
   Ausschuss Geodäsie (DGK)

        der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 955

Duo Wang

Deep Learning Approaches for GNSS

and InSAR Geodetic Modeling

München 2025

Verlag der Bayerischen Akademie der Wissenschaften, München

ISSN 0065-5325 ISBN 978-3-7696-5367-0





   Ausschuss Geodäsie (DGK)

        der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 955

Deep Learning Approaches for GNSS

and InSAR Geodetic Modeling

 Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

bei der KIT Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

des Karlsruher Instituts für Technologie (KIT)

eingereichte Dissertation

von

M.Sc. Duo Wang

Geb. in Beijing

München 2025

Verlag der Bayerischen Akademie der Wissenschaften, München

ISSN 0065-5325 ISBN 978-3-7696-5367-0



Adresse des Ausschusses Geodäsie (DGK)
der Bayerischen Akademie der Wissenschaften:

Ausschuss Geodäsie (DGK) der Bayerischen Akademie der Wissenschaften

Alfons-Goppel-Straße 11    D – 80 539 München

Telefon +49 – 89 – 23 031 1113    Telefax +49 – 89 – 23 031 - 1283 / - 1100
e-mail post@dgk.badw.de    http://www.dgk.badw.de

Referent: Prof. Dr.-Ing. Hansjörg Kutterer 

Korreferentin: Prof. Dr. Benedikt Soja 

Tag der mündlichen Prüfung: 26.02.2025

Diese Dissertation ist auf dem Server des Ausschusses Geodäsie (DGK)
der Bayerischen Akademie der Wissenschaften unter <http://dgk.badw.de/>
sowie auf dem Server des Karlsruher Instituts für Technologie (KIT) unter

<https://doi.org/10.5445/IR/1000181333> elektronisch publiziert

© 2025 Ausschuss Geodäsie (DGK) der Bayerischen Akademie der Wissenschaften, München

Alle Rechte vorbehalten. Ohne Genehmigung der Herausgeber ist es auch nicht gestattet,
die Veröffentlichung oder Teile daraus zu vervielfältigen.

ISSN 0065-5325 ISBN 978-3-7696-5367-0



 

I 

 

Abstract 

 
Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar 

(InSAR) are crucial geodetic technologies that utilize satellite data to precisely monitor the 

Earth's surface. Both methods rely on microwave signals emitted by satellites, enabling the 

detection of activities on the Earth’s surface and within the atmosphere. However, when 

processing these signals, it is inevitable to introduce external models to extract the parts of the 

signals that are effective for geodetic observation. Therefore, the accuracy and efficiency of 

modeling have become important factors that directly affect these geodetic methods, and have 

also become central concerns within the geodetic research community. 

 

Traditionally, modeling of GNSS and InSAR has depended on external data, such as Numerical 

Weather Models (NWM), or statistical and filtering approaches. These traditional methods, 

however, often suffer from limitations in terms of accuracy, spatial resolution, and 

computational efficiency. Deep learning, a data-driven approach within artificial intelligence, 

offers advanced nonlinear modeling capabilities and has shown significant promise in handling 

spatio-temporal geodata. This thesis focuses on two key applications of deep learning for 

geodesy: Zenith Tropospheric Delay (ZTD) time series modeling and Distributed Scatterer (DS) 

identification and prediction.  

 

For tropospheric delay modeling, this study introduces a novel deep learning framework, called 

Gaussian Mixed Long Short-Term Memory Network (GM-LSTM), which utilizes Bi-LSTM to 

capture the Zenith Wet Delay (ZWD) patterns from GNSS observations and correct ZWD 

estimates produced by NWM ray tracing. A key contribution of this research is the development 

of the first deep learning-based ZTD estimation algorithm that integrates geodetic background 

knowledge. Compared to traditional methods, such as ERA5 ray tracing, VMF3, and 

GACOS—known for centimeter-level errors—and general deep learning methods like DNN 

lacking geodetic context, the GM-LSTM framework was validated across eight distinct latitude 

regions in Europe, achieving an average RMSE of 4.6 mm. This establishes GM-LSTM as a 

state-of-the-art solution for ZTD modeling. Furthermore, GM-LSTM introduces the use of 

probability density to describe ZWD, effectively accounting for spatial uncertainties. 

Meteorological data confirm that GM-LSTM can accurately reflect uncertainties due to 

spatially variable rainfall events. When trained on homogeneous data, the model excels in 

predicting ZTD during heavy rainfall, outperforming other methods. 

 

In addressing DS identification and prediction, this thesis presents the Distributed Scatterer 

Prediction Network (DSPN), a convolutional neural network designed to predict DS candidates 

from a pair of polarimetric SAR images. The primary contribution of DSPN lies in significantly 

accelerating the traditional InSAR deformation analysis without sacrificing accuracy. This 

research demonstrates, for the first time, that deep learning can accurately identify DS 

candidates at minimal computational cost before time-consuming preprocessing steps, thereby 

reducing overall computational demands and enhancing the efficiency of InSAR workflows. 

 

This study highlights the potential of deep learning in geodesy by addressing two key modeling 

challenges and emphasizes the importance of combining geodetic domain knowledge with deep 

learning frameworks. This combination not only enhances the interpretability of the model but 

also improves performance, and is expected to open up new approaches to geodetic modeling 

practice. 
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Zusammenfassung 

 
Globale Satellitennavigationssysteme (GNSS) und Interferometrisches Radar mit Synthetischer 

Apertur (InSAR) sind wichtige geodätische Technologien, die Satellitendaten nutzen, um die 

Erdoberfläche präzise zu überwachen. Beide Methoden basieren auf von Satelliten 

ausgesandten Mikrowellensignalen, die die Erfassung von Aktivitäten auf der Erdoberfläche 

und innerhalb der Atmosphäre ermöglichen. Bei der Verarbeitung dieser Signale ist es jedoch 

unvermeidlich, externe Modelle einzuführen, um die für geodätische Beobachtungen 

relevanten Signalanteile zu extrahieren. Somit sind die Genauigkeit und Effizienz der 

Modellierung zu wichtigen Faktoren geworden, die sich auf diese geodätischen Methoden 

unmittelbar auswirken, und stellen auch zentrale Gegenstände innerhalb der geodätischen 

Forschungsgemeinschaft dar. 

 

Herkömmlich basierte die Modellierung in GNSS und InSAR auf externen Daten, wie denen 

von numerischen Wettermodellen (NWM), oder auf statistischen und Filteransätzen. Diese 

herkömmlichen Methoden haben jedoch oft Unzulänglichkeiten in Bezug auf Genauigkeit, 

räumliche Auflösung und Recheneffizienz. Deep Learning, ein datengetriebener Ansatz aus 

dem Bereich der Künstlichen Intelligenz, bietet die Möglichkeit einer fortschrittlichen. 

nichtlinearen Modellierung und hat sich als vielversprechend in der Verarbeitung 

raumzeitlicher Geodaten erwiesen. Die vorliegende Arbeit konzentriert sich auf zwei 

Schlüsselanwendungen von Deep Learning in der Geodäsie: die Modellierung der Zenith 

Tropospheric Delay (ZTD) und die Identifikation und Vorhersage von Distributed Scatterern 

(DS). 

 

Für die Modellierung der troposphärischen Verzögerung führt diese Studie ein neuartiges Deep-

Learning-Framework ein, genannt Gaussian Mixed Long Short-Term Memory Network (GM-

LSTM), das Bi-LSTM nutzt, um Muster des Zenith Wet Delay (ZWD) aus GNSS-

Beobachtungen zu erfassen und ZWD-Schätzungen zu korrigieren, die durch Strahlverfolgung 

aus Daten von NWM erzeugt wurden. Ein wesentlicher Beitrag dieser Forschung ist die 

Entwicklung des ersten auf Deep Learning basierenden ZTD-Schätzalgorithmus, der 

geodätisches Kontextwissen integriert. Im Vergleich zu traditionellen Methoden, wie der 

Strahlverfolgung basierend auf ERA5, VMF3 und GACOS — die bekannterweise Fehler im 

Zentimeterbereich aufweisen — und allgemeinen Deep-Learning-Methoden wie DNN, die kein 

geodätisches Wissen einfließen lassen, wurde das GM-LSTM-Framework für acht 

verschiedene Breitengrade in Europa validiert und erzielte dabei einen durchschnittlichen 

RMSE von 4,6 mm. Dies erweist GM-LSTM als eine hochgenaue Lösung für die ZTD-

Modellierung. Methodisch führt GM-LSTM die Nutzung von Wahrscheinlichkeitsdichten bei 

der Schätzung von ZWD ein, was es erlaubt, räumliche Unsicherheiten effektiv zu 

berücksichtigen. Meteorologische Daten bestätigen, dass GM-LSTM Unsicherheiten aufgrund 

räumlich variabler Regenereignisse genau widerspiegeln kann. Bei homogener Datenbasis 

übertrifft das Modell andere Methoden bei der Vorhersage von ZTD während starker Regenfälle. 

 

Im Bereich der DS-Identifikation und -Vorhersage stellt diese Arbeit das Distributed Scatterer 

Prediction Network (DSPN) vor, ein Convolutional Neural Network, das entwickelt wurde, um 

DS-Kandidaten aus einem Paar polarimetrischer SAR-Bilder vorherzusagen. Der Hauptbeitrag 

von DSPN liegt in der signifikanten Beschleunigung der traditionellen InSAR-

Deformationsanalyse, ohne dabei an Genauigkeit einzubüßen. Diese Forschung zeigt zum 
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ersten Mal, dass Deep Learning DS-Kandidaten mit minimalem Rechenaufwand genau 

identifizieren kann, bevor zeitaufwändige Vorverarbeitungsschritte durchgeführt werden. 

Dadurch werden die Gesamtrechenanforderungen reduziert und die Effizienz der InSAR-

Arbeitsabläufe verbessert. 

 

Die vorliegende Studie beleuchtet das Potenzial von Deep Learning in der Geodäsie, indem sie 

zwei zentrale Herausforderungen der Modellierung behandelt und die Bedeutung der 

Kombination von geodätischem Fachwissen mit Deep Learning-Rahmenwerken herausstellt. 

Die Kombination verbessert nicht nur die Interpretierbarkeit der Modelle, sondern auch ihre 

Leistung und dürfte neue Ansätze für die Praxis der geodätischen Modellierung eröffnen. 
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1. Introduction 

1.1. Motivation 

 

High-precision and large-scale Earth observation is the cornerstone of geodetic science, 

especially in the fields of spaceborne geodesy and remote sensing. Comprehensive analysis and 

interpretation of signals acquired by satellite sensors, coupled with data from a global observing 

network, can provide insights into earth surface and atmospheric changes. This understanding 

holds paramount significance within environmental and earth sciences as well as engineering 

disciplines. Its irreplaceable role extends to the applications of geohazard assessment, 

engineering measurements, atmospheric monitoring, and other fields. The Earth's surface 

undergoes perpetual motion, driven by natural phenomena such as earthquakes, plate tectonics, 

and volcanic activity, as well as anthropogenic activities, including mineral extraction, oil 

drilling, groundwater depletion, urban development, and civil engineering projects (Elliott et 

al., 2016; Seo et al., 2023). These motions often yield substantial impacts, predominantly 

adverse, on human society and the environment alike. Atmospheric monitoring is also critical 

to protecting human society from threats posed by phenomena such as global warming and 

extreme climate disasters. Water in the atmosphere has become a key factor that profoundly 

affects human survival. Its movements are not only closely related to the occurrence of floods 

or droughts caused by excessive or insufficient rainfall but also have a significant impact on 

the entire climate system. Given the intricate interactions within the water vapor-cloud-rain 

cycle, detecting water vapor is of critical importance for improving understanding of global 

warming and climate change dynamics, as it directly affects the redistribution of energy in the 

Earth's atmosphere (Worden et al., 2007; Trenberth et al., 2003). 

 

Despite their distinct original purposes, two disparate spaceborne microwave remote sensing 

technologies, namely Global Navigation Satellite Systems (GNSS) and Interferometric 

Synthetic Aperture Radar (InSAR), serve as invaluable geodetic instruments for earth 

observation. Initially focused on precise positioning and navigation applications, GNSS 

technology has evolved significantly over time. With the establishment of Continuously 

Operating Reference Station (CORS) GNSS networks and advancements in GNSS technology, 

it has emerged as an indispensable tool for deformation measurement at monitoring stations. 

As a continuously operating precise earth observation technology, it can accurately monitor 

subtle changes in the earth's surface over time (Teunissen & Montenbruck, 2017). With the help 

of high-precision timing systems, GNSS satellites send encoded orbit and time signals through 

electromagnetic waves that propagate at the speed of light. After the signal is captured by the 

ground receiver, it can use the timing system to calculate the time it takes for the signal to 

propagate from the satellite antenna to the receiver antenna. This time multiplied by the speed 

of light can be used to know the distance of the satellite from the receiver. Since the orbit 

information of the satellite can be considered to be accurately obtained, when the receiver 

receives more than three signals transmitted by satellites at different locations at the same time, 

its three-dimensional position Information can be determined. For the CORS receiver, it can 

resolve position information every 15 seconds, thereby producing an ultra-high time resolution 

surface deformation time series.  

 

Indeed, electromagnetic waves encounter refraction as they propagate through the atmosphere, 

deviating from the straight-line distance observed in space between the satellite and the receiver. 

This atmospheric refraction introduces delays in the propagation of signals. By analyzing these 
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delayed signals, it becomes possible to derive valuable information regarding the water vapor 

content and variable electron content present in the atmosphere above the receiver. This 

capability underscores the versatility of GNSS technology, extending its utility beyond precise 

positioning and navigation applications to include atmospheric monitoring and meteorological 

studies. However, GNSS can only provide precise point observations of atmospheric activities 

above a station but cannot provide spatially continuous observation products, which limits its 

application in the meteorological field. Although the CORS network can provide station-based 

GNSS measurement products spaced tens of kilometers apart, their spatial resolution remains 

inadequate for fulfilling the requirements of large-scale surface measurements. This means that 

using GNSS to observe regional tropospheric delays and water vapor activity remains an open 

question for the geodetic community. 

 

As a complementary technology operating on the same physical principles, InSAR is indeed a 

'Radio Detection And Ranging' technology capable of observing large-scale surface 

deformation with remarkable millimeter-level accuracy (Ferretti et al., 2007). Unlike GNSS 

technology, InSAR operates by detecting changes in the sensor-to-ground distance through 

analyzing the phase difference between Synthetic Aperture Radar (SAR) acquisitions of the 

same location at different times. Since SAR operates by emitting its own microwaves and 

receiving their echoes, it allows InSAR technology to overcome limitations associated with 

receivers. This capability enables spaceborne SAR systems to conduct large-scale mapping at 

high altitudes in a single pass. For instance, the interferometric wide-swath acquisition mode 

of the Sentinel-1 SAR satellite can capture a swath of 250 km with a spatial resolution of 

5 ×  20 meters in a single image.  

 

However, the reliance on satellite revisits means that two SAR acquisitions are typically 

separated by several days. This not only constrains the temporal resolution of Earth 

observations but also introduces decorrelation issues stemming from atmospheric changes or 

alterations in ground objects. These factors can ultimately lead to solution failure in InSAR 

analysis (Hooper et al., 2007; Michaelides et al., 2019). To address this limitation and analyze 

the long-term ground deformation, researchers have developed various Multi-Temporal InSAR 

(MT-InSAR) algorithms aimed at mitigating the impact of decorrelation. One such technology 

is Persistent Scatterer Interferometry (PSI) (Ferretti et al., 2007; Hooper et al., 2007), a subtype 

of MT-InSAR. This algorithm has proven successful in monitoring the deformation of artificial 

structures by selectively identifying and processing scatterers with stable and dominant 

scattering properties. For natural targets such as wilderness, forests, farmland, bare soil, and 

rock surfaces, it's often challenging for them to exhibit a dominant signal in the scatterer cell. 

However, if a sufficiently large group of adjacent pixels can be identified sharing the same 

scattering mechanism, statistical estimation can be employed to assess the portion of noise 

responsible for decorrelation. From these properties, Distributed Scatterer Interferometry (DSI) 

technology has been developed (Even & Schulz, 2018).  

 

DSI primarily encompasses two distinct technical routes: The first approach involves utilizing 

SAR acquisition pairs that are closely spaced in both time and space to construct interferogram 

subsets. This technique is also known as Small Baseline Subset (SBAS) technology (Berardino 

et al., 2002). By leveraging redundant sets of small baseline interferograms, SBAS mitigates 

the effects of decorrelation while enhancing estimation robustness through redundancy. The 

second method involves leveraging all possible pairs of interferograms to reduce the random 

noise associated with Distributed Scatterers (DS). Subsequently, the derived DS can be treated 

similarly to Persistent Scatterers (PS) and jointly processed (Gaddes et al., 2019; Jiang et al., 

2015; Hooper, 2008; Ferretti et al., 2011). By jointly processing both PS and DS, a larger and 

denser set of scatterers can be analyzed, leading to a more robust estimation of the surface 

deformation field. While DSI offers the advantage of increasing the number of analyzable 
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scatterers, the computational cost associated with selecting these Distributed Scatterers 

Candidates (DSC) is substantial, resulting in slow processing speeds. The computational 

bottleneck of DS processing primarily occurs during its preprocessing stage, specifically in 

selecting DSC and estimating their phase triangulation coherence. This estimation necessitates 

complex nonlinear calculations, causing the DS preprocessing step to take several times longer 

than PS processing. For instance, in the case of Sentinel-1 acquisitions covering approximately 

420 km2 around the south side of volcano Etna in Sicily, Italy, even when utilizing advanced 

multi-threaded parallel computing technology, DS preprocessing can take approximately 446 

hours in an 8-thread working environment (Wang et al., 2022). Fortunately, certain ground 

covers, such as water, forests, and shadows, are not suitable candidates for DS analysis. 

Therefore, implementing appropriate pattern recognition techniques to discard these 

inappropriate points before DS preprocessing is expected to reduce DS preprocessing time and 

improve the overall processing efficiency, which makes identifying DS patterns another open 

question of concern to the geodetic community. 

 

In recent years, the advancement of GPU parallel computing technology has catalyzed the 

evolution of machine learning and artificial intelligence methodologies, furnishing powerful 

tools for addressing pattern recognition challenges. Consequently, significant strides have been 

made in domains such as computer vision and natural language processing (Goodfellow et al., 

2016; Lecun et al., 2015). In optical and multispectral remote sensing, where tasks like ground 

object classification and recognition bear resemblances to image classification and semantic 

segmentation in computer vision, deep learning techniques have been effectively leveraged (Ma 

et al., 2019; Zhu et al., 2017). These methodologies have enabled the successful classification 

of ground objects, detection of vegetation, and identification of water bodies, thereby heralding 

breakthroughs in remote sensing applications. Recently, the geodetic community has 

increasingly recognized the potential of data-driven deep learning methods in modeling and has 

begun exploring their application in geodesy, including GNSS, gravity field mass changes, 

Earth orientation parameters, and deformation monitoring. For example, Tang et al. (2024) and 

Yang & Fang (2023) used Autoformer deep learning with multilayer perceptron and generative 

adversarial network to predict the global Total Electron Content (TEC) in the ionosphere 

respectively, Shi et al. (2023) used dense neural network to generate CORS-based Zenith Total 

Delay (ZTD) dataset, Gou & Soja (2024) used convolutional neural networks convolutional 

neural networks to assimilate Total water storage anomalies with the Gravity Recovery and 

Climate Experiment (GRACE) and its follow-on GRACE-FO satellite data, Shahvandi et al. 

(2023) proposed a machine learning algorithm named ResLearner to improve the accuracy of 

rapid and predicted Earth orientation parameters. These works showcase the potential of deep 

learning in this domain. 

 

However, geodesy, with its focus on the precise measurement of the Earth, involves highly 

specialized data in both geodetic models and their applications. This is the primary distinction 

between geodetic tasks and computer vision tasks in remote sensing. For instance, in remote 

sensing, the 'Ground Truth' for object recognition can be easily obtained through manual 

labeling. In contrast, geodetic applications, such as delay estimation in GNSS solutions or DSC 

detection in InSAR processing, are highly dependent on domain-specific geodetic knowledge. 

This reliance implies that there are no standardized datasets or definitive answers for model 

training, which poses a significant challenge in adapting deep learning methods to meet the 

specific needs of geodesy. In addition, the application of AI methods in the geodetic community 

tends to rely on existing computer science algorithms, treating them as regressors or classifiers 

for geodetic tasks, often without fully integrating geodetic expertise. This lack of synergy 

between deep learning algorithms and the professional knowledge of geodesy has limited the 

further development of deep learning in geodetic applications. 
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Addressing the above two open questions respectively, this work proposes two new deep 

learning frameworks specifically designed to integrate geodetic background knowledge for 

those two tasks: GNSS tropospheric delay modeling and DSC prediction. Compared to 

traditional non-deep learning algorithms, the two proposed deep learning methods adopt data-

driven approaches, allowing them to adaptively capture the spatiotemporal patterns in GNSS 

and InSAR data. As a result, they achieve state-of-the-art performance in both tasks. More 

importantly, this study does not simply apply existing deep learning algorithms to predict 

geodetic parameters but integrates geodetic background knowledge into deep learning 

algorithms. Experimental results show that the proposed algorithms with integrating geodetic 

background knowledge in both tasks exhibit significant advantages over the standard deep 

learning model. More importantly, this study goes beyond the mere application of existing deep 

learning algorithms for predicting geodetic parameters. It incorporates geodetic background 

knowledge directly into the deep learning framework. The experimental results demonstrate 

that the proposed algorithm, supplemented with geodetic context, outperforms standard deep 

learning models across both tasks. From a geodetic modeling perspective, the two proposed 

methods offer deep learning frameworks tailored to different dimensions—space and time. 

Given the adaptability of the algorithm, it also holds significant reference value for related tasks 

such as SAR image feature extraction, InSAR atmospheric correction, and 3D water vapor field 

construction. 

 

1.2. Scientific Objectives 

 

In this thesis, the main scientific objective discussed is how to use deep learning to solve 

modeling challenges in geodetic applications, which mainly focuses on the integration of 

specialized geodetic knowledge and deep learning algorithms. Although some researchers have 

begun using deep learning methods in geodesy, e.g. Yang et al. (2021), Zhang et al. (2024), 

Klos et al. (2023), they commonly regard these deep learning models as advanced alternatives 

to traditional regressors or classifiers, using existing algorithms in the field of artificial 

intelligence to process geodetic data. While those approaches may gain the benefits offered by 

the data-driven property of the deep learning approach compared to traditional algorithms, the 

lack of domain-specific knowledge greatly limits the performance of general artificial 

intelligence algorithms. Unlike "standard problems" in computer science, such as image 

classification and segmentation or time series analysis, deep learning for geodesy is 

characterized by lacking well-defined problem specifications and standardized datasets. In 

computer science, researchers typically have access to well-defined problems and uniform 

datasets for algorithm training, which simplifies the development of solutions. In contrast, for 

geodetic modeling, there is usually no clear problem specification and fixed data set for training, 

and the process of making supervised data may significantly impact model performance and 

become one of the key parts of the solution. Furthermore, generic loss functions may not 

provide the necessary constraints to guide neural networks in learning specialized geodetic 

background knowledge for accurate modeling. This poses unique challenges for the geodetic 

community in adopting deep learning methods. 

 

In this thesis, two geodetic modeling problems –  tropospheric delay modeling and DS 

identification and prediction – are used to explore the deep learning modeling method that 

incorporates geodetic background knowledge. The main contributions of these two studies are 

summarized as follows: 

 

1. Tropospheric Delay Modeling 

This study introduces a deep learning time series modeling approach called Gaussian Mixture 
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Long Short-Term Memory Network (GM-LSTM) to extract tropospheric delay correction 

patterns from GNSS time series data. Different from traditional methods such as ray tracing or 

surface empirical models using Numerical Weather Models (NWM) and standard deep learning 

methods such as deep artificial neural networks (DNN), this work pioneered the use of the 

proposed GM-LSTM to model tropospheric delay as a probability density function which can 

measure the uncertainties caused by spatial heterogeneity. Compared to the centimeter-level 

error of traditional methods, this study achieved an average RMSE of 4.6 mm in the ZTD at 

eight different latitude areas in Europe. This level of accuracy represents a state-of-the-art 

advancement and offers important implications for applications such as InSAR atmospheric 

correction and water vapor field retrieval. Validation on meteorological data shows that the 

GM-LSTM model accurately reflects the uncertainty introduced by spatially varying rainfall 

and exhibits robust performance even under heavy rainfall conditions—a situation that 

traditional ZTD estimation techniques often struggle to address. 

 

2. Distributed Scatterer Identification and Prediction 

To address the challenge of DS identification and prediction, this thesis proposes a deep 

learning spatial modeling approach called Distributed Scatterer Prediction Network (DSPN). 

This method uses a convolutional neural network to learn the spatial pattern of DS, enabling 

the generation of high-precision DSC masks from a pair of polarimetric SAR images. The 

contribution of this work is that it applies deep learning in a novel way to predict DSC before 

preprocessing, thus addressing the time-consuming preprocessing step in DS-InSAR 

deformation analysis. More importantly, DSC, as a key intermediate product in the DS-InSAR 

processing flow, depends on the data and processing strategy. Therefore, it is not suitable for 

standard deep learning segmentation models. Although the problem can be specified to pixel-

by-pixel regression using existing convolutional neural networks with phase triangulation 

quality numbers as labels, it may overlook critical weak DSC, such as motorway pixels. To 

address this, this study introduces a unique DS pseudo-label generation strategy, as well as a 

custom network architecture and loss function that incorporates background knowledge of 

InSAR processing to learn the spatial features of DSC. Evaluations of six datasets of different 

topographic types from North Rhine-Westphalia and Sicily showed that the proposed DSPN 

method has almost no DS coverage loss and saved nearly 47% of computing time without 

sacrificing analysis accuracy. Therefore, this deep learning method has great promise for 

improving the efficiency of DS-InSAR processing. 

 

1.3. Thesis Outline 
This thesis is structured into seven chapters: 

 

Chapter 2 introduces the fundamentals of atmospheric effects in space geodesy, which 

emphasizes the measurement and estimation of tropospheric delay and its derived water vapor 

retrieval in GNSS meteorology. In this chapter, conventional methods of ZTD estimation and 

their limitations are introduced to illustrate the significance and value of developing a new 

tropospheric delay model. 

 

Chapter 3 covers the fundamental concepts of MT-InSAR, focusing on PS and DS processing 

methods based on the StaMPS approach. This chapter explains the advantages and 

disadvantages of combined PS and DS processing and explains the significance of pre-

screening DS for processing acceleration. 

 

Chapter 4 describes the basic framework of deep learning, including the execution of 
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feedforward neural networks and recurrent neural networks. The backpropagation (BP) 

algorithm used for learning and common optimizers are also introduced. This chapter doesn’t 

focus on specific network structures but focuses on introducing the necessary basic background.  

 

Chapter 5 presents the GM-LSTM, a deep learning-based model for tropospheric delay 

estimation. This chapter details the network architecture, training methodology, and the model's 

range limitations. The ZTD values generated by GM-LSTM are compared with those from 

existing methods across eight distinct latitudes and topographic regions in Europe. The chapter 

also provides a comprehensive analysis of the model's performance and applicability under 

extreme meteorological conditions. Additionally, it introduces a deep learning approach for 

generating Integrated Water Vapor (IWV) in the absence of meteorological observations and 

high-precision NWM, with test results from four different GNSS stations in Europe. 

 

Chapter 6 introduces the deep learning-based DS preprocessing acceleration algorithm DSPN 

proposed in this thesis, outlining the algorithm's workflow and training methodology. The 

method is tested on six distinct terrains in North Rhine-Westphalia and Sicily using Sentinel-1 

data to demonstrate its effectiveness. A comparison with the standard U-Net neural network 

highlights the necessity of integrating deep learning algorithms with geodetic expertise. This 

chapter provides a detailed discussion of the method's acceleration performance and examines 

potential error sources to assess the reliability of the approach. 

 

In Chapter 7, the conclusions of this thesis are summarized, and the outlook is followed for 

future work. 

 

Portions of this thesis are derived from publications published or submitted by the author. 
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2. The fundamentals of atmospheric 

effects in space geodesy 

This chapter introduces the basics of atmospheric effects relevant to space geodesy. First, the 

basic structure and composition of the atmosphere are reviewed, followed by an overview of 

the effects of the ionosphere and neutral atmosphere on microwave signals (also known as 

delays). Then, empirical models for these delays are introduced. Finally, methods for measuring 

atmospheric effects based on GNSS meteorology will be introduced, mainly including the 

measurement of the total tropospheric zenith delay and integrated water vapor inversion. Since 

this chapter emphasizes atmospheric effects and measurements, only relevant content related 

to GNSS meteorological measurements is introduced. For comprehensive literature on GNSS 

applications in geodesy, navigation, and positioning, please refer to the following handbook: 

Springer Handbook of Global Navigation Satellite Systems (Teunissen & Montenbruck, 2017). 

 

2.1. Atmospheric structure 

 

To describe the interaction between atmospheric effects and microwave signals, a basic 

introduction to the structure of the Earth's atmosphere has been provided first. The atmospheric 

composition differs significantly at different altitudes above the Earth's surface due to the 

gravitational and rotational forces exerted by the Earth. These large-scale atmospheric features 

also play a crucial role in shaping geodetic properties. Therefore, a comprehensive grasp of 

atmospheric structure and circulation within key layers is essential for accurately assessing the 

geodetic impact at different altitudes.  

 

The Earth's atmosphere can be divided into two main layers, based on altitude and electrical 

properties: the ionosphere and the neutrosphere. The ionosphere is the uppermost layer, 

extending from about 60 to 2000 km, with particles concentrated mainly between 300 and 400 

km (Bowhill, 1971; Hargreaves, 2003). It consists of electrically charged atoms or molecules 

(ions). In contrast, the neutrosphere, consisting of the troposphere, stratosphere, mesosphere, 

and part of the thermosphere, extends from the Earth's surface to the bottom of the ionosphere 

and is characterized by an electrically neutral state. 

 

The troposphere is the lowest layer of the Earth’s atmosphere and contains the largest air mass. 

Its vertical extent typically reaches up to approximately 10 km from the surface (Schindelegger 

et al., 2013), although these boundaries exhibit latitude and seasonal variations. Around 80% 

of the total atmospheric mass is in this layer. In the troposphere, the temperature decreases with 

increasing altitude, and a significant portion of the Earth's water vapor is located in this layer. 

Consequently, the troposphere is inherently unstable, serving as the primary arena for various 

meteorological phenomena. Water vapor undergoes complex processes within the troposphere. 

When vapor pressure at a particular location within the troposphere reaches saturation (also 

known as saturated vapor pressure), water vapor condenses into tiny water droplets. These 

droplets then attach to suspended aerosols (particles) in the atmosphere and eventually form 

clouds. 
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The stratosphere is located above the troposphere and is a stable layer with few clouds and 

weather phenomena. The layer exhibits temperature inversions, with temperatures gradually 

increasing with altitude due to the absorption of ultraviolet light by the ozone layer. The top of 

the stratosphere is bounded by the stratopause, which is approximately 30 km above sea level. 

This boundary marks the transition to the next atmospheric layer, the mesosphere. 

 

The mesosphere is located about 30-80 km above the Earth's surface. In this layer, the 

temperature decreases as the altitude increases. The upper part of the mesosphere has almost 

no water vapor and ionized particles, so it forms the ionosphere with the thermosphere and 

exosphere above. 

 

In the ionosphere, solar radiation impacts the atmosphere with a power density of 1370W/m2, 

and the spectrum of radiation frequencies extends from radio to X-ray frequencies (Böhm et al., 

2013). Ultraviolet photons, or photons of shorter wavelength, are capable of ionizing 

atmospheric atoms or molecules by detaching electrons during the collision. Such ionization 

events occur when solar radiation collides with gas atoms or molecules, which then absorb a 

portion of the radiation, liberating free electrons and creating positively charged ions. While 

photoionization of electromagnetic radiation is the primary source of ionization, ionization can 

also occur through interactions with energetic particles in the solar wind and cosmic rays, albeit 

on a much smaller scale (Moses, 2004). The ionized state of the ionosphere affects the 

propagation of electromagnetic waves, a phenomenon known as ionospheric refraction. This 

refraction is a key factor affecting the performance of spaceborne microwave geodetic 

techniques. 

 

2.2. Ionospheric delay in spaceborne microwave geodesy 

 

When electromagnetic waves propagate in a medium, they will be refracted, which affects their 

propagation speed and propagation path. In geodesy, the term ‘delay’ commonly refers to the 

difference between the actual propagation distance and the geometric distance due to refraction 

effects. Specifically, according to Fermat’s principle (Born et al., 2000), the propagation 

distance 𝑠𝑖𝑜𝑛 can be expressed as 

𝑠𝑖𝑜𝑛 = ∫ 𝑛𝑖𝑜𝑛𝑑𝑠,
 

𝑆𝑖𝑜𝑛
 (2.1) 

where 𝑆𝑖𝑜𝑛 is the actual path of the signal through the ionosphere, and 𝑛𝑖𝑜𝑛 is the refractive 

index of the ionosphere. And the geometric distance 𝑠0
𝑖𝑜𝑛 can be expressed as 

𝑠0
𝑖𝑜𝑛 = ∫ 𝑑𝑠0,

 

𝑆0
𝑖𝑜𝑛

 (2.2) 

where 𝑆0
𝑖𝑜𝑛 is the straight path of the signal through the ionosphere. The ionospheric delay 

∆𝑠𝑖𝑜𝑛 then can be defined as 

∆𝑠𝑖𝑜𝑛 = 𝑠𝑖𝑜𝑛 − 𝑠0
𝑖𝑜𝑛 = ∫ 𝑛𝑖𝑜𝑛𝑑𝑠 − ∫ 𝑑𝑠0.  

 

𝑆0
𝑖𝑜𝑛

  
 

𝑆𝑖𝑜𝑛

(2.3) 

The atmosphere in the ionosphere is in a plasma state, so the refractive index 𝑛𝑖𝑜𝑛 in which 

electromagnetic waves propagate can be described by the Appleton–Hartree equation 

(Helliwell, 1966), that is: 
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𝑛𝑖𝑜𝑛
2 = 1 −

𝑋(1 − 𝑋)

1 − 𝑋 −
1
2

𝑌2 sin2 𝜃 ± ((
1
2

𝑌2 sin2 𝜃)
2

+ (1 − 𝑋)3𝑌2 cos2 𝜃)

1/2
(2.4)

 

where 𝑋 =
ω𝑖

2

ω2 , 𝑌 =
ω𝐻

ω
, ω0 = 2π𝑓0 = √

𝑁𝑒𝑒
2

ϵ0𝑚𝑒
,  ω𝐻 = 2π𝑓𝐻 =

𝐵0|𝑒|

𝑚𝑒
; 𝜔 = 2𝜋𝑓  denotes 

angular frequency, ω0  denotes electron plasma frequency, ϵ0  denotes permittivity of free 

space, 𝜃 denotes angle between the ambient magnetic field vector and the wave vector, 𝑁𝑒 

denotes electron density, 𝑓 denotes wave frequency, ω𝐻 denotes electron gyro frequency, 𝐵0 

denotes ambient magnetic field strength, 𝑒 denotes electron charge and 𝑚𝑒 denotes electron 

mass. According to Tucker & Fannin (1968) and Hartmann & Leitinger (1984), assuming that 

the magnetic field is associated with the propagation direction, and sin θ ≈ 0, the refractive 

index 𝑛𝑖𝑜𝑛 can be approximated as: 

𝑛𝑖𝑜𝑛 = 1 −
𝑋

2
±

𝑋𝑌

2
cos 𝜃 −

𝑋2

8
. (2.5) 

Following Brunner & Gu (1991), the term 𝑋 and 𝑌 can be approximated as constants 𝐶𝑋 and 

𝐶𝑌 as 

𝐶𝑋 ≡
𝑒2

4π2ε𝑜𝑚𝑒
= 80.62, (2.6) 

𝐶𝑌 ≡
μ0𝑒

2π𝑚𝑒
, (2.7) 

where 𝜇0 is the permeability in vacuum. So the Eq. 2.5 can be expressed in order of 𝑓−1 as: 

𝑛𝑖𝑜𝑛 = 1 −
𝐶𝑋

2
𝑁𝑒𝑓

−2 ±
𝐶𝑋𝐶𝑌

2
𝑁𝑒𝐵0 cos θ 𝑓−3 −

𝐶𝑋
2

8
𝑁𝑒

2𝑓−4. (2.8) 

By substituting Eq. 2.8 into Eq. 2.3, the ionospheric delay ∆𝑠𝑖𝑜𝑛 then become 

∆𝑠𝑖𝑜𝑛 = −
𝐶𝑋

2𝑓2
∫ 𝑁𝑒

 

𝑆𝑖𝑜𝑛
𝑑𝑠 ±

𝐶𝑋𝐶𝑌

2𝑓3
∫ 𝑁𝑒

 

𝑆𝑖𝑜𝑛
𝐵0 cos θ  𝑑𝑠 −

𝐶𝑋
2

8𝑓4
∫ 𝑁𝑒

2
 

𝑆𝑖𝑜𝑛
𝑑𝑠 + κ, (2.9) 

where κ = ∫ 𝑑𝑠 − ∫ 𝑑𝑠0𝑆0
𝑖𝑜𝑛  

𝑆𝑖𝑜𝑛   is the curvature effect. For simplicity, when the curvature 

effect is ignored, 𝑑𝑠 = 𝑑𝑠0  and κ = 0 , in this situation, the ionospheric delay ∆𝑠𝑖𝑜𝑛  then 

become 

∆𝑠𝑖𝑜𝑛 = −
𝐶𝑋

2𝑓2
∫ 𝑁𝑒

 

𝑆0
𝑖𝑜𝑛

𝑑𝑠0 ±
𝐶𝑋𝐶𝑌

2𝑓3
∫ 𝑁𝑒

 

𝑆0
𝑖𝑜𝑛

𝐵0 cos θ  𝑑𝑠0 −
𝐶𝑋

2

8𝑓4
∫ 𝑁𝑒

2
 

𝑆0
𝑖𝑜𝑛

𝑑𝑠0. (2.10) 

According to Eq. 2.10, the ionospheric delay can be divided into first-order term (𝑓−2), second-

order term (𝑓−3) and third-order term (𝑓−4), and the first-order term usually accounts for more 

than 99% of the total ionospheric delay. E.g. for the GPS L1 band (𝑓 = 1575.42 MHz), the 

first-order delay is at ten meters level, and the second-order and third-order delays are at 

centimeter and micrometer level (Hoque & Jakowski, 2010). Even during the peak period of 

solar activity, the second-order ionospheric delay at low altitudes usually does not exceed 12 

cm, and the third-order ionospheric effect usually does not exceed 6 mm (Teunissen & 

Montenbruck, 2017). Therefore, in order to simplify the calculation, only the first-order 

ionospheric delay effect is usually considered in general applications. For the first-order 

ionospheric delay  

∆𝑠(1)
𝑖𝑜𝑛 = −

𝐶𝑋

2𝑓2
∫ 𝑁𝑒

 

𝑆0
𝑖𝑜𝑛

𝑑𝑠0, (2.11) 

define the constant factor as: 
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𝐶2 =
𝐶𝑋

2
= 40.31, (2.12) 

so the first-order delay can be seen as the liner function of Slant Total Electron Content (STEC) 

and signal frequency. The STEC is the total number of free electrons integrated along a tube of 

one-meter squared cross-section in signal propagation path, unit in 1016 electrons/𝑚2: 

𝑆𝑇𝐸𝐶 = ∫ 𝑁𝑒
𝑆0

𝑖𝑜𝑛
𝑑𝑠0. (2.13) 

There are two methods to eliminate ionospheric delay. The first is to use the TEC, expressed as 

the number of free electrons in a column with a cross-sectional area of one meter square, to 

estimate the vertical delay, and then convert it into slant direction using a mapping function. 

Since the 1980s, various TEC models have been proposed to provide TEC estimation products 

(TECmodel ), such as: Klobuchar Model (Klobuchar, 1986), NeQuick Model (Giovanni & 

Radicella, 1990), the International Reference Ionosphere (IRI) Model (Bilitza et al., 2011), and 

the Global Assimilative Ionospheric Model (GAIM) (Schunk et al., 2004). By using the Single-

Layer Model for the ionosphere (SLM), as shown in Fig. 2.1, and its mapping function, the 

TECmodel can be mapped to STEC estimation to calculate the ionospheric delay. In SLM it is 

assumed that all free electrons are concentrated in an infinitesimally thin layer above the Earth’s 

surface (Schaer, 1999). The altitude 𝐻 of this layer is usually set between 350 and 500 km, 

slightly above the altitude where the highest electron density is expected. The signal transmitted 

from the satellite to the receiver crosses the ionospheric shell in the so-called ionospheric pierce 

point (IPP). The zenith angle at the IPP 𝑧′ and the signal arrives at the ground station with 

zenith angle 𝑧 as shown in Fig. 2.1. 

 

 

Fig. 2.1 Single-layer model for the ionosphere (Todorova et al.., 2008) 

 

From the geometric relationship, it can be derived: 

sin 𝑧′ =
𝑅

𝑅 + 𝐻
sin 𝑧 , (2.14) 

where R is the mean Earth radius and 𝐻 is the height of the single layer in km. Therefore, the 

mapping function 𝐹(𝑧) which convert TEC to STEC can be defined as: 

 

𝐹(𝑧) =
1

cos(𝑧′)
=

1

√1−sin2 𝑧′
. (2.15) 

And the first-order ionospheric delay estimated by TEC model then can be written as: 
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∆𝑠𝑖𝑜𝑛 ≈ ∆𝑠(1)
𝑖𝑜𝑛 = −

40.31

𝑓2

1

√1 − sin2 𝑧′
TECmodel. (2.16) 

 

While the models mentioned above can provide an estimation of TEC, the accuracy of these 

models is influenced by a multitude of factors. These include sunspot activity, seasonal and 

diurnal variations, the paths of signal propagation, and alterations in the location of observation 

points. Consequently, procuring precise estimates of TEC poses a significant challenge. Eq. 

2.10 demonstrates that the ionospheric delay is correlated with the signal frequency. This 

correlation offers the potential for geodetic techniques supporting multi-frequency observations, 

such as GNSS, to eliminate the ionospheric delay by employing the signal combination at 

different frequencies. Since ionosphere-free GNSS signals are a prerequisite for accurately 

solving the tropospheric delay in the subsequent chapters, the following provides a brief 

overview of GNSS Earth observation technology and the strategy for eliminating ionospheric 

effects through the combination of dual-frequency GNSS signals. Currently, there are four 

GNSSs in operation, which are: GPS (US), GLONASS (Russia), BeiDou (China), and Galileo 

(EU). Irrespective of the GNSS variant, the satellites use signals across multiple frequencies. 

The details of these frequencies are presented in Table 2.1. 

 

Table 2.1 The frequency of in-operation GNSSs 

GPS GLONASS BeiDou Galileo 

L1 1575.42 MHz L1 1602–1615.5 MHz B1 1561.098 MHz E1 1575.46 MHz 

L2 1227.60 MHz L2 1246–1256.5 MHz B2 1207.14 MHz E6 1278.75 MHz 

L5 1176.45 MHz L3 1202.025 MHz B3 1268.52 MHz E5 1191.795 MHz 

 

By using dual-frequency GNSS signals, the dual-frequency GNSS observation equation can be 

established as follows: 

𝑃𝐿1
= s + 𝑐(δ𝑡𝑅 − δ𝑡𝑆) + Δs𝑡𝑟𝑜𝑝 + ∆𝑠𝑖𝑜𝑛(𝐿1) + 𝑐(𝑏𝑅 − 𝑏𝑆)𝐿1 + r, 

𝑃𝐿2
= s + 𝑐(δ𝑡𝑅 − δ𝑡𝑆) + Δs𝑡𝑟𝑜𝑝 + ∆𝑠𝑖𝑜𝑛(𝐿2) + 𝑐(𝑏𝑅 − 𝑏𝑆)𝐿2 + r, 

𝜑𝐿1
= s + 𝑐(δ𝑡𝑅 − δ𝑡𝑆) + Δs𝑡𝑟𝑜𝑝 − ∆𝑠𝑖𝑜𝑛(𝐿1) + λ𝐿1

𝐵𝐿1
+ r, 

𝜑𝐿2
= s + 𝑐(δ𝑡𝑅 − δ𝑡𝑆) + Δs𝑡𝑟𝑜𝑝 − ∆𝑠𝑖𝑜𝑛(𝐿2) + λ𝐿2

𝐵𝐿2
+ r, (2.17) 

where 𝑃𝐿1
, 𝑃𝐿2

 are the received pseudorange code in L1 and L2 frequency; 𝜑𝐿1
, 𝜑𝐿2

 are  the 

received signals of carrier phase in L1 and L2 frequency; 𝑠  is geometric distance between 

receiver and satellite; δ𝑡𝑅 , δ𝑡𝑆 are receiver and satellite clock offsets to the GNSS system time; 

Δs𝑡𝑟𝑜𝑝 is the delay caused by troposphere, the detail of this term will be introduced in next 

section; ∆𝑠𝑖𝑜𝑛(𝐿1), ∆𝑠𝑖𝑜𝑛(𝐿2)  are ionospheric delay with frequency L1 and L2; 𝑏𝑅 , 𝑏𝑆 rre 

frequency-dependent hardware delays of the satellite and receiver (in ns); λ𝐿1
, λ𝐿2

  are  the 

wavelength of L1 and L2 bands, 𝐵𝐿1
, 𝐵𝐿2

 are the integer carrier phase ambiguity and hardware 

biases which need to be estimated; r is the random error. Then a liner combination can be 

established as: 

𝑃1,2 = 𝑛1𝑃𝐿1 + 𝑛2𝑃𝐿2, 

𝜑1,2 = 𝑛1𝜑𝐿1 + 𝑛2𝜑𝐿2, (2.18) 

The objective is to eliminate ionospheric delay, therefore, the combination should fulfill: 

𝑛1∆𝑠𝑖𝑜𝑛(𝐿1) + 𝑛2∆𝑠𝑖𝑜𝑛(𝐿2) = 0. (2.19) 

When the 𝑛1, 𝑛2 are: 
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𝑛1 = +
𝑓𝐿1

2

𝑓𝐿1

2 − 𝑓𝐿2

2 ,    𝑛2 = −
𝑓𝐿2

2

𝑓𝐿1

2 − 𝑓𝐿2

2 , (2.20) 

and the ionospheric delay has been approximated by first-order, as Eq. 2.16 showed, Eq. 2.19 

has been fulfilled. From this, it can be obtained the “ionospheric-free” observation equation 

without using TEC estimation: 

𝑃1,2 = 𝑛1𝑃𝐿1 + 𝑛2𝑃𝐿2

= s + 𝑐(δ𝑡𝑅 − δ𝑡𝑆) + Δs𝑡𝑟𝑜𝑝 + 𝑛1𝑐(𝑏𝑅 − 𝑏𝑆)𝐿1 + 𝑛2𝑐(𝑏𝑅 − 𝑏𝑆)𝐿2 + r,
 

𝜑1,2 = 𝑛1𝜑𝐿1 + 𝑛2𝜑𝐿2 = s + 𝑐(δ𝑡𝑅 − δ𝑡𝑆) + Δs𝑡𝑟𝑜𝑝 + 𝑛1λ𝐿1
𝐵𝐿1

+ 𝑛2λ𝐿2
𝐵𝐿2

+ r. (2.21) 

It is important to note that the description "ionosphere-free" is not entirely correct as it does not 

take into account the effects of higher-order ionospheric errors or curvature. Brunner & Gu 

(1991) indicated that the higher-order terms as well as the curvature effects, are less than 0.1% 

of the total value in L-band. For an in-depth exploration of high-order ionospheric correction 

methodologies, please refer to the following papers: Brunner & Gu (1991), Hoque & Jakowski 

(2008). 

 

2.3. Tropospheric delay in spaceborne microwave 

geodesy 

 

After passing through the ionosphere, microwave signals need to pass through the neutral 

atmosphere (also called the neutrosphere) to reach the surface of the earth. In the neutrosphere, 

the propagation of the signal will be delayed just like in the ionosphere. However, the delay in 

the neutrosphere does not depend on the frequency, so it is not possible to use a dual-frequency 

combination to eliminate the tropospheric delay like in the ionosphere. Therefore, the strategy 

to eliminate the neutrosphere delay usually relies on meteorological physical models. Before 

introducing those models, it is essential to clarify the term "tropospheric delay". In fact, within 

the field of geodesy, "tropospheric delay" covers the cumulative signal delays within the neutral 

atmosphere, which includes the troposphere, stratosphere, and mesosphere. Since the 

tropospheric delay constitutes the main component, the neutrosphere delay is commonly 

referred to as "tropospheric delay". Unless otherwise specified and in accordance with geodetic 

conventions, the term "troposphere" used in subsequent sections of this article will represent 

the neutral atmosphere. 

 

Since electromagnetic waves will be refracted when passing through the troposphere, and the 

propagation speed of the signal in the atmosphere is lower than the propagation speed of light 

in a vacuum, according to Fermat’s principle, the tropospheric delay ∆𝑠𝑡𝑟𝑜𝑝 can be expressed 

in a form similar to Eq. 2.3: 

∆𝑠𝑡𝑟𝑜𝑝 = 𝑠𝑡𝑟𝑜𝑝 − 𝑠0
𝑡𝑟𝑜𝑝

= ∫ 𝑛𝑡𝑟𝑜𝑝𝑑𝑠 − ∫ 𝑑𝑠0,
 

𝑆0
𝑡𝑟𝑜𝑝

  
 

𝑆𝑡𝑟𝑜𝑝

(2.22) 

where 𝑆𝑡𝑟𝑜𝑝 , 𝑆0
𝑡𝑟𝑜𝑝

  are the actual propagation path and straight path of signal through 

troposphere, and 𝑛𝑡𝑟𝑜𝑝 is the refractive index of troposphere. In the troposphere, the refractive 

index 𝑛𝑡𝑟𝑜𝑝 is very close to 1, thus, it is convenient to use the refractivity N (in “N-units”, 

mm/km, or ppm) instead 𝑛𝑡𝑟𝑜𝑝 as: 

𝑁 = 106(𝑛𝑡𝑟𝑜𝑝 − 1). (2.23) 

In the troposphere, the abundance of hydrostatic atmospheric components is very uniform and 

constant. The wet part, water vapor, is the only component with a significant dipole moment 
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that can affect the propagation of electromagnetic waves. Therefore, based on the physical 

properties of the tropospheric components, ignoring the contribution of liquid water only in the 

millimeter range, the tropospheric refractivity can be expressed as a function of pressure, 

temperature, and humidity as: 

𝑁 = 𝑘1

𝑝d

𝑇
𝑍d

−1 + 𝑘2

𝑝w

𝑇
𝑍w

−1 + 𝑘3

𝑝w

𝑇2
𝑍w

−1 ≡ 𝐾1

𝑝d

𝑇
+ 𝐾2

𝑝w

𝑇
+ 𝐾3

𝑝w

𝑇2
, (2.24) 

where 𝑝d and 𝑝w are the pressure of dry atmosphere and wet atmosphere, 𝑍𝑑 and 𝑍𝑊 are 

the compressibility factors for dry and wet atmosphere, T is the temperature, 𝑘1, 𝑘2, 𝑘3 are the 

constants based on measurement data (Essen & Froome, 1951), and the capital 𝐾1, 𝐾2, 𝐾3 is 

used for the formulation that does not include compressibility. In order to determine the constant, 

several laboratories have conducted measurements, such as: Boudouris (1963), Thayer (1974), 

and Bevis (1994). Rüeger (2002) summarized those measurement and provide the “best average” 

values for 𝐾1 = 77.695 𝐾/ℎ𝑃𝑎,   𝐾2 = 71.97 𝐾/ℎ𝑃𝑎 , and 𝐾3 = 375406 𝐾2/ℎ𝑃𝑎 . 

Unfortunately, due to the unstable behavior of water vapor, the determination of the constants 

𝐾2 and 𝐾3 is subject to uncertainty, especially for K3, which results in Root-Mean-Square 

fluctuations of the delay of more than 6 mm worldwide. The first term in Eq. 2.24 represents 

the refractivity caused by dry atmosphere while the sum of other terms in Eq. 2.24 represents 

the refractivity due to the wet portion (water vapor). From this it can separate the delay caused 

by the dry atmosphere, also called hydrostatic delay ∆𝑠ℎ
𝑡𝑟𝑜𝑝

, and the delay caused by the wet 

air (water vapor), also called wet delay ∆𝑠𝑤
𝑡𝑟𝑜𝑝

, as shown in Eq. 2.25 and Eq. 2.26. 

∆𝑠ℎ
𝑡𝑟𝑜𝑝

= 10−6 ∫ 𝐾1

𝑝d

𝑇
𝑑𝑠,   

 

𝑆𝑡𝑟𝑜𝑝

(2.25) 

∆𝑠𝑤
𝑡𝑟𝑜𝑝

= 10−6 ∫ 𝐾2

𝑝w

𝑇
+ 𝐾3

𝑝w

𝑇2
.   

 

𝑆𝑡𝑟𝑜𝑝

(2.26) 

Therefore, Eq. 2.22 can be written as: 

∆𝑠𝑡𝑟𝑜𝑝 = ∫ 𝑛𝑡𝑟𝑜𝑝𝑑𝑠 − ∫ 𝑑𝑠0  = 10−6 ∫ 𝑁𝑑𝑠 + ∫ 𝑑𝑠  
 

𝑆𝑡𝑟𝑜𝑝
− ∫ 𝑑𝑠0  

 

𝑆0
𝑡𝑟𝑜𝑝

  
 

𝑆𝑡𝑟𝑜𝑝
 

 

𝑆0
𝑡𝑟𝑜𝑝

  
 

𝑆𝑡𝑟𝑜𝑝

= 10−6 ∫ 𝐾1

𝑝d

𝑇
𝑑𝑠 + 10−6 ∫ 𝐾2

𝑝w

𝑇
+ 𝐾3

𝑝w

𝑇2
  

 

𝑆𝑡𝑟𝑜𝑝
+ ∫ 𝑑𝑠  

 

𝑆𝑡𝑟𝑜𝑝
− ∫ 𝑑𝑠0  

 

𝑆0
𝑡𝑟𝑜𝑝

   

 

𝑆𝑡𝑟𝑜𝑝

= ∆𝑠ℎ
𝑡𝑟𝑜𝑝

+ ∆𝑠𝑤
𝑡𝑟𝑜𝑝

+ 𝑆 − 𝐺, (2.27)

 

where 𝑆  is the geometric length of the actual propagation path of the signal and 𝐺  is the 

straight propagation length of the signal, term 𝑆 − 𝐺 is the effect of bending. In space geodesy, 

observations are made at arbitrary azimuth and elevation angles, so it is necessary to know the 

hydrostatic and wet delay contributions in each observation direction in order to be able to 

remove the effects of tropospheric delays that bias the observations. In order to estimate the 

delay in each observation direction, a common approach is to model the tropospheric delay in 

the zenith direction and use a mapping function to convert it into slant direction. Therefore, as 

an important concept, the Zenith Total Delay (ZTD), the Zenith Hydrostatic Delay (ZHD), and 

the Zenith Wet Delay (ZWD) can be defined as: 

𝑍𝑇𝐷 = 𝑍𝐻𝐷 + 𝑍𝑊𝐷, (2.28) 

𝑍𝐻𝐷 = 10−6 ∫ 𝐾1

𝑝d(𝑧)

𝑇(𝑧)
𝑑𝑧

ℎ𝑡𝑜𝑝

ℎ𝑠

, (2.29) 

𝑍𝑊𝐷 = 10−6 ∫ 𝐾2

𝑝w(𝑧)

𝑇(𝑧)
+ 𝐾3

𝑝w(𝑧)

𝑇2(𝑧)
𝑑𝑧

ℎ𝑡𝑜𝑝

ℎ𝑠

, (2.30) 

where ℎ𝑠 is the surface altitude of the observation point on the earth and ℎ𝑡𝑜𝑝 is the height 

of tropopause.  
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From Eq. 2.28 to Eq. 2.30, it can be known that the ZHD and ZWD are determined by the 

pressure and temperature at different heights. However, measuring temperature and pressure at 

any point in space is very challenging. To address this problem, NWM, such as products from 

the European Center for Medium-Range Weather Forecasts (ECMWF), have been proposed to 

provide gridded meteorological data estimates with a resolution of tens of kilometers. One of 

the state-of-the-art NWM, the fifth generation of European Reanalysis (ERA5) products 

(Hersbach et al., 2023), provides hourly stratified meteorological products with 37 pressure 

levels at a spatial resolution of 0.25°1. Using the meteorological data provided by NWM, it is 

possible to obtain centimeter-level ZTD estimates (Ding et al., 2023; Liu et al., 2022) for any 

location within the NWM coverage area. Assuming uniformity within each layer of the 

atmosphere as represented in ERA5, according to the trapezoidal integral method, the Eq. 2.29 

and Eq. 2.30 can be written as: 

𝑍𝐻𝐷𝐸𝑅𝐴5 = 10−6 ∫ 𝐾1
𝑝d(𝑧)

𝑇(𝑧)
𝑑𝑧

ℎ𝑡𝑜𝑝

ℎ𝑠

= 10−6 ∑
1

2
𝐾1 (

𝑝𝑖−𝑝w𝑖

𝑇𝑖
+

𝑝𝑖+1−𝑝w𝑖+1

𝑇𝑖+1
) 𝑑𝑖,𝑖+1

36
𝑖=𝑙0

, (2.31)
  

𝑍𝑊𝐷𝐸𝑅𝐴5 = 10−6 ∫ 𝐾2
𝑝w(𝑧)

𝑇(𝑧)
+ 𝐾3

𝑝w(𝑧)

𝑇2(𝑧)
𝑑𝑧

ℎ𝑡𝑜𝑝

ℎ𝑠

= 10−6 ∑
1

2
[𝐾2 (

𝑝w𝑖

𝑇𝑖
+

𝑝w𝑖+1

𝑇𝑖+1
) + 𝐾3 (

𝑝w𝑖

𝑇𝑖
2 +

𝑝w𝑖+1

𝑇𝑖+1
2 )]𝑑𝑖,𝑖+1

36
𝑖=𝑙0

, (2.32)
  

where 𝑙0  is the initial layer which corresponds to ℎ𝑠 . 𝑝𝑖  and 𝑇𝑖  are the pressure and 

temperature at i-th layer pressure level obtained from ERA5 directly. 𝑝w𝑖
 is the water vapor 

pressure at i-th layer pressure level, which can be obtained by using Magnus–Tetens 

approximation (Alduchov & Eskridge, 1996): 

𝑝w𝑖
= 6.1094

𝑅𝐻𝑖

100
exp (17.625

𝑇𝑖 − 273.15

𝑇𝑖 − 273.15 + 243.04
) , (2.33) 

where 𝑅𝐻𝑖 is the relative humidity at i-th layer pressure level. And 𝑑𝑖,𝑖+1 is the geometric 

height difference between the altitude of i-th and i+1-th pressure level, ℎ𝑖+1 and the altitude 

of i-th pressure level ℎ𝑖, which can be obtained from geopotential as follows: 

𝑑𝑖,𝑖+1 = ℎ𝑖+1 − ℎ𝑖, (2.34)  

ℎ𝑖 =
𝑅 ∗

𝐺𝑖
𝑔

𝑅 −
𝐺𝑖
𝑔

 , (2.35) 

where 𝑅 is the radius of the Earth, 𝐺𝑖 is the geopotential at i-th layer pressure level, and 𝑔 =
9.80665 m/s2  is the Earth's gravitational acceleration. If ℎ𝑠  does not correspond to any 

geometric height aligned with the 37-layer pressure levels in ERA5, a vertical interpolation 

given (Jade & Vijayan, 2008) can be used to interpolate 𝑇, 𝑒 and 𝑝 at 𝑙0 layer by using the 

two nearest layers: 

𝑇𝑙0 = 𝑇𝑙0−1 +
𝑇𝑙0+1−𝑇𝑙0−1

ℎ𝑙0+1−ℎ𝑙0−1
(ℎ𝑙0+1 − ℎ𝑠), (2.36)  

𝑝𝑙0 =
𝑤𝑙0−1

𝑤𝑙0−1+𝑤𝑙0+1
𝑝ℎ𝑠,𝑙0−1 +

𝑤𝑙0+1

𝑤𝑙0−1+𝑤𝑙0+1
𝑝ℎ𝑠,𝑙0+1, (2.37)  

𝑤𝑙0−1 =
1

(ℎ𝑠−ℎ𝑙0−1)
2 ; 𝑤𝑙0+1 =

1

(ℎ𝑙0+1−ℎ𝑠)
2  , (2.38)  

 
1 Data can be accessed at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-

levels?tab=overview 
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𝑝ℎ𝑠,𝑙0−1 = 𝑝𝑙0−1 [1 +
8.419∗10−5(ℎ𝑙0−1−ℎ𝑠)

𝑝𝑙0−1
0.1902884 ]

−5.255303

, (2.39)  

𝑝ℎ𝑠,𝑙0+1 = 𝑝𝑙0+1 [1 +
8.419 ∗ 10−5(ℎ𝑙0+1 − ℎ𝑠)

𝑝𝑙0+1
0.1902884

]

−5.255303

 . (2.40) 

It is noteworthy that the interpolation method for 𝑝w follows Eq. 2.37 to Eq. 2.40 in the same 

manner. By using Eq. 2.31 to Eq. 2.40, the ZHD and ZWD at each grid point can be calculated. 

Subsequently, employ the distances between the target position and these four grid points to 

execute Inverse Distance Weighting interpolation (IDW) as follows: 

 

 

Fig. 2.2 Inverse Distance Weighting interpolation 

 

𝑍𝑇𝐷𝑡𝑎𝑟𝑔𝑒𝑡 = ∑ 𝑤𝑖𝑍𝑇𝐷𝑖

4

𝑖=1
(2.41) 𝑍𝑇𝐷𝑡𝑎𝑟𝑔𝑒𝑡 =

∑ 𝑤𝑖𝑍𝑇𝐷𝑖
4
𝑖=1

∑ 𝑤𝑖
4
𝑖=1

(2.41) 

𝑤𝑖 =
𝑑𝑖

−2

∑ 𝑑𝑗
−24

𝑗=1

 (2.42) 𝑤𝑖 =
1

𝑑𝑖
 (2.42) 

where 𝑍𝑇𝐷𝑖 denotes the ZTD estimation at grid point, and 𝑑𝑖 is the distance between the 

target position and the corresponding grid point. 

 

In addition to NMW, some empirical models, such as the Global Pressure and Temperature 

model 3/ Vienna Mapping Functions 3 (GPT3/VMF3) (Landskron & Böhm, 2018), can also 

provide estimates of temperature and pressure. However, these empirical models often only 

provide surface information. According to the ideal gas law, the compressibility factor of dry 

air 𝑍𝑑 can be written as 

𝑍𝑑 = 8.3145
𝑝𝑑𝑀𝑑

𝜌𝑇
, (2.43) 

where 𝑀𝑑 is the molar mass of dry air, and 𝜌 is the density of air. Therefore, the ZHD can be 

expressed as: 

𝑍𝐻𝐷 = 8.3145 ∗ 10−6 ∫ 𝑘1

𝑝d(𝑧)

𝑇(𝑧)

𝜌(𝑧)𝑇(𝑧)

𝑝𝑑(𝑧)𝑀𝑑
𝑑𝑧

ℎ𝑡𝑜𝑝

ℎ𝑠

= 10−6𝑘1

8.3145

𝑀𝑑
∫ 𝜌(𝑧)𝑑𝑧

ℎ𝑡𝑜𝑝

ℎ𝑠

. (2.44) 

From Eq. 2.44, it can be known that the ZHD only relevant with the density of air. From 

hydrostatic equilibrium 
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𝑑𝑝

𝑑𝑧
= −𝜌(𝑧)𝑔(𝑧), (2.45) 

where 𝑔(𝑧) is the gravity along the vertical coordinate 𝑧, it can yield 

𝑝𝑠 = ∫ 𝜌(𝑧)𝑔(𝑧)𝑑𝑧.
ℎ𝑡𝑜𝑝

ℎ𝑠

 (2.46) 

Let 

𝑔𝑚 =
∫ 𝜌(𝑧)𝑔(𝑧)𝑑𝑧

ℎ𝑡𝑜𝑝

ℎ𝑠

∫ 𝜌(𝑧)𝑑𝑧
ℎ𝑡𝑜𝑝

ℎ𝑠

, (2.47) 

the ZHD become 

𝑍𝐻𝐷 = 10−6𝑘1

8.3145

𝑀𝑑
𝑔𝑚

−1𝑝𝑠. (2.48) 

By expanding 𝑔(𝑧)  to the first order of 𝑧 , it can be seen that 𝑔𝑚  is very nearly to the 

acceleration due to the gravity at the center of mass of the vertical column. According to 

(Saastamoinen, 1972), 𝑔𝑚 can be approximated as: 

𝑔𝑚 = 9.8062(1 − 0.00266∗ cos(2𝐿𝐴𝑇) − 0.28 ∗ ℎ𝑠 ∗ 10−6), (2.49) 

where 𝐿𝐴𝑇  is geodetic latitude. From this we obtain the famous Saastamoinen hydrostatic 

model: 

𝑍𝐻𝐷 =
0.0022768 ∗ 𝑝ℎ𝑠

1 − 0.00266 ∗ cos(2𝐿𝐴𝑇) − 0.28 ∗ ℎ𝑠 ∗ 10−6
. (2.50) 𝑍𝐻𝐷 =

0.0022768 ∗ 𝑝ℎ𝑠

1 − 0.00266 ∗ cos(2𝜑) − 0.28 ∗ ℎ𝑠 ∗ 10−6
. (2.50) 

 

The Saastamoinen hydrostatic model is a fairly accurate model, with errors mainly coming from 

the measurement error of the surface pressure. Under typical meteorological conditions, the 

ZHD estimated by Saastamoinen model at sea level is about 2.3 m. A surface pressure error of 

1 hPa results in an error of about 2.3 mm. When surface pressure measurements are not 

available, empirical models such as GPT3/VMF3 can provide surface temperature and pressure 

estimates at a spatial resolution of 1° every six hours. Since the altitude of the target position is 

often different from that of the grid points, when using the empirical model, it is necessary to 

adjust the four grid points around the target position to the same pressure level using the 

following formula： 

𝑝ℎ𝑠
= 𝑝𝑔 ∗ (1 − 0.000026 ∗ (ℎ𝑠 − ℎ𝑔))

5.225
, (2.51) 

where 𝑝𝑔, ℎ𝑔 are the surface pressure and altitude at grid point. Then calculate the four grid 

points at the same pressure level using Eq. 2.50, and the ZHD at the target position can be 

obtained by IDW interpolation using Eq. 2.41 and Eq. 2.42. 

 

The behavior of water vapor above the surface is often unpredictable due to the effects of 

turbulence. Therefore, it is extremely challenging to infer ZWD through empirical models of 

surface temperature and pressure. In the absence of real observational data, the estimation of 

ZWD usually follows NWM ray tracing, that is, Eq. 2.32 and its similar forms. Despite the use 

of state-of-the-art NWM, the ZWD retrieved by this method still has centimeter-level errors, so 

it is mainly used as a priori estimation or when there is no real observation data. It should be 

noted that some empirical models, such as VMF3, also provide estimates of surface ZWD in 

grid form. Since the grid points are at different altitudes from the target positions, they still need 

to be vertically adjusted before horizontal interpolation. Since the water vapor pressure 

approximately follows an exponential decay approximation, the vertical adjustment of ZWD 
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follows the following method: 

𝑍𝑊𝐷 = 𝑍𝑊𝐷𝑔 ∗ exp(−
ℎ𝑠 − ℎ𝑔

2000
) , (2.52) 

where 𝑍𝑊𝐷𝑔 denotes the ZWD estimation at the grid point. 

 

Once the estimates of ZHD and ZWD are obtained, assuming that the neutral atmosphere has 

azimuthal symmetry (i.e., at a constant elevation angle, the delay does not depend on the 

azimuth of the observation), the tropospheric delay ∆𝑠𝑡𝑟𝑜𝑝  can be obtained by combining 

ZHD and ZWD with their corresponding mapping functions, as described follows: 

∆𝑠𝑡𝑟𝑜𝑝 = 𝑍𝐻𝐷 ∗ 𝑚𝑓ℎ(𝜀) + 𝑍𝑊𝐷 ∗ 𝑚𝑓𝑤(𝜀), (2.53) 

where 𝑚𝑓ℎ(𝜀) and 𝑚𝑓𝑤(𝜀) are the mapping function for hydrostatic delay and wet delay at 

elevation angle 𝜀. Since the height of the wet part of the troposphere is about 2 km and the 

height of the hydrostatic part is about 8 km (see Fig. 2.3), for most of the space geodetic scenes 

(elevation angle greater than 20°), the hydrostatic mapping function 𝑚𝑓ℎ is less than the wet 

mapping function 𝑚𝑓𝑤.  

 

 

Fig. 2.3 The height of the wet part and hydrostatic part of troposphere (Nilsson et al., 2013). The mapping 

function describes the ratio of the slant path to the vertical distance. The hydrostatic mapping function 

𝑚𝑓ℎ =
𝐴𝐶

𝐶𝐶0
 is less than the wet mapping function 𝑚𝑓𝑤 =

𝐴𝐵

𝐵𝐵0
. 

 

Marini (1972) first proposed the atmospheric refraction model based on this concept. With the 

improvement of Herring (1992), the following mapping function form has been widely 

accepted: 

𝑚𝑓(ε) =

1 +
𝑎

1 +
𝑏

1 + 𝑐

sin(ε) +
𝑎

sin(ε) +
𝑏

sin(ε) + 𝑐

, (2.54) 

where 𝑎, 𝑏, 𝑐  are the coefficients that depend on integrals of refractivity through the 

atmosphere, which depends on the surface meteorological data, the location and the altitude. 

Although in the absence of NWM data, the factors 𝑎, 𝑏, 𝑐  can be estimated by continuous 

empirical models using spherical harmonics functions of the Day of Year, such as the GMF 

function corresponding to GPT3, its ZHD may be coupled with the compensation of atmosphere, 

making its performance worse than the discrete models using ECMWF reanalysis data, such as 

VMF3 (Steigenberger et al., 2009). Therefore, in most cases, it is recommended to use the 
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discrete model VMF3 to map the zenith delay into the slant direction. 

 

The above methods describe the estimation of tropospheric delay when there is no real 

observation data. However, even with the best NWM (such as ERA5), the resolution of tens of 

kilometers and centimeter-level accuracy are still challenged to meet the requirements of high-

precision geodetic tasks, such as surface deformation monitoring. Fortunately, the GNSS 

Precise Point Positioning (GNSS-PPP) technology provides the possibility to directly retrieve 

tropospheric delay. When there is a dual-frequency GNSS station at the target position, its ZTD 

can be directly solved by ionospheric-free GNSS observations using Eq. 2.21 combined with a 

mapping function. Leveraging the high-precision GNSS satellite orbit and clock products 

supplied by the International GNSS Service (IGS), GNSS-PPP mode can deliver station-wised 

ZTD with high accuracy and temporal resolution. Since the observations of GNSS stations 

come from continuous observations of multiple satellites, the ZWD solved by Eq. 2.21 using 

the least squares method is usually regarded as the reference or ground truth. In order to improve 

the accuracy and convergence speed of the solution, the ZHD provided by VMF3 (essentially 

the Saastamoinen hydrostatic model) and its corresponding dry mapping function 𝑚𝑓ℎ(𝜀) is 

usually accepted as the prior delay and deducted, and the actual solution is the remaining part, 

which is considered to represent the wet delay ∆𝑠𝑤
𝑡𝑟𝑜𝑝

. Then the wet mapping function can be 

used to map the solved wet delay ∆𝑠𝑤
𝑡𝑟𝑜𝑝

  to the zenith direction to obtain the ZWD. The 

solving program of tropospheric delay retrieved by GNSS is usually implemented by GNSS-

PPP solution software, such as Bernese GNSS software or GipsyX, by inputting the RENIX 

file generated by the receiver. In this thesis, the hardware of the GNSS receiver and the 

configuration of the software are not discussed in detail. For more information, please refer to 

(Teunissen & Montenbruck, 2017) and (Dach et al., 2015). 

 

In addition, considering that the ZWD can be related to the water vapor above the surface, 

according to (Bevis, 1994), ZWD and Integrated Water Vapor (IWV) (also known as 

Precipitable Water Vapor or Total Column Water Vapor, in units of kg/m2, representing the 

mass of water vapor within a 1 m2  atmospheric column.) can be converted to each other 

according to the following equation: 

IWV = Π ∗ ZWD , (2.55) 

Π =
106

𝑅𝑣 ∗ [𝐾2
′ +

𝐾3
𝑇𝑚

]
 , (2.56) 

𝑇𝑚 =
∫

𝑝w(𝑧)
𝑇(𝑧)

𝑑𝑧
ℎ𝑡𝑜𝑝

ℎ𝑠

∫
𝑝w(𝑧)
𝑇2(𝑧)

𝑑𝑧
ℎ𝑡𝑜𝑝

ℎ𝑠

 , (2.57) 

Where 𝑅𝑣 = 461.522 𝐽 /(𝑘𝑔 × 𝐾)  (Kestin et al., 1984), 𝐾2
′ = 22.1 𝐾/ℎ𝑝𝑎  is the adjusted 

refractivity constant and 𝑇𝑚 is the weighted mean temperature calculated by the integration 

ratio of water vapor pressure 𝑝w  and temperature 𝑇  from the height of the surface to the 

tropopause. This equation means that ZWD can be measured by other water vapor detection 

technologies, such as Radiosonde or Radiometer. Similarly, ZWD retrieved by GNSS can also 

be used to invert the changes in water vapor in the atmosphere. Since ZWD retrieved by GNSS 

boasts outstanding characteristics, including high accuracy, high temporal resolution, and all-

weather capability, GNSS water vapor retrieval has become a vital data source for precipitation 

forecasting, environmental change, extreme weather, and other related research. 

 

It should be additionally pointed out that in addition to modeling ZHD and ZWD using the 
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refractivity of the dry and wet atmosphere, there are other modeling methods for ZTD. Yu et al. 

(2018) proposed using the Iterative Tropospheric Decomposition (ITD) model to decompose 

the ZTD into an altitude-related stratified delay (SD) and an elevation-related turbulent delay 

(TD), as Eq. 2.58 shows: 

𝑍𝑇𝐷 = 𝑇𝐷(𝑥, 𝑦) + 𝑆𝐷(ℎ𝑠) + 𝑟𝑢, (2.58) 

𝑆𝐷(ℎ𝑠) = 𝑆𝐷0𝑒
−𝛽

ℎ𝑠−ℎ𝑚𝑖𝑛
ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛  (2.59) 

where 𝑥, 𝑦 are the position in the local topocentric coordinate system, 𝑆𝐷0 is the stratified 

component delay at sea level, 𝛽 is the coefficient factor, ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 are the Minimum 

and maximum altitudes of reference stations within 100 km (Yu et al., 2017)-150 km (Yu et al., 

2018), and 𝑟𝑢 is the unmodeled residual. The ITD model assumes that within 150 km, the 

stratified delay can be expressed in the form of an exponential function using the two 

coefficients 𝐿0  and 𝛽  obtained by regression, and only the spatially correlated turbulent 

delay component can be interpolated by using IDW. To determine the coefficient factors 𝐿0,𝛽 

and the turbulent delay component 𝑇𝐷(𝑥, 𝑦) for IDW interpolation, the ITD model follows an 

iterative decomposition approach searching the parameters using the ZTD retrieved by GNSS 

or the grid ZTD derived from NWM ray tracing within 150 km of the target position. When the 

coefficient factor converges, the turbulent delay component at the target position is obtained 

through IDW interpolation based on the reference turbulence component 𝑇𝐷𝑟𝑒𝑓 as shown in 

Eq. 2.60. 

𝑇𝐷(𝑥, 𝑦) = ∑ 𝑤𝑡𝑖𝑇𝐷𝑟𝑒𝑓(𝑥𝑖, 𝑦𝑖)
𝑛

𝑖=1
, (2.60) 

𝑤𝑡𝑖 =
𝑑𝑖

−2

∑ 𝑑𝑖
−2𝑛

𝑗=1

, (2.61) 

where 𝑑𝑖 is the distance between the target position and the position of the i-th reference. The 

iteration follows the following steps:  

1. Assume that the turbulence component delay is zero, use all reference ZTDs to estimate 

coefficient factors 𝐿0,𝛽, and obtain the residual 𝑟𝑢.  

2. Use the distance weight 𝑤𝑡𝑖 and the residual 𝑟𝑢 to solve the reference turbulence delay 

component 𝑇𝐷𝑟𝑒𝑓 of each reference ZTD according to Eq. 2.62.  

[

𝑇𝐷𝑟𝑒𝑓,1

⋮
𝑇𝐷𝑟𝑒𝑓,𝑛

] = [

0 𝑤12

𝑤21 0

⋯ 𝑤1𝑛

⋯ 𝑤2𝑛

⋮ ⋮
𝑤𝑛1 ⋯

0 ⋮
𝑤𝑛,𝑛−1 0

] = [

𝑟𝑢,1

𝑟𝑢,2

⋮
𝑟𝑢,𝑛

] . (2.62) 

3. Subtract the obtained 𝑇𝐷𝑟𝑒𝑓 from each reference ZTD, and repeat steps 1 and 2 until the 

coefficients converge.  

4. When the coefficients converge, the 𝑍𝑇𝐷𝐼𝑇𝐷  at the target position can be calculated 

according to Eq. 2.58. The stratified component SD is calculated using Eq. 2.59 based on the 

converged coefficient factors 𝐿0,𝛽, while the turbulent component TD and the residual 𝑟𝑢 at 

target position are obtained using IDW interpolation, as shown in Eq. 2.60 and 2.61. 

 

Compared with the traditional interpolation method (Eq. 2.41, directly interpolating the ZTD 

estimated by four grid points around the target position), the ITD model decomposes the 

horizontal and vertical correlation components of the ZTD and only interpolates the horizontal 

correlation component. Yu et al. (2018) proposed that this interpolation method can provide 

more competitive tropospheric delay products than traditional interpolation methods and 

integrated them into an online service called Generic Atmospheric Correction Online Service 



 

20 

 

for InSAR (GACOS)2 for use in InSAR atmospheric correction applications. However, this 

method currently lacks a corresponding mapping function to map it to the slant direction. At 

the same time, this decomposition method cannot accurately reflect the delay caused by the 

difference in thickness of the hydrostatic and wet atmosphere (see Fig. 2.3), which may pose a 

challenge to the accurate estimation of tropospheric delay ∆𝑠𝑡𝑟𝑜𝑝. 

  

 
2 Data can be accessed at http://www.gacos.net/ 
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3. The fundamentals of Synthetic 

Aperture Radar Interferometry 

This chapter presents the foundational concepts of surface deformation monitoring using 

InSAR. It covers topics such as the SAR&InSAR principle, Multi-temporal SAR Interferometry, 

and the processing workflow of the Stanford Method for Persistent Scatterers (StaMPS). A 

particular focus is placed on the scatterers' selection mechanism, including PS and DS. Given 

the scope of this study and space constraints, details regarding SAR imaging, processing, and 

calibration methods will not be included. For further information on these topics, readers are 

referred to the handbook InSAR Principles: Guidelines for SAR Interferometry Processing and 

Interpretation (Ferretti et al., 2007) and the ESA Sentinel Application Platform (SNAP) 

documentations (https://step.esa.int/main/doc/online-help/). 

 

In this chapter, the content regarding PSI and the StaMPS is mainly derived from Hooper et al. 

(2007), and the content regarding Distributed Scatterers is mainly derived from Even & Schulz 

(2018) and Ferretti et al. (2011). 

 

3.1. SAR&InSAR principle 

 

InSAR technology has been in use since the late 1970s, following the introduction of 

spaceborne SAR systems. The first civilian SAR, Seasat, was launched in 1978 (Moreira et al., 

2013), marking the widespread use of SAR in remote sensing and geodetic application. InSAR 

gained significant attention in 1991 with the European Space Agency's (ESA) launch of the 

ERS-1 satellite, which provided a large amount of SAR data. Since then, InSAR has steadily 

increased in importance, with more than 50 satellites currently orbiting the Earth, continuously 

acquiring data for scientific, governmental, and commercial applications. Prominent examples 

of these systems include Sentinel-1, TerraSAR-X, TanDEM-X, Cosmo-SkyMed, RADARSAT-

2, ALOS II, SAOCOM, PAZ, etc. 

 

Data collected from these satellites serves various purposes, including the monitoring of land, 

ice, and oceans, as well as the mapping and detection of environmental changes. Applications 

range from land cover classification and ocean current mapping to providing intelligence and 

situational awareness during natural disasters, such as mapping floods or disaster-affected areas. 

One of the most outstanding features of spaceborne SAR is its ability to acquire interferometric 

data for geodetic purposes over large areas. Specialized missions like SRTM and TanDEM-X 

have generated global Digital Elevation Models (DEM), which are very useful for a variety of 

studies. These datasets enable glaciologists to examine the extent, flow, and mass balance of 

glaciers and ice sheets (Arigony-Neto et al., 2007), climatologists to estimate forest biomass 

(Merchant et al., 2022), and geologists to investigate tectonic processes, volcanic activity, and 

earthquakes (Moon et al., 1998). 

 

SAR systems act as active sensors, using radar technology (radio detection and ranging) to 

transmit microwave pulses and receive backscattered signals from the Earth's surface. A radar 

https://step.esa.int/main/doc/online-help/
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instrument mounted on a moving platform (usually airborne or satellite-based, but there are 

also vehicle-based and ground-based SAR for different applications) produces a two-

dimensional radar backscatter map. In real aperture imaging radar systems, the azimuth 

resolution, which corresponds to the direction of radar movement, is proportional to the angular 

beamwidth of the antenna. Higher resolution can be achieved by increasing the antenna size. In 

a SAR system, the sensor moves along its trajectory (azimuth direction) and emits coherent 

microwave pulses at high pulse repetition frequencies, allowing scatterers to be illuminated 

multiple times during data acquisition and using a short physical antenna to simulate a long 

virtual antenna. As the sensor moves, the variation in distance between the sensor and the 

scatterer results in a radial velocity between both, which induces a Doppler shift in the recorded 

data. Compression techniques use this shift to focus the data in the azimuth direction, allowing 

advanced spaceborne SAR systems, such as Sentinel-1 and TerraSAR-X, to produce radar 

images with spatial resolutions down to the meter or sub-meter scale (for staring spotlight mode, 

the resolution is 24 cm). 

 

In SAR imagery, the basic observation 𝑧 for each pixel from the Single Look Complex (SLC) 

image of SAR is derived from the sum of the backscattered complex signals of all surface 

scatterers within that ground resolution cell. This is expressed in terms of two components: the 

amplitude 𝐴  and the phase shift 𝜙  between the emitted and received signals, commonly 

referred to as phase, as described in Eq. 3.1. 

𝑧 = 𝐴𝑒𝑖𝜙. (3.1) 

According to Hanssen (2001), the amplitude A represents the magnitude of the backscattered 

signal. The phase 𝜙, on the other hand, corresponds to the distance 𝐷 between the SAR sensor 

and the surface target and the radar wavelength 𝜆, as described below: 

𝜙 = −
4𝜋𝐷

𝜆
+ 𝜙𝑠𝑐𝑎𝑡 + 𝜙𝑎𝑡𝑚𝑜 + 2𝑘𝜋, 𝑘 ∈ ℕ, 𝜙 ∈ [−𝜋, 𝜋) (3.2) 

where 𝜙𝑠𝑐𝑎𝑡 is the phase change caused by the scattering characteristics of the target and is 

close to zero for metal objects and may largely differ from zero in case of absorption, and 

𝜙𝑎𝑡𝑚𝑜  is the phase delay due to atmospheric effects in the troposphere and ionosphere, as 

discussed in Chapter 2. 

 

In geodesy, the main interest is to detect the motion of the ground over time. If the Earth's 

surface moves between two SAR satellite acquisitions, the D of the two acquisitions will be 

different, resulting in a corresponding phase shift. By analyzing this phase shift in space and 

time, surface deformation can be effectively monitored. This concept forms the core principle 

of InSAR, as shown in Fig. 3.1. 



 

23 

 

 

Fig. 3.1 The geometric model of SAR interferometry. 𝑀 and 𝑆 are the satellite positions corresponding 

to the first (also called Master) acquisition at time 𝑡1 and the second (also called Slave) acquisition at 

time 𝑡2. 𝑃1 is the position of the surface target at time 𝑡1 and 𝑃2 is the position of the surface target 

at time 𝑡2. ℎ𝑠 is the height of the surface target above the reference surface. 𝐷1 is the distance between 

𝑀 and 𝑃1, and 𝐷2 is the distance between 𝑆 and 𝑃2. 𝑃1
′ is the position on the reference surface with 

the same range 𝐷1 from 𝑀, corresponding to the pixel position in the SAR image. 𝐷2
′  is the distance 

between 𝑆  and 𝑃1
′ , its difference with 𝐷1  can be used to calculate the flat earth phase. 𝐵  is the 

baseline of those two acquisitions, 𝐵⊥ and 𝐵∥ are the perpendicular and the parallel component of the 

baseline with regard to the line-of-sight (LOS) direction of the Master. Due to the curvature of the earth 

and the local topography, the sensor's look angle 𝜃0 and the incidence angle 𝜃𝑖𝑛𝑐 are not equal. ∆𝐷 is 

the displacement along LOS direction. 

 

For two acquisitions 𝑧1  and 𝑧2 , the interferogram is obtained by multiplying the complex 

conjugates of the two acquisitions 

𝑧1𝑧2
∗ = 𝐴1𝐴2𝑒

𝑖(𝜙1−𝜙2) = 𝐴1𝐴2𝑒
𝑖(∆𝜙). (3.3) 

And the phase difference, also denoted as interferometric phase ∆𝜙, can be decomposed into 

the following components: 

∆𝜙 = 𝑊(𝜑𝑓𝑙𝑎𝑡 + 𝜑ℎ + 𝜑𝑑𝑒𝑓𝑜 + 𝜑𝑎𝑡𝑚𝑜 + 𝜑𝑜𝑟𝑏𝑖𝑡 + 𝜑𝑛𝑜𝑖𝑠𝑒), (3.4) 

where 𝜑𝑓𝑙𝑎𝑡 is the flat earth phase, caused by range differences of both orbits to a reference 

surface like the ellipsoid, as illustrated in Fig. 3.1 and can be expressed as: 

𝜑𝑓𝑙𝑎𝑡 = −
4𝜋

𝜆
(𝐷1 − 𝐷2

′), (3.5) 

Due to 𝐵 ≪ 𝐷1, the range differences 𝐷1 − 𝐷2
′  can be approximated as 𝐵∥ by using far-field 

approximation (Zebker & Goldstein, 1985), therefore, the earth flat phase can be written as: 

𝜑𝑓𝑙𝑎𝑡 = −
4𝜋

𝜆
𝐵∥. (3.6) 

𝜑ℎ is the phase caused by topography ℎ𝑠 regarding to the reference surface, it can be defined 

as: 

𝜑ℎ = −
4𝜋

𝜆
(𝐷1 − 𝐷2 − (𝐷1 − 𝐷2

′)) = −
4𝜋

𝜆
(𝐷2

′ − 𝐷2). (3.7) 
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Applying the far-field approximation again, 𝐷2
′ − 𝐷2 can be approximated as 

𝐵⊥

𝐷1𝑠𝑖𝑛𝜃0
ℎ𝑠, and 

the topographic phase can be written as: 

𝜑ℎ = −
4𝜋

𝜆

𝐵⊥

𝐷1𝑠𝑖𝑛𝜃0
ℎ𝑠. (3.8) 

𝜑𝑎𝑡𝑚𝑜, 𝜑𝑜𝑟𝑏𝑖𝑡 , 𝜑𝑛𝑜𝑖𝑠𝑒 are the phase contributions caused by atmospheric heterogeneities, 

satellite orbit error and noise including 𝜙𝑠𝑐𝑎𝑡 difference between two acquisitions, which are 

spatially correlated and can be filtered out by using a spatial filter. The remaining part 𝜑𝑑𝑒𝑓𝑜, 

reflects the displacement: 

𝜑𝑑𝑒𝑓𝑜 = −
4𝜋

𝜆
∆𝐷, (3.9) 

where ∆𝐷 is the displacement projected into the LOS direction. As the interferometric phase 

∆𝜙  is wrapped into the interval [−𝜋, 𝜋] , it cannot be directly decomposed into the 

combination of the above phases because of the unknown ambiguity 𝑘. Let 𝑊 denote the 

wrapping operator, which maps the phase into [−𝜋, 𝜋): 

𝑊(𝜑) = 𝜑 − 2𝑘𝜋, 𝑘 ∈ ℕ. (3.10) 

The process of estimating the ambiguity factor 𝑘 is referred to as phase unwrapping. Unlike 

GNSS observation equations, InSAR cannot resolve phase ambiguities through multi-satellite 

observations, as it acquires data from only one satellite at a time. However, InSAR does 

generate large-scale, spatially mostly continuous interferograms, and its phase ambiguities are 

typically estimated using optimization algorithms that leverage this spatial continuity, like 

SNAPHU (Chen & Zebker, 2002). 

 

The unwrapping process is ambiguous, which means that it is easy to wrap the model-generated 

phases like 𝜑𝑓𝑙𝑎𝑡  and 𝜑ℎ , or filter-generated phase like 𝜑𝑎𝑡𝑚𝑜, 𝜑𝑜𝑟𝑏𝑖𝑡 , 𝜑𝑛𝑜𝑖𝑠𝑒  and subtract 

them from the interferometric phase ∆𝜙 to get the wrapped deformation phase 𝜙𝑑𝑒𝑓𝑜 then 

do the unwrapping, but hard to unwrap ∆𝜙 first then to estimate 𝜑𝑑𝑒𝑓𝑜, 𝜑𝑎𝑡𝑚𝑜, 𝜑𝑜𝑟𝑏𝑖𝑡 and 

𝜑𝑛𝑜𝑖𝑠𝑒. When the wrapped phase ∆𝜙 contains large atmospheric phase differences caused by 

weather events, complicated topographic phases, or deformation phases with large gradients, 

attempts to unwrap ∆𝜙 will result in severe unwrapping errors and lead to unwrapping failure. 

Therefore, an important step in monitoring surface deformation using InSAR is to accurately 

model and remove the non-deformed phase components. When long-term surface deformation 

monitoring is required, modeling and removing these non-deformation phases becomes a 

particularly challenging task. To address this issue, various MT-InSAR algorithms have been 

developed, which will be introduced in the next section. 

 

3.2. Multi-Temporal InSAR  

 

From Eq. 3.4, it can be seen that when 𝜑𝑓𝑙𝑎𝑡, 𝜑ℎ , 𝜑𝑎𝑡𝑚𝑜 and 𝜑𝑜𝑟𝑏𝑖𝑡 are all modeled well and 

eliminated, the accuracy of deformation monitoring depends on the level of the noise phase 

𝜑𝑛𝑜𝑖𝑠𝑒. 𝜑𝑛𝑜𝑖𝑠𝑒 mainly includes the change of scattering characteristics 𝜙𝑠𝑐𝑎𝑡 between two 

acquisitions, processing error (such as coregistration error) and thermal noise of the sensor. In 

fact, for some land cover types, such as complex vegetation or water, the change of scattering 

characteristics between two acquisitions can change so much that the contribution of 𝜑𝑛𝑜𝑖𝑠𝑒 

dominates ∆𝜙. This phenomenon is called decorrelation. Decorrelation leads to a loss in the 

magnitude of the complex coherence 𝛾  between two SAR signals 𝑧1  and 𝑧2 , which is 

defined as follows: 
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𝛾 =
𝐸{𝑧1𝑧2

∗}

√𝐸{|𝑧1|
2}𝐸{|𝑧2|

2}
, 0 ≤ 𝛾 ≤ 1. (3.11) 

where 𝐸{. } denotes the expectation value. In practical situations, the assumption is made that 

it is possible to exchange the ensemble averages with spatial averages, obtained over a limited 

area surrounding the pixel of interest. This assumption is used to obtain the maximum 

likelihood estimator of the coherence magnitude |𝛾| for 𝑊 surrounding pixels (Seymour & 

Cumming, 1994): 

|𝛾| =
∑ 𝑧1𝑧2

∗
𝑊

√∑ |𝑧1|
2

𝑊 ∑ |𝑧2|
2

𝑊

. (3.22) 

 

In practice, not all pixels in the interferogram have sufficient correlation properties; only pixels 

that show sufficient coherence can ensure the validity of the unwrapped phase for displacement 

measurement. Therefore, identifying pixels with sufficient coherence is a fundamental step in 

InSAR processing. In addition, when analyzing deformation time series using MT-InSAR, it is 

particularly important to identify coherent pixels between different interferograms in the data 

stack. 

 

For MT-InSAR, the analyzable pixels need to have good enough coherence in the data stacks 

formed by N interferograms, therefore the phase coherence |𝛾𝜙| (abbreviated as 𝛾) then be 

introduced by Ferretti et al (2001) as: 

𝛾 = |𝛾𝜙| =
1

𝑁
∑ 𝑒𝑖∆𝜙𝑛

𝑁

𝑖=1
. (3.23) 

where ∆𝜙𝑛 is the wrapped residual phase of ∆𝜙 subtract modeled phase, . Combined with 

Eq. 3.4, the available scatterers can be obtained by modeling and removing components other 

than 𝜑𝑛𝑜𝑖𝑠𝑒 to calculate coherence 𝛾 and select pixels with good coherence. The workflow 

of InSAR deformation analysis is shown below:  

 

SAR images 

stack (SLCs)

Interferometry

Interferograms 

Stack 

Model & 

Filtering

Calcuate 

coherence

Valid pixel 

selection

Remove 

modeled phase

Unwrapping

Displacement in 

LOS directrion

 

Fig. 3.2 The workflow of InSAR deformation analysis. 

 

From the perspective of InSAR processing, scatterers that can be used for displacement analysis 

can be divided into two categories: PS and DS, as shown in Fig. 3.3. PS refers to stable, 

dominant scatterers within a resolution unit, such as trihedral artificial structures, buildings, or 

single rocks. The SAR echo signal, in this case, is primarily composed of the backscatter from 

this scatterer, with very small temporal decorrelation. In contrast, DS pixels lack dominant 
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scatterers, resulting in the random behavior of multiple scatterers within the resolution unit. 

This randomness leads to larger phase variations at different acquisition times. Most DS exist 

on natural surfaces, such as forests, farmlands, exposed soil, and rock surfaces. 

 

 

 

Fig. 3.3 Simulation of phase variation for (a) DS, and (b) PS (Hooper et al., 2007). 

 

For PS, due to their stable phase, one SAR image can be selected from a set of N images as the 

master image, while the remaining N-1 images are used as slave images for the interferometric 

analysis. These slave images are registered with the master image to form N-1 interferograms. 

The selection of the master image is not a trivial task since any noise in the master image will 

affect the interferometric phase of all slave images. Therefore, the master image should be 

selected to minimize the total decorrelation of all interferograms (Hooper et al., 2007). Another 

important step is the subtraction of known phase contributions, in particular, the flat-earth phase 

𝜑𝑓𝑙𝑎𝑡 and the topographic phase 𝜑ℎ. With the help of Eqs. 3.6 and 3.8, these phases can be 

simulated as accurately as possible using orbital information and DEM. However, the residual 

error ∆𝜑𝑡𝑜𝑝𝑜 due to DEM inaccuracies remain in each interferogram (also regards as look-

angle error), and this error need to be estimated and subtracted by the subsequent processing 

algorithms as parameters to be determined. After removing the atmospheric phase 𝜑𝑎𝑡𝑚𝑜 and 

the estimated topographic phase residuals ∆𝜑𝑡𝑜𝑝𝑜 , the phase for each PS point will be 

subtracted by a reference phase from a reference point or area, this will yield the displacement 

relative to the reference position. By performing the above operation on each interferogram in 

the stack, the relative displacement time series of the slave acquisitions relative to the master 

acquisition can be obtained. This technique is known as PSI. Since the PSI method focuses 

solely on PS with very high coherence, the only main parameters that need to be estimated are 

∆𝜑𝑡𝑜𝑝𝑜 and 𝜑𝑎𝑡𝑚𝑜. PSI has the advantages of few estimated parameters, high stability, and 

high computational efficiency, making it very suitable for accurately detecting the displacement 

of point targets. As a result, it is widely applied in geophysical and geodetic research. In the 

following section, the detailed processing flow of the Stanford Method for Persistent Scatterers 

(StaMPS), a widely used PSI approach, will be introduced. 

 

3.3. The Stanford Method for Persistent Scatterers 

(StaMPS) 

 

StaMPS, as an open-source PSI method, is widely used in InSAR deformation analysis. In this 

section, following Hooper et al. (2007), the details of this algorithm will be introduced. 
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A key step in PSI is the identification of the PSC, which involves finding the pixel with the 

minimum 𝜙𝑛 (as outlined in Eq. 3.23 and Eq. 3.4). To estimate 𝜙𝑛, ∆𝜑𝑡𝑜𝑝𝑜 and the spatially 

correlated phase must first be modeled and subtracted from ∆𝜙. However, estimating phase 

noise becomes computationally expensive since the raw phase is wrapped. To address this 

challenge, a pre-selection of PSC proves helpful. As suggested by Ferretti et al. (2001), the 

amplitude dispersion 𝐷𝐴 can be used as an estimator of phase standard deviation 𝜎𝜙, when 

the 𝐷𝐴 value is low, as illustrated in Eq. 3.24 and Fig. 3.4. 

𝜎𝜙 ≈ 𝐷𝐴 =
𝜎𝐴

𝜇𝐴
, (3.24) 

𝜎𝐴 and 𝜇𝐴 denote the standard deviation and mean of the amplitude of a pixel, respectively. 

Before StaMPS, most of PSI algorithms started with a small set of good PSC, just like Ferretti 

et al. (2001) suggested, 𝐷𝐴 < 0.25 was recommended as the threshold for selecting PSC. But 

for StaMPS, the algorithm starts with a more relaxed PSC set, which may contain non-PS but 

hopefully all PS, and then reject those candidates hard become PS. Following this strategy, 

𝐷𝐴 < 0.4 is a more appropriate threshold. This setting can not only ensure that enough PSC 

are retained but also filter out most of the non-PSC, thereby greatly reducing the computational 

cost. 

Fig. 3.4 Simulation of amplitude dispersion 𝐷𝐴 and phase standard deviation 𝜎𝜙 under different noise 

levels. The error bar represents the standard deviation of 5000 simulated 𝐷𝐴  for each 𝜎𝑛 . This 

simulation is done according to Hooper et al. (2007). 

 

After PSC selected by 𝐷𝐴 , an iterative process involving phase estimation is performed to 

remove pixels that are unlikely to be PS. After removing 𝜑𝑓𝑙𝑎𝑡 , 𝜑ℎ  and doing the 

coregistration by pre-processing, Eq.3.4 can be expressed as: 

∆𝜙 = 𝑊(𝜑𝑑𝑒𝑓𝑜 + 𝜑𝑎𝑡𝑚𝑜 + Δ𝜑𝑜𝑟𝑏𝑖𝑡 + ∆𝜑𝑡𝑜𝑝𝑜 + 𝜑𝑛𝑜𝑖𝑠𝑒). (3.25) 
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In Eq. 3.25, the first three terms and part of the fourth term are assumed to be spatially correlated 

and can therefore be removed by a spatial bandpass filter. For the spatially uncorrelated part of 

the fourth term ∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑢 , a linear search is required to estimate its periodogram. For StaMPS, 

the estimation of these terms is performed iteratively, and at the beginning of each iteration, 

∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑢  is first estimated and eliminated as follows: 

 

According to Eq. 3.8, the ∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑢  is linearly related to the spatially uncorrelated part of the 

look angle error ∆𝜃𝑠𝑢 via the perpendicular baseline 𝐵⊥,𝑥,𝑖, so ∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑢  becomes: 

∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑢 =

4𝜋

𝜆
𝐵⊥∆𝜃𝑠𝑢. (3.26) 

Due to the 2𝜋 ambiguity of the phases, the periodogram estimation is nonlinear. In StaMPS, 

the ∆𝜃𝑠𝑢 is estimated as following search approach: First, set a maximum DEM error value 

and convert it into phase by using Eq. 3.26. Then a linear search space is constructed following 

that phase. Each element in this linear space is used as a potential DEM error to calculate the 

coherence, and the phase that can obtain the maximum coherence in this space is selected as 

the rough estimation of ∆𝜃𝑠𝑢 and then be subtracted from ∆𝜙. Finally, a least squares fitting 

is performed on the remaining phase to obtain the best periodogram estimation of ∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑢 . 

 

After obtaining the best estimation of ∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑢  and subtracting its wrapped phase from ∆𝜙, the 

remaining is: 

∆𝜙 − 𝑊 (∆𝜑
𝑡𝑜𝑝𝑜
𝑠𝑢 ) = 𝑊(𝜑𝑑𝑒𝑓𝑜 + 𝜑𝑎𝑡𝑚𝑜 + Δ𝜑𝑜𝑟𝑏𝑖𝑡 + ∆𝜑𝑡𝑜𝑝𝑜

𝑠𝑐 + 𝜑𝑛𝑜𝑖𝑠𝑒), (3.27) 

where ∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑐  denotes the spatially correlated part of DEM error. Since the first four terms in 

Eq. 3.27 has been assumed to be spatially correlated, an adaptive phase filter has been designed 

to filter out the spatially correlated phase by using a combination of a fifth-order Butterworth 

filter and the Goldstein-Werner filter, as described below: 

𝐺(𝑢, 𝑣) = 𝐿(𝑢, 𝑣) + 𝛽𝑚𝑎𝑥[((
𝐻(𝑢, 𝑣)

�̅�(𝑢, 𝑣)
)

𝛼

− 1),0], (3.28) 

𝐻(𝑢, 𝑣) = |𝑍(𝑢, 𝑣)|, (3.29) 

where 𝑍(𝑢, 𝑣) is the smoothed absolute phase value of the 2-D FFT (window size 32 or 64) 

by convolution with e.g. a 3 × 3 Gaussian window (Goldstein & Werner, 1998) (StaMPS use 

7 × 7). 𝐿(𝑢, 𝑣) is the phase after filtering by a 5th order Butterworth filter, with a typical cutoff 

wavelength of 800 m, 𝛼 and 𝛽 are adjustable weighting parameters, typical values being 1 

and 0.3, respectively. �̅�(𝑢, 𝑣) is the median value of 𝐻(𝑢, 𝑣). 

 

Before filtering, the amplitude of each pixel is weighted by an estimate of the signal-to-noise 

ratio (SNR) and sampled to a regular grid at intervals of 40 m to 100 m. For the first iteration, 

the SNR is assumed to be 𝑆𝑁𝑅 =
𝜇𝐴

𝜎𝐴
, and in the later iterations, the SNR for pixel 𝑥 has been 

set as: 

𝑆𝑁𝑅 =
𝑔𝑥

2

2𝜎𝑛
2 , (3.30) 

where the signal 𝑔𝑥 can be estimated by the noise phase 𝜙𝑛𝑜𝑖𝑠𝑒 from the last iteration as: 

𝑔𝑥 =
1

𝑁
∑𝐴𝑥,𝑖

𝑁

𝑖=1

cos𝜙𝑛𝑜𝑖𝑠𝑒,𝑥,𝑖 , (3.31) 
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where 𝐴𝑥,𝑖 is the amplitude of pixel 𝑥 in the i-th interferograms, and the noise variance can 

be estimated as: 

�̂�𝑛
2 =

1

2
[
∑ 𝐴𝑥,𝑖

2𝑁
𝑖=1

𝑁
− (

1

𝑁
∑𝐴𝑥,𝑖

𝑁

𝑖=1

cos𝜙𝑛𝑜𝑖𝑠𝑒,𝑥,𝑖)

2

] . (3.32) 

 

After the above filtering process, the spatially correlated phase 𝜙𝑠𝑐 is considered to be filtered 

out. Subtracting 𝜙𝑠𝑐 from ∆𝜙 − 𝑊 (∆𝜑
𝑡𝑜𝑝𝑜
𝑠𝑢 ), there is: 

∆𝜙 − 𝑊 (∆𝜑
𝑡𝑜𝑝𝑜
𝑠𝑢 ) − 𝜙𝑠𝑐 = 𝑊(𝜑𝑑𝑒𝑓𝑜

𝑠𝑢 + 𝜑𝑎𝑡𝑚𝑜
𝑠𝑢 + Δ𝜑𝑜𝑟𝑏𝑖𝑡

𝑠𝑢 + 𝜑𝑛𝑜𝑖𝑠𝑒
𝑠𝑢 ). (3.33) 

where the superscript 𝑠𝑢 denotes the spatially uncorrelated part of the phase. Assuming that 

𝜑𝑑𝑒𝑓𝑜
𝑠𝑢 , 𝜑𝑎𝑡𝑚𝑜

𝑠𝑢 , and Δ𝜑𝑜𝑟𝑏𝑖𝑡
𝑠𝑢  are mainly affected by long-wavelength signals, the sum of the 

first three terms on the right-hand side can be replaced by a small perturbation term 𝛿, therefore, 

there is: 

∆𝜙 − 𝑊 (∆𝜑
𝑡𝑜𝑝𝑜
𝑠𝑢 ) − 𝜙𝑠𝑐 = 𝑊(𝜑𝑛𝑜𝑖𝑠𝑒

𝑠𝑢 + δ). (3.34) 

Then the coherence 𝛾 can be calculated by summing those remaining phases along time as: 

𝛾 =
1

𝑁
∑ 𝑒

𝑖(∆𝜙−𝑊(∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑢 )−𝜙𝑠𝑐)

𝑁

𝑖=1
. (3.35) 

 

The calculation of 𝛾  is iterative, assume δ ≈ 0 , the residual phase can be considered as 

𝜙𝑛𝑜𝑖𝑠𝑒 for estimate the SNR in the next iteration until 𝛾 convergence. Then, whether pixel 𝑥 

belongs to PS can be determined by 𝛾𝑥 and 𝐷𝐴,𝑥 with the following approach: 

1) Calculation of the probability density function 𝑝𝑑𝑓(𝛾𝑥) by binning and normalizing 

the calculated 𝛾𝑥. 

2) Assuming that 𝑝𝑑𝑓(𝛾𝑥) consists of two components, which are: probability density 

function for 𝑥 belongs to PS 𝑝𝑑𝑓𝑃𝑆(𝛾𝑥), and x doesn’t belong to PS 𝑝𝑑𝑓𝑁𝑃𝑆(𝛾𝑥). 

Then the 𝑝𝑑𝑓(𝛾𝑥) can be written as: 

𝑝𝑑𝑓(𝛾𝑥) = 𝛼𝑝𝑑𝑓𝑃𝑆(𝛾𝑥) + (1 − 𝛼)𝑝𝑑𝑓𝑁𝑃𝑆(𝛾𝑥), 0 ≤ 𝛼 ≤ 1. (3.36) 

3) Using random phases in [−𝜋, 𝜋] to generate the 𝑝𝑑𝑓𝑁𝑃𝑆(𝛾𝑥). 

4) For 𝛾𝑥 ≤ 0.3, 𝑝𝑑𝑓𝑃𝑆(𝛾) ≈ 0, then the 𝛼 can be solved by: 

∫ 𝑝𝑑𝑓(𝛾𝑥)𝑑𝛾𝑥 =
0.3

0

∫ (1 − 𝛼)𝑝𝑑𝑓𝑁𝑃𝑆(𝛾𝑥)𝑑𝛾𝑥 .
0.3

0

(3.37) 

5) Given an acceptable false positive probability 𝑞, the 𝛾𝑥 threshold of PS 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

with different �̂�𝐴,𝑥 calculated by 𝜙𝑛𝑜𝑖𝑠𝑒 can be determined by solving: 

(1 − 𝛼(�̂�𝐴,𝑥))∫ 𝑝𝑑𝑓𝑁𝑃𝑆(𝛾𝑥)𝑑𝛾𝑥
1

 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

∫ 𝑝𝑑𝑓(𝛾𝑥)𝑑𝛾𝑥
1

 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

= 𝑞. (3.38) 

6)  𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is approximately linearly related to �̂�𝐴,𝑥 , with using the least-square-

method to solve the best fit of constant 𝑘 for  𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑘�̂�𝐴,𝑥, the pixel with 𝛾 >

𝑘�̂�𝐴 are selected as PS pixel. 

 

Once the PS pixels are identified, the PS network they form can be used to perform phase 
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unwrapping via SNAPHU. To minimize the unwrapping error, the previously estimated 

𝑊 (∆𝜑
𝑡𝑜𝑝𝑜
𝑠𝑢 ) need to be removed from ∆𝜙 before unwrapping. After phase unwrapping, the 

unwrapped phase still contains spatially correlated components such as 𝜑𝑎𝑡𝑚𝑜, Δ𝜑𝑜𝑟𝑏𝑖𝑡 and 

∆𝜑𝑡𝑜𝑝𝑜
𝑠𝑐 . In StaMPS, these components are filtered out using temporal low-pass and high-pass 

filtering, respectively. Since these spatially correlated phases also introduce unwrapping errors, 

the filtering and unwrapping process needs to be repeated until the phase converges. This 

method ensures that the unwrapped displacement phase is accurately obtained so that the 

deformation analysis can be completed using Eq. 3.9. 

 

Using the above method, the StaMPS approach can effectively perform deformation analysis 

when the PS are dense enough with millimeter-level accuracy. However, in rural areas where 

PS are scarce, insufficient PS leads to increased phase unwrapping errors, which reduces its 

reliability for large-scale deformation monitoring. To address this limitation, the next section 

introduces an extension of the StaMPS processing chain that incorporates DS. This extension 

can jointly process PS and DS, providing more reliable deformation monitoring. 

 

3.4. Joint processing of Distributed and Persistent 

Scatterers 

 

Unlike PS, which represents deterministic radar targets, DS consists of stochastic targets that 

follow certain statistical descriptions, which may change from place to place. Since the 

properties of the scatterer may change over time, and their coherence is usually low, the phase 

for individual DS is usually not directly usable. However, for some DS, their neighboring pixels 

may share similar backscattering statistical characteristics. This allows for the enhancement of 

the SNR of these scatterers through statistical techniques, such as averaging pixels 

(multilooking). Although the exact displacement of a single DS cannot be measured directly, 

statistical methods can estimate the average displacement of a group of DS with similar 

statistical properties by interferometry (Guarnieri & Tebaldini, 2008). This idea led to the 

development of two parallel DS processing methods: Small Baseline Subsets (SBAS) 

(Berardino et al., 2002) and SqueeSAR (Ferretti et al., 2011). 

 

For a single pixel, the phase of a certain interferogram Δ𝜙1 can be constructed from two other 

interferograms Δ𝜙2 and Δ𝜙3. This is also called triangular phase as shown in Eq. 3.39: 

Δ𝜙1 − Δ𝜙3 = (Δ𝜙1 − Δ𝜙2) + (Δ𝜙2 − Δ𝜙3) (3.39) 

However, after spatial filtering the interferograms phases no longer satisfy Eq. 3.39. Therefore, 

statistical methods are usually used to estimate the DS phase from multiple redundant 

interferograms.  

 

Different from PSI, SBAS selects specific SAR image pairs for interferometry based on the 

favorable baselines, rather than selecting a master image and interfering with all slave images 

to obtain the interferogram stack. For SBAS approach, 𝐿 subsets with 𝑀 interferograms with 

favorable baselines (small baselines are preferred) are formed from 𝑁 + 1 SAR images 𝛟 =
[𝜙0, 𝜙1, 𝜙2, … , 𝜙𝑁]. The interferograms stack for SBAS follows: 

𝛥𝜑𝑗 = 𝑊−1(𝜙𝑖𝐸 − 𝜙𝑖𝑆), 𝑖𝐸 > 𝑖𝑆, (3.40) 

Where 𝑊−1  is the unwrapping operator and 𝑖𝑆  and 𝑖𝐸  are certain acquisition index of a 

subset selected by favorable baselines. The interferogram stack 𝚫𝛗  become: 
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𝚫𝛗𝐓 = [Δ𝜑1, Δ𝜑2, … , Δ𝜑𝑀], 𝑀 ≥ 𝑁 − 𝐿 + 1. (3.41) 

For 𝐿 = 1, a system with 𝑀 equations and 𝑁 unknowns of Eq. 3.40 and Eq. 3.41 can be 

written as: 

𝚫𝛗 = 𝑪𝑊−1(𝛟) , (3.42) 

where 𝑪 the adjacency matrix of the connection graph formed by 𝑖𝐸 and 𝑖𝑆, like: 

𝑪 =

[
 
 
 
 
1 0
0 1

⋯
−1 0
0 1

⋮ ⋱ ⋮
1 0
0 0

⋯
0 −1
1 −1]

 
 
 
 

, 𝑤𝑖𝑡ℎ  𝐶𝑗,𝑖𝐸 = 1, 𝐶𝑗,𝑖𝑠 = −1, 𝑜𝑡ℎ𝑒𝑟𝑠 = 0. (3.43) 

The least-squares solution of this system is: 

�̂� = 𝑪+𝚫𝛗 , 𝑪+ = (𝑪𝑻𝑪)
−𝟏

𝑪𝑻. (3.44) 

In some cases, the number of subsets 𝐿 may be larger than 1. In that situation, the rank of 

matrix 𝑪 is 𝑁–  𝐿 +  1 <  𝑁, meaning the system of equations need be solved using Singular 

Value Decomposition (SVD).  

 

A key limitation of the SBAS method is that it requires phase unwrapping of the whole 

interferogram before the least squares solution. This means that phase unwrapping errors can 

corrupt the DS phase estimate. For scenes with low coherence, such as areas with dense 

vegetation canopies, the phase unwrapping results may not meet expectations, causing the 

solution to fail. Therefore, estimating the DS signal before any unwrapping errors occur 

becomes a more promising approach for DS analysis. 

 

In order to retain the advantage of SBAS in estimating the DS phase from multiple 

interferograms while avoiding the import of destructive phase unwrapping errors, the 

SqueeSAR method was introduced. SqueeSAR uses statistical methods to select DSC and 

estimate their phases before phase unwrapping, this key step is called DS preprocessing. The 

preprocessed DSCs can be jointly processed as virtual PSC by any PSI method, such as StaMPS. 

Therefore, in the phase unwrapping process of the joint processing, the addition of preprocessed 

DSC can provide higher pixel density, significantly reducing the unwrapping error and 

improving the overall accuracy. 

 

DS consists of many small scatterers of similar size within a resolution cell, and the phases of 

these scatterers can be described by a complex circular Gaussian distribution. When a sufficient 

number of DS with similar statistical characteristics are identified, their average effective phase 

can be estimated by phase triangulation. This estimation is performed directly from the wrapped 

phase without the need for an unwrapping step. The idea above forms the core of the SqueeSAR 

algorithm. In SqueeSAR, DS preprocessing is performed by the following steps: 

1) Grouping of Statistical Homogeneous Pixels (SHP). 

2) Estimation of the covariance matrix. 

3) Using the Phase Triangulation Algorithm (PTA) to estimate the phase of DSC. 

4) Calculation of a quality number (coherence-like index) for the DSC. 

 

The first step in DS preprocessing is the identification of SHP. Since DS and PS are processed 

jointly, any filtering process must preserve information related to individual PS. Specifically, 

PS with high coherence should not be averaged with neighboring pixels that may have low 
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SNR. Therefore, the spatial filter employed must be spatially adaptive, ensuring that only SHP 

are averaged while keeping the information related to point targets (PS) intact. In the SqueeSAR, 

SHP selection is performed using an algorithm called DespecKS. For the registered stack of 

N+1 SAR images, the signal vector corresponding to a particular pixel 𝑥 in the stack  𝑑(𝑥) is 

given by: 

𝑑(𝑥) = [𝑧0(𝑥), 𝑧1(𝑥),… , 𝑧𝑁(𝑥)]. (3.45) 

If 𝑥  is a PS, 𝑑(𝑥)  is a deterministic vector, while if 𝑥  is a DS, then 𝑑(𝑥)  is a complex 

random vector. Given two pixels vector 𝑑(𝑥1)  and 𝑑(𝑥2) , if the null hypothesis that two 

pixels 𝑥1 and 𝑥2 come from the same probability distribution function cannot be rejected, 

then the two image pixels 𝑥1 and 𝑥2 are defined as statistically homogeneous. In DespecKS, 

this hypothesis has been tested by the two-sample Kolmogorov-Smirnov (KS) test (Stephens, 

1970). More specifically, the sorted amplitude vector  

𝐴𝑠 = [𝐴𝑠0, 𝐴𝑠1, … , 𝐴𝑠𝑁  ] = 𝑠𝑜𝑟𝑡[𝐴0, 𝐴1, … , 𝐴𝑁] (3.46) 

of 𝑑(𝑥)  can be easily converted into an unbiased estimator 𝑆𝑁(𝐴)  of the cumulative 

distribution function (𝑐𝑑𝑓) by: 

 

𝑆𝑁(𝐴) = {

0 𝐴 < 𝐴𝑠1
𝑘

𝑁
𝐴𝑠𝑘 < 𝐴 < 𝐴𝑠𝑘+1

1 𝐴 > 𝐴𝑠𝑁+1

. (3.47) 

The two-sample KS test measure the maximum value of the absolute difference 𝐷𝑁 between 

the 𝑐𝑑𝑓 of two pixels 𝑥1 and 𝑥2 as: 

𝐷𝑁 = √
𝑁

2
sup
𝐴𝜖𝑅

|𝑆𝑁
𝑥1(𝐴) − 𝑆𝑁

𝑥2(𝐴)| . (3.48) 

The distribution of 𝐷𝑁 can be approximated by the KS distribution (Stephens, 1970), as: 

𝑃(𝐷𝑁 ≤ 𝑡) = 𝐻(𝑡) = 1 − 2 ∑ −1𝑛−1𝑒−2𝑛2𝑡2

∞

𝑛=1

. (3.49) 

Given that the significance level 𝛼, if 𝐷𝑁 smaller than a threshold 𝑐 depends on 𝛼, the null 

hypothesis is accepted, which means two pixels 𝑥1 and 𝑥2 are statistically homogeneous and 

belong to the same group of SHP. The DespecKS algorithm works as follows: 

1) For each pixel 𝑥 in the interferogram stack, define an estimation window that is 

centered on 𝑥. 

2) Perform the two-sample KS test mentioned above on each pixel in this window 

with 𝑥, and discard the pixels rejected by the test. 

3) Discard those pixels that are not connected with 𝑥. 

4) Keep the remaining pixels as a group of SHP Ω. 

 

After separating pixels into different SHP groups, the sample covariance matrix of pixel 𝑥 can 

be estimated by its SHP group Ω as: 

𝐶(𝑥) = 𝐸[𝑑(𝑥) ∗ 𝑑𝐻(𝑥)] ≈
1

|Ω|
∑ 𝑑(𝑥) ∗ 𝑑𝐻(𝑥) = �̂�

𝑥∈Ω

. (3.50) 

where ∗𝐻 denotes Hermitian conjugation. After normalization, �̂� has been converted to an 

estimated coherence matrix Γ̂, the absolute values of the off-diagonal elements of Γ̂ are an 

estimate of the coherence values 𝛾𝑗𝑘 for all possible interferograms of the data stack, as: 
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Γ̂ = {𝛾𝑗𝑘𝑒𝑖∆𝜙𝑗𝑘}, (3.51) 

where ∆𝜙𝑗𝑘 denotes the interferogram phase averaged over Ω generated by SAR image 𝑗 

and 𝑘. 

 

When the coherence matrix Γ̂ is estimated, the phase of the DS can be estimated with PTA. 

For PS, the phase values of the coherence matrix Γ̂  are redundant. Hence the following 

equation holds: 

∠(Γ̂𝑛𝑗) = ∠(Γ̂𝑛𝑚Γ̂𝑗𝑚
∗ ) = 𝜃𝑛 − 𝜃𝑗, 𝑛, 𝑗, 𝑚 = 1,2… . , 𝑁 + 1. (3.52) 

where ∠ denotes the argument of a complex number. This is equivalent to phase triangulation 

shown in Eq. 3.39. For DS, this is no longer true. To estimate the phase of DS, the coherence 

matrix Γ can be decomposed into: 

Γ = ΘΥΘ𝐻 , (3.53) 

where Υ is an 𝑁 + 1 × 𝑁 + 1  symmetric real-value matrix whose elements correspond to 

the coherence values of all the interferograms, and Θ = dirg(e𝑖𝜃)  is an 𝑁 + 1 × 𝑁 + 1 

diagonal matrix, containing the phase information. Assuming SHP in the same group Ω share 

the same 𝜃, the 𝑝𝑑𝑓 of this group SHP can be expressed as: 

𝑝(𝑑Ω|𝜃) ∝ ∏𝑒−𝑑𝑥
𝐻ΘΥ−1Θ𝐻𝑑𝑥

𝑥∈Ω

= 𝑒−𝑡𝑟𝑎𝑐𝑒(ΘΥ−1Θ𝐻Γ̂) . (3.54) 

Hence, the maximum likelihood (ML) estimation of θ is obtained by maximizing 𝑝(𝑑Ω|𝜃) or 

minimizing the absolute value of its logarithm, this turns the estimation of θ into a nonlinear 

optimization problem. As there are the phase differences in Γ̂ , phase angles can only be 

estimated up to an arbitrary additive constant. Without loss of generality, the phase angle of the 

first interferogram is set 0 (ϑ1 = 0). The optimal estimated phase angle ϑ = [0, ϑ2, ϑ3, … ϑN+1] 
is then given as: 

ϑ̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
ϑ

{Λ𝐻 (|Γ̂|
−1

⊙ Γ̂)Λ} , (3.55) 

where Λ = 𝑒𝑖ϑ is an N+1-dimensional vector, and ⊙ represents the Hadamard product. The 

optimization process can be implemented by an iterative optimizer, such as Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm. 

 

Once the optimal solution is obtained, the quality number 𝛾𝑃𝑇𝐴 of the “goodness fit of the 

estimated phase” of DS candidates (similar to 𝛾 for PS) can be calculated by: 

𝛾𝑃𝑇𝐴 =
1

𝑁2 + 𝑁
∑ ∑ 𝑒𝑖𝜙𝑛𝑘𝑒−𝑖(ϑ𝑛−ϑ𝑘)

𝑁

𝑘≠𝑛

𝑁

𝑛=0

. (3.56) 

After calculating 𝛾𝑃𝑇𝐴, good DSC can be selected by applying a threshold to 𝛾𝑃𝑇𝐴, similar to 

the selection process for PS based on 𝛾. DSC with 𝛾𝑃𝑇𝐴 higher than that threshold can be 

considered to be DS. Once DS pixels are identified, their original phase in the SAR image stack 

is replaced with the estimated optimal phase 𝑒𝑖ϑ . These DS can then be treated like PS, 

allowing for the joint processing of DS and PS using any PS processing chain. 

 

DS preprocessing estimates the optimal phase values by determining the 𝑁 + 1 phase values 

that best fit the sample coherence matrix before phase unwrapping. This approach utilizes all 

possible interferograms to estimate the best phase value, thereby avoiding the complex phase 

unwrapping required in the SBAS method. As an extension of the StaMPS method, DS 



 

34 

 

preprocessing significantly enhances the ability to monitor rural area deformation. However, 

this method relies on analyzing the neighborhood of each pixel, which becomes a bottleneck 

that limits the computational efficiency of the method. In Chapter 6 of this thesis, a method for 

identifying DSC using deep neural networks will be introduced to improve the processing 

efficiency of DS preprocessing. By adopting deep learning, the neural network can infer DSC 

using only a pair of polarimetric SAR images with low and high coherence. This innovation 

can highly accurately identify masks that meet the DSC criteria, allowing only pixels covered 

by the mask to be processed by the preprocessing step, thereby improving the whole processing 

speed. 
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4. The basic framework of deep 

learning 

This chapter will introduce the basics of deep learning related to this thesis. The foundational 

elements of deep learning, including the multiple layer perceptron model, convolutional 

networks, sequence modeling and recurrent networks, loss functions, optimizers, and gradient-

based learning algorithms are detailed herein. In this section, only the necessary deep learning 

background knowledge to understand this thesis will be introduced. For other details, please 

refer to the textbook: Deep Learning (Goodfellow et al., 2016) and Artificial Intelligence A 

Modern Approach (Russell & Norvig, 2021) 

 

4.1. The background of deep learning 

 

In the past decade, modern artificial intelligence technology has made rapid progress, largely 

due to the development of high-performance parallel computing. These technologies have been 

widely used in various fields, such as computer vision (Goodfellow et al., 2016), speech 

recognition (Hinton et al., 2012), natural language processing (Brown et al., 2020), and 

biopharmaceuticals (Jumper et al., 2021). From the perspective of knowledge representation, 

knowledge acquisition or learning can usually be achieved in two main forms: induction and 

deduction. Induction is the summary of general rules from a large number of observations, 

while deduction is logical reasoning based on known rules to derive new knowledge. In the 

early days of artificial intelligence, computing power was limited. The typical learning method 

was to use physical, mathematical, or statistical principles to derive "models" with clear 

mathematical forms and then use machines to determine the parameters of these models based 

on observed results. This process is usually called "machine learning." However, due to 

computing requirements and engineering challenges, the number of model parameters that can 

be learned is usually limited. Therefore, linear systems are usually used to approximate the 

model to simplify calculations. Although kernel methods can give machine learning models 

certain nonlinear fitting capabilities, their performance usually depends on the appropriateness 

of the input feature design. This dependency means that machine learning models often rely on 

the expertise of domain experts and struggle with tasks that are relatively intuitive to humans 

but difficult to express in mathematical terms. 

 

The real world often consists of complex nonlinear systems, but human intuition can easily and 

accurately solve such complex nonlinear problems. Therefore, more "intelligent" learning 

algorithms should enable machines to learn nonlinear patterns that are difficult to describe 

directly from experience, similar to human learning, and should avoid the need for complex 

assumptions. Fortunately, with the advancement of Graphics Processing Unit (GPU) parallel 

computing technology, it has been discovered that when Artificial Neural Networks (ANN) 

possess sufficient depth and parameters, they can directly learn complex nonlinear knowledge 

representations from observed data without the need for manual feature engineering (Lecun et 

al., 2015). This capability efficiently allows ANN become deeper and deeper, then the deep 

artificial neural networks, abbreviated as DNN, has been put forward to effectively utilize the 

increased computing power brought about by computer hardware innovations and the increased 

data availability brought about by advances in sensor technology, thereby achieving better 
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performance than models manually designed by human experts—in other words, becoming 

more "intelligent." This unique property has gradually given rise to a new branch of traditional 

machine learning, i.e. deep learning. 

 

Since artificial feature engineering "guidance" is typically not introduced in the learning 

process, ANN uses several common simple modules, also known as neurons, to stack and 

combine, thereby automatically identifying patterns in the data. Neurons (McCulloch & Pitts, 

1943) are usually composed of simple, trainable weight 𝑤𝑖 and bias 𝑏, as shown in Fig. 4.1. 

The data propagation within a neuron can be expressed as the inner product between the input 

data 𝑥𝑖  and the weight 𝑤𝑖  then followed by a nonlinear transformation performed by the 

activation function 𝜎, yielding the output 𝑦, as shown in Eq. 4.1. 

𝑦 = 𝜎 (∑𝑤𝑖𝑥𝑖 + 𝑏

𝑖

) . (4.1) 

 

 

Fig. 4.1 McCulloch–Pitts neuron model 

 

Therefore, neurons can also be regarded as units of nonlinear transformation. Although such 

nonlinear transformations are usually simple, such as hyperbolic tangent or sigmoid function, 

stacking multiple layers of neurons will produce a composite of multiple nonlinear functions, 

giving it powerful nonlinear fitting capabilities. The Kolmogorov–Arnold representation 

theorem, also known as the Universal Approximation Theorem (Tikhomirov, 1991), 

demonstrates that a composite of more than three layers of neurons can fit any multivariate 

function. This theorem is the theoretical basis for the effectiveness of deep learning methods. 

However, the universal approximation theorem only shows that there is a set of suitable neurons 

that can fit the target function but does not provide a method to find these neurons. In deep 

learning, the number of neurons usually reaches millions, so it is impractical to find suitable 

neurons through exhaustive search. Fortunately, the BP algorithm (Rumelhart et al., 1986) 

enables the updating of neurons based on the gradient of the loss function, which measures the 

discrepancy between the neural network's output and the observed reference (in deep learning, 

it is called the ground truth). This approach transforms the training of the neural network into 

an optimization problem that can be effectively solved. 

 

To enable machines to recognize patterns in data, architecture, i.e., the organizational structure 

of neurons, is crucial in deep learning. Neurons in DNN are organized into different layers, 
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such as convolutional layers or fully connected layers, based on their functions. As the basic 

components of architecture, these common layers and architectures are introduced in the 

subsequent parts of this chapter. As the basic components of architecture, these common layers 

and architectures are introduced in the subsequent parts of this chapter. In DNN, different layers 

of the network can learn and combine features at different levels of abstraction. For example, 

in the context of visual features, the shallower layers in a neural network usually learn basic 

features such as color and texture. In contrast, the deeper layers integrate these primary features 

into higher-level, conceptual semantic features that are comprehensible to humans, such as hair 

and appearance (Zeiler & Fergus, 2014). Importantly, these features in DNN are learned entirely 

automatically from data, enabling the outputs of different layers in DNN to serve as machine-

extracted features equivalent to those manually designed by human experts. 

 

4.2. Perceptron model and multiple layer perceptron 

 

The perceptron model is the simplest ANN model, invented by Warren McCulloch and Walter 

Pitts in 1943 alongside the concept of neurons (McCulloch & Pitts, 1943). This model is an 

algorithm inspired by biology and neuroscience, designed to simulate synapses in the nervous 

system. In 1957, Frank Rosenblatt implemented the perceptron model in hardware at the 

Cornell Aeronautical Laboratory, turning it into a physical machine (Rosenblatt, 1960). The 

original perceptron model consists of a single neuron, with its mathematical expression given 

by Eq. 4.1. To simulate the activation and inhibition states of biological neurons, the original 

perceptron uses the Heaviside step function 𝜎𝐻, as shown in Eq.4.2, as the activation function. 

This makes the perceptron output only two states, 0 or 1, thereby functioning solely as a 

discriminator. 

𝜎𝐻(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 . (4.2) 

Although the perceptron model looked promising at first, it soon became apparent that it could 

not be trained to recognize many types of patterns. A single-layer perceptron could only learn 

linearly separable patterns, meaning it could only use a straight line to separate data points into 

two different groups. This limitation prevented it from handling nonlinear problems, such as 

the XOR problem. Fortunately, the advent of Multi-Layer Perceptrons (MLP, also known as 

feedforward neural networks or deep feedforward networks) solved this problem. This 

development marked the beginning of deep learning. 

Formally, MLP is a layered stacking of several perceptrons, typically consisting of more than 

three layers. Unlike the raw perceptron model, the layers of an MLP have a notion of width, i.e. 

they consist of multiple neurons in parallel. This allows data propagation to be represented in 

matrix form for parallel computation. Let the input data be 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} , 𝑤𝑖 =
{𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑛, 𝑏𝑖}  is the weights and bias of the i-th neuron, so 𝑊(𝑙) =

{𝑤1, 𝑤2, … , 𝑤𝑚} = (

𝑤1,1 ⋯ 𝑤1,𝑛

⋮ ⋱ ⋮
𝑤𝑚,1 ⋯ 𝑤𝑚,𝑛

)  represents the m neurons in the layer l, 𝑎𝑖
(𝑙)

  is the 

output of the i-th neuron at layer l, so 𝑎(𝑙) = {𝑎1
(𝑙), 𝑎2

(𝑙), … , 𝑎𝑚
(𝑙)

} represents the output vector 

of layer l. Let 𝜎 denotes the activation function, then the data propagation is shown in Fig. 4.2. 

 



 

38 

 

 

Fig. 4.2 Data propagation for MLP 

 

In order to keep the features and their gradients propagating normally, the Heaviside step 

function is no longer suitable as an activation function because it only outputs 0/1. Instead, 

continuous or nearly continuous nonlinear functions such as hyperbolic tangent (tanh), Sigmoid, 

and Rectified Linear Unit (ReLU) are used as activation functions to keep the features and their 

gradients propagating. The sigmoid function is defined as:  

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
, (4.3) 

which is a monotonically increasing nonlinear mapping from R → (0,1)  and serves as an 

excellent alternative to the Heaviside step function, as shown in Fig.4.3. The hyperbolic tangent 

function is defined as:  

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 , (4.4) 

providing a monotonically increasing nonlinear mapping from R → (−1,1). While it exhibits 

effective nonlinear mapping properties, its gradient is significant only when the input is near 0, 

and it becomes nearly zero for very large or small inputs, as shown in Fig.4.3, potentially 

leading to gradient explosion or vanishing, and consequently, training failure. Therefore, a 

commonly used activation function is the ReLU, which is simple in form and easy to compute, 

defined as: 

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥   𝑥 ≥ 0
 0   𝑥 < 0 

. (4.5) 

ReLU introduces nonlinearity by suppressing inputs less than 0 and is linear everywhere except 

at 0. This simplicity in derivative computation helps make computation faster in neural 

networks using ReLU compared to other activation functions. 
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Fig. 4.3 Common activation functions and their gradients 

 

The first layer of an MLP is called the input layer, which consists of neurons that directly 

multiply the input data. After the data passes through the input layer, it passes through multiple 

hidden layers, each of which consists of multiple neurons that take the outputs of all neurons in 

the previous layer as input. Therefore, this structure is also called a fully connected layer or a 

fully connected network. The output of the hidden layer represents the nonlinear hierarchical 

features automatically extracted by the network. Shallow features are sequentially combined 

through deeper hidden layers to form higher-level features. This ability gives MLP significant 

nonlinear fitting capabilities, making it more practical than a single-layer perceptron. Written 

in matrix form and include bias 𝑏(𝑙) into weights matrix 𝑊(𝑙), the output 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑘} 
of an L-layer MLP can be expressed as a composite: 

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑘} = 𝑊(𝐿)(𝜎(𝐿)(𝑊(𝐿−1) …𝜎(2)(𝑊(2)𝜎(1)(𝑊(1)𝑋))… ) (4.6) 

where 𝜎(𝑙) is the activation function of the 𝑙-th layer. The diagram of MLP is shown in Fig. 4.4. 
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Fig. 4.4 The diagram of MLP 

 

4.3. Loss Function, Gradient-Based Learning and 

Optimizers 

 

Eq. 4.6 indicates that the output Y of a DNN 𝑓𝐷𝑁𝑁 is determined by the input X according to a 

set of trainable weight parameters 𝑊, as shown in Eq. 4.7. 

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑘} = 𝑓𝐷𝑁𝑁(𝑋;𝑊). (4.7) 

However, finding a suitable set of weight parameters W (also called training) to ensure that the 

output 𝑌  is close enough to the ground truth is a challenge. In the early days of machine 

learning, the total number of parameters of shallow networks that needed to be learned was not 

large, and the weight parameters 𝑊 could be determined using search-based algorithms or 

evolutionary algorithms (such as genetic algorithms, particle swarm optimization, simulated 

annealing, etc.). However, as networks became deeper and larger, the number of parameters 

required for training increased significantly, making these early algorithms inefficient or 

computationally impractical. Fortunately, despite the BP algorithm (LeCun, 1988) being widely 

misunderstood in the 1990s, its amazing performance in 2012 with AlexNet (Krizhevsky et al., 

2012) in the field of computer vision demonstrated its potential for training DNN. AlexNet 

achieved significantly higher accuracy than traditional machine learning methods and shallow 

neural networks by combining the backpropagation algorithm with GPU parallel computing to 

train very deep (at the time) convolutional neural networks. This milestone marked the rise of 

modern deep learning and the gradual abandonment of manual feature design, and led to the 

acceptance of backpropagation as an effective algorithm for training DNN. 

 

Before introducing the BP algorithm in detail, it is essential to first understand the concept of 

the loss function. The loss function, also known as the cost function, is a binary function used 

to measure the difference or distance between the network output 𝑌  and the ground truth 

𝐺𝑇 = {𝑔𝑡1, 𝑔𝑡2, … , 𝑔𝑡𝑘} , denoted as 𝐿𝑜𝑠𝑠(𝑌, 𝐺𝑇) . It should be emphasized that the term 

ground truth has different meanings in the fields of machine learning and remote sensing or 

geodesy. In this thesis, the term ground truth represents factual knowledge relative to a specific 

problem, that is, observations used as references, or standard answers recognized by humans, 
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rather than the location coordinates. In most geodetic scenarios, the output of a model (whether 

deep learning or otherwise) is typically a numerical value with a specific unit. For those values, 

the Euclidean distance is commonly used to measure their differences, which is also known as 

the Root Mean Square Error (RMSE)： 

𝑅𝑀𝑆𝐸(𝑌, 𝐺𝑇) = √
1

𝑁
∑(𝑌 − 𝐺𝑇)2

𝑁

𝑛=1

, (4.8) 

where 𝑁 is the number of samples. Therefore, when DNN needs to generate or predict some 

numerical values based on the input, that is, when performing numerical regression tasks, 

RMSE is usually used as the loss function. In this case, training the network can be regarded as 

an optimization task to find a set of weights 𝑊 that minimize the loss function. This can be 

expressed as: 

𝐿𝑜𝑠𝑠𝑅𝑀𝑆𝐸 = rrgmin
𝑊

𝑅𝑀𝑆𝐸(𝑓𝐷𝑁𝑁(𝑋;𝑊), 𝐺𝑇) = rrgmin
𝑊

√
1

𝑁
∑(𝑦𝑛(𝑥𝑛;𝑊) − 𝑔𝑡𝑛)2

𝑁

𝑛=1

. (4.9) 

 

Different from numerical regression tasks, another important application of models in remote 

sensing and geodesy is to classify or identify pixels in remote sensing images, such as ground 

object recognition and mask generation commonly used in SAR and InSAR applications. When 

dealing with classification problems, pixels are labeled by category and then One-Hot encoded, 

which is equivalent to converting the label into a Multinoulli distribution 𝑃(𝑔𝑡) (also called 

categorical distribution) (Robert, 2014) as the target for learning. This means for 𝐾 categories, 

one pixel can be labeled and encoded as a 𝐾- dimension discrete probability distribution as the 

target, and in this distribution, only the probability of class 𝑐𝑖 with correct label is 1, otherwise 

it is 0. as shown in Eq. 4.10. An example of one-hot encoding as shown in Fig.4.5.  

𝑃(𝑔𝑡) = 𝑝(𝑐𝑖 = 𝑔𝑡) = {
1, 𝑖 = 𝑔𝑡
0, 𝑖 ≠ 𝑔𝑡

. (4.10) 

 

 

Fig. 4.5 An example of One-hot encoding. In this example, there are three categories of pixels: road, tree, 

and water, which are labeled 0, 1, and 2, respectively. After One-hot encoding, the target of a pixel that 

belongs to the road, tree, or water is {1,0,0}, {0,1,0}, {0,0,1} respectively. 

. 

In this case, the output of a DNN model should also be a discrete probability distribution, and 

the purpose of training is to let that distribution be as close to the target distribution as possible. 

For classification tasks, the total number of categories 𝐾 is knowable. Therefore, the output 
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layer can use 𝐾  neurons to let the network output 𝐾  values, and then use the SoftMax 

function to convert them into probabilities, as shown in Eq. 4.11. This allows the output of 

DNN to be represented as a discrete probability distribution 𝑄(𝑦𝑛). 

𝑄(𝑦𝑛) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑦𝑛) =
𝑒𝑦𝑛,𝑘

∑ 𝑒𝑦𝑛,𝑘𝐾
𝑘=1

. (4.11) 

where 𝑦𝑛 is the output vector with K-dimension of the network corresponding to the input 𝑥𝑛, 

𝑦𝑛,𝑘 is the value of its k-th component. Then, the loss function needs to measure the similarity 

between the target distribution 𝑃(𝑔𝑡𝑛) and the DNN output distribution 𝑄(𝑦𝑛). In statistics, 

Kullback-Leibler (KL) divergence quantifies the amount of information lost when using 

probability distribution 𝑄(𝑦𝑘) to approximate the probability distribution 𝑃(𝑔𝑡𝑛), as shown 

in Eq. 4.12.  

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑔𝑡𝑛) log
𝑃(𝑔𝑡𝑛)

𝑄(𝑦𝑛)

𝐾

𝑘=1

= ∑ 𝑃(𝑔𝑡𝑛) log𝑃(𝑔𝑡𝑛) −

𝐾

𝑘=1

∑ 𝑃(𝑔𝑡𝑛) log𝑄(𝑦𝑛)

𝐾

𝑘=1

. (4.12)

 

The first term in Eq. 4.12 is the entropy of distribution 𝑃(𝑔𝑡𝑛) , which represents the average 

number of bits needed to encode using the optimal code for 𝑃(𝑔𝑡𝑛)  . Since 𝑃(𝑔𝑡𝑛)  is 

encoded from the ground truth 𝑔𝑡𝑛, this makes this entropy is a constant and can be ignored in 

the optimization process. The remaining part is the cross entropy 𝐻𝐶𝐸 between 𝑃(𝑔𝑡𝑛) and 

𝑄(𝑦𝑛), denoted as: 

𝐻𝐶𝐸(𝑃||𝑄) = − ∑ 𝑃(𝑔𝑡𝑛) log𝑄(𝑦𝑛)

𝑁

𝑛=1

. (4.13) 

By minimizing the cross-entropy 𝐻𝐶𝐸(𝑃||𝑄) as the loss function, as shown in Eq. 4.14, the 

network can obtain an optimal set of weights 𝑊 to output a discrete probability distribution 

𝑄(𝑦𝑛) closest to the encoded ground truth Multinoulli distribution 𝑃(𝑔𝑡𝑛). The category with 

the maximum probability in 𝑄(𝑦𝑛)  is then considered as the classification result of the 

network.  

𝐿𝑜𝑠𝑠𝐶𝐸 = rrgmin
𝑊

𝐻𝐶𝐸(𝑃(𝐺𝑇)||𝑄(𝑓𝐷𝑁𝑁(𝑋;𝑊))) 

= −rrgmin
𝑊

1

𝑁
∑ ∑ 𝑃(𝑔𝑡𝑛) log

𝑒𝑓𝐷𝑁𝑁(𝑥𝑛;𝑊)𝑘

∑ 𝑒𝑓𝐷𝑁𝑁(𝑥𝑛;𝑊)𝑘𝐾
𝑘=1

.

𝐾

𝑘=1

𝑁

𝑛=1

 (4.14)
 

In addition to the two commonly used loss functions mentioned above, for more complex tasks, 

such as fitting unknown distributions, the maximum likelihood method can be used to derive 

the general form of the loss function. In this case, the loss function can be simplified to the 

negative log-likelihood, as shown in Eq. 4.15. 

𝐿𝑜𝑠𝑠 = −rrgmin
𝑊

𝔼𝐺𝑇 log 𝐿𝐷𝑁𝑁(𝑓𝐷𝑁𝑁(𝑋;𝑊)) , (4.15) 

where 𝔼𝐺𝑇 is the expectation of the distribution from 𝐺𝑇, and 𝐿𝐷𝑁𝑁 is the likelihood of the 

output distribution of the DNN. In fact, RMSE and cross-entropy 𝐻𝐶𝐸  can be regarded as 

special cases of using maximum likelihood to construct loss functions for Gaussian distribution 

and Multinoulli distribution, respectively. In Chapter 5 of this thesis, the method of using 

maximum likelihood to derive loss functions to train Gaussian mixture models for fitting ZWD 

distribution will be introduced in detail. 

 

Once the loss function is constructed, training the network becomes an unconstrained 
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optimization problem. However, since the network consists of multiple layers of nonlinear 

mappings, this problem becomes an unconstrained nonlinear optimization problem, which is 

difficult to solve. Initially, it was widely believed that simple gradient descent would get stuck 

in a bad local minimum, where any small change in the weight changes would not improve the 

model. However, large networks rarely encounter major problems with poor local minima. 

Regardless of the initial conditions, the system almost always reaches a solution of similar 

quality. Recent theoretical and empirical results show that local minima are usually not a serious 

problem. Instead, the landscape is usually crowded with many saddle points with zero gradient, 

where the surface bends upward in most dimensions and downward in some other dimensions 

(Dauphin et al., 2014). Analysis indicates that there are only a few saddle points with a large 

number of downward-bending directions, but the loss function values at almost all saddle points 

are very similar (Choromanska et al., 2015). Therefore, it does not matter significantly which 

saddle point the algorithm gets stuck on. This insight makes it feasible to use the 

backpropagation algorithm combined with gradient descent and its variants to find 𝑊  that 

minimizes the loss function and completes the training of the network. 

 

The BP algorithm addresses a crucial question: how to obtain the gradient of each neuron 

∇𝑤𝑖,𝑗
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖,𝑗
 , and how to pass error information (i.e. gradient) from the loss function back to 

the network layer by layer so that these weights can be updated using gradient descent. This 

process is essentially equivalent to the chain rule in calculus. Formally, training a network 

involves three iterative steps until the loss converges: 

1. Forward Propagation: Input 𝑋  into the network 𝑓𝐷𝑁𝑁  to obtain the output 𝑌  (as 

shown in Eq. 4.6). 

2. Loss Calculation: Compute the loss 𝐿𝑜𝑠𝑠(𝑌, 𝐺𝑇)  based on loss function with the 

output 𝑌 and the ground truth 𝐺𝑇. 

3. Backward Propagation and Weight Update: Calculate the gradient of each neuron 

∇𝑤𝑖,𝑗, and update each weight using gradient descent or its variants: 

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 − 𝑓(∇𝑤𝑖,𝑗
). 

According to Eq. 4.6, the network is composed of multiple layers of neurons. By applying the 

chain rule, given that 𝑧(𝑙) = 𝑊(𝑙)𝑎(𝑙), 𝑎𝑛𝑑 𝑎(𝑙) = 𝜎(𝑙)(𝑧(𝑙)), the derivative of the loss in term 

of the input 𝑋 can be written in matrix form as: 

𝑑𝐿𝑜𝑠𝑠

𝑑𝑋
=

𝑑𝐿𝑜𝑠𝑠

𝑑𝑌

𝑑𝑌

𝑑𝑎(𝐿)

𝑑𝑎(𝐿)

𝑑𝑧(𝐿)

𝑑𝑧(𝐿)

𝑑𝑎(𝐿−1)

𝑑𝑎(𝐿−1)

𝑑𝑧(𝐿−1)

𝑑𝑧(𝐿−1)

𝑑𝑎(𝐿−2)
…

𝑑𝑎(2)

𝑑𝑧(2)

𝑑𝑧(2)

𝑑𝑎(1)

𝑑𝑎(1)

𝑑𝑧(1)

𝑑𝑧(1)

𝑑𝑋(1)

= 
𝑑𝐿𝑜𝑠𝑠

𝑑𝑌
𝑊(𝐿)𝑎(𝐿−1)′𝑊(𝐿−1) …𝑎(1)′𝑊(1), (4.16)

 

where 
𝑑𝑎(𝑙)

𝑑𝑧(𝑙) = 𝑎(𝑙)′  is a diagonal matrix of the derivatives of the activation functions, and 

𝑑𝑧(𝑙)

𝑑𝑎(𝑙−1) =
𝑑(𝑊(𝑙)𝑎(𝑙−1))

𝑑𝑎(𝑙−1) = 𝑊(𝑙)  is the matrices of weights. The gradient ∇𝑋  of the 𝐿𝑜𝑠𝑠  in 

terms of the input 𝑋 is the transpose of derivative, so in matrix form, it can be written as: 

∇𝑋= 𝑊(1)⊺𝑎(1)′𝑊(2)⊺𝑎(2)′ …𝑊(𝐿)⊺∇𝑌. (4.17) 

where symbol ⊺ denotes matrix transpose, and ′ denotes matrix derivative. Introducing the 

auxiliary 𝛿(𝑙), which represents the error of layer 𝑙, as: 

𝛿(𝑙) = 𝑎(𝑙)′𝑊(𝑙+1)⊺𝑎(𝑙+1)′ …𝑊(𝐿)⊺∇𝑌. (4.18) 

And 𝛿(𝑙) can easily be recursively computed as: 

𝛿(𝑙) = 𝑎(𝑙)′𝑊(𝑙+1)⊺𝛿(𝑙+1). (4.19) 
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The gradient of the weights in layer 𝑙 is then: 

∇𝑊(𝑙)= 𝛿(𝑙)(𝑎(𝑙−1))
⊺
. (4.20) 

Since the activated output 𝑎(𝑙) of each neuron is known after forward propagation, and the 

derivatives of the activation functions 𝑎(𝑙)′ can be known priorly (the derivatives of common 

activation functions will be described below), the gradient of each neuron can be easily iterated 

by using Eq. 4.19 and Eq. 4.20 after computing the gradient in terms of the output ∇𝑌. For each 

gradient computing, only three matrix multiplications are required, which greatly saves 

memory usage and improves the efficiency of this algorithm. In fact, for the commonly used 

RMSE loss and cross-entropy loss, the gradient of the loss function with respect to the output 

is straightforward. For RMSE loss, its gradient is: 

∇𝑌𝑅𝑀𝑆𝐸 =
2

𝑁
(𝑌 − 𝐺𝑇). (4.21) 

And for cross-entropy loss with one-hot encoding, due to 𝑃(𝑐𝑖)  is 1 only for 𝑖 = 𝐺𝑇 

otherwise is 0, denote 𝑠𝑖 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑦𝑖), so the cross-entropy loss become: 

𝐻𝐶𝐸(𝑃||𝑄) = −∑𝑃(𝑐𝑖) log𝑄(𝑦𝑖)

𝐾

𝑖=1

= − log𝑄(𝑦𝐺𝑇) = − log 𝑠𝐺𝑇 . (4.22) 

And the gradient is: 

∇𝑌𝐶𝐸 = −
1

𝑠𝐺𝑇

𝜕𝑠𝐺𝑇

𝜕𝑌
. (4.23) 

For the correct class 𝑖 = 𝐺𝑇,  

𝜕𝑠𝐺𝑇

𝜕𝑌𝐺𝑇
=

𝜕

𝜕𝑌𝐺𝑇

𝑒𝑦𝐺𝑇

∑ 𝑒𝑦𝑖𝐾
𝑖=1

=
𝑒𝑦𝐺𝑇 ∑ 𝑒𝑦𝑖𝐾

𝑖=1 − 𝑒𝑦𝐺𝑇𝑒𝑦𝐺𝑇

(∑ 𝑒𝑦𝑖𝐾
𝑖=1 )

2

=
𝑒𝑦𝐺𝑇

∑ 𝑒𝑦𝑖𝐾
𝑖=1

(∑ 𝑒𝑦𝑖𝐾
𝑖=1 − 𝑒𝑦𝐺𝑇)

∑ 𝑒𝑦𝑖𝐾
𝑖=1

= 𝑠𝐺𝑇(1 − 𝑠𝐺𝑇). (4.24)

 

And for wrong class 𝑖 ≠ 𝐺𝑇, 

𝜕𝑠𝐺𝑇

𝜕𝑌𝑖
=

𝜕

𝜕𝑌𝑖

𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝐾
𝑖=1

=
0 − 𝑒𝑦𝐺𝑇𝑒𝑦𝑖

(∑ 𝑒𝑦𝑖𝐾
𝑖=1 )

2 = −
𝑒𝑦𝐺𝑇

∑ 𝑒𝑦𝑖𝐾
𝑖=1

𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝐾
𝑖=1

= −𝑠𝐺𝑇𝑠𝑖. (4.25) 

Hence, the gradient ∇𝑌𝐶𝐸 is: 

∇𝑌𝐶𝐸 = −
1

𝑠𝐺𝑇

𝜕𝑠𝐺𝑇

𝜕𝑌
= [𝑠1, 𝑠2, … , 𝑠𝐺𝑇 − 1,… , 𝑠𝐾] = 𝑠𝑖 − 𝑐𝑖 . (4.26) 

Regarding the derivatives of common activation functions, which are Sigmoid, tanh, and ReLU, 

the derivatives are given below, and the figure them as shown in Fig. 4.3. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑′(𝑥) =
𝑒−𝑥

(1 + 𝑒−𝑥)2
=

1

(1 + 𝑒−𝑥)
(1 −

1

(1 + 𝑒−𝑥)
)

= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)(1 − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)). (4.27)

 

trnh′(𝑥) =
(𝑒𝑥 + 𝑒−𝑥)(𝑒𝑥 + 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)2
−

(𝑒𝑥 − 𝑒−𝑥)(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)2

= 1 − (
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥)

2

= 1 − trnh2(𝑥) . (4.28)

 

𝑅𝑒𝐿𝑈′(𝑥) = {
1   𝑥 ≥ 0
 0   𝑥 < 0 

. (4.29) 
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Once the gradient information of each neuron is obtained, the neuron can be updated using the 

gradient descent method and its variants, this is also called the optimizer. The vanilla version 

(The word “vanilla” here means ordinary, with no special or extra modified. This term is often 

used in the field of machine learning to refer to the original version, as described in Franklin  

(2005)) of the gradient descent optimizer uses all samples to calculate the loss and gradients. It 

introduces a hyperparameter, the learning rate 𝑙𝑟, as the step size for each update. This process 

is illustrated in Eq. 4.30: 

𝑊(𝑙) ← 𝑊(𝑙) − 𝑙𝑟∇𝑊(𝑙) . (4.30) 

This algorithm is a common method for solving unconstrained optimization problems in 

optimization theory. It performs well for shallow neural networks in the machine learning era. 

However, since it uses all samples to calculate the gradient, for a network with 𝑚 neurons and 

𝑁 samples, each update requires at least to compute the multiplication of 𝑁 × 𝑚 matrices. 

When the amount of training data and the number of network neurons are large, the algorithm's 

efficiency becomes very low, and it requires significant memory to store that matrix, which 

makes it impractical for programming. As a practical alternative, Stochastic Gradient Descent 

(SGD) randomly divides the total samples into a number of subsets (called batches) and 

iteratively uses the samples from each batch to calculate the loss and gradients for each iteration. 

Once the batch gradients have been calculated, the weights of neurons are updated. Although 

using a small number of samples does not guarantee that the update direction for each iteration 

is optimal, Nemirovski et al. (2009) have shown that SGD can converge to the result of vanilla 

gradient descent in a probabilistic manner. This means that with a sufficient number of iterations, 

the loss will still converge to its minimum value. For SGD, the learning rate 𝑙𝑟 becomes a 

crucial hyperparameter. A learning rate that is too large can cause the algorithm to diverge, 

while a learning rate that is too small can result in extremely slow updates or even stagnation. 

To mitigate the impact of an imprecisely configured learning rate on the algorithm, two 

strategies have been developed to enhance its versatility. 

1. Learning Rate Decay Strategy: This strategy involves using a larger learning rate in 

the early stages of training to quickly approach the minimum point with large steps. As 

the number of iterations increases, the learning rate is gradually reduced to ensure the 

algorithm converges efficiently. 

2. Improving the Update Direction: This strategy aims to combat the oscillations caused 

by gradient differences across samples in different batches. It leads to the development 

of various SGD variants as described following. 

 

One of the variants of SGD is SGD with momentum, the update direction of this method is a 

linear combination of the current gradient and the last updated gradient. For the iteration 𝑡, the 

formulas of updates are: 

𝑀𝑡 ← 𝑙𝑟∇
𝑊(𝑙)
𝑡 + 𝛼𝑀𝑡−1, (4.31) 

𝑊(𝑙) ← 𝑊(𝑙) − 𝑀𝑡 , (4.32) 

where ∇
𝑊(𝑙)
𝑡  is the batch gradients of the 𝑙-th layer neurons at iteration 𝑡, and 𝛼 is the decay 

factor between 0 and 1. Combined with the gradient of the previous iteration, the update tends 

to keep traveling in the same direction and, therefore, can prevent oscillations. In case the 

iteration falls into local minima, even though the gradient at local minima is 0, the momentum 

𝑀𝑡 still has positive contributions that keep the algorithm jumping out of the minima until 

converges. The configuration of the hyperparameter 𝛼  will also significantly affect the 

convergence speed of the algorithm.  
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For SGD with momentum, the learning rate for each neuron is consistent. This consistency can 

cause neurons with smaller gradients to update slowly. To solve this problem, the AdaGrad 

(Duchi et al., 2011) algorithm proposes adjusting the learning rate for each neuron according 

to its own gradient, thereby accelerating convergence. It still has a base learning rate 𝑙𝑟, but 

the actual step size is the 𝑙𝑟 divided with a scaling factor from the diagonal of the outer product 

of a historical sum of gradient squares 𝐺. For the iteration 𝑡, the formulas of updates are: 

𝐺 ← ∑∇
𝑊(𝑙)
𝑡 ∇

𝑊(𝑙)
𝑡 𝑇

𝑡

𝜏=1

(4.33) 

𝑊(𝑙) ← 𝑊(𝑙) − 𝑙𝑟dirg(G)−
1
2∇

𝑊(𝑙)
𝑡 . (4.34) 

Hence, for the neuron 𝑤𝑖, the actual step size 
𝑙𝑟

√𝐺𝑖
=

𝑙𝑟

√∑ (∇𝑤𝑖
𝜏 )2𝑡

𝜏=1

 is the 𝑙𝑟 multiple with the 

𝑙2 norm of the historical sum of derivatives, therefore the neuron which have big cumulative 

updates will be suppressed, and the neuron with small cumulative updates will have a larger 

actual step size for obvious updating. This adaptive method has been proven to accelerate the 

solving of non-convex optimization problems (Gupta et al., 2014). However, it also introduces 

two drawbacks: additional memory space is required to store historical gradients, and in 

extreme cases, the cumulative suppression may cause the actual step size to become too small, 

potentially terminating the algorithm prematurely before reaching the minima. In order to 

improve the second drawback, Root Mean Square Propagation (RMSProp) was proposed 

(Lecun et al., 2015). Its idea is still to penalize the base learning rate, consistent with AdaGrad, 

but instead of using all historical gradients, the concept of forgetting is introduced by 

performing a moving average on the scaling factor. For the iteration 𝑡, the formulas of updates 

are: 

𝑣𝑡 ← (1 − 𝛾𝑓)(∇𝑊(𝑙)
𝑡 )

2
+ 𝛾𝑓𝑣

𝑡−1, (4.35) 

𝑊(𝑙) ← 𝑊(𝑙) −
𝑙𝑟

√𝑣𝑡
∇

𝑊(𝑙)
𝑡 , (4.36) 

where 𝛾𝑓 is the forgetting factor between 0 and 1 to control the historical gradient effects, and 

square and square-rooting are done element wise.  

 

The Adaptive moment estimation (Adam) optimizer integrates the advantages of the above 

optimizers and combines the momentum term on the RMSProp to perform adaptive dynamic 

smooth adjustment of the actual step size of each neuron. For the iteration 𝑡, the formulas of 

updates are: 

𝑚𝑡 ← 𝛽1𝑚
𝑡−1 + (1 − 𝛽1)∇𝑊(𝑙)

𝑡 , (4.37) 

𝑣𝑡 ← 𝛽2𝑣
𝑡−1 + (1 − 𝛽2)(∇𝑊(𝑙)

𝑡 )
2
, (4.38) 

�̂� =
𝑚𝑡

1 − 𝛽1
, (4.39) 

𝑣 =
𝑣𝑡

1 − 𝛽2
, (4.40) 

𝑊(𝑙) ← 𝑊(𝑙) − 𝑙𝑟
�̂�

√𝑣 + 𝜀
, (4.41) 

where 𝛽1 and 𝛽2 are the forgetting factors for gradients and second moments of gradients 

between 0 and 1, 𝜀 is a small number to prevent division by 0, and square and square-rooting 

are done element wise. Compared to SGD, Adam dynamically adjusts the actual step size using 
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the ratio of the first-order moment estimate 𝑚𝑡 to the second-order moment estimate 𝑣𝑡, at 

the cost of twice the additional memory requirements to store both 𝑚𝑡 and 𝑣𝑡. This approach 

makes the algorithm very stable, and typically the default parameters ( 𝛽1 = 0.9, 𝛽2 =
0.999, 𝜀 = 10−8 ) yield good results. Moreover, Adam mitigates SGD's sensitivity to the 

learning rate to some extent. The actual update step size is the base learning rate 𝑙𝑟 times the 

ratio of the first and second order of the accumulated moment estimate, which effectively makes 

it SNR. This adjustment allows Adam to tolerate larger improperly configured learning rate and 

quickly scale it to a reasonable range. The SNR represents the uncertainty between the mean of 

the batch gradients and the true gradient direction. For the initial iterations, larger mean 

gradients indicate a higher SNR, enabling the algorithm to converge quickly with a larger step 

size. Near the minima, a smaller mean gradient indicates that the uncertainty of the mean and 

the actual gradient becomes larger, prompting the algorithm to update with a smaller step size, 

effectively reflecting automatic annealing. This excellent property makes Adam as an optimizer 

work well with default parameters. 

 

4.4. Convolutional networks and Recurrent networks 

 

The previous section briefly introduced the general form of deep learning. Ideally, MLP with 

enough parameters can learn an ideal feature representation. However, in the real world, 

training large models with enough parameters often incurs very high costs due to hardware 

limitations. Therefore, finding an effective sparse representation of neurons for a specific 

problem, that is, determining the optimal architecture of the neural network, is crucial to the 

performance of the model. In this section, two well-known neural network architectures and 

their representative networks are introduced: convolutional neural networks (CNN) for 

processing data with grid-like topology and recurrent neural networks (RNN) for sequence 

modeling. 

 

The motivation for CNN can be summarized as follows: for grid-like topology data, such as 

images, features can often be effectively extracted from local regions and their combination 

rather than the entire grid. This approach aligns with human intuition and is consistent with 

neurophysiological findings about the structure of the mammalian visual nervous system 

(Hubel & Wiesel, 1968). This property is very common in natural images and is particularly 

important in satellite remote sensing images. Take the Sentinel-1 image of Berlin Brandenburg 

Airport as an example, as shown in Fig. 4.6. If the task is to detect this airport, according to Fig. 

4.2, each neuron in the MLP will connect all the pixels in the image, but only the tracks (red 

rectangle) will contribute effective information, and other pixels are almost irrelevant to this 

task, which will cause most of the trained weights to be almost 0, thus forcing the network to 

be sparsely represented. In matrix form, a neuron in MLP can be viewed as a weight matrix 

with the same shape as its input image or feature map, and this weight matrix should be trained 

to be sparse to suppress irrelevant inputs. Since the weight matrix is sparse, most of the 

parameters that are approximately 0 have no practical effect, so its display represents a huge 

waste of storage space and reduces network performance. 
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Fig. 4.6 Sentinel-1 amplitude image with VV polarization of Berlin Brandenburg Airport at 2021.12.31. 

The red rectangle marks the tracks. 

 

CNN provides a way to avoid the explicit representation of sparse weight matrices by using 

sparse interactions. They use a series of stacked weight matrices (e.g., 3 × 3 or 5 × 5), called 

convolution kernels, which are multiplied with the input image or feature map in a sliding 

window manner and then are activated by the activation function, as shown in Fig. 4.7. Each 

convolution kernel can be regarded as a feature extractor, and the matrix obtained after the 

sliding window operation is called a feature map. This feature map represents the extraction 

result of the specified feature. In CNN, sparse interactions are achieved by sliding convolution 

kernels, which allows storing several small matrices instead of a large sparse matrix. Each 

trained convolution kernel can extract small but meaningful spatial features (although not 

necessarily easy to describe in human language). This means that CNN can significantly 

increase the number of feature extractors, extract more features and improve network 

performance even with limited memory and computing power. To extract more representative 

features, a downsampling operation called pooling is usually performed after the convolution 

and activation operations. This downsampling operation replaces the value of a certain position 

of the feature map with a nearby statistical feature, such as the maximum value (max pooling) 

or the average value (average pooling). The pooling operation is only sensitive to numerical 

features within the window range, which means that the learned mapping remains unchanged 

under small spatial translations. Using the pooling operation can reduce the size of the feature 

map, thereby reducing the amount of computation, and force the feature extractor to learn more 

spatially invariant features, improving the accuracy of feature extraction. For example, when 

detecting airports, the specific coordinates of the airport in the image are not as important as 

the relative coordinates of the runway pixels. The pooling operation encourages the feature 

extractor to associate consecutive runway pixels in the window with the airport, while ignoring 

the direction and position of the runway. Therefore, a common convolutional layer consists of 

three operations: convolution, nonlinear activation, and pooling. CNN consists of multiple 

convolutional layers of different sizes stacked together to extract spatial features at various 

levels. Next, a representative CNN structure U-Net will be introduced for extracting pixel-level 

features useful for remote sensing and geodetic tasks (Ronneberger et al., 2015). 
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Fig. 4.7 Basic architecture of CNN, I is the input image or feature map, and K is the convolution kernel. 

 

U-Net was originally used for the semantic segmentation of medical images, but its structure is 

also effective for satellite imagery used in remote sensing and geodesy. Regardless of whether 

the task is semantic segmentation, object classification, or mask generation, the goal is to 

generate a discrete probability distribution for each pixel and use this distribution to determine 

the category of the pixel. U-Net designs a 5-layer symmetrical encoder-decoder structure to 

extract spatial features at different levels. Each layer of the encoder or decoder consists of two 

multi-channel 3 × 3 convolution operations activated by ReLU, followed by a downsampling 

or upsampling operation. For each encoder, it first performs convolution operations to double 

its feature channels. Then, it downsamples using a 2 × 2  max pooling operation, which 

reduces the size of the feature map by half. Correspondingly, for each decoder, it first pads the 

surrounding of each pixel from the input feature map with 0 and performs a 2 × 2 convolution 

to double its size to match the size of the encoder features at the same level. This upsampling 

is referred to as up-convolution, deconvolution, or transposed convolution. Importantly, U-Net 

introduces a cross-connected structure. After upsampling, each decoder concatenates the un-

downsampled features of the encoder at the same level. This step merges the shallow features 

extracted by the encoder with the deep features extracted by the decoder. A convolution 

operation is then performed to halve the feature channels. Finally, the output feature map can 

be converted into a discrete probability distribution by integrating its feature channels into the 

number of categories through a 1 × 1  convolution combined with the SoftMax function, 

thereby achieving pixel-by-pixel classification. The architecture of U-Net is shown in Fig. 4.8. 
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Fig. 4.8 The architecture of U-Net. Each blue box corresponds to a multi-channel feature map. The 

number of channels is denoted on top of the box. The shape of the feature map is provided at the lower 

left edge of the box. White boxes represent concatenated feature maps. The arrows denote the different 

operations (Ronneberger et al., 2015). 

 

In geodesy, in addition to spatial models, there is another important model known as the time 

series model or sequence model. Given the periodic changes of the Earth's surface, this model 

can learn historical patterns, thereby making predictions about current or future surface data 

which are needed by geodetic observations. Fortunately, just as CNN is good at automatically 

extracting spatial features, RNN can also automatically extract features from time series and 

build sequence modeling for prediction. RNN also originated in the 20th century and were 

independently developed from the fields of statistical mechanics (Brush, 1967) and 

neuroscience and cognitive psychology (Jordan, 1997). Unlike MLP and CNN, which use 

independent inputs, the input of RNN is a sequence of several related inputs, denoted as 𝑋 =
{𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡, … 𝑥𝑇}, where the superscript indicates the ordinal number of the input in the 

sequence. To extract features not only from the current input 𝑥𝑡 but also to consider the impact 

of historical inputs, RNN expand on the concept of MLP by introducing a simple but powerful 

idea, which let the input to MLP includes not only the current input 𝑥𝑡 but also the output of 

this MLP at the previous time step, known as hidden state ℎ𝑡−1, as shown in Fig.4.9. 

 

The calculation process of RNN can be seen as an extension of MLP. To accept the input 𝑥𝑡 

at time 𝑡 and the historical hidden state ℎ𝑡−1 as input information together for the neuron, 

additional weight matrices 𝑉 and 𝑈 are introduced to form a linear combination 𝑎𝑡 between 

𝑥𝑡  and ℎ𝑡−1  as input feature, followed by a hyperbolic tangent nonlinear activation to 

integrate the features at time 𝑡. Subsequently, MLP is used to extract high-order features from 

the acquired features to obtain the output, as illustrated in Eq. 4.42 to Eq.4.44: 

𝑎𝑡 = 𝑉ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏, (4.42) 

ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑎𝑡 , (4.43) 

𝑜𝑡 = 𝑓𝐷𝑁𝑁(ℎ𝑡;𝑊), (4.44) 
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where 𝑏  is the bias vector, 𝑜𝑡  is the output at time 𝑡 , and 𝑓𝐷𝑁𝑁(ℎ𝑡;𝑊)  is a MLP with 

weight parameters 𝑊 and input feature ℎ𝑡. 

 

 

Fig. 4.9 The computational graph of RNN. 𝑋 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡 , … , 𝑥𝑇} is the input sequence, in this 

sequence 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡 in this figure denote the input at the corresponding time step 0,1,2, … 𝑡. 𝐻 =
{ℎ0, ℎ1, ℎ2, … , ℎ𝑡 , … , ℎ𝑇} is the hidden states sequence, in this sequence ℎ0 is the initial hidden status, 

usually set as 0. For the following ℎ1, ℎ2, … , ℎ𝑡  are the hidden status matrix for time step 1,2, … 𝑡, which 

calculated through Eq. 4.42 and Eq. 4.43. 𝑂 = {𝑜0, 𝑜1, 𝑜2, … , 𝑜𝑡 , … , 𝑜𝑇} is the output sequence of RNN 

at each time step, in this sequence, each 𝑜 with superscript denotes the output of the network at its 

corresponding time step. 𝐿 = ∑ 𝑙𝑡𝑡  is the total loss and 𝑙 with superscript is the loss for each time step, 

𝐺𝑇 = {𝑔𝑡1, 𝑔𝑡2, … , 𝑔𝑡𝑡 , … , 𝑔𝑡𝑇}  is the ground truth sequence, in this sequence, each 𝑔𝑡  with 

superscript is the ground truth for calculating the loss at each time step. 

 

The total loss for a sequence is the sum of loss at each time step, as shown in Eq. 4.45: 

𝐿 = ∑𝑙𝑡
𝑇

𝑡=1

. (4.45) 

From Eq. 4.42 to Eq.4.44, it can be known that the RNN is an iterative process over time steps. 

Therefore, for each time step, it is necessary to independently calculate the loss with respect to 

the ground truth 𝑔𝑡𝑡  corresponding to that time step. This process is known as back-

propagation through time (BPTT) (Rumelhart et al., 1986). Since the output of an RNN is 

generated by 𝑓𝐷𝑁𝑁, its loss function and the gradient update methods for all weight matrices 

except 
𝜕𝐿

𝜕𝑉
 and 

𝜕𝐿

𝜕𝑈
 can refer to Section 4.3, the derivative of MLP part 

𝜕𝐿

𝜕𝑊
 is given below: 

𝜕𝐿

𝜕𝑊
= ∑

𝜕𝑙𝑡

𝜕𝑊

𝑇

𝑡=1

= ∑∇W
𝑡 𝑓𝐷𝑁𝑁

𝑇

𝑡=1

. (4.46) 

where ∇W
𝑡  is the gradient regarding as 𝑊 of MLP, can be obtained by using BP described in 

Eq. 4.16 to Eq. 4.20. However, due to ℎ𝑡 depends on ℎ𝑡−1, which is a function of all weight 

matrices (𝑈, 𝑉,𝑊), the derivatives 
𝜕𝐿

𝜕𝑉
 and 

𝜕𝐿

𝜕𝑈
 cannot be calculated in a straightforward manner. 
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For the last time step 𝑇, the gradient part regarding ℎ𝑇 of MLP 
𝜕𝑙𝑇

𝜕ℎ𝑇 = ∇ℎ
𝑇𝑓𝐷𝑁𝑁 can also be 

obtained through Eq. 4.16 to Eq. 4.20, however, for 1 ≤ 𝑡 < 𝑇, the derivative becomes: 

𝜕𝑙𝑡

𝜕ℎ𝑡
=

𝜕𝑙𝑡+1

𝜕ℎ𝑡+1

𝜕ℎ𝑡+1

𝜕ℎ𝑡
+ ∇ℎ

𝑡 𝑓𝐷𝑁𝑁 = 𝑉⊺
𝜕𝑙𝑡+1

𝜕ℎ𝑡+1
𝑑𝑖𝑎𝑔(1 − (ℎ𝑡+1)2) + ∇ℎ

𝑡 𝑓𝐷𝑁𝑁, (4.47) 

where 𝑑𝑖𝑎𝑔(1 − (ℎ𝑡+1)2) indicates the diagonal matrix containing the elements 1 − (ℎ𝑡+1)2, 

this is the Jacobian of the hyperbolic tangent associated with ℎ𝑡+1. This is a very complex 

recursive expression. If the sequence is too long, the expanded form of Eq. 4.47 will contain 

(𝑉⊺)𝑇−𝑡+1, which may become ill-conditioned, causing the gradient to either vanish or explode. 

Therefore, in this thesis, the part involving RNN typically avoids directly inputting sequences 

that are too long, e.g. 𝑇 ≤ 24. Once 
𝜕𝑙𝑡

𝜕ℎ𝑡 is obtained, the 
𝜕𝐿

𝜕𝑉
 and 

𝜕𝐿

𝜕𝑈
 then can be derived by: 

𝜕𝐿

𝜕𝑉
= ∑𝑑𝑖𝑎𝑔(1 − (ℎ𝑡)2)

𝜕𝑙𝑡

𝜕ℎ𝑡

𝑇

𝑡=1

(ℎ𝑡−1)⊺, (4.48) 

𝜕𝐿

𝜕𝑈
= ∑𝑑𝑖𝑎𝑔(1 − (ℎ𝑡)2)

𝜕𝑙𝑡

𝜕ℎ𝑡

𝑇

𝑡=1

(𝑥𝑡)⊺. (4.49) 

Since the computation is iteratively, intermediate variables such as 
𝜕𝑙𝑡

𝜕ℎ𝑡 , ℎ
𝑡, ∇ℎ

𝑡 𝑓𝐷𝑁𝑁 are stored 

to avoid repeated calculations. 

 

Eq. 4.47 shows that the derivative 
𝜕𝑙𝑡

𝜕ℎ𝑡 depends not only on the gradient part originating from 

the MLP at time t ∇ℎ
𝑡 𝑓𝐷𝑁𝑁 , but also on the product integral of the derivatives ∏

𝜕ℎ𝑡+1

𝜕ℎ𝑡
𝑇−1
𝑡  . 

Expanded this term, there is: 

∏
𝜕ℎ𝑡+1

𝜕ℎ𝑡

𝑇−1

𝑡

= ∏𝑉⊺

𝑇−1

𝑡

𝑑𝑖𝑎𝑔(1 − (ℎ𝑡+1)2). (4.50) 

Since ℎ𝑡+1 is activated by hyperbolic tangent, it must be smaller than 1, then the elements of 

𝑑𝑖𝑎𝑔(1 − (ℎ𝑡+1)2) must be greater than 0 but smaller than 1. As the length of the sequence 

between the current time step 𝑡  and the final time step 𝑇  increases, its gradient will be 

multiplied by a matrix with a value less than 1 but greater than 0. When there are many 

consecutive multiplications, this causes the gradient to approach 0 for the time step far from the 

final time step, failing to transmit gradient information effectively across by time. This not only 

leads to the vanishing gradient problem but also causes RNN to focus on learning time-domain 

features from time steps close to the final step, failing to capture long-term dependency features 

(Pascanu et al., 2013). To address this issue, the Long Short-Term Memory Network (LSTM) 

was proposed (Hochreiter & Schmidhuber, 1997). LSTM uses the Sigmoid function (Eq.4.3) 

to construct three gate structures, which expands the linear combination part (Eq.4.42 and 

Eq.4.43) in RNN to control the propagation of information and its gradients. Specifically, 

LSTM expands the hidden state propagate as follows: 

𝑓𝑔
𝑡 = 𝜎𝑠𝑖𝑔(𝑊𝑓𝑥

𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (4.51) 

𝑖𝑔
𝑡 = 𝜎𝑠𝑖𝑔(𝑊𝑖𝑥

𝑡 + 𝑈𝑖ℎ
𝑡−1 + 𝑏𝑖) (4.52) 

𝑜𝑔
𝑡 = 𝜎𝑠𝑖𝑔(𝑊𝑜𝑥

𝑡 + 𝑈𝑜ℎ
𝑡−1 + 𝑏𝑜) (4.53) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥
𝑡 + 𝑈𝑐ℎ

𝑡−1 + 𝑏𝑐) (4.54) 

𝑐𝑡 = 𝑓𝑔
𝑡⨀𝑐𝑡−1 + 𝑖𝑔

𝑡  ⨀�̃�𝑡 (4.55) 
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ℎ𝑡 = 𝑜𝑔
𝑡⨀𝑡𝑎𝑛ℎ(𝑐𝑡) (4.56) 

where 𝑓𝑔
𝑡, 𝑖𝑔

𝑡 , 𝑜𝑔
𝑡 , �̃�𝑡 , 𝑐𝑡 are the forget gate's activation matrix, input gate's activation matrix, 

output gate's activation matrix, candidate cell memory matrix, and cell state matrix, respectively 

at time step 𝑡. 𝑊,𝑈, 𝑏 with its superscript represent the weight matrices and biases which 

need to be learned associated with the respective gates, 𝜎𝑠𝑖𝑔 is the Sigmoid function described 

in Eq.4.3, ⨀ denotes the Hadamard product. The comparison between an RNN unit and an 

LSTM unit is illustrated in Fig. 4.10. 

 

 

Fig. 4.10 The RNN Unit (Left) and the LSTM Unit (Right). 

 

For RNN units, the hidden state ℎ𝑡 is directly controlled by the previous hidden state ℎ𝑡−1, 

which is the main reason for the vanishing gradient problem and the inability to capture long-

term dependencies. In contrast, for LSTM units, the hidden state ℎ𝑡  is determined by the 

output gate 𝑜𝑔
𝑡 , which contains information from the previous hidden state ℎ𝑡−1 and the cell 

state 𝑐𝑡. The cell state 𝑐𝑡 is determined by the previous cell state 𝑐𝑡−1, the forget gate, the 

input gate, and the candidate cell memory together which use the previous hidden state ℎ𝑡−1 

together. This means that, in addition to the hidden state propagation path, LSTM has an 

additional cell state propagation path to better retain and propagate information over long 

sequences, effectively addressing the vanishing gradient problem and enabling the capture of 

long-term dependencies. From Eq. 4.50, it can be known that the recursive gradient is the culprit 

for the above problem. For LSTM, the recursive gradient happened in: 

𝜕𝑙𝑡

𝜕𝑊𝑓
= ∑

𝜕𝑙𝑡

𝜕𝑜𝑡

𝜕𝑜𝑡

𝜕ℎ𝑡

𝜕ℎ𝑡

𝜕𝑐𝑡

𝜕𝑐𝑡

𝜕𝑐𝑖

𝑡

𝑖=1

𝜕𝑐𝑖

𝜕𝑊𝑓
, (4.57) 

and the recursive part become: 

𝜕𝑐𝑡

𝜕𝑐𝑖
=

𝜕𝑐𝑡

𝜕𝑐𝑡−1

𝜕𝑐𝑡−1

𝜕𝑐𝑡−2
…

𝜕𝑐𝑖+1

𝜕𝑐𝑖
. (4.58) 

For the single one of those terms by taking the derivative of 𝑐𝑡+1 with respect to 𝑐𝑡, there is: 

𝜕𝑐𝑡

𝜕𝑐𝑡−1
=

𝜕𝑐𝑡

𝜕𝑓𝑔
𝑡

𝜕𝑓𝑔
𝑡

𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕𝑐𝑡−1
+

𝜕𝑐𝑡

𝜕𝑖𝑔
𝑡

𝜕𝑖𝑔
𝑡

𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕𝑐𝑡−1
+

𝜕𝑐𝑡

𝜕�̃�𝑡

𝜕�̃�𝑡

𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕𝑐𝑡−1
+ 𝑓𝑔

𝑡

= 𝑐𝑡−1𝜎𝑠𝑖𝑔
′ (𝑊𝑓𝑥

𝑡 + 𝑈𝑓ℎ
𝑡−1 + 𝑏𝑓)𝑈𝑓𝑜𝑔

𝑡−1⨀𝑡𝑎𝑛ℎ′(𝑐𝑡−1)

+�̃�𝑡𝜎𝑠𝑖𝑔
′ (𝑊𝑖𝑥

𝑡 + 𝑈𝑖ℎ
𝑡−1 + 𝑏𝑖)𝑈𝑖⨀𝑜𝑔

𝑡−1𝑡𝑎𝑛ℎ′(𝑐𝑡−1)

+𝑖𝑔
𝑡 𝑡𝑎𝑛ℎ′(𝑊𝑐𝑥

𝑡 + 𝑈𝑐ℎ
𝑡−1 + 𝑏𝑐)𝑈𝑐⨀𝑜𝑔

𝑡−1𝑡𝑎𝑛ℎ′(𝑐𝑡−1)

+𝑓𝑔
𝑡. (4.59)
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The last term in Eq. 4.59 represents the output of the forget gate. This means that the network 

learns to adjust the value of the forget gate to decide when to forget the gradient and when to 

retain it, so that 
𝜕𝑐𝑡

𝜕𝑐𝑡−1 is not always less than 1. By doing so, it avoids gradient vanishing and 

preserves the gradient of long-term information, effectively maintaining the propagation of 

important information across long sequences. 
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5. Deep learning methods for 

tropospheric effects in space geodesy 

In microwave-based space geodesy, including GNSS and InSAR, tropospheric delay is a 

significant source of error that affects the measurement accuracy. Direct observation of 

tropospheric effects in space geodetic techniques is extremely challenging, so tropospheric 

“modeling” must be used to simulate and remove its effects. Such modeling usually relies on 

meteorological data from in situ observations or NWM. However, even with state-of-the-art 

NWM (e.g., ERA5), the spatial resolution it provides remains at the sub-degree level (about 25 

km) with centimeter-level retrieval errors, which are non-negligible for millimeter-level 

deformation monitoring tasks. Moreover, NWM products are usually not available in real time, 

which further complicates real-time water vapor sensing via GNSS in the absence of in situ 

observation capabilities. Therefore, a high-precision tropospheric model is urgently needed to 

meet the requirements of different geodetic applications. 

 

To address the above questions, this chapter proposes two deep learning-based tropospheric 

modeling approaches. One approach, called GM-LSTM, aims to integrate historical NWM ray-

traced ZTD and ZTD observations from GNSS, thereby providing high-precision estimates of 

ZTD and ZWD at any location in space. The other approach achieves high-precision water 

vapor retrieval in the absence of real-time NWM meteorological data by using a combined 

DNN and LSTM model. 

 

The primary contents of this chapter are based on the following peer-reviewed papers, which 

were published or are under review during the author’s doctoral studies: 

Wang, D., Yuan, P., Kutterer, H. (2024). Real-Time GNSS Integrated Water Vapor Sensing 

Based on Time Series Correction Deep Learning Models. In: International Association of 

Geodesy Symposia. Springer, Berlin, Heidelberg.  

Wang, D., Wang, L., Kutterer, H. (2025). An advanced tropospheric delay model based on 

Gaussian Mixed Long Short-Term Memory Network. IEEE Transactions on Geoscience and 

Remote Sensing. 

5.1. Spatial Inference of Tropospheric Delay Based on 

Gaussian Mixed Long Short-Term Memory Network 

5.1.1. Problem statement and current state 
 

As discussed in Chapter 2, microwave signals bend and experience delays when propagating 

through the neutral atmosphere, which can introduce errors into space geodetic measurements. 

Therefore, it is crucial to develop a modeling approach that can accurately estimate the delay 

caused by the neutral atmosphere at any location within the study area. 

 

To estimate this delay, a widely adopted approach is to decompose the ZTD into ZHD and ZWD. 

These components are then modeled separately by ray tracing using meteorological data from 

the NWM, as described in Section 2.3. However, this approach has inherent limitations in terms 
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of both accuracy and spatial resolution. The centimeter-level RMSE and spatial resolution of 

approximately 25 km (ERA5) make it challenging to achieve the millimeter-level accuracy 

required for geodetic applications. To address the spatial resolution limitations of the NWM 

and improve the accuracy of ZTD estimates, relevant research has focused on spatial 

interpolation techniques, which include power-law vertical adjustment (Eqs. 2.39, 2.40, 2.51, 

and 2.52) and horizontal interpolation such as IDW and bilinear interpolation. However, these 

interpolation methods are based on a key assumption: the vertically scaled meteorological 

parameters (temperature, pressure, and water vapor pressure) are homogeneous within a 25 × 

25 km² grid at each pressure level. In practical situations, this assumption is likely not met, as 

the resolution of 0.25° is not sufficient to adequately represent the impact of topography on 

near-surface atmospheric dynamics. Moreover, the turbulent and heterogeneous behavior of 

near-surface water vapor exacerbates this problem, making the assumption of spatial uniformity 

unrealistic under practical conditions. Another factor to consider is that NWM meteorological 

data are not direct measurements, but the output of data assimilation, combining atmospheric 

observations with physical models. This means that the gridded NWM data contain 

uncertainties themselves. In addition, the ray tracing method itself may also introduce errors, 

as it assumes that the atmosphere is spherically symmetric in the local area, and the 

determination of constants such as K1, K2, and K3 may also be subject to laboratory 

measurement errors. Therefore, as pointed out by Ding et al. (2023), the combined errors of 

interpolation and the NWM ray tracing model often lead to centimeter-level errors in ZTD 

estimates.  

 

Considering that GNSS can provide reliable station-by-station ZTD products, many researchers 

have explored using GNSS-retrieved ZTD products to improve the accuracy of NWM ray 

tracing. Such enhancements mainly focus on improving interpolation techniques. For example, 

Jarlemark & Emardson (1998) evaluated the effects of gradient models, turbulence models, and 

temporal linear regression models on the interpolation of ZWD. It was concluded that the 

turbulence model performed at least 10% better than the other models. Janssen et al. (2004) 

demonstrated that the IDW and ordinary kriging interpolation methods produce better results 

than spline interpolation. Meanwhile, Onn & Zebker (2006) and Xu et al. (2011) proposed using 

the frozen flow assumption to simulate water vapor, combined with a simple variable local 

mean kriging estimator, which improved the interpolation accuracy by 29%. Löfgren et al. 

(2010) virtualized the GNSS stations to NWM grid points and used IDW and Gaussian 

interpolation to improve ray tracing. However, this method does not consider the impact of 

geospatial weights on interpolation. Therefore, it has been proven to be ineffective when the 

GNSS station density is sparse. Yu et al. (2018) developed a weighted integration scheme to 

estimate the turbulent and stratified components from the ZTD retrieved from GNSS using the 

ITD model (Eq. 2.58) and performed IDW interpolation on the turbulent component only. Yu 

et al. (2018) reported that this scheme achieved a ZTD estimation error as low as 1 cm and was 

made available to the public as a GACOS product. Although this method provides a 

geographically weighted integration strategy, it cannot use advanced mapping functions such 

as VMF3 to convert ZTD into slant delays because it cannot decompose ZTD into ZHD and 

ZWD. In addition, this strategy relies on IDW interpolation to calculate the turbulence 

component, which also assumes that turbulence is spatially uniform. This assumption may not 

hold true in weather events such as rainfall, resulting in poor performance under bad weather 

conditions. 

 

Due to the complexity of water vapor activity and the influence of turbulence, accurate 

modeling of ZWD at any location remains an open question in the geodesy and remote sensing 

community. Fortunately, as a data-driven method, deep learning provides the possibility to 

address this issue. Osah et al. (2021) employed a deep neural network using TensorFlow and 

Keras to predict daily IGS final ZTD values for four selected IGS stations in West Africa, with 

VMF3-ZTD as input. Yang et al. (2021) applied ANN with 2-layers and 5 neurons to correct 
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GPT3-ZTD, demonstrating that their model outperformed the Saastamoinen and GPT3 models 

using data from a satellite positioning reference network in Hong Kong. In another related 

approach, Yang et al. (2021) further proposed a 2-layer, 4- neurons neural network to correct 

ZTD estimates from the Hopfield and Saastamoinen models, validating its effectiveness at 67 

GNSS stations in China and showing that it significantly improved the accuracy of these 

traditional models. Additionally, Zhang et al. (2024) applied a 7-layer MLP to perform GNSS-

derived water vapor tomography, estimating layered precipitable water in a task closely related 

to ZWD. These studies collectively illustrate the applicability of deep learning for ZTD 

estimation. However, the neural network architectures used in these efforts are relatively simple, 

focusing solely on regressing target values. This simplicity restricts the networks' ability to 

capture the complex spatiotemporal characteristics of ZTD, limiting the potential of deep 

learning for accurate and robust ZTD estimation. 

 

 

5.1.2. Motivation 
 

Looking back at the tropospheric delay concept itself, tropospheric delay refers to the additional 

path length that microwaves experience as they pass through the neutral atmosphere due to 

refraction and deceleration. The observation equation Eq. 2.17 strictly describes this 

phenomenon. In order to accurately determine the tropospheric delay, the ionospheric delay in 

Eq. 2.17 must be taken into account and eliminated. To achieve this, space geodetic techniques 

that can obtain "ionosphere-free" observations are required. These observations use more than 

two operating frequencies to effectively eliminate the ionospheric delay, as shown in Eq. 2.21. 

 

Although other techniques, such as DORIS (Doppler Orbiting and Radio positioning Integrated 

by Satellite) and VLBI (Very Long Baseline Interferometry) also have multiple operating 

frequencies and can derive observation equations similar to Eq. 2.21, their available observation 

infrastructure (satellites, ground stations and radio telescopes) is much less than GNSS. 

Considering the spatial heterogeneity of the troposphere, the temperature, pressure and water 

vapor content vary greatly at different locations. Although observations from DORIS or VLBI 

are effective in retrieving the tropospheric conditions above their sites, their sparse spatial 

distribution may not be sufficient for spatial tropospheric modeling. 

 

In contrast, GNSS technology has a significant advantage due to the large number of satellites 

in orbit. This ensures that the number of valid observations is more than 10 most of the time in 

most regions of the world. This allows adjustments to be made during the GNSS solution 

process to improve the accuracy of tropospheric delay calculations. In addition, GNSS has very 

complete orbit and clock products (these products can be obtained free of charge from the (IGS 

web server) to support GNSS-PPP for tropospheric delay solutions. In most countries or regions, 

there are public or private GNSS CORS networks, such as the Satellitenpositionierungsdienst 

der Deutschen Landesvermessung (SAPOS ®) or the EUREF Permanent GNSS Network. 

These networks consist of permanent GNSS stations with an average distance of tens to 

hundreds of kilometers in the region (depending on the operating company and the specific 

region) to provide GNSS positioning service references. These permanent GNSS stations are 

well-constructed and equipped with high-precision multi-frequency receivers and antennas to 

ensure the accuracy of observations. These observations can be used to obtain reliable ZTD, 

ZHD, and ZWD over these stations using the GNSS-PPP technique. In addition, the Nevada 

Geodetic Laboratory (NGL) provides the RENIX observation files and their corresponding 

ZTD products solved by GISPY-OASIS-II software from global public GNSS CORS networks 

(Blewitt et al., 2018). This well-developed product community and data accessibility ensure 

that there are usually several station-wise ZTD observations in the region that can be considered 
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as ground truth. 

 

Although using GNSS-retrieved ZTD to enhance NWM ray-tracing estimates is a promising 

approach, a key limitation is that the spatial density of reliable GNSS observations is still too 

low for spatial interpolation methods. In most cases, the distance between GNSS permanent 

stations is greater than 25 km. This means that when performing IDW interpolation, there may 

be at most only one GNSS permanent reference station in four adjacent grid points of NWM. 

In this case, the contribution of the GNSS permanent reference station to the IDW interpolation 

result may be much smaller than that of the four NWM grid points, unless the study area is 

close enough to the GNSS permanent reference station. Fig. 5.1 analyzes the impact of 

weighting on the IDW interpolation results when only one GNSS permanent reference station 

is present within four adjacent grids. Assume that the study area is located equidistantly from 

four NWM grid points, each spaced 25 km apart, placing the study area approximately 17.68 

km from any of these grid points. In this scenario, if the GNSS permanent reference station is 

situated on a circle with a radius of 17.68 km from the study area, its contribution to the IDW 

interpolation is equivalent to one of the four adjacent NWM grid points. If the GNSS station is 

located within this circle, its contribution exceeds that of an individual NWM grid point. Since 

IDW interpolation involves a weighted sum of all sample points, this implies that the GNSS 

station will make a dominant contribution (greater than 50%) to the final interpolation result 

only if it is within 17.68/4=4.42 km of the study area. In the real scene, it is very challenging 

to ensure that a GNSS permanent reference station is within this 4.42 km range. In some regions, 

such as Northern Europe, the distance between GNSS permanent reference stations may range 

from 50 to 100 km. Consequently, without implementing additional weighting strategies, the 

inclusion of GNSS permanent reference stations provides only limited improvement to the 

interpolation results. 

 

 

Fig. 5.1 Example of the IDW interpolation influence range: Point O represents the study area, while 

points A, B, C, and D are NWM grid points with a spacing of 25 km, and each located approximately 

17.68 km from the study area O, providing ZTD estimates via NWM ray tracing. The red circle, with a 

radius of 17.68 km, delineates the area within which the weight of the GNSS-observed ZTD in IDW 

interpolation is equivalent to that of any ZTD from NWM grid point. The purple circle, with a radius of 

4.42 km, represents the area where the GNSS observed ZTD has a dominant influence in IDW 

interpolation, meaning its weight exceeds 50%. 

 

Although some studies, e.g. Yu et al. (2017) attempted to enhance the weighting strategy of 

IDW, the irregular and generally lower spatial density of available GNSS stations compared to 

NWM grid points presents a significant challenge. As a result, directly integrating the ZTD 

from GNSS observations into the NWM grid often leads to limited improvements. To address 
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this issue, it is essential to find a method that does not directly integrate the GNSS observed 

ZTD but instead leverages its information to enhance the accuracy of the NWM ray tracing 

method. Considering that NWMs incorporate atmospheric physical laws and multiple 

observations, they typically exhibit spatial stability in the absence of extreme meteorological 

anomalies. This suggests that if a mapping can be established to relate the NWM ray tracing 

ZTD to the GNSS observed ZTD, this mapping should be applicable to any location near the 

observation area. In other words, by using the ZTD from GNSS observations as supervisory 

data, the error pattern of the NWM ray tracing method can be learned and subsequently applied 

to correct NWM ray tracing ZTD at any location within the effective range without the need 

for integration interpolation. Given that the error pattern may vary across different regions and 

seasons, this mapping could be highly complex and dynamic subject to temporal changes. 

Fortunately, with the availability of extensive public GNSS data, deep learning can be employed 

to directly learn the error patterns of local areas without the need for explicit mathematical 

formulations. This constitutes motivation for this study. 

 

The purpose of this study is to employ deep learning to learn the correction pattern of NWM 

ray tracing from GNSS-observed ZTD. By applying this learned pattern, the NWM ray tracing 

ZTD obtained through grid interpolation can be directly corrected, thereby avoiding the spatial 

sparsity issues that arise by integrating GNSS-observed ZTD in spatial interpolation. Since 

NGL products only provide ZTD products, referred to as 𝑍𝑇𝐷𝐺𝑁𝑆𝑆 , it is not possible to 

accurately separate the hydrostatic and wet components, as described in section 2.3. 

Considering that the VMF (Boehm et al., 2006) and the IGS solving strategy (Dach & 

Bockmann, 2024) typically use the Saastamoinen hydrostatic model (Eq. 2.50) as the prior for 

the hydrostatic delay, this study also adopts this approach. Although the hydrostatic delay may 

include some wet components, the absence of suitable measurement techniques to distinguish 

between these components necessitates accepting this prior hydrostatic delay and focusing on 

correcting the remaining part, which is the ZWD.  

 

To take advantage of the VMF mapping function in converting ZTD to slant delay, this study 

utilizes the ERA5 pressure level product (one of the most advanced NWM) and the VMF3 

gridded product as data sources. The ERA5 pressure level product3 (Hersbach et al., 2023) 

provides meteorological data across 37 pressure levels from the surface to the tropopause at a 

resolution of 0.25° every hour. This data can be used to calculate the ZWD at any location using 

Eqs. 2.32-2.42, referred to as 𝑍𝑊𝐷𝐸𝑅𝐴5. The VMF3 grid product4 (Landskron & Böhm, 2018), 

on the other hand, offers surface ZHD, ZWD, and their corresponding mapping coefficients 

every 6 hours at a spatial resolution of 1° grid. To ensure compatibility with the VMF3 mapping 

coefficients, this study employs the same spatiotemporal interpolation strategy as the VMF3 

grid product, as described in Eqs. 2.43-2.52, referred to as 𝑍𝐻𝐷𝑉𝑀𝐹3 and 𝑍𝑊𝐷𝑉𝑀𝐹3. Given 

that the 6-hour temporal resolution of VMF3 is coarser than the 1-hour resolution of ERA5, all 

VMF3-derived products are subjected to linear temporal interpolation between two surrounding 

epochs to match the corresponding time of ERA5. Since 𝑍𝐻𝐷𝑉𝑀𝐹3 is fundamentally based on 

the Saastamoinen hydrostatic model—the same model used for the a priori delay in GNSS 

solutions—it is assumed that the residual between 𝑍𝑇𝐷𝐺𝑁𝑆𝑆 and 𝑍𝐻𝐷𝑉𝑀𝐹3 represents the 

wet delay retrieved by GNSS 𝑍𝑊𝐷𝐺𝑁𝑆𝑆, as described below: 

𝑍𝑊𝐷𝐺𝑁𝑆𝑆 = 𝑍𝑇𝐷𝐺𝑁𝑆𝑆 − 𝑍𝐻𝐷𝑉𝑀𝐹3. (5.1) 

The objective of the model is to find a mapping 𝑓 that transforms the input 𝑍𝑊𝐷𝐸𝑅𝐴5and 

 
3
Data can be accessed at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-

levels?tab=overview 

 
4
Data can be accessed at: https://vmf.geo.tuwien.ac.at/ 
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𝑍𝑊𝐷𝑉𝑀𝐹3 into 𝑍𝑊𝐷𝐺𝑁𝑆𝑆, as described below: 

𝑓(𝑍𝑊𝐷𝐸𝑅𝐴5, 𝑍𝑊𝐷𝑉𝑀𝐹3) → 𝑍𝑊𝐷𝐺𝑁𝑆𝑆. (5.2) 

This mapping 𝑓  can be obtained by training a deep neural network that is supervised by 

𝑍𝑊𝐷𝐺𝑁𝑆𝑆 derived from the GNSS permanent reference station network products. Admittedly, 

using MLP as the network structure to directly perform numerical regression with the RMSE 

loss function is a straightforward approach to obtaining this mapping 𝑓. However, there are 

two problems with this method: 

1. Temporal Correlation: The residual sequence between 𝑍𝑊𝐷𝐺𝑁𝑆𝑆  and 𝑍𝑊𝐷𝐸𝑅𝐴5 

or 𝑍𝑊𝐷𝑉𝑀𝐹3 does not follow Gaussian white noise, indicating the presence of 

temporal correlations, as shown in Fig. 5.2. MLP cannot capture temporal correlations 

within the sequence and therefore cannot exploit these temporal correlations to improve 

the accuracy of the model. 

2. Risk of Overfitting and Uncertain Output: The mapping 𝑓 trained by using data 

from a single GNSS permanent reference station risks overfitting, which may limit its 

generalization capability. This means that 𝑓 supervised by 𝑍𝑊𝐷𝐺𝑁𝑆𝑆 data from the 

nearest GNSS reference station may be valid only at that station location and not 

applicable to the wider study area. To ensure generalization, it is necessary to include 

multiple GNSS permanent reference stations around the study area in the training 

process. Unfortunately, due to the uneven distribution of GNSS stations, some stations 

may be more than 100 km away from the study area and have large vertical differences. 

In this case, the atmospheric conditions above these different GNSS stations may be 

different, resulting in different correction patterns. This heterogeneity may lead to 

different outputs for the same input, and the RMSE loss function used in numerical 

regression cannot handle this situation well. 

To address the above issues, this study proposes a deep learning method, namely GM-LSTM, 

which estimates the ZWD probability density function by extracting temporal correlated 

features from 𝑍𝑊𝐷𝐸𝑅𝐴5 and 𝑍𝑊𝐷𝑉𝑀𝐹3time series. By employing this probabilistic model, 

GM-LSTM not only provides more accurate ZWD estimates for any location within the study 

area but also offers uncertainty estimates related to water vapor heterogeneity. Furthermore, 

since GM-LSTM incorporates corrections based on VMF3 tropospheric products, it can map 

the ZHD and ZWD to the slant direction respectively using the coefficients provided by VMF3. 

This makes GM-LSTM the state-of-the-art model for ZTD estimation and tropospheric 

correction. 
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Fig. 5.2 𝑍𝑊𝐷𝐸𝑅𝐴5 and 𝑍𝑊𝐷𝑉𝑀𝐹3 errors at GNSS station D400 in Tübingen, on Nov.26 2021, and Jun. 

5, 2022.  From the Auto Correlation Function (ACF), there are lags significantly above 1 no matter for 

winter or summer, ERA5 or VMF3, which means that at least first-order autocorrelation exists. 

 

5.1.3. Methodology 
 

Despite the tropospheric models, such as VMF3 being considered to provide reliable 

𝑍𝐻𝐷𝑉𝑀𝐹3,a significant discrepancy remains between the modeled ZTD from VMF3 or ERA5 

and the reference. This discrepancy is primarily due to the inherent challenges associated with 

ZWD modeling. To address this discrepancy, this research put forward employing a deep 

learning approach based on GM-LSTM to individually learn the mapping 

{𝑍𝑊𝐷𝐸𝑅𝐴5, 𝑍𝑊𝐷𝑉𝑀𝐹3} → 𝑝𝑑𝑓(𝑍𝑊𝐷𝐺𝑁𝑆𝑆). This approach operates under the assumption that 

this mapping pattern is shared across a local spatial range. Under this assumption, the GM-

LSTM can be trained through the supervised data 𝑍𝑊𝐷𝐺𝑁𝑆𝑆 collected from the surrounding 

GNSS stations and the corresponding 𝑍𝑊𝐷𝐸𝑅𝐴5 and 𝑍𝑊𝐷𝑉𝑀𝐹3 at the same position. After 

training, the learned pattern can be used for the entire study area. The workflow of this approach 

is summarized in Fig. 5.3, and details will be in the following section. 
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Fig. 5.3 The workflow of ZTD modeled by GM-LSTM. 𝑠𝑡 denotes the standard deviation of trained 

Gaussian Mixture Distribution, which reflects the uncertainty at time 𝑡. 

 

5.1.3.1 Training Set Preparation 

To train the model and obtain the mapping pattern of the study area, supervised data from the 

GNSS permanent reference stations around the study area is required. Ideally, GNSS stations 

closer to the study area provide more reliable supervision information. However, the density of 

GNSS stations cannot always be guaranteed. Fortunately, the experiments indicate that GNSS 

stations located within a radius of 200 km around the study area suffice to provide effective 

supervision information for learning. This range is typically covered by NGL products5.  

 

After collecting the 𝑍𝑇𝐷𝐺𝑁𝑆𝑆  time series from GNSS stations around the study area, the 

following cleaning was performed to ensure the quality of the training set: Only hourly data 

with a daily acquisition completeness higher than 75% were collected. For occasional missing 

GNSS observations (daily completeness between >75% and <100%), spline interpolation was 

employed to ensure that the data covered the entire 24-hour period. 

 

When cleaning is finished, use Eq. 5.1 to prepare 𝑍𝑊𝐷𝐺𝑁𝑆𝑆 series and divide it by day. Then 

stack the whole collection into a 24 × 𝑁 matrix, where N represents the total number of valid 

days with all collected GNSS stations. This stack serves as the ground truth set 𝑌 for training 

the network. Next, using Eqs. 2.32–2.52 along with the ERA5 and VMF3 grid products, prepare 

𝑍𝑊𝐷𝐸𝑅𝐴5 and 𝑍𝑊𝐷𝑉𝑀𝐹3 corresponding to the time and location of Y as the network input 

training set X, which form a 2-24-by-N tensor. 

 

5.1.3.2 Training  
When the training set is prepared, a GM-LSTM network can be trained as follows: 

1) Initialize the GM-LSTM network 

The GM-LSTM network aims to construct a Gaussian Mixture model to effectively describe 

 
5 Data can be accessed at: http://geodesy.unr.edu/NGLStationPages/gpsnetmap/GPSNetMap.html 
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the uncertainty introduced by turbulence or weather activities. By using the temporal memory 

and sequence modeling capabilities of the LSTM network, GM-LSTM can capture the complex 

dynamic characteristics of ZWD changing over time. GM-LSTM comprises three stacks of 

Bidirectional LSTM (Bi-LSTM) layer (Graves & Schmidhuber, 2005) that serve as its feature 

extractor. Each layer of Bi-LSTM passes its hidden state to the next time step. The features 

extracted by the three stacks of Bi-LSTM are then decoded by three independent MLP into the 

parameters required to describe the Gaussian mixture model: the mixing coefficients 𝛼, mean 

𝜇, and variance 𝜎2 of each Gaussian component. Before training, the GM-LSTM needs to be 

initialized according to its architecture, as illustrated in Fig. 5.4. 

 

 

Fig. 5.4 Architecture of GM-LSTM. H is a hidden state that contains historical information, and 𝑃𝐷𝐹𝑡 

denotes the probability density function of the Gaussian Mixture Distribution inferred by GM-LSTM at 

time. 

 

Bi-LSTM is an extension of the LSTM unit described in Section 4.4. Each Bi-LSTM layer 

contains two independent LSTM units: one extracts forward time series features from 00:00 to 

the current time, while the other extracts backward time series features from 23:00 to the current 

time. In the Bi-LSTM layer, the forward LSTM unit and backward LSTM unit maintain their 

own hidden state ℎ𝑡
→ and ℎ𝑡

←, and the output of the Bi-LSTM unit 𝐻𝑡 is the concatenation of 

these two hidden states, as illustrated in Fig. 5.5. The reason for using Bi-LSTM instead of 

traditional LSTM is that, in application scenarios where GM-LSTM is employed for ZTD 

estimation or tropospheric correction, data from ERA5 and 𝑉𝑀𝐹3 are 24-hour knowable, no 

matter from reanalysis products or forecast products. This means that when inferring the ZWD 

at time 𝑡 , {𝑍𝑊𝐷𝐸𝑅𝐴5, 𝑍𝑊𝐷𝑉𝑀𝐹3}  from 00:00 to 𝑡  as well as from 𝑡 + 1  to 23:00 are 

accessible for input. This allows Bi-LSTM to fully utilize the contextual information available 

at time 𝑡 to extract features, particularly in scenarios with rapid water vapor changes, such as 

during rainfall. 
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Fig. 5.5 Architecture of Bi-LSTM unit. The LSTM rectangle with a right arrow and a left arrow denotes 

the forward LSTM unit and backward LSTM unit, ℎ𝑡
→ and ℎ𝑡

←are their output hidden state. 

 

In the implementation of this study, each LSTM unit is configured with 2048 neurons, meaning 

that each LSTM unit outputs a 2048-dimensional feature vector at each hour. Specifically, a 

dropout probability of 0.2 is used to randomly mask a portion of the hidden states, effectively 

setting them to zero. This dropout regularization strategy helps mitigate overfitting by 

introducing stochasticity into the training process, encouraging the network to learn more 

robust and generalizable features from the input data. After the concatenate operation, each Bi-

LSTM layer can transfer its input into a 4096-dimensional feature vector 𝐻𝑡, which includes 

its temporal context for reconstructing the probability density distribution of ZWD. The feature 

extraction process is described in Eqs. 5.4-5.6. 

𝐻𝑡
(1)

= 𝑓𝐵𝑖𝐿𝑆𝑇𝑀
(1)

(𝑋𝑡|ℎ𝑡−1
→ (1)

, ℎ𝑡+1
← (1)

), (5.4) 

𝐻𝑡
(2)

= 𝑓𝐵𝑖𝐿𝑆𝑇𝑀
(2)

(𝐻𝑡
(1)

|ℎ𝑡−1
→ (2)

, ℎ𝑡+1
← (2)

) , (5.5) 

𝐻𝑡
(3)

= 𝑓𝐵𝑖𝐿𝑆𝑇𝑀
(3)

(𝐻𝑡
(2)

|ℎ𝑡−1
→ (3)

, ℎ𝑡+1
← (3)

) , (5.6) 

where 𝑓𝐵𝑖𝐿𝑆𝑇𝑀
(𝑖)

 denotes the i-th Bi-LSTM layer, 𝐻𝑡
(𝑖)

 is the output of the corresponding Bi-

LSTM layer under its forward hidden state ℎ𝑡−1
→ (𝑖)

 and backward hidden state ℎ𝑡+1
← (𝑖)

 with 

given input. 𝐻𝑡
(3)

  is the final extracted feature, which includes the extracted context 

information of input 𝑋𝑡. 

 

Since the probability distribution of ZWD is unknown, its 𝑝𝑑𝑓 can be approximated using a 

Gaussian mixture model (GMM). The GMM consists of K Gaussian components, each 

characterized by independent parameters: mixing coefficients 𝛼, mean 𝜇, and variance 𝜎2. 

Unlike traditional GMM constructed using the EM algorithm, those three parameters in this 

study are obtained by directly converting the 4096-dimensional feature vector 𝐻𝑡
(3)

 through 

three different MLPs separately, as shown in Eqs. 5.7-5.9. 

𝑂𝛼;𝑡 = 𝑀𝐿𝑃𝛼 (𝐻𝑡
(3)

) , (5.7) 

𝑂𝜇;𝑡 = 𝑀𝐿𝑃𝜇 (𝐻𝑡
(3)

) , (5.8) 
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𝑂𝜎2;𝑡 = 𝑀𝐿𝑃𝜎2 (𝐻𝑡
(3)

) , (5.9) 

where 𝑀𝐿𝑃𝛼 , 𝑀𝐿𝑃𝜇 , and 𝑀𝐿𝑃𝜎2  are three different MLP for convert 𝐻𝑡
(3)

  into three K- 

dimensional vector 𝑂𝛼;𝑡 , 𝑂𝜇;𝑡 , and 𝑂𝜎2;𝑡 . This approach enables this GMM to be directly 

output by the neural network in an end-to-end manner. The mean 𝜇𝑖  of each Gaussian 

component in the GMM is not subject to any constraints, denotes the components of 𝑂𝜇;𝑡 as 

𝑜𝜇𝑖;𝑡, it can be directly used as 𝜇𝑖;𝑡 = 𝑜𝜇𝑖;𝑡. However, to ensure that the cumulative distribution 

function is normalized, and the variance 𝜎2  is non-negative, additional constraints must be 

applied to the corresponding MLPs to prevent pathological solutions. To ensure that the mixing 

coefficients satisfy the normalization constraint ∑ 𝛼𝑖;𝑡 = 1𝐾
𝑖=1 , a SoftMax layer has been added 

after the 𝑀𝐿𝑃𝛼, which is used for generating mixing coefficients 𝛼, as shown in Eq. 5.10. 

𝛼𝑖;𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑜𝛼𝑖;𝑡) =
𝑒𝑜𝛼𝑖;𝑡

∑ 𝑒𝑜𝛼𝑘;𝑡𝐾
𝑘=1

 , (5.10) 

where 𝑜𝛼𝑖;𝑡 is the i-th component of 𝑂𝛼;𝑡. The SoftMax function normalizes the output values 

to produce a probability distribution, ensuring that the mixing coefficients sum up to one.  

 

To ensure that the variance is strictly positive and to avoid pathological configurations where 

the variance tends to zero, according to Bishop’s work (Wicaksana & Rachman, 2018), 

assuming that 𝑂𝜎2;𝑡 obeys a uniform distribution, using an exponential function to activate it 

will correspond to the choice of uninformative Bayesian priors. However, in the experiments 

of this research, it has been observed that during the initial stages of network training, the 

significant scale difference in ZWD values can cause certain components of the Gaussian 

mixture to diverge significantly from the target distribution. Consequently, errors propagated 

from the variance term become strongly amplified, resulting in exponential increases in 

gradients, eventually leading to gradient explosion and the subsequent collapse of the training 

process. While employing the ReLU activation function can mitigate gradient explosion, it 

indiscriminately suppresses all components of 𝑂𝜎2;𝑡 negative to zero, potentially resulting in 

certain components of the standard deviation vector being forced to zero. This leads to the 

collapse of the pathologically configured mode. To address this challenge, this research 

proposes the adoption of a modified activation function known as the Piecewise Exponential 

Linear Unit (PELU), as demonstrated in Eq. 5.11.  

𝜎𝑖;𝑡
2 = 𝑃𝐸𝐿𝑈 (𝑜𝜎𝑖

2;𝑡) = {
𝑜𝜎𝑖

2;𝑡

𝑒
𝑜

𝜎𝑖
2;𝑡 − 1 + 10−8   

𝑜𝜎𝑖
2;𝑡 > 1

𝑜𝜎𝑖
2;𝑡 ≤ 1

 (5.11) 

This modification aims to prevent gradient explosion while ensuring that the exponential 

behavior and enforced positivity of the standard deviation values are maintained as much as 

possible. 

 

While the vector 𝜇 does not necessitate any explicit constraints, it has been found that 𝑀𝐿𝑃𝜇 

exhibits sensitivity to gradients. Improper initialization can precipitate a gradient explosion, 

resulting in training failure or mode collapse, particularly during the early stages of training. 

As a solution, this research proposes initializing the bias term of 𝑀𝐿𝑃𝜇 based on the quantiles 

of ground truth Y. The quantile points are uniformly distributed within 0 to 1 according to the 

number of Gaussian combinations K.  

 

2) Loss Function 

The key to the proposed method is to consider ZWD as a conditional probability distribution 

rather than a numerical value. Consequently, conventional regression loss functions, such as 
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the RMSE, cannot be directly employed for network training. To learn the 𝑝𝑑𝑓 of ZWD from 

the ground truth Y, we employed the Maximum Likelihood Estimation (MLE) method to 

determine the optimal weights of GM-LSTM. Denoting 𝑾𝐺𝑀−𝐿𝑆𝑇𝑀 as the weights of GM-

LSTM, the 𝑝𝑑𝑓 of the GMM inferred by GM-LSTM at time t can be written as: 

𝑝𝑑𝑓𝑡(𝑋𝑡|𝑾𝐺𝑀−𝐿𝑆𝑇𝑀) =

∑𝛼𝑖;𝑡(𝑋𝑡|𝑾𝐺𝑀−𝐿𝑆𝑇𝑀)
1

√2𝜋𝜎𝑖;𝑡(𝑋𝑡|𝑾𝐺𝑀−𝐿𝑆𝑇𝑀)
𝑒𝑥𝑝(−

(𝑋𝑡 − 𝜇𝑖;𝑡(𝑋𝑡|𝑾𝐺𝑀−𝐿𝑆𝑇𝑀))
2

2𝜎𝑖;𝑡
2 (𝑋𝑡|𝑾𝐺𝑀−𝐿𝑆𝑇𝑀)

) .

𝐾

𝑖=1

(5.12)
 

Consider minimizing the negative log-likelihood function is equivalent to maximizing the 

likelihood function, so the negative log-likelihood function of 𝑋𝑡  can be used as the 

distribution part of the loss function at time 𝑡. Besides, each Gaussian component has been 

expected that it can describe its characteristics in a smaller ZWD space as much as possible to 

reduce the uncertainty of the model, so a penalty term ∑ 𝛼𝑖;𝑡𝜎𝑖;𝑡
2𝐾

𝑖=1  has been added to the loss 

function to constrain each Gaussian component to be as narrow as possible. Hence, the loss at 

time 𝑡 is: 

𝐿𝑜𝑠𝑠𝑡 = ∑𝛼𝑖;𝑡𝜎𝑖;𝑡
2

𝐾

𝑖=1

− 𝑙𝑛𝐿(𝑌𝑡|𝑋𝑡 ,𝑾𝐺𝑀−𝐿𝑆𝑇𝑀) = ∑𝛼𝑖;𝑡𝜎𝑖;𝑡
2

𝐾

𝑖=1

−∑ln {∑𝛼𝑖,𝑗;𝑡

1

√2𝜋𝜎𝑖,𝑗;𝑡

exp (−
(𝑌𝑡,𝑗;𝑡 − 𝜇𝑖,𝑗;𝑡)

2

2𝜎𝑖,𝑗;𝑡
2 )

𝐾

𝑖=1

}

𝑁

𝑗=1

, (5.13)

 

where 𝐿(𝑌𝑡|𝑋𝑡 , 𝜃) is the likelihood function of Eq. 5.12, and 𝑁 is the number of samples of 

X, i.e. the number of days available for the samples. And the total loss is the sum up of 𝐿𝑜𝑠𝑠𝑡 

for each hour of the day, i.e.: 

𝐿𝑜𝑠𝑠 = ∑ 𝐿𝑜𝑠𝑠𝑡 .
23

𝑡=0
(5.14) 

 

5.1.3.3 Training Strategy and Inference 
After initializing the network and configuring the loss function, the GM-LSTM can be trained 

through BPTT algorithm described in section 4.4. Based on the experimental results of this 

study, it is recommended to use 5 Gaussian components (K = 5) to construct the 𝑝𝑑𝑓 of ZWD. 

Experiments show that 5 Gaussian components are enough to identify ZWD patterns affected 

by extreme weather. To mitigate the risk of overfitting, it is advisable to employ the subsequent 

methodology for training the GM-LSTM model: iterative optimization utilizing the Adam 

optimizer over a span of 10,000 iterations, commencing with an initial learning rate set at 0.001. 

Furthermore, for every 500 iterations, the learning rate is adjusted by incorporating an 

exponential decay with a decay factor of 0.99. 

 

Upon the completion of training, the acquired 𝑝𝑑𝑓  can serve to infer the corrected ZWD, 

denoted as 𝑍𝑊𝐷𝐺𝑀−𝐿𝑆𝑇𝑀, at any location within the study area. This involves inputting a 24-

hour {𝑍𝑊𝐷𝐸𝑅𝐴5, 𝑍𝑊𝐷𝑉𝑀𝐹3} series of that location into the trained GM-LSTM network and 

conducting forward propagation without dropout, thereby obtaining a GMM at that location. 

Given the absence of a priori knowledge regarding the 𝑍𝑊𝐷𝐺𝑀−𝐿𝑆𝑇𝑀, the inferred value is 

determined by the mean 𝑚𝑡 of the mixture model, shown in Eq. 5.15. This is equivalent to the 

least squares estimate of independent sampling each component of the mixture model. 

𝑍𝑊𝐷𝐺𝑀−𝐿𝑆𝑇𝑀;𝑡 = 𝑚𝑡 = ∑𝛼𝑖;𝑡𝜇𝑖;𝑡.

𝐾

𝑖=1

(5.15) 
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Then the inferred ZTD at time 𝑡 is: 

𝑍𝑇𝐷𝐺𝑀−𝐿𝑆𝑇𝑀;𝑡 = 𝑍𝑊𝐷𝐺𝑀−𝐿𝑆𝑇𝑀;𝑡 + 𝑍𝐻𝐷𝑉𝑀𝐹3;𝑡. (5.16) 

Simultaneously, the uncertainty associated with the inference can be gauged by the standard 

deviation of the mixture model as shown in Eq. 5.17: 

𝑠𝑡 = √∑𝛼𝑖;𝑡 [𝜎𝑖;𝑡
2 + (𝜇𝑖;𝑡 − 𝑚𝑡)

2
]

𝐾

𝑖=1

. (5.17) 

 

5.1.4. Data and Experiments 
 

In this research, 8 areas in Europe with different latitudes are selected to conduct experiments 

to evaluate the performance of the proposed method in different regions. There are Portugal-

Beja, Spain-Burgos, France-Paris, France-Brive-la-Gaillarde, German-Tübingen, Netherland-

Groningen, Sweden-Sala, and Sweden-Svappavaara. For each area, several GNSS stations 

within that area from NGL products are prepared, and one of them was selected (usually near 

the center) as the test station and others were used for training. Those test stations did not 

participate in training and were completely unknown to GM-LSTM, so they could be used as a 

reference to evaluate the performance of GM-LSTM. Considering the seasonal variability of 

ZWD, for each region, the experiments tested the performance of the proposed method 

separately for 360 consecutive hours in winter (Nov. 26 to Dec. 10, 2021) and summer (Jun. 25 

to Jul. 09, 2022), except for France-Paris. Since the time integrity of the GNSS stations near 

France-Paris from Jun. 25 to Jul. 09, 2022, was too bad and the loss of observations throughout 

the whole day occurred, the summer dates of the test for France-Paris have been changed to Jul. 

09 to Jul. 23, 2021. The details of the test stations are presented in Table 5.1, while the location 

of all the training stations from NGL has been illustrated in Fig. 5.7, and the information of 

those stations can be accessed at 

https://github.com/hgwxx1945/DeepZTD/blob/main/STATION_INFO.txt. 

 

Table 5.1 The details of GNSS stations for testing 

Region Station ID Latitude (°) Longitude (°) Height (m) 

Beja MESS 37.835 -8.245 258.89 

Burgos BURG 42.347 -3.687 939.60 

Paris OP71 48.836 2.335 124.58 

Brive-la-Gaillarde BRIV 45.157 1.488 158.14 

Tübingen D400 48.519 9.078 382.17 

Groningen ENGE 53.213 6.644 42.43 

Sala 0GRA 60.071 14.980 357.25 

Svappavaara 0SVP 67.649 21.055 381.81 

 

The proposed method has been evaluated using the metrics RMSE, Mean Bias Error (MBE), 

and Standard Error (SE), as shown in Eqs 5.18-5.21, compared with the conventional 

benchmarks of ERA5 ray tracing, VMF3 troposphere products, and GACOS6 ZTD products 

 
6 Data can be accessed at: http://www.gacos.net/ 

https://github.com/hgwxx1945/DeepZTD/blob/main/STATION_INFO.txt
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(Yu, et al., 2018) and deep learning benchmark DNN across eight regions above. The metrics 

evaluation results are presented in Table 5.2, and the errors at each hour ∆𝑍𝑇𝐷𝑡 are illustrated 

in Fig. 5.6. 

∆𝑍𝑇𝐷𝑡 = 𝑍𝑇𝐷𝐺𝑁𝑆𝑆;𝑡 − 𝑍𝑇𝐷𝑚𝑜𝑑𝑒𝑙;𝑡 , (5.18) 

𝑅𝑀𝑆𝐸 = √∑ ∆𝑍𝑇𝐷𝑡
2

𝑡

𝑁
, (5.19)  

𝑀𝐵𝐸 =
∑ ∆𝑍𝑇𝐷𝑡𝑡

𝑁
, (5.20) 

𝑆𝐸 = √
∑ (∆𝑍𝑇𝐷𝑡 − 𝑀𝐵𝐸)2

𝑡

𝑁
, (5.21) 

where 𝑍𝑇𝐷𝑚𝑜𝑑𝑒𝑙;𝑡 is the ZTD generated by the model needs to be evaluated at time 𝑡, and 𝑁 

is the total number of hourly acquisitions for that test station. 

 

It is worth noting that since the configuration of DNN used in Osah et al. (2021), Yang et al. 

(2021a) and Yang et al. (2021b) may be relatively simple and cannot be used as a fair benchmark 

for DNN, this study further improved the performance of the DNN method for fair comparison. 

Specifically, by increasing the depth and number of neurons in DNN, the performance limits of 

DNN in this task were reached. Grid search showed no significant performance improvement 

when the DNN depth exceeded 8 layers with 256 neurons per layer, so an 8-layer DNN with 

256 neurons per layer was used for comparison—much deeper and performing better than the 

4-layer, 200-neurons in Osah et al. (2021), 2-layer, 5-neurons in Yang et al. (2021a), and 2-

layer, 4-neurons in Yang et al. (2021b). This enhanced DNN configuration serves as a more 

rigorous deep learning benchmark for evaluating the proposed GM-LSTM model.  
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Fig. 5.6 The error of ZTD from DNN, VMF3, ERA5, GACOS, and GM-LSTM at eight testing areas. 

(a1) - (a8) represents the error from wintertime and (b1) - (b8) represent the error from summertime. 

Since the observation files from Jun. 26 to Jul. 2, 2022 at Burgos and Jul. 1, 2022 at Brive-la-Gaillarde 

are missing, the results during those times are not used to evaluate the model performance. 
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Table 5.2 The evaluation results at eight test stations 

Region Season GM-LSTM DNN ERA5 VMF3 GACOS 

  RMSE 

(mm) 

MBE 

(mm) 

SE 

(mm) 

RMSE 

(mm) 

MBE 

(mm) 

SE 

(mm) 

RMSE 

(mm) 

MBE 

(mm) 

SE 

(mm) 

RMSE 

(mm) 

MBE 

(mm) 

SE 

(mm) 

RMSE 

(mm) 

MBE 

(mm) 

SE 

(mm) 

Beja 
Winter 3.53 0.16 3.53 5.00 1.36 4.81 9.78 -8.23 5.29 9.48 7.16 6.22 7.22 3.19 6.47 

Summer 6.61 1.11 6.52 8.47 1.93 8.25 13.19 -8.90 9.73 9.51 2.84 9.07 8.23 3.58 7.42 

Burgos 
Winter 4.51 1.86 4.11 8.84 7.16 5.19 7.76 -5.53 5.44 8.71 4.79 7.27 9.33 5.80 7.31 

Summer 10.22 -0.47 10.21 14.04 -1.93 13.91 19.16 -12.23 14.74 11.68 1.44 11.59 10.03 5.82 8.17 

Paris 
Winter 1.53 0.54 1.43 6.84 0.73 6.80 8.68 -6.20 6.08 7.43 4.42 5.97 8.13 3.81 7.18 

Summer 2.29 1.08 2.02 10.57 -5.76 8.86 24.03 -17.64 16.31 9.85 2.86 9.42 12.42 8.46 9.10 

Brive-la-Gaillarde 
Winter 5.69 -4.18 3.85 6.46 2.88 5.79 14.37 -12.09 7.77 7.10 -1.54 6.93 7.47 -1.96 7.20 

Summer 7.74 -2.40 7.36 11.73 -0.96 11.69 23.44 -17.31 15.80 11.05 4.78 9.96 12.68 -4.47 11.87 

Tübingen 
Winter 2.37 0.06 2.37 4.31 -1.71 3.95 9.22 -7.80 4.91 4.66 1.05 4.54 4.54 1.52 4.28 

Summer 6.19 -0.93 6.12 10.33 -3.39 9.76 16.42 -9.66 13.29 10.45 2.08 10.24 10.12 2.27 9.86 

Groningen 
Winter 1.14 0.00 1.14 3.86 0.95 3.74 10.02 -6.99 7.18 6.87 4.38 5.29 4.93 -0.18 4.93 

Summer 1.76 -0.09 1.76 6.70 1.07 6.61 46.10 -42.20 18.55 9.48 1.98 9.27 10.19 2.61 9.86 

Sala 
Winter 2.95 1.83 2.32 4.71 4.16 2.20 2.79 -1.47 2.37 8.25 7.77 2.78 3.34 1.87 2.76 

Summer 6.84 1.51 6.67 9.53 3.23 8.96 10.66 1.59 10.54 11.95 4.50 11.08 13.60 8.63 10.51 

Svappavaara 
Winter 2.22 0.70 2.10 3.56 2.59 2.45 2.52 0.61 2.44 4.59 3.57 2.89 8.92 8.47 2.81 

Summer 6.81 -0.04 6.81 9.41 -1.07 9.35 9.52 -0.27 9.52 12.48 4.14 11.78 14.89 9.55 11.43 
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Fig. 5.7 The overview of selected GNSS stations from NGL 

 

5.1.5. Discussion 

 

5.1.5.1 Performance Evaluation 

The average RMSE of ZTD retrieved by GM-LSTM, DNN, ERA5, VMF3, and GACOS at 8 

test stations were 4.52 mm, 7.77 mm, 14.23 mm, 8.97 mm, and 9.13 mm, which demonstrated 

that the GM-LSTM model, once trained, was capable of providing ZTD estimates that achieve 

the current state-of-the-art level. Compared with DNN, ERA5, VMF3, and GACOS, the 

proposed GM-LSTM achieves an average RMSE reduction calculated by Eq.5.22 of 41.78%, 

68.20%, 49.56%, and 50.43%. In the wintertime when the water vapor is relatively stable, the 

average RMSE of ZTD retrieved by GM-LSTM, DNN, ERA5, VMF3, and GACOS at 8 test 

stations are 2.99 mm, 5.45 mm, 8.14 mm, 7.14 mm, and 6.73 mm respectively, while in summer 

when water vapor is more active, the average RMSE of those 5 models are 6.06 mm, 10.10 mm, 

20.31 mm, 10.81 mm and 11.52 mm. This illustrated that the ZTD estimated error of GM-

LSTM decreased by 45.10%, 63.26%, 58.09%, and 55.59% in winter compared with DNN, 

ERA5, VMF3, and GACOS, and by 39.99%, 70.18%, 43.93%, and 47.42% in summer. 

Relrtive Lift =
𝑅𝑀𝑆𝐸compared model−𝑅𝑀𝑆𝐸𝐺𝑀−𝐿𝑆𝑇𝑀

𝑅𝑀𝑆𝐸compared model
∗ 100% (5.22) 

 

More importantly, the 𝑍𝑇𝐷𝐺𝑀−𝐿𝑆𝑇𝑀values are close to unbiasedness. This property may be a 

key factor in the significantly enhanced performance of the GM-LSTM compared to other 

tropospheric models. The average bias of 𝑍𝑇𝐷𝐺𝑀−𝐿𝑆𝑇𝑀 was 0.05 mm across eight test stations, 
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with a seasonal variation of 0.12 mm in winter and -0.03 mm in summer. This can be attributed 

to the ability of GM-LSTM to assimilate the correction pattern of 𝑍𝑊𝐷𝐺𝑁𝑆𝑆. On the contrary, 

the meteorological data derived through ERA5 interpolation may exhibit a certain error. The 

temperature part of this interpolation error tends to accumulate quadratically, resulting in a large 

bias and standard deviation of 𝑍𝑇𝐷𝐸𝑅𝐴5. In our experiments, the 𝑍𝑇𝐷𝐸𝑅𝐴5 demonstrated an 

average bias of -9.65 mm and a standard deviation of 9.37 mm. This included an average bias 

of -5.96 mm, and a standard deviation of 5.19 mm during winter, as well as an average bias of 

-13.33 mm, and a standard deviation of 13.56 mm during summer. It suggests that the ZTD 

estimated by the ERA5 ray-tracing method was underestimated by an average of about 9 mm 

(approximately 5mm in winter and 13mm in summer), and is consistent with the 10-15mm 

biases from the ZTD obtained from the ERA5 10-15 mm biases from the ZTD obtained from 

the ERA5 ray-tracing method as reported in Liu et al. (2022) and Ding et al. (2023). 

Furthermore, the grid NWM, like ERA5, cannot accurately reflect local water vapor activities, 

such as local storms or rainfall. This limitation results in a significant underestimation of the 

estimated ZTD in coastal areas, particularly during the summertime. The magnitude of this 

error may surpass 50 mm, as illustrated in Fig. 5.6 (b3) and (b6). 

 

For 𝑍𝑇𝐷𝑉𝑀𝐹3 and GACOS ZTD products, they were overestimated by about 3.5 and 3.7 mm, 

respectively. This overestimation was attributed not only to errors from the NWM but also to 

the low temporal resolution. The NWM, which VMF3 and GACOS used with a temporal 

resolution of 6 hours, may not accurately capture rapid changes in water vapor activity. In 

contrast, the GM-LSTM model achieves a higher temporal resolution of 1 hour by utilizing 

both 𝑍𝑊𝐷𝐸𝑅𝐴5 and 𝑍𝑊𝐷𝑉𝑀𝐹3 as input data. Furthermore, the GM-LSTM shares the same 

mapping coefficients as VMF3, which GACOS cannot use. This means it can achieve a more 

precise slant delay than GACOS if the application is needed. 

 

As another deep learning approach, the average bias of 𝑍𝑇𝐷𝐷𝑁𝑁 is 0.7 mm. Although not as 

good as GM-LSTM, it is still much smaller than the rest of the traditional methods. This 

demonstrates the effectiveness of data-driven deep learning methods in ZTD estimation tasks. 

However, the DNN cannot capture temporal features, and numerical fitting of ZTD limits their 

capacity to detect the spatial heterogeneity of ZWD. This limitation results in an average SE of 

9.67 mm of DNN across the eight test areas, which is comparable to the average SE of 9.78 

mm for GACOS. While the DNN outperforms ERA5 and VMF3, which have average SE of 

13.56 mm and 10.30 mm, respectively, its error remains substantially higher than that of the 

GM-LSTM model, which achieves an average SE of 5.93 mm. This discrepancy likely 

contributes to the relatively poor performance of DNN in ZTD estimation tasks when compared 

to the proposed GM-LSTM model. 

 

5.1.5.2 Effective Range 

Due to the 𝑍𝑇𝐷𝐺𝑁𝑆𝑆 of nearby GNSS stations being used as supervisory data during training, 

the distance of the GNSS stations to the study area may influence the accuracy of the GM-
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LSTM model. If the GNSS station is too far from the study area, the learned features may not 

accurately represent the atmospheric conditions in the study area, leading to potential 

inaccuracies in the model’s predictions. Conversely, if the GNSS station is close to the study 

area, the learned features are likely to be more representative, potentially improving the model’s 

accuracy.  

 

To investigate the influence of distance on accuracy and validate the reliability of the proposed 

GM-LSTM method, the OP71 station in Paris was employed as a reference station for testing 

and examined the performance of five models trained by using 𝑍𝑇𝐷𝐺𝑁𝑆𝑆 from NGL station 

groups within distance ranges from the reference station: 0-15 km, 15-50 km, 50-100 km, 100-

150 km, and 150-200 km. And the metric relative lift, described in Eq. 5.22, has been used to 

measure the improvement efficiency of the proposed GM-LSTM model relative to the 

compared model, including ERA5, VMF3, and GACOS. The geographical positions of the 

training stations for these five scenarios are depicted in Fig. 5.8. Except for the different training 

data, the training processes of those five models are identical, and their performance 

comparison is shown in Table 5.3 and Fig. 5.9. 

 

 

Fig. 5.8 NGL station groups with distances of 0-15 km, 15-50 km, 50-100 km, 100-150 km, and 150-200 

km to OP71, Paris. 
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Table 5.3 The evaluation results of OP71 for five models trained by using different distance 

supervisory data 

Range 

(km) 
Season 

RMSE 

(mm) 

MBE 

(mm) 

SE 

(mm) 

0-15 
Winter 1.70 0.66 1.57 

Summer 2.48 1.07 2.24 

15-50 
Winter 1.79 0.66 1.66 

Summer 2.77 0.43 2.74 

50-100 
Winter 2.31 0.41 2.27 

Summer 4.44 -0.04 4.44 

100-150 
Winter 3.48 -0.05 3.48 

Summer 6.24 0.23 6.23 

150-200 
Winter 3.88 -0.34 3.86 

Summer 6.17 -1.48 5.99 
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Fig. 5.9 Relative lift of OP71 between DNN, ERA5, VMF3, GACOS, and GM-LSTM in summer and 

winter. 

 

As can be seen from Table 5.3 and Fig.5.9, the performance of the proposed GM-LSTM model 

decreases with the distance of the study area from the surrounding GNSS sites available for 

training. When GNSS stations are available for training within 50 km of the study area, the 

proposed GM-LSTM model can achieve a relatively stable performance improvement, nearly 

80% improvement compared with other tropospheric models mentioned above. However, when 

the distance between the training stations and the study area is between 50 and 150 kilometers, 

its relative lift drops significantly as the distance increases. When the training stations are more 

than 150 kilometers away from the study area, distance no longer has a significant impact on 
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model performance. At this time, GM-LSTM can obtain approximately 40% improvement 

compared to the best one of ERA5, VMF3, and GACOS. We believe that the reason for the 

performance decreases comes from the heterogeneity of the training data and tropospheric 

activity in the study area. 

 

In addition, to explore the impact of geographical location on GM-LSTM performance, we 

conducted a Pearson correlation analysis and significance test on the RMSE and the longitude, 

latitude, height, and distance from the sea of the proposed GM-LSTM model across eight test 

stations, the results are shown in Fig. 5.10. These results indicate a statistically significant 

correlation between the RMSE of GM-LSTM and station altitude only in summer. This 

correlation likely arises from the increased uncertainty in ZWD due to high water vapor activity 

during the summer months. Lower-altitude areas may exhibit distinct ZWD patterns compared 

to higher-altitude regions, making accurate ZWD estimation at high altitudes challenging for 

tropospheric models. In fact, similar seasonal inaccuracies are observed in models like ERA5, 

VMF3, and GACOS, particularly in high-altitude areas during summer.  



 

76 

 

 

Fig. 5.10 Pearson correlation analysis and significance test on the RMSE of GM-LSTM and the 

longitude, latitude, height, and distance from the sea. The red line represents the complete correlation for 

reference, and the blue line represents the actual linear fit. 
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For the GM-LSTM model, the training process incorporates data from surrounding GNSS 

stations, which may have different elevations than the test stations. As a result, the model may 

not fully capture the ZWD correction pattern specific to the test altitude. Nonetheless, the GM-

LSTM model remains independent of the longitude and latitude of the application area, 

outperforming traditional methods and DNN. This generalizability makes GM-LSTM a 

promising tropospheric model for broad geographic applications. 

 

5.1.5.3 Model uncertainty and spatial heterogeneity of the tropospheric delay 

As mentioned in section 5.1.2, GM-LSTM works under the assumption that the learned 

mapping patterns are shared within the local areas. For most test scenarios, this assumption can 

be satisfied. At that time, the standard deviations of GM-LSTM were small and tended to use a 

dominant Gaussian component to express the mapping with ZWD. However, since the GNSS 

stations for training around the study area have different locations and topography, and the 

ERA5 and VMF3 grid data cannot capture the impact of local meteorological activities, such 

as thunderstorms, rain, etc., there may be multiple ZWD mapping patterns in that local area. 

This spatial heterogeneity will cause GM-LSTM to use different Gaussian components to 

capture the information provided by GNSS stations with varying patterns of mapping. Besides, 

the ZWD distribution inferred from GM-LSTM presents a multimodal distribution and no 

longer has a dominant Gaussian component, which ultimately results in a Gaussian mixture 

exhibiting a larger standard deviation. In this case, GM-LSTM is capable of providing that the 

probability 𝑃(𝑎 ≤ 𝑍𝑊𝐷𝐺𝑀−𝐿𝑆𝑇𝑀 ≤ 𝑏) utilizing Eq. 5.23, as a measurement of uncertainty. 

The moments with the largest standard deviation among the eight test areas have been taken as 

an example to analyze the impact of meteorological activities on model uncertainty, as shown 

in Fig. 5.11. 

𝑃(𝑎 ≤ 𝑍𝑊𝐷𝐺𝑀−𝐿𝑆𝑇𝑀;𝑡 ≤ 𝑏) =

∫ ∑𝛼𝑖;𝑡

1

√2𝜋𝜎𝑖;𝑡

𝑒𝑥𝑝 (−
(𝑥 − 𝜇𝑖;𝑡)

2

2𝜎𝑖;𝑡
2 )𝑑𝑥.

𝐾

𝑖=1

𝑏

𝑎

 (5.23)
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Fig. 5.11 (a) Standard deviation of the test areas from Nov. 26 to Dec. 11, 2021. (b) Standard deviation 

of the test area from Jun. 25 to Jul. 10, 2022. Please note that Paris is not shown in this subfigure due to 

different test dates. (c) The probability density generated by GM-LSTM in Paris at 16:00 on Dec. 8, 2021. 

(d) The probability density was generated by GM-LSTM in Burgos at 14:00 on Jul. 6, 2022. 

 

From Nov. 26 to Dec. 10, 2021, the largest standard deviation of GM-LSTM inference was in 

Paris on Dec. 3, 16:00, which was 9.71 mm, as shown in Fig. 5.11 (a). At this time, GM-LSTM 

generated 4 effective Gaussian components and divided the probability space into: 
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𝑃(72 ≤ 𝑍𝑊𝐷 < 75) = 0.01 

𝑃(94 ≤ 𝑍𝑊𝐷 < 100) = 0.14 

𝑃(100 ≤ 𝑍𝑊𝐷 < 130) = 0.80 

𝑃(130 ≤ 𝑍𝑊𝐷 < 145) = 0.05 

And for the summertime, Jun. 25 to Jul. 09, 2022, the largest standard deviation inference was 

in Burgos on Jul. 6 14:00, which was 19.75 mm, shown in Fig. 5.11 (b). There were only two 

effective Gaussian components that separated the probability space into two parts, which are: 

𝑃(131 ≤ 𝑍𝑊𝐷 < 133) = 0.45 

𝑃(170 ≤ 𝑍𝑊𝐷 < 175) = 0.55 

 

The reason for this uncertainty may be related to meteorological activity. According to the 

Meteorological Terminal Aviation Routine Weather Report (METAR) weather records from 

airports near Paris (Le Bourget Airport, Charles de Gaulle Airport, Orly Airport, Saclay-

Versailles Airport, and Villacoublay Velizy Air Base), there was mist and drizzle in southeast 

Paris at 16:00 on Dec. 3, 20217. However, Pontoise Cormeilles Airport, northwest of Paris, 

recorded no rainfall then. Similarly, the METAR weather record from Burgos Airport shows it 

was sunny from 12:00 to 14:30 on Jul. 6, 2022. However, according to the METAR weather 

record from Logrono Agoncillo Airport, about 115 km east of Burgos, and the severe weather 

record from the ESWD, there was heavy rain and thunderstorms during these times on the east 

of Burgos8. The E-OBS daily rainfall products9 derived from on-site observations (Bandhauer 

et al., 2022) from European National Meteorological and Hydrological Services also confirmed 

this heavy rainfall, and its impact is shown in Fig. 5.12. 

 

 
7
Data can be accessed at https://www.ogimet.com/metars.phtml.en or 

https://mesonet.agron.iastate.edu/request/download.phtml 
8 Data can be accessed at https://eswd.eu/cgi-bin/eswd.cgi 
9 Data can be accessed at https://www.ecad.eu/download/ensembles/download.php 
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Fig. 5.12 The positions of NGL station groups around Burgos and Zaragoza and the daily precipitation 

amount on Jul. 6, 2022, retrieved from E-OBS. 

 

Rainfall events will increase the integrated water vapor and thus increase the ZWD. When only 

part of the GNSS stations used for training are affected by rainfall events, those stations affected 

by rainfall will cause the network to produce Gaussian components with larger mean values 

than the stations not affected by rainfall. This will ultimately cause the GM-LSTM to present a 

multimodal distribution, and this multimodal distribution can provide not only the probability 

of ZWD inference but also the effective probability space of ZWD, which can be used to 

analyze the potential reason caused by that uncertainty. It is important to recognize that the 

uncertainties discussed previously emerge only under conditions of meteorological 

heterogeneity within the study region. Conversely, in the presence of uniform meteorological 

conditions across the study area, the GM-LSTM can deduce ZWD of superior quality, even 

amidst extreme weather events such as heavy rainfall. Regarding the extreme rainfall events 

reported near Zaragoza, the performance of GM-LSTM trained by homogeneous (within 50 km 

around Zaragoza) and heterogeneous (within 200 km around Burgos) data have been tested 

under heavy rainfall situations, respectively. The distribution of training stations is shown in 

Fig. 5.12, and the results are shown in Fig. 5.13. In the case of heterogeneity, as depicted in Fig. 

5.13 (a) and (b), the standard deviation of GM-LSTM precisely pinpoints the interval impacted 

by the heavy rainfall (14:00). Besides, the ZTD inferred during this timeframe fails to closely 

mirror the variations in 𝑍𝑇𝐷𝐺𝑁𝑆𝑆 . In contrast, with homogeneous training data, as 

demonstrated in Fig. 5.13 (c) and (d), the ZTD estimated by GM-LSTM aligns more closely 

with the GNSS observations, maintaining a standard deviation below 1 mm throughout the 

whole day. 
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Fig. 5.13 Comparison of ZTD estimates of DNN, VMF3, ERA5, GM-LSTM, and GACOS under the 

influence of heavy rain. The grey background marks the time affected by rainfall (12:00-15:00) . (a) The 

ZTD estimations on Jul. 6, 2022, Burgos from the models above, where the GM-LSTM used was trained 

from the GNSS station within 200 km from GNSS station BURG in Burgos. (b) The standard deviation 

of GM-LSTM on Jul. 6, 2022, Burgos. (c) The ZTD estimations on Jul. 6, 2022, Zaragoza from the 

models above, where the GM-LSTM used was trained from the GNSS station within 50 km from GNSS 

station ZARA in Zaragoza. (d) The standard deviation of GM-LSTM on Jul. 6, 2022, Zaragoza. 

 

The above experiments prove that the standard deviation of GM-LSTM can reflect the 

similarities of meteorological conditions between the test area and the training stations. When 

the standard deviation is large, model performance may decrease due to meteorological 

heterogeneity. In this case, it is recommended to use training stations closer to the test area to 

ensure that they have similar meteorological activities. When under extreme rainfall conditions, 

using GNSS stations with homogeneous meteorological conditions for training enables GM-

LSTM to learn the observed tropospheric patterns by GNSS, thereby inferring accurate ZTD. 

5.1.6. Conclusion 

 

This research proposes a deep learning based tropospheric delay estimation method. By using 

a deep neural network called GM-LSTM, this approach allows the network to learn the mapping 

pattern from ZWD retrieved from ERA5 and VMF3 to the actually observed ZWD by GNSS. 

After training, the GM-LSTM is able to generate a series of Gaussian mixture probability 

densities of ZWD at any location within the study area and its corresponding probability 

distribution, which can be used to estimate ZWD precisely and evaluate the estimation 
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uncertainty arising from weather activity. 

After testing the performance of the method in winter and summer at eight different latitudes 

in Europe, compared with ZTD retrieved by DNN, ERA5, VMF3, and GACOS, the RMSE of 

ZTD inference by GM-LSTM was reduced by 41.78%, 68.20%, 49.56%, and 50.43% on 

average, achieving state-of-the-art performance. In addition, with the help of meteorologically 

homogeneous GNSS training data, the proposed method still performs well under heavy rain, 

which provides the ability to work in extreme weather that ERA5, VMF3, and GACOS do not 

have. 
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5.2. Real-Time GNSS Integrated Water Vapor Sensing 

Based on Time Series Correction Deep Learning Models 

5.2.1. Background and problem statement 

 

Water vapor is a significant component of the Earth’s atmosphere in terms of energy transport 

by latent heat and radiative forcing. It has a vital role in the water and energy cycles (Worden 

et al., 2007), climate change (Karl & Trenberth, 2003), and the understanding of many extreme 

weather phenomena (Zhu & Newell, 1994). Due to the rapid spatiotemporal variations of water 

vapor, its real-time acquisition with high spatiotemporal resolution remains a challenge. 

Typically, water vapor can be quantified using integrated water vapor (IWV) in units of kg/m2, 

representing the mass of water vapor within a 1 m2 atmospheric column. Since the 1990s, 

with the development of satellite and remote sensing technologies, researchers have 

successfully retrieved IWV by employing high-spectral and multispectral remote sensing 

techniques, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) (King et al., 

1992), and atmospheric reanalyses (Schröder et al., 2018). However, these techniques still face 

limitations in water vapor estimation when it comes to being conducted in real-time, all-weather, 

and high accuracy. For example, multispectral remote sensing technologies like MODIS are 

susceptible to weather conditions, particularly cloud cover and diurnal changes (Vaquero-

Martínez et al., 2017). Reanalysis data, such as ERA5 (Hersbach et al., 2023), can provide 

medium-resolution gridded data with a latency of about 5 days or more, limiting their 

availability for real-time or near real-time access. In addition, the traditional radiosondes, which 

utilize meteorological balloons, can offer high-precision vertical distribution of water vapor, 

but it is constrained by the limited number of measurements (Durre et al., 2009). 

 

The basic principles of GNSS meteorology are introduced in Chapter 2 of this thesis, where 

Eqs. 2.55–2.57 demonstrate that the ZTD measured by GNSS can be converted to IWV, given 

the meteorological variable which is calculated by water vapor pressure and temperature from 

earth's surface to the tropopause (Yuan et al., 2021). Due to significant improvements in recent 

years, some GNSS stations can even provide real-time or near-real-time ZTD products. 

However, in the absence of professional meteorological equipment, obtaining 𝑇𝑚  through 

real-time measurements is very challenging, which impedes the real-time retrieval of IWV. 

Besides, in real-time inversion applications, accurate NWM data products are also hard to 

obtain for calculate 𝑇𝑚. Additionally, some scenarios may lack network support, necessitating 

offline calculations. This underscores the need for a method to calculate 𝑇𝑚 offline for GNSS 

real-time water vapor inversion. To obtain real-time weather data predictions, Landskron & 

Böhm (2018) put forward the GPT3 model by analysing ten years of mean monthly pressure 

level data from ERA-Interim products. GPT3 is composed of a series of spherical harmonic 

functions. By inputting the time and location information, it predicts meteorological data such 

as temperature, pressure, and water vapor pressure in an offline manner. The GPT3 model is 
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widely acknowledged for its effectiveness; however, it exhibits limitations associated with 

geographical considerations, particularly in regions with high latitudes or that are experiencing 

significant climatic variations (Yang et al., 2021). Furthermore, due to its inherent design, the 

model fails to adequately account for diurnal fluctuations, hampering its ability to predict 

accurately the rapid and high-frequency variations inherent in diurnal meteorological data. To 

overcome this limitation, this section proposes a conversion model that uses a combination of 

DNN and LSTM to implicitly learn spatiotemporal patterns in meteorological data, allowing us 

to perform ZTD-to-IWV conversion without the need for actual meteorological observations 

but only GPT3 values. This is a combination, not a true combination, to cover different features 

in a different range of IWV values. Since LSTM-based learning can capture features from 

historical sequences of IWV, the method proposed in this paper is expected to mitigate high-

frequency retrieval errors in ZTD-IWV inversion in the absence of current meteorological data. 

 

5.2.2. Methodology 

 

Due to the challenges of obtaining real-time and accurate meteorological data from GNSS 

stations, the proposed method uses a deep neural network 𝑓𝐷𝑁𝑁 to implicitly learn 

meteorological information and directly map ZTD to IWV. According to Eqs. 2.55-2.57, IWV 

can be considered as a function of 𝑍𝑇𝐷𝐺𝑁𝑆𝑆, temperature 𝑇, water vapor pressure 𝑝w and 

pressure 𝑝𝑠. Since 𝑇, 𝑝w and 𝑝𝑠 exhibit periodicity in temporal and spatial variations, these 

quantities can be modeled based on latitude 𝐿𝐴𝑇, longitude 𝐿𝑂𝑁 and height ℎ𝑠 as well as 

day of year 𝐷𝑂𝑌 and hour of day 𝐻𝑂𝐷. Although not as accurate as ERA5, GPT3, as one of 

the latest empirical models, can map location and time information to meteorological variables 

offline. However, its error can be large compared to the IWV retrieved from ERA5, especially 

in mid- and high-latitude regions. In this study, the IWV retrieved from GPT3 𝐼𝑊𝑉𝐺𝑃𝑇3 has 

been used as part of the network training input. This will help learn from prior knowledge and 

achieve faster convergence. Therefore, as a numerical regression problem, a deep neural 

network 𝑓𝐷𝑁𝑁 with weights 𝑾𝐷𝑁𝑁 can be trained with the following input: 

𝑋 = {𝑍𝑇𝐷𝐺𝑁𝑆𝑆, 𝐿𝐴𝑇, 𝐿𝑂𝑁, ℎ𝑠, 𝐷𝑂𝑌, 𝐻𝑂𝐷, 𝑇𝐺𝑃𝑇3, 𝑝𝑠𝐺𝑃𝑇3
, 𝑝w𝐺𝑃𝑇3

, 𝐼𝑊𝑉𝐺𝑃𝑇3}, (5.24) 

and the ground truth Y is the IWV retrieved from ERA5: 

𝑌 = 𝐼𝑊𝑉𝐸𝑅𝐴5, (5.25) 

 

by using the RMSE as loss function, as described below: 

𝐿𝑜𝑠𝑠 = √
1

𝑁
∑(𝑓𝐷𝑁𝑁(𝑋;𝑾𝐷𝑁𝑁) − 𝑌)2 , (5.26) 

This network can be easily trained through BP algorithm described in section 4.3.  
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After training, 𝑓𝐷𝑁𝑁  can be used offline, which has shown a significant improvement in 

accuracy compared to 𝐼𝑊𝑉𝐺𝑃𝑇3. However, as illustrated in Fig 5.14, the temporal correlation 

in ZWD results in a corresponding temporal correlation in the retrieved IWV, which cannot be 

effectively captured by DNN. To get more improvements, the limitations of 𝑇𝐺𝑃𝑇3, 𝑝𝑠𝐺𝑃𝑇3
 and 

𝑝w𝐺𝑃𝑇3
 need to be analyzed. From the difference between 𝐼𝑊𝑉𝐺𝑃𝑇3 and 𝐼𝑊𝑉𝐸𝑅𝐴5, it can be 

found that the IWV retrieved error is related to its retrieved IWV value, that is, the water vapor 

activity level. Besides, when the IWV value is high (usually in summer, depending on the 

location), the correlation between retrieved IWV and the retrieved error of this IWV is low; on 

the contrary, when the IWV value is low (usually in winter and spring, depending on the 

location), the retrieved error is correlated with the IWV value. An example from KIRU station 

(GNSS station information is shown in Fig. 5.16 and Table 5.4) shows this property in Fig. 5.14. 

When the GNSS IWV is low, the IWV value retrieved using GPT3 has a strong linear 

correlation with its error (from January 1 to May 25, 2022, R2=0.77). However, when the IWV 

value is high, this linear correlation declines rapidly (from January 1 to May 26 to August 4, 

2022, R2=0.13).  

 

Fig. 5.14 The correlation between the IWV retrievals and its associated error. Before 26-May-2020, the 

R2 between IWV and retrieved error is 0.77, while after is 0.13. Data from September to December 2020 

at KIRU is not available because of missing observation files. 

 

With this property, two different models can be trained separately for the active (High IWV 

value) and inactive periods (Low IWV value) of water vapor and used in combination to 

improve performance. The classification of high/low boundaries can be obtained through 

change point detection from Bayesian Estimator of Abrupt Change, Seasonality, and Trend 

(BEAST) (Zhao et al., 2019), or simply using empirical value. It is not necessary to find a very 

precise boundary because neural networks have the ability to generalize. For the case study in 

this research, 20 kg/m2 is a recommended threshold. The boundaries effect will be discussed 
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in the next section. 

 

As observed, DNN worked well with high-frequency water vapor changes, i.e., the high IWV 

part. Hence, for the high IWV part, it can be trained by a DNN by only using part of the training 

data that corresponds to high IWV value 𝑋ℎ𝑖𝑔ℎ𝐼𝑊𝑉 and 𝑌ℎ𝑖𝑔ℎ𝐼𝑊𝑉. However, for the low IWV 

part, the short-term autocorrelation of water vapor variation with 3–5 hours lag is clearly 

observed; an example is shown in Fig.5.15, which allows the water vapor retrieval errors to be 

further corrected by time series models. Since the application scenario of real-time retrieval of 

IWV can only obtain input from the past, which differs from section 5.1, this study proposes 

using an LSTM network 𝑓𝐿𝑆𝑇𝑀 to model the time series for the low IWV part. Given that the 

lag of the ACF is 3–5 hours, indicating the presence of time features that could enhance the 

model within this period, the sequence length of the LSTM is set to 5 hours. Time series data 

are described using a sequence partial order relationship to represent temporal information. 

Hence, only GNSS ZTD and the IWV retrieved with GPT3 are taken as input features for 

training 𝑓𝐿𝑆𝑇𝑀, as shown in Eq. 5.27. 

𝑋𝑙𝑜𝑤𝐼𝑊𝑉;𝑡 = {𝑍𝑇𝐷𝐺𝑁𝑆𝑆;𝑡, 𝐼𝑊𝑉𝐺𝑃𝑇3,𝑡}, 𝑡 = 1,2…5, (5.27) 

and the output �̂�𝑙𝑜𝑤𝐼𝑊𝑉;𝑡  is the predicted IWV time series with 5 consecutive hours, as 

described below: 

�̂�𝑙𝑜𝑤𝐼𝑊𝑉;𝑡 = 𝑓𝐿𝑆𝑇𝑀(𝑋𝑙𝑜𝑤𝐼𝑊𝑉;𝑡). (5.28) 

The 𝑓𝐿𝑆𝑇𝑀 can be supervised by using the ground truth 𝑌 with the same time division by 

using the BPTT algorithm which is described in section 4.4. 

 

 

Fig. 5.15 ACF of diurnal GNSS IWV of KIRU, 01-Jan.-2020 to 04-Jan.-2020. 
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5.2.3. Data and experiments 

 

There are four selected GNSS stations as the case study to validate the effectiveness of the 

proposed method, which are: KIRU in Kiruna, Sweden; DZYL and DZY1 in Delfzijl, 

Netherlands; and FFMJ in Frankfurt, Germany, to represent different climate types in the mid-

to-high latitude regions of Europe. The details of those stations are described in Fig. 5.16 and 

Table 5.4.   

 

Fig. 5.16 The locations of GNSS stations KIRU, DZYL, DZY1, and FFMJ. Note that both DZYL and 

DZY1 are located in Delfzijl, Netherlands, and they are too close to be distinguished from the map. 

 

Table 5.4 Coordinates of the GNSS stations selected for model validation. 

GNSS Station Longitude/ ° Latitude/ ° Height/ m 

KIRU 20.9684 67.8574 362.2 

DZYL 6.9404 53.3200 15.7 

DZY1 6.9360 53.3228 8.2 

FFMJ 8.6650 50.0906 130.1 

 

Data from 2016 to 2019 were used for training, whereas the data in 2020 were used as an 

independent test set. Various metrics are used in the evaluation, such as RMSE, MBE, Mean 

Absolute Percentage Error (MAPE), and coefficient of determination (𝑅2): 

RMSE = √
1

𝑁
∑(𝐼𝑊𝑉𝑝𝑟𝑒 − 𝐼𝑊𝑉𝐸𝑅𝐴5)

2
, (5.29) 
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𝑀𝐵𝐸 =
1

𝑁
∑(𝐼𝑊𝑉𝑝𝑟𝑒 − 𝐼𝑊𝑉𝐸𝑅𝐴5) , (5.30) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝐼𝑊𝑉𝑝𝑟𝑒 − 𝐼𝑊𝑉𝐸𝑅𝐴5

𝐼𝑊𝑉𝐸𝑅𝐴5
| ∗ 100% , (5.31) 

𝑅2 =
[∑(𝐼𝑊𝑉𝑝𝑟𝑒 − 𝐼𝑊𝑉𝑝𝑟𝑒

̅̅ ̅̅ ̅̅ ̅̅ ̅) ∗ (𝐼𝑊𝑉𝐸𝑅𝐴5 − 𝐼𝑊𝑉𝐸𝑅𝐴5
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)]2

∑(𝐼𝑊𝑉𝑝𝑟𝑒 − 𝐼𝑊𝑉𝑝𝑟𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅)

2
∗ (𝐼𝑊𝑉𝐸𝑅𝐴5 − 𝐼𝑊𝑉𝐸𝑅𝐴5

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2 , (5.32) 

where 𝐼𝑊𝑉𝑝𝑟𝑒 is the predicted IWV, and 𝐼𝑊𝑉𝐸𝑅𝐴5 is the ground truth.  

 

The proposed model is trained station by station. For each station, 90% of its data from 2016 

to 2019 is randomly selected for training, and the remaining part from 2016 to 2019 is used as 

a validation set for parameter adjustment to select the model with the best generalization ability. 

To evaluate the performance of different models in different water vapor periods, GPT3, the 

DNN only, and the combined model with DNN and LSTM are compared. In the combined 

model, a DNN model was developed for high IWV values, whereas an LSTM model was used 

for low IWV values. In DNN only model and the one in the combined model, their network 

structures are the same, with 4 layers with 200 neurons in each layer. Training started with an 

initial learning rate of 0.01 and decayed by a factor of 0.7 every 500 epochs until it reached the 

max of 3000 epochs. For the LSTM part, it had been constructed with 256 neurons for each 

gate, and the learning strategy was: Initial learning rate 0.001, decay by a factor 0.8 every 500 

epochs until it reached the max epoch 3000. To evaluate our approach, we compared the 

matrices RMSE, MBE, MAPE and 𝑅2 between the proposed approach and GPT3, which are 

shown in Table 5.5. Besides, the RMSE for the entire year, high IWV period, and low IWV 

period are evaluated as shown in Fig. 5.17.  

 

From the evaluation results, it can be observed that the combined model proposed in this 

research consistently achieves smaller RMSE compared to GPT3 and the DNN at all times. For 

the four GNSS stations KIRU, DZYL, DZY1, and FFMJ, the RMSE of the combined model is 

2.24, 3.20, 3.15, and 2.78 kg/m2, respectively, representing improvements of 55%, 17%, 18%, 

and 15% compared to the GNSS IWV retrieved from GPT3. Since the proposed model is 

trained station by station, similar results were obtained at the DZYL and DZY1 stations located 

on both sides of the EMS canal to prove the stability of the proposed model. The improvement 

in retrieval performance of those four stations can mainly be attributed to the use of LSTM for 

IWV sequence correction during periods of low IWV. Compared to the GNSS IWV retrieved 

from GPT3, the combined model proposed in this research achieves retrieval improvements of 

63%, 17%, 22%, and 14% during low IWV periods, significantly enhancing IWV retrieval in 

the Northern European region. In fact, Ding & Chen (2020) have indicated that the stability of 

GPT3 model predictions for temperature and pressure decreases with increasing latitude. 

During periods with low IWV in high-latitude regions, where water vapor variations are not 

drastic, the substantial distortions in GPT3 temperature and pressure predictions can result in 
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unstable IWV retrievals based on the physical model described in Section 2.3, leading to 

significant errors. By using the LSTM time series model, it can effectively correct the stability 

of the sequence to address this issue, as shown in Fig. 5.18-5.21 (CMB denotes the combined 

model proposed in this research in each figure). 
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Fig. 5.17 RMSE comparison at different GNSS stations. 

Table 5.5 RMSE, MB, MAPE and 𝑅2 at different GNSS stations. Note that CMB denotes the 

combined model proposed in this section. 

Metrics KIRU DZYL DZY1 FFMJ 
RMSE(GPT3) (kg/m2) 4.93 3.84 3.86 3.25 
RMSE(CMB) (kg/m2) 2.24 3.20 3.15 2.78 
MB(GPT3) (kg/m2) -2.00 -0.21 -0.20 -0.05 
MB(CMB) (kg/m2) 0.27 -0.07 -0.11 -0.16 
MAPE(GPT3) 62.29% 25.20% 25.63% 21.06% 
MAPE(CMB) 32.05% 20.57% 20.54% 17.93% 
R2(GPT3) 0.69 0.76 0.78 0.84 
R2(CMB) 0.85 0.84 0.84 0.88 

 

Fig. 5.18 IWV prediction difference comparison of KIRU, 2020. Before 26-May is the Low IWV period, 

and after that is the High IWV period. 
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Fig. 5.19 IWV prediction difference comparison of DZYL, 2020. From 18-Jun. to 27-Aug. is the High 

IWV period and other days belong to the Low IWV period.  

 

Fig. 5.20 IWV prediction difference comparison of DZY1, 2020. From 8-Jun. to 26-Oct. is the High IWV 

period, and other days belong to the Low IWV period.  
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Fig. 5.21 IWV prediction difference comparison of FFMJ, 2020. From 4-Jun. to 9-Sep. is the High IWV 

period, and other days belong to the Low IWV period. 

From Fig. 5.18-5.21, it can be observed that in Low IWV periods, the GPT3 model exhibits 

significant random errors during this period (red dots), while the model proposed in this paper 

significantly corrects this issue (blue dots). When the IWV values are higher, all three models 

make similar predictions. It is noteworthy that the difference of DNN and LSTM between 

classification boundaries for high and low IWV is not overly significant, as illustrated in Fig 

5.18-5.21, where the blue and red points near the black line are close. While discontinuities at 

the edges of high/low IWV cases exist, their impact on inversion results remains within 

acceptable bounds. This can be attributed to in the first step of LSTM (right boundary) the 

hidden state is initialized as 0. Following the completion of the first iteration, the model 

proceeds normally. Therefore, this discontinuity will only occur 5 hours after the first bound 

and will not exert a significant influence. 

5.2.4. Conclusion 

This study proposed a deep learning method jointly using LSTM and feedforward DNN to 

perform real-time ZTD-IWV retrieval without actual meteorological observations; only GPT3 

values are needed. By evaluating the proposed method at four different GNSS stations in the 

mid-to-high-latitude regions of Europe, it obtained RMSE values of 2.24, 3.20, 3.15, and 2.78 

kg/m2, respectively. Compared to the GNSS IWV retrieved from GPT3 with RMSE values of 

nearly 4 kg/m2, the proposed method improves the real-time retrieval results at those stations. 

Since climate patterns change slightly every year, it has been recommended to use at least three 

years of data from the year to be investigated for training the model to maintain stability. 

Increasing the training data period may be beneficial, depending on the similarity of the year to 

be investigated to its history. Considering that the stratospheric wind changes approximately 

every 2.5 years (Quasi-biennial oscillation) and the El Niño phenomenon occurs approximately 

every 3-5 years, therefore too long or too old data for training is not recommended. 
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6. Deep learning methods for 

Distributed Scatterers prediction 

As described in Chapter 3, MT-InSAR can measure time series of surface deformation with 

millimeter-level accuracy. The joint processing of DS and PS based on the concept of 

SqueeSAR greatly alleviates the dependence of traditional PSI on high-quality surface 

scatterers. The preprocessed DS can be regarded as PS and used to monitor surface deformation 

in large-scale natural environments such as volcanoes, river valleys, and wilderness areas. 

However, a major bottleneck of the algorithm is the identification of DS, which requires 

homogeneity estimation for each pixel in the SAR image stack. Although DS can significantly 

increase the coverage of valuable information based on the physical properties of the Earth's 

surface, it requires a lot of computational effort, especially when modern high-resolution SAR 

sensors (such as Sentinel-1) generate increasingly large data stacks. 

 

To address this challenge, this chapter introduces a deep learning method called DSPN that 

predicts whether a pixel qualifies for DSC before preprocessing. This method significantly 

improves processing efficiency. The predictions of DSC do not need to be completely accurate; 

they only need to avoid discarding true DS pixels while removing enough non-DS pixels. Since 

DS pixels naturally occur in groups and pixels are usually thinned out after merging PS and DS 

to reduce the amount of computation in subsequent processing steps, a slight prediction loss for 

DS pixels can be tolerated without compromising spatial coverage. This chapter demonstrates 

the performance of DSPN on six different topographic scenarios in North Rhine-Westphalia 

and Sicily, showing that the method effectively reduces computational requirements and 

ensures reliable prediction results. 

 

The introduction of DSPN represents the first implementation of pre-classification for 

distributed scatterers before DS preprocessing. This approach pioneers the integration of deep 

learning technology into the DS preprocessing workflow to address the high computational 

burden and long processing times traditionally associated with DS identification. The primary 

content of this chapter is derived from a paper published by the author during his doctoral study: 

Wang, D., Even, M., Kutterer, H. (2022). Deep learning based distributed scatterers 

acceleration approach: Distributed scatterers prediction Net. International Journal of Applied 

Earth Observation and Geoinformation, 115, 103112. 

6.1. Problem statement and motivation  

The preprocessing of DS, which involves grouping statistically homogeneous pixels, estimating 

coherence matrices, and extracting optimized phase histories, has been a focal point of InSAR 

research for over a decade (Even & Schulz, 2018). In essence, the goal is to convert DS into 
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PS-like pixels, which allows them to be used in any PS algorithm alongside actual PS. However, 

this process significantly increases computational demands. Consequently, methods to 

accelerate processing are highly sought after. On the technical side, advancements such as more 

powerful computers, parallelization, and optimized implementations can help meet this 

challenge. On the algorithmic side, grouping methods—such as the likelihood ratio test (Jiang 

& Guarnieri, 2020) or FSHP (Jiang et al., 2015)—have shown better performance in terms of 

speed and accuracy compared to the KS two-sample test. Additionally, the 

Eigendecomposition-based Maximum-likelihood-estimator of the Interferometric phase 

(Ansari et al., 2018) can quickly estimate DS signals while maintaining high-quality results. 

Nevertheless, estimating the phase history for each pixel in the SAR stack still demands 

significant memory to store intermediate calculations, and computational efficiency remains 

constrained by disk I/O, especially when the SAR stack cannot be fully loaded into memory 

and must be read in batches. Therefore, an acceleration scheme that considers computer 

implementation is urgently needed, which should avoid pixel-by-pixel calculations of the entire 

SAR images stack as much as possible. 

 

This work is inspired by two key studies. The first is the Sequential Estimator proposed by 

Ansari et al. (2018), which demonstrated that the coherence matrix of DS can be iteratively 

estimated from a single SAR image, leveraging historical information without requiring the 

entire image stack. The second is research in land cover classification (LCC), which shows that 

certain land cover types—such as dense forests or water bodies, which are unlikely to serve as 

DS for SAR with shorter wavelengths like C-band or X-band—can be classified by polarized 

SAR characteristics. LCC by SAR and polarized SAR is a well-established field with promising 

results (Zhu et al., 2021), making it reasonable to use a few SAR images to identify non-DS 

pixels based on land cover characteristics.  

 

Inspired by the above work, the goal of this study is to predict possible DSC before DS 

preprocessing using features extracted from a small number of SAR images and significantly 

reduce the computational burden by processing only the predicted DSC. In order to extract 

spatially homogeneous features with invariant properties, the CNN introduced in Section 4.4 

can be utilized. The inherent properties of the convolution operation enable the network to focus 

on spatially invariant features, making the trained model suitable for reasoning across a variety 

of similar terrains. These features can be extracted from polarimetric SAR images with the 

worst coherence (strong vegetation) and best coherence (weak vegetation) at the acquisition 

time, as this represents the extreme cases of surface scatterer behavior and can provide enough 

information to distinguish DSC. These features can be complex and difficult to express in an 

explicit mathematical form. However, with the help of CNN, they can be implicitly extracted 

and used to distinguish DSC. The CNN is trained using supervised learning, as described in 

Chapter 4, with some DS preprocessed "data examples" for supervisory information. The input 

to the network consists of data features derived from the worst and best coherence polarimetric 

SAR images. It is worth noting that while LCC informed some aspects of this work, the main 

goal here is to classify DSC and non-DSC directly without relying on LCC as an intermediate 
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step. Only certain input layers are selected based on insights related to LCC. The next section 

provides more details on the input features used and the supervision information required for 

the training process. 

 

6.2. Methodology 

6.2.1. Formal framework of DSPN 

 

The framework of DSPN consists of three parts, namely "training set preparation", "training" 

and "mask prediction", as shown in Fig. 6.1. In the "training set preparation" section, the detail 

of the training set will be introduced. The focus of this section is how to compose the input 

features from the polarimetric SAR image and how to generate coarse labels from the 

preprocessed DS pixels as the ground truth. Then, DSPN is iteratively trained according to step 

2 shown in Fig. 6.1; this section provides the architecture, training strategy and loss function of 

DSPN. After training, the model can be used to predict the mask of DSC, as described in the 

"mask prediction" section. The method of converting the output of DSPN into a mask that can 

be used by StaMPS is called coarse label correction, which is the focus of this section.
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Fig. 6.1 The general flow chart of DSPN approach 

 

6.2.2. Training Set Preparation 

 

6.2.2.1. Ground Truth definition 

How to supervise the training of neural networks is a central challenge in deep learning for 

geodesy. For DSC identification, it may seem straightforward to use the quality number 𝛾𝑃𝑇𝐴 

as the ground truth. However, this would transform the neural network's output into a numerical 

regression task. As discussed in Section 3.4, 𝛾𝑃𝑇𝐴 is calculated from the historical optimal 

phase across the entire SAR images stack, meaning its precise value depends on the cumulative 

contribution of all images in the stack. Attempting to regress 𝛾𝑃𝑇𝐴  from only two images’ 

results in substantial loss of information, leading to regression failure. In traditional DS 

preprocessing methods, DSC identification is often determined by a hard threshold, such as 
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𝛾𝑃𝑇𝐴 > 0.4. This suggests that the exact value of 𝛾𝑃𝑇𝐴 is less critical for DSC identification; 

instead, whether 𝛾𝑃𝑇𝐴  exceeds the threshold is the primary factor. Therefore, it is more 

reasonable to use a binary classification label based on this threshold rather than attempting to 

regress the exact 𝛾𝑃𝑇𝐴 value. However, the experiments of this study have shown that using 

𝛾𝑃𝑇𝐴 as the binary ground truth label with general CNN, such as U-Net described in section 

4.4, will cause the network to fail to capture important details with low 𝛾𝑃𝑇𝐴, such as roads or 

highways, as shown in Fig. 6.2. 
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Fig. 6.2 An example of DS prediction by using U-Net (Ronneberger et al., 2015) trained by binary 

classification label as the ground truth. The red rectangle marks the detail region of the motorway, which 

has relevant low 𝛾𝑃𝑇𝐴. a) The 𝛾𝑃𝑇𝐴 value in Saarland, calculated through the SqueeSAR approach. b) 

The binary classification label generated by 𝛾𝑃𝑇𝐴 > 0.4. c) The prediction result by U-Net. d) The details 

of binary classification label in red rectangle marked region. e) The details of prediction result by U-Net 

in red rectangle marked region. 

 

After analyzing the distribution of 𝛾𝑃𝑇𝐴 in four different regions (Ruhr, Saarland, Ibbenbüren, 

and Sicily), an assumption is worth considering: It is supposed that the patterns of DSC follow 

a similar distribution for different scenarios. For instance, DSC can be broadly categorized into 

weak DS (e.g., wilderness, roads, highways, etc.) and strong DS (e.g., urban areas) according 

to their 𝛾𝑃𝑇𝐴 values. Although the exact 𝛾𝑃𝑇𝐴 values for the same type of DSC vary between 

different SAR stacks and parameter settings, their quantile values are close to each other. Based 

on this assumption, one approach to supervising the neural network with 𝛾𝑃𝑇𝐴 is to have the 

network learn from pseudo-categories of DSC, rather than regressing the exact value of 𝛾𝑃𝑇𝐴. 

The pseudo-categories are derived from the 𝛾𝑃𝑇𝐴 by the following strategy:  

1. As established in previous research, pixels with 𝛾𝑃𝑇𝐴 below a threshold (set here at 

0.4) have a very low probability of being DSC (Even & Schulz, 2018). These pixels 

are therefore labeled as non-DS (0 for the mask) for the ground truth. 

2. For pixels with 𝛾𝑃𝑇𝐴 ≥ 0.4, the K-means clustering algorithm is employed to generate 

a multi-class coarse label mask for the ground truth. The coarse labels generated by K-

means for those 𝛾𝑃𝑇𝐴 ≥ 0.4 pixels can be seen as the pseudo-categories of different 

types of DSC. This enables the network to learn a more defined decision hyperplane, 

improving its ability to classify various DSC types and increasing its sensitivity to weak 

DSC pixels. 

Although the hard threshold of 0.4 might be considered somehow conservative, it is suitable in 

this context since retaining more DSC pixels is less harmful than losing coverage, because those 
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false positive pixels will be discarded in the following step of StaMPS. If using a more strict 

threshold like 𝛾𝑃𝑇𝐴 ≥ 0.7 (Samiei-Esfahany, 2017), this will cause the network to be too strict 

in identifying DS, and most DSC will be rejected, causing the available DS to be too sparse. 

Since K-means is a non-convex algorithm, determining the optimal number of categories, 𝐾, 

is done through a systematic "trial and error" approach. Experiments suggest that if the number 

of clusters exceeds a maximum threshold 𝐾𝑚𝑎𝑥 (with 𝐾𝑚𝑎𝑥 ≤ 6  being recommended), 

convergence becomes difficult. Therefore, the optimal 𝐾  is determined by testing values 

between 2 and 𝐾𝑚𝑎𝑥. To determine the optimal 𝐾, the Calinski-Harabasz index (Caliñski & 

Harabasz, 1974), Silhouette analysis (Rousseeuw, 1987), and the Elbow curve method (Ketchen 

& Shook, 1996) can be used to generate the potential optimal 𝐾. If the potential optimal 𝐾 

generated by those three methods is different, the value whose histogram best fits the 

distribution of 𝛾𝑃𝑇𝐴 is chosen. Additionally, if a cluster is significantly smaller than others, it 

is merged with the nearest larger cluster, ensuring the neural network can effectively learn the 

features of the various classes. The mask generated by the K-means clustering algorithm 

reflects the scattering behavior of surface scatterers in the given scene, though they do not 

correspond to specific ground object types—hence the term "pseudo-class." This distinguishes 

the task from LCC. For DSC prediction, it is not necessary to determine the exact source of the 

DSC (e.g., whether it originates from a wilderness or road surface). The purpose of the 

clustering labels is to distinguish DSC with different scattering behaviors, allowing the network 

to capture finer details, especially for weak DSC pixels. 

 

Following the above-mentioned processing, a multi-label mask corresponding to non-DSC and 

various types of DSC is generated. This mask serves as the ground truth for neural network 

training. Consequently, the DSC prediction task is reformulated as a pixel-wise classification 

problem within the framework of semantic segmentation. 

 

6.2.2.2. Input features definition 

To enable end-to-end learning of DS patterns based on the statistical characteristics of raw 

signals, DSPN aims to extract features directly from SAR images. Unlike natural RGB images, 

however, in the raw SAR images, only the amplitude information makes sense, making it 

difficult to derive physically meaningful insights from unprocessed radar amplitudes. 

Fortunately, studies in SAR for vegetation (Nikaein et al., 2021) and crop (Mestre-Quereda et 

al., 2020) classification have demonstrated that coherence and backscatter are complementary 

and that dual-polarization SAR data yields superior results compared to single-polarization. 

This insight inspired DSPN to utilize polarimetric SAR images for extracting DS features. 

Besides, findings from LCC indicate that dual-polarization data enhances road extraction 

performance (Xiao et al., 2019). Roads, though often of lower quality in DSC, are particularly 

valuable and can contribute to additional coverage, e.g., in Central Europe (Zhang et al., 2019). 

Furthermore, in vegetated areas, the coherence of DS is significantly influenced by seasonal 

variations, particularly for short-wavelength radars such as C-band or X-band, due to the strong 

interaction of radar signals with the vegetation canopy. During periods of dense foliage, the 

radar signal undergoes extensive volume scattering within the canopy, whereas during periods 
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of leaf fall, the signal can penetrate the canopy more effectively and produce double-bounce 

reflections from the ground. The objective of DSPN is to predict DSC using a minimal number 

of SAR images. To achieve this, it is essential to account for coherence information under 

conditions of both high coherence (sparse canopy, short temporal baseline) and low coherence 

(dense canopy, long temporal baseline). 

 

Inspired by the above work and experimental experience, DSPN finally selected the following 

9 features as its input: speckle filtered intensities of the master regarding VV and VH; real and 

imaginary parts of coherences from an acquisition of a month with low coherence and a month 

with high coherence; median amplitude over the stack; filtered amplitude dispersion image of 

the stack; and coefficient of variation of median amplitude. Among them, the intensities are the 

output of the polarimetric speckle filtering function of the Sentinel 1 toolbox (Improved Lee 

Sigma filter using default parameters one look, window size 7 × 7, sigma 0.9, target window 

size 3 × 3 ). The coherences are calculated for each acquisition from a month with low 

coherence (dense canopy, long temporal baseline) and a month with high coherence (sparse 

canopy, short temporal baseline). For the calculation of the coherences, an 11 × 3 window is 

used. The median amplitude and the amplitude dispersion image of the stack do not pose an 

additional computational burden as they are used as the background image for plotting or are 

required for PS selection and are calculated either way. The median amplitude gives a low-

noise version of backscatter. Low amplitude dispersion is often used as an indicator of phase 

stability that helps detect PSC. In order to obtain a layer with easier-to-classify information a 

median filter (window size 5 × 3) that exempts pixels with amplitude dispersion smaller than 

0.4 is applied. The size of the median filter is a trade-off between losing resolution and being 

large enough to observe the desired smoothing effect. The coefficient of variation of median 

amplitude (7 × 3 window) is calculated to highlight in particular roads. 

 

6.2.3. Training DSPN 

 

6.2.3.1. Net Architecture 

Given that the network must identify the class of each pixel, the use of an encoder-decoder 

network architecture is an intuitive choice. The DSPN structure comprises two main 

components: the encoder branch and the decoder branch. For the encoder, a convolutional 

network backbone with multi-level feature extractors, such as AlexNet (Krizhevsky et al., 2012), 

GoogLeNet (Szegedy et al., 2015), or VGG (Simonyan & Zisserman, 2015), can be considered. 

However, it is more recommended to use ResNet (He et al., 2016) as the backbone due to its 

ability to extract features across four different scales—ranging from global to local—via its 

four ResBlocks (implemented using Bottlenecks (He et al., 2016)), effectively addressing the 

vanishing gradient problem. 
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The decoder path consists of multiple decoding units, each containing a set of 3 × 3 

convolutions and an up-sampling unit. To avoid the "checkerboard artifacts" (Odena et al., 2017) 

commonly caused by deconvolution, the deconvolution is replaced with bilinear interpolation 

and a 1 × 1 convolutional layer to construct the up-sampling units. Unlike V-net (Milletari et 

al., 2016) and U-net (Ronneberger et al., 2015), dense concatenation (Zhou et al., 2018) is used 

to merge features from different decoding units in various decoding paths rather than directly 

concatenating them. This approach leverages the fact that features from different decoding 

paths have varying receptive fields, allowing dense skipping to more effectively integrate 

encoding information at multiple scales. This enhances the network's ability to capture finer 

details, such as small roads or motorways. The overall architecture of DSPN is illustrated in 

Fig 6.3, with detailed layer specifications provided in Table 6.1.  

 

 

Fig. 6.3 DSPN architecture. The number below each block indicates the input channel for that block. 
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Table 6.1 Architecture details of DSPN 

The notation OPERATOR(X->Y) represents data propagation, where X denotes the input of 

this operator and Y denote the output. The notation Conv represents the convolutional layer, 

and the notation UP represents the up-sample layer.  For example, the input channel of 

Decoder 4.2 is 1280, which consists of the output of Encoder 3 (512 channels), the output of 

Decoder 4.1 (512 channels), and the up-sampled output of Decoder 5 (256 channels). After a 

1 × 1 convolutional layer, the output of Decoder 4.2 has 128 channels. 

 

6.2.3.2. Loss function 

With the coarse label generation approach mentioned above, the DSC prediction task is 

reframed as a semantic segmentation problem, making the cross-entropy loss function a natural 

 Encoder Decoder 

Layer 1 

(11) 

Encoder 1:  

Conv (11->64) 
Decoder 1: Conv (UP(Decoder2.4(32))->K) 

Layer 2 (64) 

Encoder 2: 

Bottleneck  

(64->256) 

Decoder 2.1:  

Conv (UP(Encoder2(256))+Encoder1(64)->64) 

Decoder 2.2: 

Conv(Encoder1(64)+Decoder2.1(64)+UP(Decoder3.1(256))->

64) 

Decoder 2.3: 

Conv(Encoder1(64)+Decoder2.1(64)+Decoder2.2(64)+UP(De

coder3.2(256))->64) 

Decoder 2.4: 

Conv(Encoder1(64)+Decoder2.1(64)+Decoder2.2(64)+Decod

er2.3(64)+UP(Decoder3.3(64))->32) 

Layer 3 

(256) 

Encoder 3: 

Bottleneck  

(256->512) 

Decoder 3.1:  

Conv(UP(Encoder3(512))+Encoder2(256)->256) 

Decoder 3.2: 

Conv(Encoder2(256)+Decoder3.1(256)+UP(Decoder4.1(512)

)->256) 

Decoder 3.3: 

Conv(Encoder2(256)+Decoder3.1(256)+Decoder3.2(256)+UP

(Decoder4.2(128))->64) 

Layer 4 

(512) 

Encoder 4: 

Bottleneck  

(512->1024) 

Decoder 4.1:  

Conv(UP(Encoder4(1024))+Encoder3(512)->512) 

Decoder 4.2: 

Conv(Encoder3(512)+Decoder4.1(512)+UP(Decoder5(256))-

>128) 

Layer 5 

 (1024) 

Encoder 5: 

Bottleneck  

(1024->2048) 

Decoder 5:  

Conv(UP(Encoder5(2048))+Encoder4(1024)->256) 
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choice. However, this standard loss function does not account for the varying contributions of 

different misclassified labels, particularly in cases where DSC is incorrectly categorized into a 

pseudo-class that is also part of DSC but differs from the Ground Truth, which does not impact 

on the overall DSC classification outcome. Given that the primary goal of DSPN is to determine 

whether a pixel belongs to DSC, this study proposes using a weighted cross-entropy loss 

function 𝐿𝑜𝑠𝑠𝑊𝐶𝐸 for coarse label learning, as described below: 

𝐿𝑜𝑠𝑠𝑊𝐶𝐸 = rrgmin
𝑊

𝐻𝑊𝐶𝐸(𝑃||𝑄) = −rrgmin
𝑊

1

𝑁
∑ 𝑤𝑘𝑃(𝑔𝑡𝑛) log𝑄(𝑦𝑛)

𝑁

𝑛=1

(6.1) 

𝑤𝑘 = {

1 𝑖𝑓 𝑘 =  0 (𝑛𝑜𝑛 − 𝐷𝑆𝐶 )
𝑁𝑘

∑ 𝑁𝑘
𝐾
𝑘=2

𝑒𝑙𝑠𝑒
    (6.2) 

where 𝑃(𝑔𝑡𝑛) is the Multinoulli distribution of pixel 𝑥𝑛 belonging to DSC which generated 

by coarse label mentioned above, and 𝑄(𝑦𝑛) refers to the probability distribution transferred 

by SoftMax function (Eq. 4.11) of DSPN output 𝑦𝑛, 𝑁𝑘 is the number of points belonging to 

category 𝑘 and class 𝑘 = 0 denotes the non-DSC.  

 

6.2.3.3. Training strategy and optimizer 

Once the DSPN structure is constructed, the network weights need to be initialized. The 

Kaiming initialization method (He et al., 2015) is recommended for this purpose. After 

initialization, the network can be iteratively trained until convergence using the back-

propagation algorithm detailed in Section 4.3. For optimizers, it is advisable to use either Adam 

or SGD, which are also described in Section 4.3. While Adam is known for its ability to achieve 

fast convergence by employing an adaptive learning rate, it has been reported that its 

generalization ability is not superior to that of SGD (Keskar & Socher, 2017). Therefore, it is 

suggested to use the Adam optimizer during the initial stages of training for a warm-up phase, 

followed by momentum-based SGD for fine-tuning to achieve improved accuracy and 

generalization performance. If a pre-trained model is available, SGD can be directly applied for 

transfer learning, eliminating the need to reinitialize and retrain the network when processing 

new datasets. Transfer learning offers faster convergence compared to retraining from scratch, 

thereby enhancing DSPN’s generalization capabilities while reducing training time. When the 

network converges, its weights can be saved for mask prediction. 

 

6.2.4. Mask Prediction 

 

Once the network has been trained and its weights are obtained, DSPN can use these weights 

to make DSC predictions for any location within a similar scene. After loading the saved 

network weights, the input features of the image to be predicted are fed into DSPN, which 

performs forward propagation. The network then outputs a tensor 𝑂  of dimensions 
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𝐴𝑧 × 𝑅𝑔 × 𝐾 , where 𝐴𝑧  and 𝑅𝑔  is the Azimuth and Range of the input image, and 

𝑂[𝑎, 𝑟, 𝑘] following a SoftMax conversion represents the probability that DSPN predicts the 

pixel at position [𝑎, 𝑟] as pseudo-category 𝑘. As the primary objective is to filter out non-

DSC pixels rather than generate a coarse label classification map, the final mask can be derived 

from the SoftMax-converted tensor 𝑂 using the following coarse label correction method: 

1. Generate the binary mask by: 

𝑀𝑎𝑠𝑘[𝑎, 𝑟] = {0 𝑂[𝑎, 𝑟, 1] > ∑𝑂[𝑎, 𝑟, 𝑖]

𝐾

𝑖=2

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.3) 

2. Morphological correction: 

Since DSC consists of clusters of points exhibiting the same scattering mechanism, a true DS 

point is expected to have at least 20 neighborhoods (Ferretti et al., 2011), this implies that 

isolated points with small neighborhoods are unlikely to be DS. To maintain adequate coverage, 

the neighborhood threshold for the DSPN mask is set to 5, meaning that points with fewer than 

5 neighbors will be classified as non-DS. Subsequently, the mask is dilated to prevent the loss 

of DSC near the edges. 

After coarse label correction, the generated mask can be used as an indicator for DSC. Then, 

the processing efficiency can be significantly improved by preprocessing only the DSC covered 

by the mask. 

 

6.3. Experiment 

6.3.1. Data & Experiment environment 

 

To validate the proposed method, two Sentinel-1 IW image stacks from North Rhine-

Westphalia, Germany, and Sicily, Italy, were utilized to assess the performance and 

generalization capability. The specific details of these image stacks are provided in Table 6.2. 

Six distinct test areas were selected from these two data stacks to evaluate DSPN's performance 

across different topographies. The details of these test areas are listed in Table 6.3. The image 

patches cropped for training were taken from the entire scene, excluding the test areas. 
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Table 6.2 SAR images stacks details for North Rhine-Westphalia and Sicily 

Dataset Path 
Master 

date 
Period 

Low 

coherence 

date  

High 

coherence 

date  

Size 

North 

Rhine-

Westphalia 

15 

Ascending  
2018.3.01 

2018.1.06-

2021.3.21 
2017.5.11 2018.2.17 4000*9000 

Sicily 
44 

Ascending  
2017.1.07 

2017.10.08-

2018.9.29 
2017.4.19 2017.1.13 15000*11750  

 

 

To construct the training and test sets, DS preprocessing is performed with the following 

parameters or sub-algorithm selections: For grouping, a search window of size 21 pixels times 

21 pixels was used. As a criterion of similarity, the generalized likelihood ratio test with a 

confidence level of 99% was applied (cp. (Jiang & Guarnieri, 2020) for some theory). The phase 

history was estimated with the help of phase triangulation coherence maximization (Ferretti et 

al., 2014) from the coherence matrix, which was obtained from the sample covariance matrix. 

In order to mitigate biases, the entries of the coherence matrix were taken to the power of two 

(Ferretti et al., 2014). Furthermore, sequential estimation with a mini stack size of 20 

acquisitions was employed (Ansari et al., 2017). These choices were based on a study in two 

parts on how to tune DS pre-processing (Even, 2021, 2022). 

 

The proposed method above was implemented on a deep learning PC with a single NVIDIA 

RTX 3090 GPU and Intel(R) Core i7-10700 CPU, 8 threads. The DS pre-processing and coarse 

label generation was implemented by using MATLAB R2020b. The DSPN, weighted coarse 

label cross-entropy, and coarse label correction were implemented by using Pytorch 1.7.0 build-

in operators. Considering the GPU memory constraints, the input layers and corresponding 

ground truth labels were cropped into 500 × 500 pixel-sized patches subset stacks. 

 

For North Rhine-Westphalia dataset, the model of DSPN was trained with 2000 epochs 

iteratively. The learning strategy is: Use of Adam optimizer with 0.001 initial learning rate, and 

for every 500 iterators, the learning rate will decay by multiplying 0.7. Training North Rhine-

Westphalia model required approximately 49 hours of our environment. For each test region, 

the mask generating time was no higher than one minute. Although SAR images in Sicily are 

susceptible to complex terrain such as slope shadows, the generalization ability of DSPN 

enables the network to work well with only transfer learning. To evaluate the generalization 

ability of DSPN, we use the fine-tuning strategy, that is: using North Rhine-Westphalia model 

as initial weight and fine-tune training 500 epochs with SGD, 0.0005 initial learning rate and 

decay to 0.0001 after 250 epochs. Although the fine-tuning training nearly took 15 hours, again 

the mask was generated in one minute when the training finished. 
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Table 6.3 Test regions details for North Rhine-Westphalia and Sicily 

Dataset Test region Topography Size 

North Rhine-

Westphalia 

Wickede (Ruhr) River , Countryside 500 × 1000 

North Rhine-

Westphalia 

Hamm Urban 500 × 2000 

North Rhine-

Westphalia 

Münster Motorways 500 × 1000 

Sicily Arenella Urban, Harbor, Beach, Sea 1500 × 500 

Sicily South side of Etna 

Crater-volcano (slope and 

shadow) 

3500 × 3000 

Sicily Rocche d'Argimusco Forests (slope and shadow) 1500 × 1500 

 

6.3.2. Results of coarse label generation 

 

After searching, the best K for North Rhine-Westphalia is 3, and the best K for Sicily is 5, a 

higher value will cause the algorithm to fail to converge. The clustering result is shown in Fig. 

6.4 and Fig. 6.5. 
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Fig. 6.4 The clustering result for North Rhine-Westphalia; the white rectangle marks the test region in 

city Hamm, the cyan rectangle marks the test region in the motorway intersection near Münster and the 

purple rectangle marks the test region in Wickede (Ruhr). 

 

Fig. 6.5 The clustering result for Sicily; the white rectangle marks the test region in Arenella, the cyan 

rectangle marks the test region in the south side of Etna and the brown rectangle marks the test region in 

Riserva Naturale Orientata Bosco di Malabotta. Rocche d'Argimusco. 

6.3.3. Evaluation of DSPN 

To evaluate the performance, the numbers of true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN) samples are used to calculate Accuracy (Acc), 

Precision (Pre), Recall (Rec), Negative Predictive Value (NPV), and False Negative Rate (FNR) 

as the metrics of mask quality with following formulas: 
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𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6.4) 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6.5) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6.6) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (6.7) 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 (6.8) 

Since the objective is to create a mask that accelerates DS preprocessing, type II errors 

(misclassifying DSC as non-DSC, represented as false negatives) are more detrimental than 

type I errors (misclassifying non-DSC as DSC, represented as false positives). While type I 

errors only introduce unnecessary computation, type II errors result in the loss of DS points, 

which negatively impacts subsequent DS processing. The mask generated without coarse label 

correction may still contain some false positive pixels, but these typically appear as isolated 

noise points rather than clusters of scatterers with similar properties. After applying 

morphological postprocessing, the remaining false positive pixels are corrected during the later 

stages of DS preprocessing. To assess the impact of these errors, the False Negative Rate is 

used as a metric to evaluate the loss rate (type II error), reflecting the proportion of missing 

DSC pixels. 

 

6.3.3.1. Performance of DSPN in North Rhine-Westphalia 

The evaluation result of three test regions in North Rhine-Westphalia is shown in Table 6.4. 

The proposed DSPN achieved a better performance in the urban area (Hamm), which has 98.41% 

accuracy and only 2.09 % FNR. The detail of 𝛾𝑃𝑇𝐴 after DS preprocessing with or without our 

approach is shown in Fig. 6.6 to Fig. 6.8. Even though in the rural area or suburban highway 

(Wickede (Ruhr) and Münster) the accuracy of the proposed approach was lower than in the 

urban area, our approach still performs well in identifying important objects (airports, rivers, 

roads, etc.) as shown in Fig. 6.7b and Fig. 6.8b. 

Table 6.4 Evaluation Results of North Rhine-Westphalia. 

Region TP TN FP FN Acc 

(%) 

Pre 

(%) 

Rec 

(%) 

NPV 

(%) 

FNR 

(%) 

Wickede 

(Ruhr) 

172830 295501 0 31669 93.67 100 84.51 90.32 15.49 

Münster 181097 292371 0 26532 94.69 100 87.22 91.68 12.78 

Hamm 743338 240795 0 15867 98.41 100 97.91 93.82 2.09 
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Fig. 6.6 𝛾𝑃𝑇𝐴 after preprocessing in Hamm – (a) without DSPN; (b) with DSPN.

 

Fig. 6.7 𝛾𝑃𝑇𝐴 after preprocessing in Münster – (a) without DSPN; (b) with DSPN; the white rectangle 

marks the overpass between Highway 1 and Highway 43. 
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Fig. 6.8 𝛾𝑃𝑇𝐴 after preprocessing in Wickede (Ruhr) – (a) without DSPN; (b) with DSPN; the white 

rectangle marks the airport Arnsberg Menden. 

 

6.3.3.2. Performance of DSPN in Sicily 

The evaluation results of the test regions in Sicily are shown in Table 6.5 and Fig. 6.9 to Fig. 

6.11. After 500 epochs of fine-tuning training, DSPN also predicted well on the sea – a surface 

class not appearing in North Rhine-Westphalia (achieved 99.83% accuracy and 1.41% FNR in 

Arenella). For mountain areas with complex terrain, the mask can still retain most of the DSC 

points (achieved 98.40% accuracy and 2.23% FNR in the South side of Etna). 
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Table 6.5 Evaluation results of Sicily. 

Region TP TN FP FN Acc 

(%) 

Pre 

(%) 

Rec 

(%) 

NPV 

(%) 

FNR 

(%) 

Arenella 86778 661978 0 1244 99.83 100 98.59 99.81 1.41 

South side of 

Etna 

7369239 2962704 0 168057 98.40 100 97.78 94.63 2.23 

Rocche 

d'Argimusco 

880722 1281276 0 88002 96.09 100 90.92 93.57 9.08 

 

Fig. 6.9 𝛾𝑃𝑇𝐴 after pre-processing in Arenella – (a) without DSPN; (b) with DSPN. 
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Fig. 6.10 𝛾𝑃𝑇𝐴 after pre-processing in South side of Etna – (a) without DSPN; (b) with DSPN. 

 

Fig. 6.11 𝛾𝑃𝑇𝐴  after pre-processing in Riserva Naturale Orientata Bosco di Malabotta. Rocche 

d'Argimusco – (a) without DSPN; (b) with DSPN. 

6.3.4. Time Costing of DSPN 

 

Since the acceleration performance of DSPN varies across application scenarios, it is necessary 

to reasonably assess the efficiency of the speed improvement it offers. Given that DS 

preprocessing typically employs multi-threading technology for parallel computing, it is 

necessary to compare the algorithm's running time with both the actual running time 𝑇𝑎  and 

the total computation time 𝑇𝑡 (sum of all thread computation time, including scheduling costs) 

of DS pre-processing with or without using the proposed approach. The results of this 

comparison are presented in Table 6.6. From the analysis of the six test areas, it is evident that 
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the higher the proportion of non-DSC in the scene, the greater the acceleration DSPN provides 

for preprocessing. 

 

Table 6.6 The comparison of actual running time 𝑻𝒂 and the total computation time 𝑻𝒕 in test regions 

Region 
𝑻𝒂(𝒘𝒊𝒕𝒉 𝑫𝑺𝑷𝑵) 

/sec 

𝑻𝒂(𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝑫𝑺𝑷𝑵) 

/sec 

𝑻𝒕(𝒘𝒊𝒕𝒉 𝑫𝑺𝑷𝑵) 

/sec 

𝑻𝒕(𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝑫𝑺𝑷𝑵) 

/sec 

Wickede 

(Ruhr) 
9861 14076 48089 90018 

Münster 9633 14222 57783 88043 

Hamm 19207 22405 117603 133245 

Arenella 7663 13303 8358 66271 

South side of 

Etna 
80585 96596 1392960 1606706 

Rocche 

d'Argimusco 
40549 48349 218120 293939 

 

6.4. Discussion 

6.4.1. Acceleration efficiency 

 

Since the actual running time 𝑇𝑎  is influenced by bottlenecks in data loading and parallel 

computing scheduling, the proposed method can reduce the actual processing time by 

approximately 14.27% (in Hamm, with only 9.12% non-DSC) to 42.40% (in Arenella, with 

83.63% non-DSC). Excluding the data loading factor, the main reason for the discrepancy 

between the actual acceleration and the percentage of non-DSC is that the MATLAB parallel 

computing mechanism does not distribute the computational load evenly across all threads. The 

actual running time 𝑇𝑎  is determined by the slowest thread. To assess the performance 

improvement introduced by DSPN, the total computation time 𝑇𝑡 , which reflects the total 

computational amount, provides a more accurate measure. By comparing 𝑇𝑡 , the proposed 

method can save between 8.68% (in Hamm) and 84.10% (in Arenella) of computation costs, as 

shown in Table 6.7. This demonstrates a strong correlation between the percentage of non-DSC 

and the speed-up ratio 𝑅𝑠𝑝 as defined in Eq. 6.9. Furthermore, this indicates that if only a single 

thread is used for preprocessing, the efficiency gain will closely align with the percentage of 

non-DSC. 

𝑅𝑠𝑝 =
𝑇𝑡(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐷𝑆𝑃𝑁) − 𝑇𝑡 (𝐷𝑆𝑃𝑁)

𝑇𝑡(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐷𝑆𝑃𝑁)
 (6.9) 
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Table 6.7 The comparison between the percentage of Non-DSC and the speed up rate 𝑹𝒔𝒑 in test 

regions 

Region 𝑵𝒐𝒏 − 𝑫𝑺𝑪(%) 𝑹𝒔𝒑(%) 

Wickede (Ruhr) 42.93 46.58 

Münster 38.68 34.37 

Hamm 9.12 11.74 

Arenella 83.63 87.39 

South side of Etna 11.28 13.3 

Rocche d'Argimusco 23.86 25.79 

 

 

6.4.2. Analysis of the False Negative samples 

 

This study demonstrates that DSPN can generate a high-accuracy mask for predicting DSC 

after training. However, as the DS cannot be determined only by the threshold of 𝛾𝑃𝑇𝐴, it is 

valuable to investigate what those False Negatives are like, and the potential reason that caused 

the misclassification. From the visual inspection of two optical images taken near the high 

coherence and low coherence acquisitions provided by Google Earth, it can be seen that most 

of the misclassification happened in the areas covered by deciduous and herbal plants such as 

fields, forests, street trees, etc. as shown in Fig. 6.12 and Fig. 6.13. Since the inputs of DSPN 

are from only two acquisitions, these two acquisitions usually correspond to different seasons, 

spring to summer or autumn to winter. This can lead to a situation where one acquisition yields 

better coherence than the other. The variation of radar reflection patterns of deciduous and 

herbal plants in different seasons is one of the potential causes of misclassification. Different 

growth and development stages of plants will change the amplitude and coherence of the 

polarized radar signal, which makes it possible for DSPN to make confused judgments on the 

plant coverage area. 

 

After DS pre-processing, the displacement analysis is performed with help of the Stanford 

Method for PS (StaMPS). Those pixels found in fields or forests usually are filtered out through 

the selection step by StaMPS. By using the modified version of StaMPS from (Even et al., 2020) 

with the predicted mask, the error caused by FN can be evaluated by the percentage of lost 

coverage 𝐿𝐶, which is calculated in the following way: Gridding the scene into approximately 

200 m by 200 m cells, and counting the number 𝐶𝐷𝑆 of cells that contain DS for the result that 

was obtained without considering a mask and the number 𝐶𝑚 of these cells, where DS were 

missing after a mask was applied. Then the percentage of lost coverage is: 
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𝐿𝐶 =
𝐶𝑚

𝐶𝐷𝑆
  (6.10) 

 

Fig. 6.12 False Negative points of test regions in North Rhine-Westphalia. (a1) Wickede (Ruhr) taken on 

March (a2) Wickede (Ruhr) taken on May (b1) Münster taken on March (b2) Münster taken on May. (c1) 

Hamm taken on January. (c2) Hamm taken on May. 

 

Fig. 6.13 False Negative points of test regions in Sicily. (a1) Arenella taken on March (a2) Arenella taken 

on June (b1) South side of Etna taken on January (b2) South side of Etna taken on May. (c1) Rocche d’ 

Argimusco taken on March. (c2) Rocche d’ Argimusco taken on June. 

The lost coverage 𝐿𝐶 for the six test regions is shown in Table 6.8: 

Table 6.8 Percentage of lost coverage caused by FN in test regions 

 
Wickede 

(Ruhr) 
Münster Hamm Arenella 

South side 

of Etna 

Rocche 

d'Argimusco 

LC(%) 3.0% 2.7% 0.6% 0.2% 0.5% 0.7% 
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6.4.3. Ablation study 

Compared to the traditional U-Net, DSPN introduces improvements in both the network 

architecture and the loss function. To evaluate the performance enhancements resulting from 

these changes, this study compares the number of parameters, training time, GPU memory 

usage, and prediction time of DSPN and U-Net on the North Rhine-Westphalia dataset. The 

results of these comparisons are presented in Table 6.9. Additionally, using U-Net with 𝐻𝐶𝐸 as 

the baseline, the performance gains achieved by the DSPN network structure, and the 𝐻𝑊𝐶𝐸 

loss function are detailed in Table 6.10. 

 

Table 6.9 Complexity comparison: DSPN VS. U-Net 

 Parameters Training time GPU memory needed 
Prediction 

time 

DSPN 68003831 49h 6843.00MB/batch 56s 

U-Net 51538466 27h 3382.60MB/batch 43s 

 

Table 6.10 Ablation study results of North Rhine-Westphalia. 

Region Network 

architecture 

Loss 

function 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

NPV 

(%) 

FNR 

(%) 

Wickede 

(Ruhr) 

DSPN 𝐻𝑊𝐶𝐸 93.67 100 84.51 90.32 15.49 

DSPN 𝐻𝐶𝐸 87.55 99.98 69.58 82.61 30.42 

U-Net 𝐻𝑊𝐶𝐸 75.44 72.13 67.85 77.61 32.14 

U-Net 𝐻𝐶𝐸 73.75 77.78 52.68 72.19 47.32 

Münster 

DSPN 𝐻𝑊𝐶𝐸 94.69 100 87.22 91.68 12.78 

DSPN 𝐻𝐶𝐸 91.49 99.95 79.55 87.32 20.45 

U-Net 𝐻𝑊𝐶𝐸 74.77 70.56 71.27 78.03 28.73 

U-Net 𝐻𝐶𝐸 74.85 76.57 60.11 73.97 39.89 

Hamm 

DSPN 𝐻𝑊𝐶𝐸 98.41 100 97.91 93.82 2.09 

DSPN 𝐻𝐶𝐸 96.79 99.98 95.79 88.26 4.22 

U-Net 𝐻𝑊𝐶𝐸 85.18 90.06 91.47 64.66 8.54 

U-Net 𝐻𝐶𝐸 83.83 92.64 86.55 58.34 13.45 
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From the ablation experiment results, DSPN's dense concatenation significantly enhances 

performance compared to U-Net. Due to DSPN's multi-path decoding structure, it exhibits a 

stronger capacity for detail perception, with much performance improvement attributed to a 

reduction in false positives, resulting from its more precise ability to capture details. In the case 

of traditional cross-entropy loss, each label is given equal weight, causing the network to treat 

the distinction between different DSC categories and between DSC and non-DSC categories 

with equal importance. However, with weighted loss, the network remains highly sensitive to 

misclassifications between DSC and non-DSC categories, while becoming less sensitive to 

misclassifications among different DSC labels. This focus on differentiating between DSC and 

non-DSC is likely enabled the network to better distinguish them than when using traditional 

loss functions. The primary benefit of the weighted coarse label cross-entropy comes from the 

reduction in false negatives, thereby decreasing the likelihood of type II errors. 

 

Compared to U-Net, DSPN has 24.21% more parameters, which requires more time and 

memory for training. However, given the notable improvement in accuracy and the fact that 

prediction only takes a few minutes, the added complexity of the network is a justifiable cost. 

Furthermore, reducing false negatives will save time during the DS preprocessing phase. 

Additionally, since the weighted coarse label cross-entropy loss can be implemented using 

PyTorch functions, it benefits from CUDA-supported GPU parallel computing, ensuring that 

the use of this loss function does not significantly increase computation time. 

6.4.4. Generalization ability 

 

In general, DSPN training and predictions should be based on data from the same topographical 

region, such as different areas within the same image stack. However, as an extreme case, using 

predictions from a model trained on different topography can serve as a test of the network's 

generalization ability. This approach also introduces a potential application: the rapid 

generation of DSC previews from previously unseen image stacks. By employing models 

trained on regions with similar topography, users can obtain a preview of DSC distributions 

within just a few minutes, even when the topography and land cover types differ. Fig. 6.14 

compares the predicted masks for Ibbenbüren, Germany, and Arenella, Italy, generated using 

the North Rhine-Westphalia model, alongside their corresponding ground truth. The results 

demonstrate that, despite the notable differences in land cover between Germany and Sicily, the 

overall distribution of DSC in both regions can still be identified. This property suggests that 

DSPN indeed learns the latent pattern of DS from the input features, rather than just 

“memorizing” the spatial distribution of DS (overfitting). 
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Fig. 6.14 Comparison between the quick previews and the ground truths. (a) Quick preview of 

Ibbenbüren by using North Rhine-Westphalia model. (b) Ground Truth of Ibbenbüren. (c) Quick preview 

of Arenella by using North Rhine-Westphalia model. (d) Ground Truth of Arenella. 

6.5. Conclusion 

 

This study proposed a DS preprocessing network called DSPN which utilizes deep learning 

technology, offering a novel method to accelerate DS preprocessing by predicting whether a 

pixel is classified as DSC prior to applying DS preprocessing. By only processing DSC 

predicted by DSPN, this method achieves a speed increase proportionate to the non-DSC ratio, 

without causing a significant loss in coverage. After testing across six different areas, this 

method demonstrated the ability to save between 11.74% and 87.39% of computation time, 

with a maximum coverage loss of only 3%. Integrating this approach into the InSAR 

deformation analysis processing chain can substantially enhance processing speed while 

maintaining nearly the same level of accuracy and coverage. Furthermore, this method enables 

the rapid preview of DS distribution in unknown image stacks, facilitating the selection of 

appropriate stacks and reducing unnecessary computation costs. 
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7. Conclusion and Outlook 

 

The overall research theme of this thesis is to explore how deep learning can be used to solve 

modeling problems in geodetic applications. Specifically, the modeling methods of deep 

learning for temporal and spatial geodetic models are explored from the perspectives of 

tropospheric delay modeling problems and DS identification and prediction problems. This last 

chapter of the thesis provides a summary of the main conclusions and contributions of the study 

(Section 7.1), discusses general modeling methods and problem types where deep learning can 

be applied in geodesy (Section 7.2), and presents an outlook on the future of deep learning and 

artificial intelligence technologies within the field of geodesy (Section 7.3). 

 

7.1. Summary and Contributions 

 

In space geodetic applications, whether in GNSS-based positioning, water vapor retrieval, or 

InSAR-based ground motion monitoring, nonlinear terms such as atmospheric delay or 

coherence must be modeled and estimated. The performance of these models and estimations 

directly affects the accuracy and processing efficiency of geodetic applications. Therefore, 

determining effective modeling methods for these nonlinear terms has long been a focus of 

spaceborne geodetic research. This thesis proposes two deep learning-based solutions 

specifically for the challenges of tropospheric delay modeling, and DSC prediction in InSAR 

deformation monitoring. Compared to traditional approaches, these methods offer significant 

improvements in both accuracy and processing efficiency. The following is a summary of the 

key contributions and results of these approaches. 

 

7.1.1. Deep learning model for tropospheric delay modeling 

 

One of the main contributions of this study is the introduction of a new deep learning framework 

to address the tropospheric delay estimation problem that affects spaceborne geodesy (including 

both GNSS and InSAR) by combining deep learning with NWM ray tracing methods and 

surface empirical models. Traditionally, tropospheric delays are modeled using layered 

meteorological data, including temperature, air pressure, and water vapor pressure. When 

layered data is unavailable, surface meteorological data can be used for approximate modeling 

through empirical formulas. However, in-situ measurements of layered meteorological data are 

challenging to obtain, and even surface meteorological data still require specialized equipment 

to obtain, such as weather stations, which limits the access to accurate meteorological 

information. As an alternative, NWM provides coarse-resolution numerical simulations of 
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meteorological data by assimilating and integrating information from multiple sensors with 

physical laws, resulting in estimates of surface and layered meteorological data in a grid format. 

By using interpolation methods, NWM grid data can be interpolated into specific locations and 

applied to estimate ZTD. However, due to uncertainties and accuracy loss during the 

assimilation and interpolation processes, ZTD estimates from NWM typically have an average 

error of nearly 10 mm when compared to direct GNSS measurements. Given that the accuracy 

of GNSS and InSAR deformation observations are at millimeter scale, the errors introduced by 

NWM-interpolated tropospheric delay have already had a non-negligible impact. 

 

In this study, a deep learning framework named GM-LSTM is proposed to build a mapping 

from ZTD derived from NWM ray tracing to ZTD observed by GNSS to correct the errors 

introduced by assimilation and interpolation. It is important to clarify that the primary focus is 

not the inherent error of NWM itself—although NWM introduces uncertainty in the 

assimilation process, the ZTD error caused by imprecise meteorological data from NWM 

cannot be accurately measured due to the lack of in-situ measurement records and position for 

ZTD estimation is almost impossible to coincide with the grid position—but rather whether the 

total errors introduced by interpolation and NWM itself can be corrected. In this work, the 

integration of GNSS data is achieved not through traditional interpolation methods, but by using 

the ZWD time series observed from GNSS CORS network as supervisory data for the neural 

network. This supervision forces the neural network to adaptively learn the correction pattern 

of the ZWD time series estimated by NWM, thereby obtaining the ZTD correction. More 

importantly, this study is the first to treat the ZWD correction task as a probability density fitting 

task, rather than a numerical regression task. By applying GMM to describe ZWD corrected by 

GM-LSTM, this approach not only estimates the distribution of the corrected ZWD but also 

provides a measure of the correction uncertainty, which can be used to reflect the spatial 

heterogeneity caused by different weather activities at CORS stations and to evaluate the 

estimation quality. After testing in eight regions across Europe at different latitudes during both 

winter and summer, the proposed deep learning method, GM-LSTM, demonstrated superior 

performance. It reduced the RMSE by an average of 67.68%, 48.74%, and 49.63% compared 

to ZTD estimates from ERA5, VMF3, and GACOS, respectively. While traditional methods 

have an RMSE estimation error of approximately 10 mm, GM-LSTM achieved an RMSE of 

4.52 mm in these eight test regions. This makes GM-LSTM a highly effective tool for 

estimating tropospheric delays at any location. 

 

After obtaining ZTD from GNSS observations, it can be used to convert into IWV using 

meteorological data provided by NWM. With advances in GNSS receiver technology, some 

stations can generate real-time ZTD for real-time IWV retrieval. However, converting ZTD to 

IWV requires layered meteorological data, and in the absence of professional meteorological 

equipment, this conversion becomes a significant challenge. While NWM reanalysis products, 

such as ERA5, provide meteorological data accurate enough for real-time IWV retrieval, they 

cannot provide real-time data products that limit their application in real-time IWV retrieval 

scenarios. When reanalysis products are unavailable, traditional methods rely on empirical 
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models like GPT3 to estimate meteorological parameters for real-time IWV retrieval, although 

their accuracy may not meet expectations. 

 

To address this challenge and enable high-precision real-time IWV retrieval without relying on 

NWM reanalysis products, a deep learning method combining DNN and LSTM is proposed. 

This approach improves IWV retrieval accuracy by using real-time ZTD data and 

meteorological parameters estimated from the GPT3 empirical model. This deep learning 

method leverages a combination of DNN and LSTM to learn historical time series patterns 

during periods of high and low water vapor, thus enhancing real-time IWV retrieval results. In 

validation tests conducted at four GNSS stations located at different latitudes in Europe, the 

deep learning approach reduced the RMSE from nearly 4 kg/m² to approximately 2-3 kg/m², 

compared to real-time IWV retrieval using GPT3.  

 

Although the task addressed by this method is different from that tackled by GM-LSTM, both 

models can be viewed as deep learning-based corrections to the tropospheric model derived 

from NWM meteorological data. In addition, given the similar temporal correlations between 

ZWD and IWV, both can be modeled as time series and features extracted using appropriate 

deep learning modules such as LSTM. Compared with traditional methods, deep learning-based 

tropospheric models not only utilize existing empirical models and NWM meteorological data, 

but also adopt data-driven techniques to capture the time series characteristics of the 

troposphere, thereby adaptively "enhancing" the model. From this perspective, deep learning 

methods are not opposed to traditional methods, but rather integrate and extend these methods 

through data-driven methods. By leveraging neural networks, deep learning provides an 

advanced fusion framework that improves the accuracy of the model. Deep learning models 

can extract temporal features from GNSS observation data (such as ZWD or IWV) to improve 

and correct the results of traditional methods, thereby improving overall accuracy. Compared 

to directly interpolating GNSS observations, this approach is adaptive and can more efficiently 

utilize existing observation archives without the need to manually adjust interpolation weight 

parameters. This adaptability and efficiency are one of the main advantages of deep learning in 

tropospheric delay modeling and is also the core contribution of this study. 

 

7.1.2. Deep learning model for Distributed Scatterer Candidates 

prediction in InSAR deformation monitoring 

 

In InSAR deformation analysis, deformation information is extracted by analyzing the phase 

difference between a master image and a slave image, referred to as the interferogram. However, 

the large time interval between these images can cause changes in the scattering properties of 

certain surface scatterers (e.g., variations in vegetation canopies), which can significantly affect 
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the echo phase and lead to interferometric measurement failures. Consequently, identifying 

high-quality (high coherence) pixels from the interferogram stack becomes crucial for effective 

InSAR deformation analysis. In addition to data-driven modeling, using neural networks to 

extract features from a limited number of samples to estimate statistical metrics for the entire 

data stack is another application of deep learning in geodesy and remote sensing. Another 

important contribution of this study is the introduction of a deep learning method called DSPN 

that predicts distributed DSC in the entire image stack from statistical features derived from a 

pair of polarimetric SAR images.  

 

Scatterers in InSAR deformation analysis are generally divided into two categories: PS and DS. 

PS exhibits natural phase stability (high coherence) and can be identified through filtering the 

interferogram and performing coherence screening, as in the StaMPS method. However, in rural 

areas, the number of scatterers that meet the PS criteria may be insufficient, resulting in phase 

unwrapping errors and reducing the reliability of deformation analysis. To address this 

limitation, statistically homogeneous DS are introduced alongside PS, providing more reliable 

deformation monitoring over a larger spatial extent. The inclusion of DS significantly increases 

the number of available pixels, enhancing the analysis range. However, this improvement 

comes at the cost of increased computational demands, as DS selecting requires estimating the 

spatial homogeneity of each pixel across the entire data stack. For large scenes, this process can 

be extremely time-consuming. To mitigate this challenge, this study proposes DSPN, which 

consists of a deep convolutional network to predict DSC using features extracted from two 

polarimetric SAR images. Since certain land cover types are highly unlikely to become DS, and 

the polarimetric SAR backscatter and coherence are complementary, it is reasonable to use 

polarimetric SAR images with the best and worst coherence to predict DS. However, the 

statistical characteristics of DS are typically described by the coherence of the whole data stack, 

making it challenging to capture the relationship between polarimetric SAR image features and 

DSC through traditional statistical or feature engineering methods. To address this, the 

proposed DSPN method transforms the DS prediction problem into a semantic segmentation 

task by utilizing coarse labels as supervisory information and employing a weighted cross-

entropy loss function. The proposed DSPN convolutional neural network is designed to 

automatically extract relevant features from the input data, derived from polarimetric SAR 

images, to identify the pseudo-category of DSC. Following the correction of coarse labels and 

mask generation, the pseudo-category is then used to determine whether a pixel qualifies as a 

DSC. By focusing computational efforts only on predicted DSC, DSPN reduces the overall 

computational burden. 

 

The significance of this work lies in its ability to filter out pixels that are unlikely to become 

DS before preprocessing, at minimal computational cost. Tests conducted in six different areas 

in North Rhine-Westphalia and Sicily showed that the proposed DSPN method has high 

accuracy in identifying and predicting DSC with almost no DS coverage loss (maximum 

coverage loss is about 3%). This allows DSPN to save computational time for DS preprocessing 

nearly to the DS ratio in the scene, with prediction times on the order of tens of seconds. These 
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savings are particularly noticeable in rural or wilderness areas and water-covered regions. 

Across the six test areas, DSPN reduced computational time by 11.74% to 87.39%. In suburban 

areas such as Wickede (Ruhr), DSPN achieved nearly 47% computational time savings without 

sacrificing analysis accuracy. This deep learning approach is therefore highly significant for 

improving the efficiency of DS-InSAR processing. 

 

Similar to GM-LSTM, DSPN is a complement to traditional methods rather than a replacement. 

DSC identified by DSPN still requires DS preprocessing methods to obtain optimal phase 

estimates. However, DSPN provides a low-cost solution to determine which pixels are worth 

further calculation. Neural networks are good at extracting high-level features from input data 

for classification (DSC identification), which is a very challenging task for manual feature 

engineering. Unlike GM-LSTM, which focuses on quantitative regression, DSPN applies deep 

learning to qualitative classification, representing another branch of deep learning methods in 

the field of geodesy. 

 

7.2. What deep learning can do for geodesy 

7.2.1. Where are we? 

 

In recent years, the geodetic community has increasingly recognized the value of deep learning 

methods and has begun to explore their applications in various geodetic contexts. However, due 

to the domain knowledge gap between the traditional geodetic community and the artificial 

intelligence developer, current efforts from geodetic experts are mainly focused on adapting 

existing deep learning algorithms or toolkits to solve geodetic problems. In this context, it is 

often seen as intuitive to utilize MLP, ANN or DNN as a "generic regressor". The main 

advantage of this strategy is that under the premise of clear supervised data, it does not rely on 

model design for the problem, but expects the neural network to self-learn the pattern of the 

problem from the data. This allows the neural network to learn patterns inherent to the problem 

directly from the data. In addition, since there are no complex model architecture requirements, 

the number of hyperparameters that must be tuned is reduced and is usually limited to the 

network depth and number of neurons. This approach is often effective in scenarios with limited 

domain knowledge, as the best hyperparameter combination that achieves the best network 

performance can be quickly identified through grid search or similar techniques. Thus, trained 

neural networks can act as interpreters for geodetic models, mapping observed signals to 

variables of interest - such as converting ZWD data to IWV, or converting GNSS/SAR signals 

to environmental variables such as ionospheric total electron content, wind speed, and soil 

moisture, etc. 

 

In addition, when the spatial and temporal characteristics of the data are well defined, 
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combining domain-specific neural networks, such as RNN or LSTM for temporal data, and 

CNN for spatial data, can significantly improve performance and expand the scope of 

application. In temporal models, common use cases include exploiting the temporal correlation 

of geophysical variables to predict future data based on historical patterns. This can help GNSS 

or InSAR solutions by providing prior estimates, such as using past tropospheric delays or 

deformation time series to predict future states, thereby speeding up solutions and reducing 

errors in phase unwrapping. Besides, temporal networks can also facilitate outlier detection and 

data interpolation when clear time series patterns exist. For spatial models, typical applications 

include pixel-level feature detection—such as identifying PS or DS—and integrating and 

ensemble products of different resolutions. While there is an overlap with what spatial networks 

do in the remote sensing and computer vision field, spatial models in geodesy pose unique 

challenges due to the poorly defined problem specification. Therefore, choosing the right 

supervised data and learning methods is critical to the success of these models. 

 

While these deep learning methods mentioned above that directly fit or regress geodetic 

problems may outperform traditional empirical models, they do not inherently incorporate 

geodetic or geophysical domain knowledge. As a result, neural networks act as “black boxes” 

and lack interpretability. This limitation effectively replaces traditional empirical models with 

opaque systems, hindering further performance improvements. A more important issue is the 

limited generalization capabilities of these black-box models—especially their inference 

capabilities. For example, models trained with regular data may not accurately respond to 

extreme meteorological events. Therefore, the need to integrate geodetic domain knowledge 

into deep learning frameworks has become imperative. Doing so aims to improve the 

generalization capabilities, interpretability, and overall accuracy of the models. Addressing this 

challenge is the core motivation and main contribution of this thesis. 

7.2.2. What is a better approach for geodesy using deep learning? 

 

As discussed in this thesis, deep learning, as an advanced data-driven approach, should not be 

viewed as a replacement for traditional geodetic methods but rather as an extension. The core 

step of this extension should be to ensure the perfect integration of geodetic domain knowledge 

with deep learning algorithms. It enables the use of data-driven techniques to develop models 

that perform better than manually designed models in geodetic applications. In terms of task 

categorization, the application of deep learning in geodesy can be broadly divided into two 

areas: qualitative tasks (classification, anomaly detection, recognition, segmentation, etc.) and 

quantitative tasks (regression, parameter fitting, etc.). 

 

Qualitative tasks usually do not change the core geodetic processing workflow, but are 

introduced as supplementary pre-processing or post-processing steps. The purpose is to pre-

screen the available data to improve processing efficiency or improve data quality. In some 

cases, qualitative tasks are also used to analyze processing results, such as identifying seasonal 
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deformation trends or revealing the causes of deformation. When using deep learning for 

qualitative tasks, the challenge lies in defining suitable supervision methods. Unlike the fields 

of remote sensing and computer vision, qualitative tasks in geodesy are usually highly 

specialized and require domain knowledge to construct targeted training datasets. In some cases, 

the Ground truth used as supervisory information cannot be directly obtained through 

observation, so it is necessary to carefully select the model and design the loss function for the 

specific geodetic method. This thesis takes the DS identification and prediction problem as a 

representative of qualitative tasks and innovatively gives the pseudo-label generation method 

and the corresponding network structure and loss function improvement strategy. For this task, 

the performance of the model is determined by a whole set of solutions such as problem 

specification, dataset preparation, network structure design and training. The comprehensive 

selection of the most suitable overall solution constitutes the core view of this paper on deep 

learning to solve qualitative problems in geodetic measurement. 

 

On the other hand, quantitative tasks involve integrating deep learning more directly into the 

geodetic processing chain, often used to estimate certain parameters that need to be modeled, 

such as ionospheric and tropospheric delays or multipath effects. In these cases, deep learning 

models aim to learn patterns from a limited set of direct observations that are constrained by 

temporal and spatial distribution. By leveraging historical observations or spatially adjacent 

data, these models can infer values of unknown times or locations, which can then be used to 

solve the observation equations. For such tasks, the challenge of modeling lies in choosing 

appropriate input features and neural network architectures to match the properties of the 

physical quantity being estimated. This paper takes the problem of tropospheric delay modeling 

as a representative of quantitative tasks, and innovatively presents methods for using neural 

networks to identify correction patterns from GNSS observation sequences and modeling ZWD 

using probability density. For such tasks, domain knowledge derived from geodesy can not only 

be introduced as input features of the network, but can also be used to guide the design of the 

network structure, which constitutes the core view of this paper on deep learning to solve 

geodetic quantitative problems. 

 

7.3. Outlook and future work 

 

In this thesis, deep learning-based methods are presented for tropospheric delay modeling 

(time-series modeling) and DSC prediction (spatial modeling). While these methods 

demonstrate significant potential, there remains room for further refinement and expansion. In 

the short term, the following explorations can be carried out in the future based on these two 

works: 

1. Water Vapor Field Retrieval Based on GM-LSTM 

Currently, GNSS-based water vapor retrieval provides only single-point measurements and is 
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unable to generate large-scale water vapor fields. While multispectral remote sensing methods, 

such as MODIS, can offer large-scale water vapor field products, their accuracy is often 

influenced by factors such as cloud cover and day-night cycles. Additionally, the temporal 

resolution of these products is constrained by the satellite's revisit time. GM-LSTM has the 

capability to use GNSS observations to produce a ZWD model at any location within a region. 

This capability can be extended to generate a ZWD field at a specified spatial resolution, which 

can then be converted into IWV to refine the water vapor field obtained from NWM. Using this 

approach, it would be possible to produce regional water vapor field products with high 

temporal and spatial resolution, which would be valuable for applications requiring precise and 

timely earth observations, such as weather forecasting, disaster warnings, and precision 

agriculture. 

 

2. InSAR Deformation Analysis Integrating GM-LSTM and DSPN 

Since tropospheric delay is independent of microwave frequency, the ZTD field generated by 

GM-LSTM can also be applied for atmospheric correction in InSAR analysis. The ZTD field 

generated by GM-LSTM would serve as a more accurate ZTD product compared to traditional 

filtering methods (e.g., StaMPS step 8), the TRAIN toolbox (which uses ERA5 interpolation), 

or GACOS. By generating separate ZTD fields for the acquisition times of the master and slave 

images and then subtracting them, the phase contribution from atmospheric delay can be 

estimated and removed. Since the atmospheric delay phase from GM-LSTM is generated 

independently of the interferogram, this phase contribution can be subtracted during 

preprocessing, such as after DSPN predicts the available DSC. This approach has the advantage 

of separating spatially correlated deformation signals from atmospheric delay signals early in 

the process, thereby improving the accuracy of deformation analysis in subsequent filtering 

steps. 

 

3. Globally applicable GM-LSTM tropospheric products 

At present, GM-LSTM is still used as a regional model to correct the internal ZWD, but whether 

it is possible to use the global GNSS CORS station observation information to build a unified 

correction model needs further study. From the perspective of data feasibility, this approach is 

reasonable because the ZTD product obtained by NWM ray tracing still has global coverage, 

and there are currently more than 3,000 accessible CORS stations in the world. The challenge 

of this approach is how to introduce spatial information into the network to construct a unified 

network to correct the ZWD at any location in the world. In the future, the possibility of using 

longitude, latitude and altitude as geospatial information to expand GM-LSTM will be 

evaluated first, and global GNSS stations will be used for training. Subsequent models will be 

improved in a targeted manner based on the evaluation results. 

 

In the medium to long term, dedicated deep learning algorithms for geospatial data are worth 

studying, for example: 
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1. Geospatial temporal data analysis methods based on graph neural networks 

In geodetic applications, both InSAR and GNSS face the same problem in spatial distribution 

of data, that is, uneven geographical distribution. This makes it impossible for conventional 

CNN to directly process such spatial data. Graph neural networks (GNN), as a neural network 

with nodes and adjacency matrices as input, are expected to become a powerful analysis tool 

for unevenly distributed geospatial temporal data. This work will focus on the spatiotemporal 

unification of sites, which is not only beneficial for AI for Geodesy, but also can be used in 

related geospatial research, such as environmental research or meteorological research. 

 

2. Using artificial intelligence algorithms to detect environmental variables from 

GNSS/InSAR observations 

Since both GNSS and InSAR use microwaves as sensors, they have sensing capabilities for 

water molecules that other remote sensing methods do not have. Based on this physical basis, 

not only can atmospheric water be retrieved, but also the water content in vegetation and soil 

can be retrieved. The powerful nonlinear analysis capabilities of artificial intelligence combined 

with the high temporal resolution of SAR and the high spatial resolution of GNSS make it 

possible to detect environmental variables such as field-scale evapotranspiration, high-

resolution soil moisture detection, and more accurate estimation of the urban heat island effect 

index.  
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