
   Ausschuss Geodäsie (DGK)

        der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 963

 

Vinu Kamalasanan

 

Control of Walking Behaviour in Shared Spaces

Using Augmented Reality

München 2025

Verlag der Bayerischen Akademie der Wissenschaften, München

ISSN 0065-5325 ISBN 978-3-7696-5375-5





   Ausschuss Geodäsie (DGK)

        der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 963

Control of Walking Behaviour in Shared Spaces

Using Augmented Reality

 Von der Fakultät für Bauingenieurwesen und Geodäsie
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation

von

M. Tech. Vinu Kamalasanan

Geboren am 05.02.1989 in Dubai, UAE

München 2025

Verlag der Bayerischen Akademie der Wissenschaften, München

ISSN 0065-5325 ISBN 978-3-7696-5375-5



Adresse des Ausschusses Geodäsie (DGK)
der Bayerischen Akademie der Wissenschaften:

Ausschuss Geodäsie (DGK) der Bayerischen Akademie der Wissenschaften

Alfons-Goppel-Straße 11    D – 80 539 München

Telefon +49 – 89 – 23 031 1113    Telefax +49 – 89 – 23 031 - 1283 / - 1100
e-mail post@dgk.badw.de    http://www.dgk.badw.de

Prüfungskommission:

Vorsitzender: apl. Prof. Dr.-Ing Claus Brenner

Referent: Prof. Dr.-Ing. Monika Sester

Korreferenten: Prof. Dr. Jörg P. Müller, TU Clausthal

Tag der mündlichen Prüfung: 06.08.2024

:

Diese Dissertation ist auf dem Server des Ausschusses Geodäsie (DGK)

der Bayerischen Akademie der Wissenschaften, München unter <http://dgk.badw.de/>

sowie unter Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik

der Leibniz Universität Hannover (ISSN 0174-1454), Nr. 412,

<https://repo.uni-hannover.de/handle/123456789/19803>, Hannover 2025, elektronisch publiziert

© 2025 Ausschuss Geodäsie (DGK) der Bayerischen Akademie der Wissenschaften, München

Alle Rechte vorbehalten. Ohne Genehmigung der Herausgeber ist es auch nicht gestattet,
die Veröffentlichung oder Teile daraus zu vervielfältigen.

ISSN 0065-5325 ISBN 978-3-7696-5375-5



Abstract

Walking is by far the most important form of active transportation that helps to both explore
the environment and also socialise with others while navigating a street. However, with the
increasing number of vehicles, the safety distance that pedestrians are expected to maintain
with other fellow pedestrians, cyclists and cars has reduced. This has raised safety concerns,
especially in mixed-traffic urban designs like Shared Spaces. Shared traffic spaces are mixed
environments where the physical separation between walking pedestrians and other road
participants (like cyclists and vehicles) is reduced. The mix of different road users and
fewer rules is expected to increase communication and interaction between pedestrians and
others. The streets designed using the sharing principle are characterised by the removal
of traffic signals and cyclist lanes while adding street furniture to promote pedestrians
space utilisation. While such designs are mainly focused on reducing the dominance of
vehicles, pedestrians especially the elderly and disabled, feel less safe using such spaces.
This is because they find it hard to estimate threats and potential collisions when crossing
paths with fellow pedestrians, cyclists or vehicles in the scene. Moreover, when considering
pedestrians outside the elderly population, little research has addressed how AR could be
used to improve the perception of safety and enhance walkability in public spaces.

To enhance pedestrian safety, this research aims to leverage Augmented Reality (AR) to in-
fluence pedestrian path choices and walking behavior during collision avoidance. To achieve
this, the thesis first reviews related work on the use of visual information to manipulate
walking paths. Then a scene perception pipeline is proposed, implemented and evaluated.
Once it has been proven that it is possible to use the AR headset for scene perception -
to detect and track the movements in the walker’s surroundings, the visualization of the
future path of the neighboring pedestrians is used to influence the AR headset user’s choice
of route.

To demonstrate a proof of concept in applying motion perception to AR walking influence,
this thesis uses the Hololens and its RGBD sensors. A workflow is designed and imple-
mented consisting of detection and tracking to monitor the movements of individuals in
the environment who may potentially come into conflict. For the pipeline, 3D pedestrian
detection algorithm is used to localise surrounding pedestrians while pedestrian tracking is
implemented to associate the detection’s and approximate their walked trajectories in the
scene. Then a concept to visualise the future path in order to influence the ego user is
presented. For this, the design and implementation of candidate visualisations and a subse-
quent user study was completed to study preferred walking paths to destinations while seeing
the future motion of others augmented with AR. The preferred paths were then compared
from a safety perspective to evaluate the implications of seeing future path visualisation.
The findings indicated that people prefer to walk longer trajectories and safer paths around
conflict points with future information. Also to study other AR influences that could affect
walking, two methods of influences - AR for virtual traffic infrastructure implementation
and AR to represent moving and crossing traffic agents are evaluated. Both studies when
evaluated using surrogate safety measures pointed towards AR content playing a role in
promoting safer walks.

The results of this thesis show that the use of both an AR device and appropriate visu-
alisation can successfully detect and track nearby pedestrians and visualising future path
influences the collision avoidance behaviour. While the results from the study support and



enhance safer walking, the findings are a foundation to understand how pedestrians with
AR interact and collaborate with cyclists and autonomous vehicles.

Keywords: Shared spaces, motion conflicts, pedestrian detection and tracking in AR,
future path



Kurzfassung

Zu Fuß zu gehen ist bei weitem die wichtigste Form der aktiven Fortbewegung, die sowohl
dabei hilft, die Umgebung zu erkunden als auch beim Befahren der Straße mit anderen in
Kontakt zu kommen. Mit der zunehmenden Zahl von Fahrzeugen hat sich jedoch der Sicher-
heitsabstand verringert, den Fußgänger zu anderen Fußgängern, Radfahrern und Autos ein-
halten müssen. Dies hat Sicherheitsbedenken aufgeworfen, insbesondere bei gemischten
Verkehrsgestaltungen wie Shared Spaces. Shared-Verkehrsräume sind gemischte Umge-
bungen, in denen die physische Trennung zwischen Fußgängern und anderen Verkehrsteil-
nehmern (wie Radfahrern und Fahrzeugen) verringert ist. Die Mischung verschiedener
Verkehrsteilnehmer und weniger Regeln sollen die Kommunikation und Interaktion zwischen
Fußgängern und anderen erhöhen. Die nach dem Sharing-Prinzip gestalteten Straßen zeich-
nen sich durch die Entfernung von Ampeln und Radfahrstreifen aus, während Straßenmöbel
hinzugefügt werden, um die Nutzung des Raums durch Fußgänger zu fördern. Während
solche Gestaltungen hauptsächlich darauf ausgerichtet sind, die Dominanz von Fahrzeugen
zu verringern, fühlen sich Fußgänger, insbesondere ältere und behinderte Menschen, bei der
Nutzung solcher Räume weniger sicher. Dies liegt daran, dass es ihnen schwerfällt, Gefahren
und mögliche Kollisionen einzuschätzen, wenn sie den Weg anderer Fußgänger, Radfahrer
oder Fahrzeuge kreuzen. Auch wenn man Fußgänger außer der älteren Bevölkerung betra-
chtet, gibt es wenig Arbeit darüber, wie AR genutzt werden könnte, um das Sicherheitsgefühl
zu verbessern und die Begehbarkeit öffentlicher Räume zu verbessern.

Um Fußgänger aus Sicherheitsgründen zu unterstützen, beabsichtigt diese Forschung, Aug-
mented Reality (AR) zu nutzen, um die Wahl des Fußgängerwegs und das Gehverhalten bei
der Kollisionsvermeidung zu beeinflussen. Zu diesem Zweck überprüft die Arbeit zunächst
verwandte Arbeiten darüber, wie visuelle Informationen zur Manipulation von Gehwegen
verwendet wurden, und schlägt eine Szenenwahrnehmungspipeline als wesentliche Kompo-
nente vor, um einen Fußgänger in einer Szene zu beeinflussen. Sobald nachgewiesen wurde,
dass es möglich ist, das AR-Headset zur Szenenwahrnehmung zu verwenden – um die Be-
wegungen in der Umgebung des Fußgängers zu erkennen und zu verfolgen –, könnte die
Visualisierung des zukünftigen Weges der benachbarten Fußgänger verwendet werden, um
die Routenwahl des AR-Headset-Benutzers zu beeinflussen.

Um einen Proof of Concept bei der Anwendung der Bewegungswahrnehmung auf den Ein-
fluss von AR-Gehen zu demonstrieren, verwendet diese Arbeit HoloLens und seine RGBD-
Sensoren, um einen Workflow zu entwerfen und zu implementieren, der aus Erkennung und
Verfolgung besteht, um die Bewegungen der Personen in der Umgebung zu erfassen, die
potenziell in Konflikte geraten könnten. Für die Pipeline wird die 3D-Fußgängererkennung
verwendet, um umgebende Fußgänger zu lokalisieren, während die Verfolgung implemen-
tiert wird, um die Erkennungen zu verknüpfen und ihre Gehbahnen in der Szene zu ap-
proximieren. Anschließend wird ein Konzept zur Visualisierung des zukünftigen Pfads zur
Beeinflussung des Ego-Benutzers vorgestellt. Hierzu wurde ein Entwurf und eine Implemen-
tierung möglicher Visualisierungen und eine anschließende Benutzerstudie durchgeführt, bei
der bevorzugte Gehwege zu Zielen während des Sehens einer Szene mit zukünftigen Bewegun-
gen anderer mit AR erweitert wurden. Die bevorzugten Pfade wurden dann aus Sicherheits-
gründen verglichen, um die Auswirkungen der Visualisierung zukünftiger Pfade zu bewerten.
Die Ergebnisse zeigten, dass Menschen es vorziehen, längere und sicherere Wege um Konflik-
tpunkte herum zu gehen, mit zukünftigen Informationen. Um auch andere AR-Einflüsse zu
untersuchen, die das Gehen beeinflussen könnten, werden zwei Einflussmethoden untersucht
– AR für die Implementierung virtueller Verkehrsinfrastruktur und AR zur Darstellung von



sich bewegenden und kreuzenden Verkehrsteilnehmern. Beide Studien, bei denen sie anhand
von Ersatzsicherheitsmaßnahmen ausgewertet wurden, zeigten, dass AR-Inhalte eine Rolle
bei der Förderung sichererer Spaziergänge spielen.

Die Ergebnisse dieser Arbeit zeigen, dass der Einsatz eines AR-Geräts und geeigneter Visu-
alisierungen erfolgreich dazu genutzt werden kann, Änderungen der bevorzugten Gehwege
und der Art und Weise herbeizuführen, wie eine Person mit einer Kollision konfrontiert wird.
Während die Ergebnisse der Studie dazu verwendet werden könnten, sichereres Gehen zu
unterstützen und zu verbessern, könnten die Erkenntnisse auch als Grundlage verwendet
werden, um zu verstehen, wie Fußgänger mit AR mit Radfahrern und autonomen Fahrzeu-
gen interagieren und zusammenarbeiten würden.

Schlagworte: Gemeinsam genutzte Räume, Bewegungskonflikte, Fußgängererkennung und
-verfolgung in AR, zukünftiger Weg
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1 Introduction

Walking has been an important form of active transportation mode since early civilisations.
Along with cycling, this active mode is found to differ with cultures from 6% in North
America (USA) to 46% in Europe (Netherlands). Navigating on the foot not only improves
one’s health but also enhances social presence and initiates verbal interactions. When people
see other familiar and friendly people in the neighbourhood, they are more interested in
walking and might take longer navigation paths and routes (Gallagher et al. 2010). Walking
in outdoor spaces, amongst other factors, would highly depend on the perceived level of
safety and increased feeling of confidence and priority. Aesthetics and greenery of outdoor
spaces would act as enablers and motivate walking; while the noise of moving vehicles could
be a deterrent (Andersson et al. 2023). Furthermore, clean and well-maintained streets with
appealing sights support the apprehension of space as a better walkable landscape ( Lees
et al. 2007, Grant et al. 2010).

1.1 Motivation

With the advent of motor vehicles and urbanisation, the importance of walking and the
priority of pedestrians in traffic has reduced drastically. The increasing number of cars has
lowered their safety distances to pedestrians when sharing their walking spaces. This has
made unsafe and risky pedestrian traffic encounters more frequent. Also with traffic signals
now in place, there are fewer opportunities for vulnerable road users like pedestrians and
cyclists to communicate with each other (via gesture and gaze) to negotiate priority. This
further removes the purpose of walking as a way to explore outdoor spaces. As a result
of this, people tend to use public spaces only when necessary, as they perceive it slightly
dangerous otherwise. Furthermore, they might tend to walk shorter paths due to the fear of
traffic encounters. Such fears might discourage elderly persons from using walkable spaces
due to their inability to estimate threats with reduced cognition and increasing ageing
(Distefano et al. 2021).

Figure 1.1: A shared space in Sonnenfelsplatz, Graz, Austria. ©Helke Falk
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12 1 Introduction

Safety reports have pointed towards the relative decrease in the number of people walking
(Do 2002) over the years. In one such report (Boarnet et al. 2005) that analysed the
commuting behaviour of school children, the recorded drop in walking rate was as high as
67% over three decades in the US. These figures were closely mapped to the risks of school
travel. Children opted to commute with private cars due to increased fear of pedestrian and
cyclist injuries. Similar trends that reduced walking could be observed when traffic influences
and built environment were accounted for in neighbourhood walkability studies. Higher
walking rates were observed in adults (Van Dyck et al. 2009) when safer neighbourhoods
promoted people to walk more than the less safe streets. As environmental factors have
played an important role in increasing the feeling of pedestrian safety, traffic planners have
taken this into account when designing streets to improve walking. This has resulted in
newer street designs being proposed and improved from time to time.

The concept of livable streets for pedestrians was introduced by Appleyard (Appleyard
1980) as an alternative to car-centric street designs. The concept was focused on redefining
cities that are often viewed as dangerous, polluted and noisy by residents and visitors.
Such designs and similar street layout principles like the shared spaces (Figure 1.1) aim at
reducing vehicle speeds and improving pedestrian priority in traffic spaces. Shared Spaces
are designed to enable pedestrians to move freely while reducing the physical segregation
between them and other road users sharing the same movement space. Such road designs
built to support pedestrian priority, have been reported to reduce the number of collisions
involving pedestrians, cars and moped drivers (Alink 1990).

By minimizing traffic control, shared spaces integrate the different traffic participants forc-
ing traffic decisions to be based on road-user interactions (hand signals and gestures) and
mutual respect for each other’s priority (Hamilton-Baillie 2008). Such urban designs are
characterised by the removal of kerbs and footways, mixing the different road users. Then
people might pay more attention when crossing each other’s paths. Even physical retail
marketplaces like a farmer’s market could be categorised as a shared space. Such an en-
vironment would contain street furniture that is in place for customers while also having
vehicles and cyclists moving nearby. This then creates situations where moving persons and
crowds come in close contact to passing cyclist or cars which might force them to slow down.
Hence such design concepts could promote pedestrian walks while reducing the dominance
of cars with drivers forced to yield to crossing pedestrians.

1.2 Current Issues

Even when such mixed traffic designs have contributed to improving social interactions
and the sense of safety for pedestrians (Sauter and Huettenmoser 2008), there has been
widespread criticism against their acceptance. As everyone has to pay attention while
crossing, the elderly and disabled feel more stressed in using such spaces. Also, the absence of
clear separation between pedestrian, cyclist and vehicle paths prompt the elderly to believe
that they can no longer use the space independently (Thomas 2008). To mitigate these
safety issues and to support pedestrian mobility, the Ramboll Nyvig report (Nyvig 2007)
proposed alternative designs to enhance shared spaces. The report advocated the creation
of ’safe spaces ’ within shared spaces where vulnerable pedestrians would remain away from
cars. The proposed ’safe space’ recommended adding separate footways catering to only
the elderly with the remaining space available to be shared by motorists, cyclists and other
pedestrians. Another report (Lawson et al. 2022), emphasised having better pedestrian-
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friendly safety regulations in place for pedestrians. Both these proposals contradict the true
purpose of shared spaces, where the mix of different participants and the resulting traffic
negotiations are expected to play a significant role.

While safety concerns of the elderly have been a topic of debate, before-after shared space
analysis, (Kaparias et al. (2015) and Fu et al. (2019)) have further pointed out current
constraints that still exist to walking and the inherent pedestrian priority issues that need
to be resolved. Such research reports based on movement analysis give a better insight
into those traffic agents who have benefited more from the creation of mixed street design.
For example in the analysis made for a temporary shared space setting in (Batista and
Friedrich 2022a), the study revealed that of all the road users, cyclists and cars repeatedly
used only the same travel path in the mixed traffic space. Pedestrians, on the other hand,
used the complete navigation space and showed a tendency to walk longer paths including
a few detours. This observation pertaining to pedestrian space utilisation in the study
was highly dependent on vehicular density and design of the layout (Batista and Friedrich
2022b). For instance, people navigated the entire shared space only when motor vehicles
were lesser in number. As the vehicular density increased, walking behaviours amongst
pedestrians differed with people preferring to use only specific navigation paths. Also when
the layout of the street was more narrow, pedestrians again used the complete space; which
changed with walking concentrated to safer pedestrian zones in case of higher volumes of
vehicles on the street. Another interesting finding in the study was the disparity of yielding
behaviour in interactions involving pedestrians and vehicles (especially the right of way
behaviour). In three of the five shared spaces, pedestrians mostly gave the right of way to
vehicles in the event of a priority conflicts. Hence traffic priority and the resulting space
utilisation of movement spaces were highly dependent on those interaction situations that
brought pedestrians in direct contact to crossing vehicles. While not much work has been
done in literature to enhance space utilisation, few concept ideas and proposals to influence
movement and enhance traffic priority has been proposed recently.

Movement influences in traffic spaces - eHMI and future concepts To contribute towards
pedestrian safety and the resulting priority while interacting with vehicles, external Human
Machine Interface (eHMI) concepts have been tested in traffic studies. Such interfaces
communicate crossing decisions when interacting with an autonomous car (e.g. conveying
their priority to cross first). For this, ideas have suggested that the vehicles should either
show / project messages whenever there is a priority confusion to support safer pedestrian-
vehicle interactions. This could include projecting green or red lights or by showing text
messages of who could cross, as shown in Figure 1.2. Most of these communicative eHMI
designs that have been researched in both academia (Busch et al. 2018, Dey et al. 2020,
Rouchitsas and Alm 2019) and industry (Bazilinskyy et al. 2019) have mainly focused on
traffic priority negotiations via signalling.

In most designs, the communications differ based on the placement of the message source
and how the information is shared with the eHMI. The message could be conveyed using
projections onto the road surface, by emitting light via an embedded display on the vehicles
and by communicating priority to a nearby traffic signal or pedestrian smartphone (Colley
et al. 2017a, Colley et al. 2022, Holländer et al. 2020, Ackermann et al. 2019, Busch et al.
2018). While most of these approaches have focused on communicating what the car would
like to do when it is confronted with a pedestrian during a crossing, such interfaces assume
that the pedestrian would comply and follow the recommendation given by the car. This
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Figure 1.2: Examples of several eHMI concepts how an AV would communicate the intention to
other pedestrians around (Photo : Dey et al. 2020).

would mean that if the AV intends to give the right of way, then the pedestrian crosses, but
otherwise not. This also means that vehicles would still remain the dominant road user in
traffic spaces, with pedestrians only communicating their willingness (Dey et al. 2021) to
cross.

Figure 1.3: Example intersection with multiple vehicles signalling in green allowing the person to
cross the intersection (Löcken et al. 2023).

Another interesting aspect of the proposed eHMI-mediated traffic negotiation is its ability
to achieve collaborative actions with other agents. In Löcken et al. (2023), a eHMI based
virtual traffic signalling alternative was suggested when self-driving cars communicated with
other AVs nearby. This resulted in collective behaviours amongst different AVs as they got
closer to an intersection. For instance, when the vehicles approached the junction (Figure
1.3), all the vehicles would stop at once and project a green light in unison that would
then allow fellow pedestrians to cross. The nature of such one-to-one or one-to-many AV
dominated interactions however does not address the issue of pedestrian empowerment or
eHMIs mediating as a technology to enforce pedestrian priority at a traffic interaction.

Our earlier works towards increasing the priority of pedestrians in traffic spaces (Li et al.
2022b) focuses on a vision of using Augmented Reality (AR) to enhance pedestrian priority
via collective actions like grouping (Figure 1.4). The idea in the work emphasised that
when virtual paths were shown individually on AR glasses, people decided to walk and
cross differently than otherwise. The concept exploits the use of virtual lanes to invite
pedestrians to form groups. Seeing a common virtual walkable crossing path using an AR
headset or street projection could then prompt people to move and interact differently with
cars, cyclist or even other pedestrains. For this, people walking nearby potential group
members have to be tracked using intelligent sensors and then suggested to walk together
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Figure 1.4: (left) A single pedestrian wants to cross the shared road while being confronted with an
AV. (right) The appearance of a virtual lane prompts the AV to stop, as pedestrians get a higher
priority for their willingness to join in a group and walk together.

as a group. But for such an idea to be realised, two key requirements have to be met.
Firstly, it should be proven that its possible to detect and track nearby walking persons
using a AR headset or any medium that supports augmentation and secondly, any virtual
recommendations suggested based on surrounding motion should be proven to influence
walking behaviour.

However to realise the first prerequisite, a motion perception algorithm would be required
to detect and track surrounding pedestrian motion in the scene. As the idea would be to
use an AR overlay in the subsequent step, the perception pipeline should be demonstrated
using an AR headset and its embedded sensors. Furthermore while proving the feasibility
of the AR device for motion perception is important, equally needed is the requirement to
benchmark how accurately such a device can infer surrounding walking movement. This
is because the AR overlays that would be shown based on pipeline outputs depend on the
estimated positions and accuracy of the motion perception inputs. Mobile AR (Höllerer
and Feiner 2004) visual overlays have to be accurate to a high degree so that the graphics
rendered looks realistic and registered to the real world in natural light settings.

For the second prerequisite, AR content that will be shown based on inferred motion should
be able to influence walking path choices of the content viewer. For example, if the AR
medium initially shows the future walking steps of nearby persons and then communicates
overlapping virtual paths; the resulting path choice influences to the viewer from such a
visual approach has to be studied. This will help to better understand what visual informa-
tion will prompt different walking styles. For instance, whether people are choosing to walk
longer paths or shorter trips when they already see the future motion of persons moving in
front of them. Also, as the output from the motion perception algorithm would be the input
to the AR visual overlay; the visual information that is communicated should be different
for the the different perception inferences. This should influence walking differently when
showing different visual representations. This would mean that if the pipeline predicts fu-
ture motion confidently or with a level of uncertainty, this should be visually communicated
with AR. Different visual representation of the same future information might prompt dif-
ferent walking behaviours that needs to be then evaluated. Also from a visual interpretation
perspective, while showing a future path could be one approach, other forms of visual influ-
ences (e.g., virtual avatars or virtual traffic signals) that could influence different walking
behaviors should be further explored.
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1.3 Goal of the Thesis and Scientific Contribution

The goal of this thesis is to explore from a safety perspective, the impact of an AR device
and their visualization in influencing human path choices. Hence as the primary focus, we
try to observe how persons would avoid a collision when seeing AR signals that would either
assist, instruct or manipulate them to make different navigation decisions. For this, the
thesis focuses on the following research questions :

– Can an AR device and its sensor be used to understand (walking) motion surrounding
the headset user ?

– Can movement in the immediate vicinity of the headset be detected and tracked with
a high level of accuracy ?

– Could visualising the future information of the nearby traffic agent movement prompt
safer collision avoidance behaviours ?

– Does the visual representation of this future information prompt shorter or longer
walking paths during a collision avoidance situation ?

To answer these questions, we primary focus on the AR headset Hololens, motion perception
using its sensor and how a Hololens user could be influenced on his/her navigation path with
3D visualisations based on the surrounding scene movement. The Hololens user in our work
would then be synonymous to a traffic pedestrian walking in a shared space. While this thesis
intends to demonstrate a proof of concept on how AR could be instrumental in influencing
walking, it does not prove walking manipulation for outdoor spaces. The realisation of AR
influences for pedestrians in shared spaces is however currently limited by the acceptability
and technical limitations of AR technology. This will not be covered under the scope of this
current work.

In addition to answering the above research questions, the contribution of this thesis are :

– A first proof of concept study to explore the influence of AR stop-and-go signals as
virtual traffic infrastructure to influencing walking.

– The work presents a prototype framework that is used to study manipulation of walking
resulting from visualising moving 3D traffic agents (cyclists) as avatars in mixed reality.

– Trajectory based analysis with surrogate safety measures have been applied for the
first time to study walking influences.

1.4 Structure of Thesis

This thesis is structured as follows:

Chapter 2 will provide a background on Shared Spaces, Visualisations, Motion perception
using object detection and tracking. Lastly, User study design principles and how methods
are chosen when conducting a study are also explained.

Chapter 3 discusses the related works on active, passive and external influences that influence
walking behaviour. The research gaps are further identified in this section.

Chapter 4 discuss on the datasets and evaluation metrics used in all the experiments in this
thesis.
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Chapter 5 demonstrates how scene perception is achieved using the Hololens sensors by
focusing on the implementation of both pedestrian detection and tracking using the RGBD
sensors.

Chapter 6 summarises the different experiments that were completed on the Hololens data
to test its capability in detecting and tracking pedestrians accurately. The section also
discusses the current limitations of the motion perception pipeline that is realised.

Chapter 7 explains the method and inferences made on visualising future path of others to
influence path choices of a pedestrian seeing it and navigating a conflict.

Chapter 8 summarises the findings of how AR could influence walking based on other sources
like a virtual traffic infrastructure or moving avatars that would either instruct or manipulate
the crossing path of a walking person.

Chapter 9 discusses the results from the different methods proposed in the research. Along
with evaluation of the motion pipeline and the future visualisation, future works that could
be addressed within the scope of this thesis are also identified.





2 Background

This chapter presents some basic concepts and explanations that are necessary for under-
standing the dissertation work. As stated in Chapter 1, this thesis focuses on applying AR
visualisation techniques to influence the walking behaviours of pedestrians in shared spaces.
Thus in this chapter, first a detailed description of shared spaces designs and pedestrian
interactions is introduced. Then some fundamentals on visualisation and 3D representation
are detailed. To present components of a perception pipeline, the Hololens and 3D sensing
is explained. Object detection and tracking approaches that are relevant to this thesis are
then further elaborated. Lastly, the steps to designing a user study to investigate effective
visualisations techniques are covered in the final section.

2.1 Shared Spaces

"Traffic is a sort of secret window onto the inner heart of a place, a form of cultural expres-
sion as vital as language, dress or music"- (Vanderbilt 2009, p. 216)

Traffic and urban spaces are vital to our society not just to facilitate movement from one
place to another, but also to encourage social encounters amongst pedestrians while en-
suring accessibility to local businesses. However life on the streets is highly related to the
characteristics of its built environment. While traffic signs and signals regulate priority
between cars, cyclist and pedestrians; environmental features (e.g., layout, cycle lanes and
walking paths) segregate different road users. These traffic features are also to a larger
extend responsible for influencing and deciding on how and when pedestrians would cross
(or interact) while walking and navigating with vehicles and cyclists.

(a) Friesland, the Netherlands: A five way intersec-
tion with a shared level, traffic lights, sign and mark-
ings removed (Photo: Hamilton-Baillie 2004).

(b) Rijksstraatweg, the Netherlands: Shared level
surface with paving creates a town square with seat-
ing and restaurants (Photo: Sutcliffe 2009).

Figure 2.1: Shared spaces illustrations from the Netherlands.

Shared spaces is a design principle introduced by the Dutch traffic engineer Hans Monderman
(Space 2005); focused to improve the quality of conventional streets by enhancing priority of
the vulnerable road users (pedestrians and cyclists). This has been targeted to be achieved
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by reducing the vehicular dominance of traffic spaces. In comparison to current street
designs, the concept attempts to minimize traffic control and segregation between pedestrian
and other road users. This is done by removing features such as kerbs, road surface marking,
traffic signs and traffic lights. With such measures, the idea is to improve both the traffic
interaction and communication between different road users using the streets. Since its
introduction, the shared space has received considerable attention worldwide including street
designs both in the USA and New Zealand. The Figure 2.1 shows the two shared space
intersections that are currently being used as mixed traffic spaces.

2.1.1 Walking and Shared Spaces

The fluidity of movement and sensory experiences are important aspects associated with
the mobility mode walking (Delaney 2016). The experience of a "fluid motion" is linked
to the motion continuity of the walking paths and the accompanying satisfaction in main-
taining it. This somehow is mapped to comfort as manoeuvring their body is part of the
pedestrian walking experience. As a person would walk in a shared traffic space, there could
be confrontations with other pedestrians groups, cyclist and vehicles who would cross their
walking paths. There could also be situations when the person is forced to stop and give up
priority due to reckless cyclist and other persons with unfriendly behaviours. Unexpected
stops could then hamper motion continuity, inducing frustration and unease while ending
the fluid journey that was in progress during walking.

Walking by foot being the slowest mode of active transportation has its own "sensory"
benefits. Due to its relaxed pace, walking captures ’treasured views’ as visual senses pre-
dominate in this mode of transport. Furthermore due to the steady speed of things moving
past, pedestrians tend to be more sensitive to the surrounding and also on their choices
on whom to share their walking space with. While sharing walking path with strangers
could happen at random in public spaces, the movement rhythm created with others in
the process could initiate a feeling of closeness and bonding (Coleman and Collins 2020).
This could result in informal eye-contacts which might mostly be confrontational and less
companionable. Traffic relationships in cities as stated by Hannerz (Hannerz 1980) ‘are a
pure form of meetings among strangers, a result of the crowding of large numbers of people
in a limited space’.

2.1.2 Pedestrian Interactions in Shared Spaces

While walking in shared spaces, pedestrians might cross paths with other road users more
frequently. Every crossing maneuver would then involve either of the involved participants
either adjusting their path or speed of motion. The outcome of every pedestrian interaction
observed in such cases would depend on how the involved traffic participants avoided a space-
sharing conflict (Markkula et al. 2020). Conflict avoidance amongst many factors depend on
the type of traffic participant (pedestrian, cyclist or vehicle) involved in the interaction and
how they confronted the pedestrian in the scene (Lehsing and Feldstein 2018). Markkula
et al. (2020) states that there are limited number of ways that two road users can approach
a conflict space with interactions generalized to five prototypical space sharing scenarios -
obstructed paths, merging paths, crossing paths, unconstrained and constrained head-on
paths (Figure 2.2). Also when more than two road-users would be involved, the resulting
interaction could results from multiple prototypes of the above stated scenarios being applied
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simultaneously. In the rest of this section, we primarily focus on pedestrian-pedestrian and
pedestrian-cyclist interactions that has mainly been the focus of this thesis.

Figure 2.2: Different types of conflicts borrowed from (Markkula et al. 2020), illustrate the potential
interactions that could arise between a pedestrian and other road user (autonomous car). Each
arrow represents either a pedestrian or vehicle conflicting the other.

Pedestrian - Pedestrian Interactions: Pedestrians avoid collisions with other pedestrians
either by longitudinal and lateral evasive maneuvers (Meerhoff et al. 2018) when crossing
paths. Based on how users would meet in a shared space and how they negotiate priority
amongst themselves, three configurations/situations were noted in shared spaces (Jensen
2010). The first frontal meeting observed in the work, is a situation common in two way
traffic where pedestrians could meet others face to face. This interaction configuration is
similar to the unconstrained head-on paths (UHP) and constrained head-on paths (CHP)
illustrated in Figure 2.2. The second "orthogonal meeting" happens when the surrounding
street geometry (T shaped intersection e.t.c.,) might prompt orthogonal meeting between
pedestrians and other road users. The merging paths (MP) and crossing paths (CP) in
Figure 2.2 could be considered orthogonal meeting cases. The third meeting configuration
"parallel meeting " might mostly result while taking parallel paths. A situation that might
arise when cyclists overtake a walking pedestrians from behind (OP from Figure 2.2).

While conflicts would result when pedestrians meet based on any of the three cases discussed
above, either of the pedestrians would negotiate to avoid a future collision. Some of the
particularly interesting negotiations that could be observed during pedestrian-pedestrian
interactions are mentioned in Table 2.1.

Type Interaction

Confusion No one gives a clear signal over yielding their right of way
Both giving in Both person give in a little and pass each other by
Zigzag turning The pedestrian performs a zigzag walking motion past the other person

Stop to pass One of the pedestrians would stop so that the other passes by

Group passing a pedestrian The members come closer making space for person to pass
Group letting a stranger in The group splits with the pedestrian passing between them

Table 2.1: Pedestrian-pedestrian negotiations in shared spaces (Jensen 2010).

Pedestrian - Cyclists Interactions: Due to the relatively faster speed of movement, pedes-
trians interactions with cyclists could be more uncertain; characterised by trajectories
with both speed or path deviations over a shorter interaction time. This makes study-
ing pedestrian-cyclist interactions different from pedestrian-pedestrian movements and how
their motion trajectories differ. Even when recent shared spaces datasets (Mukbil et al.
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2023) as in Figure 2.3 have captured interactions between cyclist and pedestrians, lesser
works have tried to address the different movement configurations (as illustrated in Figure
2.2) that would result in a conflict between pedestrian and space sharing cyclist.

Figure 2.3: Cyclist interactions with other pedestrians and vehicles as illustrated by CTV-Dataset
(Mukbil et al. 2023).

So far, most studies have focused on observing and analysing the interaction between pedes-
trians and cyclists. A recent study investigated the interaction behaviour of a group of
pedestrians with a cyclist on a shared road (Huang et al. 2021) via a series of controlled
experiments. However, the work only focused on the macroscopic influence of a pedestrian
crowd on individual cyclist’s paths. Further, the generalizability of the study results was
limited by the particular study setting and group behavior. Another controlled experimental
study investigated the interaction of cyclists (Yuan et al. 2018) and restricted the research
to bicycles only. The work did not include pedestrians as interaction partners and their
potential interaction influences.

Hence studying pedestrian interactions with both other persons and cyclists have been
completed using either real world motion data or by conducting controlled experiments. As
pedestrians would move differently based on how and with whom (other cyclist or person)
interactions took place, careful considerations should be made when designing data capture
experiments. This includes emphasis on those scenarios on how persons would walk when
they share their walking space and cross paths with others.

2.2 Visualisations

From weather maps to graphics applied to transportation systems and in-flight entertain-
ment; visualisation is part of our everyday life. Visualisation engages the sensory apparatus-
vision, as well as the processing power of the human mind in interpreting and understand-
ing information. It is a simple and effective medium of communication with which even
complex and high-dimensional data (e.g., volumetric information) can be easily represented
and understood. "Visualisation is the act or process of interpreting in visual terms or of
putting into visual form"- (Merriam-Webster 1990).

Visualisation is necessary to make sense of the large amount of information in the present
day world. Without the use of proper visualisations, most of the hidden phenomena that
are present in our immediate surroundings could go unnoticed and might be overlooked.
Even in some situations like daily driving, due to the overload of tasks; we often tend to
miss out on details (e.g., a person crossing from the edge of the street) which might later
turn out catastrophic. A proper visualisation in such safety critical situations can be very
helpful. Representing visual clues shown in 3D can helps to paint a better mental picture
of the threatening event, which along with attracting user attention would help in averting
accidents.
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Due to its focus on representing information, visualisation is often confused with computer
graphics and imaging. As per the distinctions presented in (Schroeder et al. 1998), visuali-
sation differentiates itself from graphics in three ways:

– The dimensionality of data represented using a visualisation is usually three dimensions
or greater. Even when many well know methods exist for two dimensional or low
dimensional data, visualisation works best when applied to data of higher dimensions.

– Visualisation concerns itself with data transformation (the continuous creation and
modification of the meaning of the data) for better visualisation.

– Visualisation is in itself naturally interactive including its ability to be created, trans-
formed and viewed.

Moreover, due to its focus on representing high dimensional information, visualization
pipelines mainly focus on the data source and how operations are applied to transform
it before representation. The Figure 2.4 illustrates the specific operations applied to data
in a visualization pipeline.

Figure 2.4: The visualisation process on how the data is transformed before the viewing it on a
visual medium (Schroeder et al. 1998).

In the first step, the data is acquired using a sensor source. The data acquisition step is
followed by data transformation. In this step, the data is transformed by various methods
and further linked to an appropriate form of presentation in the mapping step. Finally the
mapped data is then rendered or displayed on to a visual medium like computer screen or
3D display. Often the different process of the visualisation pipeline is repeated as and when
data is newly available. This helps to better create accurately designed visualisations of the
data.

To summarize, data visualisation is an powerful method to represent important information
or phenomena. Effective visualisation approaches go a long way to make data understand-
able and explainable. Having understood the data, analysts and other decision makers can
then make more informed decisions using it.

2.2.1 Data Representations

To design representations, we need to know specific properties about the data itself and
understand how the property (attribute) change over time. For example, if the idea would
be to visualise favourable routes on a map, then different properties that would quantify
favourable routes (e.g., traffic congestion, air pollution e.t.c.,) have to be understood to
create useful models and powerful visualisations. Inadequate knowledge about both the
data and its attributes would otherwise result in inflexible or poorly designed visualisations.
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However the understanding of a visualisation would involve an interplay between the visually
represented metaphors and the users knowledge of the representations. This would in effect
mean that it depends on what data is presented to users and how the user perceives the
visualisation based on his/her domain knowledge. Some representations in GIS applications
for example, focus on applying property specific information about the data by encoding
it in the visual design (Roth 2017). The use of abstract, manipulable signs referred to as
visual variables are frequently employed in map designs and cartography.

Figure 2.5: From left to right with each column showing a variant : Visual variables - position,
shape, size, hue, value, texture and orientation.

Originally proposed by Bertin Jacques 1983, the basic set of visual variables used when
designing maps include the following:

1. Position: Location based description of a map symbol relative to a coordinate system.

2. Size: refers to the amount of space a cartographic symbol occupies. Larger map
symbols correspond to an increase in the value of the represented attribute.

3. Hue: refers to the predominant wavelength of the map symbol within the visible
segment of the electromagnetic spectrum

4. Shape: describes the external form of a map symbol

5. Value: alteration in relative lightness or darkness

6. Orientation: alteration in the alignment

7. Texture: Alteration in Boundary sharpness

To enhance visual representations in map, the above mentioned list was then further ex-
panded by other researchers including Joel Morrision (Morrison 1977) and Alan MacEchren
(MacEachren 2004) to include variables - Color saturation, Arrangement, Crispness, Res-
olution and Transparency. These variables have since then played a crucial role in the
design of map making. Amongst the different visual variables, crispness has been used to
graphically represent uncertainty phenomena in geographic maps. The Figure 2.6 shows
an illustration from (Fuest et al. 2023) of how favourable routes have been encoded using
visual variables. The navigation paths choices shown are visually encoded with congestion
information in all of the representations. To reach a given destination, if one is free to choice
path A or B in either of the maps (a-d), then the choice made would not be the shorted
path, but a route that could be most convincing even after the application of the variables
to encode phenomena like traffic congestion along each of the routes.
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Figure 2.6: Visual representation to influence navigation choices of cars along driving paths A or B
using (a) no visual variables, (b) line distortion along path A, (c) blur of path A (d) color coding
the favourable paths B in (Fuest et al. 2023).

2.2.2 Visualising 3D Content

3D visualization is the computerized process of generating realistic and highly detailed
digital content for three dimensional spaces. The use of 3D visualisation strengthens the
visual representation of dynamism- representation of motion by using technology. Dynamic
visualisations in 3D offers the opportunity to represent temporal process and complex dy-
namic phenomena that would take place in the real world. Such visualisations are being
increasingly used in a number of application areas involving scene movement and data in-
terpretation.

Based on the principles on which scientific content is created and displayed in geospatial
context, 3D visualizations have been categorised (Seipel 2013) as either weak or real con-
tent. The term weak 3D visualisation is conceptually based on the idea that 3D models are
projected onto a two dimensional display surface to view content. As content presentation of
3D onto flat surfaces involves projections, they are often prone to distortions. In such cases,
the only clues for the observer are pictorial clues that would comprise shading, occlusion
and changes due to the different sizes (Kjellin et al. 2008). Such visualisations are often
also referred to as pseudo 3D visualisations. Real 3D visualizations engage both monocular
and binocular depth cues (especially binocular disparity cues) to achieve stereoscopic vision
of objects. Such 3D representations can then be displayed through different forms of visu-
alizations and technologies. Examples of this class of display variants are monoscopic 3D
display- desktop based 3D and stereoscopic 3D- AR or mixed reality.

2.2.3 Mixed Reality and Interfaces

Milgram et al. (1995) defined the Reality-Virtuality continuum as shown in Figure 2.7 and
has been one of the early attempts towards defining Mixed Reality (MR). The continuum
spans along two extreme environments (real and virtual) and contains real scenes on its
left and a completely virtual world to its right. Everything that falls between the two
extremes of real and virtual can then be classified as Mixed Reality (MR). Hence the types
of MR as per this definitions can be either Augmented Reality (AR)- a real scene augmented
with virtual content and Augmented Virtuality (AV)- when "either completely immersive,
partially immersive or otherwise, to which some amount of (video or texture mapped) reality
has been added". Also, AR is only a subset of MR as per this definition. It is important to
note that these terms are however used often interchangeably in the scientific community
and also in this thesis.
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Figure 2.7: Reality-virtuality continuum (Photo: Milgram et al (Milgram et al. 1995)).

Based on the technical method of how AR experience is created and presented, interfaces in
AR can be further classified differently. One approach, the video see-through (VST) is
based on the concept of seeing the world through cameras. Typical examples of such inter-
faces include mobile phone-based AR and video see-through head mounted displays (VST-
HMD). Such AR experiences come with the added advantage of creating visually coherent
representation of information embedded directly onto the camera-image space (Collins et al.
2017, Kiyokawa 2016). In such interfaces, the user never sees the real world directly but
through the videos feeds of cameras embedded to the devices. While this poses the inherent
disadvantage of decoupling the user from reality, it also introduces other social issues with
removing the ability to create eye contacts and social negotiations for headset users.

Another approach to creating AR experiences has been using optical see-through displays.
Semi-transparent displays are used in the user’s visual field to see superimposed computer
generated graphics in this class of AR interfaces. The common examples include head-up
displays (HUD) (Evans et al. 1989) and OST-HMD. In comparison to VST-HMD, optical
see-through devices resemble closer to wearable glasses that makes them more acceptable
for a wider range of applications.

The third form of augmentation is the use of projectors to augment the real world scene
with virtual content. This is commonly referred to as spatial augmented reality or
projection mapping (Bimber and Raskar 2005, Bimber et al. 2008) where visually coherent
augmentation is projected onto flat surfaces or geometrically aligned uneven surfaces.

2.2.4 Visualisation Techniques in AR

As visualization of content for AR is three dimensional, the basic visualisation pipeline de-
picted in Figure 2.4 is modified to support 3D content placement with AR. When applying
virtual content to an AR setting, the pipeline for it has to be modified to reflect not just
the input data as mentioned in section 2.2, but a combination of real and virtual informa-
tion while making the whole content presentation immersive. This would mean that the
data source of the pipeline is not just raw data, but data appended with camera pose and
scene image. The data to be visualised in AR (referred to as geometric data in Figure 2.8)
is combined with AR inputs only in the compositing step. Until then the data of inter-
est undergoes mapping/transformation like a normal scientific visualisation pipeline. Post
the compositing stage using the transformed geometric and scene data source (image and
registration) the AR view is constructed.
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Figure 2.8: AR Visualisation Pipeline illustrating the modifications to a naive approach for AR
content (Zollmann et al. 2020). A Depth camera will further enhance camera registration when
included in the pipeline.

As the positioning of visual content is important for the pipeline, the resulting visualisations
have a strong interdependence on where and how the content is placed in the input camera
scene. As per the definitions of Zollmann et al. (2020), either a situated or an embedded
visualisation could result from the output of an AR pipeline. The key difference is on how
the virtual content is viewed with respect to the physical referent- the space or object
associated with the data. The visualisation could be as virtual circles around cars when
seen by an observer in the street or a 3D dashboard display with nearby cars appearing and
disappearing based on their proximity as seen for a Tesla.

(a) Left - Situated visualisation inside a vehicle, Right - Virtual con-
tent embedded within viewing space.

(b) Visualisation pipeline with the data
and presentations both linked to physical
referent space (Willett et al. 2016).

Situated visualisation: In this data representation, the physical representation of informa-
tion is located close to the data’s physical referent but not placed directly on it. The
visualisations belonging to this class are dashboard indicators for speed and real-time traffic
status on a smartphone map.

Embedded visualisation: Overlays and projections of virtual content happens directly onto
the physical referents in the case of embedded visualisation. Examples from this class
of representations include existing systems that use see-through displays, projections and
other augmented reality (AR) technologies to overlay the visualisation. This helps to see the
content overlayed in the scene. This could be more appropriate visualisation choice than the
situated case where the content is placed in a relevant location but not necessarily aligned
to the corresponding data source. Hence AR visualisations should be designed based on
the use cases and on how they are required to influence decision making when viewing the
content.
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2.2.5 Hololens and Mixed Reality Toolkit

The Hololens 2 (Figure 2.10) released by Microsoft is a head-mounted mixed reality device
(OST-HMD) that has been widely used in both augmented reality and mixed reality. In
2018, Microsoft also released the research mode features along with the mixed reality APIs.
This has allowed access to all its raw sensor streams (RGB camera, Depth, IMU, sound and
microphone) for research purposes. With this, computer vision algorithms can be applied
to the raw data to process and interpret the surrounding scene while using the Microsoft
tools like MRTK to visualise virtual content.

Figure 2.10: Hololens 2 Mixed Reality Headset.

Mixed Reality Toolkit (MRTK) is a Microsoft-driven open-source project to accelerate
cross-platform mixed reality development. The toolkit currently in its third generation
(at the time of writing the thesis) supports Unity development using C# programming and
is widely used by researchers and the scientific community. The MRTK is designed to be
a quick access toolkit for developers to create high-quality and performance-focused virtual
experiences. Designed for performance for the Hololens 2, it is optimised for other resource-
constrained mobile platforms and supports different interaction paradigms (touch, input
and audio). Also, it is supported by OpenXR- an open-source royalty free standard for vir-
tual reality and augmented reality. The MRTK software toolkit enables developers to build
applications not only specific to the Hololens, but across a wide variety of devices including
Meta Quest, SteamVR, Oculus Rift and Lenovo ThinkReality. The toolkit provides a range
of features that include:

Hand Tracking: This feature supports visualising and representing the hands of the Hololens
user in a mixed reality. This allows for a more natural interaction compared to the use of
controllers (in VR e.t.c.,) but often could result in a lower precision for hand movement
tasks like drawing or writing. Each finger, joint and the thumb are represented using three
and two points (Figure 2.11) in the virtual experience. Another mesh based representation
for better performance is also supported wherein the hands are visualised using a mesh
material (Figure 2.11).

Eye Tracking: The toolkit provides developers with ability of understanding what the users
of the Hololens are looking at. The privacy-preserving eye tracking API avoids passing any
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Figure 2.11: The figure shows the different features supported by the Microsoft MRTK with Hololens
hand tracking using joint model (left), mesh model (center) and the spatial mapping feature of the
toolkit creating model models of indoor scenes (Microsoft 2023).

biometric information and captures gaze data from the left and right eye simultaneously. To
improve the accuracy of the tracking, the user is required to first calibrate the eye by looking
at a set of holographic targets. Post successful calibration, the API provides information on
where the Hololens is looking at with the eye gaze ray (gaze origin and direction) at 30 Hz

Spatial Mapping: The spatial awareness feature of the toolkit constantly tracks the envi-
ronment using the RGBD sensors, creating a 3D model of the area around the headset. The
depth cues acquired from the Hololens build in sensors are then used to add occlusions and
depth effects to the 3D objects placed in the view of the user. These effects applied to the
3D content (in real-time) create convincing user effects allowing to bend virtual objects to
the surrounding scene.

2.3 Depth Sensing and 3D Scene Data

2.3.1 Time of Flight Sensing

A Time of Flight (TOF) sensor is a type of distance measurement device that uses light
or electromagnetic waves to determine the distance between the sensor and an object. The
sensing technology is a high framerate 3D imaging technique producing intensity images
and range data for every image pixel acquired using the sensor. The time needed by the
light emitter to travel from its source and reach the receiver is proportional to the distance
of the sensor from reflected objects. The ToF depth is measured by using either Pulse or
Phase modulation as shown in Figure 2.12a and 2.12b.

Pulse Modulation: In this distance measurement approach, the round-trip time it took
for the light pulse to return is measured. The round-trip time of the pulse and speed are
then used to estimate the distance using Equation 2.1. Moreover, for a higher distance
measurement accuracy, very good cock circuits are required in this approach.

d =
t

2
· c (2.1)
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(a) Pulse modulation. (b) Phase modulation.

Figure 2.12: Time of Flight (ToF) Sensing.

where d is the distance between the sensor and object, c is the speed of light and t is the
time between emitted and received light source.

Phase Modulation: For this method of ToF distance measurement, the emitted light from
the sensor is modulated using a signal modulation technique (Sinusoidal, FMCW, pesudo
noise or polarisation). The receiver then measures the phase shift of the received signal.

2.3.2 Pinhole Camera Model

Most ToF sensors available commercially are used for depth measurement and are part of
RGBD devices. These RGBD devices have both an image camera and a depth sensor that
output an RGB image along with its 2D depth map. Also as it might be hard to observe
finer details of depth from just a 2D depth, the camera pinhole model (Figure 2.13) is used
to re-project the depth onto the 3D space.

Figure 2.13: Pinhole camera model.

The pinhole model describes the mathematical relationship between 3D points of a scene
and its corresponding 2D points captured from a camera perspective. The intrinsic matrix
K (Equation 2.2) of the camera transforms 2D image coordinates to 3D and vice versa.
Hence each 3D point is mapped to 2D pixels (u and v) by applying a transformation (u, v)
= f(X, Y, Z)
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K =

fx s x0

0 fy y0
0 0 1

 (2.2)

Along with the camera intrinsics K stated above, other distortions of the lens and extrinsics
transformations have to be accounted for while applying computations. The complete math-
ematical model that describes the transformation of the image point p to its corresponding
3D point P can be written as p = K[R | t] ∗ P . Where K is the camera intrisincs and R
and t are the extrinsics that are further detailed in the next sections.

Intrinsic Parameters (K): Each intrinsic parameter describes a geometric property of the
camera. The internal geometry and its optical properties are best described using the focal
length, principal point and lens distortion. The focal length (fx, fy)- the distance between
the optical lens center and camera sensor, the principal point (cx, cy)- the displacement
of the optical axis from the camera projection center and the distortion coefficients- the
inherent optical distortion of the camera; best describe the intrinsic properties of a 2D
camera source.

(a) Camera principal point.

(b) Different projections for spherical (left) vs
parabolic lens (right) (source: Villena-Martínez et
al. (2017)).

Figure 2.14: Figure on the left depicts the optical center while right shows the camera distortions.

The distortion represents the variations in light projections due to optical aberrations in
the camera lens. The amount of distortion is highly dependent on the position and distance
of the principal point. This error will be zero at the principal point and increases with
increasing distance from the point. The optical distortions are best represented using the
distortion coefficients in the camera model. The two common distortions are:

Radial Distortion: This type of distortion is the most visible one affecting low-grade camera
and lens. The distortion occurs due to the unequal bending of light with rays (Figure 2.14
(b)) bending more near the edges and lesser near the centre. Hence the distortion gets more
pronounced as we move away radially from the optical center.

Tangential Distortion: This occurs when either the image screen or the sensor is not parallel
to the lens but at an angle w.r.t the lens. This distortion would result in objects appearing
farther away or closer than they are. Also, images in most cases would look titled or
stretched on viewing.
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Extrinsic Parameters (R, t): The extrinsic calibration between the RGB image and the
ToF depth sensor refers to the 3D geometric relationship to register information from differ-
ently positioned RGB and depth sensor rigidly mounted on the same device. The extrinsic
transformation is defined by a rotation (R) and translation matrix (t) which represents the
orientation and displacement between the image and ToF sensors. By applying this trans-
formation, it would be possible to register depth information in every RGB image pixel.

Depth Error and Compensation: The Depth measurements from an RGBD sensor are often
prone to both systematic and non-systematic errors. In general systematic errors are caused
due to the intrinsic properties of the depth camera or due to imaging conditions prevailing
when capturing the data. As these errors are relatively fixed, they can be evaluated in
advance and have corrections implemented. Of the two errors, the systematic errors can be
reduced by good calibration procedures. Amongst the systematic errors, depth distortion is
the most prominent error source that affects depth measurements.

Depth Distortion also known as wiggling / circular error arises due to irregularities in
the modulation process when capturing depth. This distortion occurs when the emitted
light from a ToF sensor is not generated mathematically modulated with the computed
modulation (e.g., sinusoidal modulation in the case of amplitude modulation). Such errors
can be corrected by using different calibration techniques that would then include calibration
targets and chessboard patterns.

2.3.3 Hololens Research Mode Sensors

The Research Mode has promoted the use of Hololens as a powerful tool for doing research
in computer vision and robotics while also using it for visualising 3D content. HoloLens 2
(Fig. 2.10), which was announced in 2019, brings several improvements with respect to the
first-generation Hololens device– like a dedicated DNN core, articulated hand tracking and
eye gaze tracking.

Figure 2.15: Hololens 2 research mode sensor streams.

The second generation AR device features a custom-built Holographic Processing Unit (HPU
2.0), which enables low-power, real-time computer vision. The HPU runs all the computer
vision algorithms on the device (head tracking, hand tracking, eye gaze tracking, spatial
mapping etc.) and hosts the DNN core. The device is equipped with an array of sensors
to localise itself using SLAM as shown in Fig. 2.15. The specifications of these sensors
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are detailed below. Also, the research mode allows sensor access using public repositories
containing tools and sample applications (Ungureanu et al. 2020).

Research Mode for HoloLens 2 enables access to the following input streams:

– Four visible-light tracking cameras (VLC): Grayscale cameras (30 fps) used by the
system for real-time visual-inertial SLAM.

– A depth camera that works on the principle of ToF sensing and operated in two modes:

– Articulated Hand Tracking (AHAT)(45 fps), near-depth sensing used for hand
tracking. As hands are supported up to 1 meter from the device, the HoloLens
2 saves power by calculating only “aliased depth” from the phase-based time of
flight camera. This means that the signal contains only the fractional part of the
distance from the device when expressed in meters.

– Long Throw (1fps), far-depth sensing used for spatial mapping on device. This
sensor can be used to detect objects in the scene including moving pedestrians.

Both AHAT and Long Throw are also supported by the Active Brightness (AB in
short) feature as mentioned in Table 2.2. The depth sensors captures data in its own
local cordinate system.

– Two depth modes of the IR stream (AB), are computed from the same modulated IR
signal for depth computation. These images are illuminated by infrared and unaffected
by ambient visible light.

– Inertial Measurement Unit (IMU):

– Accelerometer, used by the system to determine the linear acceleration along the
x, y and z axes as well as gravity.

– Gyroscope, used by the system to determine rotations.

– Magnetometer, used by the system for absolute orientation estimation.

Stream Resolution Format

VLC 640 x 480 8-bit
Long throw depth 320 x 288 16-bit
Long throw AB 320 x 288 16-bit

AHAT 512 x 512 16-bit
AHAT AB 512 x 512 16-bit

Table 2.2: HoloLens research mode sensor resolution and format.

2.4 Object Detection And Tracking

The goal of an object detection algorithm is to detect all instances of an object (e.g.,
pedestrians, cyclists and vehicles) from one or several known classes as in the KITTI dataset
(Geiger et al. 2012). The input to the algorithm in each case will be an RGB image or its
3D depth. Each detection is then reported with an associated pose information and a
probability score. The pose could then be (a) a position of where the object is; or (b)
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Figure 2.16: YOLO network architecture (Source: Mao et al. 2019).

an enclosing bounding box indicating the object presence or (c) a segmentation mask that
differentiates the object for all other objects in the scene.

Object tracking on the other hand tasks itself with inputting an initial set of object detec-
tions, creating and maintaining a unique ID for each object; and tracking objects as they
move around in the frames. The IDs that were assigned are managed by the tracker during
this process.

2.4.1 Image Only Object Detection

Visual object detection aims to find objects of a certain class with precise localisation for a
give image while associating each object with its corresponding label. Each object is then
predicted with a bounding box center in pixel coordinates (cx, cy) and box dimensions (w,
h) that would enclose the object. A more richer understanding of the scene is provided by
semantic segmentation that predicts a pixel-wise classifier mapping each pixel to a specific
label.

Deep learning based detectors that are widely used for object detection can be primarily
divided into two: (i) one-stage detectors and (ii) two-stage detectors. In the case of YOLO,
a one stage detector, there is only a single neural network evaluation for object inferences.
For this the model will use pre-defined set of boxes (anchor boxes) to look for objects. In
terms of speed, the inferences from such networks are quick to run in real time (high frame
rates) and hence support augmented reality use cases. The two stage algorithms are more
accurate but also more complicated. The scene is first divided into multiple regions in the
region proposal step. After screening out the negatives, the regions of interest (ROI) are
generated. This is further followed by region classification and location refinement of the
ROI. The common examples of two stage detectors include Faster R-CNN, R-FCN, FPN,
etc.

YOLO: You Only Look Once (YOLO) is a widely used object detection method that was
developed by Redmon et al. (2016) and improved in performance for the multiple versions
that followed. With the YOLO, object detection is looked upon as a regression problem in
which the objects in the scene are determined from the pixels of the input image using a
neural network. An object recognised by the network is output as a 2D bounding box which
then indicates the position and size of the object in the camera scene. A class probability is
also estimated for each predicted object. All objects recognised by the network in the scene
are assigned higher probability scores.
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Compared to region proposal networks (Fast RCNN) which perform detection’s on various
region proposals and end up performing multiple predictions for various regions of the same
image, Yolo like a CNN passes the image through the network once and outputs the object
bounding box predictions. The input image is divided into a grid and to each grid cell is set
of anchor boxes that are associated with the same centroid. The approach then computes
how much of the ground truth box overlaps with the anchor box picking the one with the
largest overlap. This is followed by the prediction step where offsets to the anchor boxes
are then predicted.

Among its predecessors, Yolo v3 can detect objects with higher accuracy even when they are
close by the camera. The Darknet-53 which contains 53 layers is used as the backbone for
Yolo v3 with certain outputs forwarded back to the network as in the ResNet architecture
(Targ et al. 2016). The total number of stacked layers in YoloV3 (Figure 2.16) total upto
106 layers with the network outputting each detected object class, its bounding box and a
probability score.

The biggest advantages of YOLO when comparing to other image detectors are :

– Speed and faster inference

– Network understands generalised object representation

– Faster with a smaller architecture and open-source

MaskRCNN: MaskR-CNN introduced by He et al. (2017) is one of the most widely used
image based DCNN networks that detects objects with a bounding box, image mask and
a semantic class. The network simultaneously solves both object detection and instance
segmentation for each of the objects for a given input image.

Mask RCNN holds architectural similarity with the Faster-RCNN (Ren et al. 2015) network,
a predecessor object detection approach. While the latter has two outputs for each candidate
object - a class label and a bounding box offset, MaskRCNN has an additional branch that
also outputs the object semantic mask. Hence the network uses region proposal, object
classification & box regression and instance mask segmentation as a part of its pipeline to
make a semantic inference about input scene objects.

(a) MaskRCNN detection network architecture
(b) MaskRCNN pedestrian detection on COCO test
sets (Source: He et al. 2017).

Figure 2.17: MaskRCNN semantic segmentation for RGB images

Firstly, a ResNet 101 backbone model is used to extract features from the images which is
then passed to the region proposal branch. In the next step, the Region Proposal Network
(RPN) predicts if an object is present in the region or not making an inference of the
existence of objects in the feature maps. As the outputs from the RPN would be of different
shapes, a pooling operation is applied converting all regions to the same shape. In the final
step, the network branches out into two:
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– Object classification and regression: Here the network predicts the class and
position of objects using the obtained regions from the previous step.

– Mask segmentation: This branch employs a fully convolutional network to produce
k instance binary masks m x m , one for each proposal regions. The mask that matches
the predicted object type is then scaled up to match the size of region of interest (RoI).

The semantic segmentation network has a proven inference time of 195ms (per image) on
an Nvidia Tesla M40 GPU (He et al. 2017). The network achieves good results even under
challenging conditions (Figure 2.17b) and is designed to estimate human poses with minor
modifications.

2.4.2 3D Detection using RGBD Sensor Data

Figure 2.18: Frustum Pointnet for 3D object detection.

The trend towards applying both images and depth to detect objects in 3D has been the focus
of many RGBD based object detection algorithms. In most of these approaches, the works
have focused on applying depth data to a proven image detection CNN to localise objects
in 3D in the subsequent stages. For example, based on RGBD data, Kollmitz et al. (2019)
extended a Faster R-CNN model to regress the 3D centroids of pedestrians. Meanwhile
Linder et al. (2020) extended the YOLO v3 model to directly regress the 3D centroids. In
addition to the regression of 3D centroids, Explanable YOLO (Takahashi et al. 2020) used
a 4-channel RGBD data directly as input to regress the 3D bounding box of pedestrians
using Darknet-53 backbone network.

Along with image-fused methods, object detection using Frustum-based Pointnets (Qi et al.
2018) have proven to be used for real-time pedestrian detection (Shenoi et al. 2020). In the
F-Pointnet approach (Figure 2.18), objects are first detected in 2D images which is used
to create Frustum point clouds. Then the foreground points and its features are extracted
using the Pointnet network (Qi et al. 2017). These foreground points are then used to
estimate the 3D bounding boxes of objects in the scene. Also the method has been proven
to work well for indoor scenes and brightly lit outdoor scenes.

The performance of F-Pointnet could however be limited:

– based on the object predictions of the image detector used in the frustum proposal

– if very few points are identified as foreground points to regress a 3D bounding box.
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2.4.3 Particle Filter Tracking

Object tracking is the process of following a particular object or multiple objects (Djuric
et al. 2003; Cappé et al. 2007) in a sequence of frames for a video or 3D scene. The
goal of tracking is to follow an object of interest over a data sequence by monitoring its
movement over time while dealing with issues like occlusions, appearance changes due to
illumination differences and scale issues. Also based on the number of objects that are
tracked , they can be classified as Single object tracking (SOT) and multiple-object tracking
(MOT). While single-object tracking would estimate the trajectory of a target object over
time for a given initial location in the first frame, MOT would track multiple objects in the
scene simultaneously.

Particle filters is a widely used tracker designed on the bayesian principle. The filter applies
bayesian equations to solve for the motion attributes (e.g„ position velocity) of the objects
and track their state. This means that the probability estimate of the state at different time
instances can be formulated as a combination of smoothing, prediction and update in the
filter.

p(ktn|d1:t); 1 > n > t− smoothing (2.3)

p(kt|d1:t−1) − prediction (2.4)

p(kt+n|d1:t);n > 0 − update (2.5)

p(kt) is the posterior probability of the state vector kt and di,t the respective observation
vector in Equation 2.3, 2.4 and 2.5.

In the filter, current states of tracked objects are sequentially approximated (smoothing) and
the model is updated with new observations/sensor measurements upon positive association
(update) of each observation to the state. The unassociated tracks don’t update and the
final estimation is based on the motion model (prediction). Hence each tracked object can
be formulated using the equations:

p(kt|kt−1) : kt = f(kt−1, ξt−1) (2.6)

p(dt|kt) : dt = h(kt, ηt) (2.7)

f(.) is the prediction model, h(.) demotes the sensor model. ξt−1 is the system noise and
ηt is the measurement noise in Equation 2.6 and 2.7. The objective of tracking is then to
estimate the optimal state kt that maximizing the belief given all the past observations d1:t.
Hence the Bayesian inference allows for estimating a state by combining a statistical model
for a measurement (likelihood) with a prior probability using Bayes’ theorem.

Particle filters use Monte Carlo simulation to represent the posterior PDF as a weighted
sum of discrete samples called particles as represented by the Equation 2.8.

p(kt|d1:t) =
N∑
i=1

wi
tδ(kt − ki

t) (2.8)

ki
t is a random sample, δ is the Dirac delta function and wi

t are sample weights.
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For a given observation dt, the likelihood p(dt|ki
t) can be computed from the observation

model defined in the equations stated above. Hence with the likelihood of the samples,
an approximation of the state is estimated. The complete set of particles then represent
probability function, such that the final estimated state k̂ can be obtained by searching for
the mode of the distribution. The tracker can then be used to track objects like pedestrians,
cyclists and cars based on the choice of the motion model.

2.5 User Study Design and Considerations

User studies offer a scientific and a proven method to evaluate the performance of visuali-
sations. While developing successful visualisations, their disadvantages and merits have to
be clearly understood and hence the importance of evaluating them accurately cannot be
overlooked.

The start point for a use study is a general research question that needs to be addressed with
the visualisation. The research question that needs to be addressed is the core component
for a successful experiment design. When the question is well refined, the methodology that
would best suit the evaluation can be selected to answer the questions. A clear question is
important as this would clearly state what has to be investigated and how the research can
be carried out to collect data for analysis. In addition to formulation of the question, the
choice of task would require knowing what questions can be addressed within the scope of
the study.

2.5.1 Designing an Experiment

Once its clear on what is known and what actions have to be possibly taken, we can run a set
of tests applying visual variations with each experiment execution. Each single execution of
a variation is called a trial. The full collection of trails that addresses the research question
is referred to as an experiment. For example, if the objective of a study is to test different
versions of visualising rivers in a geographic map, then different variants of colours are tested
in the different trails of the experiment to study river visualisations.

As visualisation is a perceptual task, we cannot directly measure the influences or/and
impact of each trial completed. Therefore we try to infer of how people reacted to the
information they saw. Then, by observing both the inputs (visualisations) and outputs
(reactions) we make an interpretation and a following inference. If we let x be the vector
representing description of the situation and M(x) the measured response, B(x) could then
represent the internal process of a perception-action-loop that interests us to make inferences.

M(x) = B(x) + ew (2.9)

The error term (ew) in the equation 2.9 signifies the deviation between the performed reac-
tion by the participant and the reaction he/she intended to perform. The term represents
the unintended variation in human behaviour in repeating tasks. One cannot produce the
same action twice, no matter how hard one tries. Even when ew is different with every
measurement M(x), B(x) is assumed to be a constant. Most evidences however suggests
that B(x) would remain constant for short periods of time. This has been one of the two
reasons to keep experiments short. Fatigue of participants has been another reason for short
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experiments. Furthermore averaging several measurements would yield a good estimate of
B(x). This would in the process increase the likelihood of averaging out the error term ew
from the equation.

As for when trails are repeated with the same participant in an experiment, the second trail
would differ from the first as participants would have had more practise with the second
attempt. Hence perception of subsequent stimuli and their performance in the task could
be impacted by what has already been seen earlier. This would mean that not controlling
for order has introduced a confusion. The influence of repeated ordering can be reduced
using one of the three design approaches as in Figure 2.19:

Figure 2.19: Different designs for a user study experiment.

Between participant design: In such designs a single person sees one and only one condition.
As one person sees only the condition once, the effect of ordering is removed. Furthermore as
different participants see the same condition now, other effects due to inter-person differences
come into effect. The measured difference between conditions would now reflect a compound
effect of both the stimulus and participants respectively. For example, in a visualisation
study focused on how people understand different colors, if one person is shown red and the
other a green, then the difference in performance is due to both from differing stimulus or
due to intrinsic difference between the two participants in the study. Such a design is based
om the assumption that the between participants error is small.

Within participant design with ordering variations: The fundamental idea here is that be-
tween participant effects would not show up if all measurements are made with same person.
This would then mean that in such case, every person sees all conditions and then the per-
son would act as a baseline himself or herself. Moreover to remove the effects of ordering,
different groups would see different orders. This would mean for the same visualisation
study stated in the previous point, one group will have participants seeing the red first and
then followed by the green; while another group are shown the two colors in the opposite
order (green followed by red). A fundamental issues with such designs would be the possible
orders to be examined. This would mean for three conditions there could be six possible
orders, which would then be 24 possible orders when the conditions to be tested are four.
Which might turn out to be expensive when the possible conditions become X (X! orders)

Random ordering: With this approach every participants sees the stimuli in randomly cho-
sen order. This means that samples are collectively averaging the effects of noise due to
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Figure 2.20: Task continuum proposed in Cunningham and Wallraven 2013.

ordering. Another way of inferring this would be to a sampling approach from many order
groups via fully controlled order experiments. This also means that such an approach needs
more participants.

2.5.2 Performing an Experiment

Once the experiment has been well designed and planned, the subsequent steps would in-
clude conducting the study using a sample population. The following elements constitute a
successful experiment:

Participants: Each experiment is focused towards a target population. The choice of the
population is highly depend on the skills and domain knowledge needed to understand the
tasks for each of the experiment trails. Once the target group is fixed, it is essential to
ensure that there is enough random sampling of the population to have results that could
generalise and be representative of the population.

Tasks: While there are astonishingly large number of tasks in behavioural science research,
a chosen task for an experiment is designed to answer specific types of questions. Quiet often
the task is implicit in the question that is asked. Tasks and its complexity considered for an
experiment can explained using the task-continuum (Figure 2.20) proposed in (Cunningham
and Wallraven 2013). On the "general" end of the continuum are the meta-tasks of how the
person would react for a given situation. This is done by sharing questionnaires where using
ratings or free description text that would help to understand the objective of the study are
captured. On the "specific" end of the task continuum are the tasks that can concretely
estimate inferences for very specific questions. This would help to map what elements of
the visual stimuli the participants saw and how they inferred the presented stimuli.

Stimulus selection: The chosen visual stimulus forms the input to participants for the
experiment. This visual input should be presented in a controlled manner using either a 2D
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or 3D visual interface. Also the chosen visual method should be relevant for the task and
the research question that is addressed.

Stimulus presentation: The medium of communicating the stimuli during the experiment
is fundamentally an important component. The medium in this case will act as a channel
in communicating the stimulus clearly to the participants.

Analysis: This step follows the data collection stage where the data of the responses of the
participants is first collected before analysis. In the analysis stage, appropriate tools and
methods are applied to the data to interpret how the participants reacted to the presented
stimulus in the different trails of the experiment.

The underlying principle of user study research is to investigate and compare participant
responses under different experimental conditions. For this one (or more) variables are
manipulated to observe the impact of the change and investigate the effect on one (or more)
other factors. While the former in this case is the independent variable, the later would
be the dependent variable. Statistical test are then applied to the data to investigate the
experimental effects.

Answering a given research question would require that many experiments have to be per-
formed often using different tasks. No single experiment can control for all possible variances
in infinite dimensions. Also no single experiment can have infinite sampling that would in
the end be interest for the question. The need for control for errors in the experiment would
require that we plan for the experiments well ahead of in time. Some methods might compel
towards promising quick answers, but might later turn harder to analyse . Other tasks might
require more careful and considerate planning; but then would not just make experimenta-
tion easily, nevertheless would reduce efforts during the analysis phase and quicker results
in the process. The tasks then would be more clearer with less possibilities for misinterpre-
tations. Hence designing an experiment with care and consideration is vital for successful
interpretation of the results.

2.5.3 Ethics, Privacy and Confidentiality

While designing experiments, ethics, privacy and confidentiality of the participant data
captured during the experiment have to be kept in mind. Also performing experiments in
every country require approvals from the ethics review boards. Ethics review boards ensure
participants and their data would be protected. This has been a reason that many journals
do not publish results unless proper ethics guidelines have been followed in the work. Failure
to follow ethical guidelines or approvals could be considered scientific misconduct and could
lead to serious and legal repercussions.

Some people fear that the information that they provide in a user study could be used
inappropriately. Many techniques exist for protecting each persons privacy and ensuring that
the data shared would be used for only the clearly stated purpose. Hence each survey study
needs to reassure the respondents that data privacy techniques have been incorporated.
Also, the participants need to be convinced that the data would be collected anonymously
and that no one will be able to map the collected data to their personal information.
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The term confidentiality refers to the safeguarding of information about one person that is
known to the other. A surveyor with names and addresses of people even in code should not
use this information to reveal the identities of study participants. Confidentiality especially
is a serious concern in online studies as even an email address or Internet Service Provider
(ISP) address leak might lead to the survey respondent’s identity being revealed.
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3.1 Walking Influences

This thesis proposes new ways to influence the walking behaviour of pedestrians by using
Augmented Reality. Hence the literature study for the work follows a taxonomy distinguish-
ing motion influences applied in current movement studies to the different levels as depicted
in Figure 3.1. This taxonomy is partially borrowed from (Ishii et al. 2016) where visual
influences to walking are classified based on how the input stimuli was shown and what
movement influence resulted to the person. As per our taxonomy, influence studies can be
distinguished to be either Active, Passive or External.

Figure 3.1: Methods to influence walking using visual influences.

Active Influences pertain to those studies and work where visual information is presented to
the user with the intent of actively altering a person’s walking path. This for example could
happen when a person decides to change his/her walking direction via an active intervention.
Such interventions could happen by using a smartphone showing a map or when he/her sees
signboards indicating which path should be taken next. Passive on the other hand includes
all those influences that subconsciously prompts a person to make an alternative path choice.
The visual information seen could be either augmented on a visual medium to force him/her
to take new paths. Lastly, external influences are all unaccounted factors that exist in a
real world scene prompting people to unexpectedly move away from their intended motion
paths. An example of such a external factor could be the sight of an approaching cyclist or
a group of nearby pedestrians walking.

This chapter provides a brief updated review of the existing methods focusing mainly on the
following aspects: (a) how is virtual content used to influence walking, (b) what medium
was used to show the content visually to the user and (c) how was the presented informa-
tion processed before the visual rendering step. By reviewing the existing methods, the
knowledge gap that this thesis attempts to fill is highlighted in the last section.

3.1.1 Active Influences

The section reviews methods that emphasize actively communicating movement paths which
influence walking decisions made while moving.

43
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Recommendations Based on Past Movement Trajectories: A relatively quick and easy ap-
proach towards motivating people with AR to walk along a specific path has been by showing
walked paths from the past data or preferred future walking directions. Projection based
approaches have been researched where walking steps and trajectories were displayed on the
floor to influence navigation decisions (Albarrak et al. 2019) and to create social awareness
(Monastero and McGookin 2018). In a further study, the effectiveness of showing such guid-
ance was tested with a virtual environment (Sakamoto et al. 2019). The environment for the
study consisted of floor coverings that were illuminated to guide different pedestrians to the
same destination. By projecting a specific pattern-constant flow of black and white strips on
the walking surface, persons were guided to their destination. With such a dynamic visual
approach, 7 of the 10 participants were influenced in the walking study. Extending such
influences to public places, Albarrak et.al in (Albarrak et al. 2020) visualised the motion
heatmap and footsteps as movement traces. For the visuals that were shown, other factors
like personal preferences of paths and environmental constrains proved to have played a
role in all the navigation decisions that were made by the people. Rather than focusing on
historic movement data, another study (Albarrak et al. 2021) applied visualisations to an
interactive floor display. In this work people in the scene were tracked and their footsteps
were then projected on to the floors. Even in this work the way people walk with such
visualisations highly depended on the way participants interpreted the visual clues shown
on the floor.

Extending such visual design and influence methods for pedestrians in traffic situations has
found itself limited to mainly concept ideas and basic prototypes. An AR based futuristic
interface was prototyped in (Hesenius et al. 2018) to display walk-able paths for persons.
The AR paths shown were then based on the traffic situations of the scene and tested in
a study. Each person saw a virtual lane that was projected onto the real infrastructure
where s/he could walk safely. However the visual variants tested in the study were mostly
limited to only single pedestrian routes and were not scalable. The work did not address
what would happen if there are more persons in the scene and how the virtual pedestrians
lanes would expand or change to accommodate for the increasing number of persons in the
scene. The work however noted that the success of such a visualisation would depend on
the trust in the system for its correctness and trustworthiness.

AR Headset based Navigation: AR Navigation can be considered a special case of 3D con-
tent influenced walking. In most such navigation applications, the target destination is used
as a prior and an AR overlay of the path is shown based on the shortest path computed
(Grasset et al. 2011). Then the application user is influenced to walk along the shortest path
to reach the destination based on his/her current position and the computing algorithm that
estimated the proposed path. Even when such approaches are currently widespread using
mobile devices (Papageorgiou et al. 2020, Shaheen et al. 2016), lesser works have applied
3D visualisations to navigation while walking with AR headsets.

The pioneers in navigating using headsets and applying 3D to it has been the earlier works
from Feiner et al. (1997). In this work, the touring machine was prototyped to overlay 3D
information onto the outside world to guide people to way-points. The content shown to
the person via a body worn headset depended on the position of these persons and their
proximity to real world objects. The prototype in the work combined position tracking using
differential GPS and AR visualisation to achieve context based virtual content. Based on
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the position of the person in an outdoor space, location specific virtual content was over-
laid onto to a head mounted display. This was useful to get landmark specific information
while walking. The work however did not support effective guidance to walk along specific
paths. Another work (Höllerer et al. 1999) on the contrary, mainly focused on providing AR
guidance to users by operators working remotely . In the MARS project that has been de-
tailed above, motion guidance was provided via collaborative efforts based on teleoperation.
Walking assistance to outdoor headset users was possible when a group of users stationed
indoors sketched paths or pointed our interesting objects to them. While lesser works have
focused on applying guidance via AR headsets, more recent works on AR and pedestrians
have used smartphones (Dünser et al. 2012, Dey et al. 2018, Santos et al. 2014) and light
projections (Colley et al. 2017b, Avila Soto and Funk 2018, Knierim et al. 2018). However
the most important shortcoming noted in smartphone or AR navigation systems (Narzt
et al. 2006) are the issues of visual attention. Most of the above mentioned applications use
an arrow visualisation pointing the intended direction from an ego prospective or "Birds eye
view" map. The visual interfaces then requires the user to pay attention continuously while
in motion which could be distracting and attention demanding. The users are expected
to both recognise the information presented and at the same time follow the instructions
presented to reach the target goal destination.

3.1.2 Passive Influences

All forms of subconscious navigation methods that prompt persons to take a different walk-
ing paths than the consciously intended one are covered in this section.

Direct Manipulation of Visual Content: The visual interpretations of once own motion (self
motion) is largely affected by what a person estimates the movement pace to be based
on his/her sensory inputs from the surrounding. Also as the person walks, he becomes
more focused towards his destination and starts to pay lesser attention to the surrounding.
Visual information of landmarks and the resulting optic flow (Lappe et al. 1999) then start
to dominate his/her vision.

Some motion studies have tried to manipulate the feeling of this self motion by visualising
additional optical flow (Bruder et al. 2013). Then the movement behaviour that resulted
from such visual stimuli was prompting passive resposnse in walking paths. For instance
Bruder et al. (2013), superimposed the flow information to alter the perception of self motion
that resulted in walking movements to be either faster or slower than it really is. Another
work in the similar direction (Ishii et al. 2016), exploited the use of body worn HMD to
influence movement by the manipulation of the visual content as shown in Figure 3.2a. In
the work, a stereo sensor was first used to capture the real world scene while walking. Then
by applying image processing, visuals of moving strips were added to the scene. The moving
strip approach successfully induced vection. Vection (Fisher 1930) refers to the compelling
sensation of self-motion by a moving visual stimulus. This for example can be experienced
when waiting in a car at a traffic signal or when observing other vehicles nearby starting to
move. Another visual variant that was applied in the same study investigated the effects of
changing visual content. This variant then proved to influence walking paths based on where
the user focused and fixated gaze while walking. Either of the two approaches (moving strips
and changing content) in the work were successful in affecting both the path and direction
of walking. Another work that also applied influences based on the principle of vection
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visually augmented the ground planes of the walking scene (Furukawa et al. 2011). The
study for such walking floor illuminated walking effects involved a pedestrian being led by
a moving visual stimulus projected on the floor (Figure 3.2b) using an optical device. Thus
using a projection based augmentation in a static setting, influences to both motion and
direction of travel were achieved.

Figure 3.2: (a) The figure on the left shows how vection is applied to a HMD device (Ishii et al.
2016) while the right shows (b) the image of a person influenced in walking using light projection
vection (Furukawa et al. 2011).

Much of the research that have focused on manipulating walking using a body worn HMD
have emphasised on the ease of walking movement that is supported by the handsfree oper-
ation of headsets. Projection based approaches on the other hand are more prone to visual
delays invariably occurring between cognition and the resulting moving action. While vi-
sual influences have been primarily studied with AR, non visual guidance methods have also
been researched as an alternative guidance approach. Amongst them, vibro-tactile cues for
navigation (Lindeman et al. 2004, Uchiyama et al. 2008) and motion guidance (Bark et al.
2014, Marquardt et al. 2018) have also been studied for their passive walking effects.

Redirected Walking in VR: Redirected walking (RDW) refers to a collection of motion ma-
nipulation techniques in Virtual Reality that makes it possible to move about in a physical
space of smaller dimensions to achieve continuous walking in a very large virtual environ-
ment. Then if a person is walking in a virtual soccer field, it is possible that the virtual
scene is actually slowly and imperceptibly rotated around the user when applying the RDW
technique. This might cause him/her to walk in circles even though s/he thinks that walk-
ing is happening along a straight line path. Such visual manipulations are achieved by the
control of user’s walking path by applying transformations/shifts to the virtual scene (Suma
et al. 2012). The maximum amount of shifts (gain) that can be applied for such manipu-
lations have been established through empirical studies relying on psychophysical methods
(Grechkin et al. 2016, Steinicke et al. 2009). The redirection techniques employed for RDW
use an array of methods that include visual distractors (Peck et al. 2011), viewpoint ma-
nipulation (Bolte and Lappe 2015, Langbehn et al. 2016) or by using narrative events as
opportunities to imperceptively manipulate user paths (Grechkin et al. 2015, Neth et al.
2012). As per the taxonomy proposed in (Nilsson et al. 2018), the common ways of redirect-
ing users include translation, curvature, rotation and bending gains applied to the movement
of the virtual camera as shown in Figure 3.3.
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Figure 3.3: Four types of gains used for perspective manipulation (a) translation gain, (b) rotation
gain, (c) curvature gain and (d) bending gain . The purple and the blue lines in the figure represent
real and virtual transformations respectively (source: Nilsson et al. 2018).

Since RDW is a motion manipulation technique, the walking steps while navigating a virtual
space for past time stamps is input to an underlying algorithm. Then, the approach approx-
imates redirected walking paths by estimating the human steps made when using the VR
headset. While there have been few approaches (Hirt et al. 2022) that have applied future
motion predictions to manipulate RDW, such forecast based approaches have not received
much attention to successfully influence motion in VR. This is largely due to the nature of
human walks which is characterised by randomness, spontaneity and short term prediction
complexity. Other RDW works that also tried to estimate the future walks approximated
locomotion behaviour with data driven approaches (Strauss et al. 2020, Stein 2021).

Scene Aware Visualisations: While there have been fewer works, to the knowledge of the
author, that have applied the results from scene awareness to influence walking; most works
have embedded visual content based on scene motion to assist decision making in data
analytics. For example, to augment sports videos in a post processed fashion, Chen in
(Chen et al. 2021) applied data processing pipelines extracting postures of the player and
position of ball. The output player and ball movement poses from the pipeline was then
augmented to the video as player meta data in the visualisation step. A more advanced
player movement visualisation and processing was achieved in iBall (Chen et al. 2023). For
this a computer vision pipeline first detected the players and tracked them with a kalman
filter. The iBall then automatically embedded visualisations highlighting players for a given
sports scene. Furthermore, semantic segmentation was also applied in this work where the
scene separated the background from its foreground to embed the visuals. While the above
mentioned post processing works have augment visualisations only from a 2D perspective,
incorporating context based visualisation into mixed reality is a lot more complex. This
would require understanding the scene in real time as a prerequisite step to achieve this.
Even when the term Context Aware Mixed Reality has been coined by Papadopoulos et al.
(2021) and used often; such context applications require well researched pipelines where the
scene data is first processed before placing virtual content.

Most mixed reality development platforms already incorporate basic scene understanding
algorithms as a part of their standard toolkits. MR/AR toolkits like the MRTK 1, ARKit

1https://learn.microsoft.com/en-us/windows/mixed-reality
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2 and Google ARCore 3 render virtual content only after having detected the planes in
the real world scene. The 3D geometry of the environment is perceived using the depth
from the visual odometry SLAM algorithms present in these toolkits. Hence the detected
planes improved the geometric context of the viewed AR scene. This has helped to achieve
realistic collision effects for real objects (e.g., shouting objects in a walking game ), occlusion
rendering (i.e., blocking the virtual objects to place 3d scene models) and distance based
light effects for virtual content in real scenes (Linowes and Babilinski 2017, Alfakhori et al.
2022, Kumaran et al. 2023).

Furthermore, some recent context based works have exploited AR capabilities beyond plane
detection so as to include semantic and scene motion information. A framework to support
context-aware interactions using scene specific data was proposed in (Chen et al. 2018). For
this, a depth map from an RGBD sensor was fused with semantic information to create
semantic 3D models. The improved 3D model was then used to improve both the real and
virtual interactions in the game application. On the other hand, interpreting contextual
data based on moving scene objects was tested in TransformerMR (Kari et al. 2021). In
the work, Kari et al. (2021) processed the feed of a monocular RGB camera with a pipeline
for scene perception, transformation and construction to create virtual experiences where
real cars and pedestrians were replaced with virtual moving avatars. For this, the work
performed a pose aware object substitution by first applying semantic segmentation and
pose estimation onto vehicles in the scene. This was followed by the object impainting
(Kim et al. 2019) step that removed cars and people from the scene. The last construction
step then placed virtual avatars for the estimated 3D pose of the removed objects. For the
mixed reality work that was demonstrated using a deep learning pipeline, the application
successfully achieved real time performance at 15 fps.

Scene representation and its abstraction (as scene graphs) for AR content placement have
been studied in recent virtual studies. MR context in retargetableAR (Tahara et al. 2020),
was represented as a graph with scene objects as interlinking nodes. This graph was then
used to determine how real objects would interact with virtual content added to the scene.
In the graph creation step, semantic segmentation was applied to the 3D data of the scene.
This was followed by the scene voxelisation step. Each object was then represented in the
3D space using oriented bounding boxes which was further condensed to a 3D scene graph.
A recent work by Li et al. (2022a), extended the retargetableAR to support scene placement
at run-time. This was demonstrated for story telling as a use case.

While not much works to the knowledge of the author has applied perception for safety
in MR, safer methods to navigate in virtual reality was proved to be possible in (Cheng
et al. 2019). The prototype in the work VRoamer, used a head-mounted RGBD camera
to dynamically detect and perceive moving objects in front of a VR immersed user. Using
an environment and motion pipeline, the scene and its geometry was initially identified.
Any objects that stood out from the scene geometry was then mapped as an obstacle.
This allowed users to safely move in the virtual world while avoiding collisions with objects
present in the real world. Another work, the DreamWalker (Yang et al. 2019), applied
perception along with VR authoring to create realistic walking experiences. For this an
object detection system extracted moving pedestrians and objects in front of the headset
using on the fly YOLO and depth sensing. The detected pedestrians were then substituted

2https://developer.apple.com/documentation/arkit
3https://developers.google.com/ar/develop
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in VR using simulated content so that walking in the virtual world was a seamless experience
as in reality.

3.1.3 External Influences

While walking there are always external factors and influences to motion that are in play due
to movements happening in the near vicinity of the navigating persons. Simulation models
that involve pedestrians movement in traffic spaces have often aimed to reproduce these
influences occurring between persons and cars or between the different road users(Johora
and Müller 2020,Ahmed et al. 2020). In such models, the walking behaviour of each person
is modelled using a combination of social forces as proposed in (Helbing and Molnar 1995)
or using the cellular automata model (Blue and Adler 1999). VR and Mixed reality have
been used to both integrate such models (Kamalasanan et al. 2022b) and study influences of
external walkers and other moving objects to once own walking. Most studies in this aspect
has been on what factors influence the collision avoidance (Olivier et al. 2017 Berton et al.
2019) behaviours of a person when facing a crossing or a danger situation. Virtual environ-
ments (as in Figure 3.4) prove ideal in such works by supporting both the replication of real
scene in virtual world and the recording of movement data to study walking behaviours.

Figure 3.4: Walking motion interactions in VR study setting where a study participant crosses a
walker in the presence of obstacles (walls) that occlude his/her vision (Berton et al. 2019).

Walking Studies and Virtual Environments: Motion studies (Krüger et al. 2024, Orschiedt
et al. 2023) have been used to evaluate how walking people are influenced by the presence
of both static and dynamic objects in a scene. Such studies have mainly observed what
movement strategies would come into play when a person sees objects or other persons
cross their path. Most studies have reported that a person would either stop, slow down
or change his/her direction of walking when confronted with obstacles that would block
his/her movement path. In the presence of static objects, obstacle avoidance for walkers
was mainly explained by path adjustment as reported in (Huber et al. 2014). The person
would move away from his/her current path seeing an obstacle in most scenarios tested in
the study. This observation was further extended by Fajen and Warren (2003) to include
moving obstacles to study collision avoidance. While most studies reported path and speed
adjustments in their works, varying the speed has its own advantage in some cases. Speed
adjustments often came with the benefit of maintaining the desired path so that spatial
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re-planning for trajectories might not be needed when facing a crossing conflict. But when
experimental constraints where put in place (for example by restricting view or crowding
the walking spaces), braking was found to be required (Jansen et al. 2011, Moussaïd et al.
2011). Lack of sufficient walking spaces and a hurry to cross others could also make braking
a necessity as noted by Cinelli and Patla (2008).

The bodily behaviour or spatial constraints applied to study collision avoidance are not
the only factors that influence crossing decisions. The amount of attention given to any
nearby crossing object measured using eye gaze also plays a role. For instance, Croft and
Panchuk (2018) used the gaze information obtained using eye trackers while recording the
resulting crossing behaviour for both constrained and unconstrained walking spaces. The
study highlighted that making visual observations does play a significant role in the choice
of a crossing strategy. In an another study, fixation was found to play a role in deciding
who would cross first and also the probability of any resulting collision (Jovancevic-Misic
and Hayhoe 2009) from the crossings.

The use of headsets with eye tracking feature and its ability to move handsfree while tracking
each user position in 3D space has attracted VR and mixed reality as a good platform
to study walking behaviours. The motion in virtual setting while wearing a headset has
noted not to be significantly different from real world walking behaviour (Fink et al. 2007),
hence proving the technology to be suitable for studying walking influences using AR. In an
earlier work, Olivier et al. (2010) observed the crossing behaviours of persons with virtual
pedestrians in a desktop based study. Using such an approach, the participants of the
desktop study were able to both detect, estimate a collision and also anticipate whether they
had to cross or give way. Similar avoidance behaviours have been studied in VR settings
either when both interacting persons were represented virtually in the same VR environment
(Podkosova and Kaufmann 2018b, Buck et al. 2019), or where persons interacted with a
virtual 3D pedestrian avatar (Podkosova and Kaufmann 2018a, Nelson et al. 2023). Each
walking interaction was then found to be influenced by the crossing situation, personality
and gender (Knorr et al. 2016 Olivier et al. 2013) of persons in the study.

3.2 Discussion

A common element in each of the types of motion influences reviewed is that the methods
are largely different based on the type of environment (real, virtual or mixed) and the visual
medium and content used to influence walking. Each applied method might influence a
walking person differently (e.g., redirected walking for virtual reality vs AR for navigation)
and also the same technique might yield different results when applying it to a see-through
AR headset like the Hololens. The degree of motion influence is expected to be different
when using an active, passive or external stimuli intervention using an AR device.

Taking traffic context and driver movements for example, even when different AR visualisa-
tions and research works have focused on safety by indicating dangers in the scene (Schall Jr
et al. 2013, Winkler et al. 2015), none of the works focused on how much would be the degree
of influence to driving movements after having seen danger warnings. Much of traffic study
literature has focused on evaluating whether seeing 3D visualisation was more effective than
a 2D presentation or if people were actually paying attention to the 3D content shown on
the displays (Tonnis et al. 2005, Schall Jr et al. 2013).
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Also applying AR visualisation based on scene context has not received much attention.
To improve safety based on traffic situation, a shared reality concept was introduced in
(Peitso and Michael 2020). In it, tracked behaviour of real world objects in the vicinity of
a vehicle was combined to show AR content. However the work lacked any technical details
of how such a system would be feasible. Most AR studies for traffic safety only emphasized
drivers and never considered pedestrians or influencing walking. Also none of the works
to the knowledge of the author applied AR visualisation to passively influence the walking
behaviour based on the safety scene context. Safety traffic scene context with reference to
this thesis would mean the movement of other persons/objects (cyclist, vehicles) including
pedestrians with conflicting motion walking nearby.

For an AR device like the Hololens to show a motion influencing visualisation to enhance
safety, it should be able to first detect objects/persons walking nearby; track where these
people would walk in a future point in time and show a scene context appropriate visuali-
sation to make the Hololens user feel safe. Hence to identify the research gaps in achieving
a safety based AR influence, we further subcategories our literature review to focus on key
components- Context aware perception (Localisation of persons/objects and Motion track-
ing) and Augmentation (Future visualisation) of motion based on perception pipeline. The
Figure 3.5 highlights the key review components researched within an AR context for this
thesis. Also as both the mentioned components form an essential part of robotic motion
perception research, to avoid exhaustive related works study; we only focus on reviewing
works that are RGBD based or visualisation specific to identify gaps for this thesis.

Figure 3.5: Scene Aware Mixed Reality for Motion Influence.

3.2.1 Localisation and Motion Tracking

Localisation of persons as seen from the perspective of an RGBD based sensor perception
has been addressed using 3D object detection algorithms (Geiger et al. 2012) that have
been developed in the field of robotics. In such approaches, given an RGBD image, the 3D
position of the person, along with the dimensions of an enclosing 3D box is estimated. In
pedestrian detection algorithms as in (Kollmitz et al. 2019), based on RGBD data, Kollmitz
et al. extended a Faster R-CNN model (Ren et al. 2015) wherein 3D centroids of people
were regressed using a deep learning network for an indoor mobility dataset. Another work
(Linder et al. 2020), extended the Yolo v3 model by concatenating the depth along with
RGB images and evaluated 3D centroid estimation of persons for synthetic data. Another
RGBD version for YOLO was proposed in (Takahashi et al. 2020) applying extensions to
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its backbone while regressing 3D centroids of people using 4 channel RGBD data directly.
Most of the mentioned works focused on only estimating the 3D position of the persons
and did not consider how the persons were oriented in the 3D space. Of the 3D detection
approaches that accounted for the orientation estimates, Frustum Pointnets (Qi et al. 2018)
provides estimates of not just the position, but also the orientation and enclosing 3D shape.
While there have been more recent SOTA 3D detection approaches (Geiger et al. 2015)
proposed recently, numerous works (Wang and Jia 2019, Wang et al. 2020) have focused on
extending and improving 3D RGBD detection with F-Pointnet using the Lidar, camera and
radars sensors. In a recent research, the JRD Dataset (Shenoi et al. 2020) was extended to
both detect and track walking pedestrians in an indoor scene using the F-pointnet detection
module.

Human motion tracking is also an essential component of motion perception where once
a person is detected using localisation, s/he is tracked continuously to follow the detected
person and his movements. Most modern trackers employ a tracking by detection approach
to constantly track pedestrians in motion sequences (Greedy n.d., Roshan Zamir et al.
2012, Choi 2015, Dehghan et al. 2015, Yoon et al. 2016, Klinger et al. 2017). This method
would come in two phases : (a) each person in the scene will be detection using pedestrian
detection, and (b) detections from consecutive frames are associated to generate a set of
movement trajectories. While detection can be tackled using the localisation block discussed
in the previous section, tracking could be achieved when subsequent detection’s of the same
person or object are mapped and associated correctly. The tracking task could become a
lot more complex depending on the number of persons appearing in the scene and other
environmental factors. While previous works have dealt with optimisation methods (Berclaz
et al. 2011, Dehghan et al. 2015) to handle such issues, not much has been investigated on
how tracking performances for AR visualisation pipelines would differ. While some works
have applied detection to AR headset sensors like the Hololens (Zeidler et al. 2023, Bahri
et al. 2019), none of the works applied motion tracking for AR device data based on tracking
by detection approach.

3.2.2 Visualisation of Future Paths

Once the motion of people in an AR scene are estimated, then visualising their current
position or their future paths have been studied in automotive display research. An AR
user interface that casts a virtual shadow of approaching pedestrians was prototyped and
tested in (Kim et al. 2016). For the Head Up Display (HUD) based AR visualisation, the
appearance of the shadow was varied to indicate both the point and direction of intrusion.
Another recent study by Yu et al. (2023) focused on using human motion path visualisations
to increase trust for occasional and unplanned robot encounters in public settings. For this,
Yu et al. visually communicated the inferred motion paths of walking pedestrians from
nearby robots onto the collocated HMD headset users. Future path visualisations have also
been attempted in other domains to make early decisions based on visual data. An earlier
work in predictive sports visualised AR future trajectory using a motion pipeline (Itoh et al.
2016). The pipeline implementation supported motion estimation in real time such that the
future position of ball could be estimated well in advance.
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3.3 Research Gaps

Based on the review of related works, the following research gaps were identified.

– Perceiving pedestrian scene motion using AR device

There are only few works and methods that explored scene motion estimation using
AR devices and its sensors. As each AR device would have RGBD sensors to create 3D
maps of its surrounding scene to place virtual content; applying perception to the data
from the device might be beneficial to overlay appropriate visualisations to influence
walking.

In this thesis, a motion perception pipeline that uses the RGBD sensors of an AR
device (Hololens) is proposed. Using existing methods from robotic perception, the
pipeline will detect and track persons walking nearby the headset.

– Evaluating the motion inference capability of an AR headset

The accuracy of a pipeline that detects and tracks people is important if the objective
is to apply appropriate AR visualisations based on nearby motion. So, if the motion
pipeline is not able to accurately detect and track where others in front of a Hololens
user are walking, the resulting visualisation applied based on inferred motion will have
inaccuracy in creating motion influences.

The motion trajectories from a tracking by detection pipeline gives a quantitative and
qualitative estimate of how good the estimated scene movement is. Hence by using
the tracked trajectories of detected people of the Hololens, a method of quantifying
the accuracy of estimated walked paths for the AR device is explored. This has not
yet been done in any previous studies.

– Ego influences of visualising future motion based on pedestrian scene move-
ment

A future guess of which path persons takes predominates navigation decisions of others
walking nearby. Especially in the event of potential collision, this estimate s/he makes
controls the way how the conflict spot would be avoided. Showing the future path of
others in AR as extra information could either prompt one to reinforce or contradict
his/her conflict avoidance strategy.

In this thesis, a novel method of studying the path choice influences when visualising
the future path during a motion conflicts is proposed. The approach that focuses on
walking influence can be studied from preferred motion trajectories that people might
decide to take while avoiding collisions with AR futures.

– Studying other influences that can be captured with AR Sources

When walking, people prefer to make movement decisions not solely based on nearby
persons, but also from the presence of other traffic participants such as cyclists moving
nearby and/or from environmental factors. The presence of a virtual traffic light
indicated to them could be once such example of an environmental component.

In this thesis, a novel method of studying such external influences is proposed by either
applying an active influence using AR (e.g., virtual traffic light) while on foot or by
measuring the impact of external influences (e.g., presence of nearby cyclist). Both
the influences are further studied using the trajectories of the involved agents.





4 Dataset and Evaluation Methods

In this chapter, we survey and discuss the datasets and evaluation metrics that have been
applied in the scope of this thesis to design, evaluate and validate the methods of AR
influences. To train and evaluate pedestrian detection, the simulated shared space dataset
is used. The tracking performance of the motion perception pipeline is evaluated using
the IKG pedestrian tracking dataset. The detection, tracking and conflict based metric are
further used to evaluate the motion pipeline and AR influence methods introduced in this
thesis.

4.1 Simulated Shared Space Dataset

To create an RGBD dataset using the Hololens sensors, the Simulated shared space (SSS)
dataset was created using the device in the research mode (Ungureanu et al. 2020). In the
experimental arena designed to capture the data, the Hololens overlooked an open space
indoor scene that contained chairs and benches (Figure 4.1). The objective of the data
capture was to create a pedestrian RGBD dataset as seen by a ego user for an indoor space.
The motion and interactions in the space was expected to mimic the activity and behaviors
that might take place in an outdoor shared space. For this, the arena included floor markings
that were synonymous to car lanes and street furniture (tables and chairs) to recreate social
interactions. Also the indoor space dimensions roughly matched the Hololens depth sensor
range (≈ 7 meters) to capture quality RGB and depth images for the walking scene.

In the data collection campaign, three participants along with three volunteers completed
an enacted walking sequence with social interactions. At the start of the experiment, each
participant was shown a picture of the shared space and instructed to use the marking on
the floor to assume the existence of passing cars in the environment. The narrative that was
used to guide the participants imitated the walking journey of persons shopping in a German
farmers market. All persons who participated were instructed to act in the most natural
manner pretending to navigate in a shared space while meeting friends. The volunteers
helped the participant to move in the space and either walked with them or intentionally
created conflicted walking movements.

An external static camera was setup overlooking the ego Hololens to capture the different
recording sessions and to support the documentation of the dataset. Each data compare
session lasted for three minutes with the Hololens capturing depth and Image using the
Research mode util application1. Following each data capture session, the data was manually
downloaded to store the RGB image, depth and camera pose. The Figure 4.2 illustrates
an example RGB and corresponding depth captured by the ego Hololens overlooking the
walking scene with participants and volunteers.

1https://github.com/microsoft/HoloLens2ForCV
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Figure 4.1: The figure on the left shows the data capture plan where an ego Hololens user looks at
a scene with chairs, retail benches and lanes drawn on the floor. The figure on the right depicts
the indoor scene implementing the plan of a shared space.

Figure 4.2: Images of the dataset captured using the Hololens RGB camera(left) and Depth cam-
era(right).

A large dataset of image and depth streams with pedestrian movement was created from
the data collection campaign. The following pedestrian motion characteristics (Table 4.1)
were recorded in the dataset:

Characteristics Count

Pedestrian Collisions 7
Grouping 9

Total Duration (min) 18
Table 4.1: Pedestrian interaction characteristics of the SSS Dataset.

Semi Automated Pedestrian Annotation: A semi-automated labelling method has been de-
veloped in this thesis to annotate position of pedestrians in 3D captured in SSS Dataset.
The method was used to created bounding boxes of persons in the Hololens 3D scene. The
annotated data was then further used to retrain 3D pedestrian detection algorithms used in
this thesis.
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The Figure 4.3 details the annotation pipeline used to created bounding boxes by fusing data
from both the 2D images and 3D pointclouds. For each RGBD image captured using the
Hololens, the 3D scene and the RGB images are processed simultaneously in the pipeline.
The 3D point cloud of the scene is first removed of any ground planes by using the RANSAC
algorithm (Derpanis 2010). Simultaneously pedestrians in the scene are detected using the
YoloV3 (Redmon and Farhadi 2018) image detector. Hence by using the ground plane
filtered pointcloud and yolo results, all points that could belong to a pedestrian are identified
by separating pedestrian points from non pedestrian points. Also as the data capture arena
for the SSS Dataset also contained tables and benches, a region growing approach was used
to segment out persons in 3D from any artifact noise. For every segmented pedestrians, a
bounding box was estimated that enclosed the 3D points of the person in the scene. The
final step of the semi-automatic annotation included correcting any errors in estimated boxes
using manual correction. In this step, each of the 3D pedestrian bounding boxes estimated
following the region growing segmentation was manually corrected for orientation errors
using Labelcloud (Sager et al. 2021).

Figure 4.3: Semi automated pipeline for labelling pedestrians for SSS Dataset.

4.2 IKG Pedestrian Tracking Dataset

The IKG tracking dataset consists of motion trajectories of pedestrians walking in an indoor
lab recorded at Appelstraße 9a, Hannover. The indoor space (Figure 4.5) used for the data
capture was characterised by a free walking environment of dimensions 6m x 5m and was
largely open. The objective of the data collection campaign was to create an ego pedestrian
RGBD tracking dataset using the Hololens 2.

Figure 4.4: Walking sequences captured as part of the tracking dataset.
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Figure 4.5: The Indoor tracking scene capturing walking pedestrians using both optical motion
tracking and the hololens.

For this, the Hololens was placed on a mannequin and positioned at a height of 1.5 m
above the ground viewing the open walking space. Two different volunteers were invited to
the tracking data campaign and asked to walk in specific walking sequences as illustrated
in Figure 4.4. Each of the volunteers worn eye gears that embedded optical markers on
them. The markers were used to capture ground-truth motion and their tracks in the
scene. During the capture, the motion in the lab was recorded using two sources- Hololens
and optical motion tracking. While the research mode sensors (RGB and Depth) of the
Hololens captured the movement of the volunteers in front of the device, their motion
was also captured simultaneously using a high precision optical tracking system2 to create
groundtruth data.

The resulting captured dataset consisted of motion tracks from two walking pedestrians in
the scene moving in different crossing configurations (path crossing, side-by side motion or
90 degree conflict). Using post-processing the Hololens RGBD data was time synchronised
to the optical tracking movement data as explained further in section 6.3. Each timestamp
of the captured RGBD data from the Hololens then recorded a groundtruth track id, a 2D
position, an RGB image and its corresponding depth pointcloud.

4.3 Evaluation Metrics

To evaluate the methods proposed in this work, different metrics are detailed based on
the component examined. As detection of persons in 3D, tracking their movement and
evaluating the safety of walking with AR visualisations are the primary research focus of
the work; different metrics from robotic perception and traffic safety are used in this work.

2https://ar-tracking.com/en
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To perceive pedestrian movement accurately, a motion perception algorithm should report
on how many persons were detected correctly and how may false positives (false alarms)
were produced. With respect to tracking them, it should support one-to-one matches, one-
to-many matches, many to one matches, and should scale up to larger test areas without
loss of tracking capabilities. And finally to quantify safety while walking when viewing
AR visualisations, the chosen metric should estimate if collision severities have increased or
decreased with AR content.

4.3.1 Detection based Metric

Given the predictions from an object detection algorithm, the output object class could
either be (Fig. 4.6): True Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN). Here "positive" means prediction of being object of issued classification,
while "negative" means prediction of not being object of interest. "True" and "False" make
a judgement, whether each prediction match ground truth or not, which is decided from
either their IoU or threshold of prediction based on the ground truth data. For a 3D object
detection approach, this would mostly be the 3D IoU of the predicted boxes.

Figure 4.6: TP: items correctly labelled as belong to the positive class. FP: items mislabelled as
belong to positive class. TN: items correctly labelled as not belong to positive class. FN: items
mislabelled as not belong to positive class.

Accuracy, Precision, Recall and Average Precision : These four metrics are used to evaluate
how good an object detection algorithm is based on the total number of positives and
negatives predicted.

The accuracy (Equation 4.1) is evaluated by computing the ratio of total categories samples
with the sum of correct predictions:

Accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

However, in object detection evaluations, the accuracy is not be taken into account due to
uncertainty of TN. Instead, two other metrics - precision and recall are also used as object
detection metrics.
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The precision for a class is the number of TP divided by total number of elements labelled
as positive:

Precision =
TP

TP + FP
(4.2)

The recall is defined as the number of TP divided by total number of elements actually
belong to positive class:

Recall =
TP

TP + FN
(4.3)

Obviously, an optimal object detection model should gain higher score of precision and
recall, but there is an inverse relationship between them. It’s possible to increase one at
the cost of reducing another one. Therefore, average precision (AP) is usually used as the
evaluation standard to combine precision and recall.

Figure 4.7: Recall value is divided from 0 to 1.0 into 11 points. The interpolated precision is marked
as red dot, which takes maximum precision over recalls > r.

The Pascal VOC 2007 challenge (Everingham et al. 2010) provides a standard to compute
AP (Figure 4.7). It sets the IoU threshold = 0.5, and calculates every precision over 11 recall
levels Λr=[0 : 0.1 : 1], the interpolated precision Pinterp(r) that takes maximum precision over
all recalls > r is denoted as:

Pinterp(r) = maxΛr⩾rP (Λr) (4.4)

The average precision is computed by averaging all interpolated precisions:

AP =
1

11

∑
r∈0,0.1,...1

Pinterp(r) (4.5)

4.3.2 Tracking based Metric

A tracker that follows multiple objects in a scene should at all points in time find the correct
number of objects present and estimate the position as precisely as possible. Each object
should be assigned a unique trackID that would stay consistent throughout a sequence (even
in the presence of occlusion e.t.c.,). Hence the evaluation procedure for the sequence (t1
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....tn) should correctly estimate the tracking precision expressing how well exact positions of
people are estimated and tracking accuracy which would indicate on how many mistakes the
tracker made in terms of misses, false positives, mismatches and failures to recover tracks.

Figure 4.8: The figure on the left illustrates tracker hypothesis to object mapping as illustrated in
(Bernardin and Stiefelhagen 2008), the figure in the center depicts correspondence discontinuity
as distance exceeds threshold T. The figure on the right depicts a scenario on how mismatch
count (Case 1-one, Case 2-one) calculated for correct mapping between h2 and o1 remain the same
considering the length of the switched segments.

To establish a continuous mapping between object hypotheses from an object detector
(h1,.....,hm) and the real objects (o1,.....,om), only valid correspondences should be con-
sidered while tracking and the resulting tracks should be consistent over time (Figure 4.8).
For valid correspondences, a certain threshold T determines the conceptual boundary be-
yond which the tracker misses the object. In the case of the 3D detection, the bounding box
centroid distances between the object and hypothesis should be above that average width
of a person for valid detection’s to be tracked. Hence the value for this threshold T cannot
be generalised and does depend on the distance measure used, the application task and size
of the objects tracked in the scene.

To keep track of the mismatches, a list of object-hypothesis mapping is maintained during
tracking. For a set of mappings Mt = {(oi, hj)} made upto time t, a new correspondence
{(oi, hk)}at t+1 that contradicts, would update the mapping set to Mt + 1 = {(oi, hk)}
increasing the mismatch count in the process. With this, the tracker keeps track on the
number of mismatches while also maintaining the updated mapping relationships.

The performance of object tracking in this thesis is evaluated using the CLEAR MOT
metrics (Bernardin and Stiefelhagen 2008). This metric consisting of multi object tracking
accuracy (MOTA) and multi object tracking precision (MOTP). The MOTA represents the
number of TPs, FPs and the Id switches (IDs) over n frames computed as :

MOTA = 1−
∑

n(FP + FN + IDs)∑
nGT

(4.6)

MOTP describes how well a tracker can localise TPs which are computed in the 3D object
space. The MOTP expresses the percentage of well-localised TPs, i.e., detection’s having
3D distance to their corresponding GTs smaller than a threshold ϵ3D−MOTP

MOTP3D =

∑
n I(dist(S, Sref ), ϵ3D−MOTP )∑

n TP
(4.7)
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(a) (b)

Figure 4.9: (a) Conflicts and collision generation (Allen et al. 1978), (b) Pyramid of interactions
(Hydén 1987) for road users.

where I is indicator function with value of 1 if dist ≥ ϵ3D−MOTP and otherwise 0.

4.3.3 Conflict based Metric

A traffic conflict (Svensson and Hydén 2006) is a situation where two or more road users
approaching each other in space and time to an extend that collision would be imminent
if there is no change in movements. Conflict becomes an essential part of the collision
avoidance (Figure 4.9a) that usually would arise when the involved agents sense a potential
collision and then try avoiding it. This could be done by resorting to evasive action like
moving away or changing onces motion speed. However, in the absence of any evasive action,
each conflict would result in a collision.

Studying conflicts and its underlying reasons would helps to explain the severity of the traffic
interaction amongst road users using the safety pyramid as proposed in Hydén 1987. As
per the pyramid definition, the most severe conflict would be synonymous to collision while
lesser severe encounters would mean lesser difficulty to cross each other. Also recent works
that have evaluated safety for shared spaces have estimated threats based on the number of
traffic conflicts due to pedestrian interactions (Orsini et al. 2023, Chen et al. 2017).

Surrogate safety indicators have been used in traffic safety studies (Johnsson et al. 2018)
to evaluate the severity of interactions when two traffic agents come close to each other.
Indicators like Time to collision (TTC) and Post Encroachment time (PET) estimate a
temporal distance between the two agents when a collision becomes evident. These metrics
then quantify the (a) the nearness of road users, and (b) potential evasive actions that the
road users took in the event of a conflict. Both the metrics are further explained in detail.

Time to Collision (TTC): The TTC concept, which was introduced in 1971 by the US
researcher Hayward, builds up on a constant motion speed and direction assumption for
predicting the temporal distance to a potential collision of two road users in the future. In
(Miller and Huang 2002), a procedure to calculate the time to collision between to traffic
agents is detailed. For this, the data considered the initial positions of the agents along with
its speed and direction.

Given the initial points as in Figure 4.10, the intersection points of the two agents are
estimated by the equations:
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Figure 4.10: Simplified calculation of the intersection points given initial position of agents at
(x1, y1) and (x2, y2).

x+ =
(y2 − y1)− (x2 ∗ tanθ2 − x1 ∗ tanθ1)

tanθ1 − tanθ2
(4.8)

y+ =
(x2 − x1)− (y2 ∗ cotθ2 − y1 ∗ cotθ1)

cotθ1 − cotθ2
(4.9)

Once the intersection point is estimated using Eq 4.8 and 4.9, the collision time is computed
based on the current speeds of agents.

TTC =
d

v2 − v1
(4.10)

where d is distance between them when either agents have reached the computed intersection
point and V2 and V1 correspond to the speed of the involved agents.

Post-encroachment time (PET): As introduced by Allen et al. (1978), PET measures the
actual temporal distance when the trajectories of two road users cross. In other words,
PET is defined as "the minimal delay of the first road user which, if applied, will result in a
collision course and a collision" (Laureshyn et al. 2010). Low values of PET reflects severe
traffic conflicts and PET=0 represents a crash.

Figure 4.11: The time instance t1 when the first person enters the conflict zone and t2 when the
first person leaves the conflict zone and the second person enters it.
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The value for the encroachment time can be calculated based on based on the time it takes
the agents to pass the crossing point as in Figure 4.11. The value for this metric is computed
as:

PET = t2 − t1 (4.11)

Due to the unpredictable walking behaviour of humans, it might be hard to quantify the
safety interaction behaviours in this thesis solely based on the above discussed metrics,
hence motion dynamics (speed and distance) of the involved agents are also studied for the
work.



5 Influence Framework & Scene Perception

The section details on both the general framework and its perception component of how
AR can influence the walking behaviours. For this in the first section we first explain our
influence framework and its pipeline. In the subsequent sections we explain the components
that were identified for the framework briefly. While this chapter mainly focuses on the
primary component of the pipeline - pedestrian perception, the future path visualisation of
the scene that is also part of the pipeline is detailed in the subsequent chapters.

5.1 Influence Framework and General Pipeline

Aiming at influencing the walking behaviour using AR, our approach developed is focused
to understand how seeing the future walking paths (in AR) of other pedestrians walking
in front of a Hololens would affect the path choices of the headset user. For this both the
RGBD data and the visual interface of the AR device is used in the method.

Figure 5.1: The overview framework for the proposed AR motion influence.

As indicated in Figure 5.1, initially both the RGB and depth data from the device is ac-
cessed simultaneously as a user looks at a scene. The data is then processed to understand
pedestrian movement happening in the scene. For this scene motion perception is applied
where different pedestrians walking in front of the device are localised. Once localised using
data from both the past and current detections, the pedestrian trajectories of neighbours
is approximated using tracking. Lastly, to create visual influences based on scene motion,
the tracked paths can be first predicted and then visualised in AR. The future path visual-
isation then shows the next walking steps of others in a Hololens scene. The future steps
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of neighbours are augmented using a 3D arrow such that the orientation indicates if the
person would turn or continue to walk straight.

To explain the complete pipeline at a component level, the Figure 5.2 indicates the sensor
access, scene perception and visual communication modules as highlighted in green & grey
and red. Amongst the two perception blocks- motion interpretation and its prediction, the
interpretation block has been given a higher priority in this thesis. The prediction block
is intended to demonstrate how motion of others in the scene can be predicted with high
accuracy given that the pipeline detects and tracks walking. Hence in our work we make a
strong assumption that motion prediction algorithms like (Cheng et al. 2023) could be easily
integrated into the influence pipeline with minor impacts to the overall proposed influence
method.

The pipeline for the work follows a serial architecture where data from the Hololens is
first accessed (sensor access) and then passed on to interpret the movement of pedestri-
ans walking in the scene (perception). Having interpreted the future using the data; the
communication component then overlays the future motion for the scene using the AR vi-
sual display to influence the walking choices of the Hololens user. Hence our work can be
best partitioned into sections for innovations in each of the modules. While this chapter
explains how scene interpretation is achieved using the Hololens, its visual communication
and evaluation are detailed in the following chapters.

Figure 5.2: The figure highlights the components (grey blocks) and the flow of information (blue
blocks) for the motion influence pipeline with sensors access and perception modules in green &
grey and the visual communication module in red.

5.2 Sensor Streaming and Hololens

The Hololens 2 is a mixed reality device that supports running AR applications written
using the Universal Windows Platform (UWP)1- programming interface for Windows client
applications. The Device Portal 2 that is supported by Hololens is a web based tool that
supports connecting to the device and streaming both audio and the video feeds while in
operation. However the portal does not provide real-time data access to the Hololens depth
sensor-Long Thraw Depth. Also the research mode utility application that is published
along with the research API (Ungureanu et al. 2020) only supports recording the sensor
data as files on the headset. This makes it difficult to run motion perception algorithms on
the device in real-time while worn by the user. Hence to fill the gap and to provide access

1https://learn.microsoft.com/en-us/windows/uwp/
2https://learn.microsoft.com/en-us/windows/uwp/debug-test-perf/device-portal
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to the sensors, a TCP connection based sensor streaming component was developed. This
allowed streaming RGB and Depth images in real-time using the ROS (Robot Operating
System) platform.

Figure 5.3: Hololens running UWP application connected to streaming Host PC over the network.

The streaming component (Figure 5.3) consists of a mixed reality application running on
the Hololens and a receiver client & its server ROS instance on a host PC. The receiver
on the host machine then subscribed to the RGBD data send by the UWP application
and passing it onto ROS (as topics 3) for further perception operations. The Hololens
application is programmed using C++ and the receiver client instance is written in python.
The noetic 4 distribution of the operating system ROS is used in the current work. All the
motion perception components that are detailed in the subsequent sections are then run as
independent modules subscribing to the hololens to access the raw data.

Hololens Coordinate System: To detect persons and track motion, we use the 3D scene
point cloud and images from the AR device. The scene depth captured by the device has a
limited range ( ≈ 5 meters) both observed manually and as reported in (Hübner et al. 2020).
The small field of view of the sensor is however not considered a limitation in our current
work. Also the 3D point cloud data from the device follows a sensor coordinate system as
shown in Figure 5.4. All walking motion of persons in front of the device is then captured
in the XZ local coordinate system for this thesis.

Figure 5.4: The Hololens coordinate system, with the Z axis pointing in the viewing direction.

5.3 Perception- Pedestrian Detection

Using the RGBD data from the Hololens device, two pedestrian detection algorithms Frus-
tum Pointnet and MaskRCNN are applied in our work to detect pedestrians walking

3https://wiki.ros.org/Topics
4https://wiki.ros.org/noetic
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in front of the AR headset. The choice of two algorithms for the Hololens is to compare
and evaluate how well RGBD data can detect moving pedestrians using both methods. Fol-
lowing detection, both F-Pointnet and MaskRCNN are compared for pedestrian tracking
performance. For this the 3D detection data is then passed onto the tracker to associate the
detections in each of the subsequent timestamps as pedestrian tracklets. In the following
sections we explain both the detection approaches in detail.

5.3.1 Frustum Pointnet Detection

The pioneers in detecting pedestrians, cyclists and vehicles using a subset of input point
cloud data as known as frustums is the Frustum Pointnet (F-Pointnet) (Qi et al. 2018).
The network uses a high performing image detector (e.g.,YOLO) to first detect and identify
people in the input images captured from the scene. The output from the 2D image detector
is then used to localise the position of detected people using its corresponding 3D point
clouds. The different stages that are part of this 3D detection approach as illustrated in
Figure 5.5 are as follows:

Figure 5.5: Overview of the Frustum Pointnet illustrating the main steps - Frustum Proposal, 3D
instance segmentation and Amodal 3D Box estimation (Photo: (Qi et al. 2018)).

Frustum Proposal Given the RGBD data of the scene from the Hololens, this step first
passes the 2D images to a person detector. The output of the image detector (as 2D
bounding boxes) along with the point cloud data is used to filter out all those 3D points
that might possibly contain a detected person. For this, each of the 3D point of the input
scene P = {p1, ..., pN} is projected to the RGB image plane to obtain the pixel representation
pimg
i = (ui, vi) of the scene. Using the information from 2D image bounding box, all the

points that lie inside of the bounding box are identified using Equation 5.1.

umin ≤ ui ≤ umax

vmin ≤ vi ≤ vmax

(5.1)

where u = {umin, umax} and v = {vmin, vmax} represent the bounding box corners of detected
persons in the image.

This step then returned a subset (frustum points) of the pointcloud with 3D information
of all points that could potentially contain a person. The extracted frustum points P ′ =
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Figure 5.6: The figure (left) illustrates a detected bounding box on the image and frustum points
that fall inside it. Frustum point cloud rotation normalises the frustum points using frustum angle.
The rotated angle is then represented with an axis orthogonal to image plane.

{p1, ...pN ′} are then randomly sampled to obtain a uniform point representation for neural
network based operations that are used in the later stages. The sampling step is followed
by a normalisation operation where the subset point cloud is rotated around an angle- the
frustum angle. The frustum angle represents the degree of tilt that the frustum pointcloud
makes w.r.t the camera center. As illustrated in Figure 5.6, based on whether the person is
detected to the right or far edge of the image center, pointcloud points that fall inside the
detected box could be oriented differently in 3D with reference to the camera vertical axis.

The frustum rotation step attempts to achieve rotation invariance in detecting people in 3D.
Hence, irrespective of the position of the person on the camera image and how the extracted
frustums might orient following frustum rotation, all 3D detections happen in an orthogonal
plane along the camera center. To compute this rotation angle, the bounding box center
of the person in the image plane is computed. Then by reverse projecting the center, the
angular orientation of the frustum point cloud w.r.t to the vertical axis is obtained. The
rotated frustum cloud is further passed to the subsequent stages to localise the position of
persons using a network based segmentation and box estimation method.

Segmentation and 3D box Estimation In this step, the pointcloud processed in the pre-
vious step is passed through a combination of smaller networks to first identify 3D points
belonging to a pedestrian and then estimate their position and orientation respectively. The
instance segmentation sub-network inputs the view point normalised pointclouds and iden-
tifies points belonging to pedestrians. This differentiates pedestrian points from non person
3D points and removes background noise. The network then returns the semantically clas-
sified points along with the probability scores when it identifies people in the scene. The
instance segmentation network used in the F-Pointnet is based on the Pointnet (Qi et al.
2017) architecture. The Pointnet network that forms the backbone of many state of the art
object detectors (Lang et al. 2019, Shi et al. 2022) applies multi-layer perception (MLP) to
interpret both the global and local features in an input cloud. These features are then used
in inferring the position and physical attributes of the identified persons by F-Pointnet.
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In the last stage of this 3D pedestrian detection algorithm, all the points classified to the
object class person are further regressed to a oriented 3D bounding box to fit to the seg-
mented points. Before the final regression stage, the points are first transformed by the
estimated centroid (x,y,z) obtained from the global pointnet features. With this transform,
all points are now expressed in a local cordinate system. These locally represented points
are then used to approximate the size of detected persons. For this a simplified version of
the T-network outputs residues relative to the estimated centroid and pedestrian dimensions
relative to predefined pedestrian anchor boxes. The final output of the network is then the
estimated 3D position, the box dimensions (width, height and length) and the orientation
(θ) of persons standing near the Hololens.

5.3.2 MaskRCNN RGBD Detection

In the second algorithm that is used in our work to detect pedestrians, we use the popular
image segmentation network- MaskRCNN (He et al. 2017) to first segment pedestrians in
RGB and then use the pointcloud information from its corresponding depth to localise
segmented pedestrians in 3D. Unlike the previous F-Pointnet that performs 3D detection as
a two step method to first reduce the search of 3D point cloud and then detect persons, this
method uses the data from the Hololens sequentially. The primary MaskRCNN network
is responsible to detect the person, and the extrinsic registration is only used to lift the
2D pedestrian pixels to 3D space. In the absence of an accurate registration, given a
segmentation mask of the detected person from the image; the approach could fail to localise
the persons accurately in 3D. This could primarily occur when a few nearby 3D points would
wrongly overlap with the mask, resulting in erroneous 3D positions of the persons in the
scene. As an accurate registration between the RGB image and depth is an important
prerequisite to avoid such errors, we first accurately calibrate the RGBD sensors of the
Hololens in our work.

RGBD Calibration The Hololens 2 is a commercially available mixed reality device targeted
to support research and business use cases. Hence the depth sensor of this ToF device
(Hololens 2) required re-calibration as its sensors were factory calibrated and contains errors
(as in Figure 5.7). Most calibration techniques used to calibrate RGB and Depth cameras
use the homography (Dubrofsky 2009) based camera calibration technique available with
the Matlab calibration toolbox (Bouguet 2004). Such calibration approaches correct the
errors in depth using the measurement of known landmarks (e.g., chessboard) and 2D-3D
correspondences. This approach was however found to be unsuitable for the Hololens as
the low resolution of the captured RGB and depth images failed to identify landmarks with
enough accuracy. Hence for our work, we have used the calibration approach from (Ferstl
et al. 2015). We briefly explain the procedure used with this method in detail below.

The method detailed by Ferstl et al. (2015) as in Figure 5.8a is a user friendly and fully
automatic calibration pipeline. Unlike a chessboard target, the procedure uses a circular
target (Figure 5.8b) to capture a set of landmark images of both the image and depth sensor.
This makes the procedure well suited for low resolution camera parameter estimation. As a
first step, a set of images of the target are captured using the Hololens by walking around
the printed target. During the calibration, the captured image and depth dataset of the
target is then passed for marker identification. Following this, the circular markers in
both the RGB and depth images are automatically identified and passed over for camera
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Figure 5.7: The Figure visually illustrates the errors in depth projection (highlighted with bright
colours) using both the intrinsic and extrinsic parameters shared by Hololens research mode (Un-
gureanu et al. 2020).

(a) Calibration procedure detailed in Ferstl et al. 2015.
(b) Calibration Target in (Ferstl et
al. 2015).

parameter estimation. The homography then computes the extrinsic registration between
the two sensor. For this estimation, the Matlab calibration toolbox is used 5 as a part of
this toolkit. Errors in depth sensing are then corrected in the depth compensation step.
Consequently, the depth while capturing the circular target is compared to a learned depth
model. The random forest regressor then estimates the offset in the captured and estimated
depths which further improves the measurements of depth images. The calibration toolkit
then outputs the intrinsic parameters of both image and depth sensor along with the extrinsic
registration matrices.

3D Detection using MaskRCNN The MaskRCNN is a convolutional neural network that
detects objects in images (as bounding boxes) and generates a high-quality segmentation
mask for each detected instance. Hence to apply the network in localising pedestrians in
3D, the calibration parameters and the RGBD data from the Hololens are passed to the
pipline with a MaskRCNN segmentation block as shown in Figure 5.9.

Given an RGB image with pedestrians in it, the image segmentation CNN returns the 2D
bounding box, the segmentation mask and the probability score of each detected pedestrian
in the scene. The segmentation mask then covers the complete contour of the detected
person with all those pixel points that belong to the class person. Hence to identify the same
person in 3D, all the depth points can be reverse projected using the obtained calibration

5https://www.mathworks.com/help/vision/camera-calibration.html
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Figure 5.9: MaskRCNN based 3D detection using Hololens 2.

parameters. With this, all the 3D points that fall in the pedestrian mask are then identified
as candidate points categorising them as pedestrians. A median filter is applied to the
3D candidates to remove artefact noises that would have been introduced due to dynamic
projection errors (due to movement in the scene). As the possibility of such errors in
influencing pedestrian localisation could be larger with increasing distance from the device,
we only filter out noise points along the centroid of the detected mask and orthogonal to
the camera. Hence our filtering only removes those points along the Z axis which might
belong to the background of the scene. Once a filtered pedestrian pointcloud is obtained,
each person can be approximated with a centroid and its enclosing box parameters l, w and
h.

5.4 Perception- Particle Filter Tracking

Aimed at tracking multiple walking pedestrians in front of the Hololens, the particle filter
implemented in this thesis takes the pedestrian detections as inputs from the detection
module (either MaskRCNN or Frustum Pointnet) and tracks each of the localised persons
as moving particles over the subsequent timestamps. Furthermore, to reduce the complexity
of tracking in the 3D space, we strongly restrict the walking to the ground surface. For this,
we projected each of the 3D detected persons onto the ground plane and represent persons
with 2D positions (xj, yj). Each detected person is modelled as a particle filter that moves
on this ground plane using a motion model. Then detections (or observations) from the
subsequent timestamps are used to update the state of the filter based on the observation
likelihood. The tracks for each detected person is managed by a track life cycle management
that would update the filter based on how frequently the same persons are being detected
in the 3D space. Once successfully tracked, each person is represented by a unique id
and his/her track- tracklets that represents walking motion in front of the Hololens. The
internals of our designed filter are further explained:

Particle Filter State: Each indoor moving person in front of the Hololens is represented using
both the position and his/her moving velocity. Hence we represent pedestrian movement in
our tracker using the state variable vectors kj:

kj : {xj, yj, vx, vy} (5.2)

where vx and vy denote the velocity component in the x and y for a person walking with a
motion velocity v.
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Observation Likelihood Modelling: The observation likelihood would measure how well the
target states {k1, k2, ...., km} explain the observation data {d1, d2, ...., dm} from the detector.
This function best describes the observational error in the input spaces over the tracking
interval. At each time t, the likelihood that detection dt to originate from tracklet ki is :

p(dt|fk(ki)) = exp(
∑
j

−lj(dt|fk(ki))) (5.3)

where function lj() compute the likelihood in euclidean space for the distance of our obser-
vations to the tracklet state.

Track Management: For each new observation, the state predictions for the filter are formed
p(kt|d1:t−1) based on the previous tracked state p(kt−1|d1:t−1) and by moving the previous
state using the motion model. As pedestrians move at relatively low speeds and along a
uniform path, simple motion model like a constant velocity motion model could be used to
represent the propagation of the particle filter state kj.

Following the prediction step, associations for newly unassigned observations dj and the
Maximum a posteriori estimate of target track state kt can be computed using the likelihood
function. Based on the estimated likelihood, the particle filter states managed by the tracker
undergoes a track lifecycle update creation, update and deletion based on the whether a new
observation is associated to a tracked state or not.

Figure 5.10: Different tracking life cycle states (in Blue) along with the state transitions of particle
filter tracker (in Purple).

The Figure 5.10 depicts the different transitions of the particle filter tracker on the tracked
states with every new observation at time t. The Add defines the creation of a new tracked
object state k and the subsequent assignment of an Active track status to it. An active
tracked state is propagated using a motion model in the Predict step. In the Update step,
new observation data dj is incorporated into each of the tracked target ki following a suc-
cessful association of tracked states with observation. With the Update, the filter state is
updated based on the observation likelihood. All unassociated tracks move to the Inactive
state and are discarded in a future point of time.

The tracker at each time stamp takes the 3D detection’s as input and outputs the tracked
position, heading angle and the track id of the person tracked over the time stamps.
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This section details with the evaluation procedure of how the scene motion pipeline discussed
in the previous section has been evaluated. Section 6.1 details the procedure on how the
F-Pointnet was trained and tested for detection with improvement on the Hololens data.
The method discussed in the section is published as a research paper in (Kamalasanan et al.
2022a). Section 6.2 explains how MaskRCNN was implemented and its performance when
detecting pedestrians in 3D in front of the AR device. Finally Section 6.3 discusses the
implementation of the particle filter. Furthermore the tracking performance of using both
F-Pointnet and MaskRCNN with the filter is elaborated.

6.1 Training and Testing F-Pointnet with 2D Human Pose

As the openly published F-Pointnet network was trained with the KITTI dataset (Geiger
et al. 2012), we could not directly apply the pretrained model and its detection’s for this
thesis. Hence our method to evaluate the network for our pipeline involved retraining the
network with RGBD data collected from the Hololens. For this we used the Simulated Shared
Space Dataset (SSS Dataset) described in Section 4.1. Also rather than directly applying
transfer learning, we first experimented with improving the feature space representation of
F-Pointnet and evaluated it with respect to improved detection and technical feasibility for
real-time detection. Finally we choose the trained model that best supported the constrain
of real-time pedestrian detection for our AR motion influence.

2D Human Pose: A person standing in a scene with different orientations (e.g., back facing
the camera, or titled walking posture ) appears differently from a camera view point while
captured. If the person is very close to the camera, his upper body and shoulder joints
would be more visible compared to an image capturing him when further away from the
RGB camera source. Also with the current improvements in the performance of image only
human pose estimation algorithms (Toshev and Szegedy 2014, Wang et al. 2021) it might
be possible to estimate 2D human poses with a high level of accuracy for a given image.
Applying these poses estimated using images can be used to improve 3D detection algorithm
like the F-Pointnet that also rely on RGB data in its pipeline. We hypothesise that the
extra information from such image pose estimators could be used to improve the feature
space representation for 3D pedestrian detection.

A state of the art 2D pose detection framework, OpenPose (Cao et al. 2017) for example can
detect 25 landmark points of a human in the scene given the RGB image. These landmark
points when interconnected for the shoulder, limbs and lower body parts (legs, feet and
hip) would resemble the skeleton representation for the person. The extracted landmark
points and the inter-joint pixel variations could represent significant 3D pose information
for pedestrian perception.

While the baseline F-pointnet only extracted bounding boxes (with Yolo) of persons using
images (as explained in Section 5.3.1 ), we attempted to further exploit the RGB data by
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Figure 6.1: Openpose (Cao et al. 2017) based key-point detection with the dominant keypoints (S
and H) that are considered for the Hand crafted features.

applying OpenPose joint estimates (as in Figure 6.1) and create hand crafted features from
the poses. The hand crafted features are then used when training the F-Pointnet as as meta
data to experiment improvements in 3D detection performance.

Hand Crafted Human Pose Features: Of the total 25 pose points estimated by the pose
detector, we focused only on the dominant/ easily observable openpose key-points. This
included the shoulder (keypoint 2,5), hip (keypoint 9,12), knee (keypoint 10,13), ankle
(keypoint 11,14), elbow (keypoint 3,6), wrist ( keypoint 4,7) and neck (keypoint 1). Also as
the pixel representation for these points would not yield valuable information for a person
at different distances from the camera, we craft features that were both scale invariant and
3D human pose representative. To make each of the features invariant to the effects of scale
variations due to different distances from the camera, the features are normalised by a scale
factor (SF). SF is the distance between the shoulder and hip joints, which is used for feature
normalisation:

SF = |Jointhip − Jointshoulder| (6.1)

We have developed the following feature representations of handcrafted features that would
then be experimented by fusing with the F-Pointnet:

Distance Ratio (DR): The euclidean distance between the respective shoulder points and
hip joints are represented in this feature.

SN =
|Keypoint(5) −Keypoint(2)|

SF
(6.2)

HN =
|Keypoint(12) −Keypoint(9)|

SF
(6.3)
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As both the distance values are pixel representative distances of image coordinates, they
are scale normalised using the factor obtained in the previous step. These features are then
added as meta data to the network

Fpose = {SN , HN}

Optimised Distance Ratio (ODR): This feature representation optimises the distance ratio
to better characterise feature points in representing human orientations. A smaller value
of distance ratio correspond to people facing the camera from the side; while a larger value
might meant that they were captured with their front or backs oriented towards the camera.
Hence to amplify the orientation data that were represented as joint distances, log transfor-
mations were applied. This operation boosted the smaller shoulder and hip lengths while
also suppressing excessive dominance of front-facing or back posed people in the scene.

Fpose = {−log(SN),−log(HN)}

Optimised Distance with Keypoint Position and Distances (ODPD): This feature encoded a
more detailed summarisation of the 2D tilt and turns of persons in the scene. For this along
with ODR features, all the normalised joint positions and distances from the pose estimator
were included into the feature space.

Normalised position (Np) as represented in (Li et al. 2020) was obtained by first transforming
the image pixels to an interim coordinates where the neck was the origin. The arm (2-7) and
legs (9-14) points were then normalised by the scale factor SF. For the legs, four distance
features would include the distance between left hip and left knee, left knee and left ankle,
and the same for the right legs. While for the arms, the four features include distances
between the left elbow and left shoulder, left elbow and left wrist, and corresponding features
from the right arm.

In total the eight position and distance values in scale agnostic pixels were then concatenated
along with OPR to represent ODPD. The choice of position and length of joints was inspired
from (Li et al. 2020) where motion estimations of walking person were approximated from
2D images poses of human joints viewed from on-board camera of vehicles. We hypothesised
that including all joints would be beneficial in situations when a person is only partially
visible to the camera. In such cases the computation of ODR would fail.

Fpose = {−log(SN),−log(HN), Np, Nd}

In the training phase, the Baseline F-Pointnet and its variant with pose features - F-Pointnet
with 2D Pose were investigated. The Simulated Shared Space dataset (SSS Dataset) was
used as the training data with 3D pedestrian groundtruth created using the semi-automated
labelling method (see Section 4.1).

Baseline F-Pointnet: For the Baseline network, the implementation by (Qi et al. 2018)
for LIDAR sensor was adapted to the Hololens and its 3D coordinate system. Also the
predefined 3D anchor boxes for class pedestrians were tuned to match the average pedestrian
dimensions (l,w,h) of the SSS Dataset.
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F-Pointnet with 2D Pose: The Figure 6.2 depicts the two modifications that were made to
fuse the hand crafted pose features with the baseline F-Pointnet. Firstly as 2D human pose
features had to also be extracted from the RGB images, along with detecting pedestrians
in the first stage of the F-pointnet pipeline, we also passed the images to a pose detector.
The three variants of high level pose features Fpose were then computed for a features fusion
step. Secondly as the extracted features (Fpose) had to be combined with pointnet based 3D
features, we choose the final stage of the F-Pointnet for feature fusion. The choose of this
fusion point was to maximise the contribution of the 2D pose data to the feature space and
to ensure its significant impact in the pose regression stage that followed the fusion point.

With the discussed enhancements to the baseline variant, we experimented on how the three
variants of high level features impacted a baseline F-Pointnet detection accuracy. For the
experimental evaluation, we used the state-of-the-art pre-trained models. We used YOLOv3
pretrained on COCO for image detections and OpenPose for the pose extraction. With the
detected 2D poses from OpenPose, handcrafted features Distance Ratio , Optimised Distance
Ratio and Optimised Distance with Keypoint Position and Distances were computed. Then
evaluations were made to study improvements to pedestrian detection performance when
using these extra features.

Figure 6.2: High level representation of hand crafted pose features fused with the F-Pointnet.

Results and Discussion We trained both Baseline and F-Pointnet with 2D Pose for 150
epochs with a batch size of 32. We completed the training on Nvidia 1080Ti GPU machine
with the dataset randomly split into training (80 %) and test sets (20 %). We measured the
performance of the network with the AP and AOS indicators. While the former was used to
benchmark improvements in 3D object detection, the later to evaluate whether orientation
estimations of detected people were better when 2D pose was added.

Methods AP0.3 AP0.5 AP0.7 AOS
Baseline F-PointNet 0.8910 0.4957 0.0108 0.6596
F-Pointnet with 2D Pose [Distance Ratio (DR)] 0.8770 0.5004 0.0303 0.5878
F-Pointnet with 2D Pose [Optimized DR] 0.8688 0.6470 0.0660 0.7477
F-Pointnet with 2D Pose [Optimised DR w/ P&D] 0.8093 0.6358 0.0587 0.6599

Table 6.1: F-Pointnet with 2D Pose with alternative feature selection using high level pose infor-
mation. The scores obtained for the baseline are highlighted for comparision with the others.
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The Table 6.1 shows the AP performance for different IoU thresholds (0.3, 0.5 and 0.7)
along with AOS scores that were estimated for both the baseline and F-Pointnet improved
with hand crafted features.

It can be noted that the baseline network performed relatively well for low IoU threshold
(IoU = 0.3). However when higher IoU thresholds (0.5 and 0.7) were applied to understand
performance with larger overlaps between the estimated and the real 3D shape and position
of persons, the F-Pointnet with improved feature representation performed better. At both
IoU 0.5 and 0.7 the network that was concatenated with Optimised DR features performed
higher. As for the AOS score measured to see orientation improvements, even when adding
pose features indicated towards advancing correctly predicting how persons rotated their
body; these improvements when compared to the baseline were not significantly high. The
baseline improved by only 13% when ODR pose features were included with input RGBD
data.

Figure 6.3: The AP (left) and AOS (right) for different values of IoU threshold for ODR compared
against Baseline F-PointNet.

The Figure 6.3 shows the baseline compared against the best performing hand crafted feature
(OPD) for both the 3D detection performance and the corresponding orientations estima-
tions. It can be seen that the AP and AOS both seemed to perform relatively the same
as the baseline for low IoU thresholds (< 0.4). However as the IoU threshold increased,
even when pose features contributed towards improving both the detection and orientation
estimation (indicated by higher AP and AoS values), the scores did not show considerable
improvement for all values of IoU.

Feasibility of Applying 3D Detection’s with 2D Pose: While the above experiments have
focused on training a baseline F-Pointnet network with Hololens data and testing improve-
ment using pose features, the results indicated higher performance in both 3D detection
and orientation estimation for only certain IoU thresholds. Better performances were noted
for only higher IoU (>0.4) overlaps between detection’s and ground-truth. As our work is
focused on using a detection by tracking based motion pipeline, we hypothesis that lower
positioning and orientation errors can be improved in the tracking stage of our pipeline.

Hence using the lower IoU threshold (IoU = 0.3) as a reference, we implemented the baseline
F-Pointnet and its modified F-Pointnet with 2D Pose using the code released with (Martin-
Martin et al. 2021). While the chosen Yolo v3 was supported by ROS 1, a similar compatible

1https : //github.com/leggedrobotics/darknetros
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Figure 6.4: Qualitative comparison of pedestrian 3D detection results using baseline (red bounding
boxes on the left) and our proposed approach using ODR features (green bounding boxes on the
right). The white bounding boxes are the manually annotated ground truth.
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OpenPose implementation 2 was used along with it while testing. When the pose modified
version of F-Pointnet was tested online on Nvidia Tesla X GPU, larger processing time
(>10ms per RGB frame) for OpenPose was noted. This severely limited the real time
execution capability of F-Pointnet. Hence the baseline F-Pointnet with higher frame rates
(> 10fps) is choosen for the rest this thesis to influence walking with AR perception.

6.2 Testing MaskRCNN for 3D Detection

To apply MaskRCNN 3D detection to the Hololens 2, we first calibrate the RGBD sensors
of the device using the procedure by Ferstl et al. (2015) as mentioned in section 5.3.2. For
this, we print the calibration target (80cm x 80 cm) and create a dataset of RGB and depth
intensity images with the device positioned differently capturing the calibration target. We
then approximate the RGB and depth camera intrinsic along with the registration between
the sensors using the Matlab code implementation 3 released with the algorithm.

The Figure 6.5 shows the visual results of the calibration experiment with the calibrated
depth projected (in blue) onto the RGB images. As noted in the images, it can be observed
that the depth points for the objects in the scene correctly fall onto its corresponding RGB
pixels. The incomplete depth projections in the upper right and left corners are mainly due
to the limited field of view of the Hololens depth sensor. A quantitative evaluation of the
calibration accuracy is currently not covered in the scope of this work.

Figure 6.5: Figure on the left and right show the results of applying RGBD Calibration (Ferstl
et al. 2015) to the Hololens. The discontinuity of point-cloud projection to the upper corners is
attributed to the limited field of the depth sensor.

MaskRCNN Implementation To achieve pedestrian detection in 3D, we have used the
OpenCV MaskRCNN implementation 4 that was used to detect objects using a pretrained
COCO model. We refrain from retraining the model using the Hololens data to establish
performance baselines using the default settings. Of the objects detected by the model,
we selectively filtered out all objects belonging to the COCO class person while applying a
object probability threshold (p=0.3) as the minimum confidence interval.

For each detected person and the maskRCNN segmentation mask, we used the 3D pointcloud
from the Hololens to localise the detected persons in 3D. For this all those depths points that

2https : //github.com/ravijo/rosopenpose
3https://github.com/RobVisLab/camera_calibration
4https://learnopencv.com/deep-learning-based-object-detection-and-instance-segmentation-using-mask-rcnn-in-

opencv-python-c/
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Figure 6.6: The pipeline implementation for MaskRCNN where raw RGB image, depth and the
masks(in red) from the opencv segmentation are used to estimate the 3D bounding box for pedes-
trians in the scene.

belong to the segmentation mask person were filtered to obtain the pedestrian pointcloud
points. Following the filtering step, we estimate the position and the dimensions of the
enclosing pedestrian box in 3D from the person cloud. For this, we compute the centroid of
each filtered cloud instance and the estimate the enclosing 3D box (length, width and height)
based on the min and max of the pointcloud along the x, y and z axis respectively. The
Figure 6.6 illustrates the complete 3D pedestrian detection when applied to the hololens
data.

Accuracy Estimation and Results To estimate the accuracy in correctly identifying and
localising pedestrians in 3D using the MaskRCNN segmentation, we apply both quantitative
and qualitative evaluation in this thesis. For the quantitative assessment, we estimate the
Average precision (AP) for the performance of this pedestrian detection on the Simulated
Shared Space dataset (Section 4.1). Since the 3D detection output returned from our current
algorithm only predicted 3D boxes ( cx, cy, cz, l, w, h) without orientation, the SSS dataset
ground-truth created using semi-automated labelling could not be used as in Section 6.1.
Hence to create reference labels with orientation in 3D, a small part of the SSS dataset (n=
125 sequences) was manually annotated as ground truth in our AP estimation. Also for the
manual annotation, the Labelcloud (Sager et al. 2021) was used.

For the estimation of AP, we only focused to compute the precision metric for lower pedes-
trian bounding box overlaps with its ground truth (IoU = 0.3). Applying this IoU threshold,
the pedestrian detection’s from the 3D MaskRCNN pipeline resulted in an AP of 0.67. Fur-
thermore to make qualitative inferences, we visually plot both the results from the detector
(in blue) and its groundtruth (in white) as shown in Figure 6.7. As noted in the figures, it
can be observed that the detector successfully identified pedestrians even when their point
representation in 3D were sparse (as in the top row). Furthermore as the 3D detection was
mainly based on the segmentation RGB image mask, the field of view of the RGB camera
and the image pixels of the person obtained for each image influenced the dimensions of
the estimated 3D bounding box. This meant that if the RGB camera captured a person
partially, then all the depth points of the person missed by the image sensor were not consid-
ered resulting in partially correct bounding boxes. This effect was more pronounced when
the person stood closer to the RGB camera of the Hololens. Lastly it can be noted that
not all 3D positions correctly overlapped with the ground-truth, this we hypothesise could
be largely due to the time synchronisation error between the RGB and its corresponding
depth image and also due to inherent errors in the detection algorithm which needs to be
investigated in the future.
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Figure 6.7: The Qualitative comparison of the pedestrian 3D detection when comparing the
groundtruth (highlighted in white) to the detection from the Maskrcnn detection (indicated in
blue).
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Real Time 3D Pedestrian Detection with MaskRCNN As the primary objective of this
thesis has been to prove the motion perception capability of a pedestrian pipeline for AR,
the pedestrian detection approaches with MaskRCNN was implemented with OpenCV for
online 3D pedestrain detection. The pipeline for MaskRCNN was implemented at run-time
using C++ with GPU support for both quick scene segmentation and inference. The method
achieved a frame rate of 10 fps for GPU inference on Nvidia Tesla X.

6.3 Pedestrian Tracking and Performance

In this section, we explain the particle filter implementation and how pedestrians were
tracked in 2D using the results from both detection methods- the Frustum Pointnet and
MaskRCNN detection. We choose the Bayesian particle filter due to its ability to represent
nonlinear and non gaussian systems using multimodal representation. This then helps to
approximate position uncertainty of pedestrians when tracked using either of the detection
methods. Lastly we explain how we computed the tracking performance for both detection
approaches using the MOT metric.

Our tracking algorithm is based on estimating the position and orientation of each target
pedestrian by a particle filter. For this we use the output of the 3D detector as the ob-
servations; and estimate the time-evolving posterior distribution of persons location using
a weighted set of particles. The state x ={x, y, z, ϕ , v } of our tracker consists of 3D
position (x, y, z), orientation (ϕ) and velocity v. However in the scope of our current work,
we assume the person to be walking on the ground plane and hence take z to remain a
constant.

Particle Initialisation :For every pedestrian detected by the 3D detector, the algorithm ini-
tialises a tracker individually. The particle positions are sampled from a normal distribution
centered at the positions estimated by the 3D detector. To initialise the velocity of the par-
ticles, we followed a behavioural motion model based initialisation as in (Dimitrievski et al.
2019). For this we use the IKG Pedestrian Tracking dataset (section 4.2) and experimentally
fit a distribution for the velocity profile for the moving pedestrians.

Figure 6.8: Speed density plot for persons moving in the IKG Pedestrian Tracking Dataset.



6.3 Pedestrian Tracking and Performance 85

We observed that the distribution for walking speeds for persons follow a truncated multi-
modal gaussian distribution as shown in Figure 6.8. The distribution could be summarised
as:

p(|v|) =
n∑
i

aiN(||v||;µi, σi) if v ϵ [0, 1.2] (6.4)

N(x;µ, σ) =
1√
2πσ

exp(
−(x− µ)2

2σ2
) (6.5)

The mean values from the distribution indicate that the people in the scene for the IKG
Tracking dataset were mostly walking at slow walking speed. The gaussian components for
the multi-modal distribution being a1 = 0.6, µ1 = 0.36 , σ1 = 0.036 for the first , a2 = 0.6,
µ2 = 0.40 , σ2 = 0.111 for the second and a3 = 0.6, µ3 = 0.82 , σ3 = 2.182 for the third
components respectively. The components were approximated using R programming.

Motion Model and Tracker Position: In the filter, the particles were propagated using a
constant velocity motion model :

xk = xk−1 + xdot ∗∆t

yk = yk−1 + ydot ∗∆t
(6.6)

xdot = v ∗ cos(ϕ)
ydot = v ∗ sin(ϕ)

(6.7)

For every time t, we compute the longitudinal and lateral velocity (Equation 6.7) and move
the particles on the ground plane based one the previous location of the particles and the
orientation estimated by the tracker.

Although represented by a probabilistic estimate (using a set of particles), the position of
the tracker in each time stamp can be estimated using the strongest mode of the kernel
density estimate of the particle spread. To compute the mode, we project the particles of
the filter onto equally spaced (N=100) 2D grids. The grid size would hence depend on the
spread on the particles propagated during prediction at time t. For each of the grids, we
fit a 2D Gaussian and identify the local maxima for the 2D grid (Figure 6.9). The maxima
approximates the position which then updates the tracker state to represent the position of
the person in the scene.

Data Association: Following the particle prediction steps, to decide on which incoming new
detection at time t+1 should guide the tracker estimate for t, we solve a data association
problem assigning atmost one detection to each of the tracked objects. As there might be
cases of one-to-many or many-to-one associations between the two sets, we use the Hungarian
algorithm to optimise the problem of assigning N tracker targets to M detection’s.

The matching using the Hungarian works as follows: A cost matrix K is first computed for
each pair (n,m) modeling the affinity between the detection’s and tracked positions. The
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Figure 6.9: The figure on the left shows the particle spread of the persons propagated during
prediction while the picture on the right shows the position estimated using Gaussian mixture
modelling.

affinity cost matrix is computed using the euclidean distance between the detection and
tracker positions in the scope of the current work.

The 2D matrix would then be characterised with each row represented a distance cost
computed for each of the tracked states. In the hungarian optimisation step, each of the
columns is reduced by the lowest cost along the vertical axis. With this step, if the number
lines drawn to cover all of the zeros is the matrix match the order of the matrix, then an
optimal assignment is expected to be reached otherwise the procedure is repeated. Once the
affinity matrix is optimised, each of the zero entries in the cost would represent an optimal
assignment.

Observation Model : With every positive association, we compute and update the weights
of the particle filter estimating and updating the conditional likelihood of the new observa-
tion given the propagated particle.

wm,p = p(yt|xt) = I(n).pn(
p− d

α
) (6.8)

For the computation of likelihood we use the distance between the particle p and the posi-
tively associated detection d evaluated over a normal distribution (pn) as in Equation 6.8.
The term I(n) represented a association function that returns 1 when the detection n was
associated with the tracker particle m and zero otherwise. The resulting set of weighted
particles would then approximate the posterior distribution of the latent state space. During
the resampling step, high weights are duplicated while weights with low values are discarded
resulting in a set of uniformly weighted particles. We follow importance sampling as detailed
in (Djuric et al. 2003) as the sampling procedure for our filter.

Track Management : As tracked pedestrian leaves the scene or when new persons enter
the scene a lifecycle module to manage the tracker and its tracked id was implemented
for the particle filter. For this, we consider all unmatched detections Dunmatch from the
data association step as potentially new persons in the scene. Also to avoid false positive
trajectories, a new id was not assigned until Dp

unmatch the person has been continuously
matched for p frames. Also to prevent inactive states from remaining in the scene, we
kept track of each unmatched tracked person in the scene for the different time stamp and
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discard them for tracked duration > Agemax . In our work both p and Agemax are set
to three. Finally , to evaluate the performance of the particle filter tracking on the two
detection based approach, we implement the bayesian filter in C++ and quantitatively &
qualitatively evaluate it using the IKG Pedestrian tracking dataset.

Experiments with IKG Tracking Dataset: We perform a comparative study where the results
from both the detection approaches are measured visually and using MOT tracking metrics.
For this, we evaluate the tracking algorithm on IKG Tracking Dataset for sequences that
contains two pedestrians walking in the scene in front of the Hololens device. For the
sequences that matched this requirement, we use the RGB and 3D information from the
Hololens and created detection data for comparisons. For the F-Pointnet detection, we run
the detection with GPU inference and record the detection tracks at 12 fps. The semantic
segmentation based MaskRCNN 3D detection is run in real-time recording the detected
person in the scene at 10 fps.

To make visual observations of the tracking performance, we created birds eye view(BeV)
images of the captured point cloud scene of tracking dataset. We then draw the detected
tracks and the corresponding track id assigned to each of the detections for different time
stamp as shown in Figure 6.10 and Figure 6.11. For illustration, each tracked person in the
image is indicated using a short line indicator. The location of the indicator then shows
his/her tracked position and the tracked heading is indicated by its angle. The heading
orientation shown in each image is the angle the line makes with the vertical axis 3D axis
projected to 2D. To further describe the walking sequence shown in figure 6.10, a single
pedestrian first enters the scene (row 1) and continues to walk in the field of view of the
Hololens while a second person joins him in the scene (row two). Both persons walk along
independent motion path for the rest of the sequence. There are also points when they cross
each other or walk close to the other person as detailed in section 4.2. Empty point cloud
patches (frustums) can be observed in the BeV images as pedestrians walk in front of the
3D sensor. This is due to pedestrians walking close to the device and occluding all objects
and points in the behind.

As it can be noted in both the figures for tracking, the tracks from the F-Pointnet were more
prone to tracking id switches and discontinuous tracks when persons crossed each other or
when persons were walking away from the Hololens. The tracks from the MaskRCNN
performed comparatively better for all the cases that were studied. Also looking at the
different ID that were assigned throughout the sequence, the number of ID switches were
very high for the F-Pointnet based detection pipeline. The MaskRCNN pipeline performed
well even when persons were further away from the Hololens or when moving very close to
the device. An offline analysis of the F-pointnet track noted multiple missed and false 3D
detection to be the primary reason for the poor performance of the Frustum based pipeline.

Tracker Evaluation To quantitatively evaluate the tracking performance from the two ap-
proaches F-Pointent and MaskRCNN. We used the tracking results along with the ground-
truth from the IKG Pedestrian Tracking dataset and calculated the MOT metric. Further-
more as the ground truth data was captured using an external tracking system (section
4.2) a post processing groundtruth alignment step was added in our evaluation to obtain
accurate ground truth for the tracking sequences. In this step, the groundtruth data from
the external optical tracking was matched to the Hololens coordinate system. Also the data
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Figure 6.10: The figures shows a visual comparison of the tracking results from a point cloud birds-
eye-view. The scenes represent a single person walking into the field of view of the device (row 1)
and a second person crossing his walked path from behind (row 2 and row 3). The left column
show the pedestrian tracks and ids (number in blue) using the F-Pointnet while, the right column
show tracks and ids from MaskRCNN detect and track pipeline respectively.
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Figure 6.11: The Figure shows the visuals of subsequent motion for the two persons as the move
in triangular walking pattern within the Hololens 3D field of view. The different coloured paths
indicate id switches as a tracker fails to detect the same persons correctly. The tracked ids number
for detection’s from F-pointnet (right column) are considerebly higher than the MaskRCNN (left
column) tracked persons.



90 6 Evaluating Pedestrian Scene Motion Perception

was temporally aligned to match the detections from the device for both the approaches. To
spatially align the coordinate system of the ground truth data with the data from the AR
device, we apply an ICP alignement using Open3D 5. Temporal alignment is achieved by
first downsampling the data to match the frame rates from the Hololens detections, followed
by a manual time offset correction.

Following the alignment, we computed the multi-object tracking (MOT) metric to evaluate
pedestrian tracking performance. The Table 6.2 illustrates the performance of the tracker
for both detection approaches.

Table 6.2: CLEAR MOT tracking accuracy.

Approach MOTA MOTP
F-Pointnet 71.29% 0.684
MaskRCNN 81.39% 0.878

Results The MaskRCNN pipeline clearly performed above the F-Pointnet in both precisely
localising pedestrians (based on the MOTP score) and in following each tracked person (ID
switches) as indicated by the higher value of MOTA. The error in tracking pedestrians using
the MaskRCNN Pipeline was as low as 20 centimeter as evaluated with this metric. Hence
pedestrians amongst other objects, could be identified and tracked in ego-view with such
low errors when walking in front of the Hololens AR headset using the developed pipeline.

5http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html

http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html
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This section details on how visualisations (applied with an AR interface) of the surrounding
pedestrian motion influences walking path choices of an ego-user. For this, we visualise the
future path of nearby persons with AR and then study how path choices would differ when
seeing future paths with different types of 3D representations. While designing an algorithm
to predict pedestrian future motion (Zhang et al. 2023) is currently not covered in this thesis,
the motion influence that result when visualising predicted future paths is studied. We
propose 3D designs to represent predicted future trajectories and also investigate whether
visualising motion prediction accuracy or uncertainty plays a role in path choices. In the
following sections, along with our AR future trajectory study, we explain the terms scene and
prediction complexity that are used in the work. Also, the different visualisations and what
they represent are explained. Furthermore, the different hypotheses that were formulated
to design the study are explained before the user study section.

Scene Complexity Every indoor or outdoor scene with moving objects/persons tends to
exhibit an inherent level of complexity for a viewer when estimating future events. The
level of complexity would go up for a task of prediction walking steps if the space is large
and the movement of other persons are completely random. Hence the availability of free
space, the existence of objects on the walking path or movement nearby could influence the
path a person plans to take. The complexity of navigating a scene due to the availability of
walking space and external factors(other persons) is addressed by this term in our work.

Figure 7.1: Future path visualisation which could trigger different path choice behaviours.

Prediction Complexity in the the context of this thesis study refers to the level of difficulty
to guess future paths for a given scene. For this, we categorise complexity based on how
visual clues available in a scene are used to guess the future steps as:

– Low Complexity: Observing another person’s motion would suffice to estimate their
future path.

– Medium Complexity: Visual observation of motion, combined with inferences from
their body language (e.g., hand movements, foot positioning), might be needed to
predict future actions.

91
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– High Complexity: It might be hard to make an estimate of the future path without the
aid of the future visualisation for the person in the scene (e.g., when a person would
turn at a corner after stopping).

Visualisation of Future Path Having observed a few walked steps, the future path a person
might take is an approximation of what could be his/her next possible steps in the upcoming
point of time. As an estimate is always a nondeterministic quantity, the predicted path is
approximated with statistical probability that could either have a large uncertainty or high
confidence. Within the scope of this work, we categorise the AR future visualisation as:

– Simple AR predictions: An AR view that would indicate the future position of others
based on where they would walk next using 3D symbols (like a 3D arrow).

– Informative AR predictions: The visualisation in AR that would not just show the
future positions, but also encode some qualitative information (e.g., confidence/ un-
certainty) of the estimate. This is visually represented by varying the appearance of
the above mentioned simple AR predictions.

For the study to evaluate the effects of seeing future path from safety perspective, while
designing the future visualisation itself is important, another significant aspect is the study
design. In this thesis, we first formulated a set of hypothesis on how people might react to
future visualisation and then designed our study to test the hypothesis. The results from
the study were used to evaluate if the hypothese created were true or false. The following
were the hypothese:

H1 - Safety: When the walking path of a Hololens user would conflict that of an another
person, the user decides to walk closer to the conflict point when seeing future paths explicitly
using an AR medium. This hypothesis is formulated based on observations made in pedes-
trian collision avoidance. People tend to choose a larger safety margin to avoid a collision
in natural walking condition to avoid bumping. However when AR explicitly communicates
motion of others, people might optimise walking detours as they feel more safe with extra
augmented information. This can then result in shorter and closer paths to the conflict
point.The Figure 7.2 illustrates how the Hololens user sees the virtual path in AR view of
the crossing pedestrian. Then deciding to walk a shorter and closer path (in black) against
his natural avoidance path (in blue).

Figure 7.2: Path choice (as per the hypothesis) for a hololens person (right) who sees the future
path (indicated in an arrow) of others in AR and decides to walk closer to the collision spot.
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H2 - Appearance: Visual representations of future position with informative AR could
prompt different walking behaviours based on what information is conveyed. This hypothesis
is formulated based on a recent work (Fuest et al. 2023) that tested the effects of visually
varying map symbols for navigation. In the work, based on the pollution level each sym-
bol was encoded with a different variant (Roth 2017) like size, color e.t.c.,. This was then
observed to prompted drivers opting for cleaner routes. Using visual variables size and
crispness from (Roth 2017), we represent confident and uncertain future path respectively.

(a) Conjugation of variables for circles (b) Conjugation of variables for arrow

Figure 7.3: Applying a conjugation of length and crispness variables to symbols (circle and arrow)
as in Roth 2017.

The concept of conjugation of visual variables as proposed in the work by Roth (2017) allows
to mix two variables and create visualisations that can be used to represent confidence or
uncertainty of the same degree. The Figure 7.3 (a) and (b) explains how the manipulation
of both size and degree of blur visually represents a confident and uncertain prediction
(matched to the same degree) would look for two symbols - circle and arrow. One important
observation that was made when applying conjugation of size and crispness for symbols was
that when both variables are conjugated to the highest degree (x+2, y+2), the crispness was
dominant over size with symbols appearing smaller in size that the original size variant (y+2,
x). This influence was more prominent for arrow symbol considering its directional property.
This has been a limitation of the conjugation approach used in our work. To overcome this
current limitation, we have altered the size of symbols of higher degrees which is further
explained in our Evaluation section.

H3 -Scenes: Irrespective of the scene prediction complexity, all people walk similarly when
seeing future paths in AR during motion conflicts. This Hypothesis is formulated to see
whether the results for the study can be generalised to all walking scenes and spaces, which
is further tested separately for each of the complexities described above (Low, Medium and
High).

7.1 Study Design

To test the effects of both categories of AR prediction (Simple and Informative) we test
both simple and informative AR for Hypothesis H1. In H1 test for Simple AR, the study
evaluated the difference in walking behaviours when there is no AR content against AR
visualisations for future path for persons in a scene. For the H1 test for Informative AR,
the study similarly evaluated the differences in walking seeing a confident prediction and
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comparing them to uncertain predictions of scene users. The same test could also be used
to infer behaviour differences for H2 test. The H3 test was completed by including scenes /
environments of different complexity that are detailed in the next section.

Our mixed study for the work included both a within participant and between participant
study to test the different hypothesis. The within participant study primarily included
the H1 test for Simple AR. The between participant study comprised both the H1 test
for Informative AR and H2 test. The complete study data was used to validate the third H3
test hypothesis. Hence in the complete study, participants of each Group tested one of the
three condition - No AR, Simple AR prediction and a variant of Informative AR prediction
(based on the Group) as shown in Figure 7.4.

Figure 7.4: User Study design for future trajectory visualisation study.

7.2 Web Based Study

As the idea of testing the Hypothesis H1, H2 and H3 is not a requirement in real time, we
designed the research as a web based study with post processed videos and AR content.
For this, we firstly designed walking scenes based on different levels of scene & prediction
complexity and created walking video sequences. We then include AR content to these
videos to indicate future path for persons walking in the clip. Lastly we perform an online
study were participants saw the created AR videos and made path choices to walk around
the person in the clips that were then captured via sketches (virtual paths) on an image.

Scenes for the Web Based Study: The Figures 7.5, 7.6 and 7.7 show the representation of
the scene motion, where the dots represent the path, which is shown to the ego-user, and the
stars indicate the future path, which is shown by the different visualisations of simple and
informative future. Considering the position of the person in the figures, the ego-user has
to draw his/her own preferred future path between points A and B. These two endpoints,
indicate the start and endpoint of the ego-user path. Traversing the path would potentially
lead to a conflict with the person in the figure. The difficulty of predicting the future steps
of the person varied for each of the captured scenes and were categorised as Low, Med
and High. For illustration and better understanding, the scenes are labelled based on the
categories with the subscript indicating the scene number.
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(a) AR prediction- continuation of path. (b) AR prediction- continuation of path.

Figure 7.5: Low prediction complexity scenes Low01 and Low02 on the left and right respectively.
The visualisations with the arrow showed the above mentioned motion prediction effects.

Low Complexity Scene - Low01 and Low02 Both the walking sequences captured for this
complexity level represent motion along a predictable path. The single person in the video
was seen to walk along a straight line path (Low01) or in random paths characterised by zig-
zag movement (Low02) as in Figure 7.5. The scenes were characterised by lower difficulty in
predicting future steps such that visually observing the motion of the past would be enough
to estimate his/her future path.

(a) AR prediction- walk along
straight line path.

(b) AR prediction- crossing from
the front of the object.

(c) AR prediction- crossing from
the back of the object.

Figure 7.6: The Medium complexity scenes Med01, Med02 and Med03 from left to right. The
visualisations with the arrow showed the above mentioned motion prediction effects.

Medium Complexity Scene - Med01, Med02 and Med03 The three walking patterns for the
medium complexity scenes represented a slightly higher level of difficulty in guessing where
the person (shown in Figure 7.6) would continue walking. This was because the person
stopped at the end of the walking sequence with his body posture only partially indicating
where he might walk next. Visual observation of the past motion along with the body
language (orientation of arms, face etc.,) was needed to make an estimate of the future
path.

High Complexity Scene - High01 and High02 The high prediction complexity videos con-
tained walking sequences (Figure 7.7) captured for a single person where visual observation
alone might not have been enough to guess his future walking path. In High01, the person
is walking straight toward the wall and stops in front of it. Similarly, for High02, the person
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(a) AR prediction- walk towards left. (b) AR prediction- walk towards right.

Figure 7.7: Higher prediction motion complexity scenes High01 and High02 for person with unpre-
dictable change in walking path. The visualisations with the arrow showed the above mentioned
motion prediction effects.

is initially walking toward the ego-user and then stops. The visual cues that are observed
about both motion and body language might not be enough to make a safe future guess.
In absence of such aids, extra information provided by the visualised future motion would
help to guess whether the person would actually create a conflict with the AB path.

Furthermore, for all of the above stated scenes of complexity, the person in the video se-
quences resembled a distracted pedestrian performing some tasks and unaware of any po-
tential collisions (Table 7.1) in future point of time.

Scenes Interactions of the person in the scene

Low02, Med02 and Med03, High01 Talking or Texting on smartphone
Low01, High02 Looking constantly or waving at the camera

Med01 Reading a map
Table 7.1: Distraction for the person in the video sequences Low01 - High02.

Visual Interface for Study To represent the future walking steps of the person in every
timestamp of the video sequences, we use the arrow symbol and its 3D representation for
AR visualisation. We choose a 3D arrow as the position and direction indicator of the future
path and represent this as the Simple Variant. The Confident Variant was characterised
by varying the visual variable length of the 3D arrow to emphasise higher confidence. This
signified that the longer the 3D arrow, the more confident the predictions are. We further
adopt the both the visual variable length and crispness to represent uncertainty. For this
we vary the degree of blurriness of the boundaries of the 3D arrow which then represents
the Uncertainty Variant in our study. Also, as the objective of the study was only to
vary the attributes, a common color was used for the arrows throughout the work (Figure
7.8).

Using the Unity software, AR videos with the above mentioned arrows were created for
the study. The animated arrows then represented the future positions of the person for
every time stamp both in the case of simple AR prediction and Informative AR predictions
(confident and uncertain respectively). Moreover raw videos which did not have predictions
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Figure 7.8: Arrow for Simple(left), Confident(center) and Uncertain(right) representations.

of the future path were also used in the study. This was to used as a baseline for comparison
during analysis.

Following the content creation, the videos where uploaded to two separate study groups
websites. The first study group would complete the experiment containing a combination
of no AR, simple AR prediction and variant1 of the Informative AR prediction (Baseline
-Simple Arrow -Confident Arrow). The second link created for the other group contained
no AR, simple and variant2 of the Informative AR prediction (Baseline -Simple Arrow -
Uncertain Arrow). The video clips where also randomised to avoid any learning bias in the
study. Each study link also contained a tutorial video at the start explaining the procedure
of the study and a feedback questionnaire at the end following the study.

Figure 7.9: User study procedure for web based study.

Experiment Task The Figure 7.9 shows the procedure of the study that was conducted
online. In the study, each of the participants first watch the created video sequence with or
without AR (Task 1) and then draw paths on an image that followed the video (Task 2).
The image shown in Task 2 corresponded to the last timestamp frame of the shown clip in
Task 1. The participant in this tasks draw walking paths they would take for the video scene
by estimating potential collisions with the person in the video. The resulting path drawn
would then be a collision free walking path. To have uniform trip progression, participants
where instructed to draw paths starting at point A that would then progress to point B.
Both of these points A and B were marked on the drawing image as in illustrations in the
Figure (7.5, 7.6 and 7.7).
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7.3 Study and Data Extraction

Twenty-seven (n=27) participants each took part in the online study that was conduced in
two groups. Of the total 54 (27 x 2) participants, study included candidates mostly from
Germany and the rest of Europe.

Figure 7.10: The participant sketch data extraction.

As the study examines walking path choices provided as drawings, the traced paths (in
pixels) had to be transformed to motion trajectories. To understand how these virtual paths
represent collision avoidance behaviour, we followed a two step data extraction procedure
(Figure 7.10):

1. Sketch Transformation: Each of the sketches were converted from image coordinates to
world coordinates (in meters) by a projective transformation 1 from opencv and ground
control points measured in the scene. With this conversion, all the traced participant
paths on images (Pego) were transformed to preferred ego-user walking trajectories in
world coordinates (Pegowc). We also extracted the walking paths of the person shown
in the video clips (Pperson) using Yolo v3 (Redmon and Farhadi 2018) image detection
and represented the paths in projective transformed world coordinates (Ppersonwc).

1https : //docs.opencv.org/
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2. Conflict severity estimation: We apply motion animation to both the paths of the
ego-user and the walking person in the video to estimate if there would be a walking
conflict. For this, the transformed participant sketches (Pegowc) and the paths of the
walking person (Ppersonwc) were simulated using constant velocity. The time it took
for their walking paths to cross each other was then estimated as time t1. Using the
corresponding time t2 it would take for the other person to also pass the same conflict
point, we captured conflict severity using PET (Post Encroachment Time) in seconds
(Equation 7.1).

PET = t2 − t1 (7.1)

Following the sketch transformation and simulation, all the sketches from the different par-
ticipants were transformed to PET values in seconds. Sketches for one of the scene Med02
were excluded due to errors in accurately transforming the drawing paths.

7.4 Data Analysis

We perform our data analysis by separating scenes based on the different levels of complexity
and then studying how the two groups (G1 and G2) reacted to the different variants of the
AR predictions for each of the scenes. This was mainly because an initial comparison of the
PET distribution for no AR visualisation (Figure 7.11) showed that in the absence of any
future path clues, the people reacted diversely across the scenes. Three of the six scenes had
PET values close to one for both groups while for the three, the values where less than one
second. As 27 participants completed the study in each group, we had 27 responses for each
of the "confident" and "uncertain" informative AR and 54 trajectories of preferred walking
paths (27+27) for both the "baseline" and "simple" AR. This resulted in 54 and 27 PET
values per scene to analyse user responses for "simple" and "informative" AR respectively.
In most cases, the PET values had a range from 0 to 3 seconds.

Figure 7.11: Figure on the left shows the box plot for Group 1 and compares it to Group 2 plot for
the calculated PET values for the different scenes.

Crossing Order during Collision Avoidance: The walking behaviours from a collision avoid-
ance prospective could be completely different when a person chooses to cross either in front
or from behind a potentiaconflict encounter. Front Crossing (Figure 7.12) might result
in an unsafe encounter as the agents are still facing each other and low PET values then
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Figure 7.12: Illustration of classifying the collision avoidance based on either crossing front (left) or
from the back of the person (right). The conflict point is indicated by the dark circle in the center.

would indicate that the threat is not completely avoided. On the other hand, Back Cross-
ing could mean a safer encounter but with a discomfortable experience. One might brush
past his/her shoulder when crossing the other person from the back. Crossing orders also
indicate psychological traits (like arrogance or stubbornness) during conflict negotiations as
studied in (Randhavane et al. 2019). Hence we further differentiate our sketch transformed
PET data based on the crossing order. If the participant (Pegowc) decided to cross the
person (Ppersonwc) by walking in front or from the behind, we classify the resulting conflict
interaction as front crossing or back crossing PET respectively.

Behaviour Shift Estimation: As the PET values provide information on how safely the
participants encroached the person in the video, we modelled the complete experiment data
as histograms (e.g., Figure 7.13 for scene Med01) for further analysis.

Figure 7.13: PET distribution as histograms for front crossing and back crossing behaviours.

The histograms have been used for comparing how the user’s walking behavior changes
when different visual stimuli are applied. While bin-to-bin distances quantify the similarity
of histograms (Van Gemert et al. 2009, Ling and Soatto 2007, Marszałek et al. 2007), they
do not represent the amount of correlation in the data. In our work, we were interested
in understanding how PET histograms changed relatively for the same population for the
different visualisations. Hence given two histograms, we approximate how similar they are
by computing the time shift needed to move the bins of either histograms so as to achieve
maximum correlation coefficient. As illustrated in Figure 7.14, after computing the bin-wise
L1 distance between the two histograms, we apply cross correlation to estimate how the
patterns represented by the difference in bins have shifted. Then the amount of PET shift
that gives maximum cross correlation indicates whether the behaviour moved towards more
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positive PET values or vice versa. A positive shift then indicates that people show more
positive safety behaviour and a tendency to walk longer paths.

Figure 7.14: Histogram similarly computation using time shifts. A difference histogram is obtained
by subtracting A and B. The set of positives and the corresponding set of negative values are
correlated by the shifting of bins to either right(+ve) or left (-ve).

To apply this analysis, all PET values between 0-3 seconds were represented using histograms
with a bin size of 0.25 sec. Furthermore, we separately analysed the PET distributions for
both front and back crossing behaviours in each scene based on the visual variants. For the
hypothesis H1, we performed analyses where the 54 PET values for "simple" AR visualisa-
tions are compared to the baseline (no AR) for the different scenes. Also, to investigate the
effects of showing different variants (H1), we compared how people react to both "confident"
and "uncertain" arrows by looking at the 27 PET values of both variants. Furthermore a
PET density based analysis was completed to evaluate the second hypothesis for the two
variants of Informative AR (H2). The results from the study as interpreted for the different
scenes was used to test hypothesis H3.

7.5 Results

Walking Preferences during Collision Avoidance with and without "Simple" AR The com-
puted shifts in PET behaviours when comparing "simple" AR to its baseline for both the
unsafe front and the safer back crossings are shown in Figure 7.15. A positive shift indicates
that the ego-user walked more safety-consciously as compared to the no AR condition and
a negative shift indicates the tendency of the ego-user to walk closer to the person.

Front Crossing: For most of the scenes (except scene Low01), the PET behaviors with
"simple" AR showed positive shifts. This strongly indicates towards people interacting with
a higher safety awareness (i.e., higher PET values), as compared to how they walked in the
absence of any future visualisation.

Back Crossing: On the contrary, in nearly half of the scenes (Low02, Med02, Med03), the
interaction behaviour resulted in lower PET values as indicated by the negative bin shifts.
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Figure 7.15: The time shift in front crossing (left) and back crossing (right) when comparing AR
vs Baseline histograms for the different scenes.

For these three scenes persons decided to cross less safely (PET shift -0.25 for both Low02

and Med02, -1.0 for Med03 ) and potentially closer to the conflicting person even after the
collision was avoided. Moreover for both Low02 and Med02 scenes, the shift was the same,
indicating less safe behaviours in the presence of increasing complexity. For the back crossing
case, high complexity scenes did not contribute towards significant shifts to indicate how
the behaviours changed. This is primary attributed to fewer participants choosing to cross
from behind for these scenes.

The primary observation from front crossing and back crossing PET trend highlights that
people prefer to choose safer, but also longer paths when crossing from the front, and less
safer shorter paths when crossing from the behind. Hence, we conclude that simple future
predictions prompt persons to choose walking paths differently based on the crossing order,
longer walks for unsafe and mostly shorter for the safer encounters around the conflict point.

Walking Preferences during Collision Avoidance for Different "Informative" AR To compare
and interpret the walking preferences during a motion conflict for "informative" AR future
visualisation, we evaluate how the PET values of 27 participants of Group1 (confident ar-
row) differed from Group2 (uncertain arrow). For this, we applied our histogram behaviour
analysis where the shift for the "confident" histogram was estimated relative to the "uncer-
tain" one. A positive shift in values then indicates that the ego-user decided to walk more
safety consciously for the "confident" variant. The negative shift on the other hand, relates
to safe walking for the "uncertain" variant of future arrow.

Front Crossing: As it can be interpreted from the PET shifts shown in Figure 7.16, the
reactions show mixed behaviours for the different complexity scenes. For both low com-
plexity scenes (Low01, Low02) and High01 scene, the PET behaviours shifted by -0.5,-0.75
and -0.25 respectively. For all other higher prediction complexity scenes, the shift was
positive (Med02 ∼+1.0, Med03 ∼+0.25 and High02 ∼+1.25). Our results for the analysis
from safety and scene complexity prospective are two fold. People preferred to behave less
safety-consciously (negative shift) for a confident arrow in most low complexity cases. As
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Figure 7.16: Time shifts in front crossing behaviour when "confident" visualisation is compared to
"uncertain" future path visualisation.

the scene complexity increased, persons preferred to walk more safety-conscious (positive
shift) for the confident AR. We hypothesise that the prediction complexity of the scene, the
future path clues from the AR visualisation and the communicated certainty information
played a role in the walking decisions made.

Due to the smaller sample size of the population (n=27) for the analysis and the resulting
lower choices to cross from the back, statistical analysis was limited to front crossings.

Path Choices and Walking Preferences for the Different Visualisations To understand how
the appearance of the future steps resulted in different walking and safety behaviours, we
compared the front crossing PET distribution of each scene by approximating it using
Gaussian density. The density estimation for back crossings were not considered primarily
due to the lower sample counts.

Simple AR Visualisation: Figure 7.17 shows the density plots for the PET data for front
crossing in the different scenes. The plot shows how the PET behaviour changed for both
the baseline and "simple" AR conditions. For visual interpretation, the plot is flipped with
PET =0sec on the right and PET>=3sec on the left of the x axis. The y axis represents
the normalised density.

For low complexity scenes, it is evident that showing future predictions of the walking
path lowered the inconsistency to decide on how far away to cross. For scenes Low01 and
Low02 the PET responses were characterised by more distinct choices of the participants
(as indicated by the peaks in the distributions) to either walk closer or further away from
the conflicting person. This, we hypothesise could have been due to the extra aid provided
by the future paths and larger confidence and trust in the visualisation.

But as the level of complexity of the scenes increased, the AR predictions where observed to
be less influential to affect the choices made to the paths. This inference is concluded from
the uni modal spread in PET distributions for both baseline and "simple" AR conditions
for Med and High scenes. This indicates towards participants preferring no distinct crossing
behaviours (as indicated by a bi-modal Gaussian spread of simple AR for Low complexity
scenes) but making random choices to cross the person in the scene safety.
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Figure 7.17: The PET based probability distribution for front crossing "Simple" AR Future path
visualisation for low, medium and high complexity scenes. The y axis represents the normalised
PET distribution and x axis represents PET values ranging from PET>=3 sec to PET=0 sec.

Informative AR Visualisation: A density plot based comparison (Figure 7.18) of the par-
ticipant reactions to "confident" arrows did not show considerable behaviour differences to
that of the "uncertain" arrow. However, if these plots are compared to the "simple" AR
plots, informative AR collision avoidance behaviours were more distinct. This means that
for a given scene with confident AR, if people choose to either walk closer or further away
in the scene; this behaviour remained nearly the same for the uncertain future AR.

From the prospective of path choices made, even when safer paths would mean longer walks
to avoid conflicts, our current study does not provide sufficient results to indicate whether a
confident prediction resulted in longer or shorter walking paths. The visual representations
of both informative variants need further evaluations to understand the interpret ability of
the used visual metaphors (blur and length variation) to correctly communicate uncertainty
to the user.

To summarise, the findings from the study is discussed from the perspective of how the re-
sults have supported or contradicted the stated hypothesis H1, H2 and H3. As for the safety
hypothesis H1, if all front crossing behaviours are considered from the study, the simple AR
visualisation prompted persons to walk away from the estimated conflict point resulting in
longer walk paths. However when persons decided to give way and cross from the behind
(nearly half the scenes of the study), people walked shorter paths while navigating from A to
B and also crossing the conflict point more closely. Hence based on whether persons decided
to cross from the front or from behind our results contradicted the hypothesis with only
back crossings partially supporting it. Also when Informative AR was visualised, mixed
reactions in terms of PET behaviours did not indicate towards people preferring shorter
paths.

When the appearance hypothesis (H2) was tested using the density plot based visual com-
parisons (Figure 7.17 and Figure 7.18), it was clearly indicated that crossing behaviour
with confident visualisation did not differ significantly from that of uncertain visualisations.
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Figure 7.18: The PET based probability distribution for front crossing "Informative" AR Future
path visualisation for low, medium and high complexity scenes. The y axis represents the normalised
PET distribution and x axis represents PET values ranging from PET>=3 sec to PET=0 sec.

While this might partially contradict the second hypothesis, the study clearly showed in-
formative AR prompting more distinct crossing behaviours over a simple AR visualisation.
Especially for medium and lower complexity scenes, informative future paths resulted in
bimodal distribution of PET data.

Furthermore the pet inference made for different scenes from Figure 7.11 and the density
plot in Figure 7.17 strongly support hypothesis H3. As depicted by the box plot in Figure
7.11, each scene irrespective of the scene complexity had a different mean and variance es-
timate of how the sample population reached to collision avoidance. When AR future path
was visualised , the PET Gaussian distribution in Figure 7.17 indicated similar dominant
Gaussian peaks and data spread for the scenes. The above two observations strongly sup-
ported the hypothesis H3 that different PET distributions resulted for each scene and their
reactions were similar even in the presence of AR future path.





8 Influences from Static and Dynamic AR Traffic Content

While the previous section examined how visualizing future paths and PET (Pedestrian
Encounter Time) behaviors emerged from virtual content, this chapter shifts focus to aug-
mented reality (AR)-enhanced walking—specifically from the perspective of pedestrian cross-
ings. The proposed method in this thesis investigates how 3D-rendered virtual elements
affect pedestrian path selection when pathways intersect and virtual content is present.

This chapter distinguishes between static and dynamic virtual content used to augment
the Hololens user’s environment. Static AR content typically recommends actions (e.g.,
indicating when to stop or cross), while dynamic AR content actively manipulates pedestrian
behavior by encouraging a deviation from their original path.

The rationale for this distinction lies in the two types of navigational information they
represent. Static content corresponds to fixed infrastructural elements such as traffic signals
and lane markers—features that provide relatively stable control guidance. In contrast,
dynamic content simulates transient or mobile entities like vehicles or cyclists, which prompt
pedestrians to make adaptive, real-time decisions to avoid conflict or collision. An illustrative
example of this adaptive behavior occurs during crossings. When a pedestrian perceives a
moving virtual agent (e.g., a car) intersecting their path, they may modify their trajectory
in both space and time—demonstrating dynamic avoidance behavior.

To evaluate the impact of these AR elements on pedestrian navigation, this chapter in-
vestigates their implications for safety in both walking and crossing contexts. Section 8.1
describes the methodology and experiments used to assess the effects of static AR con-
tent, focusing on virtual infrastructure visualization. Section 8.2 explores dynamic AR
content and analyzes pedestrian collision avoidance behavior when encountering a virtually
rendered crossing cyclist.

8.1 Influences from Virtual Infrastructure

Shared space designs aim to facilitate interaction among diverse road users by removing
traditional traffic segregation and promoting informal communication. However, the cre-
ation of pedestrian-only zones—though often driven by safety concerns—can inadvertently
isolate pedestrians from the integrated flow of urban movement. While urban designers
frequently propose physical interventions (e.g., the addition of lanes or bollards) to enhance
safety, there has been comparatively limited exploration of how virtual infrastructure, such
as AR-based traffic signals or lanes, could contribute to safer interactions in mixed-traffic
environments.

We hypothesize that the visualization of virtual traffic elements through devices like the
Hololens can foster a heightened sense of control and safety among pedestrians. By clarifying
right-of-way and reducing ambiguity over crossing priority, virtual infrastructure could help
prevent confusion and enhance user confidence. Beyond safety, such AR elements may also
enable new forms of priority negotiation in shared spaces.
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For instance, at an intersection of pedestrian paths, a virtual traffic signal could dynami-
cally resolve priority between a walking individual and a jogging pedestrian. Similarly, in a
scenario involving a group of pedestrians and an approaching autonomous vehicle (AV) at a
crossing, virtual signage could mediate the interaction—granting crossing priority to pedes-
trians based on context. Such interactions, mediated by augmented reality, may not only
improve safety but also foster more socially acceptable and context-aware traffic behaviors.

Most existing research on virtual traffic infrastructure has primarily focused on creating
virtual lanes to visually delineate pedestrian and vehicular zones. For example, an AR-
based interface was prototyped by Hesenius et al. (2018), which presented separate walking
paths for future automated traffic scenarios. This system dynamically adjusted the width
of virtual walking lanes based on the pedestrian’s walking speed, aiming to ensure safe
navigation. However, their work was limited to a preliminary user study aimed at gather-
ing initial feedback, without extensive evaluation in real-world traffic contexts. Similarly,
Busch et al. (2018) conducted a technical feasibility study that explored the projection
of virtual lanes to aid communication during priority negotiations. Their approach intro-
duced virtual pedestrian crossings projected onto the ground to facilitate safe crossing in
the presence of autonomous vehicles (AVs), focusing exclusively on crossing situations. To
the best of the author’s knowledge, no prior work has investigated the use of virtual traffic
signals—visualized through AR—to influence pedestrian behavior and assess their safety
impact in shared spaces. If integrated into daily traffic systems, such AR-based signals
could guide pedestrians more safely in complex, mixed-traffic environments.

This research aims to fill that gap by exploring how AR-guided traffic controls affect pedes-
trian crossing dynamics, particularly in collision avoidance scenarios. A virtual traffic signal
is designed in AR to recommend when a pedestrian should stop or proceed. The interface
dynamically mediates right-of-way conflicts by displaying a green “go” or red “stop” signal
when the Hololens user’s path intersects with that of other agents in the environment. The
experiment is designed to then investigate whether such AR mediating signals contribute
to improving the time to estimation collisions. The system records their motion in real
time, allowing for the extraction of Time to Collision (TTC) estimates based on walking
trajectories. These trajectories are then analyzed to determine whether the AR-mediated
signals contribute to improved collision avoidance behavior.

8.1.1 AR Virtual Signal Design

For this study, a tag-along virtual 3D AR signal, referred to as the Stop and Go Interface
(S&GI), was developed using Unity (Figure 8.1). In this context, a tag-along interface refers
to a virtual object that remains persistently visible in the user’s field of view and moves
along with them, ensuring continuous visibility during navigation.

The S&GI was positioned at a fixed height above the ground and programmed to transition
between two states: "Stop" (red) and "Go" (green). To control these transitions, an external
control terminal was implemented. This terminal communicated wirelessly with the AR
interface over a WiFi network and was manually operated during the experiment.

The design intention behind the S&GI was to simulate a conventional traffic signal within
an augmented reality environment, prompting participants to proceed when the light was
green and to halt when it turned red—mirroring the behavior expected in real-world traf-
fic systems. However, to emulate an intelligent traffic management system that prioritizes
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movement based on contextual factors, the control of the AR signal was manually adminis-
tered by an external observer. This observer evaluated the scene in real time and adjusted
the signal based on pre-established rules for priority during crossing interactions.

In this way, the AR interface approximated the decision-making processes of intelligent
traffic control systems, such as those described in Chowdhury et al. (2018), which detect
movement within a traffic scene and dynamically manage flow to optimize safety and effi-
ciency.

(a) The red stop control of S&GI (b) The green go control of S&GI

Figure 8.1: The S&GI interface commanding the person either stop (left) or go (right) while walking
during the crossing experiment. The interface positioned at a fixed height and tagged to move along
with the participant.

8.1.2 Experimental Design and Study

The objective of this study was to examine whether AR-based stop/go recommendations
provided by the Stop and Go Interface (S&GI) could promote safer pedestrian crossing
behavior. To test this hypothesis, the experimental walking path was intentionally designed
to simulate potential collision scenarios between two individuals.

In each trial, a study participant walked along a straight trajectory, while a confederate—a
person embedded in the experiment—intersected their path perpendicularly (Figure 8.2).
This setup created a controlled conflict zone where crossing decisions had to be made. The
S&GI interface, visible through the participant’s Hololens, then issued real-time commands:
either instructing the participant to stop or allowing them to proceed, depending on the
predefined crossing priority for that trial.

At the beginning of each trial, the confederate initiated movement at an obtuse angle (ap-
proximately (180◦)) relative to the participant’s path and then gradually approached to
intersect at nearly a right angle at a predefined cross-over point. This cross-over point rep-
resents the exact spatial location where the confederate’s path intersects the participant’s,
and where a collision would occur if the participant failed to adjust their trajectory or speed
in response.

This path was deliberately chosen to ensure that the confederate remained continuously
visible to the participant throughout the interaction, thereby facilitating naturalistic and
dynamic motion responses. Since collision avoidance behavior was anticipated to emerge in
the vicinity of the intersection, a dedicated interaction zone was defined for the purposes
of analysis. This zone was modeled as a circular area with a 2.5-meter radius, centered on
the cross-over point—the spatial location where the confederate’s path intersected the par-
ticipant’s trajectory. The interaction zone served as a key spatial boundary for subsequent
evaluations of pedestrian behavior and safety outcomes during the experiment.
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Figure 8.2: Participant start and stop points that are indicated on the floor along with the crossing
path for the confederate. The confederate crossed the participant at the cross over point within
the interaction zone.

The study employed a within-subjects 2 × 2 factorial design with the following independent
variables: (1) confederate motion (crossing vs. non-crossing) and (2) AR guidance (no AR
vs. signaled to stop). This design resulted in four experimental conditions:

1. Crossing confederate & no AR guidance

2. Crossing confederate & AR signaled to stop

3. Non-crossing confederate & no AR guidance

4. Non-crossing confederate & AR signaled to stop

Each participant experienced all four conditions in a randomized order to counterbalance
order effects and reduce potential learning or fatigue biases.

The experiment took place in an indoor laboratory space measuring 5 meters in length
and 3 meters in width. To capture motion data, an overhead camera was mounted at
ceiling height, recording the participants’ and confederate’s foot positions at 30 frames per
second. This setup enabled precise tracking of walking trajectories and subsequent analysis
of behavioral responses across conditions.

A total of six participants (2 females, 4 males; mean age = 25.5 years) took part in the study.
All participants reported normal mobility and had normal or corrected-to-normal vision.
In addition, two trained confederates served as crossing agents, alternating roles across
trials. Prior to the experiment, the confederates underwent training sessions to minimize
variability in walking behavior and to ensure standardization of their motion patterns across
all experimental conditions.

To maintain consistent walking speed, each confederate was equipped with a headset that
played a metronome beat at 70 beats per minute. They were instructed to walk along the
predefined intersecting path (as shown in Figure 8.2) and to synchronize each footstep with
a metronome beat, resulting in a steady walking pace of one step per beat.

Throughout the experiment, confederates were instructed to maintain their trajectory re-
gardless of the participant’s position, including when a potential collision appeared immi-
nent. Even if the participant entered the interaction zone, the confederate continued walking
without reacting, ensuring that only the participant was responsible for executing a collision
avoidance strategy.
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Prior to the start of the experiment, participants were briefed on the study procedure and
given an introduction to the HoloLens device as well as the Stop and Go Interface (S&GI).
Detailed instructions were provided to ensure participants understood the purpose of the
interface and how it might influence their actions during the task.

Participants were instructed to walk a total distance of 5 meters, following a straight path
from a marked starting point to a designated endpoint. They were informed that, during
some trials, another pedestrian (a confederate) might appear and potentially intersect their
walking path without yielding. However, the specific trials in which this would occur were
not disclosed, in order to maintain an element of uncertainty and elicit natural responses.

To ensure task comprehension and comfort with the AR system, each participant completed
two practice trials. The main experiment commenced only after participants demonstrated
a clear understanding of the task and system interaction. In the following section, we
elaborate on the four experimental conditions that formed the different scenarios/trials of
the experiment:

(a) No Interaction Motion Baseline. (b) No Interface Interaction Baseline.

Figure 8.3: The two no AR interface scenarios in the study where the participant exhibited natural
behaviours.

Scenario 1: No interface - No interaction (No interaction Motion Baseline) This experi-
ment scenario is characterised by the absence of both AR guidance and walking conflict
interactions. The participant moved from the start to the end position without any S&GI
control indicating to him when to stop walking. The confederate was instructed to remain
stationary at his start position and did not interfere with the participant’s path throughout
the scenario (Figure 8.3a).

Scenario II - No Interface - Interaction (No Interface Interaction Baseline) This scenario
was intended to capture the natural collision avoidance behaviour of the study subjects.
The participant walked from the start point to the end without any visual control guidance
while facing a conflict situation in between. In this scenario, the confederate was instructed
to move and create a conflict by intending to block the participant’s walking path as shown
in Figure 8.3b. The study participant was expected to estimate the safety risks and take
evasive manoeuvres.

Scenario III - Interface - No interaction (AR Interface Guided Motion) The participant in
this scenario moved from the start to the end position following the guidance of the S&GI
AR signals but with no conflict interactions with the confederate. The interface commanded
the participant to start walking as it transitioned from red to green at the start of the trail.
However, the interface remained in the green phase for the rest of the test. As no walking
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(a) AR Interface Guided Motion (b) AR Interface Guided Interaction

Figure 8.4: The two AR scenarios that would account for guidance effects of using virtual traffic
controls

interaction was expected in this scenario, the confederate remained stationary at his start
point and did not walk to cross paths (Figure 8.4a).

Scenario IV - Interface - Interaction (AR Interface Guided Interaction) In this final sce-
nario, the participant moved from the start to the end position wearing the Hololens and
guided by the S&GI AR interface. At the start of the trail, the external terminal triggered
the transition of the traffic signal from "Red" light to "Green"; signalling the participant to
start walking. Also simultaneously the confederate started to walk along his path to create
a potential collision around the cross-over point. As both the participant and confederate
entered the interaction zone, the AR interface instructed the participant to "stop" by tran-
sitioning from green to red. The wait time of the stop signal was based on the crossing
of the confederate. Once the confederate walked past the cross-over point, the interface
transitioned back to green signalling the participant to "go".

8.1.3 Data Analysis

To analyze participant and confederate movements during the experiment, overhead video
recordings were processed using a computer vision pipeline. Person detection was performed
on the video data using the YOLO (You Only Look Once) object detection algorithm
(Redmon et al. 2016), which provided bounding boxes around individuals in the scene. These
detections were then passed to DeepSORT (Wojke et al. 2017) for multi-person tracking and
generating trajectory data for both the participant and confederate.

To convert the tracked pixel coordinates into real-world positions, a projective transfor-
mation was applied using OpenCV’s geometric transformation functions1. This allowed
mapping of the 2D camera view to the physical dimensions of the experimental space.
To enhance the quality of the trajectory data, a median filter was applied during post-
processing to suppress noise and remove outlier detections. Finally, the trajectory data was
downsampled to 5 frames per second (fps).

To evaluate how motion dynamics and collision avoidance behaviors varied across experimen-
tal conditions, a trajectory-based safety analysis was conducted. Specifically, we extracted
the walking speed of participants from their tracked trajectories and computed the Time to
Collision (TTC) for each trial involving an interaction with the confederate.

1https://docs.opencv.org/3.4/da/d6e/tutorial_py_geometric_transformations.html

https://docs.opencv.org/3.4/da/d6e/tutorial_py_geometric_transformations.html
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TTC =
d

Vf − Vl

(8.1)

For the above equation, the instantaneous tangential velocity of the person that represented
speed for each time stamp was then computed as

V (t) =

√
ẋ(t)2 + ẏ(t)2

where x and y denote the position of the foot of the person when representing motion in
2D world space.

The TTC was calculated using Equation 8.1, which estimates the time remaining before a
potential collision occurs, based on the relative velocity and distance between the partici-
pant and the confederate. This metric then served as a key indicator of proactive avoidance
behavior reflecting the effectiveness of the AR guidance in promoting safer pedestrian in-
teractions.

In Equation 8.1, d is the distance between the participant and confederate and Vf and Vl

correspond to the speed of the participant between consecutive frames proceeding a collision.
While TTC has been used to represent the collision behaviours in the study, we also use the
spatial distance d or GAP from the above equation to observe how the spatial separation
between crossing persons differed for the different conditions of the study. Hence TTC, GAP,
mean walking speeds and computed statistical values of standard deviations(SD) were used
to make inferences in the work.

8.1.4 Results and Discussion

Figure 8.5 presents the extracted motion trajectories (shown in green and purple) for all
participants in Scenarios II and IV, which involved encounters with a crossing confederate.
As depicted in Figure 8.5(a), when no AR guidance was provided, participants exhibited
varying collision avoidance strategies (track deviation or speed variation), with some deviat-
ing from their intended straight-line path to prevent serious conflict. The behaviors reflect
spontaneous, self-initiated avoidance in the absence of external instruction.

In contrast, Figure 8.5(b) illustrates participant behavior under AR-guided priority cues. In
these trials, the Stop and Go Interface (S&GI) provided explicit instructions to stop or pro-
ceed. It can be noted that participants consistently complied with the AR signals—stopping
when instructed. This effectively helped to prevent collisions at the cross-over point. The
results suggest that AR-based control guidance was effective in modulating pedestrian be-
havior and improving safety outcomes during path-crossing interactions.

The Time to Collision (TTC) and GAP distance which respectively characterize the tem-
poral and spatial aspects of pedestrian-confederate interactions showed notable differences
between AR-guided and non-AR conditions. As shown in Table 8.1, participants demon-
strated significantly higher TTC values and greater stopping distances (GAP) when guided
by the Stop and Go Interface (S&GI), compared to the baseline (no inference) condition.

In the No S&G Inference condition, GAP values varied across participants, indicating in-
dividual differences in perceived safety margins during conflict resolution. For example,
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Figure 8.5: Interacting pedestrian trajectories in Scenario II (No Interface Interaction Baseline) on
the left and Scenario IV (AR Interface Guided Interaction) on the right. The green dots represent
the foot position of the participant, while the purple represents the trajectories walked.

participants P1, P5, and P6 maintained relatively consistent safety distances, suggesting
personal strategies or habits in approaching crossing scenarios.

However, under AR-mediated priority negotiation via S&GI, GAP values were found to
increase by at least 25%, highlighting the effectiveness of the S&GI in promoting more
cautious and structured interactions. These findings suggest that AR-based signaling not
only helps in avoiding collisions but also encourages participants to maintain safer distances,
enhancing both spatial awareness and reaction timing.

Participant Scenario GAP (cm) TTC (sec)
No Interface 77.05 2.5P1
AR Interface 106.01 3.5

No Interface 111.01 3.7P2
AR Interface 132.6 4.42

No Interface 59 0.65P3
AR Interface 104 3.4

No Interface 32 0.36P4
AR Interface 67 2.23

No Interface 70.29 0.39P5
AR Interface 95.18 3.17

No Interface 72.11 0.48P6
AR Interface 100.12 3.37

Table 8.1: GAP and TTC responses of participants for Scenario II (No Interface Interaction Base-
line) and Scenario IV (AR Interface Guided Interaction).

To better understand how the crossing dynamics of the persons changed in the AR experi-
ment, we studied the speed profiles of the different participants individually. This was then
used to make interpretations of applying AR traffic signals to walking speed control and
collision avoidance while crossing. The following research questions in this regard helps to
address gaps to AR signal control and pedestrian crossings.

Q1: How does the normal walking behaviour of the participant change when controlled by
AR mediation motion influence?

Table 8.2 compares walking speed data from Scenario I and Scenario III, both of which in-
volves uninterrupted, straight-line walking without any interaction with a crossing confeder-
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ate. The mean walking speeds and their associated standard deviations offer a quantitative
measure for assessing whether participants modified their walking behavior in response to
the presence of AR elements. Specifically, a reduction in average speed or an increase in
speed variability may indicate a more cautious walking pattern, potentially reflecting ele-
vated cognitive load or uncertainty introduced by the AR interface. In contrast, higher and
stable speeds may suggest that participants were minimally influenced by the AR content.
They were able to maintain normal attentional states during navigation. As such, these
speed profiles provide valuable insight into the subtle behavioral impacts of AR systems,
even under conditions without explicit pedestrian interaction or conflict.

Scenario I Scenario III
Mean Speed (m/s) SD Mean Speed (m/s) SD

P1 0.79 0.46 0.53 0.277
P2 0.85 0.56 0.50 0.37
P3 0.60 0.30 0.43 0.21
P4 0.57 0.23 0.62 0.18
P5 0.53 0.37 0.55 0.25
P6 0.56 0.23 0.47 0.202

Table 8.2: Walking speed variations for different participants comparing the two scenarios where
AR was present but did not control crossing behavior.

When comparing the No Interaction Motion Baseline with the AR Interface Guided
Motion, it was observed that most participants exhibited slower walking speeds under
AR-guided conditions. This suggests that participants generally modulated their motion
dynamics, as evidenced by both reduced mean speeds and lower standard deviations during
AR-assisted walking.

These findings indicate a shift toward more controlled and deliberate movement, which may
reflect increased cognitive engagement with the AR interface. Such behavior aligns with
previous research in AR navigation contexts, which has shown that users often slow down
when required to continuously process and respond to virtual guidance cues (Tang and
Zhou 2020). The observed reduction in speed may therefore be attributed to the elevated
attentional demands imposed by the Stop and Go Interface (S&GI), reinforcing the idea
that AR-mediated navigation affects not only decision-making but also baseline locomotion
behavior.

Q2: How did the walking behaviors change from a collision avoidance perspective when being
continuously guided with AR

As collision avoidance is a complex phenomenon that has been extensively studied, under-
standing the AR effects to avoidance required detailed analyses of strategies of how the
person prevent an accident. Common counter-strategies in real-world walking include di-
verting from the obstacle, slowing down, or entirely avoiding the path of a potential conflict.

Pedestrian motion modelling via simulations (Johora 2022) too has accounted for different
strategies to obstacle presence and their avoidance effect. In such simulating models, col-
lision avoidance is modelled as a social force that would repel motion with the strength of
repulsion propositional to the distance of the obstacle from the walking person. Taking into
account the motion responses during a conflict and considering AR influences; we looked at
the reactions of the participants to (a) the attention given to the presence of the nearby
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confederate when being controlled, (b) their braking behaviours when encountering cross-
ings persons and (c) the resulting changes to collision avoidance based on path or speed
adjustments.

Presence: To assess the effects of AR-mediated control on walking behavior, we compared
participant motion in the No Interaction Baseline (Scenario I) with No Interaction under
AR guidance (Scenario III). This comparison was used to evaluate how the mere presence
of a potential conflict agent (the confederate) influenced pedestrian motion, and how this
influence changed when AR cues were introduced.

Analysis of walking speeds revealed that two of the six participants demonstrated cautious
behavior when approaching the cross-over point in the baseline condition—likely due to the
anticipation that the confederate might initiate a crossing at any moment. This suggests a
proactive adjustment in speed, influenced by environmental uncertainty and perceived colli-
sion risk. However, when the same scenario was repeated with AR signaling the participant
to begin walking, this anticipatory behavior was not observed. In the AR-guided condition,
all participants maintained consistent walking speeds, showing no slowdown in response to
the presence of others in the scene.

This outcome highlights the strong directive power of AR instructions, indicating that vir-
tual cues can override natural social and spatial heuristics typically used in pedestrian
navigation. The AR interface effectively suppressed the cautious tendencies that partici-
pants might otherwise employ in uncertain, potentially conflicting environment suggesting
a shift in behavioral authority from real-world cues to digital guidance systems.

Braking: To investigate changes in braking behavior as a means of collision avoidance,
we conducted a visual analysis of the walking speed profiles of participants who exhibited
braking responses during interactions with a crossing confederate.

(a)

(b)

Figure 8.6: The Figure (a) above shows the natural response of the participant wherein P4 stopped
abruptly for the reaction window while Figure (b) shows the same participant reacting to AR
interface stop more smoothly and quickly to avoid the same collision.

Our initial findings suggest that braking responses were more abrupt when participants were
guided by the AR interface during crossing scenarios. Figure 8.6 illustrates the speed profile
of Participant P4, whose behavior was closely examined within a defined speed reduction
window (highlighted in black).
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In the non-AR condition, the participant demonstrated a gradual deceleration, indicative
of a cautious approach. Notably, the participant also exhibited a brief backward motion,
interpreted as an additional maneuver to increase separation distance and mitigate collision
risk. This behavior reflects a more deliberative and self-initiated collision avoidance strategy,
likely driven by personal safety heuristics and real-time visual assessment. Conversely, in
the AR-guided condition, the same participant responded more rapidly and decisively to
the virtual stop command, with a sharper deceleration and minimal backward movement.
This suggests that the presence of AR signaling prompted a more immediate and confident
braking response, likely because the perceived responsibility for decision-making shifted
from the individual to the system.

These observations support the inference that AR mediation can compress the decision-
making timeline, leading to more abrupt but controlled braking behaviors, particularly in
otherwise cautious pedestrians. Additionally, the reduced backward displacement under AR
guidance implies greater reliance on the virtual interface for conflict resolution, potentially
reducing the cognitive burden associated with evaluating dynamic obstacles in real time.

Collision Avoidance Strategies: While most of the participants preferred to brake giving the
right of way to the crossing confederate, two participants (P4 and P5) reacted with both
path and speed adjustments for No AR Interface Interaction Baseline (Scenario II).

Figure 8.7: The left shows participant P4 exhibits path adjustment as the collision avoidance
strategy while encountering the confederate, while P5 exhibits a combination of both path and
speed adjustment to counter the crossing confederate.

Figure 8.7 shows the avoidance behaviours of these two participants confronting the crossing
confederate (shown in pink). P4 applied a path adjustment along with upper body move-
ment that was visually observed from the video clips. The P5 participant, on the other
hand, applied a combination of both speed and path adjustments to avoid collision. In gen-
eral, all the participants (P 1-5), when guided using AR strictly followed the AR interface,
giving up participants specific avoidance strategies to avert the collision. This could indicate
towards trust in the AR-mediated virtual crossings and the attention given to the presented
information.

To summarise, this section detailed on how our exploratory study investigated the influence
of AR virtual traffic to mediate pedestrian crossings. The results of the study indicated
towards a virtual traffic interface successfully reducing the severity of motion conflict, af-
fecting the crossing dynamics and also collision avoidance strategies while sharing space and
moving with others.
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8.2 Influencing Behaviour by Virtual Cyclists Visualisation

Moving objects in a traffic scene could sometimes be partially occluded due to non-light-
of-sight visibility. Then a hazardous situation could arise when a person decides to walk
or cross even in the absence of complete scene information. For example, when moving
behind parked cars or walking past an intersection that is partially visible (due to layout
or bus stop nearby), special care needs to be taken to avoid bumping into a crossing cy-
clist or other fellow pedestrians. Visual mediums play an important role in communicating
scene information during occlusions. A network-based see-through approach was presented
in (Olaverri-Monreal et al. 2010) where visuals of the road that were occluded due to visi-
bility blocking trucks ahead helped drivers make safer overtaking decisions. The overtaking
vehicle then had a better perspective of the road ahead which was possible due to video
streaming of the scene and inter-vehicle communication. Extending such a see-through ap-
proach to AR, Rameau et al. (2016) applied sensor-based perception where stereo vision
and localisation were then applied to create synthetic images that allowed drivers to see
through occluding vehicles. A similar approach was then extended in (Maruta et al. 2021)
allowing pedestrians wearing Hololens to see blocked objects with V2X communication. All
of the above-mentioned approaches focused on directly communicating visual information
of occluded objects and improved driving and safer traffic behaviour.

If Mixed Reality can be used to represent traffic participants (like a cyclist), then such virtual
presentation methods could be useful in situations with incomplete visual information. For
example, if a parked vehicle occludes an approaching cyclist, then a person crossing could
walk more cautiously if s/he sees a virtual cyclist approaching him using his AR glasses.
However for such an approach to be effective in influencing the motion path of the crossing
person, the virtual cyclist should behave similarly to a real cyclist. This means that if a
person steps into the path of a virtual cyclist, it should also not bump into the person and
choose a collision-free path. Also, the visual appearance of a virtual cycle should prompt
safer crossing reactions rather than persons avoiding its presence completely. Hence to
prove the influences of mixed reality cyclists on walking, the work in this section focuses
on first implementing cyclists as intelligent agents with collision avoidance behaviours and
then testing whether their presence could visually influence walking. Section 8.2.1 describes
the framework to demonstrate the interaction between a virtual cyclist and a real person
blocking its path, Section 8.2.2 introduces the method proposed to estimate the level of
influence AR content has when walking with virtual traffic agents in a real-world experiment.
The methods described in this chapter are also presented in (Kamalasanan et al. 2022b)
and (Kamalasanan et al. 2023).

8.2.1 Mixed Reality Agent Framework for Cyclist Interactions

The novel framework introduced in this section prototypes a mixed-reality (MR) agent
system that enables real pedestrians to interact dynamically with virtual two-wheeler cyclists
agents. The setup for the framework setup employs a dual-subsystem consisting of a primary
and a secondary interface, as illustrated in Figure 8.8.

The primary interface, implemented via an AR headset, allows participants to visually per-
ceive and interact with a virtual cyclist while moving through the real-world environment
wearing the headset. Simultaneously, a secondary interface—a desktop-based computer
station captures data related to the participant’s movement and behavior during the in-
teraction. Both interfaces are synchronized in real time over a shared network, ensuring
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seamless communication between the AR system and the data-recording setup. While the
primary interface facilitates immersive interaction with the virtual cyclist, the secondary
interface serves as the observation and logging system, recording parameters such as de-
vice trajectory and timing of responses. By analyzing the recorded data, this framework
enables a quantitative study of pedestrian–cyclist interactions, including conflict scenarios
and avoidance behaviors, in a controlled yet ecologically valid MR environment.

Figure 8.8: The primary and secondary interface for Mixed Reality Agent Framework.

Given our goal of investigating pedestrian collision avoidance through controlled experimen-
tation, we developed a scene-centric framework. This choice is rooted in the understanding
that pedestrian behavior is strongly influenced by the spatial configuration and semantics
of the walking environment. As such, our system begins with the creation of a digital twin
of the experiment site using MR development tools. This digital environment serves as the
foundation for introducing virtual cyclist agents, which operate as autonomous, context-
aware characters capable of responding to pedestrian motion. A digital twin of the experi-
ment site is first created using mixed reality software and cyclists agents are then introduced
in it as intelligent characters. Participants would then interact and test crossing the path
of the virtual cyclist in the experimental scene. Such a test scene specific implementation
was a prerequisite to achieving intelligent behaviours of our novel cyclist agents. Figure 8.9
depicts the three main steps in realising our cyclist agent framework:

Modelling
✓Scene Acquisition and modelling

✓Real virtual world alignment 

Mixed Reality Simulation
✓Waypoint definition for virtual agent

✓Pedestrian cyclist interaction

Data Collection 
✓Trigger simulations 

✓Record and replay of interactions 

Figure 8.9: The workflow proposed framework that includes modeling- the creation of a test site,MR
Simulation- interactions with virtual content and the data capture from the interaction experiment
using the secondary interface.
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Figure 8.10: The capture point cloud of the test site is post-processed to model a 3D Unity mesh
model (left) and further transformed and pixelated to create a 2D map (right) of the test site.

Modelling: The primary step of the framework focuses on capturing the experiment site
either from a 3D or 2D perspective for virtual world creation and rendering. The created
virtual replica of the experiment scene is used for virtual content alignment using QR codes
in the primary Hololens interface. Furthermore the model in 2D prospective is also used in
the secondary interface (Figure 8.10). The following details the modelling procedure :

– 3D Modelling: To generate a 3D representation of the indoor or outdoor experimental
scene, a point cloud of the test environment was captured using the HoloLens 2 device.
Specifically, we utilized the HoloLens 2 Research Mode (Ungureanu et al. 2020), which
provides access to raw sensor streams, enabling the creation of a colorized point cloud
that accurately reflects the spatial structure and appearance of the environment. Fol-
lowing acquisition, the raw point cloud data underwent post-processing to eliminate
noise and ensure geometric consistency. The cleaned dataset was then imported into
Unity2. Using the point cloud as a visual and spatial reference, a 3D mesh model
of the scene was manually reconstructed within Unity. This reconstruction relied on
Unity’s primitive objects and GameObject system3, allowing for a customizable and
lightweight digital twin of the physical environment suitable for real-time rendering
and interaction in MR.

– 2D Modelling: The raw 3D point cloud captured during the scene modeling step was
subsequently transformed into a Bird’s Eye View (BEV) map to obtain a 2D top-
down representation of the test environment. This transformation enables a simplified
yet spatially consistent layout of the scene for further analysis and agent navigation.
To achieve this, the point cloud was first downsampled and voxelized to reduce com-
putational complexity while preserving essential geometric features. Following this,
the 3D coordinates were projected onto a 2D plane—typically the ground plane—by
mapping the x and z spatial dimensions to pixel coordinates, with the vertical y-axis
(height) discarded. This pixelation step effectively converts the volumetric data into
a 2D grid map, enabling top-down visualization and facilitating subsequent tasks such
as path planning, agent localization, and collision detection within the mixed-reality
framework.

Mixed Reality Simulation: The simulation of motion for the virtual cyclist to enable real-
time collision avoidance is a core component of this stage. This is accomplished by inte-
grating multiple software modules encompassing position tracking, agent-based modeling,
and visualization (as illustrated in Figure 8.11) within the broader mixed reality (MR)
simulation pipeline.

2https://unity.com/
3https://docs.unity3d.com/Manual/GameObjects.html

https://unity.com/
https://docs.unity3d.com/Manual/GameObjects.html
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The MR simulation operates under a client-server architecture, wherein the HoloLens de-
vice functions as the client responsible for rendering the visual scene, while a centralized
server handles the real-time movement logic of the cyclist agent and facilitates the commu-
nication required for synchronized viewing. During the simulation, the primary HoloLens
user—immersed in the MR environment continuously transmits their positional data to the
server. This data acts as a dynamic input to the agent-based path planning algorithm,
which governs the motion of the virtual cyclist. The cyclist agent, managed on the server,
updates its trajectory in real-time based on the user’s movement and employs a collision
avoidance strategy informed by proximity-based interaction rules. The computed positions
of the cyclist are subsequently streamed to the client and rendered in the HoloLens as 3D
animated avatars, enabling the user to experience realistic motion encounters and conflict
scenarios. This framework allows for context-sensitive interaction, simulating intelligent and
reactive behavior of cyclists in the shared MR space.

Visualisation

Device position

Agent modelling 

logic

LightJason

Visualisation

Trigger/logging

WebSocket Communication Channels
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Human Experimenter Virtual Cyclist Agent

Experimental Apparatus

Internet

Figure 8.11: Different components of the real and virtual world (human experimenter, virtual cyclist
and 2D visualizer) interconnected using web sockets in the mixed reality simulation.

Data collection: The motion interactions occurring between the primary HoloLens user and
the virtual cyclist are monitored and recorded through a secondary interface. As illustrated
in Figure 8.9, this secondary interface includes a 2D visualizer integrated with a 2D map of
the test environment. Leveraging real-time positional updates from both the HoloLens user
and the simulated cyclist agent, the visualizer provides a live display of motion trajectories
and interaction events.

This utility interface serves a dual purpose: it facilitates real-time monitoring of user-
agent interactions and enables post-experiment analysis by recording motion data for later
replay and evaluation. Such a capability allows researchers to examine pedestrian-agent
dynamics in detail, supporting both quantitative assessments and qualitative reviews of
behavior during mixed reality simulations.



122 8 Influences from Static and Dynamic AR Traffic Content

Prototype implementation: To prove that our framework can successfully capture the inter-
action between a real person interacting with a virtual cyclist, we implemented our mixed-
reality apparatus using MRTK, web sockets and Unity. To perform a microscopic simulation
between the real person and the virtual cycle, we chose LightJason (Aschermann et al. 2016)
as the agent framework and implemented the server logic using Java. The cyclist collision
avoidance was then achieved based on real-time position updates from the Hololens and
the LightJason backbone. All simulation movements of the software agent were based on a
2D grid-based occupancy of the Hololens in the scene. This means that whenever a person
occupied one of the grids, then the cyclist found a collision-free path avoiding the occupied
grid. The agent description of the cyclist was written in AgentSpeak (L++) language and
the Stomp protocol was used to publish and subscribe the different messages between the
different components.

To interact with the virtual cyclist, the primary interface user would first launch the Mixed
reality application on the Hololens device and scan the QR codes placed in the experimental
scene. This would align the Unity coordinates system with world coordinates using the 3D
model of the scene as in (Hübner et al. 2018). Once the real-world scene is aligned with
the virtual world, the virtual cyclist would start motion from its origin moving towards
its destination via predefined way-points that were set in the experiment. The human
experimenter viewing the cyclist would walk and block the path of the virtual cyclist during
the experiment. Based on the position updates from the Hololens, the programmed agent-
based simulation would route the cycle avoiding the occupied positions along its motion
paths. The 2D visualiser that is part of the secondary interface would receive all the motion
updates of the experimental apparatus in real-time. The interface also contained a GUI to
view the interactions and save them for further analysis.

Figure 8.12: A Mixed reality view from the Hololens of a virtual cyclist moving and interacting
with the AR headset user.

Figure 8.13: The virtual cyclist (blue) forced to take a detour as a static Hololens experimenter
(red) blocks its path.

Figures 8.12 and 8.13 show the early results from the tests completed with the framework.
As can be seen from Figure 8.13, the cyclist shown in blue avoided collision with the person
(in red) even when its straight-line movement path was blocked.
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8.2.2 Motion Influences Due to Moving Cyclist Avatars

The previously described framework explains how intelligent cyclist agents who would move
along collision-free paths could be realised and visualised using mixed reality. However, for
such virtual agents to enhance safety and influence pedestrian walking, their visual presence
should prompt persons to maintain safety distances as in real pedestrian-cyclist interactions.
Taking a traffic crossing as an example, if people interact with the virtual cyclist safely while
intersecting its path, this could be an indication that persons are navigating while taking
into account the presence and motion of these virtual agents. On the contrary, avoiding any
interactions and walking past a cyclist avatar would mean ignoring their presence. Hence to
further estimate the walking influences of a person to virtual traffic agents in the scene, this
section focused on a mixed reality user study with virtual cyclists crossing walking pedestrian
paths. One of the objectives of the study was to understand whether the walking path of a
person would change when seeing a virtual cycle moving and crossing him.

For the MR study, the framework that was proposed in the previous section has been
further extended and modified for a pilot user study. For this, rather than having cyclists
as intelligent agents with collision avoidance; we program the virtual cycle to move with
a constant velocity and fixed path like the crossing confederate in the experimental study
detailed in 8.1. Then a participant who is expected to cross paths with the cyclists might
perform a conflict avoidance maneuver to avoid risking collisions. The study in this section
focuses on capturing such interaction manoeuvres between a walking person and a virtual
cyclist crossing his motion path. For this, we used our mixed reality framework, the Hololens
and improved the Unity application for the study that has been detailed in the subsequent
sections.

8.2.3 Experimental Design and User Study

The user study consisted of a walking experiment where study participants moved in an
indoor setting while wearing the Hololens and crossing a moving virtual cyclist. The crossing
behaviour of the person then results in a virtual interaction with the cyclist which is termed
as vInteraction in this thesis. As shown in Figure 8.14, each participant was expected
to complete a journey by walking from a predefined start-point to the end-point in the
lab. Based on what the participants saw while walking along the path, we designed the
experiment to test three conditions:

– no AR: In this condition, the participant was shown no virtual mixed reality content
while walking from A to B.

– AR w\o vInteraction: For this setting, both a virtual bench and tree were added
to the left and right of the walking path of the participant. This was visible only to
the participant as he walked with the MR headset on the path.

– AR with vInteraction: In this last condition each participant saw both static infras-
tructure and the 3D moving cyclist. The bench and tree along with the crossing cyclist
were shown in the Hololens. The motion path for the cycle was scripted to start from
a fixed start point and cross paths with the straight line path of the participant. Also,
the speed for the virtual cycle was fixed and moved continuously without stopping for
each of the tests.
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Figure 8.14: Experimental scene from a top view perspective with the cyclist crossing the walking
path and the bench and the tree to the left and right respectively.

Furthermore, as the study was a walking experiment, we conducted three trails for each of
the conditions with each trail based on the speed of pedestrian walking- slow, medium
or fast. Hence based on the presence of AR content (condition) and speeds (trails), we
designed a 3 (AR: no AR vs AR w\o vInteraction vs AR with vInteraction) X 3 (speed:
slow vs normal vs fast speed) within- group study that resulted in 9 iterations in total (slow
speed & no AR, slow speed & static AR, slow speed & static + dynamic AR, medium speed
& no AR, medium speed & static AR, medium speed & static + dynamic AR, fast speed &
no AR, fast speed & static AR, fast speed & static + dynamic AR). Our experiment for the
study was conducted in an open space 10m X 10m indoor lab with optical motion tracking
to track the movement of the study participants.

Implementation: As both the movement characteristics and the visual appearance of the
virtual cycle were important aspects of a successful mixed-reality study, we first created
a real cyclist movement dataset where a single bicycle moved in an open outdoor space
and captured its data. Then using the bike motion parameters derived from the dataset,
we designed a Unity cyclist GameObject for bicycle movement. Finally, the virtual cyclist
asset based on the design was imported into the user study application and moved along a
predefined path for the experiment.

Real Bicycle Dataset: A bicycle 3D point cloud dataset was recorded at 10 fps using a static
laser scanner (Hesai PandaXT 32) observing a moving cyclist in an open space outdoor scene.
Following the data capture, using a manual segmentation approach, the movement path of
the bicycle was later extracted in post-processing. The rate of change of movement of the
cycle along the ground plane was then used to estimate the heading angles for each time
stamp in the data (Figure 8.15).

Virtual Cyclist Design: The movement information extracted from the bicycle dataset con-
sisted of the cyclist’s position and heading. Using these parameters, a 3D bicycle movement
model was designed for the Unity asset. As depicted in Figure 8.16, the Unity gameObject
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Figure 8.15: Figure on the left indicates the raw pointcloud (with the cyclist) captured using the 3D
scanner and the right figure shows the extracted path and the rate of change of heading (indicated
by tangential lines) for each time stamp.

design for the bike was a simplified motion representation (excluding the rider). In the de-
sign, given the position and heading data from the dataset, only the movement of the center
of mass (CO)and the tilting angle(ϕ) of the front wheel were used to control movement in
3D. Hence at any given time point, the motion of the cycle was represented by P where P(t)
=(CO, ϕ). Also for our proposed model, the tilting angle of the bicycle frame along the
vertical axis (which occurs when a bicycle turns) and other more complex representations
were not considered.

Figure 8.16: Cyclist GameObject model for animation in Unity

Following the design step, a 3D cyclist that followed the design specifications was imported
to Unity and integrated into the mixed reality framework. All the other virtual 3D objects
used in the study (benches and trees) were mainly freely available packages from the Unity
Asset store 4. To track the walked positions of each study participant, other than the MRTK
camera positions that were transmitted by the Hololens, optical markers were placed on the
Hololens and the body of each participant. This was then used to track each participant’s
motion externally at 200 Hz. During the study, before each participant started a trial, the
mixed reality application was launched on the Hololens and scanned for QR codes placed
in the indoor lab. The headset was only used in all the trails that included virtual content
and interactions.

Before the experiment, the participants were briefed about the walking task to be performed.
Persons were instructed to walk along the straight line path (Figure 8.14) while freely
deciding to react to the virtual content if present based on the iteration conditions. They
were also informed that the cyclist was not intelligent and hence would not react to the
participants if they blocked its movement path. All participants were expected to complete
all nine iterations including the three AR conditions with slow, medium and fast walking
speed trails in random order. In the study, each participant was informed to commence

4https://assetstore.unity.com/
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Figure 8.17: Mixed reality view of the crossing cyclist as seen from the Hololens. The figure shows
the walking path along with the virtual tree that was added to the scene.

walking based on their natural slow, medium and fast speeds when an auditory beep signal
was broadcasted by the experimenter. At the same instance, the cyclist started moving for
all trails of the AR with vInteraction condition. A volunteer was responsible for recording
all the motion trajectories of the experiment at the secondary interface.

The pilot study for this work was completed with 5 participants (2 females and 3 males)
who were mostly master students or university employees. All the participant were in their
mid-twenties and early thirties and had normal or corrected-to-normal vision.

8.2.4 Data Analysis

For each participant, the motion data captured in the experiment included walking trajec-
tories recorded from two sources: a) the external motion tracker at a high frame-rate and b)
the Hololens camera motion from Unity that is recorded on the secondary interface server.
While the first data source provides a high-frequency movement data of how each person
walked; the second source is used as a reference in correctly estimating cyclist paths with
respect to the external tracking system. This is primary because both the Hololens camera
and the virtual cyclist move in a fixed Unity cordinate system of the MR application. This
low frequency data from virtual environment would be prone to noise and motion drifts due
to MR capture. Hence by using motion clues of the person from the Hololens movement
tracks that capture the same walk as the external motion tracker, the high-frequency data
of the optical tracker can be spatially aligned to get a noise-free movement trajectory of
all interactions recorded. Furthermore, any time lags or differences in the data can be cor-
rected in the post-processing step. Hence following the above-mentioned alignment step we
get high-frequency motion tracks for all participants for all conditions tested in the study.
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The three conditions tested in the motion experiment - noAR, AR w\o vInteraction, AR with
vInteraction are investigated separately in the analysis step. For the first two conditions, we
only compute the speed profiles for all the participants and apply statistical analysis on the
maximum walking speed. For the AR with vInteraction case, along with max speed, we also
compute the three key metrics - the Post Encroachment Time -PET, the euclidean distance
and min distance to approximate both the level of safety and the involved participant motion
dynamics in the virtual interaction.

To spatially characterise the same interaction, we compute the euclidean distance between
the two agents when the PET was estimated. This represented how far the two agents were
from each other when a conflict was missed. The last metric min distance, represents the
point of minimum separation between the person and the cyclist throughout the virtual
interaction experiment. This distance value could have been at its minimum at any point
after having started to walk and before the participant reached the stop point. This value
was computed by replaying the path of both the cyclist and pedestrians as in the experiment
and recursively estimating their distance. The computation was stopped when the point of
min distance was reached for the experiment iteration.

The observations of 45 iterations (9 iteration x 5 participants) were analyzed. Furthermore,
the data from one of the iteration was discarded during post-processing, mainly due to time
synchronization issues.

8.2.5 Results and Discussion

In the following section, the results in terms of walking and interaction behaviour are re-
ported. Also due to the pilot character of the study, only descriptives are reported.

Figure 8.18: Max speed variations for no AR, AR w\o and with vInteraction for slow (white),
medium (gray) and fast (black) walking speeds. The error bars represent the confidence intervals
for the max speeds.

Maximum Walking Speed: As illustrated in Figure 8.18, participants were following the
instructions on different walking speeds in the three speed conditions. Specifically, partici-
pants were walking slower and faster than normal in the slow and fast walking conditions,
respectively. Further, the maximum walking speed does not seem to be affected by addi-
tional virtual content in the walking environments.
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Interaction Behaviour: For the AR with vInteractions condition, analysis was applied for
the crossing order to understand the choice of the interaction behaviour upon pedestrians
seeing a virtual cyclist crossing their walking path. Of the total 44 trials, participants were
giving way to the cyclist in 3/4th of the trials, while decided to pass first in 1/4th of the
trials. As role attribution has been shown to result in different collision avoidance strategies
(Olivier et al. 2013), separate descriptives are reported for all further analyses.

Table 8.3: The interaction metrics computed based on different crossing orders- cyclist first
(vInteractionCP ) or pedestrian first (vInteractionPC).

Interaction metric (mean) vInteractionCP vInteractionPC

PET (sec) 2.23 1.68
Euclidean distance (m) 2.11 1.37
Minimum distance (m) 0.995 0.809

cases (in %) 3/4 1/4

Table 8.3 illustrates the mean of the temporal and spatial crossing metrics. It can be note
that values for all three metrics PET, Euclidean and Minimum distance were larger when
pedestrians gave the right of way to the virtual cyclist as compared to when the cyclist
crossing first. Moreover it was noted that giving way to the virtual cyclist, a strategy
chosen in the majority of trials had resulted in larger temporal and spatial crossing distances
between the cyclist avatar and participant.

Table 8.4: Speed and participant wise categorisation of trials with vInteractionPC crossing strategy

slow normal fast

Total
Trial
Count

1 3 7

Trial
Count per
Participant

-
1 for P2

-

1 for P1
2 for P2

-

3 for P1
3 for P2
1 for P3

For being able to further explore the factors that contributed to the selection of a pedestrian
crossing first-strategy, separate analyses were performed for all 11 vInteractionPC pedestrian
first trials.

As can be noted from Table 8.4, the selection of a crossing first-strategy seems to be influ-
enced by both walking speed and individual preferences of single pedestrians. The majority
of trials (7 out of 11) can be assigned to the fast walking speed condition. Further, the
crossing first-strategy was mainly selected by two pedestrians (10 out of 11 trials) only.

As the speed of walking could be an attribute that might have been specific to each of the
participants P1 and P2, the maximum walking speed was computed for the fast iterations
and compared to the speeds of participants P3-P5. It can be noted that P1 tended to walk
faster than the average of P3-P5 (Figure 8.19), while the opposite seems to be true for
P2. Still, P2 was able to cross in front of the virtual cyclist. This has been an interesting
early finding of the work, which implies that not just speed but other factors seem to have
contributed towards the crossing decisions made.
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Figure 8.19: Max speed and its spread representation when comparing the speed of P1 and P2 to
that of the other participants (P3 to P5) for fast-paced walking trials.

An interesting finding of the work was that both types of crossing behaviours - either crossing
first or giving way could be observed as a part of the collision avoidance strategies when
interacting with virtually represented cyclists. While previous research (Olivier et al. 2013,
Knorr et al. 2016) has highlighted that giving the right of way is a more successful collision
avoidance behaviour, the preferences of a few of the participants to cross first has been an
interesting find of the current work. Also when looking at the PET and minimum distances
that were computed when persons crossed first, lower values for these metrics indicated less
safe crossing than when the virtual cyclist crossed. From a safety perspective, this find
indicates that pedestrian crossing was safer when crossing first. We hypothesize that this
could be due to the high level of predictability in estimating cyclists’ motion in the present
study. Once the participants estimated the potential risks, they decided to cross quickly
which could have led to such unsafe behaviours. As described above, the virtual cyclist
behaviour was scripted to move using a constant velocity and was not programmed to be
reactive to pedestrians walking (Kamalasanan et al. 2022b) e.g. to slow down if a pedestrian
approached closer.

Furthermore, the third interaction metric, i.e. min distance, yielded nearly similar values for
both passing strategies, with min distance being only slightly lower when pedestrians were
crossing first. This metric, unlike the Euclidean distance, was computed to estimate how
close the two agents (pedestrian and virtual cyclist) were passing each other throughout the
experimental trials. Taking all three metrics together, the outcomes of our study suggest
that, under high predictability of the virtual cyclist’s behaviour, even when being non-
reactive, participants can predict the temporal and spatial distance to the cyclist and flexibly
choose collision avoidance behaviour accordingly. Importantly, multiple factors, such as e.g.
maximum walking speed but also pedestrian-specific preferences, seem to influence the actual
choice of collision avoidance

As the primary objective, the study successfully investigated how pedestrians react to the
AR content of seeing a cyclist cross their path and whether this influences their decision
to either cross first or give way. While the pilot study demonstrated that walking persons
preferred to interact when crossing the path of the cyclist, further investigation needs to be
done to understand if virtual cyclists could be used to represent the motion dynamics of real
pedestrian-cyclist interactions. If future works can accurately demonstrate the behaviours
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of mixed reality cyclists to influence behaviours, then such visual approaches could be used
to improve walking and crossing visibility in partially occluded situations.



9 Discussion and Outlook

While the results for each of the sections have been evaluated individually, in this chapter,
the findings from the different methods are compared and further discussed for potential
future development. The chapter starts with an overview, followed by an assessment of
the motion perception capability of the AR device and discusses its performance evaluation.
Then the effects of showing the future path in AR and how this might influence path choices
is discussed. The chapter concludes with suggestions for future research identified based on
the results, that needs to be addressed in the future.

This thesis investigated the effects of using an AR device and its visual interface to influence
the walking behaviour of pedestrians. The methodology involved demonstrating a motion
pipeline to perceive motion in the ego view of the Hololens and studying the effects of
showing the future motion paths. Pedestrian safety issues while walking in shared spaces
was focused to be addressed using the proposed method of AR influence. For this a motion
perception algorithm used the data from the Hololens and first detects and then tracks
walking pedestrians in the field of view. For this, the thesis compares applying particle
filter tracking to both F-Pointnet and MaskRCNN based pedestrian detection. Also the
preferred path choice differences of seeing the future motion of others in front of the Hololens
is studied. The future motion path is represented in AR either with a "simple 3D arrow" or
with an "confident" or "uncertain" encoded arrow. The different designs used for encoding
are based on visual variables commonly used in cartography and map representations.

To evaluate on how well the motion pipeline detected and tracked pedestrians, both F-
Pointnet and MaskRCNN based 3D detections and tracked paths were measured using
the 3D IoU and CLEAR Mot metric respectively. Furthermore the walking influences of
seeing future motion of others were studied from a safety perspective; using walking path
preferences, while crossing paths with persons whose future trajectory was visualised with
AR. The surrogate safety measure PET was used to estimate whether persons preferred to
walk longer or shorter paths when seeing the future information to cross.

Finally other influences that could result in walking when using AR were also experimented
in the work. When walking behaviours were controlled using a virtual traffic infrastructure,
people reacted to crossing conflicts with more safety and higher TTC. Also, it was noted
that walking behaviours were more predictable when AR mediated crossing priority. For the
methods that tested crossing behaviours with cyclists as virtual avatars, different behaviours
based on who crossed first was noted. When persons crossed the cyclist first, less safe
interaction with lower PET values were noted than for all those situations when cyclists
crossed first.

9.1 Motion Perception using AR Hololens

Overall, the results presented in this thesis have proven that it is possible to both detect
and track pedestrians using the RGBD sensors of an AR device. This can then be used to
apply visualisations based on interpretations of surrounding motion with AR.

131
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In general, even when the findings from the work verify motion perception using two detec-
tion approaches - Frustum Pointnet and MaskRCNN for the Hololens, both the quantitative
and qualitative results need to be investigated further. This is because, for AR influence,
both detection and tracking are important. The detection outputs - the centroid of the 3D
box that localises the position and the 3D shape (via bounding dimensions) of a person. The
tracking step estimates - the walked paths of the person by inputting 3D positions from the
detector and associating them for the different time stamps. The errors made in correctly
detecting and tracking persons can influence effective visualisation using its results.

The 3D object detection accuracy (AP) metric when testing pedestrian detections with F-
Pointnet (without 2D pose features) for the simulated shared space dataset (SSS) yielded a
score of 0.89 (IoU=0.3). This score was 32.8 % higher than the 3D detection accuracy for
MaskRCNN detection using the same dataset. This indicated that the pedestrian detection
using the AR device Hololens was able to detect the approximate body shapes of persons
and their orientations better in 3D using the F-Pointnet. However, when the real-time
implementation of F-Pointnet and MaskRCNN were evaluated for tracking performance
with the IKG pedestrian tracking dataset, the MaskRCNN tracks performed better than
F-Pointnet for the CLEAR MOT metric. The MaskRCNN in our work showed a better
tracking accuracy of 81.39 % which was higher than F-Pointnet by 10%. The better perfor-
mance of F-Pointnet in 3D detection could indicate towards the network overfitting to the
SSS Dataset while a higher tracking performance of MaskRCNN could mean better general-
isation of the tracking-by-detection MaskRCNN pipeline. However both these claims need
to be verified with further investigation.

The MOTP score computed for MaskRCNN clearly indicated that the average pedestrian
localisation error was under 20 centimeter. This was reported to be considerably lower than
the F-Pointnet-result, where errors were as large as 40 cm. Hence our MaskRCNN pipeline
reported a relatively good localisation performance while person tracking. If the future
path of others have to be visualised, the pedestrian localisation accuracy approximated is
acceptable considering the definition of position uncertainty as a person walks. This has
been further elaborated in the next paragraph. Also, the CLEAR MOT scores obtained
for the IKG Pedestrian Tracking Dataset largely depends on how pedestrians moved in the
scene and how well the tracker performed (Nguyen 2020). Future work needs to verify
whether the tracker performance recorded in this thesis are comparable to well performing
3D pedestrian trackers like OC-SORT (Cao et al. 2022) that are evaluated with the KITTI
benchmark (Geiger et al. 2015). Also, our work has only focused on using the results from
the detector directly to track pedestrians with it. All the detected outputs of the pedestrian
detector, including false positives, are taken as input to the tracker. Future work could
consider adding a preprocessing step as proposed in (Nguyen 2020), where noisy inputs are
filtered out before tracking pedestrians with it.

Furthermore, if the output of the motion perception pipeline is to be used for AR visualisa-
tion to support safety, then the computed MOTA and MOTP metrics have to be evaluated
from both AR and safety perspective, respectively. This would then require that the motion
perception pipeline has a good (a) localisation and (b) tracking with acceptable id-switching.
The localisation accuracy in this case is important because any visualisation that is placed
at the position of each tracked person should be accurate to ensure the registration of both
real and accurate virtual content to influence motion. Misalignments between the virtual
and real content could result in perception issues and ineffective visual influences (Drascic
and Milgram 1996). In this regard, errors from the trackers as high as 20 cm are still accept-
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able to show either simple or informative future. The uncertain future path when visualised
with the pipeline then will have an error bound within a range of ± 20cm.

On the contrary, the consistency of tracked id returned for a person in the scene is only
important if the visualisation used gives a color scheme or visual attribute to differentiate
each person. However our future path visualisation only prioritizes to show the future
positions and whether the predictions are confident or uncertain. This further emphasises
on revising the use of the MOTA metric as accuracy score of the tracker. The missed tracks
and false positives still need to be considered without prioritising id-switches that happened
while tracking. Future work could consider the use of the HOTA metric (Luiten et al. 2021),
that is a successor of the CLEAR MOT metric which might fit better to tracking future
path based AR motion.

Lastly when different methods that are proposed to influence walking have been measured
using the surrogate safety measures (PET and TTC) in this thesis, the motion perception
pipeline has not been evaluated from a safety perspective. Some recent works have demon-
strated early results in evaluating computer vision algorithms from a safety perspective.
Lyssenko et al. (2021) evaluated pedestrian detection using the IoU to see how they per-
formed in situations when sensors moved in close proximity to walking persons. Using a
simulated dataset from autonomous driving, pedestrians walking closer to the sensor and
their localisation performance were prioritised over others in the scene. The performance of
the evaluated detector was then proven to reduce in precision with increasing distance. To
evaluate perception using 3D sensors differently, Wolf et al. (2021) proposed a safety aware
people detection metric that took into account both the distance of the person from the
sensor and also the resulting time-to-collision (TTC). This metric metric was then used to
provide meaningful assessments in safety situations. The use of a surrogate safety metrics
like TTC have further been evaluated for other perception performance works (Lyssenko
et al. 2022, Philion et al. 2020). While TTC and PET have been used to study AR influ-
ences from a safety perspective in our work, future works could also consider incorporating
it directly into the motion perception evaluation step. This might get a better idea of how
our pipeline estimated PET and the severity of the resulting motion conflicts.

9.2 Walking Influence Based on Scene Motion Visualisation

Future motion information is considered to be advantages in safety critical scenarios where
visual information would be provided to either warn or assist pedestrians in making safer
path choices. Some recent works have informed pedestrians or vehicle occupants about
either occlusions and resulting dangers or about future motion (Peereboom et al. (2023),
Colley et al. (2017a)). The motion influences that result from such works are more focused
for specific use cases (like moving behind parked cars or improving trust in machines). Our
future path visualisation approach presented in this thesis could be extended to influence
pedestrians in different safety critical situations that could include crossing paths, or paths
that might cross in a future point in time.

In our work, the path choice effects of showing the future path were studied both for a
simple and an informative (confident or uncertain) arrow based 3D visualisation. In each
of the cases, the tip of the arrow indicated the position of the person in the future and its
orientation indicated how s/he rotated the body or changed the direction of walking. All
AR prediction visualisations were shown as a projection on the ground. For the majority of
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test participants who decided to cross from the front proved safer walking to result from the
use of AR visualisations. This held for all scenes irrespective of their inherent complexity
to guess the future. However when the prediction information of either "confidence" or
"uncertainty" were encoded in AR, then the participants showed mixed behaviour. Scenes
that were less difficult to predict future motion prompted less safety conscious crossing
behaviours and vice versa for high complexity scenes. All safe walking routes were noted to
result in longer crossing paths in the study.

The methods to evaluate safety behaviours that resulted from future path visualization was
extensively studied based on how persons choose to cross from the front or from behind.
This helped to understand both simple future and informative future paths in AR. The
study pointed out that the path choice behaviours to safety cross differed based on whether
a person crossed from the front or from behind. However, this crossing based analysis was
proven to be limited by the size of the collected participant data as for few scenes only less
participants crossed from the behind. Future work could consider the imbalance of crossing
samples when designing the experiments.

To summarise the findings from this thesis, the work successfully demonstrates an ego pedes-
trian perception algorithm that detects and tracks other walking pedestrians in front of the
Hololens. Furthermore, the work also proves that AR can influence walking based on future
path visualization. Along with this contribution, the Chapter 8 presented two different
methods of walking influences using virtual content to represent static infrastructure or dy-
namic scene motion. The safety improvements when walking with adhoc virtual signals that
guide people to stop or cross during a crossing situations was studied in the first. In the
second method, moving cyclists as virtual 3D traffic avatars were tested in a walking ex-
periment with pedestrians. The findings of the study explored how crossing behaviours and
interactions differed when persons crossed virtual moving cyclists in mixed reality. While
the findings of the first study can be useful to traffic planner and urban designer to install
virtual traffic systems, the learning’s from the second method can be used to understand
the benefits of represent moving agents in used cases like occlusion due to parked cars or
limited Line-Of-Sight (LOS) visibility.

9.3 Suggestions for Future Work

To influence the walking behaviour using AR, this thesis has restricted itself to the Hololens
and proved AR influences to pedestrian walks in indoor or space constrained settings. This
in turn indicates that there is a potential for further research questions related to the overall
research topic. Therefore this chapter provides a selection of suggestions for future research
directions that are not addressed in the scope of this thesis.

While this thesis provides results focused on shared spaces and influencing path choices dur-
ing collisions with both motion perception and AR, the findings from the work could also
be used to address safety risks in other domains. This, for example, could include industrial
co-working spaces where humans would share spaces with robots or future connected urban
environments where people share space with interconnected autonomous vehicles. In the
former use case, visualisations shown with AR headsets would guide pedestrians to walk
when being confronted with a mixed group of robots and humans in a factory setting. If
AR were to be used in a future urban scenario as mentioned in the latter case, headsets
available in smaller form factors and higher technical capability could further traffic com-
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munications. This might then make it possible for pedestrians to directly talk to a groups
of autonomous vehicles. If vehicles are informed about pedestrian crossing urgency, newer
forms of negotiations could result in traffic spaces (Li et al. 2022b).

The perception methodology proposed in this thesis is strongly based on the assumption
that the Hololens is positioned at a stationary point in the scene and its sensors are recording
the RGB and depth of the surrounding movement. The designed visual interface to show
the future path of others also has not studied non stationary ego user scenes. While with a
static AR headset it was possible to prove the concept of AR influence, challenges that would
arise when considering the device to move with walking needs to be addressed. Two research
gaps have to be primarily addressed within the scope of AR influence for this. Firstly, as
the headset would be in motion, all tracked positions of other walking pedestrians have to
be now estimated in a global coordinate system. This would require localising the headset
in a global reference frame, estimating the pose and then transforming detected tracks to
this global frame. Secondly, when visualisations are applied to a moving headset, there
could be dynamic errors that have to be accounted for. The first error in this regard is
the localisation error which might result in wrongly estimated global pose which might
cause virtually placed holograms to drift or float (Vassallo et al. 2017). The second issue
that would need attention is the amount of motion estimation uncertainty that would arise
when applying scene motion perception with relative movement. The current finding of the
thesis have reported low errors in tracking walked persons when using a MaskRCNN and
a particle filter for the Hololens. This would have to be reevaluated as headset movement
could introduce additional pose errors when tracking surrounding pedestrians. This might
further affect visual experiences when showing the future path of other walking nearby with
AR.

As a part of the proposed method, the motion perception component and future path visu-
alisation component have been considered separately for the application of the methodology.
However, there is a possibility to apply the proposed methodology as a combination of both.
This would then require the scene motion pipeline to also estimate future trajectories along
with both detecting and tracking pedestrian movement. Hence research on estimating future
path in real-time for the Hololens has to be explored. This would require the implemen-
tation of tracking in real-time to design the amount of frames that would be required to
predict immediate future. Also while there has been significant research within the robotic
community on motion prediction, methods that have applied pedestrian motion prediction
for shared spaces (Cheng et al. 2023, Hossain et al. 2022) might be worth exploring further.

Also motion predictions could benefit from more sensor information about the person. For
example, as a predicted path would depend on the goal/destination, level of motivation,
etc. This information could be better understand or interpret with more sensor data. As
the person would wear an AR Hololens, it might be possible to use its sensors to create
internal models that could help to explain psychological traits about the AR user. For
example by using data from sensors (eye tracking for instance) to understand gaze, it might
be possible to infer the level of attention, estimate fatigue and also approximate his/her
intended destination. This can then be used to create a digital twin of the AR headset user
such that motion influences from AR could be better interpreted with the twin model.

As the thesis does not cover conducting a usability test to investigate the effectiveness of
the method, future works could focus on replicating the finding of this thesis. For this,
the complete pipeline and the future visualisation explained in this thesis have to be im-
plemented in real-time. Future works in this direction should investigate the usability of a
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fully functional online system and also address the differences in the effectiveness of using
AR by comparison to the user studies that are conducted as a part of this thesis.

Finally, even when virtual cyclists have been proposed as a visualisation method to influence
walking, the use case in improving vision of occluded cyclists with MR needs to be tested.
Future research could investigate to visualise occluded cyclists to support safety of vulnerable
road users in upcoming works.

Scenario Specific Visualisations of Future Motion Path: In this thesis, the methodology to
influence walking with future path visualization (Section 7) and other influences (Section
8) has been tested for single pedestrian scenarios. However, as walking of neighboring
persons always tends to directly influence others in walking, future work should focus on
how visual influences would be different considering larger scenes and more interactions
between different pedestrians. It might also be worth exploring whether the use of the
arrow visualisation to indicate future paths would create visual clutter in the scene.

In this context, the use of different graphical variables other than arrows, e.g. colours
and symbols could be investigated in subsequent works. It might be interesting to observe
whether the use of animations, e.g. a glowing circle instead of a moving arrow, would give
the same level of crossing influences.
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