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Zusammenfassung

Moderne Lkws sind mit einer Vielzahl von Fahrassistenzfunktionen ausgestattet, welche sich durch steigende
Gesetzesanforderungen noch weiter erhöhen. Damit diese Systeme zuverlässige Reaktionen auf Verkehrs-
situationen erzeugen können, wird eine gute Umgebungserfassung benötigt. Moderne Fahrzeuge haben dafür
verschiedene Sensoren, welche Informationen über die Objekte um das Ego-Fahrzeug herum erfassen, die
anschließend fusioniert werden. In dieser Arbeit werden alle Schritte einer solchen Verarbeitungskette zur
Detektion, Verfolgung und Fusion von Objekten erläutert und diskutiert.

Die Arbeit stellt einen Ansatz zur Objekterkennung mit Lidar Sensoren vor, welcher sowohl sicherheitskritische
Aspekte als auch die Detektionsgüte beachtet. Dabei wird eine Kombination aus klassischer Punktwolkenverar-
beitung mit neuronalen Netzen eingesetzt. Außerdem wird ein Ansatz zur Objektdetektion direkt vor dem Lkw
mithilfe von Kameras entwickelt, wobei die hohe Position der Kamera an der Fahrerkabine im Fokus steht.

In State-of-the-Art Systemen werden detektierte Objekte häufig mithilfe eines Kalman Filters (KF) fusioniert.
Solche Ansätze haben Vorteile durch eine geringe Komplexität und Laufzeit. Sie sind jedoch eine Erweiterung
des Single-Target-Trackings und benötigen ein Datenassoziationsverfahren, welches die neuen Messungen den
bereits verfolgten Objekten zuordnet, und ein Track-Management, welches das Auftauchen und Verschwinden
von Objekten behandelt. Dabei können Fehler entstehen, welche die Zustands-, Existenz- und Klassifika-
tionsschätzung negativ beeinflussen und somit ein falsches Verhalten der Fahrassistenzfunktionen hervorrufen
können. Multi-Objekt-Bayes Filter schätzen hingegen sowohl die Zustände als auch die Anzahl der Zustände
mithilfe von Random Finite Sets, wodurch direktes Multi-Objekt-Tracking ohne explizite Datenassoziation
und Track-Management möglich wird. In den vergangenen Jahren wurden mehrere Approximationen wie der
Probability Hypothesis Density Filter vorgestellt, welche aufgrund einer relativ geringen Laufzeit auch für die
Anwendung in integrierten Steuergeräten infrage kommen.

Im Rahmen dieser Arbeit wird ein Framework zur Objektverfolgung und -fusion von Messungen verschiedener
Sensoren vorgestellt, welches verschiedene Multi-Objekt Filter zur Zustandsschätzung verwenden kann. Hier
werden sowohl der Kalman Filter als auch den Gaussian Mixture Probability Hypothesis Density (GM-PHD)
Filter eingesetzt. Somit wird eine Plattform geschaffen, welche einen direkten Vergleich der Ansätze er-
möglicht. Die Plattform ist dabei flexibel gestaltet, wodurch sie für eine Vielzahl verschiedener Sensortypen
und Sensorpositionen eingesetzt werden kann. Um diese Flexibilität mit dem GM-PHD Filter zu erreichen,
werden sensorbasierte Parametermodelle zur Darstellung der Detektionswahrscheinlichkeit und Clutter-Dichte
entwickelt. Außerdem werden eine Methode zur Integration der Fusion der Klassifikation im GM-PHD Filter
sowie ein Algorithmus zur Fusion verschiedener geometrischer Repräsentationen von Detektionen vorgestellt.
Durch den Einsatz von Gating kann für beide Filter eine Laufzeit von unter einer Millisekunde pro Zeitschritt
erreicht werden.

Das entwickelte Framework zur Objektverfolgung und -fusion ermöglicht einen direkten Vergleich des KF mit
dem GM-PHD Filter auf Basis von verschiedenen Datensätzen. Durch die Evaluation der Filter mit dem KITTI
Datensatz und einem neu entwickelten Lkw-Datensatz wird ein umfangreicher Vergleich mit verschiedenen
Sensor-Setups und deren Teilmengen gezeigt. Hier zeigt die entwickelte Implementierung des GM-PHD Fil-
ters mit einem erreichten HOTA Ergebnis von 77,1 % einen höheren Wert als der Kalman Filter mit 73,6 %
für fusionierte Daten des KITTI Datensatzes. Auch bei den meisten der anderen Versuche erreicht der GM-
PHD Filter bessere Ergebnisse. Die Evaluation untersucht zudem den Einfluss der vorgestellten Optimierun-
gen, wie der sensorbasierten Parametermodelle und des Gatings. Beim Lkw-Datensatz lässt sich somit eine
Verbesserung des 1-OSPA(2) Ergebnis von 0,36 auf 0,4 für fusionierte Daten erreichen. Des Weiteren wer-
den Versuche zum Einfluss eines ausgefallenen Sensors sowie ein Vergleich der verschiedenen Methoden der
Klassifikationsfusion gezeigt.
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Abstract

Modern trucks are equipped with various Advanced Driver Assistance Systems (ADAS) functions, which is
increasing due to new legal requirements. Good environmental sensing is required in order for these systems to
behave reliable. For this purpose, modern vehicles fuse the detections of different sensors, which measure the
objects around the ego-vehicle. In this thesis, all steps of such a pipeline for detection, tracking, and fusion of
objects are explained and discussed.

This thesis presents an approach to object detection with Lidar sensors that considers both safety-critical aspects
and detection quality. A combination of classic point cloud processing with neural networks is used. In addition,
an approach for object detection directly in front of the truck using a camera is developed, focusing on the high
position of the camera on the driver’s cab.

In state-of-the-art systems, detected objects are often fused using a Kalman Filter (KF). These approaches have
the advantage of low complexity and runtime. However, they are an extension of single-target tracking and
require a data association approach that assigns new measurements to the already tracked objects and a track
management handling the appearing and disappearing of objects. This can introduce errors that can negatively
affect the state, existence, and classification estimation, causing incorrect behavior of the ADAS functions.
Multi-object Bayes filters, on the other hand, estimate both the states and the number of states using random
finite sets, allowing direct multi-object tracking without explicit data association and track management. In
recent years, several approximations, such as the Probability Hypothesis Density filter, have been presented
which are also suitable for use in integrated control units, due to their relatively low runtime.

In this thesis, a framework for object tracking and fusion of measurements from different sensors is presented,
which can use different multi-object filters for state estimation. Here, both the Kalman filter and the Gaussian
Mixture Probability Hypothesis Density (GM-PHD) filter are applied. Thus, a framework is created which
allows a direct comparison of the approaches. The framework is designed to be flexible, allowing the number
and type of sensor used for environment perception to be easily changed. In order to achieve this flexibility
with the GM-PHD filter, sensor-based parameter models are developed to represent the detection probability
and clutter density. In addition, a method for integrating the fusion of the classification in the GM-PHD filter
and an algorithm for fusing different geometric representations of detections are presented. By using gating, a
runtime of less than one millisecond can be achieved for both filters used.

The developed framework for object tracking and fusion enables a direct comparison of the KF with the GM-
PHD filter based on datasets. By evaluating the filters with the KITTI dataset and a newly developed truck
dataset, a comprehensive comparison with different sensor setups and their subsets is shown. Here, the de-
veloped implementation of the GM-PHD filter with an achieved HOTA result of 77.1 % shows a higher per-
formance than the Kalman filter with 73.6 % for fused data of the KITTI data set. The GM-PHD filter also
performs better in most of the other tests. In addition, the evaluation shows the influence of the developed
optimizations, such as the sensor-based parameter models and the gating. For the truck dataset, this results
in an improvement of the 1-OSPA(2) score from 0.36 to 0.4 for fused data. Furthermore, experiments on the
influence of a failed sensor and a comparison of the different methods of classification fusion are shown.
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1 Introduction

In recent years, the automotive industry is undergoing a major change. Electronics and software define the
purchasing criteria of today and tomorrow (Haas et al. 2020), which also includes Advanced Driver Assistance
Systems (ADAS). This is also supported by the “zero-fatalities” strategy of the European Union (European
Commission and Directorate-General for Mobility and Transport 2020; European Commission 2020) to achieve
zero fatalities and serious injuries on European roads by 2050. This goal is supported by regulations like the
General Safety Regulation (GSR) (European Parliament and Council 2019) and promoted in public projects
such as TransSec1.

Driver assistance systems can save lives, especially in the field of heavy commercial vehicles. This is exem-
plified by the Advanced Emergency Braking System (AEBS), although other systems are also effective. The
AEBS for trucks, which has been declared mandatory by EU regulation since the end of 2015, is also proven
to be very effective (Unger 2011). The effect of this system is shown by Petersen et al. (2018) in an analy-
sis of truck accidents with serious personal injury on highways in Niedersachsen. The involvement of trucks
with AEBS is under-proportional compared to the number of trucks equipped with such systems (Petersen et
al. 2018). This suggests a reduction in accident frequency due to AEBS. Other systems, like the Blind Spot
Information System (BSIS) have similar potentials in reducing the amount of critical accidents.

1.1 Advanced driver assistance systems

ADAS are active systems designed to improve vehicle safety and improve driving comfort by warning the
driver or actively engaging the vehicle control. This encompasses emergency systems that react to hazardous
situations by warnings or executing emergency maneuvers, as well as systems for partial driving automation,
such as actively maintaining the current lane through steering.

For risk assessment and classification of automated driving and ADAS functions, the Society of Automotive
Engineers (SAE) defined different levels of automation (On-Road Automated Driving (ORAD) committee
2021):

• Level 0: No Driving Automation - The driver is always in full control of the vehicle. Level 0 covers
passive warning systems, that do not actively engage.

• Level 1: Driver Assistance - The system is in control of either longitudinal or lateral dynamics. The
driver has to constantly monitor the system and be prepared to take over full vehicle control.

• Level 2: Partial Driving Automation - The system is in control of longitudinal and lateral dynamics for
defined situations and for a limited amount of time. The driver has to constantly monitor the system and
be prepared to take over full control any time.

• Level 3: Conditional Driving Automation - The system is in control of longitudinal and lateral dynamics
for defined situations and for a limited amount of time. In contrast to level 2, the driver does not have to
constantly monitor the system, but needs to prepared to take over control as a fallback solution.

• Level 4: High Driving Automation - The system is in control of longitudinal and lateral dynamics for
defined situations and for a limited amount of time. If the driver does not take over control in case of a
failure, the system automatically maneuvers to a state of minimum risk.

• Level 5: Full Driving Automation - The system completely takes over control in all situations and no
interaction by the driver is necessary.

1http://www.transsec.eu/

http://www.transsec.eu/
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Currently, the majority of ADAS are classified in levels one to three. Although a detailed environment percep-
tion is necessary for all levels, this thesis focuses on the application of perception for ADAS systems of level
2.

Haas et al. (2020) show an overview of the currently available ADAS functionalities. The following list gives
a subset of available features for trucks where an advanced environment perception is beneficial:

• Advanced Cruise Control (ACC): Automatic speed control, while keeping a minimum distance to the
preceding vehicle. Mainly controlled by a Long Range Radar (LRR).

• Lane departure warning and lane keeping assist: Warns the driver in case of lane departure or actively
steers to keep the lane. Mainly controlled by front-facing camera.

• Advanced Emergency Braking System (AEBS): In the event of an imminent collision, a warning is first
generated and then emergency braking is carried out. Controlled by LRR and front-facing camera.

• Blind Spot Information System (BSIS) (or side guard assist): Monitors the side area of the truck (espe-
cially blind spots) and warns of collisions with road users. Controlled by Short Range Radar (SRR) or
ultrasonic sensors in the side area.

• Moving Off Information System (MOIS): Monitors the front area of the truck, especially the direct blind
spot in front of the front bumper, and warns of collision with weak targets. Can be controlled by SRRs,
ultrasonic sensors or cameras.

Previous ADAS are mostly based on single sensors and designed to work in specific and simple situations.
For example, the early emergency braking assistants in many vehicles were usually based on radar detections
and limited to warning and partial braking. By combining more sensor domains and increasing the number of
sensors, the perception quality improves. This fused perception is able to cover more complex situations, which
can increase the ADAS capabilities to carry out advanced maneuvers. This implies the need for modern detec-
tion sensors and modern multi-sensor multi-object tracking methods to fuse the detections. Such approaches
can provide a stable full surround perception, which is key to develop new level 2 ADAS function and to enable
level 4 and level 5 automated systems.

1.2 Challenges of multi-sensor multi-object detection and tracking for
trucks

In general, many principles and methods for multi-sensor multi-object tracking are similar for passenger cars
and trucks. However, there are some differences that need to be considered when developing perception ap-
proaches for trucks.

The variety of chassis variants, that can share parts of the electronic components, is enormous, which can
result in differences in the sensor setup. Figure 1.1 shows examples of different truck types that have different
mechanical platforms, and within each of the models shown there is a wide variety of bodies and configurations.
On the one hand, the installation positions of the sensors can be different, as can the number and types of
perception sensors. There are different types of cabins available, that have the forward facing camera installed
at different heights, which can influence the detection capabilities for high distances, as a lower mounted camera
may not be able to look over preceding cars. Similarly, radar sensors might be attached at different positions in
the chassis, creating differences in the overlap of the Field of View (FoV). The aim is to be able to handle the
highest possible variance of sensor setups with the same perception framework.

Due to the high mileage and long distances covered by trucks, the sensor set is often prone to wear and damage.
In addition, the sensors can easily be damaged during maneuvering. The approaches should therefore be able
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Figure 1.1: Different types of tucks that can share parts of the electronic components (Daimler Truck 2023).

to cope as well as possible with suddenly changing sensor sets. Tracking and fusion should continue to work
even if a sensor fails.

Another important point is the estimation of the class of all surrounding objects. Depending on the class,
the ADAS functions react differently: Particular attention is paid to Vulnerable Road User (VRU)s, while
infrastructure should not be reacted to. This is particularly critical in the case of trucks, as false positive
warnings and interventions are often triggered for incorrectly classified infrastructure objects due to the large
ego dimensions and trailing curves. On the other hand, incorrect classification of VRUs must be avoided to
be able to trigger alerts in all relevant situations. Therefore, estimating the class using a fusion of all available
information is critical for the functions.

There are additional differences in the area of object detection, which are mainly linked to the mechanical
properties of trucks. Most types of truck have a separately suspended cab. Cameras are usually located behind
the windshield in the cab area so that they can be cleaned by the windshield wiper. Compared to cars, they
are therefore mounted much higher and are also subject to greater movement. Figure 1.2 shows the separately
sprung area for a European truck, with typical mounting positions for a camera and radar sensor. As shown,
radar sensors are mounted at a lower position on the chassis.

In addition, the ADAS functions itself need to consider other masses, dimensions and dynamic behaviors com-
pared to cars. In particular, the large variety of the mentioned parameters needs to be considered, since the
same systems have to work for single tractors as well as truck-trailer combinations. However, the functions
themselves are not discussed in this thesis.
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Figure 1.2: Red area marks separately sprung cabin are with camera sensor mounted behind windshield. The
radar is mounted on the chassis.

1.3 Thesis outline

The overall goal of the thesis is the development of a general object-based multi-sensor multi-object tracking
and fusion framework, that is universally applicable and is not tailored to specific functions. The framework
is not limited to a specific set of sensors (e.g. series radars), but is designed to support all types of perception
sensors with object interface, regardless of the sensing domain. This means that all combinations of series
sensors and modern sensors, like new cameras or Lidar sensors, can be applied to the framework. In order to be
able to use such new sensors, detection algorithms for Lidar sensors and camera sensors in new positions are
developed.

Various filter algorithms can be used within such a framework. An important goal of this work is the application
of the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter from the Random Finite Set (RFS)
filter family in the developed framework and a comparison with the commonly used Kalman Filter (KF). As
both filters are supported, the framework is unique in offering a direct comparison of both methods with the
same boundary conditions and parameters, allowing recommendations to be made on their use. An extensive
comparison provides a good decision basis for the usage of future filter algorithms.

In addition, adjustments and optimizations of the GM-PHD filter for automotive applications are developed,
since most existing work does not focus on a generic application of this filter for sensor fusion in real-world
automotive systems, but typically on specific setups or scenarios. All developed approaches are evaluated
using both public datasets and a truck dataset to make general, as well as truck-specific statements about
performance.

Throughout the thesis, there are some main considerations for the usability of all contributions in real-world
trucks. These are used for evaluation of existing approaches and are boundary conditions for the development
of new systems. In particular, these boundary conditions meet the specific needs for truck that were described
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in the previous chapter. They are a differentiator to other works, since these boundary conditions enable a fast
integration to widespread real-world applications.

• Real-time capability is mandatory to be able to run in real-world trucks.

• The framework should support different sensor numbers, types and mounting positions to be invariant of
chassis and vehicle variants.

• Compatibility with current sensor systems using object-based interfaces should be given. However, dif-
ferent types of geometric object representations should be supported at the same time to allow combina-
tions of sensors with different capabilities.

• The developments should be universally applicable and work in different Operational Design Domains
(ODD), such as highways, rural and urban areas. Therefore, the dataset should also include these do-
mains.

These basic considerations are applied to all developments of the perception pipeline covered by this thesis.
Since an object-based framework is being developed, the individual chapters of the thesis contain individual
processing steps of such a pipeline, which are shown in the simplified overview of Figure 1.3. First, the basics
that are necessary for all further chapters are explained. Chapter 2 therefore explains the basics of common data
representations, common perception sensors and an object-based perception pipeline. Next, chapter 3 discusses
different object detection approaches and describes the developed detection methods for Lidar and camera
sensors. The next processing step is the multi-sensor multi-object tracking, so chapter 4 describes the basics
of multi-object-tracking with the KF and RFS filters, as well as the basics and an overview of multi-sensor
fusion. Chapter 5 describes the developed multi-sensor multi-object tracking and fusion framework, as well as
the adaptations to the GM-PHD filter for automotive applications. The developed detection approaches and the
multi-sensor multi-object tracking framework are then evaluated in chapter 6, that also shows an overview of
the used datasets, including the newly created truck dataset.

Several parts and methods, in particular the KF-based developments, are based on the approaches developed in
the preceding master thesis "System for Detection, Tracking and Classification of multiple Objects for Collision
Detection based on Lidar Sensors" (Bader 2019).

Figure 1.3: Simplified scheme of perception processing steps assigned to the chapters of this thesis.
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1.4 Contributions

The following list contains the major contributions achieved within the thesis, arranged by the corresponding
chapter. The detailed contributions are shown in the respective chapters, while the chapters 2 and 4 only provide
theoretical background.

• Chapter 3:

– A comparison of state-of-the-art detection approaches for Lidar and camera sensors is shown.

– A new two-stage approach for detection and classification using Lidar sensors is proposed. In
contrast to existing approaches, it combines traditional approaches with deep learning to achieve a
state-of-the-art performance while still providing detections in untrained edge cases.

– The development, application, and evaluation of a new camera detection pipeline for downward
looking cameras mounted on truck cabins is proposed. Existing detection approaches are combined
with distance estimation on a new position and perspective to provide 3D bounding boxes in close
range.

• Chapter 5:

– The proposal of a multi-sensor multi-object framework capable of working with multiple Multi-
Object Tracking (MOT) filters, including the KF and GM-PHD filters, which is a unique differen-
tiator and the prerequisite for a comprehensive comparison.

– A new spatial measurement matching approach to handle different geometric types of measure-
ments, like Oriented Bounding Box (OBB) or L-shapes, in a single framework is proposed. This
unique approach allows to combine sensors of different capabilities in a general way and is not
depending on certain type of sensor output.

– Development of new GM-PHD filter adaptations for real-world automotive applications. These in-
clude sensor-based parameter models for the detection probability and clutter density, that allow a
proper fusion of sensors with partially overlapping FoVs and at high distances and generally im-
prove the tracking quality. The addition of a classification tag is developed, allowing an integrated
propagation of the class with the GM-PHD filter. A gating process is proposed to improve the
computation speed and a track confirmation strategy is developed to improve the robustness against
multiple MOT errors, like ID switches during occlusion. All developments are optimized for the
usage in automotive applications and are subject to the boundary conditions stated in the previous
section.

– The proposal of multiple classification fusion schemes, which can be integrated into the framework.
This allows a comparison on real-world data. The proposed integration of the classification to the
GM-PHD filter provides a unique possibility to implicitly propagate this property within the filter.

– The implementation of a KF-based MOT approach for comparison to the GM-PHD approach.
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• Chapter 6:

– Evaluation of the two-stage Lidar detection approach on the KITTI detection dataset.

– Evaluation of the camera detection approach for downward looking cameras mounted on truck
cabins. The evaluation is based on a truck data set and is carried out for both detection and distance
estimation.

– The creation of a new truck dataset with sensors close to series for evaluation of the developed
detection and tracking algorithms is proposed. The annotation of the three scenes is based on Lidar
data and follows a similar structure like the KITTI dataset.

– An empirical comparison of the KF and several RFS-based multi-object filter approaches using the
Optimal Sub-Pattern Assignment (OSPA) metric with point objects on the KITTI dataset compares
the potential of different RFS filters. This comparison only evaluates the filter performance without
track continuity.

– A comparison of the GM-PHD filter to the KF is carried out for both the KITTI and the truck dataset
comparing the MOT performance for different sensor combinations.

– The influence of the developed sensor-based parameter models for the GM-PHD filter are evaluated
on both the KITTI and the truck dataset to show the potential.

– The runtime differences for the GM-PHD gating and the proposed detection probability model
are evaluated and compared to the KF and a mixture implementation for the detection probability
model.

– The developed classification fusion schemes are compared to each other on the truck dataset with
the GM-PHD filter.
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2 Environment perception basics and sensors

The environment of a truck can be measured by a variety of sensors with varying strengths and weaknesses.
These measurements are then represented by one of several possible models that have different advantages and
disadvantages, as well as different levels of abstraction. Depending on the model, they are also suitable for
other types of sensors and data fusion. This chapter first provides an introduction to the representations used
throughout the thesis and then presents the basics of all types of sensors used. First, however, an overview
of the proposed perception pipeline is given to allow a better understanding of the relationships between the
described sensors, detection, tracking and fusion approaches.

2.1 Overview of proposed perception pipeline

The overall goal of the perception pipeline shown in Figure 2.1, is to create robust tracks that can be used by
ADAS functions such as the ones discussed in the previous chapter. In order to provide these tracks, a multi-
sensor multi-object tracking approach is used to fuse the individual data from different sensors and track the
objects over time.

Previous generations of ADAS functions often relied on single sensors, like automotive radars, without a central
tracking and fusion stage, so many current generation sensors already have integrated object detection func-
tionalities, that sometimes also cover tracking. These sensors have an object interface, but the provided object
attributes may vary between different sensors, which must be taken into account.

On the other hand, modern sensors like Lidars often provide raw data, which are sensor measurements (e.g.
point clouds) without further processing, like integrated detection or tracking. Therefore, object detector mod-
ules have to be applied to all sensors that deliver raw data, which are in particular raw-data cameras and Li-
dars. This ensures compatibility with object-based perception sensors, while raw data sensors can be included
through the use of downstream object detectors.

The modules, which are marked in gray in Figure 2.1 are developed and described in detail in this thesis. In
particular, object detector modules for camera and Lidar are proposed in chapter 3, while approaches for multi-
sensor multi-object tracking are proposed and discussed in chapters 4 and 5. This chapter describes the basics
of environment representation and the individual sensors to give an overview of their capabilities when used as
input for the developed approaches in this thesis.



9

Figure 2.1: General pipeline used for this thesis. The environment is captured by sensors, which either directly
process the data to object features or provide their raw output (e.g. image or point cloud) to detection
algorithms. Next, the tracking and fusion is performed. Dark gray modules are developed in this
thesis.

2.2 Environment representations

Generally, it can be said that low abstraction levels of the environment offer a higher level of detail, but also re-
quire more resources. Higher abstraction levels, on the other hand, make more assumptions and thus reduce the
required resources (Schreier 2018). Therefore, a suitable compromise must be found for respective application.
It must also be taken into account that some environment models are only suitable for certain sensor modalities.
Schreier (2018) gives a good overview of the typical environment representations like interval maps (Weiherer
et al. 2012), elevation maps (Herbert et al. 1989), Stixel worlds (Pfeiffer and Franke 2011) and more. Map
data, especially high definition maps can also be considered as a static environment model. However, since the
focus of this thesis is more on the perception of objects and road users surrounding the ego vehicle, only the
occupancy grid map and the object map are described in more detail. Both representations are very different in
terms of abstraction level and capabilities.

2.2.1 Occupancy grid

A common low-level representation is the occupancy grid, where the environment is represented by a discrete
2D grid and the probability of occupancy is assigned to each cell. This type of map was introduced by Elfes
(1989) and was used in various applications in recent time. Thrun et al. (2005) give a detailed introduction
to this topic. An occupancy grid is suitable for low-level data fusion since the raw data from all sensors with
depth information (e.g. Lidar, radar, stereo-camera) can be used for an update. Another advantage is the
explicit representation of free-space information. However, compared to other representations, an occupancy
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Figure 2.2: Example of occupancy grid and inverse sensor model (Thrun et al. 2005).

grid has high memory and bandwidth requirements (Grewe et al. 2012). Additionally, a standard occupancy
grid is not capable of handling dynamic situations. This can only be done with hybrid models, where a list of
dynamic objects is modeled in parallel to the static occupancy grid map (Grewe et al. 2012), or by creating a
dynamic occupancy grid map (Nuss et al. 2018). For both options, a significantly higher computational effort
is necessary. Another drawback is the occurrence of discretization effects (Schreier 2018), which can decrease
the accuracy in important areas and the modelling of details in unimportant areas, which leads to inefficient
processing. However, Grewe et al. (2012) argues that future ADAS systems will need representations like
occupancy grid maps, that also model free-space to work in complex scenarios.

The goal of an occupancy grid map is the calculation of the occupancy of each cell over multiple time-steps
from noisy measurement data using an inverse sensor model. Figure 2.2 shows both a map and an inverse
sensor model, where the darkness represents the probability of occlusion. Each cell is updated in every time-
step using a binary Bayes filter (Thrun et al. 2005). The update can also be solved with the Dempster-Shafer
theory (Grewe et al. 2012) to model multiple conflicting sensors.

2.2.2 Object map

The object map representation consists of a list of spatially distributed geometric objects and corresponds to the
group of feature maps in the overview of Schreier (2018). Such object-based representations have been used
for many years in ADAS functions (Grewe et al. 2012), like the ones mentioned in chapter 1.1. A drawback of
this approach is the sparse environment model, which only models the space covered by the features (objects)
without additional information, like free-space or similar. On the other hand, they usually require low amounts
of memory and bandwidth and can represent the environment in a continuous probabilistic way with uncertain-
ties (Schreier 2018). Therefore, they can be more accurate if the object representation accurately describes the
actual objects (Lakemeyer 2003) and the dynamics can be easily represented by assigning a motion state to each
object. Additionally, for most of the sensors, like radar, camera or Lidar, there are methods for the generation
of objects with similar state representation which allows the feature-level fusion of those components. Many
current multi-object tracking pipelines work with object maps, too. Due to the lower complexity and focus on
specific parts of the environment, this representation is suitable for ADAS functions that focus on a specific
task, which is typically the case for functions up to SAE level two.
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2.3 Object representations

In object map representations, all objects of the object list have a geometric description. Depending on the
application, sensor capabilities and used algorithms, different types of geometric object descriptions may be
used, which mainly differentiate in the degree of spatial details and the level of abstraction. In contrast to
the proposed methods here, the shape estimation can also be directly integrated to the tracker using Bayesian
models, which is known as extended object tracking (Granström et al. 2017) and does not depend on sensor-
level shape estimation. The following list gives an overview of possible object representations. Here, the
differences are discussed with a focus on spatial properties and shape and visualized in Figure 2.3. Note, that
the dynamics of an object, like velocity and acceleration, are described by the motion model that is independent
of the geometric description and discussed in chapter 5.3.

Figure 2.3: Examples of different object representations.

• Point: The point model represents each object as a point in space without spatial expansion. This results
in a very compact and simple solution, that does not require complex matching algorithms. However, the
geometry of the objects is not modeled.

• Basic geometric shapes: This group of models describes each object as a basic shape. The advantage is
a compact geometric representation with few parameters, which includes enough geometric information
for most level two ADAS functions.

– OBB: The oriented bounding box consists of the object’s position, the dimensions, and the orien-
tation as a rectangular box. It is frequently used in public datasets, like KITTI (Geiger et al. 2012)
or nuScenes (Caesar et al. 2019), since it can represent most road users with adequate accuracy. In
addition, it is relatively compact, especially when the orientation is reduced to the yaw-Angle.

– L-Shape: The L-Shape representation models the sensor-facing geometry of an object using two
connected lines in Bird’s Eye View (BEV). Therefore, it has some similarities to the OBB in prac-
tice, since the L-shape often consists of a close to orthogonal angle. The advantage is that it can
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also represent other angles, but the drawback is that it only represents a portion of the outline of an
object in 2D and not its volume.

• Polyline: A polyline representation (Kraemer et al. 2018) can represent the outline of an object more pre-
cisely and in a more general way compared to basic geometric shapes. Depending on the type of polyline,
the amount of data required is relatively small, despite the high accuracy possible due to the parametric
formulation. The state estimation, in particular the yaw rate estimation, can also improve compared to an
OBB model (Kraemer et al. 2018). However, this type usually requires complex algorithms for matching
and updating the shape over time. In addition, those algorithms may fail in complex scenarios when
measurements within the object occur (Schütz et al. 2014), like a Lidar measurement through a window.

• Local Occupancy Grid: The idea of the occupancy grid map can be applied to the object level to deliver
precise and robust shape estimation and the integration of local free space (Schütz et al. 2014; Quehl et al.
2019), where each object has a separate small occupancy grid. This can result in very accurate spatial
representation at the cost of increase memory and processing consumption. Similar to the polyline model,
a local occupancy grid-based approach can lead to better state estimations while tracking, as shown by
Schütz et al. (2014).

The different representations are used depending on the required spatial accuracy, available bandwidth and
computing power. In addition, the accuracy of spatial dimensions is limited by some sensing principles. For
example, it is more difficult to measure accurate object geometries with cameras than with high-resolution
Lidar sensors, which can create local occupancy grids. Local occupancy grid maps have high spatial accuracy,
which may be required for tight maneuvering situations, but require a lot of bandwidth and computing power
for tracking. Point objects, on the other hand, have no spatial extent, but are sufficient for some applications,
such as ACC.

For other ADAS, like collision prevention on crossing or nearby targets, the object dimensions are important.
These are described by the OBB for 3D objects, which is also the most common object representation in
literature. The rectangular shape can be applied for most road users and is a good compromise between compute
power and accurate environment representation. Therefore, it is also mainly used for the approaches in this
thesis.

Multi-sensor systems operating on object maps usually use the same representation for each of its sensors
for simplicity. However, this is not always given. If sensors with different representations are used in the
same system, algorithms capable of matching and updating objects from multiple types of representations are
required. This is addressed in chapter 5.4, where such an algorithm is proposed.

2.4 Perception sensors

The foundation to unlock highest potential for ADAS and Autonomous Driving (AD) is a good environment
perception with high performance sensors. According to Marti et al. (2019), the key challenges for environment
perception of AD and ADAS systems are:

• Complex and dynamic environment. This accounts especially for dense traffic and populated cities.

• Reliability under different conditions is necessary. This includes weather, light conditions, operation
domains.

Currently, the most used sensors for ADAS are cameras and radars, with Lidar sensors emerging for higher level
automation systems. All these sensors have strengths and weaknesses in different areas due to the application
of different measurement principles. By combining the sensors in the form of sensor fusion, the weaknesses
can be compensated, and the strengths combined, resulting in a better overall perception.
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Figure 2.4: Example for truck sensor setup with SRR in red, LRR in blue and camera in green.

Current trucks already have several perception sensors, like a front facing camera and a LRR, as well as SRR
sensors, which is exemplary shown in Figure 2.4. Each of these sensors individually detects objects surrounding
the ego vehicle. The sensing principles of these sensors are described in the following sections. The sensors
cover different areas of the electromagnetic spectrum and thus create redundancy, as shown in Figure 2.5.

Figure 2.5: Magnetic spectrum including the ranges of different sensing principles, like camera, Lidar and
radar (Rosique et al. 2019).

2.4.1 Lidar sensors

Light detection and ranging (Lidar) sensors are a fast-growing area of interest for ADAS and AD applications,
since many successful participants of the DARPA grand challenge introduced these systems (Thrun et al. 2007).
These sensors provide high precision 3D representations of the surrounding in the form of point clouds. A Lidar
can therefore generate dense data of high spatial accuracy. Since it uses active illumination, the sensor is capable
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of working in any light conditions and is less affected by weather than other optical sensor systems. Due to
this combination of properties, Lidar sensors are stated to be a key technology for the future of AD (Roriz et al.
2021).

The basic working principle of Lidar sensors is to send out light signals and measuring the Time of Flight (ToF)
to receive a reflection, which allows calculating the distance, as shown in Figure 2.6. Automotive Lidar sensors
typically use wavelengths of 905 nm or 1550 nm. The transmission power, that also limits the maximum de-
tection range, is limited by eye safety regulations, which allows current sensors to reach up to 500 m. This also
depends on the signal type used for the detection. The two principles mainly used in automotive sensors are the
pulsed ToF and the Frequency Modulated Continuous Wave (FMCW), while others like the Amplitude Mod-
ulated Continuous Wave (AMCW) are used less. The ToF and the FMCW principles are shown in Figure 2.7.
ToF sensors emit short pulses of light, that are reflected by objects and then received by sensor, which allows
the calculation of the distance. FMCW sensors, in contrast, continously emit light with the optical frequency
modulated in a defined pattern over time. Doppler analysis of the return signals allows the calculation of the
target’s relative velocity in addition to the distance. Due to the velocity measurement, the higher robustness
against interference and the higher possible signal-to-noise ratios, the latest developments tend to favor the
FMCW Lidar sensors.

Figure 2.6: Basic working principle of a Lidar sensor. c is the speed of light in air, ∆T is the ToF of the light
signal.

Figure 2.7: Examples of different measurement types of Lidar sensors by showing the emitted and received sig-
nals of ToF (left side) and FMCW (right side) Lidar sensors. For FMCW, the emitted and received
frequency is shown which is used to calculate the target’s velocity, composed from (Roriz et al.
2021).

In order to create a 3D point cloud, an image generating system is necessary to steer the laser beams in order
to capture the distances of multiple directions. This is either done by a mechanical or a solid state system, as
shown in Figure 2.8. In mechanical systems, either the sensor itself rotates on a platform or a spinning mirror
is used to scan an area, which achieves a FoV of up to 360°. Solid state systems do not have mechanical parts
and either use beam steering based on Micro-Electromechanical Systems (MEMS) controlled mirrors, optical
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Figure 2.8: Comparison of different Lidar scanning principles: a) Optical Phase Array, b) rotating sensor plat-
form, c) MEMS Mirror beam steering, d) rotating polygon mirror, e) rotating flat mirror. The
principles shown in a) and c) are considered solid state, composed from Raj et al. (2020) and Wang
et al. (2020).

phased arrays or use flash systems without any moving parts. Raj et al. (2020) show a more detailed overview
of scanning mechanisms, while Roriz et al. (2021) give a general overview of Lidar technology for automotive
applications.

The sensors used in this thesis use pulsed ToF measurements in combination with a mechanical spinning sensor
platform and therefore have 360° horizontal FoV with vertical FoV of −25 deg to +15deg. Table 2.1 gives an
overview of the capabilities of some state-of-the-art Lidar sensors. As shown, there is a large deviation in FoV,
maximum range and accuracy depending on the used technology and application. In addition, the sensors vary
greatly in price.

Table 2.1: Characteristics of Blickfeld Cube 1, Velodyne VLP-32c, Aeva Aeris II and Velodyne Alpha Puck.

Blickfeld Cube 1 Velodyne VLP-32c Aeva Aeris II Velodyne Alpha Puck

Technology ToF MEMS ToF rotating FMCW ToF rotating
Range < 75 m < 200 m < 500 m < 300 m
HFoV 70° 360° - 360°
VFoV 30° 40° - 40°
Distance Accuracy - 0.03 m - 0.03 m

Application Short-Range Midrange Long-Range Long-Range

2.4.2 Cameras and artificial vision sensors

Cameras are a well established technology for ADAS, since they are able to sense all the traffic signs and lane
markings that are originally designed for humans. They are today available in a huge variety of configurations
in terms of resolution, frame rate, bandwidth, dynamic range, FoV and technology (Marti et al. 2019). As
a result, cameras can be used for a wide range of tasks, from simple rear-view cameras to interior driver
monitoring systems (Punke et al. 2016) and complex perception functions. One major advantage compared to
other sensors is the low cost for most configurations.

Cameras are usually passive sensors that capture a 2-dimensional image of the world within the FoV. Most of
them work in the visible spectral range and therefore can achieve similar detection capabilities like the human
eye (Punke et al. 2016). The main challenges are varying light and weather conditions, as well as the data pro-
cessing for 3-dimensional reconstruction. Some challenges of difficult conditions can be addressed by taking
the near and far infrared spectrum into account, as shown by Pinchon et al. (2019). The 3D reconstruction
capability can be improved by using stereo cameras (Hamzah and Ibrahim 2016). The quality of vision-based
environment perception also massively increased in the last years due to the latest improvements in deep learn-
ing. This is also supported by the higher availability of computational performance.
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Figure 2.9: Maximum detection distance over camera resolutions of different horizontal field of views.

Automotive cameras with object detection are available in a huge variety of resolution and lense configurations.
These two parameters are also the main variables influencing the maximum detection distance, since typical
detection algorithms need a minimum amount of pixels on a target to be detected. Assuming a minimum
height of 32 pixels for a 1.8 m pedestrian to be detected, Figure 2.9 shows the maximum detection distance for
different lense configurations and resolutions. However, the minimum amount of pixels varies from algorithm to
algorithm and also depends on the image quality in the given scenario. The accuracy of the distance estimation
relies to a great amount on the used algorithm, but is typically in the range of < 10 % of the object’s distance.

2.4.3 Radar sensors

Radar is derived from radio detection and ranging and describes a sensing technology based on the usage
of electromagnetic waves in the radio frequency range. This type of perception sensor has been used for
ADAS systems since 1998, where it was introduced for ACC (Winner 2016). Current automotive sensors use
frequencies in the range of 24-100 GHz, with a tendency to use higher ones in future (Gamba 2020). The
sensing principle has similarities to that of the FMCW Lidar sensor. Frequency modulated electromagnetic
waves are sent out, reflected by targets and received. This enables radar sensors to detect targets like cars in
distances > 250 m. Depending on the waveform type, the distance and receive angle, the relative velocity of
reflections can be calculated.

Various interfering factors must be taken into account for radar measurements: The reflectivity of different
targets varies greatly, with pedestrian typically having a low one compared to vehicles. However, this can also
vary between different vehicles due to geometry: The reflections of flat vehicles or those with concave surfaces
are harder to be detected (Winner 2016). Some weather conditions, such as heavy rain, can also negatively
affect the signal-to-noise ratio and thus reduce the detection capabilities (Winner 2016). Another interfering
factor are multipath reflections, where a target is reached by multiple radar waves on different reflection paths,
thus generating multiple detections.

Following Patole et al. (2017) and Hasch et al. (2012), radar sensors can be divided by their maximum range
into the categories of Short Range Radar (SRR), Medium Range Radar (MRR) and Long Range Radar (LRR),
which are designed to support different ADAS functions. The radar sensors used for this thesis have integrated
object detection functionalities. Therefore, they are treated as functional systems, without discussing the details
of radar object detection. However, Gamba (2020) and Winner (2016) are referred for a detailed introduction
to automotive radar technology.
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Table 2.2: Characteristics of SRR, MRR and LRR, composed from Patole et al. (2017) and Hasch et al. (2012).

SRR MRR LRR

Range 0.15-30 m 1-100 m < 10-250 m
Vehicle speed < 150 km/h < 250 km/h
FoV < ±80° < ±40° < ±15°
Distance Accuracy 0.1 m 0.1 m 0.02 m
Velocity Accuracy 0.1 m/s 0.1 m/s 0.1 m/s

Applications Parking Assistant
Impact Warning
VRU Detection

Blind Spot Detection
Cross Traffic Assistant
Side Impact Warning
VRU Detection

Automatic Cruise Control
Forward Collision Warning

2.4.4 Comparison

Table 2.3 shows an overview of the capabilities of each of the discussed sensor types. Each of them has other
strengths, that can be combined in a sensor fusion. In particular, cameras are usually strong in classification of
objects and the perception of non-geometric attributes, like signs and road marks. Radar and Lidar sensors have
strengths in the localization of objects and measuring their geometric attributes, as well as velocities. Therefore,
the fusion of these sensor types is desired to combine the strengths and create redundancy.

Table 2.3: Comparison of the capabilities of different sensor types.
Camera Radar Lidar

Object location - ++ ++
Object size + + ++
Object shape + - ++
Fine features ++ - +
Motion - ++ ++
Classification ++ - +
Signs and road marks ++ - -
Robustness light conditions - ++ +
Robustness weather conditions - ++ +

2.5 Coordinate systems

The vehicle coordinate system is cartesian and anchored to the ego vehicle. Different definitions exist through-
out literature and applications, however, for this thesis the vehicle coordinate system is located at the center
of the truck’s front axle on ground level. The X-axis points in driving direction, the Y-axis points to the left
when viewed in driving direction and the Z-axis points upwards, as shown in Figure 2.10. Since the cabin is
suspended separately, it is able to move independently from the vehicle coordinate system. Therefore, the cabin
coordinate system shown in blue in Figure 2.10 is introduced.

In addition to the vehicle coordinates, each perception sensor has its own sensor coordinate system relative to
a fixed point of the sensor. For cameras, the sensor coordinate system is typically located at the optical center,
while the X and Y axes are aligned with the pixel coordinate system, as shown in Figure 2.11. The other
sensors, like Lidar or radar, have sensor coordinate system, where the origin is located at a defined point with
the X-axis pointing in the sensing direction (see Figure 2.11).

In order to fuse information from multiple sensors, they need to be transformed from the sensor coordinate
system to the common vehicle coordinate system. The measurement of this transformation is also called ex-
trinsic calibration. The transformation from the sensor to the vehicle coordinate system is usually done with a
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Figure 2.10: Vehicle and cabin coordinate system definition.

Figure 2.11: Sensor coordinate system examples for Camera and Lidar.



19

transformation matrix Ts→v, that transforms the state vector xSensor =
[
x y z

]T from sensor coordinates
to vehicle coordinates xV ehicle:[

xV ehicle

1

]
= Ts→v

[
xSensor

1

]
=

[
R t
0 1

] [
xSensor

1

]
. (2.1)

The transformation matrix consists of the rotation matrix R(3×3), describing the rotation between both coordi-
nate systems, and the translation vector t =

[
tx ty tz

]T , describing the translation between both coordinate
systems. If the sensor state vector xSensor consists of additional information, like relative velocities, the trans-
formation matrix Ts→v may be more complex.

The raw data captured by camera systems is typically given in pixel coordinates [u, v]T and underlies distortion
effects, which need to be corrected using an intrinsic calibration. The intrinsic calibration is often done using
a checkerboard to derive a pinhole camera model and the lens distortion parameters (Punke et al. 2016). With
the derived camera intrinsic matrix K, a transformation from camera coordinates xCam =

[
xc yc zc

]T to
pixel coordinates [u, v]T with aspect ratio scaling s can be calculated by

s

uv
1

 = KxCam =

fx 0 u0
0 fy v0
0 0 1

xcyc
zc

 , (2.2)

where the camera matrix K consists of the focal lengths fx and fy and the principal point offsets u0 and v0.

Note that a vice versa calculation from pixel to camera coordinates is not possible without additional assump-
tions. Applying these assumptions is usually a key element in 3D detection algorithms based on monocular
cameras, which is further discussed in chapter 3.3.1.

An important consideration for applying perception sensors to trucks is the mounting position, as the cabin is
suspended separately from the chassis. This introduces additional degrees of freedom and results in constantly
changing transformation matrices between the cabin coordinate system and the vehicle coordinate system. This
issue can be addressed by continuously measuring the transformation with sensors, like Inertial Measurement
Units (IMU). Another possibility is the compensation of the motion directly during the perception on sensor
level.
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3 Object detection

Over the last years, object detection is a rapidly evolving research field with a wide variety of approaches. It
is the task of identifying and locating multiple objects of specific classes in scenes provided by sensors like
cameras or Lidars. The outputs, performances and capabilities differ a lot depending on the sensor technology
and the type of approach. Usually, the detection outputs include pose information, like the location, scale,
bounding box or more detailed information like segmentation masks (Amit et al. 2020, p. 1).

This thesis focuses on 3D object detection methods that provide the pose of the detected objects in vehicle co-
ordinates alongside with a classification and additional information. Detection methods that rely on detection-
by-tracking are not considered in order to produce independent detections at each time-step. This is consistent
with the Markov property used in many tracking approaches that states that the stochastic process is memoryless
defined by p (zk|x0, . . . ,xk) = p (zk|xk).

This chapter gives a general overview on state-of-the-art object detection methods for Lidar and camera sensors,
as well as a short introduction to radar object detection. Since most state-of-the-art detection algorithms rely at
least partially on deep learning, a short introduction is given as well. However, the main contributions are the
proposal of a new Lidar-based object detection approach in chapter 3.2.3, which combines geometric and deep
learning techniques for safety critical applications and the proposal of a new camera based detection algorithm
for high sensor positions at the roof of a truck’s cabin in section 3.3.3.

3.1 Object detection overview

In recent years, most published literature is using deep learning on camera and Lidar sensors for object de-
tection, since these methods offer high accuracies. The surveys from Arnold et al. (2019) and Qian et al.
(2021) give an overview on the current state-of-the-art for such 3D detection methods. Table 3.1 shows a short
overview and comparison of different approaches, which are described in more detail in this section.

As shown by the table, fusion approaches have also been researched in recent years, in which the raw data from
several perception sensors are fused before or during object detection. These approaches can reach high mean
Average Precision (mAP) scores of over 90 % on the KITTI Dataset1, especially when using low-level fusion
of Lidar and camera like shown by Zhu et al. (2022) or Wang et al. (2021). However, in order to maintain a
modular framework, this thesis focuses on separate object detection for each sensor and therefore is not using
these approaches.

1referring to the KITTI "3D Object Detection Evaluation 2017" Benchmark (https://www.cvlibs.net/datasets/kitti/eval_object.php?
obj_benchmark=3d) for category "Car, easy", where cars with minimum bounding box height of 40 pixels in camera coordinates
are evaluated.

https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
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Table 3.1: Overview of object detection approaches using different sensors. Composed from Arnold et al.
(2019); Qian et al. (2021); Wu et al. (2021).

Sensor Method Description Publications

Camera
Monocular The detection is done based on single RGB images. The range informa-

tion therefore has to be estimated. This can either be done by reprojection
techniques, utilizing estimated 3D bounding box dimensions or directly es-
timating the range within the detection process.

Chabot et al. (2017); He and Soatto
(2019); Li et al. (2019); Liu et al.
(2021); Mousavian et al. (2017)

Stereo The detection is improved by providing range estimates from the stereo
camera. This improves the location and dimension estimates to the cost
of high computation requirements.

Liu et al. (2021)

Pseudo Lidar A depth value is estimated for each pixel using a neural network, which
leads to a RGB-D point cloud. This can be used for object detection based
on point cloud approaches.

Wang et al. (2019)

Lidar
Projection The point clouds are projected to an image frame and processed using com-

puter vision approaches. These can be extended using 3D processing ap-
proaches.

Barrera et al. (2020); Beltrán et al.
(2018); Chen et al. (2017); Li et al.
(2016); Simon et al. (2019b); Yang
et al. (2018); Zeng et al. (2018);
Zhou et al. (2019)

Volumetric The point clouds are converted into a volumetric representation structure,
like voxels, which is the basis for the detection.

Chen et al. (2019); Kuang et al.
(2020); Lang et al. (2019); Li
(2017); Simon et al. (2019a); Yan
et al. (2018); Zhou and Tuzel
(2018)

PC processing The detection is done directly on the point cloud data, which can be done
by both geometrical and deep learning approaches.

Charles et al. (2017a); Charles
et al. (2017b); Shi et al. (2019);
Yang et al. (2020); Burger and
Wuensche (2018); Himmelsbach
et al. (2010); Himmelsbach et al.
(2009); Bogoslavskyi and
Stachniss (2017)

Radar Traditional radar Objects are detected based on the 2D radar scan. Additional features, like
the 3D shape are estimated using heuristics and signal processing.

4D imaging radar Measures elevation angle in addition to azimuth, distance and velocity com-
pared to traditional radars. Combined with increasing resolutions, this al-
lows the application of point cloud based detection methods similar to Lidar
sensors.

Fusion Low-level Feeds the raw data from multiple sensors, like Lidar and camera, into a
detection algorithm, which is usually a neural network. The performance
can be high due to the exploitation of multiple modalities.

Wang et al. (2021); Roth et al.
(2019)

High-level Individual detection approaches are executed for each sensor and their re-
sults are fused together. Allows the combination of strengths, like the classi-
fication from images combined with the range estimation of Lidar. During
the fusion process, deep learning features from the individual approaches
may be used.

Pang et al. (2020)

3.1.1 Deep learning in object detection

This chapter provides a short introduction to Neural Network (NN) and deep learning, since this field forms
the basis for many modern object detection approaches. NN are machine learning techniques, which are based
on connected artificial neurons. These structures are able to learn functions of an input by using training
data and can be used in the fields of image processing, text- and speech recognition, control systems and
applications in autonomous driving. Due to new NN techniques and architectures, deep learning is nowadays
able to outperform humans on specific tasks. This is achieved with optimizations, like the increasing number
of layers (increasing depth) or the utilization of convolutional layers in image processing. Because of the scope
and complexity of the topic, only the basics of deep learning are covered in this thesis. For a greater overview,
reference is made to the work of Aggarwal (2018).

The structure of NNs typically has several layers of artificial neurons interconnected, which is sometimes
compared to the structure of a human brain. The neurons in the first layer receive the input information,
perform calculations with it and pass it on to the next layer. With each layer, the processed information can
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Figure 3.1: Schematic representation of a perceptron (Holz 2023).

Figure 3.2: Visualization of tanh, ReLU and leaky ReLU activation functions with furmulas. a for leaky ReLU
is a constant factor.

become more complex and in combination achieve complex tasks such as object detection on image data. A
single neuron, also known as a perceptron, is the basic computational unit in a neural network and shown in
Figure 3.1. Each of the input values x1, . . . , xm is multiplied with the corresponding weight w1, . . . , wm and
summed up together with the bias weight w0. Next, the output ŷ with

ŷ = g (z) = g

(
w0 +

m∑
i=1

xiwi

)
(3.1)

is calculated, where g() is the non-linear activation function.

Common activation functions include the Rectified Linear Unit (ReLU), leaky ReLU, and the hyperbolic tan-
gent function, which are shown in Figure 3.2. The choice of activation function depends on the specific task
and the architecture of the neural network. The ReLU activation function is a typical choice for modern deep
learning architectures due to the ease in training (Aggarwal 2018) and the low computational effort.

A layer in a neural network is composed of multiple neurons, and each neuron in the layer performs the same
operations as described above. In a single layer, each neuron has its unique set of weights and biases, which
allows them to learn and recognize different features or patterns in the input data. This diversity of weights and
biases across neurons in a layer enables the network to capture a broad range of features.

The simplest structure of a layer is called fully connected, where the inputs of each neuron are connected to the
outputs of all neurons in the previous layer. In deep neural networks, information is processed through multiple
layers, each containing numerous neurons. The layer structure is shown in Figure 3.3 with a shallow network
on the left side and a deeper one on the right side. All layers that do not act as input or output of the network
are called hidden layer.
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Figure 3.3: Example for fully connected layer with single input and output layer on left side, deep version on
right side (Holz 2023). W1 and W1 are the sets of weights for the hidden and the output layer.

Figure 3.4: Example for CNN with one hidden convolutional layer and one hidden max-pooling layer.

Convolutional layers are a different type of layer and are the fundamental building blocks in many Convolu-
tional Neural Network (CNN)s for image processing. These layers use filters (also known as kernels) to scan the
input image in a systematic way, extracting local features. With each layer, increasingly complex and abstract
features are created. In image processing tasks, the kernels usually work on 2-dimensional data structures, as
shown in Figure 3.4, but can be applied to 3-dimensional data in a similar way.

Max-pooling layers are an important building block for CNNs as well. They can downsample the features
obtained from the convolutional layers, as shown in Figure 3.4, by only keeping the maximum value of the
kernel. This helps to reduce the spatial dimensions of the feature maps while retaining the most important
information. The downsampling process reduces computation while improving the model’s ability to recognize
features in different scales and positions within the image.

The output layer of a NN in object detection applications typically performs either a classification or regression
task. The classification assigns a label to a detected object, usually represented as a probability distribution
over all possible classes. This is achieved by a softmax layer that calculates the probability σ(z)i of each
output neuron i with σ(z)i = ezi∑k

j=1 e
zj

with k being the number of output neurons. A regression output layer

on the other side estimates numerical values like the dimensions and orientation of a bounding box of a detected
object. Therefore, both output layer types are used for typical 3D object detection approaches, since both the
classification and 3D features are necessary.

The processing of data through a network is called feedforward process. To get meaningful results from this
feedforward process, NNs are trained using backpropagation to calculate the gradients in combination with an
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iterative optimization technique. The optimizer adjusts the model’s weights and biases during training to min-
imize a loss-function, which is shown by Aggarwal (2018) in detail. The Adam optimizer is a popular choice
due to its ability to effectively handle different learning rates for various parameters to effectively minimizing
the loss-function.

The loss-function models the difference between prediction and ground truth and is chosen to match the output
type. For classification tasks, a typical loss-function is the cross entropy loss LCE with

LCE = −
k∑

i=1

yi log(ŷi), (3.2)

where ŷi is the prediction of the network, yi the ground truth and k the number of exclusive classes. For
regression tasks the mean square error loss LMSE with

LMSE = −
k∑

i=1

(yi − ŷi)
2 (3.3)

is often used. Here, k is the number of output neurons with yi being the ground truth values and ŷ the regression
outputs.

The building blocks described above are the basis of NN-based object detection for all sensor types described
in this thesis. Depending on the application and type of data, the network architecture, training parameters,
types and amount of layers and loss-functions will differ and need to be tuned.

3.2 Lidar-based object detection

The goal of object detection with Lidar sensors is to extract individual objects of different classes from a
large point cloud with several hundred thousand points. This reduces complexity, which simplifies further
processing steps. The output of the presented approaches are 3D OBBs and point cloud segments, which are
either determined during the detection process or can be determined based on the OBB dimensions.

Object detection with Lidar sensors is currently being researched very intensively, as new deep learning tech-
niques show increasingly strong results. Such approaches use a huge variety of different network architectures
to extract 3D OBBs from the point cloud data. Traditional detection approaches on the other hand try to exploit
the geometric relationships between points based on heuristic rules. This usually leads to lower Average Pre-
cision (AP) results, but they do not rely on training. Therefore, they can detect objects of previously unknown
classes and can be adapted to new environments (e.g. sensors, mounting positions, ...) without new training
data.

This thesis gives an overview of both types of approaches. In some cases, a combination of deep learning meth-
ods and traditional approaches can also be beneficial. Zhao et al. (2021) show an example, where a traditional
clustering method can extend a NN-based semantic segmentation method to perform panoptic segmentation.
This thesis introduces a new hybrid detection algorithm in chapter 3.2.3, that combines both types of approaches
with a focus on safety relevant applications.

3.2.1 Traditional approaches

In contrast to deep learning approaches, the traditional object detection pipeline for Lidar sensors in automotive
applications relies on the geometric relationship between points. Therefore, they follow a fixed algorithm
and rules and do not require any training. Many of the point cloud processing techniques used for automotive
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Figure 3.5: Four steps of a traditional Lidar object detection pipeline: 1. ground extraction, 2. object segmen-
tation, 3. OBB generation, 4. classification of objects.

applications were originally developed for other domains, like engineering geodesy or monitoring. An overview
of such techniques that have also been used for mobile and automotive applications is given by Che et al.
(2019).

The methods used for ADAS typically associate each point with an object and thus perform a segmentation
task while removing non-relevant points. Many of the algorithms are divided into multiple steps, as shown in
Figure 3.5. Some steps may be combined depending on the approach.

0. Point cloud preprocessing

1. Ground extraction: All points, that correspond to the ground plane, are removed.

2. Object segmentation: The points are segmented, where each segment represents one object.

3. OBB generation: An OBB enclosing all points is generated based on the points positions.

4. Classification: The class of the object is estimated.

3.2.1.1 Ground extraction and object segmentation

Ground extraction is usually a preprocessing step for the object segmentation, because this can improve per-
formance in sparse point clouds, as shown by Douillard et al. (2011). One way to separate the ground points
is the application of a ground model, like a plane. This model is fitted using the Random Sample Consensus
(RANSAC) approach or advanced models based on RANSAC, as shown by Choi et al. (2014), Asvadi et al.
(2016) and Zermas et al. (2017).

Other methods, like shown by Chu et al. (2017) and Burger and Wuensche (2018), utilize the intrinsic properties
of Lidar sensors, such as scan lines, to create graph structures. Similar methods can be used on range images
created from point clouds, which also create a graph structure, as shown by Douillard et al. (2011). Based on
height and angle thresholds within this graph, the ground points are extracted. The graph structures can also be
used for the segmentation process, as shown by Burger and Wuensche (2018). Grid-based approaches divide
the XY-plane into a rectangular (Himmelsbach et al. 2009; Thrun et al. 2007) or a polar (Himmelsbach et al.
2010; Kampker et al. 2018) grid and estimate the ground height of each cell. Based on this height, the object
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points can be determined. Grid or graph structures can also be used for the segmentation process which can
lead to an advantage in efficiency.

Object segmentation is the task of dividing the point cloud into segments, where each segment represents
one physical object. Therefore, each point is assigned to one of these objects. There are a lot of traditional
approaches facing this task, that are not specifically developed for ADAS applications, which are summarized
by Nguyen and Le Bac (2013). However, some of these ideas, like the Euclidean clustering (Cao et al. 2022)
directly work on automotive Lidar data and are the basis for modern techniques.

Segmentation algorithms try to find points which correspond to the same object. Most approaches rely on pro-
cedures, that connect neighboring points based on a set of homogeneity criteria. If a neighboring point of the
current one meets some specific criteria, it is added to the segment, resulting in a growth. Neighboring points
can be found by applying a grid in 2D/2.5D (Himmelsbach et al. 2009; Kampker et al. 2018) or 3D (Himmels-
bach et al. 2010; Asvadi et al. 2016). Intrinsic structures can also be utilized, as shown by Zermas et al. (2017)
with scan lines or by Burger and Wuensche (2018) with graph structures. In order to reduce complexity for
the search of neighboring points in 3D, advanced data representation structures like Octrees (Vo et al. 2015) or
KD-Trees can be used. In the most trivial case, the Euclidean distance is used to determine if points are added
to a segment, like used by Klasing et al. (2008) and Cao et al. (2022). However, additional criteria depend-
ing on the representation can also be used, like the angular criteria in graph and line structures (Bogoslavskyi
and Stachniss 2017; Burger and Wuensche 2018) or combining neighboring occupied grid cells (Kampker et al.
2018). Advanced point-wise features, like normal vectors (Klasing et al. 2009) or local point statistics (Lalonde
et al. 2006) may be used by providing additional information about each point’s affiliation.

3.2.1.2 Oriented bounding box generation

The most common type of object representation is the oriented bounding box. This type of representation is a
rectangular body, which encloses all points of an object and is oriented to properly match the outer shape. The
deterministic calculation of an OBB is a non-trivial task, as in some cases the shape of an object does not match
a rectangular shape. The calculation is often done in the XY-Plane, while estimating the height using the mini-
mum and maximum z-position of all points. Road users, like cars or trucks, frequently generate L-shaped point
clouds. Therefore, some algorithms, such as those of Qu et al. (2018) and Zhang et al. (2017), are optimized for
this type of object. Another possibility to determine the orientation is the usage of RANSAC (Teichman et al.
2011) or principal component analysis to find the dominant line, which is then used as orientation. Naujoks
and Wuensche (2018) present an approach based on the convex hull and line creation heuristic that can find an
orientation for L-shape and arbitrary objects. For ADAS applications, the focus on L-shaped objects usually
best fits the requirements to adequately represent other road users.

3.2.1.3 Point cloud classification

An accurate classification allows applying different class-depending motion models and class-depending reac-
tions of ADAS functions. In contrast to deep learning approaches, the traditional pipelines do not provide a
classification alongside the detection. Therefore, this task must be handled in a separate step.

The classification of objects usually requires the extraction of hand-crafted features, such as geometric, ra-
diometric, or contextual ones (Che et al. 2019), that may be represented in compact format like voxels or
histograms. Heuristic, or rule-based approaches, like shown by Yu et al. (2014) and Herrmann (2019), deter-
mine the class using these attributes and a set of heuristically determined rules, thus requiring no training (Che
et al. 2019). The execution times are generally very fast, but those approaches are less able to represent com-
plex relationships and are more prone to sparse data. Thus, the results from Herrmann (2019) show, that the
accuracy decreases sharply for distances above 25 m.
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Better results in these difficult conditions can be achieved with advanced methods, such as Support Vector
Machine (SVM) (Himmelsbach et al. 2009; Lin et al. 2018; Chen et al. 2014) or boosting methods (Teichman
et al. 2011; Asvadi et al. 2016; Arras et al. 2007; Yoshioka et al. 2017). The number and complexity of the
computed features also affects the result. NNs are getting more and more attention in the field of classification
as they promise better performances with modern network architectures. As shown by Bader et al. (2021), they
can often outperform other such methods and heuristic approaches. However, they require higher computation
power to do so.

3.2.2 Deep learning approaches

Due to the great success of deep learning in image processing, these approaches were transferred to three-
dimensional point clouds (Fernandes et al. 2021). These architectures therefore often require a transformation
of the point cloud into a different representation. However, many of the more recent studies focus on specialized
approaches to point clouds.

Object detection with deep learning for Lidar sensors has some unique challenges that come along with
the properties of the data structure. Unlike images, Lidar point cloud data are high dimensional, sparse
and unstructured, which yields to challenges in deep learning applications (Fernandes et al. 2021). A point
cloud P =

{
p(i) | i = 1, . . . , n

}
is usually represented as sets of n ∈ N permutation invariant points

p(i) =
(
x(i), y(i), z(i)

)
, which consist of the 3D coordinates x, y, z. Depending on the type of sensor, additional

properties can exist per point, like the intensity or reflectivity. It is impossible to use typical deep learning
methods like convolutional layers directly to point clouds, due to their unordered data structure (Guo et al.
2020). Therefore, the point cloud is often converted to some sort of structured representation, which usually
leads to a loss of information or high computation effort.

Lidar sensors usually have scanning rates of 10 Hz to 20 Hz, why the approaches need to be real-time capa-
ble. In real-world driving scenarios, there are many objects in close proximity that are partly or completely
occluded. This requires detection frameworks to generalize in the case of incomplete point clouds. The points
are affected by noise and the intensities may vary a lot (Li et al. 2021), which are additional requirements for
generalization. The generalization of detection models is difficult, due to small datasets and a high variety
in possible driving domains (motorways, urban areas, ...), changing weather conditions and different sensor
setups (sensor resolutions, sensor FoV, mounting positions, ...). This is a problem in particular, because most
approaches try to maximize their performance on a specific dataset, with "[...] no understanding on the required
detection performance levels for reliable driving applications (Arnold et al. 2019, p. 3793)". Therefore, they
do not have variations in the setup, only specific driving scenes and limited training data, which leads to low
significance outside the boundary conditions.

There are several surveys and reviews that give an overview and a comparison of the existing state-of-the-
art approaches (see Li et al. (2021); Qian et al. (2021); Arnold et al. (2019); Fernandes et al. (2021); Wu
et al. (2021)). Fernandes et al. (2021) show an overview of current object detection methods with a focus on
deep learning for point clouds, which has seen a rapid increase in studies since 2019. In contrast, Guo et al.
(2020) show a more general overview of deep learning on 3D point clouds, including the tasks of classification,
segmentation, and tracking. Meanwhile, Li et al. (2021) focus on various tasks of Lidar point cloud processing
for autonomous driving using deep learning. A recent and detailed survey on deep learning object detection
methods using Lidar sensors is given by Wu et al. (2021). Most of these surveys divide the approaches into
three categories: Projection, volumetric/voxel and point-based. Wu et al. (2021) show an overview of these
categories, summarized in Table 3.2:
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3.2.2.1 Projection approaches

Lidar point clouds are not suitable for direct processing of 2D detection methods, which require a grid-like
input. However, this type of network architecture is attractive, because they are well researched and bench-
marked in the domain of 2D image processing (Arnold et al. 2019, p. 3787). Therefore, several approaches use
a projection of the point cloud to an image plane.

Next to the utilization of well known deep learning architectures for 2D images, the advantages of projection
approaches are the efficiency due to the reduction in dimensionality and the possibility to pretrain the models
based on images (Su et al. 2015, p. 945). The main limitation of these approaches is the potential loss of
information during the projection (Li et al. 2021, p. 3420).

The point cloud can be projected cylindrically to create a cylindrical image of the forward view. Another
possibility is the projection to a BEV image. The BEV is the most popular representation and has some
advantages over the others, because it is proportional to the metric space, the objects represent their real sizes
and the occlusion problem is solved directly (Fernandes et al. 2021). The channels of the generated images
can include statistical properties of the points in each cell, like the maximum or mean height, distance and
intensity.

The images are then fed into a neural network. Different types of networks can be used, like 2-stage detec-
tors with region proposals or single shot detectors with direct bounding box estimation. Some architectures
incorporate multiple views in order to improve the results (Su et al. 2015; Chen et al. 2017).

3.2.2.2 Volumetric approaches

In order to make convolutional layers applicable on 3-dimensional data, this category represents the scene in a
3D grid or voxel grid to allow 3D-convolutions. A voxel is here defined as one cell in a uniformly constructed
three-dimensional grid that divides space. One main drawback is the high number of empty grid cells, that do
not contain points in sparse regions, which leads to inefficient calculations (Arnold et al. 2019). Additionally,
the discretization can lead to information loss. In general, 3D operations are computational much less efficient
compared to 2D operations, like the projection approaches use.

A feature vector is calculated for each of the voxel cells. This features can consist of occupancy, density, mean
position and other geometric properties, as well as results from feature encoder networks introduced by Zhou
and Tuzel (2018). These encoder networks are often based on PointNet’s (Charles et al. 2017a) concept and
calculate complex features of each cell.

Subsequently, several approaches (Zhou and Tuzel 2018; Yan et al. 2018; Lang et al. 2019; Kuang et al. 2020)
consist of three parts: Feature encoder network, CNN backbone and detection head. In SECOND (Yan et al.
2018), the 3D convolutions are replaced by more efficient sparse convolutions, which leads to improved speed
and performance. PointPillars (Lang et al. 2019) increases the speed even more by using pseudo BEV voxels
and can run at 62 fps, which makes it suitable for real-world applications. Kuang et al. (2020) use a voxel-
based feature pyramid to improve the performance. Fast Point R-CNN (Chen et al. 2019) and related methods
use a different approach based on a two-step detector with voxel region proposals and a point-based refiner
network.

3.2.2.3 Point-based approaches

The unordered nature of point clouds that comes along with n! permutations and a variable size is a challenge for
the application of traditional neural networks, that expect a fixed input. The pioneer work PointNet from Charles
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et al. (2017a) solves this problem by the application of Multi Layer Perceptrons (MLP), which create point-
wise features. These features are then globally aggregated by a symmetry function, like a max-pooling layer,
which generates permutation invariance. In PointNet++ (Charles et al. 2017b), this is extended by a hierarchical
structure to locally aggregate features. Several object detectors emerged from this network structure, like the
point-based single stage detector 3DSSD (Yang et al. 2020) and the two-stage detector PointRCNN (Shi et
al. 2019). Point-based approaches have no loss of information due to preprocessing, and the computational
requirements depend on the point cloud size.

3.2.2.4 Performance comparison of Lidar-based deep learning detection

Table 3.3 shows a performance comparison of numerous deep learning based detection approaches on the
KITTI detection benchmarks. The difficulty level easy, moderate and hard refers to the minimum bounding
box size of the GT object in pixel coordinates and the degree of occlusion2. The methods are divided into the
groups of projection, volumetric and point-based approaches. None of these groups is in general better than
the others, although there is a tendency of the research directing towards point-based and point voxel hybrid
solutions. The highest scores achieved on car moderate in this comparison is 79.57 % from 3DSSD (Yang et al.
2020).

Table 3.3: Comparison of AP of different Lidar detection methods on the KITTI 3D detection test set.

Type Method Car AP Pedestrian AP Cyclist AP

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Projection BirdNet+ (Barrera et al. 2020) 76.15 64.04 59.79 41.55 35.06 32.93 65.67 53.84 49.06
BirdNet (Beltrán et al. 2018) 40.99 27.26 25.32 22.04 17.08 15.82 43.98 30.25 27.21
MV3D (Lidar)(Chen et al. 2017) 68.35 54.54 49.16 - - - - - -
Complex Yoloa (Simon et al. 2019b) 67.72 64.00 63.01 41.79 39.70 35.92 68.17 58.32 54.30
PIXORb (Yang et al. 2018) 81.70 77.05 72.95 - - - - - -
RT3D (Zeng et al. 2018) 23.74 19.14 18.86 - - - - - -
FVNetb (Zhou et al. 2019) 65.43 57.34 51.85 42.01 34.02 28.43 38.03 24.58 22.10

Volumetric VoxelNet(Zhou and Tuzel 2018)b 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11
SECOND (Yan et al. 2018) 84.65 75.96 68.71 - - - - - -
Fast Point R-CNN (Chen et al. 2019) 85.29 77.40 70.24 - - - - - -
Voxel-FPN (Kuang et al. 2020) 85.64 76.70 69.44 - - - - - -
PointPillars (Lang et al. 2019) 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92
Complexer-YOLO (Simon et al. 2019a) 55.93 47.34 42.60 17.60 13.96 12.70 24.27 18.53 17.31

Point-based 3D-FCN (Li 2017) 70.62 61.67 55.61 - - - - - -
PointRCNN (Shi et al. 2019) 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
3DSSD (Yang et al. 2020) 88.36 79.57 74.55 54.64 44.27 40.23 82.48 64.10 56.90

aResults on splitted validation set instead of official test set
bResults not officially listed

3.2.3 Two-stage detection approach for safety critical Lidar object detection

Despite the good results on datasets like KITTI, deep learning approaches can randomly fail to detect objects,
even if there is clearly a physical object in the point cloud. Reasons for that may be a lack of training data,

2Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %.
Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30%.
Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50%.
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Figure 3.6: Point cloud segment of partially occluded car and example OBB estimations for NN and geometric
approach. NN is able to estimate an OBB close to the GT, while geometric approaches are not.

overfitting, or too less training for objects of rare appearance. In safety critical systems, like ADAS, such false
negatives might be a threat for individual situations, even though the overall performance of the approach is
good. In contrast to most literature, which focuses on improving the overall performance, this thesis proposes an
algorithm to decrease the number of non-detected objects to a minimum while still preserving a state-of-the-art
performance on the KITTI 3D detection benchmark by splitting the detection into two stages:

The first stage applies an object segmentation based on traditional approaches, while the second stage performs
the classification and OBB regression based on deep learning. The main advantage is a robust detection of
all types of objects regardless of training, which is necessary for safe operation. Even if a special vehicle
with unique appearance is missing in the training data, the traditional object segmentation is able to detect
the physical existence, which might not be the case for a deep learning approach. The second stage of the
approach refines the detection results to a state-of-the-art level performance by the deep learning classification
and OBB regression. This brings a huge performance advantage over pure traditional approaches both in terms
of classification and OBB accuracy.

Assume a car being partially occluded by some other object, as shown in Figure 3.6. In this case, it is possible
to detect the remaining point cloud segment robustly using traditional approaches, which leads to the assump-
tion that there is a solid object at the detection position. However, the classification is unlikely to work with a
traditional approach. In addition, the Ground Truth (GT) OBB (visualized in green) is larger then the segment’s
geometric dimensions. Since traditional approaches are bound to the geometric properties, it will not be possi-
ble to calculate the correct OBB dimensions, position and orientation. A deep learning approach on the other
hand can achieve this, if it has been trained sufficiently with data from similar situations and has learned that
such a segment belongs to a car with specific OBB.

Authors like Schwalbe and Schels (2020) advocate such a splitting of NN-based functions into human inter-
pretable sub-functions for argumentation within the ISO 26262 functional safety standard, which is another
benefit of the two-stage approach. Instead of detecting objects with a large NN, it is done in two steps inter-
pretable for humans and with separately measurable outputs. This makes it easier to prove the robustness of the
approach. An overview of the two stages is illustrated in Figure 3.7, which are described in detail in the next
sections.
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Figure 3.7: Overview of two-stage Lidar detection approach. The first stage consists of ground extraction,
segmentation and geometric OBB generation. The point cloud segments are then passed to the
second stage, which consists of a preprocessing and a neural network to estimate the class and OBB
properties.

3.2.3.1 First stage: Traditional object detection

A traditional object detection pipeline is used, consisting of ground extraction, object segmentation and OBB
calculation. The ground extraction and segmentation are simple approaches based on cartesian grids. This
layout allows applying the approach to point clouds from multiple types of Lidars including different scan
patterns and fused point clouds. It does not depend on the point cloud intrinsic and does not imply a single point
of scanning, like the radial grid approaches (Himmelsbach et al. 2010; Kampker et al. 2018) do. Therefore, this
approach is applicable to a wide range of sensors setups with few adaptations of the parameters.

Ground extraction: A rectangular, 2D grid of the dimensions lgrid,G, wgrid,G with a cell length of lcell,G is
used as representation in BEV, which results in nl,G ∈ N, nw,G ∈ N grid cells. Each point p(i) ∈ P of a Lidar
point cloud P with p(i) =

(
x(i), y(i), z(i)

)
is then assigned to one of the grid cells C(j,k), where it lies in.

The ground extraction is performed in multiple steps: First, all outlier points below a negative slope of tns ra-
dians from an assumed flat ground plane are removed, to exclude points from reflection artifacts, as shown in
the first step of Figure 3.8, where hs is the sensor height above ground.

Next, for each cell C(j,k), the local ground level z(j,k)ground is estimated. A simple assumption for the local
ground level is to use the minimum z-value of all points in the cell. To gain robustness compared to this simple
approach, the lowest z-values of all surrounding grid cells within a kernel size of k × k are taken into account,
too. This is necessary, if a cell does not include a ground point while the neighboring cells do. The current
cell’s lowest z-value is compared to the median of the lowest z-values of all cells in the kernel. If it deviates
more than the object height threshold toh, the local ground level z(j,k)ground is set to the median value, otherwise to
the lowest z-value of the current cell. In Figure 3.8, the second step shows this process, where the lowest points
of all cells in the kernel are shown, with the kernel size being marked red. The dark blue point is the median
of the kernel, while the orange-marked point has the lowest z-value of the current cell and deviates from the
median. Therefore, the median value is chosen as local ground level in this example.

Next, all points, with z(i) − z
(j,k)
ground < tgh with z(i) ∈ C(j,k) are then defined as ground points and removed

from the point cloud, where tgh is the threshold for the ground height. All points in Figure 3.8 that lie in the
green area are marked as ground points. Similar, all points with z(i) − z

(j,k)
ground > tmh with z(i) ∈ C(j,k) are

defined as points with height out of reach, like high trees or bridges and therefore removed as well. tmh is
the maximum reachable height and is chosen greater than the vehicle height. In Figure 3.8 showing the points
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inside a single cell, the point in the blue-marked area is defined as out of reach, while the dark blue points
remain as object points.

Figure 3.8: Scheme of ground extraction process in three steps. The first step shows the outlier removal based
on a negative slope between an assumed flat ground plane and each point. The second step shows
the estimation of the local ground height. The point with the lowest z-value of each cell is sketched.
The dark blue-marked point has the median z-value, while the orange marked point is from the
currently evaluated cell, which is outside the object height threshold toh. The third step shows the
selection of the object points within one cell, where all points in the green area are ground points
and all points in the blue area are out of reach.

Segmentation: The segmentation applies the remaining points on a similar grid, like the ground extraction,
and connects occupied cells close to each other. The cell length lcell,S of the segmentation may vary from the
one used for the ground extraction lcell,G. Each cell that contains points is connected to all cells containing
points within a segmentation range of tsr. Due to the decreasing point density over distance, the segmentation
range is calculated dynamically depending on the distance in the XY-Plane of the currently evaluated cell:
tsr = tsr_0 +min(d(C(i,j))tsr_f , tsr_max). The segmentation range is calculated based on the cells distance
d(C(i,j)) and a range factor tsr_f , while being limited by a minimum search radius of tsr_0 and a maximum
radius tsr_max. All the created segments are now evaluated for the number of points. If the total number of
points of a segment is below tnp, the segment is removed to get rid of small artifacts. In Figure 3.9, the search
radius is sketched on the left side, while an example for the result of the segmentation is shown on the right
side with segments marked in different colors. The small, red hatched segment is a removed artifact.
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Figure 3.9: Scheme of the search radius of the current blue-marked cell on the left side. The orange-marked
cells are connected if they contain points since their centers lie within the search radius. The right
side shows an example result of the segmentation process with two segments marked in different
colors. The red hatched segment gets removed since it’s number of points is below tnp.

Geometric OBB generation: Although the deep learning based OBB generation is part of the second stage
of the detection approach, a traditional fallback solution for objects of class "background" is developed. This
is applied to objects of classes without learnable patterns, like plants, buildings or special vehicles, where the
performance of a deep learning approach is expected to be worse. The goal of the OBB calculation algorithm
is to generate bounding boxes for point cloud segments within a low time. It should also be able to calculate
correct orientations for L-shapes, as well as arbitrary object shapes. The approach is based on the proposal
from Bader (2019). Figure 3.10 shows the calculation steps. First, the convex hull of all points in the segment
is calculated using the Graham scan algorithm (Graham 1972), which generates the blue points on the left
sketch in Figure 3.10. Next, the two points with the highest distance of all convex hull points are selected to
create the line ldiagonal. The line between these points is assumed to be the diagonal of an L-shape object. Now,
the point with the highest orthogonal distance dP to the diagonal is searched in a circular area dc. The lines
between the three selected points create a triangle. Other approaches, like the one from Naujoks and Wuensche
(2018) also use triangles for the orientation estimation. In contrast to Naujoks and Wuensche (2018), the line
selection is done counting the number of points in close proximity to the line with distances lower than dLin.
Therefore, each of the lines has a number of corresponding points. If this number of points corresponding to
the diagonal is higher than the combined number of points corresponding to the other lines, the orientation of
the diagonal is used. Otherwise, the orientation of the longest of the other lines is used. The size of length l,
width w and height h and center position Pcenter are now calculated using the maximum and minimum in the
direction of the chosen orientation θ.
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Figure 3.10: Calculation of the oriented bounding box. First, the three triangle lines are searched for. In this
example, the diagonal line has a lower number of associated points, so the red line is chosen for
orientation. Next, the length, width and height and position are calculated based on the orientation.

3.2.3.2 Second stage: Classification and OBB regression

The first stage of the detection pipeline is able to detect object segments correctly. However, there is no heuristic
method for classifying these segments with an acceptable accuracy. In addition, geometrically calculated OBBs
are prone to errors due to (self-)occlusion. As a result of the occlusion, the calculated bounding box of the same
object may vary over time and can lead to reduced tracking performance. Machine learning techniques usually
achieve better results in both of these domains. While there is a lot of research for the classification of segments,
the combined regression of OBBs in parallel to the classification is unique for this approach. However, it enables
a precise OBB estimation without a lot of additional computational overhead, since the encoder and backbone
are shared with the classification.

Bader et al. (2021) describe an efficient deep learning approach for classification of point cloud segments with
focus on efficiency and real-time capability. The approach classifies point cloud segments, which are created
by a traditional detection method, into the classes background, car, cyclist, and pedestrian with an accuracy
of 96.8 % and a runtime of 0.43 ms per segment on the Stanford Track Collection (STC). Based on the work
of Bader et al. (2021), the approach is extended to estimate the OBB dimensions in addition. This allows to
generate more precise OBBs, that are more consistent over time compared to pure traditional approaches. The
deep learning pipeline consists of a preprocessing step and three main parts, similar to many examples for
voxel-based object detection (Zhou and Tuzel 2018; Yan et al. 2018; Lang et al. 2019; Kuang et al. 2020).

Figure 3.11: Architecture of network, which consists of an encoder network, a backbone and a several heads to
output the classification and OBB regression.
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The network is divided into the three parts encoder network, backbone and head, which are shown in Figure
3.11. The encoder network extracts features from the point cloud and provides them in a voxel structure on
three scales. The backbone is built up of 3D convolutional and max-pool layers creating complex features. The
head consists of multiple small sub-networks that perform the classification and OBB estimation based on the
backbone’s features. For all of the three parts, an overview is given in this thesis. However, since the encoder
network and backbone is shared with the proposal from Bader et al. (2021), only the head is described in full
detail.

Before the point cloud is processed by the encoder network, a preprocessing step is applied: An equally spaced
voxel grid of size M ×M ×M is fitted to the dimensions of the point cloud segment. Each point’s position
is then represented relatively to the center of its corresponding voxel in range [−1, 1]. This preprocessing is
applied for each of the three scales of M = 8, M = 4 and M = 2 separately. These three grid sizes have been
determined experimentally to optimize the accuracy (Bader et al. 2021).

Encoder Network: The three encoder networks directly operate on the point cloud and create features in
form of a voxel grid. Therefore, the encoder networks convert the unordered point cloud data to a grid structure
with features, that can be utilized by 3D convolutional layers. Each encoder network consists of three Modified
Voxel Feature Encoder (MVFE) layers, which are the proposal of new modified versions of the Voxel Feature
Encoder layer introduced by Zhou and Tuzel (2018).

The structures of both the encoder network and a single MVFE layer are shown in Figure 3.12, where M is
the size of the voxel grid, C is the number of feature channels and N is the number of points. In the Figure,
the process is exemplified with three points of different colors, which are located in two different voxels in
different shades of gray. Each point contains the x-, y- and z-position and the Lidar intensity, resulting in an
input of N × 4 features. The features are extended to N × C by the successive MVFE layers. The subsequent
max-pooling layer serves as a symmetry function, whereby a max-pooling operation is applied to all points that
correspond to the same voxel. This creates output features in an M ×M ×M × C grid structure suitable for
3D CNNs. Within a single MVFE layer, an extended feature vector is first created for each point using a 1D
CNN. The features of each voxel are then generated by max-pooling and concatenated with the original point
features. In contrast to the original implementation from Zhou and Tuzel (2018), the concatenation step is done
using the original input features instead of the transformed ones. This improvement allows a higher information
content for voxels with a low number of points (Bader et al. 2021).

Overall, the encoder networks work directly on point-wise features and extract local features of each voxel.
Three encoder networks are applied to the point cloud segment at grids of size M = 8, M = 4 and M = 2
to extract voxel features at different size levels. Compared to other approaches working with feature encoder
layers, this allows to extract features of multiple spatial sizes directly during the encoder network. The imple-
mentation allows processing a different number of points per voxel, as shown by Bader et al. (2021). Therefore,
no sub-sampling within the voxels is necessary while maintaining processing speed.

Backbone: A 3D CNN is used as backbone, as showed in Figure 3.13. It consists of multiple stages of
two 3D convolutional and one max-pool layer, as these types of architectures are well established for voxel
processing (Maturana and Scherer 2015; Zhou and Tuzel 2018; Lang et al. 2019). The encoder networks of
size M = 4 and M = 2 are concatenated with the features after the first and second max-pool operation. All
network hyperparameters shown in Figure 3.13, like the number of convolutional layers and feature channels
C are experimentally determined. The implementation details of the encoder networks, the backbone, and the
classification head are described by Bader et al. (2021).
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Figure 3.12: On top, the structure of the encoder network is shown, which consists of three MVFE layers and
creates features for each voxel. The lower half shows the structure of the MVFE layer. In this
visualization, an example with 3 points spread across two voxels is shown (Bader et al. 2021).

Figure 3.13: Backbone of NN consisting mainly of convolutional and max-pool layers. For simplicity, the 3-
dimensional grid is reduced to 2D in the Figure. The number of feature channels is described
below each convolutional layer.
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Figure 3.14: Architecture of head with multiple branches. Inside of each branch, the layers are described by the
number of fully connected (FC) neurons . For classification and orientation bin branch, a softmax
(SM) layer is added. The outputs of all branches except classification consist of k bins, where k is
the number of classes. For the position offset branch, the structure of the bins in the output layer
is shown.

Head: In contrast to the work of Bader et al. (2021), the head does not only consist of the classification.
Instead, a dimension regression branch, a position offset regression branch, an orientation classification branch
and an orientation regression branch, as shown in Figure 3.14. These branches are used to calculate the features
visualized in Figure 3.15, where the combination of the orientation classification branch and the orientation
regression branch is used to calculate the final orientation θ. All branches consist of five fully connected layers
and work on the features extracted by the backbone, which is similar to the structure used by Mousavian et al.
(2017) on monocular camera detection. The output layers use linear functions, while all other fully connected
layers use leaky ReLU activation functions, with the layer sizes are shown in Figure 3.14. For each of the
branches, a separate loss is calculated, which is summed up for training.

The actual output values of different classes may vary vastly. For example, the dimensions of a truck and the
variance of the dimensions are different those of a pedestrian. Since it is difficult to represent a large range

Figure 3.15: Features calculated by each branch visualized.
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of values with a single regression output neuron, for each class a separate regression output is calculated in
parallel. These parallel outputs are called bins and are applied to all branches except the classification branch
itself. This allows the model to learn different values for each class separately. Figure 3.14 shows how the
output layer is structured into bins for the position offset branch.

The dimension branch estimates the length, width, and height of the object and therefore regresses an output of
size k × 3, where k is the number of classes and thus the number of bins. The smooth L1 loss (Girshick 2015)
function

smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3.4)

is used to calculate the dimension loss LD defined by

LD =
∑

i∈{l,w,h}

smoothL1(d
(c)
i − d̂

(c)
i ), (3.5)

where d(c)i is the ground truth dimension of the ground truth class c and d̂(c)i is the prediction of the bin of
ground truth class c for length l, width w and height h. Consequently, only the loss of the bin of the ground
truth class of each example is taken into account.

The center of the point cloud can be easily calculated, but usually does not match the center of the GT OBB.
Therefore, the offset between the segments center and the ground truth center is regressed by the position offset
branch, as shown in Figure 3.15. Similar to the dimension branch, the smooth L1 loss is used for offset loss LO

with the GT offset o(c)i and the predicted offset ô(c)i of GT class c:

LO =
∑

i∈{x,y,z}

smoothL1(o
(c)
i − ô

(c)
i ). (3.6)

Inspired by Mousavian et al. (2017), the orientation θ with −π ≤ θ ≤ π is divided into nθ orientation bins
of size 2π

nθ
. The ground truth orientation is assigned to the orientation bin i = ⌊nθ(θ+π)

2π ⌋. The orientation bin
branch estimates the bin i, while the orientation regression branch estimates the orientation offset θo to the
orientation bin θi. Based on the network’s predictions, the orientation is calculated by

θ = θi + θo =
2iπ

nθ
+ θo. (3.7)

This discretization into orientation bins improves the orientation accuracy. Both the orientation bin branch and
the orientation regression branch therefore predict an output of size k × nθ. The orientation loss is a combined
loss of both branches with

Lθ = Lbin + wrotLrot, (3.8)

where the bin loss Lbin is calculated using the cross entropy loss shown in equation (3.2). The rotation loss
factor wrot is used to balance the impact of both loss functions. For the rotation loss Lrot, a cosine loss function
is used:

Lrot = 1− cos(θ(c,i)o − θ̂o
(c,i)

). (3.9)

θ̂o
(c,i)

is the predicted rotation offset and θ(c,i)o the GT rotation offset of ground truth class c and ground truth
orientation bin i.

Processing: In order to process a batch of multiple segments in parallel, a fixed point cloud size is used.
Therefore, all point cloud segments are either zero padded or randomly subsampled to match this size. Bader
et al. (2021) show, that a fixed size of 512 points is a reasonable choice for point cloud segments extracted from
the KITTI dataset.

The above described two-stage approach for Lidar object detection is tested on the KITTI dataset. The results
of that can be found in chapter 6.3.
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3.3 Camera-based object detection

Camera-based object detection has been a focus of research for decades. Modern cameras outperform other
perception sensors easily in terms of resolution and production cost. In addition, latest developments in the area
of deep learning massively improved the performance of image processing tasks, like semantic segmentation,
lane or object detection.

In the beginning of image-based object detection, the algorithms were mainly based on handcrafted features
(Zou et al. 2019), sometimes combined with machine learning techniques like AdaBoost. Examples of these
early detection approaches are the Viola Jones Detector (Viola and Jones 2001), the Histogram of Oriented
Gradients (HOG) detector (Dalal and Triggs 2005) and the Deformable Part-based Model (DPM) (Felzenszwalb
et al. 2008). In automotive applications, such traditional algorithms are designed to work under clear constraints
in specific situations, like the detection of vehicle rear-views for highway scenarios. As an example, Rezaei
et al. (2015) show an approach with rear light detection and a virtual symmetry function for rear-view vehicle
detection, which shows robust results even at night. However, approaches like this are limited to specific
situations and perform poorly on general datasets, like KITTI.

Since RCNN (Girshick et al. 2014) was proposed in 2014, CNN-based methods started to clearly outperform
the traditional ones. CNN-based detectors can be divided into two groups: One-stage detectors with the pioneer
work YOLO (Redmon et al. 2016) and two-stage detectors with the pioneer work RCNN (Girshick et al. 2014).
In two-stage detectors, the first stage suggests object candidates, which are extracted. During the second stage,
these proposals are fed into a CNN to predict features like the class and the bounding box. One stage detectors
divide the image into regions and calculate the bounding boxes and probabilities for existing objects for each
region at the same time. This leads to a single processing step in a single CNN. Both of these network types
were improved by a wide variety of developments, leading to great performances on several image processing
benchmarks. One major drawback of the CNN-based approaches is the typically high computational effort.
Therefore, they usually rely on a GPU or specialized chips for fast computation.

With the publication of modern perception datasets, like KITTI, the tasks of image processing were extended
to 3-dimensional environment perception. For an object-based multi-sensor multi-object tracking system on
trucks, the task of 3D object detection is of particular interest. Due to lower costs, manufacturers mainly
focus on monocular camera systems. Therefore, this thesis gives an overview of methods for monocular 3D
detection algorithms and the application of such algorithms on a truck. In chapter 3.3.3, the development
and application of a new object detection approach for trucks and close distances is described. Due to the
outstanding performance of CNNs compared to traditional approaches and their maturity, only CNN approaches
are used in this thesis.

3.3.1 Monocular CNN-based 3D detection algorithms

The task of extending object detection in image coordinates to 3D objects is of central importance for ADAS
camera systems. Often, 2D CNNs are used and depth estimation is performed either by applying assumptions or
by extending the CNN. Kim and Hwang (2021) give an overview of pure deep learning monocular 3D detection
algorithms. Here, the different methods for extracting 3D OBBs from monocular images are divided into three
groups, which are listed below and visualized in Figure 3.16:

• Multi-stage approaches:
These approaches typically are built upon a first stage of 2D detection or feature extraction, so well
established and existing approaches can be used. In the second step these proposals are then extended
to 3D-detection by exploiting geometric relationships (Li et al. 2019; Mousavian et al. 2017), geometric
shape matching (Chabot et al. 2017) or similar techniques.
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Figure 3.16: Visualization of different groups of monocular 3D camera detection. On top, multi-stage ap-
proaches, in the middle depth estimation approaches and on bottom direct 3D regression ap-
proaches are shown. The actual implementation may vary from approach to approach.

• Depth estimation approaches:
Based on the camera image, the depth is estimated instance- (Qin et al. 2021) or pixel-wise (He and
Soatto 2019) to extract 3D information for the OBB generation using a CNN. These CNNs do not directly
measure the physical depth in scenes, but their ability to learn contextual features allows them to make
an estimation based on visual cues. By using pixel-wise estimation, a pseudo Lidar point cloud can be
generated, that provides data for point cloud based approaches (Wang et al. 2019).

• Direct 3D regression:
This group of algorithms usually regresses the 3D OBB directly during the detection. As an example,
YOLO3D (Liu et al. 2021) extends the idea of the one stage detector by directly regressing 3D OBBs
instead of 2D bounding boxes. Similar to the depth estimation approaches, the distance is not directly
measured, but estimated by the CNN based on the visual information available.

3.3.2 Distance estimation using ground projection

One of the main challenges is the conversion from 2D image coordinates to 3D world coordinates, which can
be resolved by using geometric assumptions. A multi-stage approach with projection onto the ground plane is
a simple method of estimating the distance of an object, that is detected by a well established 2D detector. It
is assumed, that the camera’s extrinsic calibration is known and the detected objects are always positioned on
a flat ground surface. This method is shown by Rezaei et al. (2015) with a car and uses a geometric approach
to project the bottom line of a 2D bounding box to the ground plane while assuming an almost planar ground
surface. Rezaei et al. (2015) report, that the majority of all measurements are within a margin of ±60 cm of
distance to the ground truth for a range of 6 to 50 m. The estimation procedure is shown in Figure 3.17. The
distance d to a detected object can be calculated using geometry. Based on equation (2.2), the vertical pixel
coordinate v of a 3D point

[
xc yc zc

]T in the camera coordinate system as described in Figure 2.11 can be
calculated by

sv = fyyc + v0zc. (3.10)

When applying the constraint s = zc of scaling factor s, v can be described by

v = fy
yc
zc

+ v0. (3.11)
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The object projection angle θ with tan(θ) = yc
zc

can be inserted, which allows to calculate the object projection
angle based on the pixel coordinate v:

θ = arctan

(
v − v0
fy

)
. (3.12)

The distance d can be calculated by d = hc tan(θc+ θ). Using the camera height hc and the camera orientation
θc with the lowest object point dp and the image height in pixels hi in v = hi − dp results in

d = hc

[
tan

(
θc + arctan

(
hi − dp − v0

fy

))]
. (3.13)

If the camera intrinsic calibration is not available, applying the two assumptions

v0 =
hi
2

(3.14)

and
fy =

hi
2 tan(α2 )

(3.15)

with α being the vertical FoV, the distance can be calculated as follows:

d = hc

tan
θc + arctan

 hi
2 − dp

hi

2 tan(α
2 )

 . (3.16)

Since all other parameters are constants, the distance d relies on the vertical position dp of the projection of
the closest point on the road surface of a detected object. This point is usually defined by the lower edge of a
detected 2D bounding box.

Figure 3.17: Distance estimation using the projection to the ground surface with a camera mounted to the truck
cabin. Based on figure from Rezaei et al. (2015), but applied to truck.
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3.3.3 Multi-stage object detection for close ranges at trucks

Monocular camera-based object detection for trucks is getting increased attention in recent years due to the
increasing number of cameras built into the truck. Mirror replacement systems for rear surveillance (class II,
IV after UN ECE R46/04 (UNECE 2014)) are already used by many manufacturers today due to aerodynamic
reasons, but yet without perception features. In addition, more and more manufacturers move towards replacing
the mirrors used for surveillance of class V and VI with cameras as well, as shown in Figure 3.18. Upcoming
regulations require functions like the Moving Off Information System (MOIS), which monitors the area in front
of the truck. This shows the potential of utilizing those mirror replacement camera streams for object detection
as well, since the FoV overlaps with the class VI mirror area. This applies in particular, since the forward facing
ADAS cameras have a blind spot directly in front of the truck, where MOIS is used. Therefore, a detection
pipeline using a downward looking camera covering the area directly in front of the truck is developed. Note,
that the other available mirror camera systems offer improvements for the overall perception as well, since
they can boost the performance of the blind spot information system and the monitoring of rearward objects in
general.

Figure 3.18: FoV areas of mirror classes for trucks following UN ECE R46/04 (UNECE 2014) projected on
ground level (MEKRA Lang GmbH & Co. KG 2023).

One of the main differences of camera applications at trucks to the applications at cars is the mounting position.
They are usually mounted to the cabin at greater heights, regardless of whether they face forward or backward.
Such mounting positions can provide a better overview in crowded situations, are less effected by occlusion
and can detect road markings in higher distance. In addition, they reach steeper angles, which has the potential
to reduce errors in distance estimations. However, the cabin is also in a different, moving coordinate system
compared to most other sensors, since it is suspended separately. An additional consideration is the increased
pitch and roll motion compared to cars, which is amplified by the separately suspended cabin.

Based on the method shown in chapter 3.3.2 for distance estimation, an analysis is carried out to show its
potential for a downward looking camera mounting position at a truck’s cabin, as indicated in Figure 3.19. The
cabin of trucks is subject to higher roll and pitch angles compared to passenger cars, although the high position
of the camera partially compensates for this: The change in position in camera coordinates dp while pitching
is lower at greater camera heights hc. Measurements of an Xsens MTi-100 IMU show maximum pitch values
of [−1.4◦, 3.6◦] for the cabin of a tractor while normal driving on flat roads in an urban environment without
high dynamic maneuvers like emergency braking. The distance errors for these maximum pitch values are
simulated based on the described projection method and shown in Figure 3.20. The simulation is carried out
for distances less than 10 m, assuming a camera at height of hc = 3.5 m, as shown in Figure 3.19. For close
range scenarios of up to 10 m distance, the errors for maximum pitch angles are below 1.5 m with a majority of
distance errors in real data expected to be lower. Due to the low errors for close ranges, the application of the



44 3 Object detection

Figure 3.19: Front mirror replacement camera position and rectified example image.

described distance estimation approach to a multi-stage object detector is desirable. Especially for applications,
where only limited training data is provided, the utilization of an established 2D detector in combination with
a distance estimation method can produce good performances. In general, it is possible to correct those errors,
if precise measurements of the cabin pitch angle are available in real-time. However, this is not always given in
the current generation of trucks. Note, that such a projection method is not working for long distances, where
the detection is close to the horizon.

Figure 3.20: Simulation of distance estimation error using minimum and maximum pitch angle at height of
hc = 3.5 m.

Zhang (2021) investigates the application of state-of-the-art detection algorithms for close ranges truck appli-
cations using a camera position. Zhang (2021) uses YoloV5s (Jocher et al. 2022) for 2D object detection and
a distance estimation based on the inverse perspective mapping. Based on that work, a monocular 3D object
detector for 3D OBBs is developed. Similar to Zhang (2021), the first step is the detection of 2D bounding
boxes in the image of the camera using YoloV5s (Jocher et al. 2022). However, the distance estimation differs
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Figure 3.21: Scheme of 3D OBB generation approach: 2D bounding box detection, cropping and rescaling,
CNN-based orientation and dimension estimation, geometric road surface projection.

and the dimensions and orientation of the OBB are estimated in addition, as shown in the overview in Figure
3.21. Based on the detections from the first step, small crops of the camera image of size 224x224 pixels are
generated, that only contain the detected object. Next, the approach from Mousavian et al. (2017) is applied to
generate a 3D OBB: A CNN is applied to the cropped image of the object to estimate the dimensions (length,
width, height) and the orientation of the OBB. The position of the OBB in world coordinates is then calculated
using the previously described distance estimation approach.

For the estimation of the OBB dimensions and orientation, the approach from Mousavian et al. (2017) is used.
The approach uses a CNN to estimate the dimensions and orientation of objects that are previously detected.
The input to the CNN are cropped areas from the detections in an image, which are first scaled to 224x224
pixels. A pretrained backbone extracts features from this image. Then, multiple branches working on these
features regress the OBB dimensions and the orientation. Here, some adaptions are made to the approach
of Mousavian et al. (2017) for real-time capability and modularity:

• In contrast to the work of Mousavian et al. (2017), MobileNetV2 (Sandler et al. 2018) is used as back-
bone, which has a faster runtime.

• Mousavian et al. (2017) also show an approach of calculating the OBB position based on the estimated
dimensions and the camera intrinsic. However, in this thesis the geometric projection from equation
(3.13) is used as described previously. This adaptation leads to increased performance and robustness.

In order to get the position of the OBB, both the X- and Y-Position on the road surface need to be calculated.
Using the approach from equation (3.13), the distance to the closest point of a detected object can be calculated.
Figure 3.22 shows the 2D bounding box of a detection in image coordinates and its projection to the road surface
in BEV (right) and from the side (bottom). Here, the blue line is the closest point of a detection. Using the
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Figure 3.22: The center of the bounding box is fitted to the center of the left (orange) and right (green) 2D
bounding box boarders. The closest point is fitted to the distance line (blue), which in combination
defines the X- and Y-Position of the 3D OBB in vehicle coordinates

estimated dimensions and orientation from the CNN, the closest edge point of the OBB needs to match with
this blue line. This allows to calculate the x-position xOBB of the OBB center. It is assumed, that the OBB
is centered between the left and right bounding box edge marked in orange and green. Note, that the OBB’s
edges do not necessarily need to have match these 2d bounding box edges, since the orientation is estimated in
a separate step. The middle point w is used to calculate the OBB’s Y-Position yOBB .

Equation (2.2) states
su = fxxc + u0zc, (3.17)

resulting in

yOBB = −xc = −zcw − zcu0
fx

(3.18)

for the calculation of yOBB when applying the constraint s = zc and u = w. With known distance xOBB , the
distance zc can be calculated by

zc = cos(θOBB)dco (3.19)

with the distance dco between camera OBB center on ground level

dco =
√
h2c + x2OBB (3.20)

and the OBB angle θOBB

θOBB = arctan

(
xOBB

hc

)
. (3.21)

After this calculation step, the position on the road surface, as well as the dimensions and the orientation of the
OBB are known and the full detection pipeline is calculated using a 2D detection in combination with a CNN
for dimension and orientation estimation and a geometric projection to the road surface for the calculation of
the position. The approach has low errors for the distance estimation and achieves accurate AP results, which
is shown in chapter 6.4.
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3.4 Radar-based object detection

The radar sensors used in this work all have integrated object detection functionalities. In each time-step, the
sensor detects surrounding objects and outputs a list of objects including several object properties. Usually,
these objects are reported as 3D point locations with additional information about the relative speed, a classifi-
cation, and a confidence level. Some sensors additionally report information about the spatial expansion, like
an L-shape with length and width. Over-segmentation is possible, so multiple detections may be created for
one target. An example for radar detections is shown in Figure 3.23. Here, the red, turquoise, yellow and blue
markings are radar detections from different radars generating L-shapes, point objects or box objects. Inter-
nally, the detected objects may be processed and tracked over multiple time-steps. The detection and tracking
process is not shown in detail here, but more detailed information can be found in the work of Gamba (2020).

Figure 3.23: Example of radar detections from various radar sensors and a Lidar point cloud in a highway
scenario. Radar detections shown in yellow, turquoise, red and blue are available as point, box or
L-shape objects.
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4 Basics of multi-object tracking and multi-sensor
fusion

Multi-Object Tracking (MOT) is the problem of the (joint) estimation of the states of multiple objects through-
out their existence. Therefore, the task of a MOT system is to determine the number of objects present in
each time-step and maintain their unique identity (Luo et al. 2021). In addition, the states, like position and
velocity, and thus the trajectory of each object are estimated. A tracked object is usually called "track", while
an observation of an object by a sensor is usually called "measurement". A multi-object tracker estimates the
track’s states based on the measurements provided by sensors. In practical applications, this is often done by
using a probabilistic filter to estimate the states, which is supported by some sort of track management. This
track management manages the inputs and outputs of the system, the timings and possibly has additional tasks
to improve the tracking performance or efficiency.

The tracks created by MOT systems is usually used as input for ADAS and automated driving functions. Ac-
cording to (Dietmayer 2016), perception stacks for automated driving need to deal with three uncertainty do-
mains, which are state uncertainty (e.g. physical properties like position), existence uncertainty and class
uncertainty. The state and existence uncertainty can be addressed by using a multi-object tracker framework,
while the class uncertainty can be addressed by extending such a framework with additional classification esti-
mation.

MOT is used in several domains, like tracking all sorts of objects in videos (see examples from Luo et al.
(2021)) or tracking of radar echos in air traffic. In automotive applications, however, MOT is done using on-
board perception sensors like Lidar, radar or cameras, with a strong focus on other traffic participants like cars,
trucks, pedestrians, and cyclists. Additional input sources, like Global Navigation Satellite System (GNSS) or
map data, can potentially improve the performance. In automotive applications, the MOT system faces some
challenges that come along with the used sensors and hardware:

• Imperfect sensors that produce random spurious measurements, called clutter, and are often associated
with the presence of real objects. It can, for example, arise from sensor imperfections or reflections.

• Imperfect sensors that miss detections of real objects.

• Different sensing strengths and weaknesses of different sensor modalities with different noise properties
need to be combined.

• Changing environment conditions (illumination, weather, operational domain) that have influence on the
current detection capabilities.

• Interchangeable sensor setups. It is desired to use approaches that work with multiple sensor types and
sensor setups across different vehicle models.

• Real-time capability.

• Occlusion and truncation of objects.

• Interactions between objects, like pedestrians getting in or out of cars.

This chapter shows the basics of multi-object tracking, which are necessary for understanding the following
chapters. However this chapter does not propose new approaches or developments beyond the literature. The
described basics cover in particular the following topics:

• The definition and basics of MOT.

• The Kalman filter basics and the application of the KF for MOT frameworks.
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• The random finite set basics, the GM-PHD filter description and the application of the GM-PHD filter
for MOT frameworks.

• The basics for tracking the classification of a target over time.

• The basics of multi-sensor fusion in the context of MOT.

4.1 Tracking approaches

The challenges of MOT can be solved with a large variety of different approaches with different strengths and
weaknesses. This includes probabilistic approaches, deterministic optimizations and neural networks.

Luo et al. (2021) classify MOT approaches based on three categories of properties: Initialization method,
processing mode and type of output. The initialization method is divided into "detection-based tracking",
where the tracking process links detection hypotheses from each time-step to trajectories and "detection-free
tracking", where the localization and tracking is conducted simultaneously. The processing mode is divided
into "online tracking", where the data is processed sequentially in each time-step and "offline tracking", where
the approach jointly processes a whole time series. The type of output is divided into "stochastic tracking",
that may vary between two runtimes and "deterministic tracking", that always creates the same results when
running multiple times. An example of "stochastic tracking" is the usage of particle filters for inference (Luo
et al. 2021), which will lead to slightly different results, "deterministic tracking" does not change between
multiple runs.

The most common types of trackers used in automotive applications are based on probabilistic filters, that are
suitable for online processing and can be used in detection-based frameworks, like the Kalman filter. There-
fore, based on the categorization of Luo et al. (2021), they are "detection based", "online" and "deterministic"
tracking approaches. However, in the last few years also a rising amount of research has been conducted on
tracking algorithms based on neural networks. These networks often use recurrent network techniques, which
are capable of evolving through time. Milan et al. (2016) and Holz (2023) for example, use recurrent neural
networks in an architecture inspired by Bayesian filters to perform the steps of prediction, update, and data
association within the network.

Since detection-based deterministic online trackers are well established in automotive applications and the
deterministic properties offer great arguments in terms of functional safety, the thesis focuses on this type of
tracker.

In this thesis, MOT is an estimation problem of a set of states Xk = {xk,1,xk,2, ...,xk,nk
} at time-step k,

where xk,i is the state of the i-th object. In detection-based tracking frameworks, there is a corresponding
measurement set Zk = {zk,1, zk,2, ...,zk,mk

} for each time-step k, where zk,j is the j-th measurement. MOT
approaches try to maximize the a posteriori function of the conditional distribution of the states given the
measurements, in order to find the optimal sequence of states for each tracked object (Luo et al. 2021):

X̂1:k = argmax
X1:k

P (X1:k|Z1:k) . (4.1)

For better understanding, however, single target tracking using a Bayesian filter is explained here first.

4.2 Bayesian filters

Due to several sources of errors, states are usually tracked using probability distributions that can reflect the
amount of uncertainty. The Bayesian theory (Bayes 1763) is the fundamental basis in many filtering applica-
tions, since it describes the calculation of a posterior Probability Density Function (PDF) of a state xk using
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the prior and the likelihood of measurements given a series of states x0:k = x0,x1, ...,xk and a series of
observations z1:k = z1, z2, ...,zk:

Posterior︷ ︸︸ ︷
p(x0:k|z1:k) =

Likelihood︷ ︸︸ ︷
p(z1:k|x0:k)

Prior︷ ︸︸ ︷
p(x0:k)

p(z1:k)︸ ︷︷ ︸
Normalization

. (4.2)

When applying the Markov assumption, that each state xk only depends on the previous step xk−1 and
the assumption that each measurement zk only depends on the current state xk, a recursive solution can be
found (Challa et al. 2011; Schreier 2015; Bar-Shalom et al. 2001):

p(xk|z1:k) =

Likelihood︷ ︸︸ ︷
p(zk|xk)

p(zk|z1:k−1)︸ ︷︷ ︸
Normalization

∫
xk−1

p(xk|xk−1)p(xk−1|z1:k−1) dxk−1︸ ︷︷ ︸
Prior(Chapman−Kolmogorov)

. (4.3)

This equation is solved by Bayesian filters by dividing it into two steps. The Chapman-Kolmogorov integral
is the prediction step with the transition density p(xk|xk−1). The update step corrects the prior PDF using the
likelihood to calculate the new posterior PDF. To ensure a correct PDF distribution, it is normalized by

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1) dxk. (4.4)

4.3 Kalman filter

The Kalman Filter (KF) (Kalman 1960) can be used to track one object defined by multiple states over time and
estimate the states and its uncertainties. It is an optimal Bayesian filter for estimating states of linear, Gaussian
distributed systems. Therefore, it needs a linear state-space model describing the system dynamics and a linear
observation model describing the measurements. The equations and notation used are based on the work of
Scheider (2021), with some changes made for consistency with the other chapters. The general description of
a time-discrete state space system

xk+1 = f(xk,uk) +wk (4.5)

is reduced to the linear time-invariant system for the application of the KF:

xk+1 = Axk +Buk +Cwk (4.6)

Here, f(xk,uk) is the state transition function of the state vector xk and the control vector uk at time-step k.
In the linear system, it is substituted by the dynamic matrix A, the control matrix B and noise matrix C. The
state experiences mutually independent white Gaussian noise wk.

Using covariance propagation, the covariance Σxx,k+1 of the state xk can be calculated by

Σxx,k+1 = AΣxx,kA
T +BΣuu,kB

T +CΣww,kC
T . (4.7)

Here, Σuu,k is the covariance matrix of the control and Σww,k is the process noise covariance matrix.

The state estimation of the KF is done in two consecutive steps, which are called prediction and update. Figure
4.1 shows a scheme of the KF’s calculation steps through multiple time-steps. A detailed description and
derivation of the equations can be found in the works of Kalman (1960) and Challa et al. (2011); Bar-Shalom
et al. (2001).
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Figure 4.1: Scheme of Kalman filter calculation steps. Shown recursive on the left side and unfolded on the
right side.

Prediction: During the prediction step, the predicted state x̄k|k−1 and covariance Σx̄x̄,k|k−1 for the current
time-step k are calculated based on the posterior state vector x̂k−1|k−1 and covariance Σx̂x̂,k−1|k−1 of the
previous time-step k− 1. With the expected value E(wk) = 0 and C = I , the following equations are derived
for the prediction:

x̄k|k−1 = Ak−1x̂k−1|k−1 +Buk−1,

Σx̄x̄,k|k−1 = Ak−1Σx̂x̂,k−1|k−1A
T
k−1 +Bk−1Σuu,k−1B

T
k−1 +Σww,k−1.

(4.8)

Update: The update step then corrects the predicted state and covariance estimation using the measurement
model

zk = Hx̂k + vk. (4.9)

with the measurement zk, the measurement matrix H and the measurement noise vk. With E(vk) = 0, the
innovation dk between measurement and predicted measurement and the corresponding innovation covariance
Σdd,k can be calculated using the measurement covariance matrix Σzz,k. This is required to calculate the
Kalman gain Kk.

dk = zk −Hx̄k|k−1,

Σdd,k = HΣx̄x̄,k|k−1H
T +Σzz,k,

Kk = Σx̄x̄,k|k−1H
T
k Σ

−1
dd,k.

(4.10)

Next, the posterior state vector and covariance are calculated using the prior, the innovation, and the Kalman
gain:

x̂k|k = x̄k|k−1 +Kkdk,

Σx̂x̂,k|k = Σx̄x̄,k|k−1 −KkΣdd,k|k−1K
T .

(4.11)

In practical implementations, Josephs form of the covariance correction should be used because it is numerically
more stable, since it will not lead to negative eigenvalues and ensures the covariance matrix to be always positive
semidefinite (Bar-Shalom et al. 2001):

Σx̂x̂,k|k = (I −KkH)Σx̄x̄,k|k−1(I −KkH)T +KkΣzz,kK
T
k . (4.12)
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The Kalman gain defines the amount of correction during the update step. The filter properties of the KF are
mainly defined by the two covariance matrices Σww,k and Σzz,k. When selecting a high process noise Σww,k,
the Kalman gain will be high, resulting in a high correction by the measurements. Using a high measurement
noise Σzz,k results in a low Kalman gain and thus results in a small correction by the measurements.

Note, that a large variety of multi-object tracking literature uses different symbols for the covariances compared
to the ones used in this introduction. To align with these notations, in the following parts, Qk will be used for
the process noise covariance matrix Σww,k, Rk will be used for the measurement covariance matrix Σzz,k

and Sk will be used for the innovation covariance matrix Σdd,k. The state covariance matrix Σxx,k|k will be
represented as Pk|k from now on.

4.3.1 Kalman filter extensions

There are several extensions of the Kalman filter that can be applied to non-linear systems. Two popular
versions are presented here.

The Extended Kalman Filter (EKF) (Anderson and Moore 1979; Challa et al. 2011; Bar-Shalom et al.
2001) is applicable to systems with nonlinear state transition and measurement functions f(xk,uk) and h(xk)
by approximating the dynamic matrix Ak and Hk at each time-step using the Taylor-series. These are called
the Jacobians. The prior state and the innovation can be calculated using the nonlinear functions, while the
covariances are calculated using the Jacobians. A detailed description of the calculation steps is given by
Challa et al. (2011).

The Unscented Kalman Filter (UKF) (Julier and Uhlmann 1997; Julier 2002) is another non-linear version
of the KF, but it does not need to calculate the Jacobians. Instead, it uses the unscented transformation that
utilizes multiple sigma points to estimate the covariances. This often leads to higher accuracies compared to
the KF and EKF, while still having a low computational complexity.

4.3.2 Kalman filter in MOT

The KF is a state estimator that is frequently used in object tracking (Bader 2019; Kampker et al. 2018; Wu et al.
2022; Mobus and Kolbe 2004; Chiu et al. 2020; Himmelsbach et al. 2009; Schueler et al. 2012). In MOT, it is
used to estimate the states, like position, velocity, orientation, or dimensions of tracks based on measurements
from perception sensors. The states of each target are estimated using a separate KF. Therefore, the application
of KF to MOT is essentially an extension of single target tracking and requires a track management and data
association for proper operation. Figure 4.2 shows the necessary calculation steps and components that are
usually done for MOT with KF. In each time-step, the elements of a measurement set Zk = {zk,1, . . . ,zk,m}
are associated to existing tracks, where zk,m is the measured state of the m-th detection. The existing tracks
can be forwarded as a set of tracks Xk = {xk,1, . . . ,xk,n} to the ADAS applications.
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Figure 4.2: Scheme of a KF in an MOT framework including track management and data association.

4.3.2.1 Data association

In many MOT applications, each of the objects is tracked using a separate KF, so each track needs to be updated
with a separate measurement. Therefore, the Data Association (DA) of measurements to the existing tracks is a
key issue. Although some approaches use additional information, like appearance models (Wu et al. 2022), in
this thesis only the measurement states zk,i are considered for DA.

The DA process starts with the gating based on the Chi-square test, which is a pre-selection of possible measure-
ments for each track that lie within a hyper-ellipsoid based on the innovation covariance (Challa et al. 2011).
This gate region Vk is defined by the innovation dk, the innovation covariance Sk and a distance threshold
γDA (Bar-Shalom and Li 1995; Challa et al. 2011):

Vk(γDA) = {zk|DM (zk)
2 ≤ γDA}. (4.13)

The Mahalanobis distance DM is defined as

DM (zk) =
√
dT
kS

−1
k dk. (4.14)

The squared Mahalanobis distance follows a Chi-square distribution, so the gate can be derived based on the
inverse Chi-square cumulative distribution using a chosen gate probability PDA = P (z ∈ Vk(γDA)) (Schreier
2015). The gating has similarities to an innovation test for detecting erroneous measurements, like described
by Yu et al. (2021) for the detection of abrupt fault in GNSS systems.

After the gating, several approaches can be utilized to solve the data association problem. The Nearest Neigh-
bor Data Association (NNDA) and its global extension, the Global Nearest Neighbor Data Association (GN-
NDA) (Konstantinova et al. 2003) are among the most popular ones. They carry out a hard data association,
whereby always a single measurement is assigned to a single track. The Probabilistic Data Association Filter
(PDAF) (Shalom et al. 2009) and the Joint Probabilistic Data Association Filter (JPDAF) (Shalom et al. 2009)
on the other side use soft association that calculates the probability of associations between measurements and



54 4 Basics of multi-object tracking and multi-sensor fusion

tracks. Therefore, the update step is done using a weighted combination of multiple measurements, which can
be beneficial in cluttered situations. A Multi Hypothesis Tracker (MHT) (Blackman 2004) uses hard associa-
tions, but keeps track of multiple association hypotheses over time. This can lead to the optimal solution, but
the computational costs are significant. The mentioned approaches are summarized in Table 4.1.

In recent years, the increasing success of NNs led to an increased number of publications of NNs for data
association tasks. Some of these approaches use Long Short-Term Memory (LSTM) modules for operation
over multiple time-steps. These techniques are not discussed in detail here, but (Rakai et al. 2022) gives an
overview of some currently available methods.

Table 4.1: Comparison of DA filters.

NNDA GNNDA PDAF JPDAF MHT

Association 1-1 (hard) n-m (hard) 1-m (soft) n-m (soft) n-n (hard)
Calculation complexity ++ + + - –
Accuracy under clutter - - + ++ ++

In this thesis, the GNNDA approach is used, since it is simple and fast in computation and offers a hard
association. Such a hard association offers good results under the assumptions that the detection sensors and
algorithms detect one object per track and do not create a lot of clutter measurements. Compared to the NNDA
approach, a global optimum is found, which makes it the most common choice for MOT systems with Kalman
filters. Since the GNNDA is used in this thesis, the other approaches are not described in detail.

The GNNDA tries to minimize the sum of the costs of all associations, where the cost of associating track i
with measurement j is cij = DM,i(zk,j). All costs cij of the association of n tracks to m measurements are
summarized in the cost matrix Cnxm. Now, the linear association problem can be solved using the Hungarian
algorithm (Kuhn 1955) or similar approaches. In order to save computational effort, it is possible to create
association clusters, where the gates overlap. This divides the cost matrix C into multiple sub-problems,
resulting in increased computation speed. The whole association problem with two clusters is shown in Figure
4.3. It is obvious, that a proper dynamic model and proper noise covariance matrices are necessary to obtain
correct gates.

Figure 4.3: Example of data association and gating with two clusters, 3 tracks T and 5 measurements M . In
the example, two clusters are generated. The first cluster contains T1, T2, M1 and M3, while the
second cluster contains T3, M4 and M5. M2 is not located in either cluster and therefore cannot be
assigned to any track. The result of the association is indicated by red dotted lines.
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4.3.2.2 Track management

All logical operations and rules, that are necessary for the operation of a multi-object tracker are summarized
here as track management. The main task of the track management is to keep the list of all tracked objects
updated, add new tracks from measurements and remove ones that are not any more existent.

Heuristic approaches that use a state machine for each track can be used. Typical states are "initializing",
"tracking" and "drifting" (Kampker et al. 2018) or similar, where the transition rules are based on indicators
like the number of consecutive updates. New tracks typically are added with the state "initializing", if a mea-
surement cannot be associated to an existing track. The main challenge is to find appropriate transition rules
that represent the reality of appearing and disappearing objects.

An alternative to state machines is the calculation of the existence probability. If this probability drops be-
low a threshold, the tracks are deleted. This can be done using integrated PDAF (Musicki et al. 1994) or
JPDAF (Musicki and Evans 2004) filters, that incorporate the existence probability. For hard association filters,
the existence probability can also be modeled as a Bayesian formulation, where the existence probability is a
two-state Markov process, as shown by Aeberhard (2017). Within this framework, the existence probability
p(∃xk|Zk) and the non-existence probability p(∄xk|Zk) of a track xk with p(∃xk|Zk) = 1−p(∄xk|Zk−1) are
estimated over time. This results in the prediction step

p(∃xk|Zk−1) = pp(x̂k|k−1)p(∃xk−1|Zk−1) + pb(x̂k|k−1)(∄xk−1|Zk−1),

p(∄xk|Zk−1) = [1− pp(x̂k|k−1)]p(∃xk−1|Zk−1) + [1− pb(x̂k|k−1)](∄xk−1|Zk−1),
(4.15)

with the persistence probability of a track pp and the birth probability pb that is also used for initialization. In the
update step, the existence probability is corrected depending on a successful data association. If a measurement
is associated to the track, the existence update is as follows:

p(∃xk|Zk) = ηp(zk|∃xk)p(∃xk|Zk−1),

p(∄xk|Zk) = ηp(zk|∄xk)p(∄xk|Zk−1),

η = [p(zk|∃xk)p(∃xk|Zk−1) + p(zk|∄xk)p(∄xk|Zk−1)]
−1.

(4.16)

Here, η is the normalization factor. If no measurement is associated to a track, the update changes to

p(∃xk|Zk) = ηp(zk|∃xk)p(∃xk|Zk−1),

p(∄xk|Zk) = ηp(zk|∄xk)p(∄xk|Zk−1),

η = [p(zk|∃xk)p(∃xk|Zk−1) + p(zk|∄xk)p(∄xk|Zk−1)]
−1.

(4.17)

p(zk|∃xk) is the probability that the measurement is associated given the object exists, which can be interpreted
as the detection probability pD,k. p(zk|∄xk) therefore is the probability of the measurement being clutter pc,k
resulting in

p(zk|∃xk) = pD,k,

p(zk|∄xk) = pc,k,

p(zk|∃xk) = 1− pD,k,

p(zk|∄xk) = 1− pc,k.

(4.18)
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This can be further extended by using a generalized Bayes formulation (Aeberhard 2017) that incorporates L
time-steps to create more robust estimations with sporadic missing associations:

p(zk|Zk−L:k−1,∃xk) =
1

L+ 1

k∑
i=k−L

pD,i,

p(zk|Zk−L:k−1,∄xk) =
1

L+ 1

k∑
i=k−L

pc,i,

p(zk|Zk−L:k−1,∃xk) =
1

L+ 1

k∑
i=k−L

1− pD,i,

p(zk|Zk−L:k−1,∄xk) =
1

L+ 1

k∑
i=k−L

1− pc,i.

(4.19)

The parameters pp, pb, pD,k and pc,k can be modeled depending on multiple variables, like the position of the
measurement and for each sensor independently. A detailed description of the existence estimation process is
shown by Aeberhard (2017).

4.4 Random finite set filters

As discussed in the previous chapters, the most common solution for MOT is extending a single target tracker,
like the KF, to multiple targets using data association and a track management. Despite its popularity, this is
a non-optimal solution. According to Ristic (2013), there are several situations, that are not covered intrinsi-
cally:

• Tracking of multiple objects: Each track needs a separate filter instance. This introduces the challenge
of data association.

• Switching targets: In MOT applications, multiple targets may appear and disappear through time.

• Clutter and missed detections: Imperfect measurements, like false or missed detections, are not consid-
ered in the standard KF formulation.

These challenges are not covered by the KF directly, but need to be handled separately using data association
techniques and track management algorithms based on heuristic rules or estimations. However, this introduces
heuristics and approximations that are not ideal in a probabilistic way. The DA can introduce major errors if
measurements are associated incorrectly. The track management may introduce additional errors if the heuristic
rules for adding or removing tracks are set up poorly. In addition, while these approaches "[...] provide an idea
of the number of objects present, they do not have explicit modeling to estimate the object number" (Challa
et al. 2011).

Mahler (Mahler 2004) introduced the Finite-Set Statistics (FISST) which resulted in Random Finite Set (RFS)
filters, that intrinsically cover these situations. From this formulation, several filters emerged that are well suited
for MOT applications, which are believed to be able to outperform KF-based and deep learning approaches
(Pang and Radha 2021). The main reason for that believe is, that the modeling of the unknown number of
states, their appearing and disappearing and the data association is not covered by the KF itself. RFS filters
are more flexible and robust in handling these complexities of MOT scenarios, such as varying object numbers,
data association challenges, clutter and missed detections.

Even though there is a lot of evidence for the benefits of RFS filters, a gap exists in the literature regarding the
comparison to KF approaches on real-world automotive data. Most existing comparisons use simulated data
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and do not include a direct comparison to the KF. The experiments conducted in this thesis address this gap in
the literature.

4.4.1 Random finite sets

Mahler (2007b) introduced the RFS, which is a set of states where both the number of states and the states
themselves are random and time varying. With nk targets being present at time-step k and with their states
being xk,1, . . . ,xk,nk

∈ X in the state-space X , an RFS is defined as follows:

Xk = {xk,1, . . . ,xk,nk
} ∈ F(X ). (4.20)

F(X ) is the collection of all finite subsets of X (Vo and Ma 2006). Using this representation, the num-
ber of tracked objects can be modeled using a point process model, while the targets states are modeled
using a motion model (Challa et al. 2011). In this notation, the RFS is unordered, which means that
Xk = {xk,1,xk,2} = {xk,2,xk,1}. The cardinality is the discrete distribution ρ(n) = P{|X| = n} with n ∈ N
and is calculated as follows:

ρ(n) = P{|X| = n} =
1

n!

∫
f({x1, . . . ,xn}) dx1, . . . , dxn. (4.21)

The PDF of an RFS is now completely described by the cardinality ρ(n) and a family of joint probability
densities fn(x1, . . . ,xn) (Ristic 2013):

f(X) = f({x1, . . . ,xn}) = n! · ρ(n) · fn(x1, . . . ,xn). (4.22)

Here, the cardinality distribution models the number of objects, while for each cardinality, the according prob-
ability density models the distribution of the set elements. This multi state PDF integrates to 1 using the set
integral formulation from (Mahler 2007b):

1 =

∫
f(X) δX = f(∅) +

∞∑
i=0

1

i!

∫
Xi

f({x1, . . . ,xi}) dx1, . . . , dxi. (4.23)

The first order statistical moment is called Probability Hypothesis Density (PHD) or intensity function. The
PHD v(x) is the random set variable’s equivalent to the expected value of random variables and defined by

v(x) = E{δX(x)} =

∫
δX(x)f(X) δX. (4.24)

This is based on the set Dirac delta function δX(x) =
∑

w∈X δw(x) with the Dirac delta function δw(x)
concentrated at w. The PHD v(x0) can be interpreted as the density of expected number of targets at x0.
Therefore, the integral over a region S is the expected number of targets in S.

IID RFS For Independent Identically Distributed (IID) cluster RFS, the probability distribution ρ(n) models
the cardinality, while the standard PDF p(x) is the distribution of one object. For IID RFS, the multi-object
PDF f(x) and PHD v(x) of the RFS X with |X| = n are calculated by:

f(X) = n!ρ(n)
∏
x∈X

p(x), (4.25)

v(x) = p(x)
∞∑
n=1

nρ(n). (4.26)
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Poisson RFS An IID RFS X is called Poisson RFS if the cardinality distribution is Poisson distributed with
the rate λ:

ρ(n) =
e−λλn

n!
. (4.27)

This leads to the following equations:

f(X) = e−λ
∏
x∈X

λp(x), (4.28)

v(x) = λp(x). (4.29)

Poisson RFS are an important type, since those are completely characterized by their intensities (Vo and Ma
2006) and thus are the basis for the PHD filter as shown in chapter 4.4.3.

4.4.2 Multi target Bayes filter

Similar to the single target Bayesian filtering described in chapters 4.2 and 4.3, Bayesian filtering can be applied
to multi target frameworks. This implies, that the filtering process estimates both the cardinality and the states
of an RFS with their uncertainties. Given a state RFS Xk and a corresponding measurement RFS Zk, the
prediction and update step of an exact multi target filter can be calculated using the Markov assumption:

fk|k−1(Xk|Z1:k−1) =

∫
Πk|k−1(Xk|Xk−1)fk−1|k−1(Xk−1|Z1:k−1) δXk−1, (4.30)

fk|k(Xk|Z1:k) =
φk(Zk|Xk)fk|k−1(Xk|Z1:k−1)∫
φk(Zk|X)fk|k−1(X|Z1:k−1) δX

. (4.31)

This formulation, however, does not have a general analytic closed form solution (Ristic 2013) and is compu-
tational very demanding, since the multi-target transitional density Πk|k−1(Xk|Xk − 1) and the multi-target
likelihood φk(Zk|Xk) are complex and the integrals in (4.30) and (4.31) are set integrals. Therefore, the exact
multi target filter is generally known to be computationally infeasible for most applications. Several approxi-
mations emerged, that can massively decrease the computational demands using different assumptions, which
are summarized here:

• The Probability Hypothesis Density (PHD) filter (Mahler 2003) propagates the PHD instead of the multi-
object probability density, which reduces the computational complexity.

• The Cardinalized Probability Hypothesis Density (CPHD) filter (Mahler 2007a) propagates the cardinal-
ity distribution in addition to the first order statistical moment to increase the accuracy and stabilize the
cardinality estimation.

• The Cardinality Balanced Multi Bernoulli Filter (CBMeMBer) (Vo et al. 2009) propagates a multi-
Bernoulli RFS, which is a sum of Bernoulli RFSs, that can either be empty or have a single object.

In addition to the popular filter approaches listed here, the recent years show the developments of additional
RFS-based filters. In particular, labeled RFS filters are mentioned, which directly include labeled tracks to
keep track of full trajectories over time (Beard et al. 2020; Lu et al. 2017; Reuter 2014). However, due to the
simplicity, low computational demands and good performances in the experiments of chapter 6.6, the focus of
this thesis is on the PHD filter. In general, most of these filters listed above can be implemented using Sequential
Monte Carlo (SMC) methods or using a Gaussian distribution approximation with similar assumptions like
the KF. The calculation of the Gaussian version is usually faster, but it is possible to implement real-time
capable SMC filters, like Reuter (2014) showed using a GPU. However, this thesis focuses on the Gaussian
implementations that have low runtimes.
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4.4.3 PHD filter

The PHD filter (Mahler 2003) approximates the exact multi target filter by only propagating the first order
statistical moment (PHD) of an RFS. Under the assumption of a Poisson RFS, there is a closed form analytic
solution for the prediction and update step, since both the cardinality distribution and the spatial distribution
are defined by the PHD. The main advantages of the PHD filter is the fast computation, since no set integrals
are used for the estimation process. The main drawback of the PHD filter is the cardinality estimation, which
is less accurate than other RFS-based filters and can be unstable (Reuter 2014, p. 42). To overcome this
weakness, either the cardinalized PHD filter (Mahler 2007a) or a second order moment approximation, as
shown by Schlangen et al. (2018) can be used. The "spooky effect" (Franken et al. 2009; Vo and Vo 2012) is
also an issue, that can appear for both the PHD and CPHD filter. This effect can lead to a weight shift in case
of missed detections for objects far apart from each other.

In order to examine the theoretical limitations of the PHD filter in comparison to the CPHD filter, both filters
are tested on real data in this thesis. Short term weight drops, as they can appear from the spooky effect are
adressed by the track confirmation strategy proposed in chapter 5.9. Similar to other Bayesian filters, the PHD
filter is divided into prediction and update, which are described in the next sections.

The PHD prediction of the PHD vk|k−1(x) consists of three parts: The birth of new targets, the spawning of
new targets from existing ones and the prediction of existing targets:

vk|k−1(x) =v
b
k|k−1(x)

+

∫
psk|k−1(x|x

′)vk−1|k−1(x
′) dx′

+

∫
pS(x

′)πk|k−1(x|x′)vk−1|k−1(x
′) dx′.

(4.32)

The birth process is modeled by the likelihood vbk|k−1(x) that new targets appear. The spawn process is modeled
by the likelihood psk|k−1(x|x

′), that a target with state x will spawn from the target with state x′. The prediction
process is modeled by the transitional single-target density πk|k−1(x|x′) and the survival probability pS(x′),
which is the probability of a target with state x′ to survive from time-step k − 1 to k.

The PHD update of the PHD vk|k(x) consists of two parts: The estimation for non-detected targets and the
estimation for detected targets:

vk|k(x) =(1− pD(x))vk|k−1(x)

+
∑
z∈Zk

pD(x)gk(z|x)
κk(z) +

∫
pD(x′)gk(z|x′)vk|k−1(x′) dx′ vk|k−1(x).

(4.33)

The estimation of non-detected targets is modeled by (1−pD(x)), where the detection probability pD(x) is the
probability that a target with state x is detected. For the calculation of the detected targets, the sensor likelihood
function gk(z|x) is used. κk(z) models the appearance of clutter, which is defined to be a Poisson RFS with
PHD κk(z) = λc(z), where c(z) is the spatial distribution of clutter and the Poisson rate λ.

The PHD filter equations shown above can be implemented as a particle filter using the SMC method (see
Ristic (2013) for details). Alternatively, Vo et al. proposed the Gaussian Mixture Probability Hypothesis
Density (GM-PHD) filter (Vo and Ma 2006), which results in a very fast implementation. The filter equations
derived for the GM-PHD use the following assumptions provided by Vo and Ma (2006):
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• A.1: Each target evolves and generates observations independently of one another.

• A.2: Clutter is Poisson distributed and independent of target-originated measurements.

• A.3: The predicted multiple-target RFS governed by fk|k−1
1 is Poisson distributed.

• A.4: Each target follows a linear Gaussian dynamical model and the sensor has a linear Gaussian mea-
surement model, i.e.

πk|k−1(x|x′) = N (x;Ak−1x
′,Qk−1)

1,

gk(z|x) = N (z;Hkx,Rk)
1.

• A.5: The survival and detection probabilities are state independent, i.e. pS,k(x) = pS,k and pD,k(x) =
pD,k.

• A.6: The intensities of the birth and spawn RFSs are Gaussian mixtures.

The assumption of Poisson distributions of A.2 and A.3 is necessary to be able to characterize the complete
RFS using the PHD. Note, that state-depending detection and survival probabilities can be used, if they are
modeled by mixtures using the equations shown by Vo and Ma (2006).

4.4.3.1 The GM-PHD filter equations

The GM-PHD equations can also be extended to non-linear formulations by using the equivalent non-linear
KF, like the EKF or UKF. Based on the assumptions above, a recursive formulation with prediction and update
can be derived, as shown by Vo and Ma (2006). In this formulation, the PHD vk−1(x) at time step k is always
represented as a sum of Jk−1 weighted Gaussians with weight w(i)

k−1, mean m
(i)
k−1 and covariance P

(i)
k−1:

vk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N (x;m

(i)
k−1,P

(i)
k−1). (4.34)

Note, that the GM-PHD filter uses Gaussian components with mean values that combine to describe the inten-
sity function, in contrast to the individual states used for separate tracks of the KF approach.

The GM-PHD prediction vk|k−1(x) is calculated by the following equation:

vk|k−1(x) = vS,k|k−1(x) + vβ,k|k−1(x) + γk. (4.35)

Here, vβ,k|k−1(x) models the spawn process and γk(x) the birth process that are represented as Gaussian
mixtures as stated by A.6. The prediction is modeled by vS,k|k−1(x) with

vS,k|k−1(x) = pS,k

Jk−1∑
j=1

w
(j)
k−1N

(
x;m

(j)
S,k|k−1,P

(j)
S,k|k−1

)
, (4.36)

m
(j)
S,k|k−1 = Ak−1m

(j)
k−1, (4.37)

P
(j)
S,k|k−1 = Qk−1 +Ak−1P

(j)
k−1A

T
k−1 (4.38)

using the survival probability pS,k. The means and covariances are predicted using the state transition matrix
Ak−1 and process noise covariance matrix Qk−1.

1Formulas adapted to fit nomenclature of thesis
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The GM-PHD update step then calculates the posterior intensity vk(x) at time k:

vk(x) = (1− pD,k) vk|k−1(x) +
∑
z∈Zk

vD,k(x; z) (4.39)

with

vD,k(x; z) =

Jk|k−1∑
j=1

w
(j)
k (z)N

(
x;m

(j)
k|k(z),P

(j)
k|k

)
, (4.40)

w
(j)
k (z) =

pD,kw
(j)
k|k−1q

(j)
k (z)

κk(z) + pD,k
∑Jk|k−1

l=1 w
(l)
k|k−1q

(l)
k (z)

, (4.41)

q
(j)
k (z) = N

(
z;Hkm

(j)
k|k−1,Rk +HkP

(j)
k|k−1H

T
k

)
, (4.42)

m
(j)
k|k(z) = m

(j)
k|k−1 +K

(j)
k

(
z −Hkm

(j)
k|k−1

)
, (4.43)

P
(j)
k|k =

[
I −K

(j)
k Hk

]
P

(j)
k|k−1, (4.44)

K
(j)
k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k +Rk)

−1. (4.45)

Here, pD,k is the detection probability and κk(z) the clutter density, while the update of the Gaussian compo-
nents is done using the observation matrix Hk and the observation noise covariance matrix Rk.

To give some intuition about the GM-PHD filter, Figure 4.4 shows a scene with several vehicles and a possible
visualization of it’s PHD. With a working filter, peaks will arise in the PHD to track the measurements over
time. No data association is necessary, since the PHD represents both the states and the cardinality.

Figure 4.4: Intuition of GM-PHD filter shown by visualization of intensity on right side based on situation on
left side. The visualization is an example to gain intuition and does not focus on accuracy.

4.4.4 PHD filter in MOT

The GM-PHD filter has already been used for automotive MOT applications, as shown by Granström (2012);
Lindenmaier et al. (2022); Shi et al. (2022). Most of these practical implementations use additional software
components or adaptations of the GM-PHD filter in order to produce an efficient and reliable system. Some of
these approaches are described here.
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4.4.4.1 Adaptive birth intensity

The original birth process is independent of the received measurements and assumed to be known. In case of
known hotspots of target births, like at airports for air surveillance, this may be reasonable. In MOT applica-
tions, where objects can appear in the whole measurement space, many potential birth targets spread over the
whole monitored space need to be modeled to avoid "blind spots". To overcome this inefficiency, Ristic (2013)
shows an adaptive birth intensity model, based on the current measurements likelihood gk(z|x). This leads to
an increased birth intensity in areas of current measurements. A similar approach is derived for the Gaussian
mixture implementation by Houssineau and Laneuville (2010), which results in more efficient calculations.

4.4.4.2 Labeled tracking

A large weakness of the PHD filter for MOT applications is, that it is not able to preserve a track’s unique ID
throughout time. A unique identity of tracked objects is referred to as label in the context of RFS filters. The
GM-PHD filter does not directly calculate labeled tracks, but instead the unlabeled intensity function, as shown
by Figure 4.4. Therefore, the intensity is tracked throughout time, but there is no direct tracking of unique
labels, since this information is not included in the Gaussian mixture description formulated in equation (4.34).
However, for ADAS applications, this is important information for verification of tracks. There are several
techniques that overcome this issue.

Liu et al. (2015) utilizes the aliasing of particle clouds for association between time-steps in order to keep track
continuity for a particle-PHD filter. Panta et al. (2005) introduce hidden indices to the particles of a particle-
PHD filter, which are used to store the identity over time and therefore can be used for the creation of labels.
A similar approach is shown by Clark et al. (2006) for the GM-PHD implementation, where tags are applied
to each Gaussian component that are propagated over time, which is a simple and effective solution. Panta
et al. (2006) show a tracking scheme with a tree structure based on tags for the GM-PHD, which enables more
advanced possibilities in track pruning. This approach also showed better tracking performance than a MHT
approach (Panta et al. 2006). Another option is to implement a labeled PHD filter based on the labeled random
finite set theory, as shown by Lu et al. (2017). In this thesis, an approach with tags similar to the work of Clark
et al. (2006) and Panta et al. (2006) is proposed in chapter 5.7.

A classic track management approach from chapter 4.3.2.2 assigns an ID to each track with a KF as long as the
track is alive. In contrast, labeled tracking for RFS filters integrates the label assignment to the joint existence
and state estimation of all targets.

4.4.4.3 Typical implementation

The derived equations from Vo and Ma (2006), which are shown in equation (4.36) to (4.45), are usually
implemented in 5 computation steps. They are described by Clark et al. (2006) and are listed here. After
initialization, the filter repeats the steps 1 to 5:

• Step 0: Initialization at k = 0.

• Step 1: Prediction of the prior Gaussian mixture.

• Step 2: Update by a measurement Gaussian mixture.

• Step 3: Pruning of Gaussian components with low weights.

• Step 4: Merging of Gaussian components that are similar.

• Step 5: Estimation of target states by interpreting Gaussian components with high weights as tracks.
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Step 3 and 4 are necessary in real-world implementations, since the number of Gaussian components would
rapidly increase without the reduction in these steps. The fifth step is to output the filtered targets. To obtain a
track label in addition to the tracked state, some sort of management system needs to be applied, as shown in
the previous paragraph. The exact implementation details of the steps used in this thesis are shown in chapter
5.7.

4.4.4.4 State-dependent detection probability

Although the standard implementation assumes a constant detection probability in assumption A.5, Vo and Ma
(2006) show the implementation of a state dependent detection probability pDe,k(x), which is modeled as a
mixture with an offset weight w(0)

d,k and Jd,k components with mean m
(j)
d,k and covariance P

(j)
d,k :

pDe,k(x) = w
(0)
d,k +

Jd,k∑
j=1

w
(j)
d,kN (x,m

(j)
d,k,P

(j)
d,k ). (4.46)

Based on this, the update step of the GM-PHD filter is calculated as shown by (Vo and Ma 2006):

vk(x) = vk|k−1(x)− vd,k(x) +
∑
z∈Zk

vd,k(x; z), (4.47)

with

vd,k(x) =

Jk|k−1∑
i=1

Jd,k∑
j=0

w
(i,j)
k|k−1N (x;m

(i,j)
k|k−1,P

(i,j)
k|k−1),

w
(i,j)
k|k−1 = w

(j)
d,kw

(i)
k|k−1q

(i,j)
k|k−1,

q
(i,0)
k|k−1 = 1, m

(i,0)
k|k−1 = m

(i)
k|k−1, P

(i,0)
k|k−1 = P

(i)
k|k−1,

q
(i,j)
k|k−1 = N (m

(j)
d,k;m

(i)
k|k−1,P

(j)
d,k + P

(i)
k|k−1),

m
(i,j)
k|k−1 = m

(i)
k|k−1 +K

(i,j)
k|k−1(m

(j)
d,k −m

(i)
k|k−1),

P
(i,j)
k|k−1 = (I −K

(i,j)
k|k−1)P

(i)
k|k−1,

K
(i,j)
k|k−1 = P

(i)
k|k−1(P

(i)
k|k−1 + P

(j)
d,k )

−1

(4.48)

and

vd,k(x; z) =

Jk|k−1∑
i=1

Jd,k∑
j=0

w
(i,j)
k (z)N (x;m

(i,j)
k|k (z),P

(i,j)
k|k ),

w
(i,j)
k (z) =

w
(i,j)
k|k−1q

(i,j)
k (z)

κk(z) +
∑Jk|k−1

r=1

∑Jd,k
s=0 w

(r,s)
k|k−1q

(r,s)
k (z)

,

q
(i,j)
k (z) = N (z;Hkm

(i,j)
k|k−1,Rk +HkP

(i,j)
k|k−1H

T
k ),

m
(i,j)
k|k (z) = m

(i,j)
k|k−1 +K

(i,j)
k (z −Hkm

(i,j)
k|k−1),

P
(i,j)
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(i,j)
k Hk)P

(i,j)
k|k−1,

K
(i,j)
k = P

(i,j)
k|k−1H

T
k (HkP

(i,j)
k|k−1H

T
k +Rk)

−1.

(4.49)

The main difference to the equations 4.39-4.45 is that here a sum is formed over elements of both the detection
probability pDe,k and the predicted intensity function to calculate vd,k(x) and vd,k(x; z). With this implemen-
tation, negative weights of Gaussian components may occur during the update step. Therefore, the prune and
merge step needs mechanisms to ensure that the intensity function remains positive. This means, that the sum
of all weights is not allowed to be negative.
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4.5 Classification tracking

In automotive applications, MOT is applied to multiple classes of objects, like cars, pedestrians or cyclists.
A correct classification is necessary for several ADAS functions to work well. There are two fundamental
approaches dealing with different classes: Either there is one MOT application for each class that deals ex-
clusively with this class, or one MOT application deals with objects from multiple classes. Some automotive
sensors, like Lidar or radar, misclassify detected objects on a regular basis. Therefore, it is more feasible to
use a MOT application tracking objects of all classes and allow the change of classification in case of prior
misclassification.

4.5.1 Bayesian framework for classification tracking

By estimating the class over multiple time-steps and sensors, the classification result gets more stable. To cre-
ate an universal framework, that works well with different numbers of classes, a Bayesian formulation of the
classification estimation similar to the existence estimation (Aeberhard 2017; Bader 2019) can be used. Given
a set of classes C = {C1, C2, . . . , Ck}, the probability for each class Ci can be calculated using the classifi-
cation vector ck = [p(C1,k|Zk), p(C2,k|Zk), . . . , p(Cn,k|Zk)] consisting of the class probabilities p(Ci,k|Zk)
given measurements Zk up to time-step k. In the prediction step of this classification vector, the classification
transition probabilities pij define the transition between classes i and j for one time-step:

p(Ci,k|Zk−1) =
∑
Cj∈C

pijp(Cj,k−1|Zk−1). (4.50)

The transition probabilities can be represented as a matrix P n×n
t . Each element pij is the transition probability

from class i to class j and the sum of each row in Pt equals one:

Pt =

 p11 . . . p1n
...

. . .
...

pn1 . . . pnn

 ,
ri =

n∑
j=1

pij = 1.

(4.51)

The update step is then correcting the classification using the measured classification probability p(zk|Ci,k)
provided by a sensor with the normalization factor η:

p(Ci,k|Zk) = ηp(zk|Ci,k)p(Ci,k|Zk−1), (4.52)

η =

 ∑
CiinC

p(zk|Ci,k)p(Ci,k|Zk−1)

−1

(4.53)

Note, that it is possible to use a generalized Bayes formulation similar to the existence probability in chapter
4.3.2 to create a more robust estimation using an evaluation window of L time-steps.

The approach shown here is well suited for estimating the classification probabilities of single sensor systems,
but does not include the confidence level of the current update. This becomes necessary, when updates from
multiple sensors occur, since sensors like cameras typically have higher confidences on the classification com-
pared to radar. In chapter 5.6, additional methods that also focus on the fusion of multiple classifications from
different sensor sources with different confidences are developed and tested.
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4.5.2 Dempster-Shafer framework for classification tracking

The Dempster-Shafer Theory (DST), introduced by Dempster (1967) and Shafer (1976), is a mathematical
framework for evidence calculation. The framework can be used in a broad field of applications in the area of
environment perception, like occupancy grids (Yi et al. 2000; Nuss et al. 2018), existence estimation (Aeberhard
et al. 2011) or the classification fusion (Aeberhard 2017). A detailed introduction and comparison to the
Bayesian theory is provided by Koks and Challa (2003); Challa and Koks (2004).

The DST uses an interval of "support" (Spt) and "plausibility" (Pls) with Spt ≤ Pls instead of the single value
of probability as used by the Bayesian framework. Here, the support can be interpreted as the lower limit for the
evidence of a hypothesis, while the plausibility is the upper limit with the difference being the uncertainty (Ae-
berhard 2017; Challa and Koks 2004). Therefore, the probability roughly lies within the uncertainty bound by
support and plausibility (Challa and Koks 2004). One major advantage over the Bayes theory is, that it allows
the explicit modeling of an unknown hypothesis.

To achieve this, a power set 2C , that includes all possible subsets of hypotheses, is created from the set of classes
C where all components have an assigned mass m. Therefore, the power-set for this example includes not only
the individual classes but also their combinations. With a set of C = {C1, C2, C3} such combinations could be
"either C1 or C2" with C12 = C1, C2 and "any class" with C123 = C = C1, C2, C3, where the hypothesis "any
class" would represent unknown. The number of hypotheses in the power set is therefore 2|C| = 8, including
the empty set ∅.

The support Spt and plausibility Pls of hypothesis A can now be calculated using the masses m assigned to
each of the hypotheses of the power set. For this calculation, the sum of all masses has to be 1:∑

A⊆PC

m(A) = 1, (4.54)

Spt(A) =
∑
B⊆A

m(B), (4.55)

Pls(A) =
∑

B∩A ̸=∅

m(B). (4.56)

A ∩ B is the intersection of the hypothesis A and B, so the plausibility of A is defined by the masses of all
hypotheses intersecting with A. The support of A, on the other hand, is defined by the masses of all hypotheses
being subsets of A. The DST can be seen as a generalization of the Bayes theory, since it reduces to the Bayes
theory if masses are only assigned to the original hypothesis given by C.

When an old and a new source of evidence should be combined, Dempster’s rule of combination can be applied
to calculate the new mass m(C) based on the old masses mo and mn with

m(C) =

∑
A∩B=PC mn(A)mo(B)

1−
∑

A∩B=∅mn(A)mo(B)
. (4.57)

In MOT applications, DST can be used to propagate the weights of classification hypotheses over time, as
shown by Aeberhard (2017). For the classification propagation, the track’s class is represented by the masses
mk|k−1,Ti

, which are transported through the track’s lifetime, while other masses m(sp)
k,zj

are based on the mea-
surements of sensor (sp). At each time step, the masses of the track are now updated by the masses of the
measurement using equation (4.57):

mk|k,Ti
(C) =

∑
A∩B=PC mk|k−1,Ti

(A)m
(sp)
k,zj

(B)

1−
∑

A∩B=∅mk|k−1,Ti
(A)m

(sp)
k,zj

(B)
. (4.58)



66 4 Basics of multi-object tracking and multi-sensor fusion

To work with this form, the classification provided by a sensor needs to be converted to masses first. Ae-
berhard (2017) does this by modeling each hypothesis based on a combination of a weighting factor and the
measurement probability.

If probability values are required as output, the masses can be converted to pseudo probabilities using the
Pignistic transformation from Smets (1990). The pseudo probability p̃(Ca) of class Ca is calculated by

p̃(Ca) =
∑

B⊆C ̸=∅

|Ca ∩B|
|B|

mk|k,Ti
(B). (4.59)

4.6 Sensor fusion for MOT

Modern ADAS systems require a reliable environment perception, which is usually not given by a single sen-
sor. The performance of camera-based perception, for example, is significantly influenced by environment
conditions like fog, rain or darkness. Therefore, many modern solutions feature multiple sensors from different
sensing domains to complement each other and create redundancy for all conditions and situations. However,
to combine the advantages of all sensors, a robust sensor fusion must process the data of all sensors and create
a combined output. The sensor fusion is responsible for the correct combination of the outputs of all sensors,
considering the accuracies of all sensors. This processing step is therefore a critical part in a multi-sensor
perception pipeline.

There is a large variety of possible approaches, that reaches from function-specific fusion based on heuristic
rules to probabilistic models and neural networks. This chapter gives an overview of possible approaches and
the requirements for spatial and temporal data alignment.

4.6.1 State of the art and overview

In the literature, sensor fusion concepts are often characterized by the "level" of fusion, which is broadly di-
vided into high-level or decentralized and low-level or centralized (Aeberhard 2017; Challa and Koks 2004;
Bar-Shalom and Li 1995; Kämpchen 2007; Darms and Winner 2005). This "level" corresponds to the stage
in the processing pipeline, where the data of multiple sensors are fused. A low-level fusion approach is there-
fore applied on or close to raw data, while high-level fusions are applied on data that is already processed.
Low-level approaches are implemented more centralized, while high-level approaches may be implemented
decentralized.

4.6.1.1 Levels of fusion

In this overview, the fusion approaches are divided into low-level, feature-level and high-level. For each con-
cept, the advantages and drawbacks are described. A schematic of the fusion concepts is shown in Figure
4.5.

Low-Level: Low-level fusion approaches are typically applied to sensor data before any tracking filter is
applied. Therefore, both the fusion of raw data, and the fusion of detections before tracking are low-level
fusion approaches. These concepts focus on the maximum possible accuracy by fusing the data from multiple
sources before any information loss in processing steps. Examples are the detection approaches shown in
chapter 3, which fuse the raw data from several sensors to detect objects, that can be tracked in the next
processing step. This raw data fusion is getting rising attention due to the application of neural networks, that
can achieve high performances on raw data. Low-level fusion has also been applied to applications with focus



67

Figure 4.5: Scheme of high-level, feature-level and low-level fusion concepts.
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on ADAS functions, like pre-crash detection (Pietzsch et al. 2008) or ACC (Takizawa et al. 2004). Usually,
low-level approaches are optimized for a specific set of sensors and may not work with different ones, which
gives it less flexibility. Low-level fusion concepts fit well to most applications that rely on occupancy grids,
since this environment representation does not use high-level features. A brief summary of the advantages and
disadvantages is given in Table 4.2.

Table 4.2: Advantages and disadvantages of low-level fusion approaches.

Advantages Disadvantages

• High accuracy potential.

• No information loss before fusion.

• Low flexibility in sensor setup due since input
data of different sensors may vary.

• High computational demands due to high
amount of data.

• Precise spatial and temporal alignment nec-
essary, typically a common trigger source is
used.

• High communication bandwidth necessary
due to high amount of data.

Feature-Level: Sensor fusion on feature-level describes a system, that uses a central tracking algorithm
which receives measurements in a common data format (e.g. OBBs) from various sensors. Therefore, all
sensors must align to a similar type of object representation to fuse them within the tracking process (Käm-
pchen 2007). Within that process, the information content of the raw data is reduced to the calculated features.
Instead of a point cloud, the Lidar sensor, for example, will just report a list of objects. In addition, a sensor is
responsible for all sensor-specific parts and calculations of the MOT process and needs to provide all sensor-
specific information to the fusion. This includes, for example, the measurement covariances, the measurement
noise or detection probabilities, which are sensor-specific. Feature-level fusion offers a good flexibility to the
setup, since the sensors can be easily replaced if they support the common object representation and some key
sensor data is known. At the same time, “[...] feature-level fusion aims at an optimal tracking and classifi-
cation performance as the data is fused on a low abstraction level” (Kämpchen 2007). Feature-level fusion
approaches have been used in autonomous driving projects, including successful participants at the Darpa Ur-
ban Challenge (Darms et al. 2009). They are also proven to be effective in other automotive applications, like
ACC (Mahlisch et al. 2006). Overall, this concept can be used for most applications, that use an object-based
perception framework, where the sensors deliver non-tracked detections.

In feature-level fusion systems, Bayesian filters, like the KF, are often used as a central tracking approach.
These filters typically assume to have uncorrelated sensor measurements. If this is not given (e.g. each sensor
uses its own tracking prior to the central tracking), disruptive effects, like the common process noise (Bar-
Shalom and Campo 1986) can appear. In these situations, high-level track-to-track fusion approaches can lead
to better performances, as shown by (Matzka and Altendorfer 2008). In practical applications, however, this
assumption might be violated to be able to use both tracked and non-tracked detections in a single central
fusion.

While low-level fusion typically needs to trigger all sensors for measurements at the exact same time, this is
often not necessary in feature-level and high-level approaches. The tracked states can be predicted to any time
stamp of the measurements to be updated. A brief summary of the advantages and disadvantages is given in
Table 4.3.
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Table 4.3: Advantages and disadvantages of feature-level fusion approaches.

Advantages Disadvantages

• Flexibility for sensor setups with common ob-
ject representation.

• Low/Moderate computational demands.

• No common trigger source for simultaneous
measurement necessary, since filter update can
be performed at any time.

• Good tradeoff between performance, compu-
tational demands and flexibiltiy.

• Moderate information loss due to feature cal-
culation.

• Correlated detections can lead to performance
degradation.

High-Level: The goal of high-level fusion systems is a maximum flexibility and modularity by encapsulating
the sensors completely from the fusion. Therefore, each sensor independently detects and tracks objects before
sending these filtered data to the fusion system. The fusion system itself just combines the estimates from all
sensors to a global estimation. Therefore, it needs to know the least amount of information about the used
sensors and allows distributed processing. However, this can cause some challenges in terms of accuracy, since
it implies a high information loss. High-level fusion approaches have been used in automotive applications,
as shown by Labayrade et al. (2005); Mobus and Kolbe (2004); Aeberhard (2017); Floudas et al. (2007). The
High-level fusion concept fits best to applications, where several sensors are encapsulated and provide tracked
high-level object data. For high-level track-to-track fusion, algorithms like covariance intersection, covariance
union and the use of cross covariance can lead to good performances (Matzka and Altendorfer 2008). This
requires that complex detection and tracking algorithms are integrated to the sensors. A brief summary of the
advantages and disadvantages is given in Table 4.4.

Table 4.4: Advantages and disadvantages of high-level fusion approaches.

Advantages Disadvantages

• Highest flexibility regarding sensor setup.

• Low computational demands (on fusion side).

• No common trigger source for simultaneous
measurement necessary, since fusion can be
performed at any time.

• Low communication bandwidth, since only
high-level tracking information are transmit-
ted.

• Highest information loss: Working with fil-
tered information from extracted features.

• Potential lower performance due to informa-
tion loss.

Comparison and conclusion Several works compare the different fusion concepts against each other based
on different criteria. Becker (1999) comes to the conclusion, that a low-level measurement fusion is the best
suited for their autonomous vehicle application. The analysis of Herpel et al. (2008) shows that a low-level
fusion achieves better performances than high-level approaches. Darms and Winner (2005) and Kämpchen



70 4 Basics of multi-object tracking and multi-sensor fusion

(2007) compare centralized and decentralized concepts, with the result that a feature-level approach delivers
a good compromise. The comparison from Aeberhard (2017) favors a high-level approach due to the good
practicality of high-level approaches in terms of mass production, functional safety and the supplier chain.

Overall, each fusion concept offers some advantages and drawbacks. When the maximum possible accuracy is
required within a fixed sensor setup and a centralized processing architecture, a low-level concept may be the
best suited. If the main goal is flexibility and decentralization, a high-level concept may be best suited.

Based on the boundary conditions that are formulated in chapter 1.3, the low-level concept is not suitable for this
thesis, since a modular sensor setup is required. The sensors used in for this work usually detect objects in 3D
coordinates, which can easily be transformed into a common coordinate system and object representation. In
order to maximize the accuracy within the constraints given by the sensors, a feature-level fusion is developed,
which is proposed in chapter 5.

4.6.1.2 Fusion frameworks

Regardless of the fusion concept, there are different frameworks to fuse the data from the sensors. This includes
probability-based frameworks, neural networks and others.

Typical mathematical frameworks are the Dempster-Shafer theory and the Bayesian theory, which are compared
with respect to sensor fusion by Challa and Koks (2004). The Bayesian theory is frequently used in sensor
fusion, since Bayesian filters, like the KF or the PHD filter, can be updated by multiple sensors. This provides
a probabilistic framework, that can provide optimal filter data. The Dempster-Shafer theory deals with "belief"
instead of probability, and includes the plausibility of the sources to the calculation. In a binary problem with
the states "zero" and "one", the framework presents the alternative of "unknown" (Challa and Koks 2004),
which therefore represents the current knowledge.

In recent years, neural networks have been increasingly used for multi object tracking and sensor fusion, as
shown by Park et al. (2021). NNs are in particular used for low-level fusion, where the networks can benefit
from an increased amount of raw data from different sensor domains. Nevertheless, they can still be used as
assisting roles in Bayesian fusion frameworks, where they are for example used for data association (Liu et al.
2019), or be completely responsible for the fusion.

4.6.2 Temporal and spatial alignment

In multi-sensor architectures, the data from all sensors needs to be aligned for a proper fusion. This requires
both spatial alignment and temporal synchronization, since the fusion algorithm needs knowledge about where
and when to combine information from different sensors.

4.6.2.1 Spatial alignment

The precise position and orientation of each sensor must be known, to fuse the data together. This allows
the algorithms to convert the measurements into a common vehicle coordinate system, where the fusion is
performed. The transformation process is shown in chapter 2.5. If the sensor’s positions are precisely known
and the sensors deliver exact object detections, the detections from the same object will be perfectly spatially
aligned after the transformation to the vehicle coordinate system. The position and orientation of the sensors
can be obtained by a calibration process.

In truck applications, the spatial alignment additionally includes the motion of the cabin, which is independent
of the chassis. Sensors like cameras are often mounted to the cabin, which introduces errors. A correction of
these errors requires a dynamic measurement of the cabin’s pose relative to the chassis. In order to overcome
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the need for additional sensors, current generations of cabin mounted cameras correct these errors by estimating
the pose based on visual cues in the camera image, like measuring the position and orientation of the visible
horizon. Another possibility is to use approaches where only small errors occur within an acceptable range,
like the one proposed in chapter 3.3.3.

4.6.2.2 Temporal alignment

In addition to a precise spatial alignment, the sensors also have to be aligned temporally, which means that they
have a precise common time frame. If this is not the case, sensor measurements from different times may be
fused.

In many applications, the perception sensors are asynchronous, which means that the detections do not arrive
at the same time. If a timestamp within a common time frame is available, they can still be fused by predicting
the state vectors to the next fusion time. Figure 4.6 shows a sensor to global approach, where the global object
states are continuously updated by the sensors measurements without delay. Here, the global state xk−1 at time
tki−1 is predicted to time tkj , where it is updated by zkj .

Figure 4.6: Scheme of direct update sensor fusion without delay. Multiple sensors update the states at different
time stamps. This idealized system does not include delays between measurement and fusion.

In real-time fusion systems, there are usually delays within the detection process. It takes time for the sensors
to process the data and transmit it to a fusion system. These delays are usually not predictable and vary over
time, as they frequently arise from processing latency resulting from object detection or tracking algorithms that
vary with varying amounts of surrounding objects or environmental scenes. Another reason for communication
delays is that they are caused by data transmission over networks with limited bandwidth or buffering.

The delays might lead to an unordered arrival of the measurements at the fusion module, as shown in Figure
4.7. Here, sensor i has a higher delay between the measurement and the availability to the fusion module than
sensor j. Therefore, the measurement zkj from sensor j arrives at the fusion module before the measurement
zki , even though with tki < tkj , the measurement from sensor i is observed earlier. Since the fusion module
has no knowledge about the duration of varying delays, the update with zkj is performed as soon as it arrives.
This makes zki an "out-of-sequence" measurement, since it should have been used prior to zkj . There are
several methods to deal with these "out-of-sequence" measurements. Out-of-sequence update equations called
retrodiction are derived for the KF, as shown by Bar-Shalom and Li (1995); Bar-Shalom (2002). However,
Kämpchen (2007) and Stüker (2003) state, it is difficult to implement exact out-of-sequence approaches. An-
other possibility is the buffering of arriving measurements, like it is done by Stüker (2003). This approach
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always fuses the measurement, if based on the expected measurement times, no other measurement will be sent
towards the fusion system. However, this can lead to delays in the fusion output. To obtain simultaneous time
stamps, the hardware architecture must be designed to trigger the measurement of all sensors simultaneously
and use communication channels with minimum delays, which typically results in higher effort and costs.

This thesis proposes an approach, that focuses on a fixed fusion cycle time to overcome potential delays, but
still buffers old measurements in case of "out-of-sequence" corrections in chapter 5.2, which is working for
both the KF and GM-PHD filter.

Figure 4.7: Scheme of sensor fusion with different sensor delays. Two sensors i and j with different delays
result in the out-of-sequence measurement zki .
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5 Proposed multi-sensor multi-object tracking
pipeline

This chapter proposes a modern and variable sensor fusion framework, that is capable of working with various
types of sensors and sensor data types. The main advantage of this type of architecture is the modular construc-
tion that easily allows changing the sensor setup and can work with different state estimators, like the Kalman
filter and the GM-PHD filter. In contrast to other works, this allows a direct comparison of the KF and GM-
PHD filter for real-world systems without limitations in terms of sensor setup and offers a unique possibility to
work with both types of filters in a single framework.

While the GM-PHD has been used for some automotive applications, there are usually limitations that prevent
the developments from replacing a current state-of-the-art KF-based systems. Therefore, multiple improve-
ments are developed for the practical implementation of the GM-PHD filter for feature-level fusion systems,
since previous works either focus on theoretical investigations, single-sensor systems or tailored the application
to a specific sensor setup.

The framework is described in the following sections, while the contributions and achievements of this system
summarized here:

• A completely modular sensor fusion system capable of dealing with various automotive sensor setups is
described.

• A fusion management system for temporal alignment to manage the update order and deal with delayed
messages is presented.

• A spatial matching algorithm based on turning functions for mapping all types of geometric object inputs
to OBBs to be able to work with sensors of different output types is presented. This brings a huge
advantage when working with different types of representations at the same time.

• The development of sensor-based parameter models that describe the tracking parameters, like the de-
tection probability and clutter density for each sensor with respect to multiple influences, like distance,
FoV and position in space supported by map data is proposed. In particular, the modeling of the detec-
tion probability allows an elegant way of using the GM-PHD for multi-sensor fusion with different FoVs
tailored to automotive sensors.

• A track confirmation strategy for the GM-PHD filter for stable and reliable track outputs is proposed,
which improves the standard filter description since it increases robustness and can deal with occlusion
to a certain extent.

• Multiple approaches for classification fusion, taking into account the different classification confidences
of different sensors, are developed.

• The developed framework proposes the integration of the classification fusion to the GM-PHD filter,
which is not covered by previous works, but necessary for ADAS applications.

5.1 Fusion framework overview

The proposed fusion framework is based on a Feature-Level fusion layout with a roughly similar structure to
that proposed by Kämpchen (2007), where each perception sensor detects objects, which are transmitted to the
fusion module. A central tracking algorithm then tracks all the surrounding objects on a global basis and is



74 5 Proposed multi-sensor multi-object tracking pipeline

supported by a fusion management system. Therefore, the general structure of the framework is able to work
with various types of filters, like the KF or a GM-PHD filter.

Figure 5.1 shows an overview of the fusion framework. As shown, N sensors individually detect and classify
the objects within their FoV. Here, a sensor is defined as a combination of hardware and software, that is able
to provide a list of detections for each time step. Chapter 2 and 3 provide an overview of these models. These
detections are then sent to the sensor temporal management system, which is responsible for the buffering
and temporal alignment of all measurements to ensure a correct fusion and explained in chapter 5.2. After
the temporal management, one of N sensor specific sensor-based parameter models is applied, which enriches
the measurement data with sensor specific parameters, like the measurement noise covariance, the classifica-
tion confidence or the FoV. The sensor-based parameter models are described in detail in chapter 5.5 and are
required by the MOT filter in the update step. This is in particular important for the GM-PHD filter implemen-
tation when the sensors use different FoVs. The MOT filter & track management part is responsible for the
actual tracking and fusion. To be versatile in geometric object representation, a unique measurement mapping
procedure is applied to match any geometric measurement to OBBs, which is described in chapter 5.4.1. Dif-
ferent Bayesian filters may be used within the framework for state and existence estimation. In chapter 6.6, the
filter performance of a KF and three RFS-based filters are compared using the KITTI dataset and point objects
to give an indication about the potential performance. Since the KF has the lowest runtime and is often used in
state-of-the art solutions and the GM-PHD filter has the best results, those two filters are implemented within
the proposed framework as described in sections 5.7 and 5.8. However, other filter implementations are also
possible. For classification estimation and fusion, multiple approaches are developed and tested, as described
in chapter 5.6. When state, existence and classification are estimated for each generated track, a track confir-
mation strategy as described in chapter 5.9 is developed to gain robustness for unstable tracks and against ID
changes. The confirmed and stable tracks can then be provided to an ADAS application.

Prerequisites for operation are the sensors’ calibration for spatial alignment and the sensors’ synchronization for
temporal alignment. All used sensors within this thesis are assumed to be perfectly calibrated, and the measure-
ments sent to the fusion module are already converted to vehicle coordinates. Additionally, each measurement
is assumed to have a synchronized global timestamp attached for temporal alignment in case of delays, as
described by chapter 5.2.
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Figure 5.1: Overview of the proposed fusion framework. The top section shows the individual detection and
classification of each sensor, while the blocks below show the tasks of fusion, which include esti-
mation of states, existence and classification with inputs from multiple sensors over time.
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5.2 Temporal management system

The main task of the fusion management system is the temporal management of all incoming detections. The
fusion framework should provide information about the fused tracks with a fixed output data rate, which is
independent of the incoming measurement data. This guarantees compliance with the cycle times of ADAS
applications regardless of missing or delayed sensor measurement data, which is possible in the used system.

All incoming measurement data is therefore first stored in a measurement buffer, where it is inserted in the
correct temporal position in the buffer. The buffer is therefore always sorted according to the time stamp of
the measurements. Within the buffer, the oldest measurement not yet used for an update of the MOT system
is marked as oldest non-used. If the incoming measurement is older than the last marked measurement due
to latency, the incoming measurement is marked instead as oldest non-used. At each time-step in which the
MOT system outputs the tracks, the prediction and update cycle is computed for each measurement received
one after the other, starting with the one marked as oldest non-used. All states are stored in a state buffer after
the update in order to be able to jump back at any time if delayed measurements arrive. The stored states and
measurements are dropped, if the time difference to the current time exceeds a threshold.

It is assumed that the storage of the measurements itself does not need significant time and that the total
additional runtime of the temporal management system can therefore be described by the number of steps to be
recalculated after a jump back. The runtime of one step of the approach is evaluated in chapter 6.7.4.

An example of this buffering principle is shown in Figure 5.2, where the content of the measurement buffer and
the state buffer is shown for multiple time stamps. The orange-marked measurement in the measurement buffer
represents the oldest non-used measurement. The necessary calculation steps for the respective time steps are
indicated by arrows. The fusion system outputs the tracks at fixed intervals at the times tk−2, tk−1 and tk.
Therefore, in part 1 happening at t = tk−2, the oldest non-used measurement is z1, so state x1 is updated by z1
and then predicted to tk−2 to output the tracks xtk−2

. In part 2, happening at t = tk−1, z2 is the oldest non-used
measurement, so two prediction and update steps need to be performed to predict the tracks at tk−1. In part 3,
with tk−1 < t < tk, the out of sequence measurement z4 appears, which is older than the newest prediction.
Therefore, z4 is now marked as oldest non-used measurement. In the following estimation step in part 4, the
calculation starts at the latest buffered state before z4, which is x3 to be able to predict the current tracks with
including all available information. In addition, old measurements and states are dropped, if they are older than
the maximum storage duration allows. If strongly delayed measurements older than this duration appear, they
are also dropped.

This proposed buffering scheme is very flexible, can deal with delays and always creates estimates based on the
best current knowledge without delay except the processing time of the filter itself. In addition, it is a flexible
approach that can be used in combination with various MOT filters, since it purely manages a buffer system and
triggers the prediction and update steps. The main drawback is the large required memory for storing all the
states and measurements. Due to the possible jumps to previous states, the processing time will also increase
in case of out-of-sequence measurements, since some measurements may be processed multiple times.

The buffering scheme is chosen, because this allows to stay independent of the used filter compared to solu-
tions, like the out-of-sequence retrodiction (Bar-Shalom 2002) and is easier to implement in practice. Such
retrodiction solutions may be not derived or possible for some types of MOT filters. In addition, it offers out-
puts with a constant cycle time without delays, that can appear for buffering solutions like the one proposed by
Stüker (2003). Overall, processing is achieved without any loss of accuracy in the long term, while fixed cycle
times are still guaranteed.
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Figure 5.2: Scheme of the temporal management, that is responsible for the correct buffering.

5.3 Track definition and motion model

An ADAS function usually requires information in the form of object tracks, i.e. objects tracked over time,
whose properties are estimated. These properties typically include at least the object’s current state, the ID, the
classification and some sort of confidence value. In this thesis, the i-th tracked object T (i)

k of time step k is
therefore represented by a tuple T (i)

k = (τ
(i)
k ,x

(i)
k , c

(i)
k , p

(i)
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The movement and therefore the states of all tracks are estimated using a kinematic state-space model. A
two-dimensional model is sufficient to describe the motion of ground objects, like traffic participants. The
state vector used to describe a track contains the two-dimensional position px and py, speed vx and vy and
acceleration ax and ay, as well as the OBB orientation ϕ and OBB dimensions, consisting of length l, width w
and height h. These states are visualized in Figure 5.3 while the state vector can be described as follows:

xk =
[
px py vx vy ax ay l w h ϕ

]T
. (5.1)

To propagate such a state through time, various kinematic models can be used. Schubert et al. (2008) show,
that advanced motion models that also simulate turn maneuvers can improve the tracking performance for road
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Figure 5.3: Visualization of ego vehicle and one tracked object, all states except h are visualized. Note, that ϕ
and Ψ do not necessarily need to align.

users, like vehicles. The best results were achieved by the Constant Turn Rate Acceleration (CTRA) model,
which assumes a constant acceleration and a constant turn rate. This was successfully applied to automotive
tracking and trajectory prediction applications (Bader 2019; Houenou et al. 2013; Xie et al. 2018).

However, this thesis uses the Constant Acceleration (CA) model, which assumes constant velocities or accel-
erations without further kinematic relationships, to be as versatile as possible. The CA can model motions
of all road users and is not optimized for a specific class. Another advantage is the initialization, where no
assumptions have to be made about an initial direction of movement. In addition, it is easily applicable to both
the KF and the GM-PHD filter for comparison. Following the time discrete state-space system description from
equation (4.5), it can be described by

fCA(xk,uk) =



px +∆tvx +
1
2∆t

2ax +∆px,u
py +∆tvy +

1
2∆t

2ay +∆py,u
vx +∆tax
vy +∆tay

ax
ay
l
w
h

ϕ+∆ϕu


, (5.2)
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with the ego vehicle’s movement induced deltas ∆px,u, ∆py,u and ∆ϕu. The time ∆t = tk+1−tk is the duration
between the two time-steps. The deltas are used to compensate the ego vehicle movement and estimate absolute
velocities and accelerations. The known ego vehicle speed vego and yaw-rate ωego are used:

∆px,u = −vego∆t+ sin(ωego∆t)ωego∆tpx + cos(ωego∆t)ωego∆tpy, (5.3)

∆px,u = − cos(ωego∆t)ωego∆tpx + sinωego∆tωego∆tpy, (5.4)

∆ϕu = −ωego∆t. (5.5)

Although it is shown that the usage of an Interacting Multiple Model (IMM) with multiple motion models can
improve the overall tracking performance (Genovese 2001), this approach is not used for the fusion framework,
in order to keep the complexity low and to be more flexible in the MOT filter choice.

5.4 Spatial measurement mapping using turning functions

The motion models used in the filters are suitable for tracking points in space. Together with the dimensions
and orientation of the state vector from equation (5.1), three-dimensional OBB objects can be tracked. In this
case, a direct update by a measurement vector is only possible if it also contains the position x and y, as well
as the dimensions l, w and h and orientation ϕ, like zk =

[
px py l w h ϕ

]T .

In real-world applications, it is not given, that the OBB dimensions are detected correctly, which induces errors
while tracking the center point. A common approach to solve this is using a reference point at the OBB outside
(e.g. an edge) instead of the center for the matching and point-tracking to increase robustness (Schueler et al.
2012; Kampker et al. 2018), since many environmental perception sensors naturally recognize parts of the outer
surface of objects. However, this approach is usually limited to OBBs.

In real-world applications, several sensors might not provide the measurements in this uniform data format.
While many deep-learning-based Lidar and camera detectors extract 3-dimensional OBBs from the raw data,
other sensors and detection algorithms create objects with different geometric representations. Radar sensors
often create point or L-shape objects, geometric Lidar algorithms may create OBBs with incorrect sizes and
centers, projecting camera-based algorithms may create point objects with estimated widths. An overview of
these possibilities is given on the left side in Figure 5.4, where multiple possible measurements for a car are
shown. In addition, other geometric representations, like ellipses (Granström et al. 2011), polylines (Kraemer
et al. 2018) or local occupancy grids (Quehl et al. 2019; Schütz et al. 2014) are possible as geometric represen-
tation. Since the existing literature typically uses only one of these representations, a new algorithm is proposed
here to fill the gap for multiple representations in a single system. The proposed algorithm is able to match
measurements from all the mentioned representations.

If the measurement data is not given as a 3D OBB, it needs to be spatially aligned to the track. The proposed
algorithm solves that by converting any geometric representation to a pseudo-measurement z̃k

(
xk|k−1, zk

)
with the data format of a 3D OBB that can be used for the filter update. This is shown on the right side of
Figure 5.4, where the predicted state vector xk|k−1 is aligned with a point-shape and a wrong sized OBB for
a proper update. This alignment creates the pseudo measurement z̃k with the data format of a 3D OBB. The
calculation process is described in the following sections.

5.4.1 Spatial measurement mapping and pseudo measurement generation

It is assumed that all sensors best detect parts of the outer contours of the ego vehicle facing side, as indicated
by the brown line in Figure 5.4 and represent that detection with a geometric description, like points, L-shapes,
or OBBs. The proposed algorithm, that generates a pseudo measurement from any of these shapes, works in
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Figure 5.4: Examples of faulty measurements based on real-world targets (left). Example for pseudo measure-
ment creation using point- and wrong sized OBB (right).
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2D BEV, while the OBB height is handled separately. Note, that the basic structure of this algorithm should
also be applicable to pseudo measurements of other geometric representations than OBBs as well.

The algorithm is illustrated in Figure 5.5 in multiple steps. If the measurement zk already has the form of a 3D
OBB, and it can be assumed that this OBB does represent the full scale object, z̃k = zk applies. Otherwise,
the proposed algorithm tries to transform the tracked OBB in a meaningful way to match the shape of the mea-
surement and thus creating the pseudo measurement. The well-known Iterative Closest Point (ICP) algorithm
and many of its variants also provide the possibility to register such shapes. However, it requires a good initial
estimate and is sensitive to outliers. Furthermore, it is usually used for dense point clouds, where the correct
relationships between points are found iteratively. In this application, the contours are sometimes sparse, there
may be outliers and non-optimal mappings, and the initial estimate may differ greatly from the result. The
process presented here can overcome these disadvantages while achieving a low runtime. However, in pure
Lidar-based applications, where the contour of objects is represented using accumulated point clouds, the ICP
can be used, as shown by Moosmann and Fraichard (2010).

The overview in Figure 5.5 shows the pseudo measurement generation for a measurement zk with geometric
representation of a polyline. In the first step shown in Figure 5.5, the Visible Convex Hull (VCH) of the contour
is calculated based on the given edge points of the polyline. The VCH is a subset of the convex hull V , which
is the smallest convex polygon enclosing a given set of points and visualized at the top of Figure 5.5. V can be
calculated using the Graham Scan algorithm (Graham 1972), as soon as more than one point is available. If the
geometry is not given as a set of points, a point set needs to be sampled from its boundary. This is, for example,
the case for parametric representations like ellipses. However, such a sampling is possible for almost every
two-dimensional geometric representation. The convex hull V is a closed polyline with m points pi, defined
by

V =
m−1⋃
i=1

−−−−→pipi+1

⋃−−−→pmp0. (5.6)

The VCH is the part of the convex hull that is on the visible side towards the sensor center pc, as shown in
Figure 5.5. Therefore, this subset can be formed using an angle condition between each convex hull segment−→
Vi and the line between the sensor center and segment point −−→pipc:

V CH =
m⋃
i=1

−→
Vi, ∀|∠

−→
Vi
−−→pipc| < π. (5.7)

After the VCH is created for the measurement, the angle is matched with the VCH of the track’s prediction
xk|k−1. Inspired by Veltkamp (2001) and Cohen and Guibas (1997), a "turning function" ΘV CH(s) is created
for both track and measurement, which is defined as the angle θ of the VCH over the arc distance s of the
VCH (see step 2 in Figure 5.5). For processing, this is discretized by a defined length ∆s. Now the best
match of the turning function ΘX of length SX and ΘZ of length SZ as a function of the offset β is searched,
where β is an offset over the arc distance s, as shown in step 3 of Figure 5.5. This matching allows to find the
corresponding points of both VCHs, as shown by the green arrows in step 3 of Figure 5.5. The best match is
found by numerically minimizing the matching error function e(β) with respect to β. This function consists
of the absolute integral between both functions in the overlapping area and an additional error term for non-
overlapping areas:

e(β) =
1

SC

∫ (β+SX)<SZ

β>0
|ΘZ(s)−ΘX(s+ β)| ds+ eout (5.8)

SC = max {(SX + β), SZ} −min {β, 0} (5.9)

eout =

∫ 0

β
e0 ds+

∫ β

SZ

e0 ds (5.10)
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Figure 5.5: Schematic illustration of all steps to generate OBB pseudo measurements from geometric formats.
Exemplary done with polyline geometry.
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The error term eout calculates an error value for regions that do not overlap to ensure that the track and the
measurement have a proper overlap. Therefore, the non-overlapping arc is integrated over the error value
e0 = π

2 . The minimum is found by scanning over e(β) in steps of ∆s. As a result, pairs of points on the VCH
of the track and the measurement can be created.

In some situations, several identical minima of β values can be found. This can happen, for example, if a
measurement consisting of a short line is matched, where the turning function therefore only consists of a
plateau. In these cases, the minimum with the lowest average distance of the generated point pairs is chosen for
further processing to ensure correct behavior.

The chosen pairs of points are represented by the point sets PT and PM . Based on the Singular Value De-
composition (SVD), the transformation matrix T of the track can be calculated, where cP is the centroid of the
point set P :

H = (PT − cPT
)(PM − cPM

)T (5.11)

[U ,S,V ] = SV D(H) (5.12)

R = V UT (5.13)

T =

[
R cPM

− cPT

0 1

]
(5.14)

If the measurement format is a single point, the point is matched with the closest point on the tracks VCH.
In this case, it is assumed that there is no rotation and only the translation between the two points is used.
Figure 5.6 shows some matching examples created by this algorithm divided into different types of geometric
representations. The pink OBBs are the track predictions, while the blue shapes are VCHs of measurements
of arbitrary geometric shapes. As shown, for each of the measurements, a reasonable pseudo measurement in
form of an OBB is found and visualized in red. Note, that the orthogonal L-shapes can also be created from
OBBs by using the two vehicle facing sides.

Some sensors are able to correctly detect the size of objects, while others only detect parts. If it can be assumed
that a measurement represents the correct size of an object, the size of the pseudo measurement is corrected at
last. In this thesis, the size is corrected depending on which sensor generates the measurement (see chapter 6.1).
If the size is corrected, the length, width and center are changed so that the resulting OBB contains all points
of the VCH of the measurement. This is shown by the red dotted OBBs in Figure 5.6, where the dimension
correction is shown for polylines and orthogonal L-shapes. It is intuitively logical that a dimension correction
does not make sense for certain geometric representations, such as points or simple lines. Overall, this approach
offers a very flexible framework for matching measurements of arbitrary data formats to a tracked OBB.



84 5 Proposed multi-sensor multi-object tracking pipeline

Figure 5.6: Mappings of proposed pseudo measurement generation approach using different input data formats.

5.5 Sensor-based tracking parameter models

The sensor-based tracking parameter models are a central element in the proposed sensor fusions framework
because they contain the sensor-specific information necessary to correctly fuse the information. The goal
of the proposed parameter models is to describe important MOT filter parameters for various sensors using
mathematical models. On the one hand, these models can improve tracking and, on the other, it is necessary
to enable fusion using the GM-PHD filter in the presented framework in the first place, as described in chapter
5.5.1.

Properties like the measurement noise or the classification accuracy, as well as physical limitations like the FoV
or the maximum detection range, differ from sensor to sensor. For example, cameras typically achieve higher
classification accuracies but often have lower FoVs and detection ranges compared to spinning Lidar sensors.
Therefore, the relevant tracking parameters need to be modeled separately for each sensor to enable precise
fusion. In particular, three parameters vary between different sensors sp:

• Detection probability pspD,k(x) of track x.

• Clutter density κspk (z) of measurement z.

• Measurement covariance matrix R
sp
k .

Both the detection probability and clutter density have a strong influence on the appearing and disappearing of
tracks using the GM-PHD filter. In addition, the detection probability has a considerable influence in the esti-
mation of the existence probability using the methods proposed in chapter 4.3.2.2. Similarly, the measurement
covariance matrix is a central influence on the state and covariance estimation.

As illustrated by Figure 5.7, all of these parameters are influenced by multiple external sources. The sensor
hardware creates best-case boundary conditions for these parameters. A sensor can, for example, not work
outside its FoV and has a maximum detection distance. The parameters of most sensors, however, dynamically
change depending on environmental influences, like the weather or daylight. Cameras, for example, work worse
at night and Lidar sensors can be disturbed by heavy rain.
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The operational domain can also influence the sensor performance and thus its parameters. Radar sensors ex-
perience more reflections and therefore have a higher potential for clutter detection in dense or closed environ-
ments like cities and tunnels. Most sensors provide higher accuracies in "clean" environments, like highways,
since there are fewer objects besides cars that can be misinterpreted.

The measurement covariance matrix R
sp
k is assumed to be constant and experimentally set for each sensor

separately in this thesis. Due to the high influence that the clutter density has on the GM-PHD filter and the
detection probability on both GM-PHD and existence probability estimation, mathematical models are devel-
oped for these two parameters, which include the general sensor properties and influences from the operational
domain. In the literature, models for the detection probability have only rarely been investigated and not at
all for the clutter density, especially for automotive applications. This thesis therefore develops mathematical
models for both parameter in the following chapters and investigates the potential and the influence, especially
for multi-sensor applications.

The environmental influences are not included in this thesis due to a lack of data and the complexity of the
models across different sensor domains. However, Vargas et al. (2021) show an overview of weather influences
on various sensor domains, while Pinchon et al. (2019) show a comparison for passive visual sensors.

Figure 5.7: Examples of influences on the measurement model and data sources for information on influences.
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5.5.1 Detection probability

The detection probability model is an important part for a proper sensor fusion in the proposed framework, since
it strongly influences the appearance and disappearance, as well as the estimation of the existence probability
of each track. When using a KF, the existence probability of each track can be estimated using the approach
from chapter 4.3.2.2. Using this approach, if a track has a high detection probability, but is not detected by
the updating sensor, the estimated existence probability decreases. In turn, if a track has a very low detection
probability and is not detected, the existence probability does not change a lot. The weights of the GM-PHD
filter are affected in a similar way.

Figure 5.8: Example of two sensors s1 and s2 covering different FoVs and two tracked objects.

When using multiple sensors, the detection probability of each track is different for each sensor. This becomes
obvious when looking at Figure 5.8, where the FoVs of two sensors s1 and s2 are visualized and the opacity
represents their ability to detect objects, which is decreasing with higher distances. The detection probabilities
of the tracked objects x1 and x2 vary for both sensors depending on the position. Sensor 1 is unable to detect
track 1 since it is outside the FoV, which means the detection probability ps1D,k(x1) = 0. Similarly, track 2 is
at the edge of the range of sensor 1, which means ps1D,k(x2) will be low, while the detection probabilities of
both tracks are higher for sensor 2. If the detection probability would be modeled constant, as it is usually done
for single-sensor systems, the existence probabilities and weights of tracks that are not in the shared FoV of all
sensors, would be vastly underestimated and the tracking would not work properly.

This is shown by an experiment in Figure 5.9a, in which an overtaking vehicle drives through several sensor
FoVs. However, without consideration of the FoV in the detection probability model, stable tracking is only
achieved in the overlapping FoV of all sensors (marked with orange circle). Since the detection capabilities
of the vehicle perception sensors typically are different with respect to the distance, a similar effect occurs at
higher distances, where some sensors are not anymore capable of detecting an object while others still can.
Figure 5.9b shows an example track, whose trajectory is moving away from the ego vehicle. At a certain point
it is outside the capabilities of all sensors except the LRR. If the detection probability is modeled with respect
to the distance, the tracking is still possible at higher distances. If constant values are used, the track is lost
when it is not anymore detected by the most sensors (marked with orange circle).

To solve the problems of partially overlapping FoVs, Vasic and Martinoli (2015), Granström et al. (2014)
and Lindenmaier et al. (2022) model the detection probability according to FoV to solve tracking issues in
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the boundary areas. Vasic and Martinoli (2015) and Granström et al. (2014) include the sensor range to this
model as well, without modeling the distance dependent changes within the maximum sensor range. Chen
et al. (2018) and Hendeby and Karlsson (2014) propose distance dependent models for sonar applications that
are not directly applicable to automotive sensors and therefore highlight the need to provide such models in
automotive applications. In addition to the development of such models, this thesis provides an evaluation
based on real-world datasets to show the influence on a large database.

The overview in Figure 5.7 indicates that, in addition to the FoV and distance, other aspects may also influence
the probability of detection and thus on the tracking performance. The following list shows the influences
included in the proposed model, which is explained in detail in the next section:

• Track distance.

• Track classification.

• Operation domain.

• On/Off-road.

Vasic and Martinoli (2015), Granström et al. (2014) and Törő et al. (2021) furthermore show methods for
modeling the detection probability depending on occlusion. However, occlusion is handled by the confirmation
strategy in chapter 5.9 in this thesis.

(a) Overtaking car moving in direction of the orange arrow
crossing multiple sensor FoVs. A stable tracking with-
out FoV model is reached at the overlap of all sensor
FoVs.

(b) Car moving away in the direction of the orange arrow
at higher distance. The track is lost at orange circle
without the distance model for the detection probabil-
ity.

Figure 5.9: Example situations showing benefits of sensor-based parameter models.

5.5.1.1 Detection probability model

The detection probability model is a mathematical function that describes the detection probability of a track
as precisely as possible depending on the sensor FoV, the distance, the class, the operation domain and if the
track is on or off the road. Note, that due to a lack of measurement data, other environmental influences, like
the weather, are not modeled in this thesis but still mentioned for future implementation. While environmental
influences and the operational domain may change over time, the sensor properties remain constant. Therefore,
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a mathematical model p(sp)Dm,k(xk) for the detection probability of track xk is defined based on experimental
measurements for each sensor sp. Since each sensor has different detection capabilities depending on the
track’s class, a detection probability model p(sp,Cj)

Dm,k (xk) is created for each class Cj separately. Based on the
class probabilities of a track, the overall detection probability can be estimated.

Next to the FoV, which obviously sets limits to the detection probability, the position is a key parameter. Due to
the decreasing resolution at higher distances, the detection probability will decrease with distance for all types
of used perception sensors. In addition, some sensors, like automotive radars, can have direction-depending
sensitivities and maximum detection ranges which can result in more complex detection probability models.
To keep it generally applicable to different types of sensors, the proposed model is based on the distance and a
radial FoV only.

In addition to the sensor properties, the operational domain is taken into account. Using the GNSS position
and OpenStreetMap, the type of street closest to the ego vehicle can be used as an indicator of the operational
domain. Each operational domain is evaluated separately and compared to the standard model. A reasonable
fit is achieved by applying an offset for each operational domain to the standard model. The street types
„highway_tertiary“ and the combination of „highway_primary“ and „highway_motorway_primary“ are used
in this thesis, but others may be used in addition. Other street types are not considered, since too little data
for analysis is available. For these street types, the detection probability is not influenced. According to the
measurements, the Lidar-based detections are less influenced by different operation domains compared to the
camera-based detections.

While roads are assumed to be "clean" environments mainly used by road users, areas next to the road might
be more complex, with buildings, constructions, fauna and other types of unknown objects. Therefore, the
detection capabilities might vary between tracks on the road and the ones off the road, that might be parking
cars or pedestrians on sidewalks. Based on the road width provided by OpenStreetMap and the accurate GNSS
position, each track can be evaluated to be on the road or off the road. An offset is now used to distinguish
between the detection probability of tracks on and off the road.

Overall, the formula for the detection probability model p(sp)Dm,k(xk) is as follows:

p
(sp)
Dm,k(xk) =

∑
j∈C

p
(sp,Cj)
Dm,k (xk)pxk

(Cj), (5.15)

where pxk
(Cj) is the track’s probability to be of class j. Each of the classes models is modeled following:

p
(sp,Cj)
Dm,k (xk) = (p

(sp,Cj)
dist (xk) + p

(sp,Cj)
road (xk) + p

(sp,Cj)
OD (xk))p

(sp,Cj)
FoV (xk),

p
(sp,Cj)
dist (xk) = k

(sp,Cj)
2 d(xk)

2 + k
(sp,Cj)
1 d(xk) + k

(sp,Cj)
0 ,

p
(sp,Cj)
road (xk) =

{
p
(sp,Cj)
OnRoad, if xk on road

p
(sp,Cj)
OffRoad, if xk on road

,

p
(sp,Cj)
OD (xk) = operational domain,

p
(sp,Cj)
FoV (xk) =

{
0, xk out FoV
1, xk in FoV

.

(5.16)

In this description, p(sp,Cj)
dist (xk) is the second order polynomial describing the distance dependency with

d(xk) =
√
p2x + p2y being the distance of the track’s OBB center coordinates px and py. p(sp,Cj)

road (xk) is the

offset for the track being on or off the road, p(sp,Cj)
OD (xk) the offset for the operational domain and p(sp,Cj)

FoV (xk)
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Table 5.1: Operational domain parameters for detection probability of class "Car".
Street type Offset Camera Offset Lidar

highway_primary & highway_motorway_primary 0.15 0.006
highway_secondary 0.13 0.008
highway_tertiary -0.17 -0.069
highway_unclassified & highway_residential -0.04 0.038
Others 0 0

setting the limit for the sensors FoV. This mathematical model provides a flexible framework to include mul-
tiple external influences and thus increase the accuracy of the detection probability. Other influences, such as
the weather or the daylight situation, can be added by additive variables in the future.

To verify this model and calculate the parameter values, the detection probabilities are experimentally deter-
mined for the class "Car". Using the Point-RCNN (Shi et al. 2019) detector for Lidar and Yolo-Mono-3D (Liu
et al. 2021) for monocular camera, the detection probability is calculated using the training data from the KITTI
tracking dataset: For each time-step, each of the ground truth tracks is compared with the respective measure-
ments. If a measurement with an overlapping OBB is found for a ground truth track, it is counted as detected.
Now, the percentage of detected tracks within the sensor FoV is calculated for distance sections of 10 m to
obtain distance dependent detection probabilities.

As shown on top of Figure 5.10, the second order polynomial used by the model can accurately represent the
distance dependent detection probability for both camera and Lidar. The BEV result of this polynomial model
in combination with the sensor’s FoV is shown at the bottom of Figure 5.10 and compared to the measured
result.

In Figure 5.11, the distance offset models for the different operation domains are visualized on top, together
with the measurements for the camera. Below, the offset model used to distinguish between tracks on and
off the road is visualized. The plots show that an offset model can adequately represent the influence of both
operation domain and if the track is on- or off-road. The offsets for the operational domain are summarized in
Table 5.1.

Note, that the measurements show a drop in detection probability for very close ranges. The main reason for
this seems to be the FoV, as many nearby objects are truncated in the camera image and partially occluded in
the Lidar image. Therefore, the first distance chapter of 0-10 m is not taken into account to fit the model.
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Figure 5.10: Detection probability distance model for class "Car". On top, detection probability models of
camera and Lidar with respect to the distance is shown, on bottom the detection probability mea-
surements and model are shown in BEV.
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Figure 5.11: Models of detection probability for camera detector in different operational domains and tracks
on/off the road for class "Car".

5.5.1.2 Detection probability implementation

When using a traditional KF approach, the application of the detection probability p(sp)Dm,k(xk) of track xk is
straightforward, since each track is handled separately. Therefore, the detection probability pD,k in equation
(4.18) of chapter 4.3.2.2 changes to pD,k = p

(sp)
Dm,k(xk).

Since the GM-PHD filter in contrast propagates the PHD of an RFS, this cannot directly be applied. The
GM-PHD filter uses the detection probability pD(x) in the update step, but it is assumed to be constant with
pD(x) = pD in the standard implementation (Vo and Ma 2006). Although there is a solution with the de-
tection probability modeled as a mixture pDe,k(x), as shown in chapter 4.4.4.4, this will greatly increase the
computational requirements due to the high number of generated Gaussian components.

Since the literature (Lindenmaier et al. 2022; Granström et al. 2014; Vasic and Martinoli 2015; Törő et al.
2021; Chen et al. 2018; Hendeby and Karlsson 2014) and the experiments of chapter 6.7 suggest, that a non-
constant model still works in real-world systems, a more simple solution is desired. Hendeby and Karlsson
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Figure 5.12: Comparison of detection probability model pspDm,k(xk) (left) and the mixture approximation
pDe,k(x) using 7 Gaussian components (right).

(2014) in addition argue that such a simplification can be described valid, if the detection probability varies
slowly compared to the Gaussian components of the intensity function, which is the case for all regions except
the FoV edges in the model. Therefore, the detection probability is modeled as

pD,k = p
(sp)
Dm,k(m

(j)
k|k−1) (5.17)

in this thesis.

In addition, a comparison to the mixture implementation of chapter 4.4.4.4 is provided. The model parameters
are created based on the detection probability model pspDm,k(xk) from the previous section, where the difference
between pDe(x) and pspDm,k(xk) is minimized using numerical optimization. For this approximation, the offset
values for operational domain and on/off-road are set to zero. Figure 5.12 shows the comparison of both the
original detection probability and derived mixture model with 7 Gaussian components. With an increased
number of components, the accuracy increases as well. However, the computational complexity of the update
step also increases. Using this second implementation, an experimental comparison of the performance and
computational requirements of both detection probability implementations are provided in chapter 6.7.4, which
proves the efficiency of the simplified version.

5.5.2 Clutter density

Similar to the detection probability, the clutter density also has an influence on the intensity function. Although
the influence is less critical, as it only comes into play when measurements are available and not when there
are no detections (for example outside the FoV), it can still influence the performance of the tracker. As there
is no literature investigating the influence of the clutter density for automotive multi-sensor systems, this thesis
fills the gap by proposing a mathematical model and evaluating it based on real-world datasets.

The clutter density describes the number of expected clutter objects per area. In contrast to the detection
probability, the GM-PHD standard filter equations do not have the assumption of a static value. Therefore, a
mathematical model for the clutter density can be used directly.

The clutter density can be modeled similar to the detection probability. Therefore, the mathematical model for
κ
(sp)
k (zk) is experimentally defined based on the same influences. For each class Cj a separate model exists,

and the overall clutter density is composed using a weighted sum of the individual class functions.
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The distance dependency is experimentally determined using the Point-RCNN (Shi et al. 2019) detector for
Lidar and Yolo-Mono-3D (Liu et al. 2021) for monocular camera detection on the training data of the KITTI
tracking dataset. The detections are compared to the GT objects for each time-step. If no overlapping GT object
is found for a detection, it is counted as clutter. Figure 5.13 shows the measured clutter density of the class
"Car" for both Lidar and camera. As shown, the clutter density has a peak value for medium distances and
appears to be lower for both near and far distances. This behavior can be modeled using a sinusoidal function,
which leads to the approximations shown in Figure 5.13.

Figure 5.13: Clutter density distance model for class "Car". On top, the models of camera and Lidar with
respect to the distance are shown, on bottom the Lidar measurement and model are shown in BEV.

The influences of the operation domain and objects on/off the road are modeled, too. Figure 5.14 shows the
results of the measurements for camera detections of the class "Car". In contrast to the detection probability, the
differences between operational domains and On/Off the road cannot be modeled by a constant offset. Instead,
a constant factor shows a more accurate representation, as shown by the results in Figure 5.14. The factors of
the operation domain are also shown in Table 5.2. The operational domain’s influence on the clutter density
appears to be higher for the camera, but still measurable for the Lidar-based detections.
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Figure 5.13 shows that the mathematical model can reproduce the clutter density over the distance well. How-
ever, Figure 5.14 clearly shows that the modeling for individual operational domains introduces larger devia-
tions. The clutter density peak value and the medium distance change with differen operational domains, while
only the peak value can be modeled by the factor of the model. On-road and on highways, the peak has a larger
mean distance than off-road and on tertiary roads. However, in order not to increase the complexity of the
mathematical model too much, only the factor is used.

Figure 5.14: Models of clutter density for camera detector in different operational domains and tracks on/off
the road for class "Car".
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Table 5.2: Operational domain parameters for clutter density of class "Car".
Street type Factor Camera Factor Lidar

highway_primary & highway_motorway_primary 0.81 0.93
highway_secondary 0.71 0.59
highway_tertiary 1.61 1.06
highway_unclassified & highway_residential 1.45 1.18
Others 0 0

The overall mathematical description for the clutter density κ(sp)k (zk) of measurement zk is described by

κ
(sp)
k (zk) =

∑
j∈C

κ
(sp,Cj)
k (zk)pzk(Cj), (5.18)

where pzk(Cj) is the measurement’s probability to be of class j and κ(sp,Cj)
k (zk) is the clutter density of class

j, which is described by

κ
(sp,Cj)
k (zk) = κ

(sp,Cj)
dist (zk)κ

(sp,Cj)
road (zk) + κ

(sp,Cj)
OD (zk),

κ
(sp,Cj)
dist (zk) = k0 sin(k1d(zk) + k2) + k0,

κ
(sp,Cj)
road (zk) =

{
κ
(sp,Cj)
OnRoad, if zk on road

κ
(sp,Cj)
OffRoad, if zk on road,

p
(sp,Cj)
OD (zk) = operational domain.

(5.19)

Here, κ(sp,Cj)
dist (zk) is the distance-depending sinusoidal model, κ(sp,Cj)

road (zk) the factor describing the depen-

dency of the measurement being on or off the road and p
(sp,Cj)
OD (zk) the factor for the current operational

domain. Overall, this model is a novel approach to improve the tracking performance of GM-PHD filters by
taking into account the non-constant clutter density of real-world sensors.

5.6 Classification fusion

Perception sensors typically estimate the class of all detected objects. This information can be used to con-
tinuously update and correct the class of tracked objects. The fusion of the classification must be done in
a meaningful way because ADAS functions rely on the correct class of the objects. Depending on the sen-
sor, the quality of the classification can vary vastly: While cameras are typically excellent at estimating the
correct class, radar sensors are struggling. Therefore, sensors with high confidence should be weighted more
during the fusion. To achieve that, a classification confidence c(sp)conf ∈ [0, 1] is assigned to each sensor sp,
representing the trust in the classification result. The classification fusion is done in the update step of a MOT
filter when a sensor delivers new measurements. For each of the measurement zj , a class probability vector
c
(zj)
k =

[
p(zj |C1,k) . . . p(zj |Cn,k)

]
is provided by the sensor or created based on the classification and the

confidence. This is used to estimate the class probability vector c(i)k =
[
p(C1,k|Zk) . . . p(Cn,k|Zk)

]
of each

track Ti at time-step k. Note, that depending on the approach, this class probability vector needs to be evaluated
as pseudo-probability vector, since it does not represent the true probabilities, but rather a score.

In this section, four approaches to fuse the classification are proposed, while the results are compared in
chapter 6. This thesis therefore provides an overview of the suitability of various methods for the classifi-
cation fusion within a framework in which the GM-PHD filter is used. Since the classification is typically
not considered in this context in the literature, this comparison can provide guidance to choose an appropri-
ate approach. Most of the proposed approaches use the confidence values. In this thesis, the set of classes
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C =
{
CBg, CCar, CPed, CCyc

}
with Background, Car, Pedestrian and Cyclist is used, while in general any

class set could be used.

The max-confidence classification fusion is a simple fusion scheme, where the statement with the cur-
rently highest confidence is used as the result. For each track, the current maximum confidence cconf,max,k is
stored. When the track is updated, first the current maximum track confidence is updated using a damping ratio
cconf,d. Next, the confidence of the updating sensor c(sp)conf is compared with the current maximum confidence
and if it exceeds this value, the track is set to the updates class and confidence:

cconf,max,k = cconf,max,k−1 ∗ cconf,d, (5.20)

cconf,max,k =

{
c
(sp)
conf , cconf,max,k < c

(sp)
conf

cconf,max,k, cconf,max,k >= c
(sp)
conf

, (5.21)

c
(i)
k =

{
c
(zj)
k , cconf,max,k < c

(sp)
conf

c
(i)
k−1, cconf,max,k >= c

(sp)
conf

. (5.22)

The advantage of this approach is an easy implementation, as well as the simple parameter tuning, since only the
sensor confidences and the damping ratio can be adjusted. When having measurements from multiple sensors,
it is likely that the low confidence ones will not have an impact at all. One disadvantage is, that the approach
does not use any filtering over time, so errors of the highest confidence sensor will directly transform to errors
in the track’s class.

The voting scheme for classification fusion is a simple, additive solution for classification estimation. The
approach proposed in this thesis is inspired by neural network ensemble approaches, that use multiple classifiers
adding up for the final result, as shown by Brock et al. (2016). Here, the probabilities of multiple classifiers are
summed up and normalized afterward to calculate overall class probabilities. For each update, the confidence
weighted class probabilities are added to the sum vector c̃(i)k , which is used to calculate the result:

c̃
(i)
k = c̃

(i)
k−1 + c

(sp)
confc

(zj)
k , (5.23)

c
(i)
k =

c̃
(i)
k

∥c̃(i)k ∥1
. (5.24)

The advantage of the approach is the simple calculation scheme with a low number of parameters, while still
doing a filtering over time. A disadvantage is that if the class is changed (e.g. triggered by a wrong association)
the error can remain for a long time.

The Bayesian classification fusion that was proposed in chapter 4.5.1 for single sensor usage, can also
be used for the fusion. One major drawback of this approach is, that the sensor’s confidence value c(sp)conf is
not used in its standard form. As a consequence, sensors with low and high confidence values can have the
same impact on the estimation and thus lead to wrong results. To overcome this issue, this thesis proposes an
implementation that generates a pseudo probabilities vector ĉ(zj)k for each measurement zj using the sensor’s
confidence value:

ĉ
(zj)
k = c

(zj)
k c

(sp)
conf + 1n

1− c
(sp)
conf

|C|
. (5.25)

Here, 1n is a vector consisting of n elements, set to 1. With this formulation, the measurement’s class probabil-
ities are weighted by the classification confidence c(sp)conf and added to an equal remaining probability weighted
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by 1 − c
(sp)
conf . Therefore, the class probabilities converge in the case of small confidences to equal pseudo

probabilities of 1
|C| with |C| being the number of classes.

The four-class problem of this thesis uses the following transition model:

Pt =


0.91 0.05 0.02 0.02
0.05 0.91 0.02 0.02
0.02 0.02 0.91 0.05
0.02 0.02 0.05 0.91

 (5.26)

The advantage of the Bayesian fusion is, that the results are very close to true probabilities, calculated in a
recursive way. In addition, the transition model can represent more complex interrelationships compared to the
other approaches.

The Dempster-Shafer classification fusion uses the DST classification tracking scheme proposed in chap-
ter 4.5.2 to combine the classification provided by multiple sensors with different confidences. The DST uses a
power set 2C , which results in 2|C| = 16 hypotheses for the four classes used in this thesis. As shown by Aeber-
hard (2017) and the example shown by Koks and Challa (2003), the power set can be reduced to "useful sets"
in order to reduce the computational requirements. Here, the following power set of 8 hypotheses is used, that
consists of the four basic hypotheses, two hypotheses for VRU and non-VRU objects, one for non-background
objects and the "unknown" hypothesis including all classes:

pC = {CBg, CCar, CPed, CCyc, CV RU , CV RU , CBg, Call}, (5.27)

CV RU = {CBg, CCar}, (5.28)

CV RU = {CPed, CCyc} (5.29)

CBg = {CCar, CPed, CCyc}, (5.30)

Call = {CBg, CCar, CPed, CCyc}. (5.31)

(5.32)

To perform the fusion, the massesm(sp)
k,zj

of all defined hypotheses need to be constructed based on the measure-
ment’s classification probabilities. (Aeberhard 2017) shows a method, which incorporates several assumptions
and system knowledge for a proper fusion. This thesis, however, proposes a more general approach, where
the masses purely defined by the sensor’s classification probabilities and the classification confidence. This
requires less system knowledge and allows universal application to different setups. A basic mass b(sp)k,zj

(A)

of hypothesis A is defined by a multiplication of sensor confidence c(sp)conf and class probability p(Ca), if the

hypothesis only includes class Ca. Otherwise, it is defined by a sum of (1− c
(sp)
conf ) times the class probability

for all hypotheses containing Ca. Then, the final mass m(sp)
k,zj

(A) is calculated by a normalization of the basic
weight to ensure the sum of the weights is equal to 1:

b
(sp)
k,zj

(A) =

{
p(Ca)c

(sp)
conf , if A = {Ca}∑

Ca∩A=Ca
p(Ca)(1− c

(sp)
conf ), if A ̸= {Ca}

, (5.33)

m
(sp)
k,zj

(A) =
b
(sp)
k,zj

(A)∑
B⊆PC b

(sp)
k,zj

(B)
. (5.34)
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To propagate the masses through time, equation (4.57) is used, while equation (4.58) is used to generate pseudo
probabilities as output to ADAS applications. The advantage of the Dempster-Shafer fusion is the explicit
modeling of combinations and unknown hypotheses.

Overall, the Dempster-Shafer fusion is the most complex approach, while the voting scheme is the simplest op-
tion with the lowest amount of tuneable parameters. The Dempster-Shafer fusion has more degrees of freedom
in terms of parameter tuning and has the highest computational requirements, but also a high potential due to
the modeling of multiple and unknown hypotheses. The four presented approaches are compared in terms of
accuracy, which is shown in chapter 6.

5.7 GM-PHD filter implementation

Within the proposed fusion framework, the GM-PHD filter needs to keep track of the classification and the
unique ID of the tracks in addition to propagating the PHD over time. Therefore, the implementation of the
GM-PHD filter follows the basic structure of the proposals from Panta et al. (2006) and Clark et al. (2006),
who use tags to determine the unique object ID. However, some adaptations are made to optimize runtime, for
better state estimation, and the possibility of classification propagation. The following paragraphs summarize
the steps of the filter based on the work from Clark et al. (2006) and show the innovations and differences.

5.7.1 Tags and classification extensions

The approach used in this thesis adopts the method of using tags to keep preserving the track’s unique IDs over
time. As described by Clark et al. (2006), an unique identifier, or tag, τk|k at time step k is assigned to each
Gaussian component forming a set

τk|k =
{
τ
(1)
k|k , . . . , τ

(Jk|k)

k|k

}
, (5.35)

where Jk|k is the number of Gaussian components at time step k. For a consecutive numbering of the tags,
the variable τmax is introduced, which contains the tag with the current highest number. In addition to the
implementation from Clark et al. (2006), this thesis proposes an extension for the classification. A classification
distribution c

(i)
k|k is assigned to each Gaussian component that makes up the set:

Ck|k =
{

c
(1)
k|k, . . . , c

(Jk|k)

k|k

}
(5.36)

with
c
(j)
k|k =

[
p(C1) . . . p(Cn)

]
. (5.37)

This classification set allows the tracking of the classes for each component over time.

5.7.2 Step 0: Initialization

In the implementation used here, the initial number of Gaussian components is J0 = 0 and the tags and classi-
fication sets being empty with τ0 = ∅ and C0 = ∅. The steps one to five are repeated after the initialization.
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5.7.3 Step 1: Prediction

The prediction step consists of three parts and is shown in equation (4.35). Since the size of the prediction time-
steps can be different, the process noise matrix Qk and the dynamics matrix Ak are calculated as described
in chapter 4.6.2. Different motion models are applicable to calculate Ak, but this implementation uses the
constant acceleration model shown in chapter 5.3. In addition, the survival probability pS,k is calculated for
each time-step using a base survival probability pS,base and the time difference from the last time step ∆t as
follows:

pS,k = p∆t
S,base. (5.38)

The proposed implementation does not model the spawn process of equation (4.35), which ignores some sce-
narios for simplicity and sets vβ,k|k−1(x) = 0. For the birth model γk in equation (4.35), a new adaptive
approach is presented here. Since new objects can appear anywhere in the monitored space, but the computa-
tional effort should be kept low and thus no high number of random Gaussian components should be created,
adaptive birth models depending on the measurements are considered. Houssineau and Laneuville (2010) and
Ristic (2013) propose adaptive birth processes, which create new Gaussian components based on all the mea-
surements. However, this inevitably creates an overlap of birth components with already tracked components
in many areas. These overlaps do not truly represent the birth of new targets. When trying to create an adaptive
birth strategy, the best case would be to only add Gaussian components for measurements in areas where no
components are present at the current timestamp. This reduces the influence of the birth targets on the update
step while reducing the number of Gaussians and thus reducing the computational requirements.

Lindenmaier et al. (2022) show an approach using the sum of the updated component weights of the measure-
ments in the previous time-step. This creates high weight birth components for measurements that have created
a low sum of update weights in the previous time-step and thus can be assumed to be non-tracked targets. The
proposed approach of this thesis follows a similar idea in using the update weight sum, but instead adds compo-
nents with constant birth weights rather than modeling them depending on the weight sum. By using constant
birth weights, an increased robustness against ghost objects is desired, since no high weight components can be
directly created by the model.

In the presented approach, a birth measurement set Zγ,k−1 is generated in the previous update step k−1, which
includes all measurements with a sum of generated weights w(j)

sum,k−1 below a threshold twγ :

Zγ,k−1 =
{
z
(j)
γ,k−1 ∈ Zk−1 ∀w

(j)
sum,k−1 < twγ

}
. (5.39)

The threshold is found experimentally and set to twγ = 0.01. For the sum of weights, the measurement weights

q
(l)
k−1(z) from equation (4.42) are used combined with the predicted weights wk−1|k−2 from the previous time

step:

w
(j)
sum,k−1 =

Jk−1|k−2∑
l=1

w
(l)
k−1|k−2q

(l)
k−1(z). (5.40)

The sum of weights w(j)
sum,k−1 indicates the influence of the j-th measurement on the PHD update. If the influ-

ence is very low, it is assumed that no Gaussian component of the intensity function is in close range to the mea-
surement. Therefore, Zγ,k−1 is a subset of the measurement set Zk−1, that only contains measurements in areas
where no Gaussian components are present in the intensity function. Next, a gaussian mixture γ̂k−1 is generated

based on these measurements with the mean m̂
(j)
γ,k−1 =

[
p
(j)
x p

(j)
y 0 0 0 0 l(j) w(j) h(j) ϕ(j)

]T
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based on the measurement z(j)
γ,k−1 =

[
px py l w h ϕ

]T . The covariance P̂
(j)
γ,k−1 = P0 is defined by the

initial covariance P0 and ŵ(j)
γ,k−1 = w0 by the initial weight w0. Overall, the mixture is defined by

γ̂k−1 =

Ĵγ,k−1∑
i=1

ŵ
(i)
γ,k−1N (x; m̂

(i)
γ,k−1, P̂

(i)
γ,k−1), (5.41)

which is then predicted to time step k using the GM-PHD prediction to form γk.

For each of the birth Gaussian components, a new birth tag is added and the set of birth tags at the current time
step, as proposed by Clark et al. (2006). Each tag is initialized with a new unique ID based on τmax, which is
increased by Jγk afterward:

τk|k−1 = τk−1 ∪
{
τ
(1)
γk , . . . , τ

(Jγk )
γk

}
, (5.42)

τ (j)γk
= τmax + j. (5.43)

(5.44)

Similarly, a classification distribution is added for each Gaussian component. The initial classification is cal-
culated by updating an uniform classification distribution cU with the measurement classification probability

vector c
(z

(j)
γ,k−1)

k−1 using the classification fusion from chapter 5.6. This fusion is described as propagation func-
tion fc(c, c(z)) here, which represents either of the four presented classification fusion approaches:

Ck|k−1 = Ck−1 ∪
{

c
(1)
k|k−1, . . . , c

(Jγk )

k|k−1

}
, (5.45)

c
(j)
k|k−1 = fc

(
cU , c

(z
(j)
γ,k−1)

k−1

)
. (5.46)

5.7.4 Step 2: Update

The update step overall follows the procedure from Clark et al. (2006), but includes some adaptations for
improved tracking results for ADAS applications.

This thesis proposes a gating process similar to the application for KF-based tracking shown in chapter 4.3.2,
to only update nearby Gaussian components and therefore reducing the computational complexity. In typical
GM-PHD implementations, many Gaussian components are added during the update step due to the update
of each prior Gaussian component with each measurement Gaussian component, where many of these com-
ponents have very low weights and would be pruned in the next step anyway. To reduce this number of low
weighted components, a gating process based on the minimum of the squared Mahalanobis distanceDM,pos and
the Euclidean distance DEuclid,pos is proposed. Since gating in ADAS applications can be interpreted spatially,
the gating is based solely on the position in X and Y coordinates. The minimum of the squared Mahalanobis
distance DM,pos and the Euclidean distance DEuclid,pos defines the gate, which are calculated using the posi-
tion difference z

(i)
p,zm and the position covariance P

(i)
p , that only include the elements related to the X and Y

position:

z(i)
p,zm =

[
(z1 −m

(i)
k|k−1,1) (z2 −m

(i)
k|k−1,2)

]T
, (5.47)

P (i)
p =

[
P

(i)
k|k−1,11 P

(i)
k|k−1,12

P
(i)
k|k−1,21 P

(i)
k|k−1,22

]
. (5.48)
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The distances are then calculated with

DM,pos(z
(i)
p,zm, P

(i)
p ) =

[
z(i)
p,zm

]T [
P (i)
p

]−1 [
z(i)
p,zm

]
, (5.49)

DEuclid,pos(z
(i)
p,zm) =

√[
z
(i)
p,zm

] [
z
(i)
p,zm

]T
. (5.50)

Applying the gating based on those distances, the equation (4.40) changes to

vD,k(x; z) =
∑

j∈Vk(z,γDA)

w
(j)
k (z)N

(
x;m

(j)
k|k(z),P

(j)
k|k

)
, (5.51)

where only components of the gating indices Vk(z, γDA) are taken into account. For these gating indices, either
the squared Mahalanobis distance or the Euclidean distance is below the gating threshold γDA:

Vk(z, γDA) =
{
i = 1, . . . , Jk | min(DM,p(z

(i)
p,zm,P

(i)
p )2, DEuclid,p(z

(i)
p,zm)) ≤ γDA

}
. (5.52)

In the proposed implementation, the pseudo measurement ẑ is used for the update in equation (5.51), which is
created by the procedure described in chapter 5.4 to be able to use measurements with geometries that do not
match OBB.

In addition, the detection probability and clutter density are calculated by the developed models in chapter 5.5.1
and 5.5.2. Therefore, the following applies:

pD,k = p
(sp)
D,k (m

(j)
k|k−1, c

(j)
k|k−1), (5.53)

κk(z) = κ
(sp)
k (z, c(z)). (5.54)

This leads to a replacement of equation (4.39) by

vk(x) =

Jk|k−1∑
j=1

[
(1− p

(sp)
D,k (m

(j)
k|k−1, c

(j)
k|k−1))w

(j)
k|k−1N

(
x;m

(j)
k|k−1,P

(j)
k|k−1

)]
+
∑
z∈Zk

vD,k(x; z) (5.55)

and a replacement of equation (4.41) by

w
(j)
k (z) =

p
(sp)
D,k (m

(j)
k|k−1, c

(j)
k|k−1)w

(j)
k|k−1q

(j)
k (z)

κ
(sp)
k (z, c(z)) + p

(sp)
D,k (m

(j)
k|k−1, c

(j)
k|k−1)

∑Jk|k−1

l=1 w
(l)
k|k−1q

(l)
k (z)

. (5.56)

The effects of these changes are discussed in the respective chapters, while experiments are provided in chapter
6 to prove the functionality. All other calculation steps remain the same as described in chapter 4.4.3. The tags
and classifications are added for each new Gaussian component as follows:

τk,u =
{
τk|k−1 ∪ τ z1k|k−1 ∪ · · · ∪ τ

z|Zk|
k|k−1

}
, (5.57)

τ zk|k−1 =
{
τj ∈ τk|k−1 | j ∈ Vk(z, γDA)

}
, (5.58)

Ck,u =
{
Ck|k−1 ∪ Cz1

k,u ∪ · · · ∪ C
z|Zk|
k,u

}
, (5.59)

Cz
k,u =

{
fc

(
c
(j)
k , c(zγ,k−1

(j))
)
| j ∈ Vk(z, γDA)

}
. (5.60)

For each Gaussian component created by a measurement, a tag is added that has the same value as the tag of
the updated component. Similarly, for each gaussian component created by a measurement, the classification
vector is updated by the measurement’s classification vector c(zγ,k−1

(j)) using the classification update function
fc(c, c

(z)), that implements either of the four proposed classification fusion approaches.
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5.7.5 Step 3: Pruning

The pruning step from Clark et al. (2006) is implemented without adaptations, which means that all components
with low weights below a truncation threshold τ are eliminated. The classification setCk,u is pruned in a similar
way to the other properties.

5.7.6 Step 4: Merging

The merging procedure in general follows the one proposed by Clark et al. (2006) and has the goal to merge
Gaussian components that have a low distance based on a distance criterion. Some implementations (Clark
et al. 2006; Vo and Ma 2006) use the following distance criterion to calculate the distance D(Ni||Nj) between
components i and j:

D(Ni||Nj) = (m
(i)
k −m

(j)
k )T (P

(i)
k )−1(m

(i)
k −m

(j)
k ). (5.61)

However, similar to Granström and Orguner (2012), in this implementation the distance is formed using the
Kullback-Leiber Divergence (KLD) DKL, which is defined as follows:

DKL(Ni||Nj) =
1

2

(
tr(P−1

j Pi)− k + (mj −mi)
TP−

j 1(mj −mi) + ln

(
detPj

detPi

))
. (5.62)

Here, k is the dimension of the covariance matrices Pi and Pj . The KLD can be interpreted as a measure
which indicates the information loss when Ni is approximated by Nj . Therefore, it is well suited as a criterion
whether two Gaussian components should be merged, since it indicates the possible information loss. Note,
that the KLD is asymmetric and should thus not be used reversely.

When merging multiple components, the tag τ (i)k of the component with the highest weight w(i)
k is kept for the

merged component. If components with the same tag still exist after the merge procedure, the component with
the highest weight keeps the tag and all others get a new one assigned, similar to the proposal from Clark et al.
(2006).

The classification is merged similarly to the mean. Therefore, the merged classification vector c̃(l)k is calculated
using the weighted average of all merge components L.

c̃
(l)
k =

1

w̃
(l)
k

∑
i∈L

w
(i)
k c

(i)
k . (5.63)

5.7.7 Step 5: Track extraction

In the last step, the tracks are extracted from the PHD estimation and handed over to the track confirmation
strategy proposed in chapter 5.9. The tracks consist of a state vector, a classification vector and an ID extracted
from the Gaussian mixture, the tag set and the classification set. To be interpreted as a track, the weight of a
Gaussian component has to exceed a weight threshold wmin creating the track set Tk:

Tk =
{
(τ

(i)
k ,m

(i)
k , c

(i)
k , p̃

(i)
k (∃)) |w(i)

k > wmin

}
(5.64)

To provide an existence probability for further processing steps, the weight of the Gaussian component can be
interpreted as pseudo existence probability with p̃(i)k (∃) = min(w

(i)
k , 1).
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5.8 Kalman filter implementation

The Kalman filter implementation is interchangeable with the GM-PHD filter implementation, since it uses the
same interfaces. To provide a meaningful comparison, the Kalman filter uses the same motion model like the
GM-PHD implementation. Therefore, the main differences are in the implementation of the prediction and
update routine, as well as the management of the track list. Each element in the track list consists of the track’s
state, its existence probability and its classification vector.

Similar to the GM-PHD implementation, a CA model is used for the state prediction. The prediction and update
is implemented as described in chapter 4.3.2 In addition, the existence probability is estimated, as explained in
chapter 4.3.2 using a constant survival probability and a constant clutter probability, which should not be mixed
up with the clutter density.

In the update step, a gating based on Mahalanobis distance and data association using the GNNDA approach are
used, as described in chapter 4.3.2.1. The Mahalanobis distance is used as metric for the cost matrix of the DA,
which is then solved by the Hungarian algorithm (Kuhn 1955; Munkres 1957). The state of each track that has
an assigned measurement is then updated using the respective measurement model. In addition, the existence
probability is updated according to equation (4.16) and the classification vector is also updated using one of the
methods proposed in chapter 5.6. The existence probability of each track without an associated measurement is
in turn updated as non-detected according to equations (4.17). The detection probability used for the existence
estimation is provided by the parameter model from chapter 5.5.1.1.

All detections, which have not been associated to a track, are added as new elements to the track list.

In order to handle overlapping bounding boxes and to delete obsolete tracks, the "prune and merge" procedure
from the GM-PHD filter implementation is adopted after each update cycle. The tracks with existence prob-
abilities below a threshold are removed. Then, the tracks with low KLD are merged to deal with overlapping
tracks originated from the same detections. Since this process requires weights, the existence probability is
used as the weight. When merging the existence probability of a merge set M , it is done as a weighted average,
effectively resulting in:

wj = pj(∃)

pi(∃) =
∑

j∈M wjpj(∃)∑
j∈M wj

(5.65)

The combination of the states and the classification is done in the same way as in the GM-PHD filter imple-
mentation, using the weights wj . Now, the tracks are handed over to the track confirmation module for further
processing.

5.9 Track confirmation strategy

The MOT filter (GM-PHD or KF), which is the core of the fusion architecture, generates a list of tracks for
each time step that contains the currently tracked objects. Each of the objects has a state, a class, a unique ID,
and an existence probability. The existence probability is decisive in determining whether an object exists or
not, and thus needs to be considered by ADAS functions. However, there are situations in which the modeling
of existence using a probability reaches its limits. The following situations are examples where reliance on
existence probability is not sufficient:

• If a previously tracked object is occluded over several time-steps and therefore not visible for multiple
sensors, the existence probability will drop fast. Such a drop is also possible due to the spooky effekt (Vo
and Vo 2012). The object is, however, still existent at the occluded location. If the occlusion is resolved,
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the object will be tracked again, but it will take time to raise the existence probability and the unique ID
is changed.

• If one of multiple sensors continuously fails to detect an object due to some systematic error, the existence
probability is reduced and can potentially be in the range of the threshold for forwarding the track.

• If multiple sensors create a clutter object at a certain location randomly or due to a systematic error, a
track with an existence probability above the threshold could be created. The existence probability may
decrease after a short time, but this clutter track can potentially cause a false positive action by the ADAS
function.

A possible solution for occlusion is the explicit modeling, as shown by Aeberhard (2017). Another solution is
the integration of an occlusion model to the GM-PHD detection probability model (Vasic and Martinoli 2015;
Granström et al. 2014; Törő et al. 2021). Since the framework of this thesis should work with different MOT
filters, the occlusion problem is handled in the track confirmation strategy, which is applied independent of the
used filter.

The strategy confirms tracks based on several criteria over time and only passes the confirmed ones to the
ADAS function. It can handle ID changes, remove false positive clutter tracks and tracks with lower than
expected existence probabilities. It consists of a confirmation list that is updated after each MOT update cycle
by the MOT update track set Tk. Each element in the confirmation list consists of a confirmation track T̂ (i)

k , an
ID alias, the unobserved time, the first appeared time tfa and a confirmation flag, as shown in the example in
Figure 5.15. The unobserved time is the time, since the ID of the track was last updated by the MOT tracker.

Figure 5.15 shows an example scenario with two cars around the ego vehicle. Arrows show the trajectories of
the tracks provided by the MOT filter. One car is directly in front of the ego vehicle, but the provided existence
probability is low. The other car is overtaking and occluded for a short duration, where the tracks are lost. In
addition, in the right top corner, there is a false positive track. This scenario therefore represents different errors
that possibly can occur for a MOT system.

In each update cycle, the tracks of the confirmation list are tried to be updated. Here, the alias ID of the stored
track is compared with the ID of the tracks in the MOT list. If no match is found, the unobserved time is
increased and the state is predicted using the motion model. In Figure 5.15, this is the case during occlusion of
the overtaking car with τ̂ (2) = 2. Otherwise, the unobserved time is set to 0.

Next, ID switches are searched for all tracks in the confirmation list, that do not yet have an assignment from
the MOT list. If an unused track from the update track set falls within an Euclidean distance threshold from
a non-updated track in the confirmation track list, an ID change is assumed. In this case, the ID alias is set
to the new ID, which is indicated in Figure 5.15 after the occluded car is tracked again. In this way, objects
which have been lost for a short time due to e.g. occlusion can be found again while preserving their original
unique ID. For all tracks in the update track set that are not yet assigned to a track in the confirmation list, a
new element is created in the confirmation list.

The next step checks for all elements in the list whether they can be marked as confirmed. To be confirmed,
one of the following criteria must be met:

• p(∃) > p∃,min ∧ tk − tfa > tmin

• tk − tfa > tconf

To be confirmed, a track must either have an existence probability p(∃) greater than a threshold p∃,min and at
the same time be active for a minimum duration tmin by comparing with the time of the current time step tk,
or be active for a greater duration tconf regardless of the existence probability. In Figure 5.15, the car with
low existence probability and τ̂ (1) = 1 therefore is confirmed since it is tracked for a long duration, while the
false positive track with τ̂ (3) = 3 is not confirmed and therefore not forwarded to ADAS functions. All tracks
are then checked for deletion using the unobserved time. If the unobserved time is above a threshold, they are
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Figure 5.15: Example situation with track confirmation strategy. The trajectories of the confirmation list are
drawn in red, while the trajectories of the track set have different colors. The confirmation list
table shows example values at the time where the objects are at the cars positions.

removed from the list. The threshold for already confirmed tracks is higher than the threshold for unconfirmed
tracks.

Overall, this confirmation strategy can filter out some of the errors that are created by MOT systems, as shown
in Figure 5.15. In particular, situations where ID changes occur or tracks are lost for a short period of time can
be resolved. In addition, it can reduce the amount of false positive tracks transmitted to an ADAS application.
Therefore, the confirmation strategy can help to improve the overall system performance.
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6 Evaluation of multi-object detection and tracking

This chapter summarizes the experiments and results of the developed approaches for object detection and
multi-sensor multi-object tracking. The experiments are conducted with the KITTI dataset and a newly created
truck dataset, which are presented in chapter 6.1. The metrics for object detection experiments used are then
presented in chapter 6.2, followed by the results of the two-stage Lidar detection algorithm (chapter 6.3) and
the results of the camera-based downward looking object detection approach (chapter 6.4). Chapter 6.5 then
shows the metrics used for MOT evaluation, followed by the experiments for MOT, which, in addition to a
simple filter comparison in chapter 6.6, shows several experiments to evaluate the proposed fusion framework
in chapter 6.7. The respective experiments are explained in detail in the corresponding chapters.

6.1 Datasets

Two datasets are used to evaluate the methods and approaches developed in this thesis. The popular KITTI
dataset proposed by Geiger et al. (2012) is used since it offers a large amount of ground truth data and enables
comparability to numerous works in the literature. For validation on trucks and the integration of the current
generation of sensors, an additional truck dataset is created. The main task of this dataset is the validation
of algorithms developed with the KITTI dataset for truck-specific applications and using current generation
series sensors. In addition, it allows the integration of additional perception sensors for tracking and fusion.
An overview and comparison between both the KITTI and the truck dataset is given in Table 6.1, where the
interface of the sensors is either specified as "raw" or "object". Raw data is defined as a sensor’s output without
any object detection algorithm running at sensor level. For cameras, raw data are images, while for Lidar
sensors, raw data are point clouds. Object data, on the other hand, is defined as a list of 3D objects created by
a detection algorithm. Both data sets also have data from a GNSS-based localization system. A more detailed
description of the sensors can be found in the following chapters on the datasets.

The KITTI dataset consists of more scenes and therefore a larger amount of data than the truck dataset. The
sensors of the KITTI dataset are hardware synchronized which results in a simultaneous recording of the scene,
while the truck dataset uses sensors, that have asynchronous measurements with known time stamps. The
sensor setup and the sensor’s FoVs are visualized in Figure 6.1. As shown by the Figure, both datasets have
a forward facing camera and Lidar, where the KITTI dataset has a larger FoV. The truck setup relies more on
radars, with two corner SRRs and a central LRR.

For both datasets, the maximum evaluation distance is set to 70 m. Above that distance, both ground truths
and tracks are ignored. On the KITTI dataset, the sensor performance massively degrades above this distance,
while an accurate labeling was not possible for higher distances on the truck dataset due to the limited Lidar
point cloud density.

Table 6.1: Comparison of KITTI MOT dataset and truck dataset.

KITTI MOT dataset Truck dataset

Number of scenes 21 3
Measurement timing Simultaneous firing Asynchronous

Sensors

Lidar 1 (raw) 1 (raw)
Camera 4 (raw, only 1 used) 1 (object)
Radar - 3 (object)
Localization 1 1
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Figure 6.1: Comparison of the sensor setups and FoV of the KITTI and the truck dataset.

6.1.1 KITTI dataset

The KITTI vision benchmark suite (Geiger et al. 2012) is a large-scale real-world dataset recorded in the area
of Karlsruhe and covering mainly urban scenarios. The dataset provides recordings from a timely and spatially
aligned sensor kit, which consists of a Velodyne HDL-64E 360° Lidar, four video cameras and a high-precision
localization system, alongside all necessary calibration data. The four cameras are mounted as two stereo pairs,
one as RGB and the other as grayscale. The used localization system is a "state-of-the-art OXTS RT 3003
localization system which combines GPS, GLONASS, an IMU and RTK correction signals" (Geiger et al.
2012, p. 3354). The dataset includes benchmarks with ground truth data for various tasks, including object
detection and object tracking. In this thesis, both the MOT benchmark and the 3D object detection benchmark
are used. A clear drawback of the dataset is the uniform conditions of recording. As stated by Arnold et al.
(2019), p. 3793, the dataset is recorded in daylight scenes and standard weather conditions. Therefore, the
evaluations on this dataset do not represent general performance indicators.

Since the proposed fusion framework works with object interfaces and the KITTI dataset only provides raw
data, object detection approaches are applied to the raw data for further processing, as summarized by Table
6.2. Both detection approaches used create OBBs and are able to estimate the dimensions of the objects. In this
thesis, only one of the four cameras is used, since monocular camera systems are common for trucks.

The ground truth data provided for the KITTI benchmarks includes "DontCare" regions, which are areas that
are challenging to annotate or are not crucial for certain evaluation tasks. These areas and everything outside
the camera’s FoV are excluded from the MOT evaluation.

Table 6.2: Overview of sensor interfaces for the KITTI dataset.

Sensor Detection approach Geometric
Representation

Dimension estimation
capability

Lidar
(Velodyne HDL-64E)

Point-RCNN
(Shi et al. 2019)

OBB yes

Camera
(Point Grey FL2-14S3C-C)

Yolo-Mono-3D
(Liu et al. 2021)

OBB yes
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6.1.2 Truck dataset

In order to evaluate the tracking and fusion algorithms based on truck sensors, a new dataset is created. In
particular, this dataset includes sensors comparable to series equipment with integrated object detection to
prove the validity and performance of the presented approaches for use in trucks.

The truck dataset contains recordings of a central LRR, two corner SRR sensors, a perception camera and a
front Lidar, as shown in Figure 6.1. A Trimble BX928 GNSS system is used for localization. Table 6.3 shows
an overview of all perception sensors and their interfaces. As shown, different geometric object representations
exist throughout the sensor set, including OBB, point and L-shape representations that need to be combined.
The SRR sensors and the Lidar are able to estimate the dimensions of an object, while the LRR and camera
only provide points and widths.

The Lidar sensor is particularly necessary for the generation of ground truth labels, as its point clouds enable
a 3D representation of the environment. The labeling tool "SUSTech POINTS" (Li et al. 2020) is used for the
annotation process. The GT OBB labels are created by hand using the Lidar point cloud for spatial mapping
and the camera image as visual aid, which is a similar procedure as others, like the KITTI dataset, use.

The Lidar achieves distance accuracies of ±3 cm for ranges up to 200m on 10 % reflectivity targets. Since
the labels are generated based on the point clouds with these errors and are created by hand, the ground truth
labels of the truck dataset have to be considered as approximate truth. Similar to the KITTI dataset, "DontCare"
regions are created for areas that are challenging or impossible to annotate or not relevant for evaluation. These
areas are also marked by 3D OBBs and the areas are excluded from the evaluations. Visualizations of these
areas can be found in the example images in Table 6.4.

The truck dataset is small compared to KITTI and contains 3 scenes from the different ODDs highway, rural and
urban. It includes 2393 annotations over all time-steps with a majority being cars. The scene length between
15.4 s and 21.1s is comparable to many from the KITTI dataset, although KITTI also includes some with a
higher duration. Table 6.4 shows an overview over the individual scenes and their properties.

Due to the smaller size, the truck dataset is less meaningful, but it can still serve as confirmation or questioning
of the results on the KITTI dataset. The truck dataset also provides the opportunity to study the fusion of more
than two sensors with different FoVs. In addition, the sensors are mounted on a different mechanical platform
with different mounting positions, as well as other vibrations and motion influences.

For this dataset, the detection sensors are assumed to have bigger uncertainties in detection, localization, and
classification than the methods used on the KITTI dataset, so performance of the fusion framework in difficult
conditions can be studied. By combining the two datasets, experiments can be conducted using both the well-
studied KITTI dataset and validating these using a realistic truck dataset with current sensors close to series.

Table 6.3: Overview of sensor interfaces for the truck dataset.

Sensor Detection approach Geometric
Representation

Dimension estimation
capability

Lidar (Velodyne VLP-32c)
proposed approach
chapter 3.2.3

OBB yes

Camera built in Point no
LRR built in Point & width no
SRR (left & right) built in L-shape yes
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Table 6.4: Overview of individual scenes of the truck dataset and visualization using a separate context camera
and the Lidar point cloud.

Highway scene Urban scene Rural scene

Description Highway scene with multiple
cars overtaking the ego

vehicle.

Urban scene with preceeding
and oncoming vehicles,

multiple parking vehicles and
traffic at intersections.

Rural scene with preceeding
and oncoming vehicles and

an intersection.

Scene length 15.4 s 21.1 s 18.0 s
Car tracks 5 29 25
Pedestrian tracks 0 1 2
Overall annotations 320 1258 815

6.2 Metrics for object detection

This chapter explains the basic metrics for evaluating object detection methods, which generate an OBB and a
confidence level for each detection. GT OBBs are also required for the evaluation, with which the detections
can be compared. The similarity between a GT shape BGT and a detection shape Bd is measured using the
Intersection over Union (IoU), also referred to as Jaccard index. This metric is calculated by dividing the
intersecting area or volume by the union area or volume of the two shapes. Figure 6.2 visually shows the IoU
of 2D bounding boxes, while the IoU of 3D OBBs is defined by

IoU3D =
intersecting volume

united volume
=
Bd ∩BGT

Bd ∪BGT
. (6.1)

A detected object is defined as True Positive (TP), if its IoU with a GT object exceeds a threshold. For the
KITTI benchmark, the standard thresholds defined by the authors are 0.7 for cars and to 0.5 for pedestrians.
Detections, that have no associated GT object above the threshold, are defined as False Positive (FP). On the
other hand, GT objects without an associated detection OBB are defined as False Negative (FN).

The two basic metrics for the detection performance are precision and recall. The precision P is defined as the
sum of TPs over the sum of all detections, which is the combination of TPs and FPs:

P =
TP

TP + FP
. (6.2)

The recall R is defined as the sum of TPs over all GT objects, which is the combination of TPs and FNs:

R =
TP

TP + FN
. (6.3)
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Figure 6.2: IoU for a 2D bounding box in image coordinates. Note, that these metric can also be applied to
other types of shapes and volumes, like OBBs.

The precision is therefore a metric for the quality of the detected objects, while recall is a metric for the number
of detections.

The confidence level of a detection can be used to filter out detections of low confidence, which is used to control
the tradeoff between precision and recall. Low thresholds typically lead to higher recall and lower precision
values, while high thresholds typically lead to lower recall and higher precision values. The precision-recall
curve can visualize this trade-off between precision p and recall r depending on the chosen threshold for the
confidence level, as shown in Figure 6.3. It is derived using multiple confidence thresholds for the detections,
while the interpolated precision-recall curve ensures monotony and is defined as follows:

pinterp(r) = max
r̃:r̃>=r

p(r̃). (6.4)

The Average Precision (AP) is the most popular metric for both 2D and 3D object detection and is described by
Everingham et al. (2010) for image-based detections. It is the standard evaluation metric for various datasets
like the KITTI detection benchmark. The AP is calculated by numerically integrating over a given interpolated
precision-recall curve pinterp(r):

AP =
1

|R|
∑
r∈R

pinterp(r). (6.5)

Everingham et al. (2010) propose a calculation using R11 = {0, 0.1, 0.2, ..., 1}. However, Simonelli et al.
(2020) recommend a new calculation method using R40 = {1/40, 2/40, 3/40, ..., 1}, which results in a more
fair comparison by eliminating the first bin. This method is recently used by the KITTI benchmark and in this
thesis. For multi class evaluation, the mAP can simply be evaluated by averaging over the AP of a set of classes
C where APi is the AP of class Ci:

mAP =
1

|C|

|C|∑
i=1

APi. (6.6)

6.3 Evaluation of the two-stage Lidar detection algorithm

The Lidar object detection algorithm proposed in chapter 3.2.3 consists of two calculation steps, where the
first detects objects using traditional geometric methods. This allows to generate separate point cloud segments
for each physical object. The second step then estimates the class and the 3D OBB dimensions based on that
segment using a NN.
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Figure 6.3: Exemplary interpolated precision-recall curve showing the tradeoff between both values. The area
below the curve is the AP and is calculated by numerically integrating the curve.

The evaluation of the approach is done using the KITTI detection dataset. Since the GT of the test set is not
available, this is done on a 20 % test split of the training data. Table 6.5 shows the results on the 2D, 3D
and BEV benchmark. The approach achieves a mAP score of 79.33 % on the 3D detection benchmark (car,
easy)1, which is comparable to approaches like VoxelNet (Zhou and Tuzel 2018) with an mAP of 81.97%. A
comparison to other approaches can be done using Table 3.3 from chapter 3.2.2. The achieved scores are not
as high as the best currently available approaches, but this two-stage algorithm additionally detects background
objects. This is important in situations, where instances of unknown classes appear in dangerous positions on
the road, which are not trained.

For this reason, the first stage of the network is evaluated separately. The output of the first stage is a point cloud
segment and an OBB based on traditional algorithms for each physical object in the point cloud. In order to
evaluate these outputs, the unclassified recall is calculated. This value expresses the recall of the all detections
without considering the class. Therefore, based on the first stage’s output, a TP is counted in case of large
overlap of a segment’s point cloud with a GT OBB of any class. A detection is counted as TP, if more than 5
Lidar points of this detection lie inside a GT OBB, with less than 20 % of the Lidar points being outside. The
experimentally derived minimum point amount serves as a threshold for ensuring an object physically exists,
while the overlap threshold ensures to rule out segmentation errors. The detections are divided into Easy,
Medium and Hard for each of the classes using the same constraints as the KITTI dataset1. The unclassified
recall values are also shown in Table 6.5. The presented approach achieves unclassified recalls of up to 96.53
(car, easy)1, which shows that an enormous amount of all objects is correctly detected. This also shows the
suitability for safety critical applications, where the correct detection of a road user or obstacle is mandatory.

In addition to the evaluation of the full object detection pipeline, the classification from the second stage is
evaluated separately. This allows the comparison to other deep learning approaches working on point cloud
segments. Therefore, the evaluation metric is the accuracy of the classification without taking into account
the detection of the first stage, which is defined as the percentage of correctly classified point clouds. The
comparison is done on the STC (Teichman et al. 2011) and the ModelNet40 dataset (Wu et al. 62015) and
shown in detail by Bader et al. (2021). Both datasets offer point cloud segments with GT class labels. The
ModelNet40 segments are based on CAD data, while the STC is based on Lidar measurements. The STC is

1Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %
Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30%
Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50%
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Table 6.5: AP and unclassified recall results of the two-stage approach on the KITTI Dataset. Note that the
unclassified recall values are calculated differently and should therefore not be compared with the
AP results.

Car Pedestrian Cyclist

Easy Mod Hard Easy Mod Hard Easy Mod Hard

AP 2D 90.67 76.32 71.78 39.30 31.55 29.36 57.49 45.92 43.65
AP BEV 87.98 73.19 68.52 43.75 35.06 30.94 54.78 43.78 41.54
AP 3D 79.33 60.58 55.80 43.24 34.72 30.66 52.51 41.54 39.25
unclassified R 96.53 89.26 87.21 58.961 53.15 50.37 83.16 78.56 75.46

organized in tracks and therefore provides additional information, like velocity, for each segment. However,
the presented approach only uses the point cloud segments. For both datasets, the evaluation shows a great
trade-off between inference time and accuracy, which is important for real-time applications. As shown by
Table 6.6, the accuracy on the ModelNet40 dataset is comparable to (Shabat et al. 2018), which has a 7-times
higher runtime on an NVIDIA RTX4000 GPU. Based on the analysis from Bader et al. (2021), it is assumed
that for a real-world system, 32 object segments need to be classified within 50 ms as a minimum requirement,
which results in a maximum runtime of 1.56 ms per point cloud segment. Within this constraint, the proposed
approach clearly achieves the highest accuracy while still having the lowest runtime on subsampled point cloud
sizes of 2048.

Table 6.6: Comparison of classification accuracy and inference time using the ModelNet40 (Bader et al. 2021).

Method Accuracy [%] Runtime (inference) [ms]

3DmFV (Shabat et al. 2018) 91.6 4.4
LightNet parenZhi et al. (2017) 86.9 N/A
VoxNet (Maturana and Scherer 2015) 83 N/A
VRN Ensemble (Brock et al. 2016) 95.54 460.4
RotationNet (Kanezaki et al. 2018) 97.37 N/A
PointNet (Charles et al. 2017a) 89.2 1.44
PointNet++ (Charles et al. 2017b) 90.7 2.02
PointGrid (Le and Duan 2018) 92.0 14.91 (original paper)

proposed approach (2048 Pts) 91.45 1.07

Since the STC consists of segmented real-world Lidar data, it is well suited to examine performance. As
shown in Table 6.7, the proposed network also clearly outperforms heuristic and SVM-based approaches on
this dataset, even though some of them use additional tracking information. To prove the robustness against
occlusion, which is a common issue with Lidar point cloud segments, the classification accuracy is tested with
simulated occlusion of the STC objects as described by Bader et al. (2021). As shown in Table 6.7, the approach
is stable against occlusion, with the results on 40 % occluded point cloud segments still outperforming several
other approaches and the accuracy declining by less than 3%.

Overall, the investigations show, that the proposed two-stage Lidar detection approach provides a state-of-the-
art accuracy for object detection while still being able to run in real-time. The classification is stable against
the common issue of occlusion and outperforming other approaches within runtime constraints for real-time
application. The evaluation of the unclassified recall shows, that almost all objects of relevance are detected
by the first stage, which proves the reliability for safety critical systems in contrast to other deep learning
approaches.
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Table 6.7: Comparison of classification accuracy and inference time using the STC (Bader et al. 2021).

Method Acc [%] Inf. time [ms]

Segment classifier only (Teichman et al. 2011) 93.1 N/A
ADBF classifier1 (Teichman et al. 2011) 97.9 N/A
SVM12 (Lin et al. 2018) 95.5 N/A
SVM3 94.66 0.34
heuristic approach3 88.39 <0.01

proposed approach (512) 96.85 0.43

proposed approach (20 % occlusion) (512 points) 95.51 0.79
proposed approach (40 % occlusion) (512 points) 94.27 0.79

1Using tracking information, like speed, velocity, ...
2Only using balanced subset of STC with only cars, pedestrians and cyclists
3Inhouse developments of Daimler Trucks for comparison

6.4 Evaluation of the camera detection algorithm for downward looking
cameras at trucks

The camera detection algorithm proposed in chapter 3.3.3 uses a 2D object detector, a CNN on the cropped
detections for estimation of the dimensions and orientation and a projection to the road surface to calculate the
position of the OBB.

For the evaluation of the approach, a dataset with 765 images of a downward looking camera, that include
objects is recorded and annotated as described by Zhang (2021). The proposed approach is applied to the images
to generate 3D OBBs. Now, the distance in X-direction of the closest edge of the detections are compared to the
ground truth OBBs. Figure 6.4 shows the distance error of the real-world detections over the closest distance
of the ground truth objects. More than 83 % of all measurements are within an absolute error of < 0.3 m, with a
standard deviation of 0.257 m and an average error of 0.185 m. Since 0.3 m is about half the width of a typical
pedestrian OBB, it is possible to detect a 50 % overlap with the driving path with a high chance. These results
show that for this camera position, a multi-stage approach can achieve distance estimations with errors at low
decimeter level.

Figure 6.4: Distance error of camera detections to GT from Lidar over the object distance.
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Using the created dataset, the 3D detection performance is evaluated for the class "Car". The other classes are
ignored due to the low number of examples. An mAP of 95.4 % on 2D image coordinates and a mAP of 45.28 %
on 3D OBBs is achieved. Other monocular camera approaches achieve lower scores between 4.47 % (Li et al.
2019) and 18.28 % (Liu et al. 2021) on the KITTI 3D detection benchmark for "car,easy"1, as shown in Table
6.8. Note, that a direct comparison is not possible, since the datasets have massive differences in terms of object
positions and distances. However, it indicates that the performance of the developed approach within its FoV
operates on a level with state-of-the-art approaches. The utilization of this camera position for object detection
therefore offers a huge potential for monitoring the close range area in front of the truck.

Table 6.8: Comparison of mAP scores of detection approaches on the KITTI dataset and the proposed approach
on truck data.

Approach Dataset Car

Easy Mod Hard

YOLO3D (Liu et al. 2021) 3D KITTI 18.28 12.06 8.42
GS3D (Li et al. 2019) 3D KITTI 4.47 2.90 2.47
MonoGRNet (Qin et al. 2021) 3D KITTI 9.61 5.74 4.25
Mono3D++a (He and Soatto 2019) 3D KITTI 10.6 7.9 5.7
downward cam approach 3D truck 45.28

YOLO3D (Liu et al. 2021) 2D+AOS KITTI 91.43 78.50 58.80
Deep MANTA (Chabot et al. 2017) 2D+AOS KITTI 98.83 93.31 82.95
Deep3DBox (Mousavian et al. 2017) 2D+AOS KITTI 94.62 89.88 76.40
GS3D (Li et al. 2019) 2D+AOS KITTI 85.79 75.63 61.85
MonoGRNet (Qin et al. 2021) 2D KITTI 88.65 77.94 63.31
downward cam approach 2D truck 95.4

aResults not officially listed

6.5 Evaluation metrics for object tracking

The prerequisite for comparing developed approaches on MOT datasets is a meaningful metric that covers all
differences from the ground truth. Depending on the dataset and the task, different metrics are used in this thesis.
For the KITTI dataset, the Multiple Object Tracking Accuracy (MOTA) metric (Bernardin and Stiefelhagen
2008) and the Higher Order Tracking Accuracy (HOTA) metric (Luiten et al. 2021) are often used, both of
which are calculated using the intersection over union as base distance. In addition to these traditional metrics,
however, there are others, such as the Second Order Optimal Sub-Pattern Assignment (OSPA(2)) metric, created
for arbitrary sets and probability distributions.

Rezatofighi et al. (2020) compare these metrics in terms of their trustworthiness. This is based on the robustness
of the result to parameter variation, how meaningful they behave in sanity tests and analytical properties, like
their mathematical consistency. In the experiments of Rezatofighi et al. (2020), the traditional metrics seem to
be less robust to parameter variations, get worse results in the sanity tests and cannot fulfill the criteria for math-
ematical consistency. In particular, the identity criteria, and the triangle inequality may be violated (Rezatofighi
et al. 2020). The identity criteria states that a metric d(x,y) of GT x and prediction y is d(x,y) = 0 only if
x = y. The triangle inequality ensures that if a prediction z is close to a prediction y, which is close to GT
x, the prediction z is also close to x by stating d(x, z) ≤ d(x,y) + d(y, z). The mathematical inconsistency
of traditional metrics is rooted in the threshold for generating true positives (Rezatofighi et al. 2020). Over-
all, these drawbacks can potentially lead to false interpretations during evaluations when purely relying on the

1Includes only objects of class "car" with 2D bounding box height of minimum 40 pixels and without occlusion
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traditional metrics, especially since the labels of the truck datasets used in this thesis are handmade based on
measurements and therefore rather represent an approximate truth than a ground truth.

Rezatofighi et al. (2020) show some alternative metrics, of which especially the OSPA(2) metric stands out
with good results while being mathematically consistent. To be able to compare the tracking results with state-
of-the-art approaches on the KITTI dataset, the HOTA metric is still used in this thesis, while the OSPA(2)

metric is used in addition and for comparison under mathematical consistency. The OSPA(2) metric is based
on the OSPA metric, while all of them (including OSPA) are using a base distance measuring the similarity
between two objects. The following paragraphs give an overview of common base distances, while Figure 6.5
provides an overview of the Euclidean distance db,euclid, the IoU and the Generalized Intersection over Union
(GIoU), which are explained in the following paragraphs. In the example image, a GT bounding box in green
is compared to a detected bounding box "Det" in red.

Figure 6.5: Proposed base distances in comparison for a 2D bounding box in image coordinates. Note, that
these metrics can also be applied to other types of shapes and volumes, like OBBs.

The Euclidean distance is a natural choice for a base metric, since it is the distance between two points in
Euclidean space and can therefore directly give the distance between two state vectors:

db,euclid(x, x̂) =

√√√√ N∑
l=1

(x(l)− x̂(l))2. (6.7)

The Euclidean distance is intuitive and works well for determining the distance between two points. However,
it is not suitable for evaluating the similarity of geometric shapes. In Figure 6.5, it is shown on the left side
comparing the OBB centers.

The Intersection over Union (IoU), which was introduced in chapter 6.2, can be used to calculate the base
metric db,IoU Due to the normalization, the IoU is invariant to the scale (Rezatofighi et al. 2019). The IoU
distance db,IoU of two shapes A and B with IoU ∈ [0, 1] is defined by

db,IoU (A,B) = 1− IoU(A,B). (6.8)

The IoU is among the most popular metrics in the area of object detection (Rezatofighi et al. 2019), but is not
suited for the evaluation of non-overlapping shapes, since the distance for these cases will always be IoU = 0,
regardless of the actual spatial distance.
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The Generalized Intersection over Union (GIoU) (Rezatofighi et al. 2019) compensates this weakness by
introducing a third shape C from the same type of A and B, which is defined as the smallest convex shape
enclosing both A and B. The GIoU is then defined as the IoU minus the area or volume of C excluded the
Union ofA andB, normalized to the area or volume ofC. It is therefore also invariant to the scale, always lower
bound to the IoU and ranging fromGIoU ∈ (−1, 1] (Rezatofighi et al. 2019). The base distance db,GIoU (A,B)
is then defined by

db,GIoU (A,B) =
1−GIoU(A,B)

2
, (6.9)

GIoU(A,B) = IoU − |C \ (A ∪B)|
|C|

. (6.10)

(6.11)

The GIoU is a good indicator for evaluating both overlaps and non-overlaps, if a scale invariance is desired.
In general, other metrics based on the IoU are possible, as shown with different loss functions by Zheng et al.
(2020).

6.5.1 The OSPA metric

If a whole set of states needs to be evaluated in the context of multiple object filtering, a single value of distance
to the ground truth is desired. However, single target distances, like the previously discussed base distances,
do not fulfill this requirement. Instead, both the states and the number of objects need to be incorporated. The
Optimal Sub-Pattern Assignment (OSPA) metric (Schuhmacher et al. 2008) is designed to give a single distance
between two finite sets of objects, and was developed to overcome the weaknesses of the Optimal Mass Transfer
(OMAT) (Hoffman and Mahler 2004) metric. The OSPA metric is calculated using a base distance db between
two states x and x̂ or two shapes A and B. Each of the proposed base distances can be used. The cut-off base
distance dc with c > 0 is then limiting the base distance using the cut-off parameter c:

dc(x, x̂) = min{c, db(x, x̂)} (6.12)

For two sets X = {x(1), . . . ,x(n)} and X̂ = {x̂(1), . . . , x̂(m)} with m ≤ n, the OSPA distance d(c)p of order
1 ≤ p ≤ inf is defined as follows:

d(c)p (X, X̂) =

(
1

n

(
min
π∈Πn

m∑
i=1

dc(x
(i), x̂(π(i)))p + cp(n−m)

)) 1
p

. (6.13)

Πn is the number of permutations, which means that the global minimum distance of m-m assignments is
calculated. If using higher orders, outliers are more penalized, however, in this thesis the order of p = 1

is used. For a more profound error analysis, the metric can be divided into cardinality error d(c,card)p and
localization error d(c,loc)p :

d(c,loc)p (X, X̂) =

(
1

n
min
π∈Πn

m∑
i=1

dc(x
(i), x̂(π(i)))p

) 1
p

, (6.14)

d(c,card)p (X, X̂) =

(
cp(n−m)

n

) 1
p

. (6.15)

This division allows to determine, if the main contribution to the overall error is based on the state or cardinality
estimation. For a proper analysis with this metric, a suitable cut-off value c has to be chosen, since large values
of c can lead to a high penalization of the cardinality error compared to the localization error.
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Note that the OSPA metric is only suitable for the evaluation of multi-object filter problems, and not tracking
problems. It compares the distance of two sets separately for each time step and thus only covers localization
and cardinality, without considering the ID of individual tracks. ID switches and track continuity are therefore
not evaluated.

6.5.2 The OSPA(2) metric

To overcome the limitations of the OSPA metric for tracking applications, the OSPA(2) uses a base distance
measuring the distance between tracks instead of set elements (Beard et al. 2020). The time-averaged OSPA
distance between two tracks f and g is the base distance. Here, |D| is the cardinality of D and Df ⊆ T and
Dg ⊆ T are sets of time instants, where the corresponding object has a state (Rezatofighi et al. 2020). T is a
time-window with fixed length T , in which the track evaluation and averaging is performed. The averaging is
done over Df ∪Dg to avoid calculation errors when parts of either track have no valid state:

d̃(c)(f, g) =


∑

t∈Df∪Dg

d(c)({f(t)},{g(t)})
|Df∪Dg| , if Df ∪Dg ̸= ∅

0, if Df ∪Dg = ∅
(6.16)

with

d(c)(ϕ, ψ) =


0, |ϕ| = |ψ| = 0

c, |ϕ| ≠ |ψ|
min(c, db(ϕ

(1), ψ(1))), |ϕ| = |ψ| = 1

. (6.17)

Now, the OSPA(2) distance ď
(c)
p is calculated similar to the standard OSPA distance with m ≤ n and

1 ≤ p ≤ inf (Beard et al. 2020):

ď(c)p (f, g) =

(
1

n

(
min
π∈Πn

m∑
i=1

d̃(c)(f (i), g(π(i)))p + cp(n−m)

)) 1
p

. (6.18)

Overall, the OSPA(2) metric incorporates errors from localization and the shape (depending on base metric),
as well as cardinality, track fragmentation and identity switching (Beard et al. 2020). If the metric is plotted
against time, the time window T may include the last T valid time-steps.

6.5.3 The HOTA metric

The Higher Order Tracking Accuracy (HOTA) (Luiten et al. 2021) metric is a state-of-the art MOT metric, that
is used at the KITTI dataset to compare approaches to each other. Therefore, using this metric allows the direct
comparison of the presented approaches to others.

(Luiten et al. 2021) classifies errors in MOT applications in the following categories:

• Detection errors: The system either misses detecting an object that is present in the GT data or detects an
object that is not present in the GT data.

• Association errors: The unique identifier (ID) of a detection by the tracker changes when the correspond-
ing GT ID does not or the ID of a detection does not change, when the corresponding GT ID does.

• Localization errors: The spatial error of a detection and the corresponding GT object. In this thesis, it is
defined as the IoU between two 3D OBBs.
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Classification errors are not directly evaluated by the HOTA metric. However, if the metric is applied separately
to objects of each individual class, classification errors are implicitly represented.

The HOTA metric is designed to create an equal weighting between detection, association and localization
error, since previous metrics tend to overemphasize either of them (Luiten et al. 2021). Another advantage
of this metric is the ability to split the result into sub-metrics including the localization, which can help to
understand the tracking performance in more detail.

Similar to the metrics described for object detection in chapter 6.2, a detection is defined TP, if the IoU with a
GT object exceeds the threshold α. A GT object without a matched detection is a FN, and a detection without a
matched GT object is a FP. Each TP is further evaluated for association in a similar way. A set of True Positive
Association (TPA) is defined as the TPs that share the same GT ID (gtID) and detection ID (dtID) with the
TP c (Luiten et al. 2021):

TPA(c) = {k}, k ∈ {TP|dtID(k) = dtID(c) ∧ gtID(k) = gtID(c)}. (6.19)

Similarly, a set of False Positive Association (FPA) is the set of TP detections that share the dtID with c but not
the gtID, combined with the set of FP detections that share the dtID with c:

FPA(c) ={k},
k ∈ {TP|dtID(k) = dtID(c) ∧ gtID(k) ̸= gtID(c)}
∪ {FP |dtID(k) = dtID(c)}.

(6.20)

A set of False Negative Association (FNA) is the set of TP detections that share the gtID with c but not the
dtID, combined with the set of FN detections that share the gtID with c:

FNA(c) ={k},
k ∈ {TP|dtID(k) ̸= dtID(c) ∧ gtID(k) = gtID(c)}
∪ {FN |gtID(k) = gtID(c)}.

(6.21)

Based on the detection measurements TP, FP, and FN and the association measurements TPA, FPA and FNA,
the HOTA is calculated by integrating over a range of IoU thresholds α (Luiten et al. 2021):

HOTA =

∫ 1

0
HOTAα dα ≈ 1

19

∑
α∈{0.05,0.1,...,0.95}

HOTAα. (6.22)

The HOTAα value is calculated based on both the evaluation of the association and the detection given the IoU
threshold α:

HOTAα =

√ ∑
c∈{TP}A(c)

|TP|+ |FN|+ |FP|
. (6.23)

Each of the TPs is evaluated for the correct association:

A(c) =
|TPA(c)|

|TPA(c)|+ |FNA(c)|+ |FPA(c)|
. (6.24)

The HOTA metric can further be decomposed into the following sub-metrics for in-depth evaluation. The
formulas for the calculation can be found in the description from Luiten et al. (2021):

• The localization accuracy "LocA" is a measure for the pure spatial alignment between the tracker output
and the GT.

• The detection accuracy "detA" is a measure for the pure detection alignment between the tracker output
and the GT data, which can further be divided into the detection precision and detection recall.

• The association accuracy "AssA" is a measure for the pure association accuracy, which can further be
divided into the association precision and association recall.
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6.5.4 MOT metric summary

The presented metrics have different approaches, advantages and disadvantages, which are summarized in the
following list:

• The HOTA metric is particularly useful for comparing tracking approaches against state-of-the-art for
public datasets, such as KITTI. The metric is well established here and is used by many datasets. It
allows an intuitive interpretation by presenting the result in the range [0,1] and does not require any
parameters. By decomposition into sub-metrics, partial aspects can also be interpreted. Compared to the
other metrics, however, no statement can be made about the accuracy with non-overlapping bounding
boxes and due to thresholding, the metric is not mathematically consistent.

• The OSPA(2) metric satisfies the criteria of mathematical consistency (Rezatofighi et al. 2020) and allows
the application of different basis metrics. Thus, the metric is not limited to bounding boxes and can also
compute results for non-overlapping geometric sets. The result of the metric is a distance and depends
on the parameters T and c, which must be set manually. If the IoU or the GIoU are used as the base
metric, the best choice is for c is c = 1. A single value for a sequence can be determined if T contains
all time-steps of this sequence or the average result for all time-steps is used.

• In contrast to the other two metrics, the OSPA metric only calculates the distance between two sets.
Thus, it does not allow any statement about the quality of the association when using continuous tracks.
The metric is therefore particularly suitable for evaluating detection and filtering without a label, but can
also be used for tracking situations when the association errors are not to be taken into account. For the
analysis of whole sequences, an average value can be calculated over all time-steps.

Each of the presented metrics attempts to evaluate very complex scenarios using single values. In the case
of MOT with sensor fusion, correct interpretation can therefore still be challenging, since the quality of the
complete environment detection around the ego-vehicle is determined with the help of a single value.

On the level of the ADAS functions, individual situations must also be analyzed to find weaknesses and errors.
However, for a basic comparison of the performance of different tracking and fusion approaches using a large
dataset, such metrics are the best option.

6.6 Simple multi-object filter comparison

Chapter 4 shows the basics of MOT with different filtering approaches, like the Kalman filter and some RFS
filters. These are to be compared to get a first clue about the performance with real-world data and to make
an informed decision on which filter to use in the fusion framework. Similar comparisons between different
types of RFS filters can be found in the literature (Vo et al. 2009; Clark et al. 2006; Lu et al. 2017), but most
of them focus on simulated data that may not be comparable to real-world data from Lidar sensors or cameras
in automotive environments. Therefore, this thesis performs real-world tests using the KITTI dataset, which
allows more substantiated statements due to the higher amount of data compared to the truck dataset.

In contrast to the evaluations in chapter 6.7, this evaluation compares the pure multi-object filtering capabilities.
Therefore, the RFS filters, like the GM-PHD filter or GM-CPHD filter, are implemented without an additional
framework to propagate unique IDs and to retrieve full track trajectories. The OSPA metric is used for compar-
ison, which excludes any ID-related information from the evaluation. In addition, the filters are implemented
"plain" without additional pre- or post-processing. This overall reduced complexity should help to get an im-
pression about the pure capabilities of the filters without the influence of any heuristics of the implemented
framework. The KF is an exception, as it is not able to perform multi-object filtering without a basic tracking
framework with data association.
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The comparison only uses objects of the class "Car" to simplify the dataset and avoid classification influences.
The measurements from the Lidar detector Point-RCNN (Shi et al. 2019) are used for a realistic measurement
representation. The filters are implemented in Matlab, and share the same implementation structure, which is
based on the implementation of Vo (2023).

The comparison is carried out as point tracking, which means that the measurements are represented as single,
2-dimensional points that follow a 2D constant velocity state space model with the following state vector x and
measurement vector z. Note that for this first and simple comparison, simplified state and measurement vectors
are used compared to the developments from Chapter 5. Only the basic filter performance is compared here,
without the need to estimate additional properties such as the dimensions:

zK =
[
px py

]T
, (6.25)

xk =
[
px py vx vy

]T
. (6.26)

Therefore, all filters follow a linear Gaussian model and use the same measurement and noise covariance Q
and R, as well as the same initial covariance P0. As far as possible, the other parameters, like the detection
probability pD, the survival probability ps, and others are the same for all filters. Therefore, the filters can be
compared using the same setup and parameters. The following paragraphs give an overview of the implemen-
tation details of all compared filters.

Kalman filter: The KF implementation uses a GNNDA based on the Hungarian algorithm and the Maha-
lanobis distance to use a similar setup as used by the implementation proposed in chapter 5.8. This is supported
by a preceding gating process as described in 4.3.2 and by Bader (2019). For each track, the existence proba-
bility is calculated. This leads to a good comparability, since some RFS approaches use similar concepts, while
for others an abstraction of the weights can be used. Tracks with an existence probability below a threshold are
deleted, while tracks with a value above a threshold are reported to be confirmed. The states of these confirmed
tracks are then fed into the evaluation.

PHD and CPHD filter: The PHD (Vo and Ma 2006) and CPHD (Mahler 2007a) filters are implemented as
Gaussian mixture filters based on the implementation from Vo (2023). For this test, no adaptive birth intensity,
sensor based parameter model, classification or tags for preserving the ID are used. Instead, a birth model
with uniform distribution of 4 Gaussian components over the observed area is used. The mean values of the n
Gaussian components with the highest weights are extracted as valid objects and used by the evaluation, with
n being the rounded estimated cardinality.

CBMeMBer filter: The CBMeMBer filter (Vo et al. 2009) is also implemented as a Gaussian mixture approx-
imation based on the implementation from Vo (2023). For this test, the birth process is modeled by a Bernoulli
density with 4 components distributed uniformly over the observed area. Similar to the PHD Filter, the mean
values of the n Bernoulli components with the highest existence probability r are extracted as valid objects and
used by the evaluation, with n being the rounded estimated cardinality.

The comparison is done using the OSPA metric, since it is not possible to use the HOTA or OSPA(2) metric
without unique IDs for each track. The OSPA distance, the OSPA localization, the OSPA cardinality and the
average processing time per frame in milliseconds are compared for all filters. The results are compared for
each of the 21 training set sequences separately. All evaluation metrics are compared using the average over
all frames of each sequence, with an OSPA cutoff value of c = 2.5. All objects inside "DontCare" regions or
outside the FoV defined by the KITTI dataset are excluded from the evaluation. Figure 6.7 shows the results on
the training set of the KITTI tracking dataset for each of the 21 sequences. The top plot shows the comparison
of the OSPA distance for the four filters, while the second shows the OSPA localization sub-metric and the third
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the OSPA cardinality. The last plot shows the average runtime per frame using the MATLAB implementation
on an AMD Ryzen 7 5700U CPU.

The OSPA distance computed by the KF tends to exceed that of the RFS filters across the majority of sequences.
In particular, in sequences 8 and 18, significant deviations from the RFS filters are observed, primarily due to
inaccurate cardinality estimation, as shown by the third plot. Both are sequences that include fast, oncoming
vehicles, which are difficult for the gating and association process after initialization, where the velocities are
not yet known. Since RFS filters jointly estimate the cardinality and states and do not rely on association, this
is less of an issue. Note, that these issues can be handled in advanced KF frameworks with proper initialization
and exceptions. However, this experiment should provide a comparison of the basic performance without any
special handling and advanced techniques.

Within the group of RFS filters, the PHD filter has the lowest OSPA distance in most sequences. In most of
these sequences, both the OSPA cardinality and the OSPA localization show lower values compared to the other
filters, which indicates the suitability for both existence and state estimation. The bottom plot shows that the KF
is clearly the fastest one for each sequence. This is no surprise, since the KF uses less mathematical operations
in the update step and the data association is still fast for the used number of measurements per frame in this
example. On average, the PHD filter and the CPHD filter follow, while the CBMeMBer filter is the slowest.
This is shown by Table 6.9, which shows the average results of the runtime and the mean OSPA values over
all 21 sequences. The runtimes in the range of some milliseconds show that each of these filters is capable of
real-time online processing.

Table 6.9: Overall mean results of filter comparison on KITTI dataset.

OSPA Dist OSPA Loc OSPA Card Mean Runtime [ms]

KF 1.17 0.23 0.94 2.61
CBMeMBer 0.80 0.20 0.60 7.73

PHD 0.66 0.16 0.51 4.31
CPHD 0.85 0.21 0.64 6.15

As shown be Table 6.9, the PHD filter on average outperforms the other implementations in all measures of
the OSPA metric, while the CBMeMBer filter achieves the second-highest performances. This only partially
meets the results from Vo et al. (2009), who show the best results with the CPHD filter for simulated low clutter
situations with Gaussian mixture implementations of the filters. The difference between simulated and real
measurement data could be the reason in this experiment: The ground truth cardinality of the used real-world
data frequently changes within most sequences. Figure 6.6 shows the GT OSPA cardinality for sequence 4 as
an example in combination with the estimations from the CPHD (left) and PHD (right) filters. As indicated by
the red-marked areas, the CPHD filter tends to estimate the cardinality more stable, but also reacts slowly to
cardinality changes, resulting in long periods of false cardinality estimates. It often takes multiple time steps
to adapt the estimated cardinality to the quickly changing number of objects. This is a main contribution to the
lower result compared to the PHD filter.

The KF underperforms compared to the other filters and clearly achieves the lowest results. The main dif-
ference is the poorer estimation of the cardinality. However, the KF already provides track labels within this
implementation. For an in-depth comparison, the filters have to be evaluated on a metric that includes labels,
in order to also evaluate the errors from the label extraction process of the RFS based filters, which is shown in
chapter 6.7.

In summary, this comparison shows the potential of RFS filters and specifically the PHD filter for real-world
MOT problems in automotive environments. RFS-based filters can outperform classical KF pipelines for online
tracking and are still real-time capable if Gaussian mixture implementations are used. Therefore, the GM-PHD
filter is further evaluated against a classic KF approach in the more sophisticated framework proposed in chapter
5.
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Figure 6.6: Comparison of cardinality estimation of GM-CPHD and GM-PHD filter on KITTI dataset sequence
4. Situations of the GM-CPHD filter reacting slowly to changes are marked in red.
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6.7 Fusion framework evaluation

This chapter evaluates the fusion framework proposed in chapter 5 both using the KITTI dataset and the new
truck dataset. It shows the effectiveness of the developed approaches and gives a comparison between the
KF and the GM-PHD filter in an advanced multi-sensor multi-object framework. This is in particular valuable,
since direct comparisons of both approaches are rare in literature and have not been done on multiple real-world
automotive datasets. Since the comparison is applied to multiple datasets, multiple sensor combinations and
single sensors with and without the proposed developments, it offers a rich decision basis for the usage of the
approaches in real-world systems, which is currently missing in literature. Table 6.10 shows an overview of the
performed experiments and indicates on which datasets the experiments are applied.

Various experiments are applied on the KITTI dataset. Since the dataset is widely used and well researched,
it is particularly well suited for comparisons of new approaches and the literature. Since the GT data are not
available for the test set, the training set is used for evaluation. The evaluations on the KITTI dataset focus
on the class "Car", since it is by far the most frequent in the dataset and the used detection approaches do
not have frequent misclassifications. Therefore, all detections from other classes are excluded prior tracking,
which makes the tracking process a single-class problem. After the tracking is performed, an offline filtering
step removes all tracks with less than five confirmed time-steps or an average weight or existence probability
below 0.5. The analysis on the KITTI dataset mainly uses the HOTA metric to be comparable to the literature
and the OSPA(2) metric for confirmation of the results. For all OSPA(2) calculations, a cutoff value of c = 1
is used, since this is the maximum possible distance between two objects when using the base distance GIoU.
The order p = 1 is used to not penalize outliers by a higher order and the window length of T = 10 is found
empirically.

Compared to the KITTI dataset, the truck dataset differs in several ways, as shown in chapter 6.1. Instead
of OBBs, the SRR sensors deliver L-shaped objects, while the camera and LRR deliver point objects with an
estimated width. For the Lidar sensor, the algorithm proposed in chapter 3.2.3 is used, which generates OBBs.
One major difference for the evaluation is, that the truck dataset is calculated as a multi-class problem, since
the sensors produce frequent misclassifications. Therefore, all detections of different classes are tracked with
the same filter and the classification is estimated by the framework. Due to the low number of cyclist and
pedestrian examples, the metric is still only calculated for the class "car". However, the classification accuracy
is implicitly evaluated, since misclassifications with "car" tracks are taken into account. The smaller dataset
size and the differences in labeling also have to be noted.

In contrast to the KITTI dataset analysis, where the HOTA metric on image coordinates is mainly used, the truck
dataset analysis only uses the OSPA(2) with the base metric GIoU. The reason is that some of the sensors used do
not detect bounding boxes, but only points in space, which makes the correct bounding box estimation difficult
to compare. Therefore, OSPA(2) metric is mainly used, since the GIoU includes bounding box information
combined with distance information. Here, the same hyperparameters as for the KITTI dataset with c = 1,
p = 1 and T = 10 are used. The investigations using the truck dataset also focus more on the current series
generation of perception sensors in a more general setup compared to the KITTI dataset. The used sensors
have, in general, lower detection capabilities with a higher amount of clutter compared to the highly optimized
sensors and detectors of the KITTI dataset.
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Table 6.10: Overview of the experiments on KITTI and truck dataset, alongside with their goals.

Experiment KITTI Truck Goals

Comparison of
GM-PHD and KF

✓ ✓
• Comparison of overall performance ceiling within the pro-

posed framework.

• Comparison of the performances for different single sensors
and fusion setups.

Evaluation of
sensor-based
parameter models

✓ ✓
• Evaluation of effectiveness of different levels of parameter

models.

• Comparison of influence on different sensors and datasets.
Evaluation of
detection
probability
simplification and
gating

✓ ✗
• Evaluation of performance and runtime differences between

proposed detection probability implementation and original
one.

• Experimental proof that the filter is working as expected under
proposed assumptions.

• Evaluation of performance and runtime differences using pro-
posed gating process.

• Evaluation of runtime advantages of proposed approaches.
Sensor failure
analysis

✗ ✓
• Test of influence of single sensor failure in shared FoV.

• Prove of system robustness in sensor failure scenario.

• Only applied to truck dataset due to higher amount of sensors.
Comparison of
operational
domains

✗ ✓
• Comparison of performance for different operational do-

mains.

• Applied to truck dataset due to clearly distinguishable do-
mains.

Comparison of
classification
fusion approaches

✗ ✓
• Comparison of performance using different classification fu-

sion approaches.

• Comparison of runtime of different classification fusion ap-
proaches.

• Only applied to truck dataset since this is calculated as multi-
class problem.

6.7.1 Evaluation areas

Although the evaluation with an MOT metric gives a result for the evaluation of the overall system, misleading
effects may occur. In particular, if the FoV of the sensor set and the GT does not match each other, unavoidable
errors will be created. This also complicates the comparison of sensor sets with different FoVs or the evaluation
of tracks outside the labeled area.

Therefore, a simple approach to create evaluation areas is proposed here. This allows to only evaluate specific
areas instead of the whole surrounding of the ego vehicle. Before the metric is applied, a preprocessing step
filters out both ground truth and tracking results outside the evaluation areas for each time-step. Therefore, all
objects outside the evaluation area are ignored and have no influence on the results.
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Two evaluation areas are used on the truck dataset, which are the full area shown on the left in Figure 6.8,
which is a ±90° FoV and a narrow area on the right, which has ±20° FoV, both with a maximum distance of
70 m. The full area represents the Lidars FoV which is used for the GT label generation, while the narrow area
is based on the camera and LRR sensor’s central region and is shared by all sensors except a small blind spot
of the SRRs. The evaluation is limited to 70 m since the Lidar’s point density drops to a low level above that
distance, where a correct generation of GT labels cannot be ensured.

The following procedure ensures to ignore the objects outside the evaluation area: For each of the ground truth
element, the closest track within a cutoff value using on the GIoU is found to form a pair. For these pairs, the
ground truth is the baseline for both objects to be labeled as inside or outside the evaluation area. The pairwise
approach can resolve ambiguous situations at the edges of the evaluation areas, that can occur if a track lies
outside and the corresponding ground truth inside the area or vice versa. Next, all remaining GT and track
objects are evaluated to be inside or outside the area separately.

During the experiments on the truck dataset, the full area is used except the experiments from chapter 6.7.5.
The KITTI Dataset does not require this filtering, since both detections and GT objects only occur in the shared
FoV of the camera.

Figure 6.8: Visualization of the evaluation areas. Full area on the left side, narrow area on the right side.

6.7.2 Comparison of GM-PHD and Kalman filter using real-world data

First, the overall performance of the GM-PHD and the KF is compared within the proposed framework from
chapter 5. Previous comparisons do not provide direct comparisons of these filters with real-world automotive
data in a realistic MOT framework with multiple sensors. On the KITTI dataset, both filters are evaluated in
three input scenarios: Using camera only, Lidar only and combined detections from Lidar and camera.

On the KITTI dataset, this comparison is using the HOTA metric to be comparable to the literature. Figure
6.9 shows the overall HOTA performance over the 21 sequences of the KITTI tracking training set on the
class "Car" in image coordinates similar to the results on the KITTI leaderboard. The evaluation shows that
the HOTA performance of the GM-PHD filter is higher for Lidar only and fused data. For camera only data,
however, the KF performs slightly better. A possible explanation is the low amount of clutter in the camera
data, which minimizes the chance of false associations and increases the performance of the KF.

The results of the fused tracker are in the range of the top ten KITTI leaderboard (07/2022) of the multi-object
tracking challenge and comes close to the HOTA of 77.80 % from Wu et al. (2022), which uses a complex data
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Figure 6.9: Comparison of GM-PHD and KF using HOTA metric on the KITTI dataset.

association scheme in combination with a KF. The proposed GM-PHD achieves a similar result, but is much
more general and can be easily applied to other applications and sensor setups.

When analyzing the HOTA sub-metrics in Figure 6.10, it is noticeable that the spatial alignment represented by
the localization accuracy (LocA) is comparable for both filters. Therefore, the state estimation of the approaches
performs on a similar level, while the differences in the results are originated in the existence estimation and
the track continuity. There are noticeable differences in the association accuracy (AssA) sub-metric and the
detection accuracy (DetA). Therefore, the existence estimation and the track continuity seem to be the main
advantage of the GM-PHD filter compared to the KF. This is no surprise, since it is estimated on a global basis
for the GM-PHD filter compared to the separate estimation of the KF.

Figure 6.10: Comparison of GM-PHD and KF using the HOTA submetrics on the KITTI dataset for deeper
insight.

The performance advantage of the GM-PHD filter is confirmed by an analysis using the OSPA(2) metric in
combination with the GIoU base metric on the BEV of the OBBs. For a better visual comparison to the HOTA
metric, a OSPA(2) score of 1 − OSPA(2) is used in Figure 6.11. It confirms the performance advantage of
the GM-PHD filter in the Lidar and fusion scenario, with the slight advantage of the KF for the camera only
scenario.

Similar experiments are also conducted using the truck dataset with multiple setups. These include the single
sensor performances and their fusion. Since the GT labels are generated based on the Lidar raw data, the
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Figure 6.11: Comparison of GM-PHD and KF using the mean OSPA(2) score on the KITTI dataset. Displayed
as 1-OSPA(2) for visual comparison to HOTA.

fusion of all sensors except the Lidar is evaluated as well. The OSPA(2) with GIoU as base metric is used for
evaluation.

All tested setups use the developed parameter model for the detection probability, as well as the proposed
Dempster-Shafer classification fusion method from chapter 5.6. As shown by Figure 6.12, the GM-PHD filter
with constant models for detection probability and clutter density outperforms the KF in most of the setups.
The LRR and camera setups are the only ones, where the KF achieves the higher scores. These sensors detect a
low amount of objects with low clutter, which is easier to handle for association schemes. Similar to the KITTI
dataset, a noticeable margin can be found for the fusion situations, where the GM-PHD filter outperforms the
KF.

It must be noted that this experiment is meant to compare the tracking and fusion capabilities of the GM-PHD
and the KF. Due to different FoVs, different object representations and capabilities in classification, it does not
make sense to compare individual sensors (e.g. LRR vs. camera) based on the presented results.

Overall, the GM-PHD filter implementation achieves higher scores on the KITTI dataset in the comparison,
when comparing the Lidar only and fusion results using both the HOTA and OSPA(2) metric. The experiments
on the truck dataset confirm the ones from the KITTI dataset, where the GM-PHD outperforms the KF in most
setups, in particular the fusion setups. In certain configurations with a single sensor, the KF may offer superior
performance, but in the majority of cases and especially in fusion setups, the GM-PHD filter proves to be the
more effective choice. Therefore, the proposed GM-PHD filter should be favored in such a feature level fusion
system.
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Figure 6.12: Comparison of GM-PHD and KF using the OSPA(2) metric on the truck dataset with different
sensor combinations.

6.7.3 Evaluation of sensor-based parameter models

The sensor-based parameter models developed in chapter 5.5 are tested and compared to the standard im-
plementation with constant values for the GM-PHD filter. In this comparison, the influence of the detection
probability and clutter density models are investigated on the KITTI dataset and the detection probability model
in addition on the truck dataset. Both the detection probability model and the clutter density model consist of
multiple parts, which are the distance dependency, the On/Off road dependency and the operational domain
dependency. In order to measure the influence of each part of the model separately, the functions are tested
separately and in combination. Note, that the parameters are estimated using the same dataset as used for the
test, since no additional data source is available with GT information.

First, the comparison is done using the KITTI dataset. Figure 6.13 shows the HOTA results of the constant
model compared to the different parts of the detection probability model and the combination of all of them.
The results are provided for the camera only, Lidar only and the fused situation. The figure makes clear, that the
sensor-based parameter models can improve the results for the camera setup compared to the constant model.
However, the improvements are minimal for the Lidar only and the fused situation.

Figure 6.13: Comparison of detection probability model impact on HOTA results of the KITTI dataset.
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Figure 6.15: Influence of combined parameter models on HOTA results of the KITTI dataset.

A possible explanation is the good overall quality of the Lidar detections for the whole observation space,
which does not need such detailed models. Since the quality of the Lidar measurements in terms of detection
probability and localization accuracy is higher compared to the camera, it is also the dominant detector for the
fused results. For the camera only situation, the developed models lead to bigger improvements.

A similar situation is shown for the clutter density model in Figure 6.14. The advanced clutter density models
can also lead to small gains in most situations. The biggest improvement is also achieved for the camera only
situations. However, the improvements are smaller compared to the detection probability model.

In Figure 6.15, a comparison of the constant model to the combination of all detection probability models and
clutter density models is shown for camera only, Lidar only and fusion situation. It gets clear, that the overall
combination improves the result in all situations, while the biggest improvement is achieved for the camera
only situation. For the Lidar and fused results, the improvements are small in comparison.

Figure 6.14: Comparison of clutter density model impact on HOTA results of the KITTI dataset.
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Figure 6.16: Influence of distance-depending detection probability model on the truck dataset.

The following experiments show the influence of the parameter model on the truck dataset. In contrast to the
KITTI dataset, only a reduced model that purely depends on the distance and FoV is used for both detection
probability and clutter density, due to the much lower amount of data. For future datasets with more data
available, other parts such as the On/Off road influence can be included as well. When applying the distance
model, the results increase for most of the single sensor cases and by a substantial amount for the fused case, as
shown by Figure 6.16. In general, the influence of the clutter density model is small compared to the detection
probability and even shows a slight negative effect on the LRR only setup. The distance-based detection
probability allows a correct fusion of sensors, that share a similar radial FoV but have different capabilities
regarding distance. Note, that even the constant model used here does already incorporate the FoV properties
of the sensor, since this is a prerequisite for a working fusion of partially non-overlapping FoVs. Otherwise,
the results would drop dramatically due to a wrong estimation of the detection probability outside the FoV of a
sensor.

Overall, the sensor-based parameter models show the potential to improve tracking results, but the effectiveness
highly depends on the sensor setup and parameter type. Even though the clutter density models can improve
the results, their influence is small for both tested datasets. The detection probability model can achieve a
higher positive influence on both datasets. For heterogeneous sensor setups of lower quality, such as used by
the truck dataset, in particular the distance-depending detection model shows benefits. Here, the differences in
the detection capabilities between sensors are greater and therefore need to be modeled accordingly. However,
the improvement is small for situations with high-quality detectors that deliver good and homogeneous results
over the whole observation space, like for the KITTI dataset. Note, that the sensor-based parameter models
also have the potential to increase the accuracy of the KF based implementation in a similar manner.

6.7.4 Comparison of the proposed GM-PHD implementation to original implementation

The implementation proposed in chapter 5.7 differs from the original implementation proposed by Vo and Ma
(2006) and Clark et al. (2006) at the following points: As discussed in chapter 5.5.1.1, the implementation of
the detection probability uses assumptions and simplifies the process to reduce the runtime and to allow the
use of sensor-based parameter models. In addition, a gating process is introduced as shown in chapter 5.7.
Here, the influences of these implementation details are investigated to prove that the filter is still functional for
automotive applications.
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Table 6.11: Comparison of runtime and HOTA for different gating distances.

HOTA in % Runtime in ms

Kalman with gate γDA = 5 74.65 0.381
GM-PHD with gate γDA = 5 76.70 0.704
GM-PHD with gate γDA = 15 76.69 0.757
GM-PHD without gate 76.69 1.582

First, the proposed gating process is evaluated. Table 6.11 compares the average runtime for one prediction
and update step, as well as the HOTA result for different gate distances. The Lidar only situation with constant
parameter models is used for comparison. The KF is included for the runtime comparison as well. The maxi-
mum number of Gaussian components for the prune process is set to 1000 for this test. The experiments were
performed using a computer with an Intel Core I7-9700K CPU. As shown by the comparison, the GM-PHD
filter with a gate threshold of γDA = 5 achieves a similar HOTA score while reducing the runtime by a factor
of 2. The KF with a gate of 5 needs approximately half the runtime compared to the GM-PHD filter. Note, that
these values may vary with different implementations or different input data.

In addition, the proposed detection probability implementation of the distance-depending probability model
is compared to the original implementation from Vo and Ma (2006), which uses a mixture model for the
detection probability. For the mixture model of the detection probability, seven Gaussian components are used
and a numerical optimization with squared distance is used to fit the components to the distance model. The
visualization of the two models is shown in Figure 5.12 of chapter 5.5.1.2. Table 6.12 compares the results
of both implementations for the Lidar only situation on the KITTI dataset. Both the combination with and
without gating are tested. As shown by the table, the runtimes are massively reduced using the proposed
implementation, while the HOTA results even increase.

As shown by both the experiments, the HOTA results do not suffer from the simplifications, while the gains in
runtime are significant. Both measures combined can speed up the computation by a factor of approximately
20 in our exemplary situation. It is important to note, that while the simplifications seem to work well in the
tested real-world scenarios, it is not given, that the implementations will work in all situations.

Table 6.12: Comparison of runtime and HOTA for exponential mixture and proposed detection probability
model.

HOTA in % Runtime in ms

Proposed distance model with gate γDA = 5 76.86 0.715
Original mixture model with gate γDA = 5 75.12 7.313
Proposed distance model without gate 76.84 1.629
Original mixture model without gate 75.81 15.015

6.7.5 Sensor failure analysis

In real-world scenarios, sensors may become damaged or fail. In such situations, the MOT should continue to
work as good as possible without adjustments. The influence of the failure of individual sensors is shown on
the fusion results for the truck dataset with the GM-PHD filter, since multiple sensors have overlapping FoVs
here. In this experiment, the Lidar is excluded since it is none of the current generation sensors and therefore
achieves much higher accuracies. Here, the narrow evaluation area is used since sensors are directly compared
to each other and this area is shared by all of them.
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The result of the fusion is calculated, excluding one sensor at a time. As shown in Figure 6.17, the results of
omitting single individual sensors lead to performance degradation, but the system remains operational, and the
overall scores still exceed the performances of the best single sensor, which is the left SRR. Note, that these
results only apply for the narrow evaluation area. This is also the reason, why the score from the Lidar missing
scenario here differs from the previous evaluation in Figure 6.12 where the full evaluation area is used.

The results also indicate the influence of the different single sensors on the overall result: The influence of
the SRR left is the highest, since the performance in case of deactivating it for the fusion drops the most.
In contrast, the influence of the LRR and camera are lower. One reason is the geometrical model of a point
and width delivered by these sensors. Therefore, they do not generate benefit to the bounding box dimension
estimation, which is part of the evaluation. In addition, the strengths of the LRR in higher distances are not
evaluated due to the limited distance of 70 m. The influence of the right SRR is smaller in the driving examples,
since most relevant objects are occurring on the left side in right-hand traffic.

Figure 6.17: Sensor failure analysis with different sensors missing, using the narrow evaluation window on the
truck dataset.

6.7.6 Comparison of performance in different operational domains

Since the truck is operating in different operational domains, they are evaluated separately with the GM-PHD
filter. The dataset consists of a highway scene, an urban scene and a rural scene, which are compared here.
As shown by Figure 6.18, the average OSPA(2) result is much better for the highway, exceeding the ones from
the urban and rural scenes. This can be explained by the cleaner environment with fewer reflections that create
clutter for Lidar and radar and simpler situations to learn for machine learning approaches.

This result underlines the functional safety approach of dividing autonomous driving into different levels, since
even from a tracking and fusion perspective, some situations work better than others.

6.7.7 Comparison of classification approaches

The different classification approaches proposed in chapter 5.6 are compared to each other using the fusion
situation of all sensors with the GM-PHD filter. The OSPA(2) result is shown in Figure 6.19 and clearly shows
the advantage of the Dempster-Shafer classification fusion over the other approaches. Although it is a simple
approach, the voting scheme achieves the second-highest result in this experiment. However, the influence of
the classification method is relatively low compared to the influence of other factors, such as a missing sensor.
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Figure 6.18: Comparison of OSPA(2) results in different ODDs of the truck dataset.

Overall, the Dempster-Shafer classification fusion should be used when maximum accuracy is desired, while
the Voting-Scheme should be used when focusing on a low complexity.

Figure 6.19: Comparison of different classification approaches on Fused Truck dataset with GM-PHD filter.
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7 Conclusion and future work

The field of environment perception is subject to constant change due to ongoing research, which is driven
in particular by modern developments in the field of neural networks. In the context of this thesis, a wide
variety of detection, tracking, and fusion approaches for different applications have been discussed, developed,
implemented and compared. Overall, a full framework for multi-sensor multi-object detection and tracking
was proposed, that offers compatibility with different current and next generation sensor setups with different
object detection approaches and supports both the KF and GM-PHD filter, as well as multiple classification
fusion schemes. This allows a comparison of the KF and GM-PHD in the same framework on real-world
data provided by the KITTI dataset and a newly recorded truck dataset, which was not possible previously.
In addition, several improvements for the GM-PHD filter are developed and tested that enable it’s usage in
real-world automotive applications.

7.1 Conclusion

The methods developed can be used to improve and expand current-generation systems. In particular, the
following conclusions can be drawn with regard to ADAS systems. Note that these conclusions only apply to
the situations and experiments carried out in this thesis:

• Lidar-based detection methods can improve environment perception. The developed two-stage approach
provides a safe and accurate approach to object detection, achieving an mAP of 79.33 % on the KITTI
3D detection benchmark. The unclassified recall of 96.53% shows that a high percentage of objects can
be correctly detected even if the NN fails to classify it correctly, which leads to advantages in terms of
safety.

• Monocular cameras in combination with neural networks and projection enable accurate object detection
at close range for downward looking applications for trucks despite the cabin movement, achieving an
mAP of 95.4 % using 2D image coordinates and a mAP of 45.28% using 3D OBBs. The average distance
error of 0.185 m shows that the projection method offers good accuracy. Overall, this approach creates a
new possibility for detecting objects at close range for trucks.

• The developed truck dataset with current generation of sensors enables situation analysis and evaluation
of detection and tracking algorithms for trucks in real-world scenarios.

• The developed framework for multi-sensor multi-object tracking is a universal, sensor-independent ap-
proach that enables the use of different multi-object filters and classification fusion approaches. The
framework works with both Kalman and GM-PHD filter implementations and is tested using both the
KITTI dataset and the truck dataset. Most importantly, it enables a direct comparison of the filters on
real-world data.

• The GM-PHD filter can outperform the Kalman filter in most situations on both the KITTI dataset and
the truck dataset, but in particular in fusion situations: The GM-PHD filter achieves a HOTA score of
77.11 % compared to the 73.56% of the KF on the KITTI dataset. On the truck dataset, the GM-PHD
filter achieves a 1-OSPA(2) score of 0.36 compared to 0.33 of the KF for fused data. The KF can only
achieve better results for scenarios with single sensors and few detections, such as camera only.

• The sensor-based parameter models provide an improvement of the result in most situations for the GM-
PHD filter on the KITTI and the truck dataset. For good and homogeneous detection situations, the
improvements are only marginal, while for more heterogeneous setups, like on the truck dataset, the
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improvements can be higher. In the fusion situation, a 1-OSPA(2) result of 0.40 compared to 0.36 with a
constant model is achieved on the truck dataset.

• The developed implementation of the GM-PHD filter that includes gating and the proposed sensor-based
parameter models can reduce the runtime significantly. Compared to a reference implementation without
gating and with a mixture model implementation for the detection probability, the runtime is reduced by
a factor of more than 20 while slightly increasing the HOTA score.

• The developed GM-PHD implementation uses tags in combination with a track extraction scheme to
preserve the track’s unique IDs, which enables the usage of the GM-PHD filter in real-world applications
for tracking.

• Using the developed spatial measurement matching algorithm, a MOT with detections of different geo-
metric objects, like OBBs, point objects or L-shapes, can be realized.

• The GM-PHD-based implementation remains operable even when individual sensors fail. For each single
sensor failure, the fusion result of the remaining sensors is better than the best single sensor.

• The MOT results on highways are higher compared to rural and urban scenarios. In this scenario, less
clutter affects the tracking.

• The proposed integration of the classification to the GM-PHD is a new and elegant way of propagating
this property within a MOT framework, and is necessary for real-world applications.

• The Dempster-Shafer fusion of classification achieves the best MOT results with a 1-OSPA(2) score of
0.40 compared to 0.39 of the voting scheme, which achieves the second-highest score but is much simpler.

Overall, the proposed multi-sensor multi-object framework with the GM-PHD filter using the proposed adap-
tations and the Dempster-Shafer classification fusion can outperform current KF-based frameworks for truck
applications. Such a framework can therefore be recommended in particular for heterogeneous setups with
different sensors that have different capabilities. In addition, the proposed framework is completely versatile
usable, which is in particular interesting for truck applications, since damaged sensors or different sensor setups
and mounting positions can be used with the same software stack.

7.2 Future work

The truck dataset used in this thesis covers three scenarios of limited length. In future analysis, a larger truck
dataset with a bigger variety of operational domains, weather, illumination, and places should be used to verify
the results. In addition, this can help to improve the filter parameters, the detection results and enable the
development of more complex parameter models.

The current GM-PHD implementation does ignore the spawn of targets in the prediction step. A spawn model
can be developed for the filter to model spawn events that naturally happen in real-world scenarios, such as a
driver getting out of a car, and to resolve under-segmented objects.

The current implementation of the GM-PHD filter uses the mechanism of label tags to propagate the track ID.
However, other developments in the field of labeled RFS filters, like the Generalized Labeled Multi Bernoulli
Filter (Vo and Vo 2013) implicitly handle this issue. Therefore, such a filter could be included in the comparison
in addition.

In general, environmental detection, and therefore also MOT, will continue to be the subject of research and
development in the coming years, as better and better ADAS and AD systems are pursued. The trend here
shows an ever-increasing proportion of NNs, which currently mainly affects detection. At some point, parts of
tracking could also be taken over by NN, which should then be compared with the methods presented here.
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ACC Advanced Cruise Control
AD Autonomous Driving
ADAS Advanced Driver Assistance Systems
AEBS Advanced Emergency Braking System
AMCW Amplitude Modulated Continuous Wave
AP Average Precision
BEV Bird’s Eye View
BSIS Blind Spot Information System
CA Constant Acceleration
CBMeMBer Cardinality Balanced Multi Bernoulli Filter
CNN Convolutional Neural Network
CPHD Cardinalized Probability Hypothesis Density
CTRA Constant Turn Rate Acceleration
DA Data Association
DST Dempster-Shafer Theory
EKF Extended Kalman Filter
FISST Finite-Set Statistics
FMCW Frequency Modulated Continuous Wave
FN False Negative
FNA False Negative Association
FoV Field of View
FP False Positive
FPA False Positive Association
GIoU Generalized Intersection over Union
GM-PHD Gaussian Mixture Probability Hypothesis Density
GNNDA Global Nearest Neighbor Data Association
GNSS Global Navigation Satellite System
GSR General Safety Regulation
GT Ground Truth
HOTA Higher Order Tracking Accuracy
ICP Iterative Closest Point
IID Independent Identically Distributed
IMM Interacting Multiple Model
IMU Inertial Measurement Units
IoU Intersection over Union
JPDAF Joint Probabilistic Data Association Filter
KF Kalman Filter
KLD Kullback-Leiber Divergence
LRR Long Range Radar
LSTM Long Short-Term Memory
mAP mean Average Precision
MEMS Micro-Electromechanical Systems
MHT Multi Hypothesis Tracker
MLP Multi Layer Perceptrons
MOIS Moving Off Information System
MOT Multi-Object Tracking
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MOTA Multiple Object Tracking Accuracy
MRR Medium Range Radar
MVFE Modified Voxel Feature Encoder
NN Neural Network
NNDA Nearest Neighbor Data Association
OBB Oriented Bounding Box
ODD Operational Design Domains
OMAT Optimal Mass Transfer
OSPA Optimal Sub-Pattern Assignment
OSPA(2) Second Order Optimal Sub-Pattern Assignment
PDAF Probabilistic Data Association Filter
PDF Probability Density Function
PHD Probability Hypothesis Density
RANSAC Random Sample Consensus
ReLU Rectified Linear Unit
RFS Random Finite Set
SAE Society of Automotive Engineers
SMC Sequential Monte Carlo
SRR Short Range Radar
STC Stanford Track Collection
SVD Singular Value Decomposition
SVM Support Vector Machine
ToF Time of Flight
TP True Positive
TPA True Positive Association
UKF Unscented Kalman Filter
VCH Visible Convex Hull
VRU Vulnerable Road User
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