV and VH or HH and HV, is labeled dual-polarized.

The interaction of radar waves with different surfaces varies depending on the polar-
ization. Bare surfaces typically maintain polarization, showing little depolarization,
whereas vegetated surfaces often exhibit significant depolarization, altering the po-
larization state of the waves. Additionally, the orientation of vegetation affects the
radar response. For instance, narrow-leaf crops such as wheat or rice interact differ-
ently with horizontal and vertical waves due to their alignment relative to the wave
direction, either perpendicular or in parallel (Liu et al. 2016).
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Band Frequency (GHz) Wavelength (cm)

P 0.3 – 1 30 – 100
L 1 – 2 15 – 30
S 2 – 4 7.5 – 15
C 4 – 8 3.8 – 7.5
X 8 – 12 2.4 – 3.8

Table 2.1: Commonly used frequency bands of SAR systems (Flores et al. 2019, p.
29). Note that these bands are not rigorously defined and can be slightly
different for other disciplines.

2.2.2 Terrain-Induced Effects

Because SAR sensors are side-looking, the terrain induces three effects: shadow,
layover, and foreshortening. These phenomena, while primarily relevant in urban
environments, are also prevalent in mountainous regions. A not-so-steep mountain
is affected by foreshortening, where sensor-facing slopes appear shorter and slopes
facing away from the sensor appear longer in the SAR data. If a mountain slope is
steeper, then layover can occur, where the radar signal from the top of it returns to
the sensor before the signal from the base. This causes the top to appear ’laid over’
towards the sensor and one SAR pixel contains information of two disparate points
on the surface. For even steeper terrain, shadowing can occur when radar waves are
blocked by the terrain, creating areas with no return signal, similar to how sunlight
can cast shadows. All these effects are illustrated in Figure 2.9. Foreshortening and
shadows are also visible in Figure 2.13d: the mountain peaks appear very bright
on one side but some have areas without any backscatter on the other side. Collec-
tively, these effects can complicate the interpretation of SAR imagery in areas with
topography.

2.2.3 Statistics of SAR Backscatter and Speckle

The backscatter of a resolution cell is composed of the contributions from all indi-
vidual scatterers within it. For instance, in a forested area, these scatterers include
individual trees, leaves, and branches. The total signal received at the sensor is
the coherent (or complex) sum of all these scatterers’ contributions. The phase
of the individual scatterers is random, leading to both constructive and destruc-
tive interference. This randomness results in a phenomenon known as the random
walk, depicted in Figure 2.10, where the variability in the coherent sum of scatterers
produces speckle.

Speckle manifests as high variability in radar backscatter among neighboring pixels
that represent the same surface. When the resolution cell includes a large number of
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(a) Foreshortening and shadow (b) Layover

Figure 2.9: Effects of the terrain on the acquired SAR data due to the side-looking
geometry. (a) Areas inclined towards the sensor can lead to foreshorten-
ing, where the objects 𝑎, 𝑏 appear closer in the SAR image 𝑎′, 𝑏′. Shadow
leads to points not being captured, like 𝑐, which does not appear in the
SAR image. (b) Layover occurs for steep terrain, where the top 𝑏 appears
before the bottom 𝑎 in the SAR image. 𝑏″ denotes the position of 𝑏 in an
Nadir optical image. 𝜃 is the incidence angle.

scatterers, such as in Sentinel-1 acquisitions over natural scenes with soil, rock, or
vegetation, fully developed speckle is observed. In this case, the received amplitude
at the sensor follows a Rayleigh distribution, while the phase follows a uniform
distribution. These distributions are illustrated in Figure 2.11. As the phase in a
single acquisition is uniformly distributed, it contains no useful information. For
urban scenes or very high-resolution data the initial assumption does not hold, but
instead, single scatterers become dominant, leading to partially developed speckle.

When the amplitude values are converted to a logarithmic scale expressed in decibels,
the Rayleigh distribution is transformed into a distribution approximately following
a normal distribution.

Speckle provides information about the structure within a resolution cell if the
underlying backscatter distribution is obtainable. However, the estimation of this
distribution is not feasible using a single pixel, which presents a challenge for the
analysis of the sub-resolution structure of a pixel. Only by examining the backscatter
distribution over an area of the same structure, or a pixel over time, can the distri-
bution be assessed. In practice, it is difficult to determine a priori which areas have
similar characteristics. Consequently, speckle complicates data analysis and appears
as noise that degrades image quality. To reduce the impact of speckle, multi-look
processing or spatial filtering can be employed which spatially averages the data.

2.2.4 Interferometric SAR (InSAR)

Interferometric SAR (InSAR) is a technique to utilize the phase information of two
SAR acquisitions taken at slightly different positions. Depending on the position
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Figure 2.10: Illustration of the formation of speckle (Moreira et al. 2013). The re-
sponse of a resolution cell is the interference of all the single scatterers
within it, which is mathematically expressed as the complex (or co-
herent) sum of all contributing signals. Each single contribution (blue
arrows) has a random phase and the resulting amplitude (red arrow)
can therefore be highly variable between pixels of the same surface.

relative to each other, one can differentiate along- and across-track interferometry.
For along-track interferometry, the receiving antennas are positioned parallel to the
flight track, which allows to sense motion on the ground, for example, river or ocean
currents. In contrast, across-track interferometry has the SAR data acquired from
two positions perpendicular to the flight path. This allows to retrieve information
about the terrain.

Across-track interferometry is based on the fact that the phase difference between two
acquisitions Δ𝜙 is related to the difference in the distance to the target Δ𝑟 (Klausing
et al. 2000, p. 276). If the position where the images were taken is exactly known, this
allows to calculate the height of the captured area. A similar approach to estimate 3D
positions or the terrain is possible with optical data, termed (stereo) photogrammetry.
In contrast to interferometric SAR, not the phase difference is utilized, but instead
the small angular shift for a target between the two images.

There are two options to acquire the data at two positions to allow InSAR processing.
Either two antennas are carried by the sensor (single-pass interferometry) or a
sensor with a single antenna has to fly the same flight pass two times (repeat-pass
interferometry). Single-pass interferometry allows a higher quality of the phase
measurements, however at an increased hardware cost and sensor size. Therefore,
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Figure 2.11: Probability density functions of the (a) amplitude and (b) phase of a
pixel exhibiting fully developed speckle. 𝜎 gives the radar cross-section
of the area, indicating how strongly the surfaces scatter the signal back
to the sensor. While the amplitude is Rayleigh distributed, the phase is
uniformly distributed.

repeat-pass interferometry is often used for space-borne sensors because it requires
only a single antenna.

In the context of repeat-pass InSAR, spatial and temporal baselines are critical pa-
rameters that affect the accuracy and reliability of the interferometric measurements.
Thereby, the spatial baseline refers to the physical separation between the two an-
tenna positions and the temporal baseline to the time interval between the two SAR
acquisitions. The selection of the spatial baseline is a trade-off between sensitivity
and robustness. A larger spatial baseline increases sensitivity, as the phase change is
larger for terrain height changes. However, if the phase changes too quickly, it can
lead to unwrapping errors, where the height change between pixels cannot be used to
accurately estimate the terrain because the height changes too quickly. The temporal
baseline is usually desired to be short. This allows for a higher quality of the measure
phase difference because the surface changes less between the acquisitions. However,
for space-borne platforms, the temporal baseline is fixed by the orbit. Only sensor
constellations allow a selection of the temporal baseline.

In order to achieve high-quality elevation data, it is essential that the positional
difference of the antennas results in a change of the phase, and that no other fac-
tors influence the measured phase difference. In practice, however, a multitude of
additional factors influence the phase, resulting in the introduction of noise into
the measured phase difference. To evaluate the quality of the phase measurement,
the coherence 𝛾 is employed. A coherence value of 1 indicates an optimal phase
measurement, whereas a coherence value of 0 indicates a lack of correlation between
the signals, rendering them unusable.

The overall coherence 𝛾 of a pixel is influenced by several contributing factors. In
repeat-pass InSAR systems, temporal coherence 𝛾temporal represents a significant
contributor to the loss of coherence. It is caused by changes in the surface between

16



2.2 Microwave Sensors and Data

the two acquisitions. In the case of vegetated surfaces, this is a particularly significant
factor, given that the vegetation is subject to fluctuations caused by wind and growth,
as well as other changes. An additional source of decorrelation is the thermal noise of
the SAR system,which is expressed by the thermal coherence𝛾thermal. It is determined
by the signal-to-noise ratio of a resolution cell; thus, a pixel with high backscatter
exhibits less decorrelation. The geometric coherence 𝛾geom accounts for changes due
to the slight discrepancy in the viewing angle of the two antennas. However, it can
be significantly reduced in practice through the use of a-priori filtering. As radar
waves are capable of penetrating into a volume, mainly for vegetation and snow, the
phase of the two acquisitions can differ. This also leads to decorrelation of the phase
measurement and is expressed by the volume coherence 𝛾vol.

Not all factors of the coherence can be directly measured, therefore 𝛾 has to be esti-
mated. In practice, manymethods consider small regions and the local neighborhood
of a pixel to estimate the coherence. This leads to coherence maps with a resolu-
tion several times worse than the original SAR resolution. Recent deep learning
approaches aim to mitigate this limitation, providing coherence estimates at the
original SAR resolution (Sica et al. 2021; Geara et al. 2024).

While InSAR is a powerful technique, several factors limit its usability for large
areas or multiple scenes. These include the complexity of the method, the high
computational resources required, and for repeat-pass interferometry, the sensitivity
to temporal decorrelation. Additionally, not all missions have an orbit controlled
precisely enough to allow repeat-pass InSAR analysis for all acquisitions. Instead,
only by chance a suitable spatial baseline is achieved.

An in-depth explanation of InSAR methods can be found in Hanssen (2001).

2.2.5 Processing SAR Data and Backscatter Normalization

Processing SAR data to acquire an image suitable for analysis involves many different
steps. Raw data first needs to be focused, which results in a single-look complex
(SLC) image in the slant range. Thereby, for each pixel, a complex value is stored
allowing to retrieve phase 𝜙 and amplitude 𝐴 of the received signal. For the work
done in this thesis, only the amplitude 𝐴 or the intensity 𝐼 = 𝐴2. The intensity is also
referred to as detected values.

The radar backscatter 𝛽 describes the ratio of power received by a surface and the
power scattered back to the sensor. As the received energy is dependent on the
observed area, the energy is normalized by the area. This allows for comparable
values between images. This results in the backscatter coefficient. Depending on
which area is used for this normalization, three backscatter coefficients 𝛽∘, 𝜎∘, and 𝛾∘

are formed. The first uses an area in the slant range and results in the radar brightness
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or beta naught backscatter 𝛽∘ (Raney et al. 1994). For typical SAR data, the DNs of
SAR data refer to the backscatter amplitudes, so 𝛽∘ intensities are calculated as

𝛽∘ =
𝛽

𝐴𝛽
=

DN2

𝐴𝛽
(2.3)

with 𝐴𝛽 being calculated using the azimuth and range resolution. As the slant range
geometry is used, this does not require any knowledge about the position of the
sensor relative to the surface.

Sigma naught 𝜎∘ and gamma naught 𝛾∘ both rely on information about the terrain.
The terrain information can either come from the reference ellipsoid or the local
terrain. For the flat earth model using the reference ellipsoid, only the sensor position
relative to the Earth is required, while a precise DEM is needed when the local terrain
should be used. Sigma naught 𝜎∘ uses the ground area tangent to the terrain, the
dashed rectangle 𝐴𝜎 in Figure 2.12:

𝜎∘ =
𝛽

𝐴𝜎
=

DN2

𝐴𝜎
= 𝛽∘ sin 𝜃. (2.4)

If the reference area is defined to be in the plane perpendicular to the line of sight
from the sensor, the dotted rectangle 𝐴𝛾 in Figure 2.12, gamma naught backscatter
𝛾∘ is obtained:

𝛾∘ =
𝛽

𝐴𝛾
=

DN2

𝐴𝛾
= 𝛽∘ tan 𝜃. (2.5)

Figure 2.12: Illustration of different alternatives to normalize the backscatter 𝛽 (Small
2011). 𝐴𝛽, 𝐴𝜎, 𝐴𝛾 describe the reference areas to form 𝛽∘, 𝜎∘ and 𝛾∘

backscatter coefficients, respectively. 𝜃 denotes the incidence (or off-
nadir) angle of the resolution cell. The resolution is given in slant range
𝛿𝑟, ground range 𝛿𝑔, and azimuth 𝛿𝑎.
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The side-looking geometry leads to some distortions, as explained in the sections
above and illustrated in Figure 2.9. To correct for these, different processing steps
have to be applied. Firstly, the targets are displaced due to foreshortening and their
location needs to be corrected. This is done during geocoding, where the slant range
pixels are projected onto the ground, which is also referred to as (geometric) terrain
correction (TC). However, foreshortening and layover also lead to multiple slant
range pixels mapped to a single ground range projected one and therefore, appearing
too bright (Small 2011). This is corrected using terrain flattening (TF). Data with
both TC and TF applied are referred to as radiometric terrain corrected (RTC) data.

A comparison of a SAR scene with different corrections applied (TC and TF) and
using different backscatter normalizations (𝛽∘, 𝜎∘, 𝛾∘) is depicted in Figure 2.13.

2.3 Vegetation Indices

Vegetation indices (VIs) are a common tool for vegetation monitoring, providing a
simplified yet powerful means of assessing and analyzing vegetation health and cover.
They condense information from multiple spectral bands into single values, making
interpretation and analysis both easier and more effective. VIs leverage the different
behaviors of surfaces when exposed to various wavelengths of electromagnetic ra-
diation. For example, healthy vegetation typically reflects more near-infrared light
and less visible light, while bare soil or stressed vegetation has a higher reflectance
for visible light (cf. Figure 2.3). By combining these spectral responses into a single
index, researchers can gain insights into vegetation conditions that are not apparent
from individual spectral bands. The most commonly used VI is the normalized
difference vegetation index (NDVI), but next to that, a myriad of other VIs exists.
VIs are also not limited to optical data, but combinations for SAR data also exist.

2.3.1 Normalized Difference Vegetation Index (NDVI)

The NDVI is a widely recognized and utilized metric to assess the vegetation state. It
is based on the characteristic spectral reflectance of green vegetation: leaf pigments
absorb most of the visible light with chlorophyll responsible for a high absorption
of red light. In contrast, most of the near-infrared (NIR) light is reflected by green
vegetation. The wavelength where the reflectance changes is called the red edge
located around 700nm (Albertz 2009, pp. 17–23) and apparent in Figure 2.3. Now,
calculating the ratio of the reflectance of the red and NIR light results in an indicator,
of how much chlorophyll a leaf and plant contains, how much photosynthesis it
can do, and overall its health. The normalized difference between the two bands is
formed as:

NDVI =
NIR − RED
NIR + RED (2.6)
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(a) Location (b) Map view (c) Elevation
2.300 m

800 m

(d) 𝛽∘

3 dB

-20 dB

(e) 𝜎∘, TC (f) 𝛾∘, TC (g) 𝜎∘, TC & TF (h) 𝛾∘, TC & TF

Figure 2.13: Comparison of differently processed SAR data of a mountainous scene
located in the Alps. (d) Data in slant range geometrywith foreshortening
clearly visible. (e, f) Geocoded data with terrain correction (TC) applied.
(g, h) Radiometric terrain corrected data with TC and TF applied. All
images show Sentinel-1 VV data in decibels. Missing pixels due to radar
shadow are colored cyan .
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2.3 Vegetation Indices

Using a normalized difference instead of a plain ratio results in a more robust indica-
tor, which allows comparison for example for different illumination conditions. One
of the first to use this equation are Rouse et al. (1974). While the NDVI is a useful
indicator of the ”greenness” of vegetation, it is not based on any direct physical,
biological, or chemical relationship. Still, the NDVI is closely linked to the chloro-
phyll content of vegetation as well as the amount of vegetation cover and a myriad of
studies link the NDVI to plant parameters.

Using Equation 2.6 results in values ranging from -1 to 1. Values less than 0 typically
indicate water, values between 0 and 0.25 correspond to bare soil or dry matter,
values between 0.25 and 0.4 correspond to soil with some vegetation, and values
greater than 0.4 are indicative of vegetated surfaces (Filgueiras et al. 2019). Due to
the saturation of NDVI, areas with high NDVI can have very different appearances.
Both a green meadow and a tropical forest can have NDVI values close to 1 despite
the fact that they are significantly different and have largely different biomass.

The use of a normalized difference contributes to the robustness of the NDVI under
varying lighting conditions. However, atmospheric conditions influence it, necessitat-
ing atmospheric corrections of the reflectance values before calculating the NDVI to
ensure its accuracy (Moravec et al. 2021). Next to that also cloud or terrain shadows
influence the NDVI (leading to a decrease) and the sun and looking angle, as it is
somewhat sensitive to changes of the bidirectional reflectance distribution function
(BRDF), albeit to a lesser extent (Shibayama et al. 1986).

2.3.2 Other Optical Multispectral Indices

Next to the NDVI a myriad of other multispectral indices exist. Some of them aim to
improve upon the NDVI, while others have different uses altogether, like for water
or vegetation moisture mapping.

The enhanced vegetation index (EVI) is an example of a VI trying to improve upon
the NDVI. Its formulation includes blue light next to red and NIR light to reduce the
influence of the soil background noise and to enhance sensitivity to dense vegetation.
Two other VIs aiming to improve upon the NDVI are the modified chlorophyll ab-
sorption in reflectance index (MCARI), which tries to quantify chlorophyll content
in vegetation, and the soil-adjusted vegetation index (SAVI), which tries to improve
effectiveness in areas with significant soil exposure, such as sparsely vegetated re-
gions.

For an easy detection ofwater surfaces the normalized differencewater index (NDWI)
and the modified normalized difference water index (mNDWI) can be used. The
NDWI (McFeeters 1996) leverages the reflectances of green (G) and NIR light. Vege-
tation and soil exhibit a high reflectance in the NIR spectrum, whereas water demon-
strates a low NIR reflectance and a high green reflectance. This allows to effectively
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distinguish water bodies from vegetated and terrestrial surfaces using the normalized
difference of green and NIR reflectances:

NDWI =
𝐺 − 𝑁𝐼𝑅
𝐺 + 𝑁𝐼𝑅. (2.7)

The mNDWI is an enhancement over the NDWI to especially improve discrimina-
tion between water and built-up land areas (Xu 2006). It utilized SWIR and NIR
reflectances:

mNDWI =
G − SWIR
G + SWIR . (2.8)

To monitor the total amount of water in vegetation, the NIR and SWIR bands can be
used to form the normalized difference moisture index (NDMI):

NDMI =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅
𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅. (2.9)

Combining NIR and SWIR reflectances into a VI was done by multiple researchers,
therefore this is also known as normalized difference water index Gao (1996), land
surface water index (Chandrasekar et al. 2010), leaf water content index (Hunt et al.
1987), or normalized burn ratio (NBR) (López García et al. 1991).

2.3.3 Radar Vegetation Indices

Indices can be formed using SARdata next to using data from optical sensors. Usually,
different polarizations of a SAR acquisition are used, simply because data of multiple
frequencies is hard to acquire with SAR sensors. Radar indices exploit the different
responses of a surface for the different polarizations, similar to how the different
spectral bands are exploited for optical VIs.

An alternative approach to radar indices involves the use of polarimetric decomposi-
tions of SAR data. These decompositions enable the isolation of different scattering
mechanisms, such as volumetric and double-bounce scattering, by leveraging the
comprehensive polarimetric information in the SAR signal. While some decomposi-
tions can be performed with just two polarizations, usually all four polarizations are
required. The requirement for quad-polarized data, alongwith the significant compu-
tational demands for processing, has limited their widespread adoption. A detailed
description of these decomposition methods can be found in Lee et al. (2017).

The simplest way to combine polarizations is to calculate the ratio between them,
called the cross-ratio (CR). Typically, it is the ratio between cross- and co-polarized
data:

CR =
co-pol

cross-pol . (2.10)
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With the four polarizations VV, VH, HH, and HV data, this allows to form four
different CRs: HH⁄HV, HH⁄VH, VV⁄HV, and VV⁄VH.

The radar vegetation index (RVI) is a more elaborate index combining three polar-
izations assuming 𝜎𝑉𝑉 = 𝜎𝐻𝐻 (Kim et al. 2000):

RVI =
8𝜎𝐻𝑉

𝜎𝐻𝐻 + 𝜎𝑉𝑉 + 2𝜎𝐻𝑉
. (2.11)

RVI values range from 0 to 1 with higher values indicating a higher vegetation cover
and water content (Flores et al. 2019).

As commonly used sensors only provide data of two polarizations with one transmit
and two receive polarizations, the RVI has to be modified. Thereby it is assumed, that
the cross- and the two co-polarized data are identical (𝜎𝐻𝐻 = 𝜎𝑉𝑉 and 𝜎𝑉𝐻 = 𝜎𝐻𝑉)
For VV/VH (Trudel et al. 2012) or HH/HV data (Nasirzadehdizaji et al. 2019) this
results in

RVI𝑉𝑉 =
4𝜎𝑉𝐻

𝜎𝑉𝑉 + 𝜎𝑉𝐻
(2.12) and RVI𝐻𝐻 =

4𝜎𝐻𝑉
𝜎𝐻𝐻 + 𝜎𝐻𝑉

. (2.13)

The assumption, that co- and cross-polarized backscatter is the same, only holds for
isotropic surfaces like forests or bare soil. However, for croplands it is not necessarily
true, as they can have a strong dependence on the orientation and polarization of the
incoming radar waves.

All of the indices above use backscatter data in linear scale. Instead of 𝜎∘ backscatter,
also 𝛾∘ could be utilized.

The presented indices are just a selection of all proposed ones. But while there are
many proposed SAR indices for vegetation monitoring, there is little research on
their usage and application (Hu et al. 2024).

2.4 Auxiliary Geospatial Data

Next to SAR and optical data other geospatial products describe the surface of the
Earth. Of particular interest for this dissertation are climate zones, elevation, and
land cover/land use classifications.

The most commonly used climate classification is the Köppen-Geiger classification
described for example in Peel et al. (2007). They categorize the Earth according to
the vegetation that is growing in that region, which is determined by the average
temperature as well as precipitation and their course throughout the year. Köppen-
Geiger climate zones are encoded with two or three letters, describing one of the four
main classes, a subclass, and potentially a variant. A map of these climate zones is
given in Figure 2.14.
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Figure 2.14: Köppen-Geiger climate zones of the Earth (Beck et al. 2018).

The elevation and terrain are represented by digital elevation models (DEMs).
Thereby, digital surface models (DSMs) and digital terrain models (DTMs) can
be differentiated, which express slightly different heights. DSMs express the surface
elevation, which includes buildings, infrastructure, and vegetation whereas DTMs
only capture the bare topography. The first (almost) global DEM was acquired
during the shuttle radar topography mission (SRTM) and improved versions of this
are still in use today. Other commonly used DEMs are the ALOS World 3D DEM
(Takaku et al. 2020), the NASADEM (Buckley et al. 2020), or the Copernicus DEM1.
An example of the data of a DEM is shown in Figure 2.15.

Figure 2.15: Elevation of the Earth of the Copernicus DEM.

1https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model
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The surface of the Earth can be classified according to what is covering it and how it is
used. Maps capturing this information are called land use/land cover (LULC) maps.
As different applications require different classification schemes, a myriad of LULC
maps exist. Three examples are the MODIS Land Cover Type map, the Copernicus
Global Land Cover Layers, and the ESA WorldCover product. They are based on
data from different sensors and therefore have different resolutions, ranging from
500m and 100m to 10m. An example of the classifications of the ESAWorldCover
map is given in Figure 2.16.

Figure 2.16: Visualization of the land cover classes of the ESA WorldCover v100.

2.5 Machine Learning and Deep Neural Networks

Machine learning (ML) focuses on developing algorithms that can identify patterns
in data andmake decisions based on those patterns. Essentially, ML is about allowing
computers to come to decisions when provided with some inputs without explicitly
defining rules to come to correct results. This is achieved by developing methods
that can generate these rules themselves when provided with enough examples of
input data and expected outputs.

Traditionally, machine learning techniques include models such as linear regres-
sion, decision trees, random forests (RFs), and clustering algorithms. All of these
approaches can handle only a limited amount of input data, which often requires
manually selecting features extracted from the data. For instance, not the raw pixel
values of a field can be fed to ML models, but instead only statistical metrics like
the mean or the standard deviation. This feature engineering is critical for machine
learning models to learn patterns related to the problem at hand.

Artificial neural networks (NNs) are another machine learning method inspired by
the structure and function of the human brain. A NN consists of interconnected
nodes, or ”neurons,” that process information in amanner similar to biological neural
networks. These nodes are organized into layers: the input layer receives input data,
hidden layers transform the input through numerous computations, and the output
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layer generates the result. NNs can be both amachine or deep learningmethod, which
is determined by the number of nodes and therefore model parameters. Shallow
NNs with one input, one hidden, and one output layer are considered a machine
learning technique. In contrast, deep NNs include numerous hidden layers and a
greatly increased number of parameters to optimize, thus they are a deep learning
approach. The increased number of layers allow deep NNs to learn more complex
representations of the data compared to shallow models.

Machine learning and deep learning have two primary distinctions: Firstly, the
number of parameters, and secondly, the manner in which features of the data are
extracted and learned. Traditional machine learningmodels with a smaller parameter
number rely extensively on manually crafted feature extraction. The required feature
engineering necessitates not only domain expertise and a considerable amount of trial
and error but it is also a labor-intensive process. In contrast, deep learning models
are capable of automatically learning feature representations directly from the raw
data due to their highly increased parameter count. This capability is particularly
advantageous when working with unstructured data, such as images and text, where
patterns and features are complex, multidimensional, and not easy to extract.

Machine learning models are typically optimized by using a set of pairs of input data
and expected labels. Training begins with the initialization of the model’s parameters,
which are often set to random values. The primary objective is to iteratively refine
these parameters in order to ensure that themodel’s predictions are in close alignment
with the expected outputs for a given set of inputs. In the case of supervised learning
employed in this dissertation, the expected outputs are known and can be used as
labels.

The difference between the predicted and actual outputs is quantified using a loss
function. The loss function serves as an objectivemeasure of themodel’s performance,
and the ultimate goal is to minimize this loss through iterative adjustments of the
model’s parameters. Loss functions used for the work in this dissertation will be
explained in Section 2.5.4 below.

To update the parameters of a NN, backpropagation is employed. This technique
entails calculating the gradient of the loss function with respect to each model pa-
rameter, subsequently propagating these gradients from the output layer back to the
input layer. These gradients indicate the direction and magnitude of change required
to achieve a minimal loss. With these gradients, the parameters can be updated using
gradient descent, an optimization method. By applying these steps multiple times,
the model’s performance is iteratively enhanced.

The architecture of a DL model is a determining factor in the model’s ability to
process different types of data effectively. The architecture of a NN is determined
by a number of factors, including how the neurons of the network are connected,
the depth and width of the layers, and the operations performed. Convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) are among the most
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commonly used architectures for processing spatial and temporal data, respectively.
They are explained in the following two subsections.

A comprehensive examination of deep learning techniques along with their mathe-
matical foundations and practical implementations is presented in Goodfellow et al.
(2016).

2.5.1 Convolutional Neural Networks (CNNs) for Image Data

Convolutional neural networks (CNNs) are designed to efficiently process grid-
like data such as images. They leverage convolutional operations, whereby the
spatial neighborhood of each pixel is considered. Convolutional layers together with
pooling layers allow the model to extract high-level features from images. Thereby,
convolutional layers apply a set of filters to the input image, creating feature maps
highlighting different image characteristics. The spatial dimensions of these feature
maps are reduced using pooling layers to increase computational efficiency and
learn complex patterns of larger areas. When an image should be classified, then
usually fully connected layers are utilized. Other variations of the architecture allow
to translate images, useful for instance to create pixel-wise segmentations. Prominent
architectures in this domain include the U-Net (Ronneberger et al. 2015) or ResNets
(He et al. 2016).

The operation of a CNN can be demonstrated using LeNet, an early and basic CNN
designed to categorize images based on the number depicted in them (LeCun et
al. 1998). LeNet is comprised of convolutional, max pooling, and fully connected
layers, as well as activation functions. The convolutional layers utilize learnable filter
kernels to extract features from the input image or a feature map. These filters move
across the image, capturing features from all regions. This operation generates as
many feature maps as there are filters, with each feature map having the same or
smaller size than the initial input image. The output size depends on how the image
borders are treated during the convolution process. Then, the extracted feature maps
are passed to max-pooling layers, which reduce the spatial dimensions, effectively
subsampling the images by selecting the maximum value from each region covered
by the filter. This emphasizes the most prominent features while discarding less
significant details. Subsequently, a non-linear activation function, such as the sigmoid
or ReLU (rectified linear unit), is applied to introduce non-linearity and facilitate the
learning of complex features. This process of convolution, followed by pooling and
activation, is repeated until the featuremaps have become too small to perform further
convolutional operations. The two-dimensional feature maps are then flattened into
one-dimensional feature vectors, preparing them for the fully connected layers. The
fully connected layers use the extracted features of the whole image to classify it and
generate the final prediction. An example of such a network and the output of each
layer for an example input is shown in Figure 2.17.
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Figure 2.17: Visualization of the output of each layer of a LeNet CNN for an input
image example depicting a ”4”. At the top, the input image is shown and
below that the outputs of the convolutional, pooling, and fully connected
layers. At the bottom is the model prediction. White to dark blue colors
depict low to high values.

2.5.2 Recurrent Neural Networks (RNNs) for Sequence Data

Recurrent neural networks (RNNs) are a network architecture that can efficiently
handle sequential data like time series. To efficiently extract patterns within a se-
quence they have a memory mechanism, which allows them to retain and combine
information about different parts of the sequence.

The architecture of a simple RNN is relatively straightforward. At the core of this
architecture is the hidden state vector h, responsible for maintaining a running accu-
mulation of relevant information when processing an input sequence x to produce an
output sequence y. The sequences x, y,h consist of vectors 𝑥𝑖, 𝑦𝑖, ℎ𝑖 for each sequence
element. The processing facilitates three weight matrices: 𝑈, 𝑉, and 𝑊. Here, 𝑈
serves to transform input vectors, 𝑉 updates the hidden state, and 𝑊 projects the
hidden state to output vectors.

To process a sequence, the hidden state is initialized at first, using a random, zero, or
learnable initialization. The model then sequentially processes each element 𝑥𝑖 of
the sequence. For each timestep 𝑖, a new hidden state ℎ𝑖 is calculated by integrating
the current input 𝑥𝑖, the preceding hidden state ℎ𝑖−1, and the weight matrices 𝑈
and 𝑉. This integration is typically accompanied by the application of a nonlinear
activation function such as sigmoid or tanh. From this new hidden state ℎ𝑖, the output

28



2.5 Machine Learning and Deep Neural Networks

vector 𝑦𝑖 of the current step is derived using the weight matrix 𝑊. This architecture
is illustrated in Figure 2.18, which includes a compact visualization and a graphic
showing the individual steps after unfolding the sequence.

(a) Compact (b) Unfolded

Figure 2.18: The architecture of an RNN with (a) a compact visualization and (b) an
unfolded one over the sequence. The input sequence x (green) is used
to update the hidden state h (blue), with which the output sequence y
(red) is created. 𝑈, 𝑉, 𝑊 are the trainable weight matrices to transform
the vectors.

The basic RNN architecture explained above is seldom used in practice due to chal-
lenges when training it with long sequences, primarily caused by the vanishing
gradient problem. This issue arises when the gradients of the loss function become
exceedingly small as they are backpropagated through the network, resulting in
minimal updates to the weights associated with early sequence steps which hinders
effective learning. To address this limitation, more advanced RNN architectures
like long short-term memory (LSTM) networks or gated recurrent units (GRUs)
are generally preferred. These architectures incorporate mechanisms to selectively
retain or forget information in the hidden state, which results in the gradient not
diminishing and more effective learning of long sequences.

RNNs offer great flexibility, as the input and output sequences can have different
lengths. For instance, some steps of the output can be ignored, or the hidden state can
be advanced without providing new input. This results in different configurations
known as one-to-many, many-to-one, and many-to-many, depicted in Figure 2.19.
Each of the configurations has use cases and applications suited for it. A one-to-
many configuration might be employed to generate a descriptive sequence, such
as a description from a singular input, for instance an image or better the feature
vector describing the image. The many-to-many configuration is particularly relevant
in applications such as machine translation, where a complete input sequence is
transformed into a corresponding output sequence, for instance, to translate text
from one language to another.

Despite their strengths, RNNs face constraints, particularly due to their inherent
sequential processing, which limits parallelization and leads to longer training times.

29



2 Space-Borne Remote Sensing of Vegetated Surfaces

one to many many to one many to many 1 many to many 2

Figure 2.19: Possible configurations of an RNN.

The transformer architecture addresses many of these challenges by allowing for
parallel processing of sequence data, significantly speeding up training compared
to sequential RNNs. Additionally, transformers use self-attention mechanisms that
are more effective at capturing long-range dependencies, further enhancing their
performance, but at the cost of increasing memory and compute requirements. Re-
cently, xLSTM, an enhanced LSTM architecture, has been proposed (Beck et al. 2024),
promising solutions for some of the problems of RNNs and serving as an alternative
to transformers. However, practical experience with xLSTMs is still limited due to
their recency.

2.5.3 Data Normalization

Data normalization is an essential preprocessing step in the training of deep neural
networks, aimed at enhancing the efficiency and overall performance of the training
process. This procedure mitigates the variability in data scales and distributions,
which, if not addressed, can result in certain features disproportionately influencing
the model’s learning, potentially leading to suboptimal or unstable outcomes. For
example, when inputs exhibit varying magnitudes, those with higher values can
have an undue impact on the output, irrespective of their true significance.

Two normalization techniques are min-max normalization and z-score standardiza-
tion. Min-max normalization involves rescaling input values 𝑥 from an initial range
[𝑎, 𝑏] to a new specified range, often [0, 1], using the transformation:

𝑥′ =
𝑥 − 𝑎
𝑏 − 𝑎 . (2.14)

Conversely, z-standardization adjusts the data to achieve amean 𝜇 of 0 and a standard
deviation 𝜎 of 1. The formula

𝑥′ =
𝑥 − 𝜇

𝜎 . (2.15)

is used.
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2.5.4 Loss Functions and Evaluation Metrics

Loss functions are essential for training NNs and additionally serve as metrics to
evaluate model performance. A variety of loss functions exists, each with slightly
different characteristics. They compare the predicted values ̂𝑦 with the labels 𝑦. 𝑁
denotes the number of values which are compared. Two of the most commonly used
losses are the mean absolute error (MAE), also referred to as ℒ1 loss, and the mean
squared error (MSE) (also called ℒ2 loss):

MAE =
1
𝑁

(𝑁−1)
∑
𝑖=0

∣𝑦𝑖 − ̂𝑦𝑖∣ (2.16)

MSE =
1
𝑁

(𝑁−1)
∑
𝑖=0

(𝑦𝑖 − ̂𝑦𝑖)
2 (2.17)

They use the absolute and the squared sum of errors. Using the squared error
sum results in a significantly increased influence of large errors and wildly wrong
predictions. For the MSE, the unit is the square of the unit of the target variable,
for instance, m2 instead of m for a length measure. Because of this, the root mean
squared error (RMSE) takes the root of the MSE to have the same unit as the target
variable, which enables an easy interpretation of the magnitude of the errors:

RMSE = √MSE (2.18)

Another measure based on the MSE is the peak signal-to-noise ratio (PSNR):

PSNR = 10 log10
⎛⎜
⎝

MAX2
𝐼

MSE
⎞⎟
⎠

(2.19)

It normalizes the MSE with the maximum value of the data 𝑀𝐴𝑋𝐼, squared for the
correct unit, in a logarithmic scale.

A loss for image data is the structural similarity index (SSIM), which assesses the
perceptual similarity between two images considering the luminance, contrast, and
structure of two images:

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝑐1)(𝜎2
𝑥 + 𝜎2

𝑦 + 𝑐2)
(2.20)

Here, 𝑥 and 𝑦 denote windows of two images, 𝜇𝑥 and 𝜇𝑦 their means, 𝜎2
𝑥 and 𝜎2

𝑦
their variances, and 𝜎𝑥𝑦 the covariance of them. Factors 𝑐1 and 𝑐2 ensure numerical
stability, calculated using 𝐿, the dynamic range of pixel values, and small values
𝑘1 = 0.01 and 𝑘2 = 0.03 using 𝑐𝑛 = (𝑘𝑛𝐿)2. To get the final SSIM of a whole image,
the mean over the SSIM of all windows is calculated.
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The Pearson correlation coefficient 𝜌 measures the linear relationship between two
continuous variables, with its values ranging from -1 to 1. It is calculated using the
mean 𝜇𝑦, 𝜇 ̂𝑦 of 𝑦 and ̂𝑦:

𝜌 =
∑𝑁−1

𝑖=0 ( ̂𝑦𝑖 − 𝜇 ̂𝑦) (𝑦𝑖 − 𝜇𝑦)

√∑𝑁−1
𝑖=0 ( ̂𝑦𝑖 − 𝜇 ̂𝑦)

2
∑𝑁−1

𝑖=0 (𝑦𝑖 − 𝜇𝑦)
2

(2.21)

A coefficient around 0 suggests no linear relationship of the datawhile -1 or 1 indicates
strong negative and positive linear relationships, respectively.

The use and interpretability of the Pearson correlation coefficient 𝜌 is based on sev-
eral assumptions: both variables should be normally distributed, the relationship
between the variables should be linear, and the data should exhibit homoscedasticity.
Additionally, the Pearson correlation is highly sensitive to outliers, which can dis-
proportionately affect the correlation value and lead to misleading interpretations.
Therefore, excluding outliers can be valuable in analyses. When the assumptions of
Pearson’s 𝜌 are severely violated, alternative correlation coefficients such as Spear-
man’s rank correlation or Kendall’s tau correlation should be used.

The coefficient of determination, 𝑅2, builds upon the Pearson correlation coefficient
to quantify the proportion of variance in one variable that is predictable from the
other variable. It is the square of Pearson’s 𝜌, thus taking on values between 0 and
1, where a value closer to 1 indicates a stronger relationship of the variables within
a linear model. 𝑅2 provides an intuitive measure of the model’s fit, representing
how well the observed outcomes are replicated by the model. However, like 𝜌, 𝑅2

assumes linearity and can be misleading in the presence of outliers or non-linear
relationships.
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What you’ll learn This chapter reviews the research and current state of
the art related to utilizing SAR data for NDVI estimation before detailing the
contributions made by this dissertation.

In this chapter, research relevant to this thesis is reviewed. Initially, foundational
studies that link SAR data with NDVI values are examined. Subsequently, various
SAR-based NDVI estimation methods and approaches to densify NDVI time series
are summarized. As machine learning techniques are employed in this work, the
datasets used to potentially train these models are also discussed. Finally, the spe-
cific contributions of this dissertation to address the identified research gaps are
detailed.

3.1 Relationship between SAR Backscatter and VIs

The foundation for estimating vegetation indices (VIs) from synthetic aperture radar
(SAR) data is based on the relationship between these data sources. To understand
if this relationship exists and whether it can be effectively utilized, we need to delve
into the properties influencing VIs and SAR backscatter. The normalized difference
vegetation index (NDVI), the most commonly used VI, is affected by the spectral
characteristics, chemical properties, and specifically the chlorophyll content of the
vegetation (Gitelson et al. 1997). On the other hand, backscattered radar waves are
influenced by the physical and electrical properties of themedium, such as roughness,
geometry, and water content (Moreira et al. 2013). Given these differing influences, a
direct relationship between NDVI and SAR backscatter is not immediately plausible.
Therefore, vegetation parameters that might connect both measures are gathered
before examining existing research exploring a direct relationship between the data.

3.1.1 Indirect Relationship Through Vegetation and Plant Parameters

Numerous studies have highlighted the ability to estimate various vegetation, surface,
and crop parameters using either NDVI values or SAR data, suggesting a potential
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connection. For instance, the leaf area index (LAI) has been linked to the NDVI
in different environments such as mangroves (Tian et al. 2017) and wheat fields
(Duchemin et al. 2006). Similarly, the LAI is also related to SAR backscatter in man-
groves (Kovacs et al. 2013) and wheat fields (Vreugdenhil et al. 2018), as well as for
barley (Harfenmeister et al. 2019). Another vegetation parameter, crop biomass, has
been effectively estimated using both SAR data (Harfenmeister et al. 2019; Khabbazan
et al. 2019; Vreugdenhil et al. 2018) as well as NDVI data (Hansen et al. 2003; Chandel
et al. 2019). The water content of vegetation is another integral parameter. NDVI
values are related to fuel water content (FWC) in meadows (Castro et al. 2014) and
equivalent water thickness (EWT) in grass- and shrublands (Jiang et al. 2009). SAR
data relates to vegetation water content (VWC) in English Rye Grass (Khabbazan
et al. 2019), wheat (Harfenmeister et al. 2019), and rape, corn, and wheat (Vreugden-
hil et al. 2018). Lastly, the land cover can be roughly classified using NDVI values
(Hansen et al. 2000; Huete 1997; Pettorelli et al. 2005) as well as the radar backscatter
(Balzter et al. 2015; Mahdianpari et al. 2017).

3.1.2 Relationship Between Measurements of Optical VIs and Radar
Backscatter

A relationship between NDVI and SAR backscatter values of Sentinel-1’s C-band data
is shown for croplands in Central African (Ruciński et al. 2023), for maize in Spain
(Alvarez-Mozos et al. 2021), for barley and maize in France (Veloso et al. 2017), for
different crops in Italy (Mastro et al. 2023), for barley, wheat, grassland, and maize in
Germany (Holtgrave et al. 2020), and multiple crops in India (Periasamy 2018). The
relationship using C-band data of RADARSAT, another SAR satellite, is shown for
maize and onions (Moran et al. 2012) or canola in Canada (Jiao et al. 2018) as well as
with X-band data for herbaceous crops like maize and alfalfa in Italy (Capodici et al.
2013) and carrots in Austria (Segalini et al. 2014). Yet, not only for croplands this
NDVI–SAR backscatter relationship was found, but also for grasslands and meadows
(Stendardi et al. 2019; Abdel-Hamid et al. 2020; Wang et al. 2013) and forests (Frison
et al. 2018).

Next to the SAR backscatter, the interferometric coherence can also be related to the
NDVI. This relationship is investigated in two studies, both finding a high correlation
for croplands, especially when a short temporal baseline is used (Villarroya-Carpio
et al. 2022; Villarroya-Carpio et al. 2024).

While numerous studies have demonstrated a relationship, they typically investigate
only a single study area without comparing it to other regions with different climates
or crops. Additionally, these studies usually rely on data from a single sensor with a
single frequency, preventing comparisons between different bands to identify the
most suitable one. The investigation of a single SAR frequency in each of these studies
is driven by two factors: the optimal wavelength, which determines the depth of
penetration into the vegetation canopy, and the availability of data at a particular
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wavelength. Moreover, most research has focused on C-band and occasionally X-band
data, but investigations for S- and L-band data were not carried out. For S-band data,
this is mainly due to the limited number of deployed systems using this frequency,
with NovaSAR-1 currently being the only one with public data access. However, the
anticipated launch of NISAR (the NASA-ISRO Synthetic Aperture Radar), featuring
both S- and L-band SAR sensors, will dramatically increase data availability and
foster further research.

3.2 Estimation of NDVI Values Using SAR Backscatter Data

Having established a link between NDVI and radar backscatter values, the next
logical step is to focus on methodologies aimed at estimating NDVI values using
SAR data. A similar task is the reconstruction of cloud-contaminated optical imagery
aided by SAR data. But while for that task the reflectance values of all spectral bands
have to be estimated, the translation of SAR into NDVI data requires only estimating
a single value per pixel. Importantly, NDVI estimation must be precise, whereas
cloud removal often aims merely to create images suitable for visual analysis.

3.2.1 Machine Learning Methods

Simple approaches for NDVI estimation from SAR data use machine learning models
that operate on individual pixels, disregarding temporal or spatial context. An
example model are random forest (RF) regressors, which are for example applied
to areas in Brazil (Filgueiras et al. 2019), fields in India (Agrawal et al. 2022), or
to forested regions in the Czech Republic (Paluba et al. 2023). Another example is
the work by Chen et al. (2023b), who additionally include weather data and apply
this method successfully to Alfalfa fields in the United States of America. A slightly
different approach is used by Pelta et al. (2022): to fill gaps in the NDVI imagery of a
Sentinel-2 tile, a RF model is trained using the SAR-NDVI relationship of this tile’s
data of the last year. Santos et al. (2022) conduct a comparison for this task between
an RF and two other machine learning models for an area in Brazil and find the RF
to perform best. Instead of using only a single SAR frequency, Lasko (2022) used
C- and L-band simultaneously to successfully estimate NDVI and the normalized
difference water index (NDWI) used for water body detection (cf. Equation 2.7).

3.2.2 Deep Learning Methods

Multiple studies employed deep learning methods instead of the simpler pixel- or
field-level machine learning approaches. One of the earliest works is done by Scarpa
et al. (2018), who use a small convolutional neural network (CNN) for a small area
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in Burkina Faso, Africa, with decent results. Instead of a supervised CNN training,
self-supervised generative adversarial networks (GANs) can also be utilized, as
done for areas in India (Ramathilagam et al. 2023) or using the global SEN12MS
dataset (Soglia et al. 2023). The use of another generative deep learning architecture,
diffusion models, is demonstrated by Ettari et al. (2024) for SAR-to-NDVI translation,
but without a thorough evaluation.

All of the presented machine and deep learning models are only applicable to very
limited areas, as their training data was limited to single regions. With the datasets
confined to specific regions, capturing limited types of land covers, crops, and cli-
mates, these models lack generalizability and cannot be applied globally.

3.3 Creating Dense NDVI Time Series Using SAR Data

To create an NDVI time series without cloud-induced gaps, multiple approaches
were developed and evaluated.

Traditional techniques involve simple linear interpolation and filtering methods
(Chen et al. 2004), or leveraging multi-year time series data to fill gaps (Li et al.
2021). These methods are efficient for short gaps and long-term trends but strug-
gle in scenarios demanding high temporal resolution, such as dynamic cropland
monitoring.

Sensor fusion methods can combine data from multiple optical sensors. When both
sensors have comparable resolutions and characteristics, this is straightforward and
consists of matching and harmonizing the reflectance values to ensure consistent
spectral information resulting in a higher temporal resolution. One prominent ex-
ample is the Harmonized Landsat and Sentinel-2 product (Claverie et al. 2018). If
however, the spatial resolution is wildly different, more complex spatio-temporal
fusion methods have to be applied, combining coarse-resolution frequent imagery
with high-resolution, but less frequent imagery (Gao et al. 2006; Wang et al. 2018;
Chen et al. 2021). These approaches can work well but fail in regions with persistent
cloud cover, where no cloud-free optical imagery can be acquired for weeks.

Instead of using optical time series, data from SAR sensors can be used. They offer a
promising alternative due to their cloud-penetrating capabilities and their ability to
penetrate into the vegetation, allowing interaction with a larger portion of the vege-
tation cover. This can be useful, for example, in obtaining information on vegetation
biomass where optical sensors can only use data from the topmost vegetation surface.
SAR time series have been employed in various studies for cropmonitoring (McNairn
et al. 2016; Liu et al. 2019; Hosseini et al. 2019) or forest biomass retrieval (Mermoz
et al. 2015; Pichierri et al. 2018), yet these approaches have multiple drawbacks. Ad-
ditional research is needed to relate radar data to plant properties, as existing studies
linking them to optical data are not applicable. Furthermore, SAR data requires more
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complex processing and more expertise than optical data. Lastly, there is a lack of
long-term data archives, while the Landsat archive contains continuous optical data
for decades.

To exploit the strengths of both sensor types, optical and SAR ones, recent studies
have explored translating SAR data to optical or NDVI data. Notable works include
sequence-to-sequence models translating SAR time series to NDVI time series (Zhao
et al. 2020; Garioud et al. 2021). However, they are limited to specific regions and don’t
show, whether they are transferable to other regions. Additionally, the proximity of
training and test pixels is likely leading to insufficient understanding of the model’s
real performance and an overestimated test performance. Furthermore, one work
demands a common temporal grid which hinders the easy use for other regions with
different revisit times of the used sensors. In addition, data from field polygons must
be averaged for the method to work, making field polygons a necessity. Another
interestingwork translates SARbackscatter toNDVI values of small polygons (< 1ha)
and utilizes the prediction uncertainty for the fusion with the sparse optical NDVI
time series (Chen et al. 2023a).

Although the existing research has achieved notable advances in the utilization of
both optical and SAR data for the generation of NDVI time series, significant gaps in
the literature remain unaddressed. Most notably, there is a lack of methodologies that
effectively integrate time series of different modalities and sensors using adaptable
deep learning models. Moreover, previous studies have predominantly focused on
region-specific applications, thereby failing to develop models that are universally
applicable across diverse geographic and environmental conditions.

3.4 Spatio-Temporal Methods

In the previous two sections, the cited studies utilize either single pixel values, spatial
context, or temporal context to estimate the NDVI. However, it is also possible to
simultaneously exploit both spatial and temporal contexts for more accurate NDVI
estimation. This would enable exploiting the full potential of the existing data at the
cost of a higher data requirement, more processing power needed to train models,
and a more complicated deployment. One of the few studies using both spatial and
temporal correlations is done by Mao et al. (2023) to reconstruct cloud-contaminated
NDVI imagery. Another study – not targeting the NDVI but instead creating a
biomass proxy – exploits the temporal characteristics of Sentinel-1 data and the
spatial structure of Sentinel-2 NDVI imagery for the final product (Burger et al. 2024).
The little amount of studies show, that further research is needed in this regard.
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3.5 Remote Sensing Datasets Including SAR and Optical
Data

Multiple large datasets with different characteristics and foci were published con-
taining both optical and SAR imagery. One of the first global, large-scale datasets
is SEN12MS (Schmitt et al. 2019b). In that dataset, optical and SAR images are
included, originating from the same season for each area. This entails, that they
can be acquired up to three months apart from each other. BigEarthNet is a similar
dataset, but contains imagery only for Europe and not globally (Sumbul et al. 2019).
Three other datasets are aimed at cloud removal tasks: CloudSEN12, SEN12MS-CR,
and SEN12MS-CR-TS (Aybar et al. 2022; Meraner et al. 2020; Ebel et al. 2022). They
contain either paired imagery of a single or multiple dates, but all of them include
clouds, rendering them incompatible with SAR-to-NDVI translation. In conclusion,
no global dataset is available containing cloud-free optical imagery and SAR imagery
of the same date for each area.

3.6 Contributions of This Thesis

The previous sections highlighted a strong research interest in understanding the re-
lationship between SAR backscatter and NDVI. Additionally, numerous approaches
strive to enhance vegetationmonitoring and estimateNDVI values from SARbackscat-
ter data. However, several research gaps exist, which this thesis aims to close. The
key contributions of this dissertation are:

1. a globally applicable model to estimate NDVI images from SAR imagery,
2. an approach to fuse sparse optical NDVI time series with dense SAR-estimated

NDVI time series,
3. the presentation of a global, balanced dataset of paired Sentinel-1 SAR and

Sentinel-2 optical data of the same date, called SEN12TP, and
4. the investigation of the SAR–NDVI relationship for S-band SAR data as well as a

comparison of this relationship between different SAR frequencies for multiple
regions.

The foremost contribution of this thesis is advancing the estimation of NDVI images
from SAR data. For this task, a globally applicable model is presented and thoroughly
evaluated. This universal model can be applied to all areas of the world without the
need for any fine-tuning to adapt it to a specific region. This advancement is made
possible by the novel dataset SEN12TP (Sentinel-1 and -2 images, timely paired),
which is presented in this thesis. The SEN12TP dataset is unique as it consists of
SAR and optical image acquisitions from the same day. Thereby, a sophisticated
sampling strategy ensures a balanced and global distribution of the images, enabling
an accurate translation from radar to optical data regardless of the location.
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The second major contribution is a novel approach for generating dense NDVI time
series by integrating sparse optical NDVI time series with dense SAR-estimated NDVI
time series using an RNN architecture. This fusion technique leverages the spatial
context provided by SAR-derived NDVI values to produce dense NDVI time series.
The innovation of this approach is twofold: it demonstrates the flexible fusion of
earth observation time series data from diverse sources and highlights the potential
for global application.

The final contribution is the analysis of the SAR–VI relationship. This thesis will
be the first to link NDVI and S-band backscatter data. Additionally, for three other
SAR frequencies the SAR–VI relationship is analyzed and compared for three study
areas with different crop types to provide a comprehensive insight into the spatial
applicability and performance of SAR-based vegetation monitoring.
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4 Exploration of the SAR–NDVI
Relationship

What You’ll Learn This chapter explores the relationship between SAR
backscatter and NDVI values for three diverse agricultural study areas with a
focus on S- and C-band SAR data, but also examining L- and X-band data.
Based on This chapter’s material originates from the article “Comparing the
relationship between NDVI and SAR backscatter across different frequency
bands in agricultural areas” published in Remote Sensing of Environment
(Roßberg et al. 2025).

Translating SAR backscatter to NDVI values presents a promising approach for
enhancing vegetation monitoring. This method retains the use of the widely adopted
and thoroughly researched NDVI while mitigating data gaps caused by cloud cover
through the deployment of weather-independent SAR data. The foundation of this
translation lies in establishing a relationship between SAR backscatter and NDVI
values. Previous studies have explored this relationship (cf. Section 3.1), but typically
within single regions characterized by similar land cover, using only a single SAR
frequency. Furthermore, no prior research has investigated this relationship using
S-band SAR data. This chapter aims to fill this research gap and compares the
SAR–NDVI relationship across different regions, agricultural practices, and data of
multiple SAR sensors operating at different frequencies including S-band data.

For this extensive analysis, three study areas are chosen located in Australia, South
America, and South EastAsia. They vary in the grown crops and agricultural practices
and are described in detail in Section 4.1. For all these areas, C- and S-band data from
the Sentinel-1 and NovaSAR-1 sensors are acquired and compared with Sentinel-2
derived NDVI values. For the third study area, additionally L- and X-band data from
the SAOCOM and Cosmo-SkyMed sensors could be acquired. Using this data, the
relationship between SAR and NDVI values is analyzed in Section 4.3 and afterwards
discussed in Section 4.4.
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4.1 Study Sites and Used Data

4.1.1 Study Areas

To gain a broad understanding of the relationship between SAR backscatter and
NDVI values, three different areas with distinct climates and agricultural practices
were selected: near the cities of Boort in Australia and Bell Ville in Argentina, and an
area in the Mekong River Delta in Vietnam. Their location on the globe is shown in
Figure 4.1. The choice of study areas was restricted due to the limited availability of
suitable S-band NovaSAR-1 data. Nevertheless, these three regions offer a variety of
climates and crop types, providing a robust basis for analysis. Mainly Sentinel-1 C-
band and NovaSAR-1 S-band data are used, but for one study area COSMO-SkyMed
X-band and SAOCOM L-band data are also used. The study areas are described in
detail in the following sections.

Figure 4.1: Location of the three investigated study regions.

Boort (Australia)

Boort, located in Australia, is characterized by a cold semi-arid climate (BSk of the
Köppen-Geiger classification) with an average annual temperature of 15.6 °C and
371mm of precipitation. The climate features warm summers from December to
February with average temperatures ranging from 20 to 22 °C and low precipitation
(20mm/month), and cooler winters from June to August with temperatures around
8 to 9 °C and higher precipitation (40mm/month) (Karger et al. 2017; Karger et al.
2021).

The region’s elevation varies from 60 to 110 meters, with mild elevation changes
and slopes of less than 1°. The primary crops include wheat (43 %), barley (25 %),
and canola (17 %), as well as pasture (13.2 %) (Australian Bureau of Statistics 2024).
Wheat and barley are typically planted from April to June and harvested between
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October and January, while canola is planted in April and harvested from mid-
October (U.S. Department of Agriculture 2021).

Three NovaSAR-1 acquisitions were selected for this area, two during the winter
growing season (2021-08-07 and 2022-06-01) and a third on 2022-01-20 during the
drier summer without much green vegetation. All three images were acquired in
ScanSARmode with three polarizations VV, HH, and HV. They have slightly different
resolutions of 35m and 30m for the summer andwinter acquisitions, respectively, and
also different incidence angles ranging from 15.1° to 28.5°, as theywere acquired from
different orbits. For this area, CSIRO provided analysis-ready data with radiometric
terrain correction. The optical and Sentinel-1 C-band SAR images are acquired on
approximately the same days as the NovaSAR-1 data, with a maximum difference
of three days. The exact acquisition dates of all three sensors, together with the
incidence angles and, for NovaSAR, the ScanSAR mode resolution used, are detailed
in Table 4.1.

NovaSAR Sentinel-1 Sentinel-2

date resolution angle date angle date

2021-08-07 35m 15°-22° 2021-08-06 34°-38° 2021-08-08
2022-01-20 30m 24°-29° 2022-01-21 34°-38° 2022-01-20
2022-06-01 35m 15°-22° 2022-06-02 34°-38° 2022-06-04

Table 4.1: Overview of the used SAR and optical scenes used for the Boort study
area in Australia. The incidence angle of each scene is given for both
NovaSAR-1 and Sentinel-1. Additionally, the ScanSAR mode resolution of
each NovaSAR-1 scene is listed.

Bell Ville (Argentina)

Bell Ville, located in Argentina, experiences a monsoon-influenced humid subtropical
climate (Köppen-Geiger classification: Cwa) with an average temperature of 17.4 °C
and 952mm of annual precipitation. The region hasmildwinters from June to August
with temperatures of 10 °C to 12 °C and minimal precipitation (13–17mm/month),
and hot summers from December to February with average temperatures of 23–24 °C
and significant precipitation (120–160mm/month). In the UnionDepartment, whose
capital Bell Ville is, mainly soy (46 %), corn (29 %), and wheat (16 %) are cultivated
(Dirección de Estimaciones Agrícolas 2023). The agricultural season runs from
November to May, with soy planted from mid-November to mid-January, corn from
mid-September to November, and wheat from mid-May to July, with corresponding
harvest seasons of mid-March to mid-June for soy and corn, and mid-November
to mid-January for wheat (U.S. Department of Agriculture 2024). The region is
relatively flat, with elevations ranging from 115 to 140 meters.
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Six NovaSAR-1 acquisitions were selected for further analysis. They are acquired
in the 20m ScanSAR mode with two polarizations, HH and HV, and have incidence
angles between 22° and 31°. They are provided by CSIRO in ScanSAR detected (SCD)
format. The corresponding Sentinel-1 and -2 images are acquired within three days
of the NovaSAR-1 acquisition, with only two exceptions, where Sentinel-1 data are
acquired five and six days after NovaSAR-1 and Sentinel-2, respectively. All scenes
were acquired between December 2023 and April 2024, the main growing season for
this area. The exact acquisition times of all three sensors together with the incidence
angle are given in Table 4.2.

NovaSAR Sentinel-1 Sentinel-2

date angle date angle date

2023-12-24 27–30° 2023-12-20 35–37° 2023-12-25
2024-01-02 29–31° 2024-01-01 35–37° 2024-01-04
2024-01-19 24–27° 2024-01-13 35–37° 2024-01-19
2024-02-16 29–30° 2024-02-18 35–37° 2024-02-13
2024-03-03 22–24° 2024-03-01 35–37° 2024-03-04
2024-03-25 24–27° 2024-03-25 35–37° 2024-03-24

Table 4.2: Overview of the acquisition dates of the three sensors utilized for the Bell
Ville study area in Argentina. The incidence angle is given for the SAR
data.

Mekong River Delta (Vietnam)

The third study area is located in the Mekong River Delta in southern Vietnam in
the province of Đồng Tháp. It is almost entirely covered with rice fields, as the
Mekong Delta produces 56 % of Vietnam’s rice (U.S. Department of Agriculture
2017). The terrain is extremely flat, with elevations ranging from 0 to 10 meters above
sea level. The climate of the region is predominantly monsoonal (Köppen-Geiger
classification As and Aw), with an average annual precipitation of 1600mm. The
rainy season occurs from May to November, with more than 150mm of rain per
month, while the dry season from December to April has less than 50mm of rain
per month. Temperatures remain fairly constant throughout the year, ranging from
26–29 °C. Rice is cultivated up to three times per year, with our study period covering
the summer-autumn (July 1 to January 31) and autumn-winter (March 1 to August
31) seasons (Clauss et al. 2018).

Two dates were chosen in March and August 2023. For these dates, SAR data could
be acquired at four frequencies: NovaSAR-1 S-band, SAOCOM L-band, Sentinel-1
C-band, and Cosmo-SkyMed Second Generation (CSG) X-band data. Only CSG data
could not be acquired on both dates, but only for August 2023. Data from all sensors
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are acquired no more than three days apart from the Sentinel-2 optical acquisition.
For Sentinel-1, both ascending and descending orbits could be used. Similarly, two
SAOCOM acquisitions were available in August 2023.

The NovaSAR-1 data are acquired in 20m resolution dual-polarized ScanSAR mode
with HH and HV polarization and are provided by CSIRO in SCD format. The
orbit state and position are inaccurate for acquisition on 2023-08-06, resulting in a
geolocation error of several kilometers, which was manually corrected after data
processing. This leads to small errors in the backscatter, as the angle of incidence
is off by 0.2°, as well as errors where the terrain is not flat. Since most of the terrain
is very flat, this does not affect the data analysis and results. SAOCOM and CSG
data were acquired in stripmap mode with HH and HV polarization, Sentinel-1 in
interferometric wide swath (IW) mode. All three SAOCOM acquisitions were not
perfectly geolocated but were off by 10–50m, which was corrected manually.

For all five sensors, the exact acquisition times as well as the incidence angles of the
SAR scenes are given in Table 4.3.

NovaSAR-1 Sentinel-1 SAOCOM CSG Sentinel-2

date angle date angle date angle date angle date

2023-03-05 25–27° 2023-03-05 38–41° 2023-03-03 21–23° 2023-03-06
2023-03-06 40–43° 2023-03-06 29–31°

2023-08-08 13–15° 2023-08-08 38–41° 2023-08-05 29–31° 2023-08-06 44–46° 2023-08-08
2023-08-09 40–43°

Table 4.3: Overview of the acquisition dates for the Mekong River Delta study area
in Vietnam along with the incidence angle for all SAR scenes.

4.1.2 SAR Data

This study utilizes SAR data from multiple sensors with different frequencies and
imaging modes.

NovaSAR-1 is a space-borne S-band SAR system launched in 2018 and operated by
a consortium of various space agencies and partners (Held et al. 2019). Australia’s
Commonwealth Scientific and Industrial Research Organisation (CSIRO) provides
data free of charge on their data portal1.

Sentinel-1 is a global monitoring mission by the European Space Agency (ESA)
utilizing C-band SAR to provide continuous data of the Earth’s surface (Torres et al.
2012). The Sentinel-1 data used in this study were captured in IW mode with VV
and VH polarizations with a raw slant range resolution of 3 × 22m (Rg × Az). The
Level-1 Ground Range Detected (GRD) data were downloaded from the Copernicus
1https://data.novasar.csiro.au/
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Browser data platform2, which are already detected, multi-looked, and projected to
the ground range.

The Argentine SAOCOM1A and 1B satellites are part of the L-band SAR constellation,
which is overseen by theNational Space Activities Commission (CONAE). The single-
look complex (SLC) data utilized in this study is taken in dual-polarized stripmap
mode with a ground resolution of 10m × 5m (Rg × Az) and includes HH and HV
polarizations.

The fourth sensor used is from the second-generation COSMO-SkyMed (CSG) satel-
lite constellation, which carries X-band SAR systems and is operated by the Italian
Space Agency (ASI). Images are taken in dual-polarized (HH and HV) stripmap
mode with a resolution of 3m × 3m. The data are provided in the Level-1B for-
mat, which is already focused, amplitude-detected, radiometrically equalized, and
represented in ground projection.

An overview of the data from all sensors including the imaging mode and data
product for each study area is provided in Table 4.4. Upon visualizing an example
image of each SAR sensor the resolution differences of the sensors become evident.
CSG and SAOCOM demonstrate superior resolution compared to Sentinel-1, which
still exhibits a better resolution compared to NovaSAR-1 data. For each sensor, the
data over the Mekong River Delta of a single date together with a zoomed-in detail
view is displayed in Figure 4.2.

Table 4.4: Overview of SAR sensors utilized, along with their imaging parameters
and data availability for each of the three study areas Boort (B), Bell Ville
(BV), and Mekong River Delta (MRD).

Fre- Wave- Resolution
quency length (Rg× Az) data pixel spacing study region

Sensor Band (GHz) (cm) Image mode Polarization (m× m) product (m× m) B BV MRD

NovaSAR-1 S 3.200 9.4 cm ScanSAR HH,HV,VV 30×30, 35×35 ARD 22.3×22.3 x - -
NovaSAR-1 S 3.200 9.4 cm ScanSAR HH,HV 20×20 CSD 10×10 - x x
Sentinel-1 C 5.405 5.5 cm IW VH,VV 20×22 GRD 10×10 x x x
SAOCOM L 1.275 23.5 cm Stripmap HH,HV 3.75×3.23 L1A 2.4×6.95 - - x
CSG X 9.600 3.1 cm Stripmap HH,HV 3×3 DGM_B 1.25×1.25 - - x

4.1.3 Optical data

The optical data utilized in this study is from Sentinel-2, a global monitoring mission
by ESA and provides multispectral imagery with a 10-meter resolution. Captured
spectral data includes visible, near-infrared, and shortwave infrared light with wave-
lengths from 443 to 2200nm. Surface reflectance data (Level-2A) are used in this
study, which are processed using Sen2Cor by ESA. In addition to providing surface

2https://browser.dataspace.copernicus.eu/
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(a) Sentinel-1
2024-08-09

(b) NovaSAR
2023-08-06

(c) CSG
2023-08-06

(d) SAOCOM
2023-08-05

Figure 4.2: Visualization of the SAR data for the Mekong River Delta study area. A
zoomed-in detail view is shown to illustrate the different image resolu-
tions. The polarizations of each image are displayed in the red and green
channels of the image, and the acquisition date is given for each image.

reflectance data free from atmospheric effects, Sen2Cor also generates a scene clas-
sification layer (SCL) scene classification layer (SCL) that annotates, among other
things, cirrus and other clouds, their shadows, and water surfaces. An example
visualization of the optical data for each study area is given in Figure 4.3.

4.1.4 Field outlines

The outlines of the agricultural fields in all three study regions were delineated
manually using data from the Sentinel-2 satellite as well as Google aerial imagery.
It was ascertained that all fields exhibit a uniform NDVI across all dates, as well as
a homogeneous appearance in the SAR imagery. To avoid mixed pixels at the field
boundaries, all polygons are designed to remain entirely within the field edges, with
a buffer zone around the edge.

In total, around 200 fields were delineated for each of the three study areas. The
Boort study area encompasses 174 fields, the Bell Ville area 204, and the Mekong
River Delta region 208. Because of different agricultural practices, the field sizes
change substantially between the study regions: Both Boort and Bell Ville feature
larger fields with a median size of 16.4 hectares and 30 hectares, respectively. In the
case of Boort, one-third of the fields are less than 10 hectares in size, another third
are between 10 and 40 hectares, and the remainder are up to 120 hectares in size. In
the Bell Ville area, field sizes are more homogeneous, with 60 % of fields measuring
between 10 and 40 hectares. In contrast, the fields in the Mekong River Delta are
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4 Exploration of the SAR–NDVI Relationship

(a) Boort (Australia),
2021-08-08

(b) Bell Ville (Argentina),
2024-01-19

(c) Mekong River Delta (Viet-
nam), 2023-03-06

Figure 4.3: Sentinel-2 RGB visualization of the three study areas overlaid with the
field outlines.

relatively small, with 85 % of them being smaller than 2 hectares and almost all of
them being smaller than 4 hectares. For all three regions, the labeled polygons are
shown in Figure 4.3, superimposed on the Sentinel-2 RGB image.

4.2 Data Processing and Analysis

In the following sections, the prerequisites for the data analysis are detailed. This
includes SAR and optical data processing as well as a description of the data analysis
methods.

4.2.1 SAR Data Processing

The SAR data used in this study is sourced from different sensors and each sensor
needs different processing steps to yield data suitable for analysis.

For the NovaSAR-1 data, both SCD and analysis ready data (ARD) products were
utilized. To the SCD data, we applied terrain correction and calibration in order
to convert the digital numbers (DN) to intensity values. The ARD products that
were utilized were already multi-looked, geocoded, and had undergone radiometric
terrain flattening to 𝛾∘ backscatter values. Accordingly, the ARD intensity data were
solely transformed to a logarithmic scale. It should be noted that neither the SCD
nor the ARD products include any corrections for antenna patterns or scalloping
effects.

The processing of Sentinel-1 data was performed in a standard manner: precise
orbit application, thermal and border noise removal, calibration, and geocoding.
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4.2 Data Processing and Analysis

The processing chain for SAOCOM data included calibration to intensity values,
multi-looking with 1 × 3 looks in range × azimuth, conversion from slant range to
ground range, and geocoding. CSG data processing involved 3 × 3 multi-looking
and geocoding. Sentinel-1, SAOCOM and CSG data are normalized to 𝜎∘ backscatter
coefficients.

For processing the Sentinel toolbox SNAP was employed. Geocoding was performed
using the Copernicus 30-meter digital elevation model (DEM). All data were con-
verted to intensity values on a logarithmic scale, expressed in decibels (dB).

Given that all sensors provided both cross- and co-polarized data, the cross-ratio can
be calculated by dividing the co-polarized data by the cross-polarized data, with both
polarizations expressed in a linear scale (cf. Section 2.3.3). The combination of both
polarizations into a single value enables a joint analysis of both polarizations andmay
potentially enhance the strength of the relationship. As the sensors provide different
polarizations, different cross-ratios can be calculated: HH⁄HV, VV⁄HV, or VV⁄VH.

In preliminary experiments, the potential of the radar vegetation index (RVI, see
Equations 2.12 and 2.13) was also investigated. However, no substantial improve-
ments could be identified in comparison to single polarizations or the cross-ratio and
consequently, the RVI was not employed in this study.

The geolocation accuracy of several SAOCOM andNovaSAR-1 scenes was insufficient,
which required a manual correction. As this was done solely on the processed
data, minor inaccuracies were introduced during the SAR processing due to the
mislocated DEM and potentially erroneous incidence angles. However, these errors
are sufficiently small to not affect the results. The geolocation accuracy of NovaSAR-1
is particularly poor when the satellite state vector is based on two-line element (TLE)
data, as opposed to the more accurate GPS. The use of ground control points has
the potential to enhance the SAR orthorectification, as demonstrated in Joshi et al.
(2022), but was not used in this study due to the manual effort required for accurately
acquiring them.

4.2.2 Optical Data Processing

The optical data from Sentinel-2 and the derived NDVI are used to investigate the
relationship with SAR backscatter data. The optical data comes with a classification
map, the scene classification layer (SCL), which contains information about the
depicted object or surface of each pixel like clouds or snow. This mask is used to mask
cirrus and other clouds as well as their shadows. Consequently, only those pixels
classified as either vegetated or non-vegetated are kept. The SCL mask is upsampled
from a resolution of 20m to 10m using nearest neighbor upsampling, as the used
multi-spectral bands have a resolution of 10m.
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4 Exploration of the SAR–NDVI Relationship

The NDVI is calculated using the red (R) and infrared (NIR) bands, specifically
Sentinel-2 bands B4 and B8, using Equation 2.6.

In the Mekong River Delta, the rice paddy fields are flooded at the beginning of the
season. As the classification of water in the SCL was insufficient in detecting this
flooding, we additionally calculate the modified normalized difference water index
(mNDWI) (cf. Section 2.3.2). The mNDWI utilizes green and short wave infrared
spectral bands, for which we chose Sentinel-2 bands B3 and B11, respectively. It is
calculated according to Equation 2.8. As Sentinel-2’s SWIR channel B11 is acquired at
a resolution of 20m, we upsampled it to 10m resolution using bilinear interpolation.
During data analysis, the mNDWI value is used to filter out fields that are potentially
flooded, as described in the following Section 4.2.3.

4.2.3 Data Analysis

For this study, a field-wise approach was employed for data analysis to assess the
relationship between SAR backscatter and NDVI values. A preliminary pixel-wise
analysis did not show a significant relationship between them, which is likely due
to the strong influence of speckle. This is also described in Roßberg et al. (2024a),
where a pixel-wise analysis yielded inconclusive results.

The delineated field polygons were used to extract the median values from the SAR
and optical raster images. Taking the average mitigates the impact of speckle and
noise and enhances the reliability of the data. In the case of the Mekong River Delta
study area, flooded fields with an average mNDWI above 0.2 were excluded to ensure
that only relevant agricultural fields were analyzed.

To quantify the linear relationship between the SAR backscatter and NDVI values,
Pearson’s 𝜌 correlation coefficient was employed (cf. Section 2.5.4). As Pearson’s 𝜌
is sensitive to outliers, extreme values were masked in the analysis. If a field has a
mean NDVI or backscatter within the top or bottom 1 % of all fields, it is excluded.
The calculation of 𝜌 was performed using the Python package SciPy.

Scatter plots were generated to visualize the relationship between backscatter and
NDVI values. An ideal scenario would be a 1:1 mapping where each backscatter
value directly corresponds to an NDVI value, which would imply a perfect linear
relationship. This visualization aids in assessing the potential for direct translation of
backscatter data to NDVI values, which is crucial for evaluating the suitability of SAR
data, particularly at the S-band, for vegetation monitoring and NDVI estimation.

4.3 Observed SAR–NDVI-Relationship

The results of each study area are presented in the following subsections.
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4.3 Observed SAR–NDVI-Relationship

4.3.1 Boort (Australia)

The NDVI values for all fields fall between 0.2 and 1, indicating that the data encom-
pass all vegetative stages, from barren to fully grown fields. Values around 0.25 and
0.9 are more common than values situated between these distribution peaks.

Both NovaSAR-1 and Sentinel-1 backscatter distributions are approximately bell-
shaped but differ in magnitude. Co-polarized backscatter values exceed cross-
polarized ones by 10dB.

A positive relationship between backscatter values and NDVI is evident for NovaSAR-
1 cross-polarized HV data. No discernible relationship is evident between the
backscatter values and the NDVI for both co-polarized HH and VV data. This
can be numerically verified by the moderately high 𝜌 of 0.54 for HV, but the negligible
low ones of 0.0 and -0.14 for HH and VV, respectively. Using the cross-ratio instead
of single polarization does increase the relationship with NDVI values mildly for
the VV⁄HV cross-ratio to 𝜌 = −0.64, but is in the same range for the HH⁄HV cross-ratio
with 𝜌 = −0.55. Visually, a better relationship with NDVI values of the cross-ratio
data compared to the HV polarization can not be clearly attested. The local incidence
angle influences the backscatter values with higher backscatter occurring for lower
incidence angles. This effect does not occur for the cross-ratio. The scatter plots for
all three NovaSAR-1 polarizations relating them to Sentinel-2 NDVI are presented in
Figure 4.4.

The results for the Sentinel-1 backscatter data are analogous to those observed for
the NovaSAR-1 backscatter. Cross-polarized VH backscatter demonstrates a positive
correlation with NDVI values, while no discernible relationship is evident in the
case of co-polarized VV data. Once more, this yields a moderately high 𝜌 value
of 0.52 for VH polarization, but a 𝜌 of zero for VV-polarized data. However, in the
scatter plots data fromwinter and summer is easily distinguishable, because in winter
predominantly low NDVI values occur, whereas in summer all NDVI values occur.
This seasonality is also apparent in the backscatter distributions, for instance, the
VH backscatter values range from -40 to −25dB for fields in winter with low NDVI,
whereas almost all fields in summer have a VH backscatter > −25dB. This seasonal
pattern is not discernible for NovaSAR; this may be attributed to the reduced number
of data points, given that on that winter date the NovaSAR-1 acquisition only partially
overlaps with the study area.

As with the NovaSAR-1 data, the cross-ratio results in an improvement in the cor-
relation coefficient, 𝜌, for Sentinel-1 data, with a value of 0.52 for VH polarization
and -0.74 for the cross-ratio VV⁄VH. While this effect is not readily apparent in visual
inspection, it may be present, as evidenced by the scatterplots in Figure 4.5 that
compare NDVI data with VH and VV polarizations and the cross-ratio. However,
the overall distribution of the cross-ratio is comparable to that of the VH polarized
data mirrored at the y-axis.
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(c) VV polarization
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(d) cross-ratio HH⁄HV
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(e) cross-ratio VV⁄HV

Figure 4.4: Comparison of NDVI and NovaSAR-1 data for the Boort study area in
Australia. All three polarizations HH, HV, VV, and the two cross-ratios
VV⁄HV and HH⁄HV are given. The local incidence angle of the SAR data is
indicated by different colors.
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Figure 4.5: Comparison ofNDVI and Sentinel-1 data for the two polarizations VV, VH,
as well as the cross-ratio VV⁄VH for the Boort study area in Australia. The
date on which the Sentinel-1 data were acquired is indicated by different
colors. The incidence angle of all samples is between 34 to 38°.
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4 Exploration of the SAR–NDVI Relationship

Sensor Data 𝜌 𝑁

NovaSAR

HV 0.54 (366)
HH 0.00 (366)
VV -0.14 (366)
HH⁄HV -0.55 (366)
VV⁄HV -0.64 (366)

Sentinel-1
VV 0.00 (455)
VH 0.52 (455)
VV⁄VH -0.74 (457)

Table 4.5: Relationship between NDVI values and SAR data for the study area Boort
(Australia). Next to the polarization, the cross-ratios formed from them is
used. 𝜌 denotes the Pearson’s correlation coefficient and 𝑁 the number of
samples.

4.3.2 Bell Ville (Argentina)

In general, the findings for this study area are comparable to those of Boort, Australia,
presented in the previous Section 4.3.1. For NovaSAR’s HV data, a positive rela-
tionship is evident, whereby an increase in cross-polarized backscatter corresponds
with an increase in NDVI values. Furthermore, the HH S-band data exhibits a weak
positive correlation with the NDVI. This is reflected in the correlation coefficients,
with 𝜌 = 0.68 and 𝜌 = 0.35 for HV and HH polarized data, respectively. For the
cross-ratio HH⁄HV 𝜌 falls between these two values, with 𝜌 = −0.48. Once more, the
incidence angle, ranging from 22° to 31°, exerts an influence on the backscatter, with
higher backscatter values occurring for lower incidence angles. This is evident from
the scatter plots depicted in Figure 4.6.

The data obtained from the Sentinel-1 satellite appears to exhibit a positive relation-
ship with the NDVI data for both polarizations, similar to the findings observed with
the NovaSAR-1 satellite. The relationship with NDVI values is clear for both cross-
polarized VH and co-polarized VV data. This is illustrated in Figure 4.7. However,
the correlation coefficient for both polarizations is nearly identical with 𝜌 = 0.62 and
𝜌 = 0.68 for VV and VH polarized data, respectively. The cross-ratio VV⁄VH appears to
be unrelated to NDVI values with 𝜌 = −0.10.

The Pearson’s correlation coefficient 𝜌 for both NovaSAR-1 and Sentinel-1 data is
given in Table 4.6.
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(b) HH polarization

Figure 4.6: Comparison of NDVI and NovaSAR-1 data for polarizations HH and HV
for the Bell Ville study area in Argentina. The local incidence angle is
indicated for each data point by its color.

Sensor Data 𝜌 𝑁

NovaSAR
HV 0.68 (706)
HH 0.35 (703)
HH⁄HV -0.48 (704)

Sentinel-1
VV 0.62 (1095)
VH 0.68 (1096)
VV⁄VH -0.10 (1097)

Table 4.6: Relationship between NDVI values and SAR data for the study area Bell
Ville (Argentina). Next to the polarizations, the cross-ratios formed from
them are used. 𝜌 denotes the Pearson’s correlation coefficient and 𝑁 the
number of samples.

4.3.3 Mekong River Delta (Vietnam)

The results of theMekong River Delta study area differ from those of the previous two
regions. The results demonstrate that, in the case of NovaSAR-1 S-band data, the HH
polarized data exhibits a positive correlation with NDVI values, rather than the HV
polarized data. This can be confirmed by the high correlation coefficient for HH data
with 𝜌 = 0.51 compared to 𝜌 = 0.15 for HV data. As observed in the previous two
study regions, the incidence angle influences the backscatter values. The resulting
scatter plots, colored by the local incidence angle, are shown in Figure 4.8.

A similar pattern to NovaSAR-1 data is observable for Sentinel-1 data: co-polarized
VV data exhibits a high negative relationship with NDVI values with 𝜌 = −0.59 but
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Figure 4.7: Comparison of NDVI and Sentinel-1 data for the two polarizations VV
and VH for the Bell Ville study area in Argentina. The incidence angle is
35 to 37°.

cross-polarized data shows no relationship with the NDVI with 𝜌 = −0.02. The cross-
ratio VV⁄VH exhibits a similar relationshipwith theNDVI as theHVpolarized datawith
𝜌 = −0.62. When analyzing the scatter plots in Figure 4.9, the distribution for VHdata
exhibits two regions. The first region encompasses higher NDVI values above 0.25,
where a negative relationship appears to be present. In contrast, a positive relationship
is observed for the second region encompassing NDVI values below 0.25. This can
be verified by calculating 𝜌 separately for fields with NDVI values above and below
0.25. For vegetated fields (NDVI>0.25) a moderate negative relationship is found
with 𝜌 = −0.43, whereas for fields with NDVI<0.25 a weak positive relationship is
found with 𝜌 = 0.32. The relationship between backscatter and NDVI is illustrated
in Figure 4.9.

For COSMO-SkyMed (CSG) X-band data, the cross-pol HV data seems to have
a negative relationship with the NDVI data with 𝜌 = −0.59. In contrast, the co-
polarized HH data exhibits no discernible relationship. As CSG data were only
available for a single date in August the amount of samples and data diversity is
limited which decreases the certainty of the results. Scatterplots of both polarizations
are given in Figure 4.10.

The L-band SAOCOM data represents the fourth investigated SAR frequency and
appears to have no discernible relationship with the NDVI data. All backscatter
values in both HV and HH polarizations occur for all NDVI values. This is shown in
Figure 4.11 and confirmed by correlation coefficients 𝜌 of 0.0 and -0.18 for HH and
HV polarization, respectively. Only the cross-ratio HH⁄HV exhibits a slightly higher 𝜌
of 0.24, indicating a very weak relationship.

An overview of all Pearson’s correlation coefficients of the different sensors, their
polarizations, and cross-ratios is given in Table 4.7.
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Figure 4.8: Relationship between NovaSAR-1 backscatter and NDVI values for the
Mekong River Delta study area in Vietnam. The local incidence angle of
the NovaSAR-1 data is indicated for each data point by its color.
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Figure 4.9: Relationship between Sentinel-1 backscatter and NDVI values for the
Mekong River Delta study area in Vietnam. The Sentinel-1 acquisition
data of each sample is indicated by its color.
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Figure 4.10: Relationship between CSG backscatter and NDVI values for the Mekong
River Delta study area in Vietnam.
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Figure 4.11: Relationship between SAOCOM SAR backscatter and Sentinel-2 NDVI
values for the Mekong River Delta study area in Vietnam. The local
incidence angle of the SAOCOM data is indicated for each data point by
its color.
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Sensor Data 𝜌 𝑁

NovaSAR
HV 0.15 313
HH 0.51 313
CR HH⁄HV 0.51 313

Sentinel-1
VV -0.59 633
VH -0.02 632
VH for NDVI < 0.25 0.32 143
VH for NDVI > 0.25 -0.46 485
VV⁄VH -0.62 629

SAOCOM
HH 0.00 478
HV -0.18 478
HH⁄HV 0.24 479

CSG
HH -0.01 153
HV -0.59 152
HH⁄HV 0.61 152

Table 4.7: Relationship betweenNDVI values and SARdata for the study areaMekong
River Delta (Vietnam). 𝜌 denotes the Pearson’s correlation coefficient
and 𝑁 the number of samples. Next to the polarization, the cross-ratio
formed from them is used. Additionally, for Sentinel-1 cross-pol VH data,
the relationship is given for NDVI values above and below 0.25, because
two distinct relationships are apparent in the scatterplot of the data (cf.
Figure 4.9).
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4 Exploration of the SAR–NDVI Relationship

4.4 Discussion

In the previous section, a relationship betweenNDVI andC- and S-band SARbackscat-
ter and potentially also with X-band data could be shown. No such relationship was
observed in the L-band data.

The results for two of the three areas, Boort (Australia) and Bell Ville (Argentina),
indicate a strong correlation between S- and C-band cross-polarized backscatter and
NDVI. This is to be expected, as the volumetric scattering of vegetation increases with
increasing vegetation volume, which in turn leads to higher cross-polarized responses
(Flores et al. 2019). In Bell Ville, not only cross-polarized but also co-polarized S-
and C-band data exhibited a notable relationship with the NDVI, which may be due
to the different crop types. While broad-leaf crops like soybeans and maize are the
predominant crops in Bell Ville, narrow-leaf crops like wheat and barley are the
primary crops in Boort (cf. Section 4.1.1). The distinct backscatter characteristics
of these two crop types (Macelloni et al. 2001) may be responsible for the different
backscatter–NDVI relationships observed. For instance, one study demonstrated that
the crop height of corn, a broad-leaf crop, exhibits a good relationship with both HH
and HV RADARSAT-2 backscatter. However, for wheat, a narrow-leaf crop, only HV
polarized data demonstrated a significant relationship (Liao et al. 2017).

Contrastingly, the third study area comprising rice paddy fields in Vietnam exhib-
ited distinctive backscatter characteristics that set them apart from the other two
regions. For these fields, co-polarized HH and VV data were related to NDVI, while
cross-polarized HV and VH data were not. It is unclear, why a relationship can be
found only for co-polarized and not cross-polarized data, especially given that other
researchers have identified a relationship between plant parameters and backscatter
for paddy rice. For instance, the cross-polarized backscatter of a ground-based scat-
terometer has been demonstrated to relate well to the leaf area index (LAI), fresh
weight or biomass, and canopy height (Inoue et al. 2002; Jia et al. 2014). Additionally,
RADARSAT-2 backscatter and phenology are linked for rice (Lopez-Sanchez et al.
2014). Another particularity of the cross-polarized VH C-band data is the existence
of two distinct relationships between C-band VH backscatter and NDVI values, one
for NDVI values below and another one for values above 0.25. A possible explanation
for this phenomenon is that low NDVI values, which are likely due to the presence of
water surfaces without much vegetation cover, result in a low backscatter, which is
to be expected given that water acts as a specular surface and mirror, reflecting most
of the signal’s energy away from the sensor. As more of the surface is covered by rice
and not by water, the NDVI as well as the backscatter increase because the surface
becomes less specular. As the NDVI increases above 0.25, a negative relationship
between NDVI and VH backscatter occurs with a VH backscatter decrease for increas-
ing NDVI values. The reason for this behavior is currently unknown. It is similarly
unclear, why these two relationships could not be observed for S-band data. One
potential explanation might be attenuation whereby the vertically polarized waves
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interact strongly with the vertically oriented rice stalks leading to some attenuation. It
remains unclear, why volumetric scattering which leads to a high cross-pol response
and is typically high for dense vegetation, is not the dominant factor in this case.

An unknown factor influencing the result might be the availability of optical im-
agery. In the event that optical data is only available for certain vegetative periods, a
comprehensive analysis cannot be conducted. In particular, if the monsoon period,
which is often accompanied by heavy cloud cover, coincides with the transplanting
of rice and the early growth stages, when the NDVI increases, then no data may
be suitable for analysis. For rice, this presents a more significant challenge, as the
crop develops from seedlings to mature plants in less than 30 days, and the NDVI
increases from approximately zero to nearly one during this period (Onojeghuo
et al. 2018). Capturing this rapid change is difficult due to the frequent cloud cover.
Consequently, only the later vegetative stages can be readily captured with optical
data and analyzed.

The different signs of 𝜌 of S-band HH and C-band VV backscatter indicating posi-
tive and negative relationships can be explained by the geometric properties of the
rice plants. One strong scattering effect for this area with the inundated surface is
double bounce, which typically results in a higher HH response (Flores et al. 2019).
Additionally, the vertical orientation of the rice stems contributes to the higher HH
response relative to the VV one (Oh et al. 2009).

4.4.1 Data Availability and Quality

One problem of the analysis is the availability of suitable data. For cost reasons,
the investigation relied exclusively on archival data. Within these data archives, it
was necessary to identify acquisitions with matching areas and dates. While this
is easy to do for Sentinel-1 data due to it monitoring the whole Earth regularly, all
other sensors only capture data from limited areas, which overlap only by chance.
Therefore, four SAR bands could only be used for one study area. If money were
not a constraint, one solution to this problem could be to task images. This would
further increase the value of the analysis, as a low temporal distance can be assured.
At the same time, there is a risk that optical data will be unavailable due to cloud
cover, which would thwart the entire analysis.

Another issue was the quality of the data provided. Data from two sensors had
an inaccurate geolocalization, and NovaSAR-1 data lacked corrections for antenna
patterns and scalloping. While geolocation errors could be manually corrected, this
was only applied to the geocoded data, not the unprocessed data, resulting in slightly
inaccurate backscatter values. The missing corrections for NovaSAR-1 data were
not addressed. While these shortcomings did not severely limit the analysis, they
nevertheless complicate the utilization of the data and the manual corrections entail
additional work.
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4.4.2 L- and X-band Sensitivity to Vegetation Indices

No discernible relationship was identified between L-band backscatter and NDVI
values. This is unexpected, given that other studies have demonstrated a high sen-
sitivity of L-band data for LAI and total fresh weight (Inoue et al. 2002), which
are in turn related to NDVI (Ryu et al. 2020). In contrast, Paloscia (2002) notes a
difference in biomass sensitivity between broad-leaf and narrow-leaf crops such as
rice. L-band data proved more effective for broad-leaf crops, while C-band data
demonstrated greater suitability for narrow-leaf crops. This finding is consistent
with the observations of Hosseini et al. (2017), who noted that RADARSAT C-band
data outperformed UAVSAR L-band data in estimating wheat biomass, a crop with a
similar plant structure to rice.

The results for the X-band data were inconclusive due to the availability of only one
suitable scene. A relationship between cross-polarized HV data and NDVI may exist,
but this is not the case for HH co-polarized data. This finding is inconsistent with
the results of other research, which demonstrated a relationship between HH X-band
data and NDVI values as well as with the leaf area index (LAI) for 30 flooded rice
paddy fields with a high 𝜌 of 0.584 (Hirooka et al. 2015).

However, another study investigated wheat and barley, which have a similar plant
structure to rice but are not cultivated on flooded fields, and demonstrated a negative
relationship between co-polarized HH and VV X-band data and LAI (Fontanelli et al.
2013). Consequently, further research is required to examine the behavior of X-band
data in relation to the NDVI and plant parameters.

4.4.3 Effectiveness of the Cross-Ratio

This study also evaluated the effectiveness of the cross-ratio (CR), finding it beneficial
only in certain cases, dependent on the specific study area and sensor used. In a
few areas, the relationship between CR and NDVI values was comparable or slightly
stronger than that observed with a single polarization. If a study would like to use
only one feature, calculating the CR would make selecting the optimal polarization
unnecessary. However, in some cases, no relationship between CR and NDVI could
be demonstrated, whereas with a single polarization a relationship existed. This
illustrates, that no universal guidance can be derived from the data, and in each case,
the utility of the CR must be reassessed.

4.4.4 Exploring the Relationship Between NDVI and Interferometric
Coherence

Although interferometric coherence is a valuable indicator of vegetation state, partic-
ularly for short temporal baselines (Villarroya-Carpio et al. 2024), it was not analyzed
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here. This is primarily due to limitations in data availability. Of the four investigated
SAR sensors, only the full Cosmo-SkyMed constellation, comprising both first and
second-generation satellites, can provide interferometric acquisitions with a temporal
baseline between one to six days. This could warrant a separate investigation, but
similar X-band data of the TerraSAR-X, TanDEM-X, and PAZ sensors has already
been investigated (Villarroya-Carpio et al. 2024). The Sentinel-1 mission allows
interferometric analysis, but currently only for a temporal baseline of 12 days due
to the failure of Sentinel-1B at the end of 2021. Such a long temporal baseline is
unsuitable for most vegetation types. Following the anticipated launch of Sentinel-1C
at the end of 2024, temporal baselines of six days will once again be available for
this C-band sensor. NovaSAR-1 and SAOCOM are unsuitable for interferometric
analysis of vegetation. Their orbital tubes are not narrowly controlled to maintain
consistent spatial baselines. Only by chance a suitable spatial baseline for InSAR
analysis is achieved (Li et al. 2022; Roa et al. 2021). This results in very long temporal
baselines, significantly reducing the coherence for vegetated surfaces, rendering their
data unsuitable for such an investigation.

4.4.5 Implications for SAR-Based NDVI Estimation

All these results show that the relationship between SAR backscatter and NDVI
values is multifaceted and influenced by various factors. Our findings suggest that
while a discernible relationship exists between backscatter and NDVI, its complexity
is heightened by a number of factors. These include vegetation-related factors such
as crop type, plant phenology, plant shape, or leaf arrangement; factors related to
the SAR data such as SAR frequency and polarization; and geometric considerations
including incidence angle and field orientation. In particular, different crop types,
characterized by unique phenological stages, plant shapes, and leaf arrangements,
exhibit varying backscatter responses. These findings underscore the challenges in
developing a universal model for NDVI retrieval from SAR data due to the complex
interplay of these factors. A generalized model would require the simultaneous
disentanglement of the influence of all the different factors, which is a challenging
task.

In conclusion, while this chapter confirms the relationship between SAR backscatter
and NDVI for specific frequency bands and conditions, it also highlights several chal-
lenges and gaps that require further investigation to optimize SAR-based vegetation
monitoring.
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5 Single Image NDVI Estimation from
SAR Imagery

What You’ll Learn SAR images can be translated to NDVI values by ex-
ploiting the relationship between them. This is done here using a U-Net
trained with a global and balanced dataset created for this task. The good
performance, both numerically and visually, is demonstrated together with
the global applicability.
Based on This chapter’s material originates from the article “A Globally
Applicable Method for NDVI Estimation from Sentinel-1 SAR Backscatter
Using a Deep Neural Network and the SEN12TP Dataset” published in the
Journal of Photogrammetry, Remote Sensing and Geoinformation Science (Roßberg
et al. 2023a).

To address the challenge of vegetation monitoring in areas frequently obscured
by cloud coverage, synthetic aperture radar (SAR) imagery can be translated into
vegetation index (VI) measures, specifically the normalized difference vegetation
index (NDVI). This leverages SAR’s ability to penetrate cloud cover and provide
weather-independent imagery. Therefore, the goal of this chapter is to develop a
method for estimating NDVI values from single SAR images globally. To achieve this
goal, a large deep learning model is trained, which requires an extensive datasets
comprising paired optical and SAR imagery captured over the same areas and at the
same days.

5.1 The SEN12TP Dataset

For training a deep neural network a large dataset comprised of SAR and cloud-free
optical imagery with a small temporal distance is required. Existing datasets are
unsuitable (cf. Section 3.5), because they either do not contain image pairs of the
same day, are not filtered for clouds, or do not have a global coverage. Therefore, a
new dataset has to be created.

The creation of the SEN12TP called dataset (Sentinel-1 and -2 images, timely paired)
is described in the following sections. This description covers the sampling of the im-
ages, the remote sensing data incorporated, and the characterization of the resulting
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dataset. All steps were implemented using Google Earth Engine (GEE) (Gorelick
et al. 2017).

5.1.1 Selection of Image Locations

With the goal of a versatile and globally applicable model in mind, a balanced and
geospatially uniformly distributed training dataset has to be created. To capture
global vegetation conditions as well as possible, all land cover types, climates, and
seasons have to be taken into account. Their distribution should be balanced to ensure
an unskewed model training. As a basis for the data sampling, the global land cover
product Copernicus Global Land Service (CGLS) 100m version 3 is chosen (Buchhorn
et al. 2021). To account for different climate zones the Köppen-Geiger classification
is used (Peel et al. 2007), as it is based on the vegetation found on the ground (cf.
Section 2.4). Different seasons are incorporated by selecting dataset samples using
the month of each data acquisition.

5.1.2 Selection of Suitable Areas and Images

To select suitable areas and images for the dataset, three main steps are carried out:
firstly, candidate points are selected and filtered, then these points are transformed
into regions of interest (ROIs), and finally their data is downloaded. An overview of
all steps detailed in the next paragraphs is given in the flowchart in Figure 5.1.

Candidate points are selected using the climate zone and land cover class. Both
climate zones and land cover classes are simplified as described in Table 5.1 and
Table 5.2, respectively. Additionally, the CGLS land cover class water bodies and open
sea is excluded as well as the polar areas north of 78°N and south of 60° S as they
are not vegetated. The land cover product is reprojected to 2km scale and thereby
downsampled to ensure that the surroundings of a sampled point contains pixels of
the same class. If the original 100m resolution would be used to sample candidate
points for ROIs there is a chance that only one pixel of the this land cover class would
be in the ROI. For example a small park in an urban area: it could be selected as
candidate for a forest but in fact most of the surrounding area is urban. However
choosing a too large of a scale results in missed land cover types with smaller spatial
extends like small villages or forest stands. Therefore the chosen resolution for
sampling is a trade-off between including smaller objects and a perfectly balanced
pixel distribution.

A stratified sample of points is drawn from the combination of simplified and down-
sampled land cover classes and climate zones. Neighboring points are filtered to
avoid overlapping ROIs. Sentinel-1 and -2 sensing times between 28 March 2017 and
31 December 2020 were retrieved after selecting only cloud-free images and images
covering the area. Using the retrieved sensing times, pairs of radar and optical images
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Köppen-Geiger
climate zones

Reproject to 2km scale 

Stratified sample

Filter neighbouring points to avoid
overlapping ROIs

Retrieve Sentinel-1 and S-2
sensing time

Filter time paired images

COPERNICUS/S1_GRD
COPERNICUS/S2_SR

COPERNICUS/S2_CLOUD_PROBABILITY
JAXA/ALOS/AW3D30/V3_2

ESA/WorldCover/v100

GEE  
data collections 

Filter cloudy S-2 images and images
containing no data areas

Select balanced set of ROIs using month,
land cover type and climate

Download dataset

Selection of ROIs

CGLS-LC100
Collection 3 

Figure 5.1: Overview of the selection process of the regions of interest (ROI) of the
dataset. ROI candidate points are selected using the CGLS landcover and
the Köppen-Geiger climate zones and are then filtered. For all final ROIs
data of multiple data collections is downloaded.
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are selected which were taken within 12h from each other. This avoids temporal
decorrelation between radar and optical values. Finally, image pairs are selected
from all suitable ones to ensure a balanced distribution across climate zones, land
cover classes, and months of the year.

Around each filtered candidate point a square with an edge length of 20km is deter-
mined, which form the ROIs of the dataset. This leads to a imbalanced land cover
distribution, as only the center of a ROI is required to be of the specified land cover.
However, choosing ROIs with a smaller size would require a higher number of ROIs
when aiming for the same dataset size. As this would become computationally
expensive and prohibitively time consuming, we refrained from doing so.

All ROIs are to contain at most 5 % clouds and 5 % no data areas. For cloud fil-
tering, the cloud probabilities calculated using the s2cloudless package (Zupanc
2017) were used, which are contained in the GEE data collection COPERNICUS/
S2_CLOUD_PROBABILITY. From the cloud probability the cloud masks are generated
with a cloud probability threshold of 20 %. Stricter filtering would exclude too many
ROIs. Cloud shadows are not filtered, because with cloud free imagery, only a
marginal amount of pixel could be affected by cloud shadows, cast from clouds
outside the ROI.

Table 5.1: Mapping from all to simplified Köppen-Geiger climate classes for sampling
of the SEN12TP ROIs. For explanation of the codes of the climate classes
refer to Peel et al. (2007).

Simplified class Original classes

Af Tropical, rainforest Af
Am Tropical, monsoon Am
Aw Tropical, savannah Aw
BW Arid desert BWh, BWk
BS Arid Steppe BSh, BSk
Cs Temperate, dry summer Csa Csb Csc
Cw Temperate, dry winter Cwa, Cwb, Cwc
Cf Temperate, no dry season Cfa, Cfb, Cfc
Ds Cold, dry summer Dsa, Dsb, Dsc, Dsd
Dw Cold, dry winter Dwa, Dwb, Dwc, Dwd
Df(a|b) Cold, no dry season 1 Dfa, Dfb
Df(c|d) Cold, no dry season 2 Dfc, Dfd
ET Tundra ET, ETH
EF Frost EF, EFH
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Table 5.2: Mapping of the Copernicus Global Land Cover classes to simplified ones.
The classes of the CGLS-LC100 Collection 3 are described in Buchhorn et al.
(2021).

Original classes Simplified class

20 Shrubs
30 Herbaceous vegetation/grassland
40 Cropland
50 Urban and built up
60, 100 Bare, sparse vegetation, moss, lichen
70 Snow and Ice
80, 200 Permanent water bodies and open sea
90 Herbaceous wetlands
111-116, 121-126 Forests

5.1.3 Remote Sensing and Auxiliary Geospatial Data Included in the
Dataset

For each ROI of the dataset, different modalities and remote sensing products are
retrieved. The main modalities are SAR and optical imagery, as they are needed for
the SAR-to-NDVI-translation task. Next to that, elevation data is included, as Scarpa
et al. (2018) have shown an improved performance when using it as auxiliary input.
Furthermore, land cover data was found as one of the most important input variables
by Santos et al. (2022), thus it is also included in the dataset.

The GRD Sentinel-1 product COPERNICUS/S1_GRD provided in the GEE data catalog
consists of 𝜎∘ backscatter values in dB. The following preprocessing steps are applied
as described in GEE’s documentation1: application of the orbit file, border and
thermal noise removal, calibration, and geocoding. However, due to the side-looking
sensor geometry, the terrain leads to geometric artefacts (cf. Section 2.2), which
require a more complex correction of the radar backscatter (Small 2011). This could
negatively impact the relation to the NDVI, due to different radar backscatter values
being sensed for the same ground conditions depending on the terrain and radar
geometry. To counter this effect, terrain flattening can be applied (Small 2011).
This flattening is done on GEE using the model optimized for volume scattering
on the ground as described in Vollrath et al. (2020). Including 𝜎∘ as well as the
terrain flattened 𝛾∘ backscatter allows a comparison of both backscatter values. The
different effects of geocoded and terrain flattened data for both 𝜎∘ and 𝛾∘ backscatter
coefficients are illustrated in Figure 2.13.

The optical data of the Sentinel-2 Level-2A data collection COPERNICUS/S2_SR is used.
It contains 12 spectral bands of bottom of atmosphere (BOA) reflectance data where
1https://developers.google.com/earth-engine/guides/sentinel1
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atmospheric effects are corrected using sen2cor (Main-Knorn et al. 2017). Addition-
ally, the cloud probability from COPERNICUS/S2_CLOUD_PROBABILITY is added as a
thirteenth band.

For elevation data the 30m resolution ALOS World 3D DEM (version 3.2) (Takaku et
al. 2020), contained in the JAXA/ALOS/AW3D30/V3_2 data collection is included. That
source of elevation data was chosen because its global coverage and high accuracy
(Uuemaa et al. 2020). The ESA WorldCover v100 land cover product is included
(Zanaga et al. 2021) as it is currently the highest-resolution land cover product
available, boasting a 10m resolution and a high accuracy. It is contained in the GEE
collection ESA/WorldCover/v100.

For each ROI Sentinel-1 𝜎∘ and 𝛾∘ radar backscatter, Sentinel-2 BOA reflectances,
ALOS World 3D DEM, and ESA WorldCover data is downloaded. Images and
bands with a lower resolution than 10m were upsampled using nearest neighbor
upsampling.

5.1.4 Final Dataset

The final SEN12TP dataset consists of timely paired Sentinel-1 and -2 images covering
2319 image pairs and has a size of 221.6GB. The images cover 484 400 km2 and 1236
distinct areas, given that from some areas images from several months were selected.
The spatial distribution of the ROIs is shown in Figure 5.2 and one sample of the
dataset is shown in Figure 5.3 to visualize the different modalities.

The distribution for the different land cover types is shown in Table 5.3. Despite the
balanced sampling, the distribution is unbalanced: for instance belong only 3 % of all
pixels to Snow and Ice, but 26.5 % belong to Grassland and 25 % belong to Trees. The
imbalance stems from the selection of points: the sampling points have a balanced
landcover distribution with the surrounding 2km square area considered. However,
the surrounding area of the ROI can be different and in theory only 1 % (2km× 2 km
of 20km×20 km) of each ROI is required to be of this land cover class. For vegetation
monitoring, Grassland, Trees, and Cropland are the most important land covers types
and they are also the most common classes in the dataset. Therefore, the differences
in land cover occurrence do not pose a problem for our application. If this dataset is
used for other applications this imbalance has to be taken into consideration.

The distribution of daily sensing times of all optical and radar images is shown in
Figure 5.4. All sensor platforms have a sun-synchronous orbit, therefore the sensing
time does not differ much for each platform. Most images from each platform are
taken in a 2 to 4h range, mostly due to differences between the local time zone and
local solar time. Optical images are only acquired during the ascending orbit by the
Sentinel-2 platforms at 10:30 mean local solar time, which is a compromise between
a good illumination at noon and less cloud coverage before noon (ESA 2015, Sec.
1.5.1). During the descending orbit at night, no images can be acquired.
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Figure 5.2: Global distribution of the selected ROIs, split into training (blue squares)
and test regions (red squares). Underlayed are the simplified Köppen-
Geiger climate classes. For the color legend refer to Table 5.1.

In contrast, both orbits can be used for sensing with radar data: the descending orbit
takes data in the morning around 7AM local time whereas the ascending orbit occurs
in the evening around 7PM local time.

This affects the dataset in twoways: Firstly, pairs of optical and radar data cannot have
an identical sensing time. Theminimum time difference of image pairs is around 4.5h.
Secondly, diurnal weather cycles affect data differently for ascending and descending
radar orbit, mainly due to water on the vegetation. This water changes the radar
response without changing the vegetation condition and thereby complicates the
retrieval of vegetation parameters from radar data. In the tropics, the water stems
from precipitation which is more frequent in the afternoon and evening (Kikuchi
et al. 2008). In moderate climates, dew can affect the images acquired in the morning
(Khabbazan et al. 2019). Therefore, the model has to compensate the effect of water
on the vegetation and the imperfectly paired relation of optical and radar data.

The final dataset is published on Zenodo (Roßberg et al. 2023b). The uploaded
archive file consist of a directory for each scene and the directory of each scene
contains the .tif image files of Sentinel-1, Sentinel-2, DSM, and ESAWorldCover land
cover data.
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Figure 5.3: One sample of the dataset. Displayed are the Sentinel-2 derived RGB and
NDVI image, the Sentinel-1 SAR data as a false-color image (R: 𝜎∘

VV, G:
𝜎∘
VH, B: 𝜎∘

VV/𝜎∘
VH), the ALOS World 3D DSM, and the ESAWorldCover

v100 land cover map. For a color legend of the ESAWorldCover refer to
Figure 2.16. Each image has a size of 2.5km × 2.5 km.
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Figure 5.4: Distribution of the sensing times of the optical images, given in the local
timezone. All Sentinel-2 images are taken at the ascending orbit.

5.2 NDVI Estimation from SAR

5.2.1 Deep Learning Model

To estimate the NDVI from SAR backscatter data, a slightly adapted U-Net architec-
ture is used (Ronneberger et al. 2015). This is one of themost established architectures
for semantic segmentation and pixel-wise regression purposes, and is also commonly
used in remote sensing (Yuan et al. 2021). U-Net models are a special convolutional
neural network (CNN) (see Section 2.5.1) and consist of two parts: an encoder
branch and a decoder branch. The encoder extracts meaningful features, and to do
so, reduces the spatial resolution of the input, in our case SAR backscatter values. For
this, the spatial neighborhoods of each pixel is considered using convolution kernels.
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Table 5.3: Pixel distribution of the ESA WorldCover v100 land cover classes and the
percentage of each class for all pixels of the SEN12TP dataset.
Worldcover Class Pixels %

Trees 2326.7 × 106 25.1
Shrubland 671.4 × 106 7.2
Grassland 2460.1 × 106 26.5
Cropland 1118.2 × 106 12.0
Built-up 213.2 × 106 2.3
Barren/sparse vegetation 1192.7 × 106 12.8
Snow and ice 236.9 × 106 2.6
Open water 456.1 × 106 4.9
Herbaceous wetland 350.6 × 106 3.8
Mangroves 18.5 × 106 0.2
Moss and lichen 240.3 × 106 2.6

Sum 9284.7 × 106 100.0

The decoder calculates the output NDVI values from the extracted and compressed
features. To avoid losing spatial detail in the output, skip connections are added
between the encoder and decoder which transfer high-frequency details. The U-Net
architecture id depicted in Figure 5.5

The original U-Net was slightly modified for SAR-to-NDVI translation. Originally,
two output channels with no activation function were used to create probability maps
of background and foreground classes. In contrast, here only one output channel is
used, which is passed into a sigmoid activation function. This ensures that the model
output ̂𝑦 is limited to [0, 1]. To get the predicted NDVI values 𝑦NDVI, this output
has to be transformed to [-1, 1] using the equation 𝑦NDVI = 2( ̂𝑦 − 0.5). Additionally,
instead of up-convolution layers, bilinear upsampling with standard convolution
layers was used in the decoder. This avoids checkerboard artifacts in the output
image (Odena et al. 2016). To train the model, the ℒ1 loss (mean absolute error,
MAE) is utilized, because the amount of spatial detail is better than with the ℒ2 loss
(mean squared error, MSE) (Zhao et al. 2017).

5.2.2 Training Procedure and Data Preprocessing

To input the data into the model it has to be preprocessed and normalized which is
done in multiple steps.

First, to ensure a fair evaluation, the 20km × 20 km ROI images are split up spatially
into a training, validation, and test set. This spatial split ensures that the model is
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Figure 5.5: U-Net architecture for SAR-to-NDVI image translation based on Ron-
neberger et al. (2015). Features are extracted from the model inputs in the
Encoder and transfromed by the Decoder into themodel output. Unlike in
the original paper, the feature maps are enlarged by a bilinear upsampling.
Conv, BN, and ReLU denote convolutional layers, batch normalization,
and ReLU activation functions, respectively. The number of filters a con-
volutional layer has is shown below each layer, next to it are the width
and height w × h.

not trained with images which are also used for evaluation. 80 % of the ROI images
are used for training and both validation and test set consist of 10 % of the scenes.

For training, the large ROIs are split up into smaller patches with a size of 256px ×
256px. A stride of 249px is chosen to split each 2000px scene into 8 × 8 tiles. Then,
patches containing clouds or areas with missing or invalid data are removed on
the fly since some scenes contain small clouds or missing data areas. Filtering bad
data areas is done in this two step fashion because creating a perfectly clean dataset
with large ROIs is infeasible. Only a small number of tiles is excluded in this step,
which shows the high data quality of the dataset: for the train set only 2172 of the
134 080 (1.6 %) tiles of the train set are excluded. After filtering the data it is clipped
to remove outliers and anomalous sensor values. Values exceeding the clipping
threshold are set to the threshold value. The multi-spectral channels of the Sentinel-2
data, the VV and VH polarizations of the Sentinel-1 data, and the DEM are clipped to
[0, 10 000], [−25dB, 0dB], [−32.5dB, 0dB], and [−450m, 9000m], respectively. The
SAR clipping values are the same as in (Meraner et al. 2020), the DEM clipping
values are the approximate lowest and highest possible elevation of the earth. The
Sentinel-2 values are clipped at 10 000 because this equals a reflectance of 100 %.
Finally, all values, including the land cover classification, are normalized using min-
max-normalization (cf. Chapter 2).

The NDVI is calculated on the fly from the Sentinel-2 images with the red band B4
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and the infrared band B8 as in Equation 2.6. As the model output is bounded to [0, 1]
by the virtue of the output sigmoid function, the NDVI is transformed to be in that
interval for loss calculation.

For model training the Adam optimizer (Kingma et al. 2014) with an initial learning
rate of 1 × 10−3 is used. Learning rate scheduling is used and the learning rate
multiplied by 0.5 every seven epochs resulting in a learning rate of 5 × 10−4 after
seven epochs, 2.5 × 10−4 after 14 epochs and so on. Early stopping is used to avoid
overfitting by ending training when the performance does not improve anymore. For
each epoch, the MAE of the validation set was calculated. When after a patience
period of ten epochs no improvement of theMAEwas achieved, trainingwas stopped.
The batch size is set to 32 and no data augmentation was used.

All models were implemented using Python 3.7, PyTorch 1.10, and PyTorch Lightning
1.3.5. Training was conducted on two GPUs and took approximately 27min and
38min per epoch using an NVIDIA RTX A6000 or an NVIDIA Quadro RTX 8000,
respectively.

5.3 Experiments and Results

With the created SEN12TP dataset, the model is trained and evaluated. The perfor-
mance of the model is evaluated numerically (Section 5.3.1), visually for example
regions (Section 5.3.2), in comparison with a similar, but region-specific approach
(Section 5.3.3), and by creating radar-derived NDVI time series with a stack of SAR
images of an area (Section 5.3.4).

The performance is evaluated using the MAE, the MSE, the peak signal-to-noise
ratio (PSNR), and the structural similarity index (SSIM), which are described in
Section 2.5.4.

5.3.1 Backscatter and Auxiliary Input Performance

To compare the importance of the radar backscatter and auxiliary input data for
NDVI estimation, models trained with different inputs are compared. For this, the
predictions of the SEN12TP test set are calculated and compared to the actual optical
NDVI. This allows a fair evaluation of the model performance, as these scenes are
not used during training or validation and contain completely new and unseen data
for the model. For this evaluation the scenes were not split up into smaller patches
like during training to avoid border artifacts. A batch size of 1 had to be used, as only
one 2000px × 2000px large image fit into the GPU memory. Each model was trained
five times with different splits of the dataset to get the average model performance.
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Table 5.4: Performance of models trained with radar backscatter data and the ALOS
World 3D DSM elevation data on the test set. 𝛾∘ denotes the backscatter
with radiometric terrain flattening, 𝜎∘ the one without. For each model,
five models were trained and the average and the standard deviation of
the model performances were reported. ↑ denotes that higher values are
better, ↓ denotes that lower ones are better.

MAE ↓ MSE ↓ PSNR ↑ SSIM ↑
Model inputs mean std mean std mean std mean std

𝛾∘
VV, 𝛾∘

VH 0.121 0.001 0.032 0.001 21.0 0.07 0.547 0.005
𝜎∘
VV, 𝜎∘

VH 0.122 0.001 0.032 0.001 20.9 0.08 0.545 0.003
𝛾∘
VV, 𝛾∘

VH, DSM 0.122 0.002 0.033 0.001 20.8 0.12 0.543 0.004
𝜎∘
VV, 𝜎∘

VH, DSM 0.123 0.001 0.034 0.001 20.8 0.12 0.543 0.003

𝜎∘
VH 0.141 0.002 0.041 0.001 19.9 0.09 0.507 0.003

𝜎∘
VV 0.152 0.003 0.047 0.002 19.3 0.18 0.499 0.006

For the first set of experiments, the performance is evaluated using radar backscatter
data without (𝜎∘

VV, 𝜎∘
VH) and with radiometric terrain correction (𝛾∘

VV, 𝛾∘
VH), and

the elevation retrieved from the DSM. The elevation data is included here, as it is a
requirement for the terrain correction and also globally available free of cost.

All models using both radar polarizations VV and VH achieve a good performance
very similar to each other with a low MAE of 0.12. There are only insignificant
performance differences between the different models with the exception of the
model trained with (𝛾∘

VV, 𝛾∘
VH), which is slightly better as shown in Table 5.4. Using

only one radar polarization increases the error, in the case of 𝜎∘
VH to a MAE of 0.14,

in case of 𝜎∘
VV to 0.15.

For the next set of experiments, auxiliary geospatial data in form of the ESA World-
Cover land cover map is included. This decreases the MAE to 0.10. Similar to
experiments without the land cover map, adding the DSM or applying radiometric
terrain flattening does not improve the performance. Results are given in Table 5.5.

In the last set of experiments no backscatter data is used, only the auxiliary data from
the ESAWorldCover and DSM. This is meant to provide a lower-end baseline. The
MAE using only the land cover is 0.15 and thereby worse than using only backscatter
data or using backscatter and land cover data jointly. The performance is even worse
when utilizing only the DSM, for which a MAE of 0.26 is achieved. The evaluation
for all metrics is given in Table 5.6.

To have an understanding of the performance of our model for different land covers,
we evaluate the performance for each land cover class separately. The model shows
similar performance for almost all of the land cover classes, with anMAEbetween 0.10
to 0.11. Only for open water a slightly better performance is achieved (MAE = 0.099),
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while for barren/sparse vegetation the performance is slightly worse (MAE = 0.115).
The full results are shown in Table 5.7.

Table 5.5: Performance of models trained with radar backscatter data and the ESA
WorldCover land cover map as auxiliary data. For each input combination
five models were trained. ↑ denotes that higher values are better, ↓ denotes
that lower ones are better.

MAE ↓ MSE ↓ PSNR ↑ SSIM ↑
Model inputs mean std mean std mean std mean std

𝛾∘
VV, 𝛾∘

VH, WorldCover 0.102 0.002 0.024 0.000 22.3 0.06 0.609 0.005
𝜎∘
VV, 𝜎∘

VH, WorldCover 0.103 0.003 0.024 0.001 22.3 0.16 0.609 0.009
𝜎∘
VV, 𝜎∘

VH, WorldCover, DSM 0.106 0.004 0.025 0.001 22.1 0.24 0.594 0.011

Table 5.6: Performance of models trained only with auxiliary data but not radar
backscatter. For each input combination five models were trained and
averaged. ↑ denotes that higher values are better, ↓ denotes that lower ones
are better.

MAE ↓ MSE ↓ PSNR ↑ SSIM ↑
Model inputs mean std mean std mean std mean std

WorldCover, DSM 0.154 0.005 0.049 0.003 19.1 0.25 0.535 0.007
WorldCover 0.155 0.005 0.050 0.004 19.1 0.32 0.533 0.015
DSM 0.263 0.003 0.104 0.002 15.8 0.08 0.373 0.011

5.3.2 NDVI Image Prediction

By using the trained model NDVI images can be predicted for all areas of the world
from SAR backscatter. When evaluating the model on the test set of SEN12TP a
low error with a good level of spatial details is achieved, as shown in Figure 5.6.
Especially for forested, grassland, and cropland areas the NDVI is predicted with
high accuracy. Even some fine details like roads or urban areas can be predicted
properly. Despite the generally very good results, some remaining limitations of
the predicted NDVI images become apparent. One problem is the loss of spatial
detail making the predicted NDVI images seem slightly less sharp than their original
counterparts. One example of this phenomenon is the delineation between field
plots. All delineations between land cover types however are captured well due to
the inclusion of the WorldCover land cover map. Water bodies and wetlands also
present a problem, as their NDVI values are predicted with quite large errors.
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Figure 5.6: Data visualization and comparison of the optical NDVI and the SAR-
derived one for images of the hold-out test set.. At the top the location
of each image is shown with the number denoting the row below. From
left to right are shown the Sentinel-2 RGB, the Sentinel-1 false-color ((R:
𝜎∘
VV, G: 𝜎∘

VH, B: 𝜎∘
VV/𝜎∘

VH)), the land cover map, the optical NDVI, the
SAR-derived NDVI, and the difference between optical and SAR-derived
NDVI.
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Table 5.7: Mean absolute error (MAE) per ESA WorldCover class of the predicted
NDVI values on the test set. The performance is averaged over five models,
each using 𝜎∘ backscatter data, the WorldCover, and the DSM as input. For
each model first the MAE per land cover class is calculated and then the
mean is calculated.

Worldcover class Mean MAE

Open water 0.099
Cropland 0.104
Trees 0.104
Grassland 0.105
Herbaceous wetland 0.105
Mangroves 0.106
Moss and lichen 0.106
Built-up 0.106
Shrubland 0.107
Snow and ice 0.109
Barren / sparse vegetation 0.115

5.3.3 Comparison to a Region-Specific Model

In order to evaluate the performance of the presented approach in comparison to
the previously published approach by Scarpa et al. (2018), the two approaches are
compared using the area of Scarpa et al. (2018). That study uses data from a small
region in the southwest of Burkina Faso with parts of it designated as test region
to evaluate model performance. Because the training and test data are next to each
other their model is very likely only applicable to that region or similar ones and will
likely achieve a suboptimal performance for other regions.

In contrast, the presented model is globally applicable and does not need fine-tuning
for specific regions. The closest image the model has seen during training, validation
or testing has a distance of more than 150km from the region used by Scarpa et al.
(2018).

To compare both approaches SAR, DSM, and WorldCover data from GEE of the area
is downloaded. The data provided by Scarpa et al. (2018) was not used for two
reasons: firstly, the same data preprocessing as used for model training had to be
ensured. Secondly, there is a slight shift between SAR data and NDVI label pixels
in the provided dataset off approximately half a pixel. This shift can be avoided by
using the georeferencing of the NDVI images provided by Scarpa et al. (2018). The
original NDVI images were used to calculate the evaluation metrics values to ensure
a fair evaluation.
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A quantitative comparison of our results with the results of Scarpa et al. (2018) is
shown in Table 5.8. Our trainedmodel achieves a higher SSIM for all input modalities.
This higher level of spatial detail can also be seen in the predicted NDVI images,
together with a lower amount of noise as shown in Figure 5.7. In contrast to our
high spatial performance, their model achieves a higher Pearson correlation. For
the PSNR, our model is better when using only radar backscatter, but their model is
better using backscatter and elevation data. The best-performingmodel of all possible
inputs is our model using backscatter, elevation, and land cover data. However, this
comparison is not fully fair, as Scarpa et al. (2018) did not evaluate the effectiveness
of using land cover information. The results still demonstrate that our model is able
to achieve a similar or even better performance than a highly area-specific model
trained for a small region.

(a) ESA WorldCover (b) Optical NDVI (c) Prediction from
Scarpa et al.
(2018)

(d) Prediction of
the presented
approach

Figure 5.7: Visual comparison of the optical and radar derived NDVI for the data of
Scarpa et al. (2018), located in the Houet province, Burkina Faso, Africa.
The optical NDVI is from 4 June 2016. Bothmodels use the Sentinel-1 radar
backscatter from 30 May 2016 together with the elevation data for NDVI
estimation. Figures 5.7b and 5.7c are taken from Scarpa et al. (2018). The
test site mainly consists Cropland ( ) Grassland ( ), and Shrubland
( ). For a full legend of the WorldCover classes see Figure 2.16.

5.3.4 Naive Densification of NDVI Time Series

For many applications time series of vegetated surfaces are more valuable than an
image of a single date. Therefore, the NDVI was predicted for all Sentinel-1 images
of the area used in Figure 1.1 for the year 2019. As model input the 𝜎∘ backscatter,
DSM, and WorldCover data was used. The NDVI was predicted using an ensemble
of the five models which enables to calculate the mean and variance of the predicted
NDVI values. Together with the NDVI retrieved from all Sentinel-2 images multiple
time series were created for several example points with different land covers.
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The time series show a high correspondence between the mean predicted NDVI
values and the optical retrieved values from cloud-free images as can be seen in
Figure 5.8. The increase of the NDVI during the rainy season between June and
October is captured by the SAR-derived NDVI predictions. In contrast to the optical
values, a higher temporal resolution is achieved, because all images can be used and
not only cloud-free ones.

The standard deviation is small for most of the predicted pixels, showing a high
agreement and certainty between the models. One outlier of the mean predicted
NDVI at the beginning of August is notable. This outlier is observable for all four
examples andmost pronounced for Shrublandwhere it coincideswith a large standard
deviation.

Table 5.8: Performance comparison of our model to the model of Scarpa et al. (2018).
The average performance of our models trained with five different data
splits is averaged (mean) and the standard deviation is stated. Different
data was used for the models: SAR (𝜎∘

VV, 𝜎∘
VH), SAR+ (𝜎∘

VV, 𝜎∘
VH, DSM),

SARW (𝜎∘
VV, 𝜎∘

VH, WorldCover), and SAR+W (𝜎∘
VV, 𝜎∘

VH, DSM, World-
Cover). The best performance comparing our model to the model of Scarpa
et al. (2018) using the same input data is emphasized. The best overall per-
formance for each metric is marked in bold. ↑ denotes that higher values
are better, ↓ denotes that lower ones are better.

Pearson ↑ PSNR ↑ SSIM ↑ MAE ↓
Input data Model mean std mean std mean std mean std

SAR Ours 0.5785 0.0150 18.41 0.24 0.5684 0.0018 0.1010 0.0028
SAR Scarpa et al. 2018 0.6118 — 16.83 — 0.3942 — — —

SAR+ Ours 0.5415 0.0414 17.53 0.97 0.5563 0.0075 0.1165 0.0169
SAR+ Scarpa et al. 2018 0.6207 — 18.27 — 0.4218 — — —

SARW Ours 0.6139 0.0373 17.82 0.90 0.5706 0.0105 0.1086 0.0134
SAR+W Ours 0.6370 0.0360 18.72 0.37 0.5786 0.0062 0.1001 0.0061
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(a) Location of the points with the under-
layed Sentinel-2 RGB image of 9. June
2019.
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(b) Point 1, land cover Cropland
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(c) Point 2, land cover Grassland
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(d) Point 3, land cover Trees
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(e) Point 4, land cover Shrubland

Figure 5.8: NDVI time series for different points of the area in Figure 1.1. Shown are
NDVI time series derived with our model and calculated from Sentinel-2
optical data of four image pixels with different land cover classes. Five
model predictions were created using the SAR data 𝜎∘, the DSM, and the
WorldCover as input. The mean of the predicted values is denoted with a
diamond, the bar shows the standard deviation of the models. The land
cover information is taken from the ESAWorldCover v100 map. Cloud
covered values are de-emphasized.
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5.4 Discussion

5.4.1 General Validity of the Model

The results summarized in Tables 5.4 and 5.5 and illustrated in Figure 5.6 show the
general high performance of our approach, unbiased by the land cover type (cf.
Table 5.7). The successful prediction of the NDVI from SAR data demonstrates, that
the relationship of SAR backscatter and NDVI values can be exploited despite the
different sensing principles and wavelengths used. This is in accordance with the
research literature which could also relate backscatter with biophysical parameters
and NDVI values (cf. section 3.1).

One problem of the predicted NDVI maps is the spatial resolution: the predicted
NDVI is blurrier compared to the Sentinel-2 derived NDVI as visible in Figure 5.6.
This is caused by the lower resolution of the SAR input data. The used Sentinel-1 data
has a spatial resolution of 20m × 22m (IW mode, ground projected, multi-looked
data) (Bourbigot et al. 2016), whereas the Sentinel-2 data has a spatial resolution
of 10m (Drusch et al. 2012), even though both products are provided with a 10m
pixel spacing. Another factor deteriorating the spatial detail is the speckle noise of
the radar which makes it hard to predict small objects. Combining these two factors
results in a blurrier NDVI of the prediction compared to the optical retrieved NDVI
and a loss of fine spatial detail.

Another problem in the predicted NDVI maps are wetlands and water surfaces. In
these areas the predicted NDVI is imprecise (cf. Figure 5.6). One possible reason for
this might be the low amount of water pixels in the dataset with 4.9 % (cf. Table 5.3).
The interaction of radar waves with water might also be another cause. Firstly, radar
waves do not penetrate the water but are reflected at the water surface. Secondly,
the signal energy is reflected away from the sensor so that only very little energy
is received back at the sensor and the weak received signal does not contain any
information aboutwhat is below thewater surface. In contrast, optical light penetrates
into the water to some extent and is also reflected back to the sensor by the plants,
algae, bacteria, and other particles on the water surface and in the water. Therefore,
optical sensors can be used to retrieve meaningful information about the water
composition, and the amount of chlorophyll containing matter. This drawback of
our approach does not impose many restrictions on monitoring vegetation on land
which are mainly agricultural or forested areas. To avoid an erroneous retrieval of
NDVI values all water bodies can be masked using existing water body layers such as
the MODIS/Terra Land Water Mask (Carroll et al. 2017). The only problem could be
paddy fields, which are similar to wetland areas, as rice is an important crop grown
on paddy fields. However, other studies showed the feasibility to monitor paddy rice
fields using SAR data (Inoue et al. 2014). Therefore, our model and dataset could
be adapted and improved for this special case to allow the retrieval of NDVI values
from these areas as well.
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5.4.2 Influence of Auxiliary Model Inputs

The choice of the model inputs changes how accurate the NDVI can be derived as
shown in Tables 5.4 to 5.6. The two polarizations of the radar backscatter are the most
important input data as they achieve the highest performance when used as sole
modality. This good performance can be increased when the land cover map is also
fed to the model as an auxiliary input. Using the two SAR polarizations separately
shows a higher relative importance of the VH polarization compared to the VV
polarization. The performance of using solely 𝜎∘

VV data is on par with using only the
WorldCover as input, however both achieve only a substandard performance. The low
performance when using the land cover information without the radar backscatter
shows that it is only supporting the model, but not being the main information source
of the model.

The improvedmodel performancewhen using the ESAWorldCover can havemultiple
reasons. One reason could be the influence of prior knowledge of the underlying land
cover. Different relationships between SAR backscatter and NDVI exist for different
land cover types, as it is an important feature for NDVI estimation (Santos et al. 2022).
For example, high intensities in urban environments will certainly propagate into
lower NDVI values than high intensities in croplands. If the model does not have
to learn the distinction between the different land cover classes itself but receives
prior knowledge about them, this leaves more model capacity for the actual implicit
regression models. Another reason could be the high resolution and sharp edges
included in the land cover map, which helps to add spatial detail, at least at the edges
of different land covers.

Adding the DSM as model input does not improve model performance. The radar
backscatter is influenced by the elevation and the terrain due to the side-looking
nature of the sensor. Two identical areas with the same vegetation and land cover
will have a different backscatter if the terrain is different (e.g. slope and aspect)
(Small 2011). This weakens the relationship between radar backscatter and NDVI
values and should reduce the model performance. However, a similar performance
is achieved independent of whether these terrain effects are corrected for or not, and
adding the DSM as model input does not have an effect on model performance either.
The reason for this might be that the model is able to learn the influence of the terrain
on the backscattered signal and correct it. This suggests that terrain flattening as
preprocessing step or including the DSM as model input might be unnecessary when
deep neural networks are used. Additionally, the elevation correlates with the NDVI
only very little, as shown in Table 5.6 by the poor performance when using only the
DSM as model input.
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5.4.3 Creation of Dense NDVI Time Series

As illustrated in Figure 5.8, the model prediction appears to be a valuable tool for
addressing gaps in NDVI time series data due to cloud coverage. The SAR data of a
single data is used to estimate the NDVI image. This utilized only the spatial context
of the data, but neglects any information contained in temporal patters. This approach
employs only the spatial context of the data, thereby neglecting any information that
may be derived from temporal context. An alternative approach to obtaining a dense
NDVI time series is to first extract a time series of SAR values and then estimate the
NDVI time series, as has been demonstrated by Zhao et al. (2020). A comparison of
these two approaches reveals that the first is more flexible, as it requires only a single
SAR image, rather than a complete time series. Consequently, the presented method
facilitates real-time applications, enabling the prediction of NDVI for the most recent
image.
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NDVI Time Series

What You’ll Learn This chapter details how sparse optical NDVI time series
can be fused with denser SAR-estimated NDVI time series. For this, a recurrent
neural network is trained with a dataset specifically created for this task.
Based on This chapter’s material originates from the article “Dense NDVI
Time Series by Fusion of Optical and SAR-Derived Data” and published in the
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
(Roßberg et al. 2024b).

As shown in the previous Chapter 5, NDVI imagery can be derived from SAR images.
To simplify the model and its training, the approach only regarded the spatial context
and used a single image, but neglected the rich information contained in the temporal
context, which limits performance and effectiveness. Additionally, available cloud
free optical imagery is neglected. To address these shortcomings and to create dense,
accurate NDVI time series, this chapter presents an approach to fuse the sparse
optical NDVI time series with the dense, but less accurate SAR-derived NDVI time
series.

6.1 Creation of the Time Series Dataset

The proposed time series fusion approach integrates optical and SAR-derived NDVI
data, necessitating the creation of a comprehensive dataset for training and evaluation.
Data were selected from the Sentinel-1 SAR and Sentinel-2 optical sensors, motivated
by their global coverage, high revisit frequency (at the equator 5 days for Sentinel-
2 and 6 days for Sentinel-1), and free data access. The regions of interest (ROIs)
are derived from the 1206 globally distributed ROIs of the SEN12TP dataset (cf.
Section 5.1). These ROIs are chosen for their balanced representation in terms of
land cover, climate, and global distribution and their locations are displayed in
Figure 5.2.

The SEN12TP dataset with its ROIs each measuring 20km× 20 km, amounts to a size
of 222GB. Extending this to include images at many different dates from each region
would significantly increase the data volume. To limit the required storage, only the
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central area of each ROI was utilized. For these areas, all available imagery between
1 September 2019 and 30 March 2021 is downloaded to form the image time series.
The ROIs have a size of 2.56km × 2.56 km corresponding to 256px × 256px at 10m
resolution.

Overall, 157 050 SAR and 125 860 optical images were downloaded, encompassing
252GB. Subsequent sections detail the data and necessary preprocessing steps for
both optical NDVI and SAR-derived NDVI values. For preprocessing and image
download Google Earth Engine (GEE) (Gorelick et al. 2017) was used.

6.1.1 Optical Data and its Processing

As the source of optical data and to calculate the NDVI, data of the Sentinel-2 multi-
spectral sensors is used, which is masked for clouds and cloud shadows and coref-
erenced onto each other. Thereby, atmospherically corrected Level-2A of the GEE
collection COPERNICUS/S2_SR_HARMONIZED is used. To mask all clouds, the cloud
probabilities contained in the GEE collection COPERNICUS/S2_CLOUD_PROBABILITY
created using the Sentinel Hub’s cloud detector (Zupanc 2017) are usedwith a thresh-
old set to 40 %. To clean the borders of the detected clouds, the cloud probabilities
are first convolved with a circle-shaped filter with a radius of 40m, thresholded and
dilated again with 20m large circular filter kernel. These parameters are taken from
the s2cloudless example script (Aleksandrov et al. 2023).

Cloud shadowsweremaskedusing a geometricalmethod byprojecting the previously
calculated cloud masks onto the ground (Schmitt et al. 2019a). The alternative
approach, which is not employed in this study, is the spectral method that utilizes
the different multispectral bands for shadow detection. Potential cloud shadows are
all cloud mask pixels projected along the sun’s azimuth angle for 2km. They are
intersectedwith dark areas, which are all areas with a reflectance sum of the bands B8,
B11, and B12 smaller than 0.3 which are not water according to the scene classification
layer (SCL) band. Again, to clean up the mask, a morphological opening is applied
with an erosion (40m circle) followed by a dilation (100m circle) (Schmitt et al.
2019a). The bands B2, B3, B4, B8, B11, and B12 together with the cloud and cloud
shadow masks are downloaded for all optical images which are at least 10 % cloud
and cloud shadow-free.

Upon download of the images, the need for coregistering each optical image stack
became apparent, as the geolocalization of the Sentinel-2 imagery is not pixel perfect,
something also noted by Requena-Mesa et al. (2021). We use a method similar to
the one in eolearn Python package (Peressutti 2023): the template image upon which
each image is registered on is the gradient of the temporal mean of all images after
cloud masking and conversion to grayscale. To find the best matching position, a
translation-only motion model with the enhanced correlation coefficient is used.
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Finally the NDVI is calculated using Sentinel-2’s red and infrared bands B8 and B4
according to Equation 2.6.

6.1.2 SAR Data

The SAR data as the second modality of the approach is acquired by the Sentinel-1
sensors and sourced from the GEE collection COPERNICUS/S1_GRD. From this collec-
tion, data acquired in interferometric wide swath (IW) mode with two polarizations
VV and VH is used. For this ground range detected (GRD) data, geometric terrain
correction is applied and the data is transformed to a logarithmic scale. This yields
sigma naught backscatter values 𝜎∘, expressed in decibels (dB), to be used in the
method.

6.1.3 SAR-Estimated NDVI Images

To estimate NDVI values from SAR data, we use the model described in the previous
Chapter 5. To create the SAR-estimated NDVI images, an ensemble of five models
is used. Taking the mean from the outputs of five models ensures superior model
performance and reliability. In the end, an SAR-estimated NDVI image is created for
each location and SAR acquisition.

6.1.4 Time Series Extraction and Final Dataset

Time series are extracted from the optical, SAR, and SAR-derived NDVI images. Only
every fifth column and every fifth row is used forming a regular 5px grid. This
reduces the data volume to a manageable level and additionally reduces unneeded
redundancy due to the high similarity between the time series of neighboring pixels.
Next to the image data, the acquisition dates are extracted for each time step. Overall
330GB of image data is used (consisting of 72GB optical, 181GB SAR, and 78GB
SAR-estimated NDVI imagery) resulting in 124GB of extracted time series data.

The whole process of the creation of the dataset is depicted in Figure 6.1.

Two splits of the dataset are created to assess spatial and temporal generalization
performance. The spatial split dataset contains the same train, validation, and test
scenes as those found in the SEN12TP dataset, while the temporal split dataset uses
the first twelve months of all scenes for training and the remaining six months of all
scenes for testing. This allows performance evaluation on unseen data from different
scenes and future dates.

89



6 Fusion of SAR-Derived and Optical NDVI Time Series
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Figure 6.1: Overview of the creation of the time series used for training and testing
with the required preprocessing steps. Sentinel-1 and -2 image series are
processed and retrieved from Google Earth Engine (GEE) for the regions
of the SEN12TP dataset. From the image stacks, pixel-wise time series are
retrieved in a regular 5px grid to form the dataset.
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6.2 RNN-Based Time Series Fusion

To fuse the optical and SAR-derived NDVI time series a gated recurrent unit (GRU)
is employed (Cho et al. 2014), a common recurrent neural network (RNN) variant.
RNNswere selected because of their suitability for handling variable sequence lengths
and accommodating missing data (Weerakody et al. 2021). Utilizing a many-to-many
configuration (see Figure 2.19) the chosen GRUmodel generates an output prediction
for each step of the input sequence.

The model input is first transformed using a single fully connected layer with 128
neurons and ReLU activation with shared weights for each time step. Then, the
GRU consisting of three bidirectional layers, each with a hidden size of 256 and a
dropout layer with a dropout rate of 0.3 fuses the time series while learning temporal
patterns. Finally, the GRU outputs are fed to two consecutive linear layers, again with
shared weights for each time step. The first linear layer has 128 neurons and a ReLU
activation function, while the second layer, which serves as the final output, uses a
sigmoid activation function. The model is depicted in Figure 6.2. The hidden state
of the GRU is initialized for each batch with random weights taken from a normal
distribution. The model is trained using the Adam optimizer (Kingma et al. 2014)
with a learning rate of 5×10−4, a batch size of 128, and the mean squared error (MSE)
loss.

The extracted time series (cf. Section 6.1) undergo further processing before being
passed to the RNN model. The optical NDVI time series serve as both the label and
the model input. For each time series, a subset of values is randomly selected as the
label, while the remaining values are used as input. We use 66 % = 2/3 of the values
as labels and the remaining ones as model inputs to facilitate model learning. This
simulates frequent cloud cover and showed a good performance in preliminary tests
compared to using only 33 % or 50 % of the values as labels. For each training epoch,
the selection as label or model input is different to avoid overfitting and to make the
model more robust.

From the 18-month long time series sequences with a length between 1 and 6 months
were extracted to train a versatile model which can be used for a variety of use cases.
The extracted sequence length is a balance between data demands and practicality:
Extremely short sequences are avoided as they lack sufficient usable data, while exces-
sively long sequences demand impractical data resources impeding easy applicability
when deploying the model.

From these sequences, all steps that contain no values for all input features or the
label are removed. This leads to shorter sequence lengths, which improved fusion
performance.

All model inputs as well as the optical NDVI labels are normalized. Model inputs
undergo Z-standardization using the mean and standard deviation from the training
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Linear+ReLU

bidirectional 3-layer
GRU

Linear+Sigmoid

Linear+ReLU

Unroll

Linear layer + activation function GRU cell Dropout

Figure 6.2: Overview of the RNN model architecture. To the right is the unrolled
version. X𝑡 denotes the input time series, ̂Yt the predicted or rather the
fused time series. The numbers denote the feature dimensions with the
variable sequence length 𝑡.

set. The labels are clipped to the range [−1, 1] before they undergo min-max normal-
ization to ensure that their values fall within the interval [0.2, 0.8], which corresponds
to the linear region of the sigmoid activation function. Both Z-standardization and
Min-Max normalization are explained in Section 2.5.3. The day of the year (DOY)
is not put directly into the model, but sin(DOY) and cos(DOY) are used to avoid
sudden jumps at the end of the year and to capture cyclic patterns of the time series
more efficiently.

6.3 Results

To evaluate the fusion approach, a numerical assessment is conducted on the globally
distributed test scenes (Section 6.3.1). Subsequently, the resulting fused time series
are presented in detail for two example areas (Section 6.3.2).
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6.3.1 Quantitative Results

To show the good performance of our approach we apply the trained fusion model
on the test set data and calculate the error between optical NDVI and the fused
NDVI. The 124 globally distributed test regions of the SEN12TP dataset are used as
depicted in Figure 5.2). As a baseline to our model, we use linear interpolation of the
optical data as well as a histogram-based gradient boosting regression tree (hGBRT),
a machine learning model able to handle missing data.

The fusion approach NDVI-Fusion achieves a very low error, with an mean absolute
error (MAE) of 0.0478. Using the fusion model only with the optical NDVI time
series or the optical NDVI together with the 𝜎∘ SAR backscatter results in a slightly
higher MAE of 0.0513 and 0.0517, respectively. For the two baselines, a higher MAE
of 0.0675 of the hGBRT model, and a slightly higher MAE of 0.0482 using linear
interpolation is achieved. The relative order of the MAE of the compared models is
the same for the RMSE and R2 score as shown in Table 6.1.

Table 6.1: Comparison of the performance of the different models using the spatially
split test set data.

Method MAE RMSE R2

linear interpolation 0.0482 0.0843 0.9190
hGBRT baseline 0.0675 0.1081 0.8680

Optical-Only 0.0513 0.0882 0.9115
NDVI-Backscatter 0.0517 0.0874 0.9130
NDVI-Fusion 0.0478 0.0806 0.9261

To demonstrate that the fusion approach can generalize from one year to another and
therefore, be used in a real-world scenario, the model is trained using the temporally
split dataset. For this, model training is conducted using data from all areas of the
first year and before being tested using data from the remaining 6 months. This
ensures that all testing data follows the training data temporally, thereby simulating a
real-world scenario where themodel, trained on current data, is subsequently applied
to future data. Compared to the model trained with spatially split data we see a
slight performance decrease, the MAE increases from 0.0478 to 0.0498 as illustrated
in Table 6.2.

The distribution of gap lengths in the dataset is unbalanced: most gaps are rather
short with 70 % of the gaps being shorter than six days as shown in Figure 6.3. The
peaks for gap lengths with a duration as multiple of five days are due to the five-
day revisit of the Sentinel-2 constellation (ESA 2015). Because of this imbalanced
distribution and the importance of filling especially longer gaps, the predicted error
is determined in conjunction with the length of the optical gap or rather how near the
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Table 6.2: Performance of NDVI-Fusion model on temporally split data. For compari-
son, the performance using the spatial split from Table 6.1 is reported.

data split MAE RMSE R2

spatial 0.0478 0.0806 0.9261
temporal 0.0498 0.0855 0.9017

next optical NDVI value is. For this analysis, the gap length for each optical NDVI
used as a label is calculated by determining the minimum distance to the nearest
optical NDVI used as a model input, either preceding or following it. The hGBRT
model performance is not included here, because the aggregation step from daily to
weekly NDVI values only allows rather broad gap length classes: the weekly values
can have a distance of 1 to 6 days gaps between them and having no value for a week
could signify an NDVI data gap from 7 up to 20 days.

Figure 6.3: Distribution of the gap lengths of the optical NDVI time series in the test
set used for performance calculation. Gaps with a length of 5, 10, 15, and
20 days are more common because of the 5-day revisit of the Sentinel-2
constellation.

The evaluation shows, that the error of all models increases with an increasing gap
length. The increase however is different for the different models: linear interpolation
is becoming significantly worse for long gaps (≥ 20 days long), whereas the fusion
approach only shows a mild increase as listed in Table 6.3.
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Table 6.3: Comparison of the model’s performances for differently long gaps in the
optical data for the spatially split test set data. The performance of the
NDVI-Fusion model is also reported for the temporally split test data.

gap length [days]
Metric Method < 5 5–9 10–14 15–19 ≥ 20

MAE

Interpolation 0.035 0.040 0.047 0.056 0.088

Optical-Only 0.034 0.040 0.048 0.058 0.091
NDVI-Fusion 0.034 0.040 0.046 0.054 0.076

temporal split 0.035 0.042 0.050 0.060 0.082

RMSE

Interpolation 0.063 0.070 0.080 0.091 0.137

Optical-Only 0.059 0.067 0.080 0.092 0.139
NDVI-Fusion 0.059 0.066 0.077 0.087 0.116

temporal split 0.062 0.072 0.084 0.097 0.126

R2

Interpolation 0.949 0.941 0.924 0.906 0.809

Optical-Only 0.955 0.945 0.925 0.904 0.798
NDVI-Fusion 0.955 0.946 0.930 0.914 0.860

temporal split 0.919 0.919 0.900 0.876 0.823

6.3.2 Qualitative Results

To demonstrate the fusion approach visually and present qualitative results, two
example areas of the 124 areas of the test set are selected. They are chosen to demon-
strate the lower and upper performance bounds: one area located in the south of
Vietnam has one of the worst test performances and highest errors, whereas the other
area has a very low error and is located in India. In the subsequent text, these are
referred to as the Vietnam and India example areas, respectively. The location of both
areas, along with an RGB image, is given in Figure 6.4.

All plots are created bymasking all opticalNDVI values in a slidingwindowapproach:
going over each NDVI value of the time series, the NDVI is masked, the fusion model
is run, and the prediction of this date is saved. This ensures that for each predicted
value the optical NDVI of that date was not seen by the model, but all the others
are.

Analyzing the time series of a single pixel, whose location is displayed as cyan square
in Figure 6.4, shows that the SAR-derived NDVI values have a similar behavior, but
by applying the fusion approach and augmenting the SAR-derived with the optical
NDVI values results in a very high agreement between optical NDVI values of a date
and the prediction at that day. The complex and quickly-changing NDVI patterns of
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(a) Location of the two example areas.

(b) India, 2019-10-12 (c) Vietnam, 2020-02-25

Figure 6.4: Location of two example areas used for demonstrating our time series
fusion approach marked red on a world map (top) and Sentinel-2 true-
color images of these two locations (bottom). The vertical line and the
box in cyan denote which data is used to display exemplary time series.

the Vietnam example are modeled very well with low errors, even though the optical
NDVI values are often not dense and have long gaps. The India example area has
very dense optical values most of the years, only around August to October does the
NDVI increase and becomes rather sparse. This is very well reflected in the fused
NDVI. Both examples are shown in Figure 6.5.

To visualize the performance not only on a single pixel, but on multiple pixels at
once, the NDVI of a whole image row can also be plotted (denoted as a cyan vertical
line in Figure 6.4). The optical data has many gaps due to clouds and cloud shadows,
which also result in gaps in the calculated error. In contrast, the fused NDVI is dense
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Figure 6.5: Comparison of the NDVI time series and associated errors for optical,
SAR-derived, and fusedNDVI data for a cropland pixel within theVietnam
(top) and India (bottom) example areas. The location of the used pixels
is given in Figure 6.4. The fused NDVI time series (green) is dense and
is closely aligned with the optical NDVI measurements, illustrating the
effectiveness of the fusion approach. In contrast, the optical NDVI time
series (blue) suffers from irregular acquisition intervals due to cloud cover.
Meanwhile, the SAR-estimated NDVI (gray) is consistent in temporal
coverage but displays a higher level of uncertainty and noise.

without long gaps and results in a low error for almost all of the dates. For the India
example area the NDVI is sufficiently dense for most of the year but between June
and October, almost no cloud-free pixels could be acquired. Our fusion approach
can estimate reasonable NDVI values and achieves a low error for the few cloud-free
optical dates. Only for the Vietnam example area a few dates in December have
a higher error which coincides with a drastic increase of the NDVI at these dates.
Visualizations for both areas are depicted in Figure 6.6.
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(a) Vietnam example area (b) India example area

Figure 6.6: Comparison of the NDVI of one image row over time for the example
areas. The RGB (top row) and theNDVI derived fromoptical data (second
row) have many gaps due to cloud coverage. In contrast, the fused NDVI
(third row) is almost gap-free and closely aligned with the optical NDVI
as evidenced by the low error (bottom row). The location of the row is
shown in Fig 6.4. Missing data due to missing image retrievals or masked
clouds and cloud shadows is displayed in gray.
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Lastly, the fusion approach is compared for a series of images. For 15 partly cloud-free
images of the Vietnam example area between December 2019 and February 2020, the
fused NDVI is calculated and compared to the optical one. For almost all scenes a
low error is achieved while filling all the cloud-induced gaps. This is displayed in
Figure 6.7.

All these figures show the high performance of the approach and the high accordance
with the optical NDVI.

Figure 6.7: Overview over the RGB and NDVI images between December 2019 and
February 2020 for the Vietnam example area. The top row shows the
optical images, and the second row the NDVI images masked for clouds
and cloud shadows. The fused images (third row) are only shown for
all dates, where S-2 data was captured. The bottom row shows the error
between optical and fused NDVI images. Gray areas are masked because
of detected clouds or cloud shadows.

6.4 Discussion

An approach to fuse time series of different modalities was presented. This approach
integrates sparse but accurate optical NDVI time series with denser, albeit less precise,
SAR-estimated NDVI time series, effectively addressing gaps caused by clouds and
cloud shadows. Both quantitatively as well as qualitatively the high performance
and low error of the fused NDVI time series could be shown. Gaps can be filled and
the resulting time series have a high similarity with the optical values.

The findings reveal that pre-fusion NDVI estimates from individual SAR scenes are
preferable to the direct use of SAR backscatter (cf. Table 6.1). This efficacy stems
primarily from two factors: First, the SAR-to-NDVI translation leverages the spatial
neighborhood of the SAR data, enhancing NDVI estimation accuracy by considering
each pixel’s spatial context. Secondly, SAR-derived NDVI values are less impacted by
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speckle noise, a prevalent issue in SAR backscatter time series, resulting in a cleaner
dataset for fusion.

As shown numerically in Table 6.3, a low error is achieved for short as well as for
long gaps in the optical data. Nonetheless, there are instances showing limitations of
the approach. Firstly, our model struggles to accurately predict abrupt changes in the
time series due to agricultural practices or vegetation burns. This can be evidenced
in the India example area, where higher errors were observed during rapid NDVI
fluctuations in July and October 2020, as depicted in Figure 6.5. Similarly, for the
Vietnam example area, on multiple occasions a sudden change results in an increased
error, for example in April or July 2020.

These inaccuracies can be attributed to two main reasons: Firstly, the necessity for
high temporal precision, where even slight timing discrepancies can lead to significant
errors, and secondly, a lack of data with rapid vegetation transitions. As most of
the vegetation is rather stable, only very little optical data is available with sudden
changes in the NDVI. To mitigate this, we could expand our dataset to include more
instances with high and quick vegetation and NDVI changes. However, it might
be computationally expensive to acquire a sufficient amount of suitable time series,
as there has to be a rapid vegetation change and coinciding available optical data.
Another option could be to oversample time series with frequent changes. This
however would likely result in an oversampling of agricultural areas and seasonal
vegetation, resulting in an higher imbalance of the training data.

Another case in which the method has a lower accuracy is in flooded areas or for
water bodies. This is due to the interaction of microwave signals with water surfaces.
The reflection of microwaves off water results in minimal backscatter signals and
consequently, a lack of usable information for NDVI translation in the received signal.
Without information about the Earth’s surface in the SAR data, the translation to
NDVI values is not accurately possible, which results in an increased error of the
SAR-derived NDVI time series and therefore also an increased error in the fused
NDVI series in such environments. This phenomenon likely explains the elevated
errors observed on 25 January in Figure 6.7, as the rice fields in the studied area
undergo regular flooding (Nguyen et al. 2022).

It is also acknowledged that the opticalNDVI, the standard of truth, has some inherent
uncertainty and inaccuracy. These uncertainty arises from factors such as atmospheric
correction methodologies and algorithms as well as differences in the topographic,
solar, and viewing angles. No corrections for differing sun–surface–sensor angles
were applied, to reduce the complexity in preprocessing and remain close to the
ESA-provided data. Moreover, the cloud and shadow masking, while effective, is
not infallible, with occurrences of both false positives and false negatives. A manual
annotation of clouds is infeasible, due to the sheer volume of images. However,
employing a more sophisticated temporal cloud detection algorithm like in Zhu
et al. (2014) could improve cloud detection accuracy, albeit at the cost of increased
computational demand and more complex data processing.
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7 Discussion

A central objective of research is to engage in a critical discourse and analysis of one’s
own contributions. Accordingly, the following chapter presents a critical review of
the dissertation’s work.

This dissertation presented an approach to mitigate the impact of clouds on the
availability and quality of NDVI data through the deployment of two deep learning
models. The first model translated a SAR image into an NDVI image, while the
second model fused dense time series of the SAR-estimated NDVI values with the
sparse, cloud-affected optical time series.

General Validity As demonstrated in this dissertation, NDVI data can be success-
fully enhanced by leveraging SAR data and deep learning models. Successfully
achieving this requires the synergy of both models – first translating single-scene
SAR data to NDVI and then fusing the time series. While the initial SAR-to-NDVI
translation provides a low error and a good amount of spatial detail considering the
low resolution of Sentinel-1 data, the predictedNDVI values are not fully sufficient for
all downstream applications. The needed high quality is achieved by the subsequent
time series fusion, integrating the sparser optical data. This enables the prediction
performance to reach a level suitable for practical applications.

Computational Efficiency The use of two deep learning models makes computa-
tional efficiency an important consideration. Although the first model, a CNN, is
highly efficient in utilizing available GPU resources, the second model, an RNN, is
not as readily scalable. The RNN processes data sequentially, which inherently limits
the extent to which it can be parallelized. This, in turn, constrains the utilization of
GPUs. Consequently, the complete workflow, encompassing data download, SAR-
to-NDVI model execution, and RNN-based time series fusion for each pixel, is both
computationally demanding and time-consuming.

Benefit of Auxiliary Geospatial Data Incorporating auxiliary geospatial data, such
as elevation information and land cover maps, can significantly influence a model’s
performance, either enhancing or diminishing it based on the specific remote sensing
task and the timeliness of the data used. In the case of SAR-to-NDVI-translation,
the integration of land cover data has been shown to improve model performance
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(cf. Table 5.5). However, it was not investigated if the improved performance also
translates into an improvement of downstream applications using the estimated
NDVI data.

For certain downstream applications, leveraging the more accurate NDVI data pro-
duced by including the land cover information may paradoxically lead to suboptimal
outcomes. An illustrative example is areas impacted by forest clearance and deploy-
ing the estimated NDVI for the detection of deforestation. When the SAR-to-NDVI
model is given both backscatter and land cover data to estimate the NDVI, it may
receive contradictory signals; the land cover data might still indicate the presence
of forest, while backscatter data suggest that changes have occurred. Such inconsis-
tencies may result in erroneous NDVI predictions. In contrast, restricting the model
to backscatter data alone eliminates these contradictions, potentially enhancing the
accuracy of the predicted NDVI and the subsequent deforestation detection for this
particular scenario.

This example underscores a critical insight: that not all available data should be uti-
lized indiscriminately in the hope of improving performance. Instead, the suitability
of the data should be carefully considered in relation to the specific application.

Evaluation of Terrain-Flattened Backscatter as Model Input The SAR-to-NDVI
translation performance was compared for different input data. One of these com-
parisons was whether the SAR data passed into the deep learning model should
have terrain flattening applied or if it is sufficient to use only geocoded data with the
backscatter still influenced by the terrain. The conclusion was, that this is not neces-
sary, as the performance of using terrain flattened 𝛾∘ backscatter is not significantly
better than 𝜎∘ backscatter without terrain flattening applied.

However, during the finalization of this thesis, two issues emerged. Firstly, no
separate evaluation for flat and for hilly terrain was carried out to support the claim,
that terrain flattening is not required. This differentiation is crucial because terrain
flattening is not necessary for flat regions, but might provide a performance boost in
hilly areas. Associated with that, the distribution of terrain slopes of the SEN12TP
dataset was not examined to assess how balanced the dataset is in that regard.

Secondly, comparing terrain flattened with non-terrain flattened data poses chal-
lenges since pixels in the radar shadow are handled differently. Geocoding assigns
backscatter values to pixels located within radar shadow regions; however, no actual
backscatter from the surface can be sensed in these areas, and the assigned low
backscatter values are only noise. In contrast, the applied terrain flattening method
sets pixels in the radar shadow as no-data pixels. These no-data areas cannot be pro-
cessed by the neural network. Therefore, it is necessary to either substitute the pixel’s
value with a predetermined value or exclude the entire patch containing no-data
pixels from the training process. In the presented approach the second option was
chosen and any image patches containing no-data pixels were discarded.
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This results in slightly different patches seen by the model during training, which
could affect themodel’s predictions. Consequently, the comparability between terrain-
flattened data and data without that processing is reduced.

Prediction Uncertainty Due to Insufficient Data Uncertainty estimation provides
valuable insight into machine learning models and can be used, for example, to assess
the reliability of model outputs. Uncertainty is generally categorized into two types:
aleatoric and epistemic. Aleatoric uncertainty arises from data-related issues, such
as noise or not enough information in the input to enable an accurate prediction.
In contrast, epistemic uncertainty relates to limitations of the modeling approach,
such as the chosen model architecture and the available training data. Together,
these uncertainties can provide insight into the reliability of the predictions and the
model’s confidence in its output.

In a recent study by Baumann, Roßberg, and Schmitt (2023), a U-Net architecture,
called MIMO U-Net, was developed to efficiently estimate both aleatoric and epis-
temic uncertainties on a per-pixel basis. An example application on which the ar-
chitecture was evaluated was SAR-to-NDVI translation. For this application, the
aleatoric uncertainty was reported to be higher (𝜎 = 0.187 with 𝜎 denoting the
estimated standard deviation) than the epistemic uncertainty (𝜎 = 0.049). The ele-
vated aleatoric uncertainty suggests that data from a single Sentinel-1 scene does not
contain enough information for a highly accurate NDVI estimation. Consequently,
incorporating additional data as input could improve the accuracy of the translation.
Factors contributing to the insufficient prediction and high uncertainty include issues
such as speckle and the low resolution of the Sentinel-1 SAR data. In addition, it’s
important to recognize the inherent limitations of SAR-to-NDVI translation due to
fundamental differences in the sensing principles of SAR and optical sensors.
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8 Conclusions and Perspectives

8.1 Summary and Conclusion

Cloud coverage poses a significant problem for vegetation monitoring based on
optical data and prevents continuous observation for instance of crops, meadows,
or forests. This thesis has aimed to mitigate the impact of clouds on the quality and
availability of optical NDVI data which enables continuous vegetation monitoring
despite cloud cover. This has been achieved by leveraging SAR data, able to penetrate
through clouds, and deep learning models, which can learn complex patterns in the
data. Overall, three contributions were presented.

Firstly, a globally applicable method to translate SAR imagery into NDVI values is
proposed. This method is based on a deep learning model and can accurately predict
the NDVI image of a scenewhen given the SAR backscatter data of that scene. To train
this model, a novel dataset, named SEN12TP, was created. This dataset consists of
Sentinel-1 SAR and Sentinel-2 optical imagery, which is timely paired so that images
of the same scene are acquired on the same day. To ensure optimal performance
regardless of the scene, a diverse set of images was acquired, taking into account
land cover types, climate zones, and months. This results in a dataset that captures
all states of the Earth’s surface and vegetation, allowing models trained with it to be
applied universally.

Secondly, driven by the desire to create dense and accurate NDVI time series, an
approach was developed to fuse the existing, albeit sparser, optical NDVI time series
with time series of SAR-estimated NDVI values. This method is based on a recurrent
neural network (RNN) architecture which is capable of handling missing data and
variable sequence lengths. The RNN is trained using a dataset created based on
the same locations as the SEN12TP dataset. Smaller image footprints than those of
SEN12TP were used to maintain a manageable dataset size while including data
of one and a half years for each location. The trained model demonstrated a con-
sistently good accuracy, even for cases with extended data gaps in the time series.
Additionally, it generalized well across different regions and seasons allowing for
global applicability. Visual assessments confirm a high similarity to optical values,
supporting the reliability of denser NDVI time series for downstream applications
despite challenges posed by cloud cover.

Finally, a thorough analysis of the relationship between NDVI values and SAR
backscatter data was conducted. This provides a foundation for estimating NDVI
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values from SAR data. Unlike many existing studies, the investigation did not focus
on a single SAR frequency or a single study area. Instead, multi-frequency SAR data
(X-, C-, S-, and L-band) with multiple polarizations was employed and the analysis
was carried out for three diverse study regions with different climate zones, crops,
and agricultural practices. The relationship between NDVI and SAR backscatter
has been demonstrated; however, no universal link has been identified. Rather, a
multitude of factors, including crop type, acquisition geometry, SAR frequency, and
SAR polarization, influence the relationship between the two variables.

8.2 Future Work

The work presented in this thesis has identified several promising avenues for future
research.

Model Evaluation with Data of Other Sensors The use of different SAR sensors and
frequencies can provide additional insight and potentially increase the robustness
and generalizability of the models. The upcoming NASA-ISRO Synthetic Aperture
Radar (NISAR) mission, which will provide free access to S- and L-band data, offers
significant potential for enhancing vegetation monitoring applications. The NDVI
estimation using S- or L-band images could be thoroughly evaluatedwith this sensor’s
data. In addition, the integration of SAR data from sensors using different frequencies
could be tested. In particular, the combination of NISAR with Sentinel-1 C-band data
could significantly improve the accuracy of NDVI estimates.

An increase in NDVI estimation accuracy might also be achieved by combining
Sentinel-1 data with data from existing SAR sensors other than NISAR. However, this
is costly, as data from most other SAR sensors are either not freely available or freely
available only in limited quantities for research purposes. This limitation hinders the
ability to train a large model from scratch.

Incorporation of Additional Input Data A potential area for future investigation
is the integration of additional remote sensing data into the SAR-to-NDVI model,
complementing the SAR image. This is recommended because providing a single SAR
scene to the model leads to a considerable aleatoric uncertainty, thereby suggesting
the necessity for additional data for an accurate forecast (Baumann et al. 2023).

One potential approach to achieve this is the combination of an outdated but cloud-
free optical image with the current SAR image which may enhance structural details.
However, it is essential to properly implement and test this approach, as a naive im-
plementation of simply adding the image could potentially yield suboptimal results.
In such a scenario, the model might be inclined to select the more straightforward
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option of predicting the outdated NDVI of the old image. It may therefore be ad-
visable to input only a panchromatic image or just the edges of the optical image,
expressed as the gradient, as structural cues. Another challenge of this approach
may be the availability of cloud-free data for heavily clouded regions like the tropics.
Using a cloud-free mosaic might help to overcome this issue; however, typically
mosaics cannot be generated without artifacts, which the model would have to learn
to ignore.

Combined Spatio-Temporal Approach Having presented an approach in this thesis
that is split up into a spatial (chapter 5) and a temporal model (chapter 6), it might be
worthwhile to implement and evaluate a combined approach with a spatio-temporal
model. This could be achieved with a transformer architecture as it allows for a
flexible incorporation of both temporal and spatial information. This work could
also be combined with the development of a satellite image series foundation model,
at least for vegetation. Several optical and SAR sensors could be integrated and the
temporal and spatial correlations could be fruitfully exploited. A drawback of such
a generalist approach is the need for a very large dataset, comprising terabytes of
satellite data and substantial computational resources. This limits not only who can
train such a model, but also who can actually use it, since not all research institutions
or potential end-users have access to GPUs, let alone high-performance ones with
sufficient memory.

Estimation of the Prediction Uncertainty Baumann, Roßberg and Schmitt (2023)
presented a novel model architecture to jointly estimate aleatoric and epistemic
prediction uncertainties. An example application of this model was the SAR-to-
NDVI translation, where a good performance was achieved. However, its evaluation
focused on the uncertainty of the model and less on the estimated NDVI values,
which would warrant a more elaborate analysis. Having a measure of the uncertainty
of the predicted NDVI values is not necessary for most applications that use the
resulting NDVI values, but it could still increase confidence in the predicted values.
It might also be worthwhile to integrate the estimated uncertainties into the fusion
of the time series (chapter 6).

Transfer to Additional Vegetation Indices This thesis focused on the NDVI as
the most widely used vegetation index. However, other indices exist, such as the
normalized difference moisture index (NDMI), which is an indicator of vegetation
moisture. Since vegetation moisture also affects radar backscatter, it may be feasible
to translate SAR imagery into moisture indices. Investigating this could provide a
more comprehensive understanding of vegetation health, as the NDMI provides
additional insights that the NDVI alone cannot capture. Future studies could investi-
gate the relationship between SAR backscatter and the NDMI or other vegetation
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indices, potentially leading to more robust and versatile vegetation monitoring mod-
els. This could also lead to a multi-task learning (MTL) model that predicts multiple
vegetation indices simultaneously.

Inclusion of Weather Data An intriguing aspect would be to include weather data
in the time series fusion. This addition would allow the model to learn the effects of
weather on both plant growth and the sensed data. If successfully trained, the model
would be able to disentangle the effects of vegetation growth, plant water content,
and soil moisture on the received signal. This could further improve performance.
In addition, the model could gain the ability to predict vegetation conditions under
various future weather scenarios. This would work by providing only simulated
weather data without providing optical or SAR data. However, training such a
model poses significant challenges. It would require an extensive dataset and a large
model capable of capturing the underlying complex patterns, necessitating significant
computing power.

Exploring Downstream Applications Finally, this dissertation did not investigate
the practical application of the estimated NDVI images and dense NDVI time series
for subsequent uses. A variety of applications rely on NDVI data, including precision
agriculture, drought monitoring, and climate impact assessment. Demonstrating
an improvement in these applications using the enhanced NDVI data would not
only validate the methods developed in this research but also demonstrate their
practical utility. Future work could include the implementation of case studies and
validation exercises in a variety of application domains to demonstrate the utility
and effectiveness of the enhanced NDVI data.
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