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Abstract

Satellite navigation can provide essential positioning, navigation and timing (PNT) infor-
mation to a broad range of users. With the development of the Global Navigation Satellite
System (GNSS), various applications have emerged and grown with substantial economic im-
pact over the past decades. For safety-critical GNSS applications, estimation errors must be
reliably quantified and safely bounded. This requirement is crucial for ensuring navigation
integrity, which was originally formulated for aviation navigation. It concerns the trust that
can be placed in a navigation solution under rare-event conditions and, hence, differs from the
commonly expressed user demand in accuracy, focusing on the trustiness and reliability of the
navigation system. Conventional solutions have been concentrating on stochastic approaches,
relying on distributional assumptions for the observation errors before they are propagated
through state estimation. However, the exact error distribution is either unknown or hardly
validated, and the remaining systematics persist in the GNSS measurements after applying
correction methods. In this regard, purely stochastic modeling of all error sources will not be
adequate, necessitating the exploration of alternative approaches.

Interval is a promising alternative representation of uncertainty. It provides deterministic
bounds that indicate the possible variation of errors and, hence, is feasible to represent the un-
certainty due to remaining systematic effects. Grounded on the interval-described uncertainty
modeling, an innovative integrity monitoring framework is developed in this dissertation, pro-
viding an alternative approach to classical stochastic methods such as (Advanced) Receiver
Autonomous Integrity Monitoring (RAIM and ARAIM). Critical integrity-focused questions
include: (i) how representative the navigation solutions are and (ii) how their uncertainty can
be safely modeled to yield integrity assurance.

To address these questions, practical methods of determining interval bounds for various
GNSS error sources are developed and validated through experiments. Building on the inter-
val bounds, the state estimation problem is investigated, with an emphasis on error bounding.
Two novel point estimators are proposed by exploring the set-described uncertainty models,
showing advantageous error bounding performance. The set-based fault detector, intended to
be integrated into the new integrity monitoring architecture, is discussed and assessed in com-
parison with classical methods. By utilizing the multiple hypotheses framework that is also
adopted by ARAIM, the developed approach can handle multiple simultaneous faults, protect-
ing the navigation system from loss of integrity. Its effectiveness is demonstrated by various
evaluation strategies and compared to state-of-art methods, including analytical and Monte
Carlo assessments, as well as performance analysis with real-world experiments. Additionally,
this dissertation proposes to improve the baseline ARAIM algorithms by implementing the
interval extension of the least-squares estimator.

Keywords: GNSS, integrity, uncertainty, interval mathematics, set theory





Zusammenfassung

Satellitennavigation kann einer breiten Palette von Benutzern wichtige positioning, navi-
gation and timing (PNT)-Informationen liefern. Mit der Entwicklung des Global Navigation
Satellite System (GNSS) sind in den letzten Jahrzehnten zahlreiche Anwendungen entstanden
und gewachsen, die erhebliche wirtschaftliche Auswirkungen hatten. Für sicherheitskritische
GNSS-Anwendungen müssen Schätzfehler zuverlässig quantifiziert und sicher begrenzt wer-
den. Diese Anforderung ist entscheidend für die Gewährleistung der Navigationsintegrität
und wurde ursprünglich für die Luftfahrtnavigation formuliert. Sie betrifft das Vertrauen, das
man unter seltenen Ereignisbedingungen in eine Navigationslösung setzen kann, und unter-
scheidet sich daher von der allgemein geäußerten Genauigkeitsanforderung der Benutzer, die
sich auf die Vertrauenswürdigkeit und Zuverlässigkeit des Navigationssystems konzentriert.
Herkömmliche Lösungen konzentrierten sich auf stochastische Ansätze und verließen sich auf
Verteilungsannahmen für die Beobachtungsfehler, bevor diese durch die Zustandsschätzung
weitergegeben wurden. Die genaue Fehlerverteilung ist jedoch entweder unbekannt oder kaum
validiert, und die verbleibende Systematik bleibt nach Anwendung von Korrekturmethoden
in den GNSS-Messungen bestehen. In dieser Hinsicht ist eine rein stochastische Modellierung
aller Fehlerquellen nicht ausreichend, sodass alternative Ansätze untersucht werden müssen.

Intervalle sind eine vielversprechende alternative Darstellung der Unsicherheit. Sie bieten
deterministische Grenzen, die die mögliche Fehlervariation anzeigen, und sind daher geeignet,
die Unsicherheit aufgrund verbleibender systematischer Effekte darzustellen. Basierend auf der
intervallbeschriebenen Unsicherheitsmodellierung wird in dieser Dissertation ein innovatives
Integritätsüberwachungsframework entwickelt, das einen alternativen Ansatz zu klassischen
stochastischen Methoden wie (Advanced) Receiver Autonomous Integrity Monitoring (RAIM
und ARAIM) bietet. Kritische integritätsbezogene Fragen umfassen: (i) wie repräsentativ die
Navigationslösungen sind und (ii) wie ihre Unsicherheit sicher modelliert werden kann, um
Integritätssicherheit zu gewährleisten.

Um diese Fragen zu beantworten, werden praktische Methoden zur Bestimmung von Inter-
vallgrenzen für verschiedene GNSS-Fehlerquellen entwickelt und durch Experimente validiert.
Aufbauend auf den Intervallgrenzen wird das Problem der Zustandsschätzung untersucht,
wobei der Schwerpunkt auf der Fehlerbegrenzung liegt. Durch die Untersuchung der men-
genbeschriebenen Unsicherheitsmodelle werden zwei neuartige Punktschätzer vorgeschlagen,
die eine vorteilhafte Fehlerbegrenzungsleistung aufweisen. Der mengenbasierte Fehlerdetektor,
der in die neue Integritätsüberwachungsarchitektur integriert werden soll, wird im Vergleich
mit klassischen Methoden diskutiert und bewertet. Durch die Verwendung des Mehrfachhypo-
thesenrahmens, der auch von ARAIM übernommen wird, kann der entwickelte Ansatz meh-
rere gleichzeitige Fehler verarbeiten und das Navigationssystem vor Integritätsverlust schüt-
zen. Seine Wirksamkeit wird durch verschiedene Bewertungsstrategien nachgewiesen und mit
modernsten Methoden verglichen, darunter analytische und Monte Carlo-Bewertungen sowie
Leistungsanalysen mit realen Experimenten. Darüber hinaus schlägt diese Dissertation vor,
die grundlegenden ARAIM-Algorithmen durch Implementierung der Intervallerweiterung des
least-squares-Schätzers zu verbessern.

Schlüsselwörter: GNSS, Integrität, Unsicherheit, Intervallmathematik, Mengenlehre
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Constants and Physical Parameters

a signal amplitude.

ϕ azimuth angle.

ψ Earth-centered zenith angle.

θ elevation angles.

c speed of light in vacuum, c = 299 792 458 m/s.

αi, βi model constants, e.g., in the Saastamoinen model and GPS Klobuchar model.

dc GNSS receiver correlator spacing in the unit of PRN chips.

f signal frequency, e.g., for GPS L1/L2/L5: f1 = 1575.42 MHz, f2 = 1227.6 MHz, f5 =
1176.45 MHz.

H height.

Φ latitude. Variants include: subionospheric latitude ΦI , geomagnetic latitude Φm.

Λ longitude. A variant is the subionospheric longitude ΛI .

ω signal-to-noise (M/D) ratio.

e partial water vapor pressure.

p air pressure.

T temperature.

ϑ relative phase.

Γ autocorrelation sidelobe level for PRN codes. For example, Γmax and Γmin denote the
maximum and minimum sidelobes.

si(t) i-th signal component at epoch t.

TBOC chip duration of the BOC signal.

TC/A chip duration of the C/A signal.

t time.

z apparent (radio) zenith distance of the satellite.

Z true (radio) zenith distance of the satellite.

GNSS Measurements and Error Sources

δtr(t) receiver clock offset at epoch t.

δtk(t) satellite clock offset at epoch t.

τk
r apparent signal travel time from satellite k to receiver r.

M(θ) elevation-dependent slant factor, or mapping function, to map the atmospheric zenith
delays to slant delays.

D extra path delay (EPD).

ϵclk instantaneous satellite clock error.
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Ik
r ionospheric delay.

ne(l) electron density along the signal propagation path l.

ϵk
IURE,r Instantaneous User Range Error (IURE) between satellite k and receiver r.

ϵk
MP,r pseudorange multipath error.

ϵk
NLOS,r pseudorange measurement error due to Non-Line-of-Sight (NLOS) extra path delay (EPD).

ϵnoise noise and other remaining error terms in the GNSS observation equations.

ϵk
orb instantaneous satellite ephemeris error vector for satellite k.

T k
r tropospheric delay.

nT (l) tropospheric refractivity along the signal propagation path l.

lk
r unit vector of the LOS direction between satellite k and receiver r.

φ carrier phase measurement.

p pseudorange measurement. Particularly, pk
r (t) denotes the measurement between satellite

k and receiver r at epoch t.

ζ bound-minus-residual (BMR) values, e.g., ζI denotes the ionospheric BMR, ζT the tropo-
spheric BMR, and ζMP the multipath BMR.

δ residual values after applying correction methods, such as δI denotes the ionospheric
residuals and δT the tropospheric residuals.

ρk
r (t) geometric distance between satellite k and receiver r at epoch t.

pk = [xk, yk, zk]T position vector of satellite k.

pr = [xr, yr, zr]T position vector of receiver r. A variant is pr,0 for initial position estimate of the receiver.

∆pr = pr − pr,0 vector of receiver’s coordinate increment with respect to its initial position estimate.

Integrity Monitoring Parameters

ℓ Alert Limit (AL).

bnom nominal bias.

k multipier for computing Protection Level (PL), including kH and kV for horizontal and
vertical PL in RB RAIM, respectively.

P (·) probability of an event. Examples include: P (FA) for false alert (FA) probability, P (MD)
for missed detection (MD) probability, P (NP) for No Protection (NP) probability, P (HI)
for Hazardous Information (HI) probability, P (PF) for Position Failure (PF) probability,
P (HMI) for Hazardous Misleading Information (HMI) probability, etc..

Pconst constellation fault probability.

P∆ bounding probability associated with the interval error bounds [−∆,∆].

Pevent probability of an independent fault event, which can be a single satellite failure or a
constellation failure.

PNM propability that more than r simultaneous satellite failures occur but are not monitored..

Psat satellite fault probability.

qRB residual-based (RB) test statistic.

qSS solution separation (SS) test statistic.

CREQ continuity risk (CR) requirement.

IREQ integrity risk (IR) requirement.
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σbias standard deviation used to calculate Horizontal Protection Level (HPL) in RB RAIM.

SLOPE slope term. Variants include HLOPSEmax and VSLOPEmax for the maximum horizontal
and vertical slopes, respevtively.

∆SS solution separation (SS).

TRB residual-based (RB) test threshold.

TSS solution separation (SS) test threshold.

Interval and Set Representations

[y] = [y, y] an interval and its lower bound y and upper bound y.

∆ interval radius, e.g., ∆d for the detection interval and ∆s for the solution interval.

GZ generator matrix of a zonotope with its i-th column vector g(i)
Z .

CC constrained confidence region for the set-constrained least-squares (SCLS).

CE extended confidence region for the least-squares estimator.

E ellipsoid, e.g., E1−α represents the 1 − α confidence ellipsoid.

P polytope, e.g., Ps represents the solution polytope and PD the detection polytope.

S feasible solution set (FSS).

X a general set.

Z zonotope. Variants include: Zs denotes the confidence zonotope, i.e., measurement un-
certainty set (MUS), for the set estimator, and ZD denotes the zonotope that describes
the uncertainty due to remaining systematic error for the least-squares estimator.

Operators and Relations

∈ set belong.

/∈ set not belong.

col(·) the column vector of a matrix.

conv(·) the convex hull of a set.

diag(·) define a diagonal matrix with the diagonal components of the given matrix.

:= is defined as.

wid(·) the width of an interval.

∧ or
∧

logical and.

∨ or
∨

logical or .

max
x∈X

f(x) maximum output of the function f(x) for all possible input x ∈ X .

meas(·) an (arbitrary) scalar measure of a set.

mid(·) the midpoint of an interval. Alternatively, the midpoint of [y] can be denoted by ym.

min
x∈X

f(x) minimum output of the function f(x) for all possible input x ∈ X .

| · |p p-norm operation, specially, | · | for 1-norm, and ∥ · ∥ for 2-norm.

cen(·) (Chebyshev) center of a set .

diam(·) diameter of a set .

∩ or
⋂

set intersection.
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⊕ Minkowski sum.

rad(·) the radius of a set or an interval.

∪ or
⋃

set union.

⊆ subset.

⊈ not a subset.

⊊ or ⊂ proper subset, i.e., subset but not equal to.

≤ and ≥ in addition to classical scalar inequalities, this thesis also adopts them for vector inequal-
ities, or component-wise inequality in Rn: u ≤ v means ∀ui ≤ vi for i = 1, ..., n, and
u ≥ v means ∀ui ≥ vi for i = 1, ..., n.

≰ and ≱ denote vector inequalities or component-wise inequality in this thesis: u ≰ v means ∃ui >
vi for i = 1, ..., n, and u ≱ v means ∃ui < vi for i = 1, ..., n.

Probability Distribution and Uncertainty Modeling

fN (·) Probability Density Function (PDF) of a normal distribution N (0, 1).

χ2(ν, λ) non-central chi-square distribution, with the degree of freedom ν, and non-centrality λ.

N (µ, σ2) a Gaussian distribution with mean µ and variance σ2.

N (µ,Σ) a multivariate Gaussian distribution with mean vector µ and covariance matrix Σ.

FN (·) Cumulative Density Function (CDF) of a normal distribution N (0, 1).

Q(·) tail probability distribution function: Q{} = 1 − FN {}.

Q−1(·) inverse of the tail probability distribution function, i.e., Q−1(P ) is the (1 − P ) quantile
of a normal distribution.

t(ν) student’s t distribution, with the degree of freedom ν.

U[u,u] uniform distribution, with the lower bound u and upper bound u.

s systematic error term (in contrast to random errors).

v random error term (in contrast to systematic errors).

d influence factor vector.

F matrix of sensitivity coefficients.

E{·} mathematical expectation of a random variable, or multi-variables.

D{·} dispersion of a random variable, or multi-variables.

State Estimation and Hypothesis Testing

A design matrix.

B B = [A; −A] used to form the system of inequalities.

Hi a n × m matrix used to extract the fault-free design matrix Ai under hypothesis Hi,

assuming that ni out of n measurements are faulty, i,e., Ai = HT
i A, Hi :=

[
Ini

0(n−ni)×ni

]
.

H∗
i a n×m matrix used to extract the faulty design matrix A∗

i under hypothesis Hi, assuming

that ni out of n measurements are faulty, i,e., A∗
i = H∗

i
T A, H∗

i :=
[

0ni×(n−ni)
In−ni

]
.

K transformation matrix of the least-squares estimator.

P weight matrix.
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Q parity matrix.

S slope matrix.

Σ covariance matrix, e.g, Σyy for measurements, Σx̂x̂ for the state estimate.

αT vector that is used to extract states of interest, e.g., αT = [0, 0, 1, 0] for the vertical state
using GPS-only signals.

b vector of upper bounds for the set estimator b = [y − e; −y + e].

e measurement error vector. Corresponding interval bounds are expressed as [e] = [e, e].

ε estimation error vector.

f unmodeled or unbounded fault vector.

fworst worst-case fault vector that maximizes the integrity risk.

kT
(m) row vector of K containing the least-squares coefficients for the m-th state.

p parity vector.

r the least-squares residual vector. A variant is r̃ for normalized residuals.

u unit vector of fault line.

x state vector. A variant is x̂ representing the state estimate.

y measurement vector. Variants include: ŷ for estimate of measurements and ỹ for normal-
ized measurements.

H0/HA null and alternative hypotheses in binary hypothesis testing.

Hi i-th hypothesis in the multiple hypotheses framework for i = 0, ..., h.





1
Introduction

Background and motivation. Satellite navigation is an integral part of modern life, provid-
ing essential positioning, navigation and timing (PNT) information and driving the growth of
various applications with substantial economic impact. Since the 1970s, the development of
Global Navigation Satellite System (GNSS) has continued to advance, leading to the opera-
tion of four major GNSS constellations today: the United States’ Global Positioning System
(GPS), Russia’s Global Orbiting Navigation System/Global’naya Navigatsionnaya Sputniko-
vaya Sistema (GLONASS), the European Galileo system, and China’s Beidou System. Each
system continues to evolve, delivering increasing capabilities and robustness to meet the grow-
ing demands across various sectors.

Uncertainty is a core concern in many scientific and engineering disciplines. In satellite
navigation, it is particularly critical for navigation algorithms to incorporate proper models
of uncertainty during data processing and to reliably evaluate the uncertainty of navigation
solutions. Four key metrics – accuracy, integrity, continuity, and availability – quantify the
navigation performance. These metrics, initially established for aviation, apply to a broad
range of navigation scenarios. While high accuracy is a commonly expressed user demand,
other metrics, especially integrity, are of vital importance for safety-critical applications such
as civil aviation and autonomous driving. Crucial questions for integrity monitoring ap-
proaches in these fields include: (i) how representative the navigation solutions are and (ii)
how their uncertainty can be safely modeled to yield integrity assurance (which may need to
be acceptably conservative). These concerns drive the development of error bounding con-
cepts, applicable not only in the observation domain but also in propagation through state
estimation.

Conventionally, GNSS error bounding and uncertainty propagation have been mostly han-
dled using stochastic methods. However, in many practical scenarios, the exact error distribu-
tion is unknown, and remaining systematics may persist (Schön, 2003). In this regard, purely
stochastic modeling of all error sources will not be adequate, necessitating the exploration
of alternative approaches. The interval-based approach, also known as set-membership or
unknown-but-bounded approach, offers a promising alternative. By leveraging interval math-
ematics and set theory, this approach describes uncertainties and establishes error bounds as
intervals in the observation domain, relaxing the reliance on assumptions about probability
distributions. Uncertainties are linearly mapped to the state domain, allowing for uncertainty
propagation in a deterministic manner, which makes it suitable for GNSS navigation tasks.

Despite extensive research on interval-based methods in fields such as automatic control
and engineering reliability, their application in GNSS has not received much attention. The
potential benefits to GNSS navigation, particularly in terms of integrity performance, have yet
to be explored. This dissertation seeks to fill this gap by developing a comprehensive interval-
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based framework for GNSS integrity monitoring, with a specific focus on urban navigation
environments. To achieve this goal, several challenges should be tackled:

1. Appropriate uncertainty modeling for GNSS observations. Major error sources
must be thoroughly identified and evaluated using appropriate uncertainty models. For
instance, it is common practice to assume that the remaining errors after applying vari-
ous correction methods follow Gaussian distributions. In existing integrity methods such
as the (Advanced) Receiver Autonomous Integrity Monitoring (RAIM/ARAIM), Gaus-
sian distributions with inflated standard deviations are typically leveraged to account
for rare fault events (RTCA/DO-229D, 2006; WG-C ARAIM TSG, 2019). However,
whether this approach still ensures sufficient performance in the presence of system-
atic errors or non-Gaussian behaviors is questionable, and it may even be unrealistic to
validate.

2. State estimation and corresponding error bounding. An estimator refers to a
function that solves the parameter/state estimation problem such as GNSS navigation,
where uncertainties transfer from the observation domain to the parameter/state domain
(Koch, 1999). In order to derive error bounds that reflect the factual estimation uncer-
tainty, it is important to understand uncertainty propagation through state estimators.
This depends on both the properties of dedicated estimators and developed observation
error models. Integrity-focused estimators can be investigated, which is not necessarily
optimal in a general sense, e.g., the least-squares estimator can be modified to improve
RAIM functionalities (Joerger et al., 2012).

3. Fault detection and exclusion (FDE) methods. Robust FDE functions are essen-
tial for integrity monitoring. This requires not only strong detection capabilities but
also a characterization of the detector in order to ensure integrity in the presence of un-
detected and unbounded faults. Hypothesis testing, based on self-consistency tests, pro-
vides a rigorous framework for navigation fault detection with only GNSS observations.
However, the emergence of multi-GNSS systems in complex measurement environments
places new challenges, particularly in adapting traditional hypothesis testing to handle
multiple simultaneous faults and accommodate novel uncertainty models.

4. Integrity monitoring algorithms incorporating established uncertainty mod-
els. Integrity monitoring algorithms, tailored to application-specific requirements, should
be capable of warning users (e.g., pilot, driver, automated system, etc.) timely when
the system is found unsafe to use (i.e., an “alert”). If an alert is not issued, the system
must maintain safety, allowing users to compute a position domain error bound to deter-
mine whether to accept navigation solutions (Pullen and Joerger, 2021). This requires
defining a set of Integrity Support Parameters (ISP) and developing algorithms suited
to established uncertainty models, state estimators, FDE methods, and the intended
urban navigation environments.

These challenges are addressed in subsequent chapters, where relevant scientific publications
will be thoroughly reviewed. The thesis contributions and outline sections provide guidance
for navigating the content.

Scientific context. As implied by the title, this dissertation focuses on exploiting interval
mathematics for uncertainty modeling and propagation and, subsequently, addressing safety
concerns stemming from GNSS integrity requirements across various application scenarios.
The work is grounded in the intersection of interval mathematics, set theory, adjustment
theory, and probability theory. We state in the following how these topics interact within the
scope of this thesis:
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� Interval mathematics and set theory. Interval mathematics, integrated with set-
theoretic operations, provides a rigorous framework for computing interval values with
lower bounds and upper bounds. The intervals are considered to contain the exact answer
to various mathematical problems with absolute certainty, representing bounds on ac-
cumulated rounding errors, approximation errors, and propagated uncertainties through
measurement models or computational processes (Moore et al., 2009). In general, they
are powerful mathematical tools in the course of this study.

� Adjustment theory. In many geodetic applications, the unknown parameters to be
determined bear a linear (or linearized) relationship to a set of empirical data. The
adjustment theory addresses the parameter estimation problem from redundant obser-
vational data, ensuring consistency in the presence of errors. This process typically
involves stochastic modeling (e.g., the Gauss-Markov model), estimation theory, and
hypothesis testing, formulating the fundamental problems in GNSS positioning.

� Probability theory. Probability theory provides the mathematical foundation for
describing and analyzing random events, which is essential for statistical modeling of
measurement errors in GNSS. It underpins traditional approaches to navigation integrity
monitoring and is also explored for the developed interval-based approach in this work.

Thesis contributions. In response to the challenges presented, five main contributions of this
thesis are outlined below:

� Development of distribution-free uncertainty models for GNSS pseudorange
measurements. Three major error sources occurring in urban environments are inves-
tigated:

– Residual tropospheric errors. Interval uncertainty for the residual tropo-
spheric error is evaluated using sensitivity analysis via interval arithmetic. The
Saastamoinen model is studied with the input of meteorological parameters from
three models, including the International Standard Organization (ISO) standard
atmosphere, the model suggested by Minimum Operational Performance Standard
(MOPS), and the Global Pressure and Temperature model (GPT2w).

– Residual ionospheric errors. Interval uncertainty for the residual tropospheric
error is evaluated using sensitivity analysis via interval arithmetic. The GPS
Klobuchar model is studied with the input of eight broadcast coefficients obtained
from the GPS navigation messages. The International GNSS Service (IGS) global
ionosphere (TEC) maps (GIM) products are used as references for interval deter-
mination.

– Multipath errors. A multipath error envelope (MEE)-based method is proposed
to model pseudorange multipath errors for binary phase shift keying (BPSK) and
binary offset carrier (BOC) signals. The performance is evaluated and validated
using experimental data from GPS, GLONASS, and Galileo observations.

� Rigorous derivation and evaluation for set-based state estimation. State es-
timation in GNSS applications may be approached through the classical least-squares
estimator or the set estimator based on constraint satisfaction. For both approaches,
the estimation error must be sufficiently bounded for safety reasons. This dissertation
revisits error bounding for both estimators and develops two novel point estimators:

– The optimal set-based central estimator, which is optimal under a determin-
istic optimality concept and provides minimal estimation error bounds.
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– The set-constrained least-squares estimator, which integrates set constraints
into the classical least-squares framework.

These estimators are compared through detailed analyses of their error bounding char-
acteristics and performance under various uncertainty models.

� Exploitation of set-based fault detection. Unlike traditional fault detection meth-
ods that rely on statistical hypothesis testing, the set-based detector operates through
set operations, alleviating the need for scalar threshold computations. The mathematical
behavior of the set-based detector is analyzed in a simplified scalar estimation scenario
using order statistics and compared to classical RAIM detectors, including RB and SS
methods. Monte Carlo (MC) evaluations are conducted to demonstrate the performance
of the set-based detector in more complex two-dimensional scenarios. An innovative
weighting scheme is also proposed to enhance fault detection capabilities.

� Development of interval-based integrity monitoring architecture against mul-
tiple faults. Building on interval-based uncertainty models, this dissertation develops
a comprehensive interval-based integrity monitoring approach. It incorporates set-based
fault detection and exclusion methods, along with the set-based central estimator. By
adopting the multiple-hypotheses framework from ARAIM, the approach is capable of
handling multiple simultaneous faults. This makes it particularly advantageous for ur-
ban navigation, where multiple unknown local threats may occur due to challenging
environments.

� Performance assessment of integrity and availability for aviation and urban
navigation applications. The developed methods are implemented and evaluated for
aviation and urban navigation scenarios.

– For aviation users, improvements to the baseline ARAIM algorithm are demon-
strated, particularly in terms of reducing the computed fault-free Horizontal Protec-
tion Level (HPL) by incorporating error bounding for the least-squares estimator.

– For urban navigation, the developed interval-based integrity monitoring ap-
proach is evaluated in two ways: (i) analytical and MC evaluation for integrity risk
(IR) bounds, (ii) experimental evaluation and validation using real-world datasets
collected from urban environments, with a focus on integrity and availability met-
rics.

Tab. 1.1 provides a summary linking the challenges to the corresponding contributions of this
thesis. Readers of interest can directly refer to specific sections for further reading.

Thesis outline. The remainder of this thesis is structured in the following way:

Chapter 2 introduces the core concepts, models, and methods used in the thesis. It covers
the fundamentals of interval and set, the concept of uncertainty, and a review of the naviga-
tion performance requirements. The chapter also provides a detailed overview of (Advanced)
Receiver Autonomous Integrity Monitoring (RAIM) methods.

Chapter 3 is devoted to the distribution-free uncertainty modeling for GNSS pseudorange
measurements. The residual tropospheric errors, residual ionospheric errors, and multipath
errors are investigated, with corresponding methodologies and experimental validations dis-
cussed.

Chapter 4 focuses on state estimation and error bounding. This includes a revisit of error
bounding for the classical least-squares estimator and a formal formulation of the set estimator,
and the development of the set-based central estimator and the set-constrained least-squares
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Table 1.1: Challenges of developing the interval-based framework for integrity monitoring and corresponding
thesis contributions.

Challenges & Contributions Section

Appropriate uncertainty modeling for GNSS observations:
� Interval bounding for residual tropospheric errors
� Interval bounding for residual tropospheric errors
� Interval bounding for pseudorange multipath errors

Sec. 3.2
Sec. 3.3
Sec. 3.4

State estimation and corresponding error bounding:
� Set estimator based on constraint satisfaction
� Optimal set-based central estimator
� Set-constrained least-squares estimator
� Application: Improved fault-free Horizontal Protection Level (HPL) for

aviation users using error bounding for the least-squares estimator

Sec. 4.3.1
Sec. 4.3.2
Sec. 4.3.3
Sec. 4.2&
Sec. 6.1

Fault detection and exclusion methods:
� Set-based fault detection and its evaluation Sec. 5.1

Integrity monitoring algorithms incorporating established uncertainty models:
� Interval-based integrity monitoring architecture against multiple faults
� Analytical evaluation for integrity risk (IR) bound through a benchmark

example
� Monte Carlo evaluation for integrity risk (IR) bound under realistic sce-

narios
� Application: Real-world implementation and evaluation for urban nav-

igation

Sec. 5.2
Sec. 5.3.1&
Sec. 5.3.2
Sec. 5.3.3
Sec. 6.2

estimator, meeting different requirements. A comparative analysis of these methods is also
provided.

Chapter 5 presents the set-based fault detection and exclusion method, based on which
the interval-based integrity monitoring approach is developed. The proposed method is then
compared to classical RAIM methods through analytical and MC evaluations.

Chapter 6 implements and evaluates the methods developed in this thesis, mainly in two
experimental scenarios. The first one focuses on reducing HPL in the baseline ARAIM al-
gorithm for aviation users based on error bounding for the least-squares estimator, and the
second one applies the developed interval-based integrity monitoring approach in urban navi-
gation scenarios.

The thesis concludes with a summary of the key findings and results in Chapter 7. Future
research directions are also discussed, focusing on open questions and potential areas for
further exploration.





2
Fundamentals

2.1 Basics of intervals and sets

Intervals and sets are fundamental mathematical concepts used throughout this thesis. This
section introduces the definitions, notations, properties, and relevant concepts of interval
mathematics and set theory.

2.1.1 Set operations and properties

Some fundamental concepts related to set operations and properties are essential in set theory.
The following paragraphs provide an overview of these concepts, specifically in the context of
general sets within Euclidean space.

Set operations

Considering two sets X1,X2 ⊆ Rm, the main operations on sets are defined as follows:

� Intersection:
X1 ∩ X2 := {x ∈ Rm | x ∈ X1 and x ∈ X2}. (2.1)

� Union:
X1 ∪ X2 := {x ∈ Rm | x ∈ X1 or x ∈ X2}. (2.2)

� Cartesian product:

X1 × X2 := {(x1,x2) ∈ R2m | x1 ∈ X1 and x2 ∈ X2}. (2.3)

� The inclusion of X1 in X2:

X1 ⊆ X2 ⇔ ∀x ∈ X1, x ∈ X2. (2.4)

In this equation, X1 is a subset of X2.

� Equality:
X1 = X2 ⇔ X1 ⊆ X2 and X2 ⊆ X1. (2.5)

� Minkowski sum:

X1 ⊕ X2 := {x1 + x2 ∈ Rm | x1 ∈ X1,x2 ∈ X2}. (2.6)
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Diameter and set boundedness

The diameter of a set X ⊆ Rm is given by

diam(X ) = max
x1,x2∈X

∥x1 − x2∥. (2.7)

A set is considered bounded (i.e., a bounded set) in a metric space if its diameter is finite
(Hazewinkel, 1995).

Chebyshev center and radius

For a closed and bounded set X ⊆ Rm, the Chebyshev center of X is defined as

cen(X ) = arg min
x∈Rm

max
xX ∈X

∥x − xX ∥. (2.8)

The Chebyshev radius of X is defined as

rad(X ) = max
xX ∈X

∥ cen(X ) − xX ∥. (2.9)

From the previous definitions, it follows that (Casini, 2002)

rad(X ) ≤ diam(X ) ≤ 2 rad(X ), with X ⊆ Rm. (2.10)

Geometrically, cen(X ) is the center of the smallest circumscribing (hyper)sphere of X , and
its radius is rad(X ).

Literature such as Amir (1978) and Casini (2002) adopt various norm operations for the
above definitions. In the context of this thesis, the norm ∥ · ∥ is restricted to ℓ2 (Euclidean
distance), sufficient for GNSS positioning and navigation problems. Subsequently, the inves-
tigated Chebyshev center yields the following properties:

� Existence: The Chebyshev center always exists;

� Uniqueness: The Chebyshev center is unique.

2.1.2 Polytopes

Two definitions of polytopes are reported here, which are mathematically equivalent (Ziegler,
1995):

An H-polytope denotes a bounded intersection of closed halfspaces:

P(H,b) = {x ∈ Rm | H x ≤ b,H ∈ Rn×m,b ∈ Rn} ⊆ Rm. (2.11)

Eq. 2.11 can be interpreted as the solution set of a finite number of linear inequalities.

A V -Polytope denotes a convex hull of a finite point set:

P = conv(V) ⊆ Rm, for V ∈ Rm×u. (2.12)

In Eq. 2.12, u points represent its vertices, and the operation conv(·) forms the convex hull.

Some useful properties of polytopes include:
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� Every intersection of a polytope with an affine subspace is a polytope;

� The Minkowski sum of two polytopes is a polytope;

� Every projection of a polytope is a polytope.

There are several ways to define the center of a polytope, for example, the following concepts:

� The center of gravity, or centroid;

� Mean position of all vertices, termed as vertex centroid, or barycenter;

� Point at the location where the product of distances from all boundaries (hyperplane)
is maximized, i.e., analytic center;

� The center of the biggest (hyper-)sphere inside the polytope, i.e., incenter;

� The center of the smallest (hyper-)sphere containing the polytope, i.e., the Chebyshev
center.

For more details, refer to textbooks such as Ziegler (1995) and Boyd and Vandenberghe (2004),
or the article by Barnes and Moretti (2005), which provides a comprehensive summary of
polytope centers.

2.1.3 Zonotopes

Zonotopes form a special class of polytopes. Each zonotope is a convex polytope that is
symmetric with respect to its center. They are utilized in many technical applications and
from different viewpoints. Ziegler (1995) gives the definition of zonotopes:

A zonotope Z(cZ ,GZ) is defined as the image of a hypercube under an affine
projection:

Z(cZ ,GZ) = {x ∈ Rm | x = cZ +
n∑
i

wi · g{i}
Z ,−1 ≤ wi ≤ 1}.

In Eq. 2.1.3, cZ is the center of the zonotope, g{i}
Z are m−dimensional column vectors referred

to as generators, and GZ is the m × n generator matrix. The generators of a zonotope
determine its shape relative to its center.

Alternatively, the H-zonotope can be described as the intersection of n pairs of parallel
hyperplanes (Eppstein, 1995):

Z(H,b) = {x ∈ Rm | H (x − cZ) ≤ b}. (2.13)

The shape of zonotopes is invariant under rotations, meaning that the orientation of the
coordinate system does not affect the shape of the zonotope or associated scalar measures.
In addition, zonotopes are suitable measures of point uncertainty for linear estimators (Schön
and Kutterer, 2005b). This feature will be further elaborated from the perspective of interval
mathematics in the subsequent paragraphs. For more information on zonotopes, readers of
interest can refer to Ziegler (1995) and Henk et al. (1997).
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2.1.4 Intervals

The basics of interval notations, computations, and functions are given below. For further
reading on interval mathematics and its applications, readers of interest are referred to text-
books such as Jaulin et al. (2001) and Moore et al. (2009).

Definitions and notations

In this work, an interval is denoted by

[x] := [x, x] = {x ∈ R | x ≤ x ≤ x}, (2.14)

which is a closed and connected subset of R. x is the lower bound (left endpoint) and x is the
upper bound (right endpoint). An interval is said to be bounded if both its lower and upper
bounds are finite real values. If x = −∞ or x = ∞, [x] is an unbounded interval.

There is some debate on whether the empty set ∅ should be considered an interval (Jaulin
et al., 2001). Despite the ambiguity in defining its bounds, this thesis considers the empty
set as an interval. This ensures that the set of intervals remains closed with respect to
intersections, and this is beneficial in applications where ∅ represents the absence of a solution.

The basic properties of a non-empty and bounded interval are as follows:

� Midpoint/center:
mid([x]) = xm := x+ x

2 ;

� Width:
wid([x]) = xw := x− x;

� Radius:
rad([x]) = xr := xw

2 = x− x

2 .

Special cases to consider:

� Degenerate Intervals (x = x): In this scenario, an interval is considered to degenerate
into a real value, which makes properties like width and radius irrelevant. Inversely, any
real number can be viewed as a degenerate interval in interval computations;

� Unbounded Intervals (x = −∞ and/or x = ∞): In this case, an interval is consid-
ered unbounded and is not closed, with wid([x]) = ∞. This case is not considered in
this thesis due to its limited physical significance in uncertainty evaluation.

An n-dimensional interval vector is an ordered n-tuple of intervals:

[x] :=

[x1, x1]
...

[xn, xn]

 , x ∈ Rn. (2.15)

[x] can be interpreted as an Cartesian product of n intervals. In this regard, [x] is also named
an interval box, which is a subset of Rn. Each component [xi] is the projection of [x] onto the
i-th axis. Specially, the projection of an empty set of Rn onto any axis is an empty interval ∅.
Fig. 2.1 illustrates a two-dimensional interval box with its projections onto the axes resulting
in intervals [x1, x1] and [x2, x2].

For simplicity, this thesis adopts the notation for an interval vector: [x] = [x,x] with
x,x ∈ Rn, i.e., using vectors of upper bounds and lower bounds.
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Figure 2.1: An example two-dimensional interval box with its interval components [x] = [x1] × [x2].

Interval arithmetics

The real-valued arithmetic operations can be mostly extended to intervals, with the same
basic operators: +, −, ×, ÷:

[x]3[y] = [x3y ∈ R | x ∈ [x], y ∈ [y]] , (2.16)

where [x] and [y] are intervals and 3 can be any of the operations listed above.

In addition, as intervals can essentially be viewed as one-dimensional sets, the standard set
operations also apply to interval values, cf. Sec. 2.1.1.

Interval functions

Elementary functions such as sin, tan, exp, etc., extend to intervals. If f represents a real-
valued function of a single real variable x (i.e., from R to R), the range of f(x) as x varies
within an interval [x] is defined as the image of the set {x | x ∈ [x]} under the mapping f :

f([x]) = {f(x) | x ∈ [x]}. (2.17)

Analogously, for a function f of multiple real variables x = [x1, ..., xm]T , the output interval
when the i-th variable xi varies within an interval [xi] can be expressed as

f([xi] | x∗) = {f(x) | xi ∈ [xi],x(...,i−1,i+1,...) = x∗
(...,i−1,i+1,...)}. (2.18)

Eq. 2.18 represents the set image of [xi] under the mapping f , with all other variables taking
values from x∗. This reflects the actual range of the function’s output as the variable xi
changes and can be computed using interval arithmetic. For illustration, a numerical example
is given in Fig. 2.2 for a bivariate function f(x1, x2) = x2

1 + x2.

Consider a general case of a function f from Rn to Rm. An interval counterpart, denoted
by [f ]([x]), is an inclusion function for f if

∀[x] ∈ IRn, f([x]) ⊆ [f ]([x]), (2.19)

where IRn denotes the set of all n-dimensional boxes. An example of f from R3 to R2 is given
in Fig. 2.3. The set image of [x] under f is displayed as the blue hexagon in Fig. 2.3(b), repre-
senting the factual range f([x]); as a comparison, the gray box represents the minimal inclusion
function [f ]([x]), overestimating the variation of f([x]). This phenomenon is conventionally
termed wrapping effect.



12 2 Fundamentals

Figure 2.2: An illustrative numerical example for function f(x1, x2) = x2
1 + x2. Function values varying with

x1 and x2 are shown as contour plots in the lower right image. Cross-sections of x1 = −5 (yellow) and x2 = 2
(red) are chosen and displayed in the left and upper images separately. The range of f(x1, x2) as x1 varies
within [−6,−4], and the one as x2 varies within [1, 3], can be computed by corresponding set images under the

mapping f . The results are shown as gray areas, respectively.

(a) x ∈ R3 (b) y = f(x) ∈ R2

Figure 2.3: An illustrative numerical example for function f : y = A x from R3 to R2. The input interval

[x] =

[ [−1, 0]
[1, 2]

[−0.5, 0.5]

]
(shown as the blue cube in (a)), matrix A =

[
1 1 0
0 1 1

]
, the set image f([x]) and inclusion

function [f ]([x]) (shown as the blue and gray areas in (b)).

The same principle applies to constructing a zonotope. The definition presented in Eq. 2.1.3
can be understood as the set image of an m-dimensional interval box [x] ∈ Rm under an affine
projection f . In this context, the actual range f([x]) forms a zonotope, while its interval
bounding box belongs to the family of [f ](x). The example illustrated in Fig. 2.3 represents
a specific case of a zonotope with three generators. In this regard, using a zonotope as a
measure of uncertainty avoids the possibility of overestimation.

2.2 Concept of uncertainty

Qualifying measurement results is a critical aspect of any experimental approach (Ferrero
and Salicone, 2006). The International Vocabulary of Metrology (VIM) and Guide to the
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expression of uncertainty in measurement (GUM), representing the most important reference
documents in metrology, accept the concept that the uncertainty of measurement characterizes
the dispersion of the measured values that could be reasonably attributed (JCGM 100:2008,
2008; JCGM 200:2012(E/F), 2012). GUM interprets uncertainty as a measure of the poten-
tial error in the measurement result, clearly distinguishing it from the term “error”, which
is explicitly defined as the difference between true and measured values. Errors, however,
can be unknown and unknowable and can hardly be determined with confidence due to the
challenges of obtaining a sufficiently “true” value. For example, the measurement result can
unknowingly be very close to the true value, resulting in a negligible error, yet may carry a
large uncertainty. Additionally, the uncertainties associated with the random and systematic
effects that give rise to the error can be evaluated. Therefore, the concept of uncertainty is
often more meaningful and valuable in various situations. This thesis adopts the aforemen-
tioned GUM traditions, emphasizing the clear distinction between 1) the measurement result
and its evaluated uncertainty and 2) the truth and error.

2.2.1 Uncertainty component classification

In GNSS applications, random variability (i.e., stochasticity) and imprecision are two promi-
nent sources of measurement errors (Kutterer, 2002):

� Random error arises from unpredictable or stochastic temporal and spatial variations
of influence quantities, termed random variability. The uncertainty due to random
variability may be characterized by a standard deviation. Such a standard deviation
can be evaluated either from experimentally observed frequency distributions or from
assumed probability distributions based on experience or other comparatively reliable
information. These are categorized as Type A and Type B evaluations, respectively,
according to GUM.

� A recognized systematic effect may be quantified and compensated by a correction model
so that the subsequent estimator involved is not biased. However, due to the inherently
unknowable nature of errors, the deterministic correction may only approximate the
true value, reflecting our current state of knowledge. Consequently, remaining systematic
errors may persist due to the imperfect correction of systematic effects. Any assumptions
deviating from reality and approximations made in the correction model can lead to
uncertain corrected values. Additionally, input quantities to the correction model, such
as constants and parameters, are often only imprecisely known or not fully representative
over the observation period, which can introduce additional uncertainty. All these factors
contribute to imprecision in the measurements.

At this point, it has been argued that errors arise from both random and systematic ef-
fects, and these errors are recognizable and associated with various uncertainty components.
However, categorizing these components strictly as “random” or “systematic” remains incon-
clusive. GUM recommends that the distinction between random and systematic uncertainty
components should not exclusively depend on whether they originate from random or sys-
tematic effects but rather on the evaluation method applied, as outlined in Recommendation
INC-1 by the Working Group on the Statement of Uncertainties (Kaarls, 1981). This approach
minimizes ambiguity in categorizing uncertainty components and emphasizes the importance
of assessing the overall uncertainty budget (Kutterer, 2001). For instance, the result of one
measurement might be used as an input datum to the second measurement, whereas a “sys-
tematic” component of uncertainty in the latter could stem from a “random” component in
the former. Consequently, the method of combing uncertainties must be carefully designed to
meet the safety requirement, which is to be addressed in the following sections.
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2.2.2 Uncertainty representations

It is common practice to assume that GNSS measurements have been corrected for all recog-
nized significant effects, and the remaining errors are considered as random variability, e.g.,
treated as Gaussian distributed. This makes variance or standard deviation a meaningful rep-
resentation of uncertainty, which is convenient from a methodological perspective. Currently,
this approach is predominantly adopted in GNSS applications.

However, a purely stochastic handling of the GNSS uncertainty is not always adequate in
the following scenarios:

1. For complex systems where dominant systematic error components are observed, treating
them as purely random variables may lead to unsatisfactory results (Milanese and Vicino,
1991; Schön et al., 2018).

This is not uncommon because of incomplete knowledge about quantifying various ef-
fects, limited hardware for onboard computations, economic considerations, or particular
user requirements. For instance, nominal signal deformations caused by differences in
the signal-generating hardware onboard the GNSS satellites can cause range errors that
vary with user receivers and are reported non-Gaussian behaved. They are modeled
as components of nominal biases, upper bounded by constant values that are input to
the onboard integrity monitoring algorithms (Macabiau et al., 2015). Sec. 2.4.2 gives a
detailed introduction.

2. The considered error component may take any value between bounds, but there is an
insufficient basis for assuming distributions due to incomplete prior knowledge (Beer
et al., 2014).

For example, pseudorange multipath errors cannot be effectively handled by stochastic
methods, as their magnitude is influenced by various factors and cannot be reduced by
averaging repeated observations due to their non-zero mean. Nevertheless, multipath
error envelope can be used to quantify their upper and lower bounds, within which the
actual error magnitude oscillates due to changes in the relative phase of the multipath.
This topic is discussed in further detail in Section 3.4.

Another example of uncertainty arises from the limited resolution of a digital instrument,
as noted by GUM. If we denote the resolution as δ, a range of inputs to the measurement
instrument may yield the same indication y of finite digits. Even when identical mea-
surements are repeated, the uncertainty due to repeatability is not zero. The expected
distribution of the measurement results falls within the range [y−δ/2, y+δ/2]. However,
this distribution is unknown and cannot be observed through repeated measurements.
Similarly, rounding or truncating numbers during automated data processing can intro-
duce uncertainty in real-valued data, which can be difficult to predict (JCGM 100:2008,
2008). In this thesis, both scenarios are referred to as rounding errors, addressed in the
subsequent subsection.

3. Parameters that are set-valued, with any real-valued candidate being acceptable, require
interval representation.

For instance, the Power Spectral Density (PSD) bounding approach can handle the
residual tropospheric error (Gallon et al., 2021b) and Inertial Measurement Unit (IMU)
errors (Gallon et al., 2021a) by establishing upper bounds for the historical observation
data in the PSD domain. Certain parameters may be set-valued due to mathematical
interdependencies within the nonlinear model. Uncertainty can arise from the multiple
choices of parameter values in the applications (Su et al., 2024).
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4. Assumptions about the distribution of the considered error component may be difficult
to validate, or even unrealistic, but are critical to the system’s reliability (Combastel,
2003).

In aviation integrity studies, Gaussian distribution assumptions for GNSS pseudorange
measurements are untrue at very low probabilities due to limitations of the Central Limit
Theorem (CLT), i.e., the observed probability distributions often have tails fatter than
a standard normal distribution. Overbounding methods have been developed to address
these issues, retaining the usage of Gaussian, nonetheless compromising over-pessimistic
confidence levels (DeCleene, 2000; Schempp and Rubin, 2002; Rife et al., 2004a; Blanch
et al., 2019b).

These concerns particularly motivate the investigation and application of interval repre-
sentation to denote uncertainty measures. Intervals can capture stochasticity by indicating
confidence levels or represent worst-case scenarios for imprecision. Fig. 2.4 displays the concep-
tual model of an uncertainty interval. The red arrow indicates the true value of the quantity
of interest, while the probability distribution along the upper axis quantifies the frequency
of specific values occurring within the interval. Another interpretation, shown in the lower
axis, refers to an interval range encompassing all possible measurement results, regardless of
the distribution or without any distributional assumptions. Ultimately, the uncertainty of
a measurement is conveyed through an interval placed around the measured value, with the
belief that the true value lies within this range. Therefore, this approach does not necessarily
involve any stochastic information.

Figure 2.4: Conceptual model of uncertainty intervals.

This approach is natural, straightforward, and has been applied across various engineering
disciplines for decades (Kutterer, 1994; Kreinovich, 1995; Jaulin et al., 2001; Althoff, 2010;
Cimino et al., 2014; Rohou et al., 2020; Kabir et al., 2024). Rather than attempting to
minimize the impact of a specific systematic effect, it offers a realistic description of uncertainty
(Schön and Kutterer, 2006). The GUM also recognizes this perspective in its discussion of
“expanded uncertainty”, defined as:

Quantity defining an interval about the result of a measurement that may be ex-
pected to encompass a large fraction of the distribution of values that could reason-
ably be attributed to the measured quantity (Sec. 6.1.2 in JCGM 100:2008 (2008)).

The interval representation adopted in this work aligns with the scope of “expanded uncer-
tainty”, which is intended for particular commercial, industrial, and regulatory applications.
In this light, it offers a practical and comprehensive framework for uncertainty evaluation in
GNSS applications, where both random variability and remaining systematics coexist.
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2.2.3 Variance-based evaluation principles

GUM introduces two ways of evaluating uncertainty components, i.e., Type A and Type B
evaluations, in terms of stochastic representations:

� Type A. The variance or standard deviation is estimated from a series of repeated
observations. It is derived from a probability density function based on an observed
frequency distribution.

� Type B. The variance or standard deviation is evaluated using available knowledge. It
is based on an assumed probability density function that reflects the degree of belief
regarding the occurrence of an event.

At this point, all uncertainty components are treated stochastically, and the law of quadratic
variance propagation is applied to the method of sensitivity analysis for the measurement
model, expressed as follows:

y = f(d) (2.20)

In this equation, y represents the estimate of the measured quantity, whose uncertainty de-
pends on the values of input quantities d1, d2, ..., dN that are fed into the measurement model
f . The vector d = [d1, d2, ..., dN ]T contains exhaustive, potentially countless influence factors
for the corresponding measured quantity and measurement model.

Subsequently, the variance (denoted by σ2
f ), an uncertainty measure for the estimate of the

measured quantity, can be determined using the following equation:

σ2
f =

∑
i

[
∂f(d)
∂di

]2
σ2
di
, (2.21)

where

� d includes all influence factors that contribute to measurement uncertainty, which are
assumed to be statistically independent;

� σ2
di

represents the variance related to the uncertainty component associated with influ-
ence factor di. This variance is evaluated using either Type A or Type B approach;

�
∂f(d)
∂di

refers to sensitivity coefficients that describe how the output estimate varies with
changes in the input values.

The underlying concept is as follows. Typically, the quantity of interest is not measured
directly but is instead derived from N other quantities through a functional relationship known
as the measurement model. Consequently, the uncertainty associated with the measurement
result (represented by the estimated standard deviation of the output estimate) depends on
the estimated standard deviations of each input estimate (influence factors). Furthermore,
each uncertainty component may be influenced by additional factors, which can introduce
sub-level uncertainty components, thereby leading to a complex functional model.

In GNSS applications, the functional relationship can be modeled by the non-linear GNSS
observation equation, cf. Sec. 3.1. The uncertainty of the pseudorange measurements after
correcting all recognized systematic effects can be evaluated through Eq. 2.21.

Another interpretation can be found in the theory of elementary error model (EEM). Each
realization of a measured quantity differs from its expected value by a random deviation,
presented as a sum of numerous very small elementary errors (Pelzer, 1985; Schwieger, 1999).
The individual elementary errors are assumed to have the same absolute value, with equal
probabilities for both negative and positive signs. Thus, the expected value of the random
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deviation is zero. As the analysis of a measurement process gets more detailed, the number of
elementary errors increases while their absolute values decrease. Assuming an infinite number
of elementary errors with infinitely small absolute values justifies the use of a standard normal
distribution for the standardized random deviation. The influence of the elementary errors
on the measurement should be modeled by influence factors, which can be integrated into
influence matrices and analyzed through sensitivity analysis. For instance, Schwieger (2007a)
illustrates this approach using GPS data to detect tectonic movements in Romania, while
Kerekes and Schwieger (2020) applies it to laser scanner data for the Kops arch dam in
Austria.

In the case of correlated influence factors, Eq. 2.21 should be adapted to account for in-
terdependence, which is beyond the scope of this work. Readers of interest are referred to
GUM series (ISO/IEC GUIDE 98-3:2008(E), 2008; JCGM 100:2008, 2008; JCGM 102:2011,
2011; JCGM GUM-6:2020, 2020) and literature on EEM (Pelzer, 1985; Schwieger, 1999, 2007a;
Kerekes and Schwieger, 2020) for further information.

2.2.4 Interval-based evaluation principles

Kutterer (1999) introduces a method to determine interval-presented uncertainty using sen-
sitivity analysis based on interval mathematics. This method has been applied to geodetic
monitoring network (Schön and Kutterer, 2001b; Neumann et al., 2006) and to GPS data
analysis (Kutterer, 2001; Schön and Kutterer, 2005a; Dbouk, 2021).

The fundamental concept is that the empirical models are built on assumptions and approx-
imations with inherent uncertainty. Constants and parameters in these models are often only
imprecisely known and are associated with a range of values. These uncertainties contribute to
a maximum interval range of variation for the model’s output, which reflects the uncertainty
due to remaining systematics. This approach differs from the GUM sensitivity analysis, as it
discards stochastic assumptions about systematic errors.

Consider a functional model f with N influence factors d = {d1, d2, ..., dN}. Given nominal
values d∗ and associated uncertainties represented by interval radii dr, the matrix of sensitivity
coefficients F and resulting interval radius fr of the output estimate can be determined as
follows:

F = ∂f(d∗)
∂d , fr = |F| · dr, (2.22)

assuming that the influence factors are independent. In Eq. 2.22, F denotes the matrix of
partial derivatives evaluated at d∗, and |F| refers to the element-wise absolute values.

Unlike Eq. 2.21, which is based on variance-based representations, Eq. 2.22 propagates un-
certainty through partial differentiation in an interval framework. The uncertainties in the
influence factors are modeled as intervals centered at d∗ with radii dr, resulting in an interval
output estimate bounded by [−fr, fr].

Undoubtedly, the key to the interval-based sensitivity analysis is the reliable characterization
of the model’s influence factors and the assessment of their uncertainties. Schön and Kutterer
(2006) categorizes influence factors for practical applications into the following categories:

� Model constants are often determined empirically and should be associated with an
uncertainty interval that reflects their quality;

� Model parameters are input values to adapt the model to specific observational con-
ditions. They typically represent average values along with associated uncertainty mea-
sures;



18 2 Fundamentals

� Auxiliary information includes any external source data, products, or information
necessary for the model that can influence the uncertainty of the model’s output. The
uncertainty intervals for this information must be evaluated based on the quality indi-
cators and incorporated into the sensitivity analysis.

Consistently, Type A and Type B evaluations are effective for supporting interval-based
sensitivity analysis:

� Type A. The interval is assessed based on repeated observations, which could include
the maximum range or specific quantiles of the observed values.

� Type B. The interval is determined using available knowledge, specifically focusing on
possible error bounds.

For Type B evaluation, GUM depicts a pool of available information. This information aids
in evaluating model influence factors through scientific judgment. Key sources of uncertainty
information include:

� Uncertainty information indicated during the model construction process;

� Expert knowledge or experience regarding the behavior and properties of relevant factors;

� Manufacturer’s specification;

� Information provided by model’s accuracy evaluations;

� Uncertainties associated with reference data taken from established handbooks.

As an example, rounding errors, as introduced earlier, arise from two main sources: (i) the
limitations in the resolution of the instrument’s display and (ii) the rounding or truncation
of numbers during data processing. The associated interval-described uncertainty is readily
determined by the instrument’s specified resolution and the number of decimal places reported.
For example, if a manufacturer specifies a resolution of 10−3 or if digital readings are to three
decimal places, then an interval with a radius of 0.5 × 10−3 captures the uncertainty due to
limited resolution. This serves as the minimum standard for assessing the uncertainty of any
quantities in this work, particularly in the absence of additional information.

In Chap. 3, the interval-based sensitivity analysis method is revised and extended to fulfill
practical requirements.

2.2.5 Terminology in other disciplines

Terminology related to errors and uncertainty differs across various scientific disciplines, result-
ing in different classifications and conceptualizations. The emphasis here is not on assessing
correctness or accuracy but rather on highlighting the scientific and philosophical approaches
that are appropriate for different contexts. Below are some examples with brief explanations:

� Statistical and systematic uncertainties: These are commonly encountered in
physics-related fields like cosmology (Conrad et al., 2003) and nuclear/particle physics
(Pérez et al., 2016).

� Aleatory (or aleatoric) and epistemic uncertainties: These terms are frequently
used across several disciplines, particularly in the engineering reliability community
(Oberkampf et al., 2004; Möller and Beer, 2008; Faes et al., 2021) and deep learning/-
machine learning community (Abdar et al., 2021; Hüllermeier and Waegeman, 2021).



2.3 Navigation performance requirements 19

� Objective or subjective uncertainties: These uncertainties may be linked to human
factors or environmental influences in ethics (Tannert et al., 2007), decision-making
(Campos et al., 2007), psychology (Alquist and Baumeister, 2023), etc.

� Reducible or irreducible uncertainties: This classification appears in various papers
and can complement other terminology. For example, Campos et al. (2007) differentiates
objective from subjective uncertainties based on whether they can be principally reduced
through additional empirical efforts. Similarly, Hüllermeier and Waegeman (2021) in-
terprets aleatory uncertainties as irreducible and epistemic uncertainties as reducible
within the total uncertainty budget.

� Substantive and procedural uncertainties: These terms are used in studies on
economic behavior to describe the origins of uncertainties arising from human actions
(Dosi and Egidi, 1991).

� Data and knowledge uncertainties: These concepts are typically introduced in deep
learning and artificial intelligence to explicitly indicate the sources of uncertainties that
arise when there is a mismatch between training and testing data (Abdar et al., 2021).

Uncertainty classification can often be ambiguous even within the same field, as authors
may use interchangeably referenced terminologies and different concepts simultaneously. For
instance, data/knowledge uncertainties and aleatory/epistemic uncertainties are frequently
accepted in machine learning studies. Therefore, maintaining clarity in conceptualization is
crucial and should be consistently emphasized.

2.3 Navigation performance requirements

The goal for most satellite navigation users is assured positioning, navigation and timing
(PNT). Combining dissimilar sources of basic PNT information can lead to a much more
robust positioning capability, i.e., greater PNT assurance (Parkinson et al., 2021). The United
States Federal Aviation Administration (FAA) specifies four criteria to measure navigation
performance: accuracy, integrity, continuity, and availability.

Accuracy. Accuracy is the simplest and most commonly used performance metric of a navi-
gation system. It is a measure of the position error, i.e., the difference between the estimated
position and the true position, that will be experienced by a user with a certain probability at
any given instant. Particularly, the probability used for accuracy requirements in civil aviation
is 95% probability, as specified by ICAO, for different operations. For example, the en-route
horizontal accuracy requirement is 3.7 km, meaning that the horizontal position error is no
greater than 3.7 km at 95% probability under nominal conditions.

Integrity. In addition to providing a PNT function,

a GNSS system must be able to provide valid and timely warnings to the user when
the system must not be used for the intended operation.

This capability is known as the integrity of the system. Integrity is a measure of the trust
that can be placed in the correctness of the information supplied by the total system.

The metric typically used to quantify integrity is integrity risk (IR), which concerns both
the position error bounds and the required time to alert the user if that position bound cannot
be assured to the required level of confidence. Algorithms in the user equipment compute a
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Protection Level (PL) each time a position is estimated. If the computed PL exceeds a required
Alert Limit (AL) for the operation, an alert is raised within the Time-to-Alert (TTA). The
IR requirement used in aviation is generally set to a probability of 10−7, meaning that the
probability of a Position Error (PE) exceeding the AL without warning to the user is 10−7,
or, alternatively, the probability of the position error is smaller than the AL is 99.99999%.

Integrity is essential to safety-critical applications such as civil aviation, and thus, it is a
primary driver behind the development of various augmentation systems. Ground-based Aug-
mentation System (GBAS) and Satellite-based Augmentation System (SBAS) are standard-
ized GNSS augmentation systems that have been deployed to support civil aircraft navigation.
In addition, an Aircraft-based Augmentation System (ABAS) augments and/or integrates in-
formation from the other GNSS elements with information available onboard the aircraft.
RAIM is a basic type of ABAS that takes advantage of redundant information from the
GNSS constellation itself to verify integrity. This will be further introduced in Sec. 2.4.

The Stanford diagram is a popular visualization tool for integrity performance assessment,
as a two-dimensional histogram presenting the relationship of PE, PL, and AL for a set of
measurements, cf. Fig. 2.5. It partitions the entire space into four categories:

� Normal Operation (NO): PE<PL<AL;

� Misleading Information (MI): PL<PE<AL, and AL<PL<PE;

� Hazardous Misleading Information (HMI): PL<AL<PE;

� System Unavailable (SU): AL<PL.

Figure 2.5: An example of the Stanford diagram.

Notably, the necessity of ground truth for computing PE prevents this approach in real-world
applications. Nevertheless, it is applicable to simulations or experiments with accessible, high-
quality reference solutions and, hence, is an effective way for evaluating integrity monitoring
algorithms.

Continuity. International Civil Aviation Organization (ICAO) defines the continuity of a
service as
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the capability of the system to perform its function without unscheduled interrup-
tions during the intended operation. (ICAO, 2023)

Specifically, the navigation system must meet the accuracy and integrity requirements for
the duration of the operation at the required probabilities. This is usually quantified by
the continuity risk (CR), which is defined as the probability of a detected but unscheduled
navigation function interruption after the operation has been initiated. For instance, the
continuity requirement is specified over a time period of 15s for approach operations that are
relatively short.

Availability. Availability is defined as

the probability that a user is able to determine its position with the specified accu-
racy and is able to monitor the integrity of its determined position at the initiation
of the intended operation.(ICAO, 2023)

ICAO gives a range of values for the availability requirements concerning specific operations,
which depend on several factors and should be selected accordingly.

Tab. 2.1 showcases the current navigation performance requirements for different aircraft
operations by ICAO.

Table 2.1: Navigation performance requirements for civil aviation operations (ICAO, 2023).

Operation Accuracy Integrity Time- Continuity Availability
(horizontal, Risk to- Risk

vertical) (IR) Alert (CR)

En-route 3.7 km, 10−7/h 5 min 10−4/h to 0.99 to
N/A 10−8/h 0.99999

En-route, Terminal 0.74 km, 10−7/h 15 s 10−4/h to 0.99 to
N/A 10−8/h 0.99999

Non-precision appr- 220 m, 10−7/h 10 s 10−4/h to 0.99 to
oach (NPA) N/A 10−8/h 0.99999
APV-I* 16 m, 2 × 10−7/h in 6 s 8 × 10−6/h 0.99 to

20 m any approach per 15 s 0.99999
APV-II* 16 m, 2 × 10−7/h in 6 s 8 × 10−6/h 0.99 to

8 m any approach per 15 s 0.99999
Category I precision 16 m, 2 × 10−7/h in 6 s 8 × 10−6/h 0.99 to
approach 6 m to 4 m any approach per 15 s 0.99999

Operation Alert Limit (AL)
Horizontal Vertical

En-route
(oceanic/continental low density) 7.4 km N/A
(continental) 3.7 km N/A

En-route, Terminal 1.85 km N/A
Non-precision approach (NPA) 556 m N/A
APV-I* 40 m 50 m
APV-II* 40 m 20.0 m
Category I precision approach 40 m 35.0 m to 10.0 m
* The terms APV-I/II refer to two levels of GNSS APproach and landing operations with V ertical guidance.
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For detailed definitions, specifications, and explanations, readers are referred to Annex 10
to the Convention on International Civil Aviation ICAO (2023).

These four parameters are valuable for all users and all applications. For example, the User
Consultation Platform (UCP), organized periodically by the European Commission and the
European Union Agency for the Space Programme (EUSPA), provides the up-to-date GNSS
user needs and requirements in the road market segment in its periodically updated report
(EUSPA, 2021). Tab. 2.2 outlines the most recent requirements and expectations from the
perspective of road and automotive users (based on Annex 7 of EUSPA (2021)).

Table 2.2: Navigation performance parameters for road users.

Application Availa- Accuracy Integrity Coverage
bility (horizontal, vertical) Risk (IR)

Safety critical
(traffic&safety warning) >0.995 < 3 m/1 m1, N/A N/A Worldwide
(automated driving) >0.999 < 20 cm, < 2 m 10−7 to 10−8 Worldwide

Payment critical >0.995 < 3 m, N/A 10−4 National
Regulatory critical >0.995 < 5 m, N/A 10−4 EU
Smart mobility >0.995 < 5 m/3 m2, N/A N/A Regional
1 < 3 m for Day 1 applications, and < 1 m for advanced applications.
2 < 3 m for scenarios where payment function is included.

2.4 (Advanced) receiver autonomous integrity monitoring

2.4.1 Introduction

Receiver Autonomous Integrity Monitoring (RAIM) is a technique that exploits redundant
measurements to achieve self-contained fault detection at the user receiver. The legacy GPS-
based RAIM is the most widely used form of satellite navigation by aviation to date (Walter,
2017), e.g., for predicted availability and onboard single-measurement fault monitoring based
on single-frequency GPS signals. It is capable of providing horizontal guidance without the
need for expensive ground infrastructure and offering global coverage. The main challenge in
RAIM is not only designing fault detectors but also evaluating the impact of undetected faults
on safety risk (Pullen and Joerger, 2021). RAIM is not designed to detect multiple satellite
failures simultaneously.

Advanced RAIM (ARAIM) takes benefits of the GNSS modernization programs, incorpo-
rating new frequencies and constellations for aviation use. ARAIM differs from the legacy
RAIM in three key areas:

� Increased number of satellites from multiple GNSS constellations;

� Dual-frequency satellite signals allow the elimination of ionospheric errors;

� Error and threat model provided to the airborne receiver in the form of Integrity
Support Parameter (ISP) via the Integrity Support Message (ISM).

Moreover, the Protection Level (PL) is a fundamental performance metric for high-integrity
GNSS applications. It is computed by users, representing position domain error bounds at
the small probabilities required by the integrity requirements, and compared to the Alert
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Limit (AL), i.e., the maximum tolerable position errors to maintain safety, that applies to the
operation being conducted.

The following sections discuss these elements in detail:

� Sec. 2.4.2 describes the ARAIM threat models and approaches for nominal error bound-
ing, including Gaussian overbounding and nominal bias bounding;

� Sec. 2.4.3 explores fault detection approaches based on test theory: the residual-based
(RB) detection and solution separation (SS) detection, utilized in the fault detection
and exclusion (FDE) functions in RAIM and ARAIM algorithms;

� Sec. 2.4.4 explains the concepts of loss of integrity (LOI) and loss of continuity (LOC)
with corresponding probabilities formulated;

� Sec. 2.4.5 and Sec. 2.4.6 evaluate integrity risk (IR) for classical RAIM and ARAIM,
respectively, and introduce respective methods for calculating PL.

2.4.2 Threat modeling and nominal error bounding

Introduction

The ARAIM Technical Subgroup Milestones 1 Report defines navigation threats as all possible
events (natural, systemic, or operational) that drive the computed navigation solution to
deviate from the true position, regardless of whether a specific fault can be identified in one
of the navigation systems or not (WG-C ARAIM TSG, 2012). ARAIM threats are those that
impact the performance of the ARAIM algorithm and have a probability of occurrence larger
than the required integrity risk (IR).

Eight classes of ARAIM threats have been identified and summarized in Tab. 2.3. A com-
plete table including all identified items can be found in Annex H of the report. Each item
refers to a single combination of two threat properties mentioned (nominal/narrow/wide and
nature) and GNSS (GPS/Galileo, or cross-constellation).

These threats are categorized into three types:

� Nominal errors are errors under nominal conditions when all systems (space, ground,
and user segments) operate normally, e.g., receiver noise, multipath, tropospheric de-
lay, inter-frequency bias, nominal signal deformation, nominal orbit determination, and
satellite clock errors;

� Narrow (single) faults refer to uncorrelated errors affecting satellites individually and
not entering into the first category;

� Wide (multiple) faults include correlated errors induced by space or ground seg-
ment faults that affect navigation signals/messages from multiple satellites and are not
included in the first two categories.

The entire threat space must be modeled properly to ensure navigation integrity, including:

� Adequate nominal error bounding concerning the first category of threats, which are
handled as either

– Random errors that are addressed by Gaussian overbounding methods or

– Nominal biases referring to errors with long-term variations or non-Gaussian
behaviors, which are upper bounded by constant values.
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Table 2.3: Identified ARAIM threats and their characterizations (WG-C ARAIM TSG, 2012).

Threat source Threat category1

Nominal Narrow fault Wide fault

Clock and ephemeris Orbit/clock estimation and pre-
diction and broadcast limits

Includes clock runoffs, bad
ephemeris, unflagged manoeuvre

Erroneous Earth Orientation Prediction
Parameter (EOPP), inadequate manned
operations, ground-inherent failures

Signal deformation Nominal differences in signals
due to Radio Frequency (RF)
components, filters, and an-
tenna waveform distortion

Failures in satellite payload
signal generation components.
Faulted signal model as de-
scribed in ICAO

N/A3

Code-carrier incoherence e.g. incoherence observed in GPS L5 signal or GEO L1 signals2 N/A3

Inter-frequency bias Delay differences in satellite payload signal paths2 N/A3

Satellite antenna bias Look-angle dependent biases caused at satellite antennas2 N/A3

Ionospheric N/A3 Scintillation Multiple scintillations at solar storms in
certain latitudes

Tropospheric Nominal residual troposphere
error (after applying SBAS
MOPS correction model)

N/A3 N/A3

Receiver noise and multi-
path

Nominal noise and multipath
terms in airborne model

e.g., receiver tracking failure or
multipath from the onboard re-
flector.

e.g., receiver tracking multiple failures or
multipath from the onboard reflector.

1 ARAIM threats are categorized according to two properties: (i) as a nominal error or fault impacting one or multiple satellites, and (ii) according to the nature of
the fault.

2 The nominal errors and narrow faults for these threat types share the same elaborations in the current version, which may be further distinguished.
3 Not all possible combinations correspond to real threats, and those deemed irrelevant appear as N/A in the table and should be excluded from any quantitative

characterization.
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� Fault probability specification, capturing the rates of the other two categories of
threats.

The subsequent subsections detail the Gaussian overbounding and nominal bias methods
and discuss fault probability definitions in ARAIM.

Gaussian overbounding

The normal distribution is often used to model GNSS errors thanks to its simplicity and
convenience in combining multiple normally distributed error components. According to the
Central Limit Theorem (CLT), as discussed earlier, the sum of independent and identically
distributed random variables approaches a normal distribution as the number of variables
increases. Therefore, modeling observed errors using a normal distribution with estimated
means and variances is generally reasonable for accuracy statistics, e.g., 90% to 95% of the
observations. However, the limitations of the CLT challenge this approach at very low prob-
abilities as the actual error distributions have “fatter” tails than normal distributions.

Overbounding is the concept that an actual distribution can be conservatively described by
a simple, usually Gaussian, model (DeCleene, 2000; Walter, 2017). The overbounding distri-
bution should predict the probability of large errors to be no lower than the actual distribution.
Although the actual error distribution may not be completely known, the overbounding ap-
proaches provide a practical way to represent it for analysis. In a mathematical sense, the
following requirements are fulfilled:

Fob(x) ≥ Ferr(x), ∀Ferr(x) ≤ 0.5;
Fob(x) < Ferr(x), ∀Ferr(x) > 0.5.

(2.23)

In Eq. 2.23, Fob(x) is the overbounding Gaussian CDF and Ferr(x) is the unknown under-
lying CDF. Subsequently, individual overbounded error components are combined through
quadratic variance propagation. Once large errors in the observation domain are overbounded,
any subsequent navigation algorithm can satisfy specific mathematical requirements on actual
estimation errors (Rife et al., 2006).

(a) CDF domain (b) PDF domain

Figure 2.6: CDF overbounding concept. A standard normal distribution N (0, 1), representing the actual
errors (solid curve), can be overbounded by a Gaussian distribution with inflated standard deviation (N (0, 22),
dotted curve) in the CDF domain. A valid overbounding CDF would always be located within the shadow area,
i.e., yielding Eq. 2.23 (left). The tail probabilities of the actual errors are overbounded in the PDF domain (b).

Based on the foundational work of DeCleene (2000), overbounding methods have been
expanded in the academic literature to include adjustments in mathematical assumptions
such as Rife et al. (2004a) and Blanch et al. (2019b) or by reducing conservatism through
alternative distributional models (Rife et al., 2004b; Larson et al., 2019). By trading off
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the model complexity, these refined approaches potentially enhance system availability by
introducing less conservatism in the range distributions before they are transformed to the
position domain (Larson et al., 2019).

In practice, overbounding is often achieved empirically. The sigma value of a Gaussian
distribution is varied to fit actual data in terms of CDF. This sigma value is then increased to
ensure a sufficient margin between the desired overbounding CDF and the actual CDF at the
required probabilities. This margin, interpreted as the tightness or conservatism of bounding,
typically depends on:

� The shape and tail distribution of the actual data relative to the overbounding model;

� Any theoretical knowledge of the characteristics of the actual distribution.

And it should be determined based on engineering judgment (Pullen and Joerger, 2021).

For instance, Signal-In-Space Range Error (SISRE)1 represents the equivalent GNSS pseu-
dorange error mainly originating from the satellite clock, broadcast ephemeris, and hardware
group delay error sources (i.e., Type 1 threat in Tab. 2.3). Every user r located at a point
under the k-th satellite’s footprint experiences a distinct Instantaneous User Range Error
(IURE), expressed as follows(Perea et al., 2017):

ϵkIURE,r = (ϵkorb)
T · lkr − ϵclk, (2.24)

where lkr represents the unit vector of the LOS direction; ϵkorb and ϵclk are the instantaneous
satellite ephemeris error vector and the clock error term.

For integrity purposes, Eq. 2.24 is often assessed for its worst-case values, i.e., at a given
epoch and for each satellite, the location reporting the greatest IURE is taken into the statis-
tical analysis. Accordingly, Fig. 2.7(a) and 2.7(b) show the historical statistics for GPS and
Galileo in the form of one minus Cumulative Density Function (CDF). The thick black curve
in both plots represents the aggregate ECDF incorporating all satellites, while the thick red
curve illustrates the CDF of an overbounding distribution. The two red lines are extended
down to 10−5 and 3 × 10−5 probabilities. These probabilities, as will be introduced later,
are the committed satellite fault probabilities. Nominal Gaussian behavior of SISRE is not
required, and not assured, below these levels.

Nominal bias

The nominal bias accounts for near-constant uncorrected errors (such as signal deformation
and antenna bias) and non-Gaussian behavior (WG-C ARAIM TSG, 2012). These small-
range errors remain essentially constant throughout the duration of the intended operation
and, therefore, cannot be treated as purely random. For instance, they are not appropriate to
be assumed uncorrelated over periods of time of 15 seconds or more for an aircraft approach.
Instead, nominal biases are deterministically upper bounded by a constant value, termed bnom,
representing the worst-case situation.

Intensive studies have analyzed nominal range biases. Nominal signal distortions are subtle
perturbations on the time domain waveform transmitted by the satellite as observed by the

1Other terminologies can be found in literature, such as Projected (Ranging) Error, Signal-In-Space Ranging
Error (SISE), and Signal-In-Space User Range Error, etc. This work chooses the term Signal-In-Space
Range Error (SISRE) and considers them as synonyms. In addition, it should not be mixed up with the
term User Range Error (URE), which denotes an Integrity Support Parameter (ISP), i.e., the standard
deviation of SISRE for accuracy and continuity purposes in the ARAIM algorithm.
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(a) GPS (Walter and Blanch, 2015) (b) Galileo (Wang and Walter, 2023)

Figure 2.7: The complementary CDF (or 1 minus CDF) of GPS and Galileo Instantaneous User Range Error
(IURE), i.e., by individual satellite (colored) and overall satellites (thick black). The GPS values are normalized
by the broadcast URA from the GPS legacy navigation data at the time of each measurement (from January
2008 through December 2014), while the normalization of Galileo values is based on the fixed 6-meter value for
dual-frequency users (from January 2018 through June 2022). The thick red curves represent the overbounding

Gaussian distributions down to the committed probabilities by Constellation Service Provider (CSP).

receiver, resulting from imperfections in the signal generation hardware onboard the satellites.
These variations in the transmitted signal cause ranging errors. Additional components include
variations in the satellite antenna group delay concerning the pointing angle and user antenna
group delay variations with respect to azimuth and elevation (Phelts et al., 2014; Macabiau
et al., 2014).

When the AL is set fairly small, these ranging biases cannot be ignored when analyzing the
integrity performance. Thus, a term bnom is defined to account for all nominal bias components
and broadcast to ARAIM users (WG-C ARAIM TSG, 2012). This term is propagated into
the state domain through the least-squares estimator and accommodated in the computation
of Protection Level. Macabiau et al. (2015) investigated the impact of nominal biases on the
PL computed by the ARAIM baseline algorithm under different settings of the worst-case
constant values. This term will be further investigated in Sec. 4.2 and Sec. 6.1.

Fault probabilities

Trustworthy information on the inherent integrity of received GNSS satellite signals is crucial
to (Advanced) RAIM. The development of ARAIM in civil aviation led to efforts within the
ICAO) Navigation Systems Panel (NSP) to obtain additional integrity-related commitments
from Constellation Service Provider (CSP). The up-to-date Integrity Support Parameter (ISP)
are provided in Tab. 2.4, with the following terms:

� User Range Accuracy (URA) is a standard deviation value of a zero-mean Gaussian
distribution, which is chosen such that actual SISRE can be upper bounded to the
probability specified by Psat, as in Fig. 2.7. From this perspective, the overbounding
Gaussian distribution for the nominal SISRE can be described by N (0,URA2), whereas
larger errors with probabilities below Psat are treated as anomalous (or faulted) and are
not described by this distribution. URA is a more conservative concept than the similar
term User Range Error (URE), which also expresses typical range errors at the 1 ·σ
level but is not meant to bound errors out to Psat (i.e., URA > URE). The Galileo Open
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Table 2.4: Constellation ISP commitments.

Parameter GNSS constellation
GPS GLONASS Galileo Beidou

URA [m] in NAV data
(ICD table)

18 6 (dual frequency),
7.5 (single frequency)

in NAV data
(ICD table)

URA
Threshold1 [m]

4.42×URA 70
(3.89×URA)

25 (dual frequency),
31.3 (single frequency)

4.42×URA

Psat 10−5 10−4 3 × 10−5 10−5

Pconst 10−8 10−4 2 × 10−4 6 × 10−5

TTA [sec] 10 10 not specified 10

Service (OS) adopts the term Signal-In-Space Accuracy (SISA), nevertheless, with
the same concept.

� URA Threshold defines the SISRE level beyond which errors are considered anomalous
or faulted as opposed to nominal (at the same time with probabilities below Psat). It
is typically in the form of a multiple of URA. The URA thresholds for Galileo and
GLONASS are fixed values since they offer constant URA as in Tab. 2.4, whereas the
one for GPS varies with its broadcast URA values.

� Satellite fault probability (Psat) is a conservative bound on the per-satellite failure
state probability for statistically independent satellite failures. It represents the proba-
bility at any given time that a satellite will be in a faulty (as opposed to nominal) state.
It is an input to the baseline ARAIM algorithm developed for civil aviation and can be
determined based on statistical analysis against the satellite failure probabilities.

� Constellation fault probability (Pconst) is a conservative bound on the state proba-
bility of failures correlated across satellites in the same constellation, including faults of
two or more up to all satellites in the same constellation. Such correlated faults affect
the entire constellation and can only be detected by checking the consistency with other
(non-faulted) constellations.

� Time-to-Alert (TTA) denotes the maximum interval between the time at which a
faulted condition begins (based on the aforementioned definitions) and when it must
end or be alerted to prevent it from being considered a fault from the point of view of
potential loss of integrity.

When only satellite-wise faults are considered, Joerger et al. (2012) computes the probability
for the fault modes with nf faulty signals using the binomial law:

P (nf = 1) =
(
n

1

)
Psat · (1 − Psat)n−1,

P (nf = 2) =
(
n

2

)
P 2
sat · (1 − Psat)n−2,

P (nf ≥ 3) =
n∑
k=3

(
n

k

)
P ksat · (1 − Psat)n−k.

(2.25)

with n denoting the total number of satellites.
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The baseline ARAIM algorithm in WG-C ARAIM TSG (2022) uses Pevent to represent an
independent fault event, which can be a single satellite failure or a constellation failure:

Pevent 1 = Psat 1, ..., Pevent n = Psat n,

Pevent n+1 = Pconst 1, ..., Pevent n+nc = Pconst nc ,
(2.26)

providing nc constellations, and hence, a total of n+nc events are observed. For a given fault
mode, as an example, referring to a fault in satellite 1 and no fault in any constellation, its
probability is computed using the binomial law:

P (Fault mode 1) = Psat 1 ·
n∏
i=2

(1 − Psat i) ·
nc∏
j=1

(1 − Pconst j) (2.27)

The general form for the probability of fault mode k is

P (Fault mode k) =
n+nc∏
i=1

P
wi,k

event i · (1 − Pevent i)1−wi,k

with wi,k =
{

1, if event i is in fault mode k;
0, otherwise.

(2.28)

Notably, it is unnecessary to compute all fault modes for computational efficiency since some
fault modes with multiple simultaneous faults may be fairly rare compared to related risk
requirements. Reducing the number of monitored fault modes has drawn significant attention
in developing ARAIM.

2.4.3 Test theory-based fault detection

Measurement model

The following measurement model is studied:
y = Ax + e + f , (2.29)

where,

� y is an n× 1 vector of measurements;

� A is an n×m design matrix, indicating the Line-of-Sight (LOS) vectors;

� x is an m× 1 vector of states, e.g., parameters to be estimated;

� e is an n× 1 vector of nominal measurement errors;

� f is an n× 1 vector of faults.

It is assumed that the nominal measurement errors are bounded by a zero-mean multivariate
Gaussian distribution, i.e., e ∼ N (0n×1,Σ), where Σ is a known nonsingular covariance matrix
with variances for each measurement on the diagonal, i.e., σ2

1, ..., σ
2
n.

By manipulating the matrix operation Σ = (Σ
1
2 )TΣ

1
2 and multiplying Σ− 1

2 with both side
of Eq. 2.29, the measurement model can be normalized:

ỹ =Ã x + ẽ + f̃ ,

with ỹ =Σ− 1
2 y,

Ã =Σ− 1
2 A,

ẽ =Σ− 1
2 e ∼ N (0, In),

f̃ =Σ− 1
2 f .

(2.30)
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Least-squares estimation

The (weighted) least-squares estimator is used in classical GNSS integrity monitoring methods
based on certain stochastic assumptions. Section 4.2 revisits the least-squares estimator to
explore corresponding error bounding approaches in a broader context.

Considering the measurement model described in Eq. 2.29, the least-squares estimate of the
state, denoted by x̂, is expressed as follows:

x̂ = K y, (2.31)

where K = (ATPA)−1ATP with P = Σ−1. The least-squares estimate of measurement reads:

ŷ = AK y. (2.32)

Notably, for the normalized measurement model in Eq. 2.30, the same least-squares esti-
mates of the states can be derived with the counterpart K̃ matrix:

K̃ =
(
ÃT Ã

)−1
ÃT =

(
AT

(
P

1
2
)T

P
1
2 A
)−1

ATP
1
2 , (2.33)

where P
1
2 = Σ− 1

2 , and the counterpart ˆ̃y, the least-squares estimate of normalized measure-
ments, is expressed as

ˆ̃y = ÃK̃ỹ =P
1
2 A

(
AT

(
P

1
2
)T

P
1
2 A
)−1

AT
(
P

1
2
)T

P
1
2 y

=P
1
2 AK y

(2.34)

An m × 1 vector α is defined to extract the state of interest, e.g., the vertical position for
aircraft precision approach navigation using GPS signals:

αT =
[
0 0 1 0

]
, (2.35)

where only one element of α is one, corresponding to the state of interest based on the order
in which states are stacked in x, and the other m−1 elements are zeros. As a result, the m-th
state to be estimated is

x̂(m) = kT(m)y, (2.36)

where kT(m) = αTK.

The estimation error is

ε(m) := x̂(m) − x(m) = kT(m)(e + f), (2.37)

which follows a Gaussian distribution according to the law of quadratic error propagation:

ε(m) ∼ N
(
kT(m)f , σ

2
(m) = αTΣx̂x̂α

)
, (2.38)

with the Variance-Covariance Matrix (VCM) of state estimates Σx̂x̂ = (ATPA)−1.
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Residual-based method

The residual vector is defined as (Parkinson and Axelrad, 1988; Potter and Suman, 1977)

r := y − ŷ =(In − AK)y = (In − A(ATPA)−1ATP)(Ax + e + f)
=(In − AK)(e + f).

(2.39)

A normalized residual vector r̃ for Eq. 2.30 is defined as

r̃ := ỹ − ˆ̃y = P
1
2 y − P

1
2 AKy = P

1
2 r (2.40)

The residual-based (RB) test statistic q2
RB is the weighted norm of the residuals:

q2
RB := rTPr = r̃T r̃. (2.41)

The scalar random variable q2
RB follows a non-central chi-square distribution with (n−m)

degrees of freedom and non-centrality parameter λRB in the presence of faults:

q2
RB ∼ χ2(n−m,λRB),

with λRB = fTSf and S = P(In − AK).
(2.42)

Additionally, the RB test statistic can be derived from the parity vector p, which lies in the
(n−m)-dimensional parity space, or left null space of Ã:

p := Qỹ = Q(ẽ + f̃), (2.43)

where Q is the (n−m) × n parity matrix, defined by two conditions:

QQT = In−m, and
QÃ = 0(n−m)×m.

(2.44)

The normalized measurement vector ỹ can be broken down into two orthogonal components:

ỹ = ÃK̃ỹ + QTQỹ, (2.45)

with the first component ÃKỹ lying in the column space of Ã, and the second component
QTQỹ in the null space of ÃT , respectively. Subsequently, one gets

QTQ = In − ÃK̃ = In − P
1
2 A(ATPA)−1ATP

1
2 . (2.46)

Substituting the results in Eq. 2.46 into Eq. 2.39 and Eq. 2.41 shows that the L2-norms of
parity vector p and of the normalized residual vector r̃ are equal:

q2
RB = r̃T r̃ = ỹT (In − ÃK̃)T (In − ÃK̃)ỹ = pTp. (2.47)

Multiple Hypotheses Solution Separation (MHSS)

The MHSS framework accounts for the entire set of mutually exclusive, jointly exhaustive
hypotheses, including the null hypothesis (H0, the fault-free situation) and alternative hy-
potheses (Hi, i = 1, ..., h, the faulty situations). Each alternative hypothesis Hi indicates a
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fault mode where a subset of measurements is faulty, while the rest are fault-free. Accord-
ingly, the measurement model in Eq. 2.29 is partitioned to distinguish the subset of faulty
measurements H∗

i
Ty from the fault-free measurements HT

i y:[
HT
i y

H∗
i
Ty

]
=
[

HT
i A

H∗
i
TA

]
x +

[
HT
i (e + f)

H∗
i
T (e + f)

]
,

with Hi :=
[
0ni×(n−ni)

In−ni

]
and H∗

i :=
[

Ini

0(n−ni)×ni

]
.

(2.48)

In Eq. 2.48, the matrices Hi and H∗
i are used for extraction. Subsequently, two new geometry

matrices can be constructed from A for all alternative hypotheses:[
Ai

A∗
i

]
:=
[

HT
i A

H∗
i
TA

]
. (2.49)

If the number of fault measurements inHi is denoted by ni, Ai contains the rows corresponding
to ni fault-free measurements and the other rows of zeros. In contrast, A∗

i comprises the non-
zero rows corresponding to n− ni faulty measurements.

Without loss of generality, applying this rule to the null hypothesis H0 leads to A0 = A
and A∗

0 being a n×m matrix of zeros (n0 = 0).

Under Hi, the least-squares subset solution x̂i,(m) for the m-th state of interest using n−ni
fault-free measurements is:

x̂i,(m) := kTi,(m)y, for i = 1, ..., h,

with kTi,(m) = αKi,

Ki = (AT
i PiAi)−1AT

i PiHT
i = (ATHiHT

i PHiHT
i A)−1ATHiHT

i PHiHT
i .

(2.50)

As SS detection always performs on a single state, this section omits the subscript “(m)” for
simplicity.

It is worth clarifying that under H0, x̂0 refers to the fault-free solution derived using the
full set of measurements. In contrast, under Hi (i ̸= 0), x̂0 represents the full-set solution,
which in this case is not fault-free. The remainder of this section uses numbered subscripts i
ranging from 0 to h, unless stated otherwise.

Subsequently, the estimation error εi under Hi is given by

εi := kTi (e + f),

and εi ∼ N
(
0, σ2

i = αTΣx̂x̂,iα
)
,

(2.51)

with the VCM Σx̂x̂,i = (AT
i PAi)−1.

The solution separation (∆SS,i for i = 1, ..., h) is defined as (Lee, 1986; Brenner, 1995)

∆SS,i := x̂0 − x̂i = ε0 − εi. (2.52)

∆SS,i can also be expressed as

∆SS,i = (k0 − ki)Ty = (k0 − ki)T (e + f),

with ∆SS,i ∼ N
(
(k0 − ki)T f , σ2

∆,i

)
,

σ2
∆,i = αT

(
Σx̂x̂,i − Σx̂x̂,0

)
α = σ2

i − σ2
0.

(2.53)
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Similar to the RB test statistic, a normalized SS test statistic is defined as

qSS,i := ∆SS,i

σ∆,i
for i = 1, ..., h,

and q2
SS,i ∼ χ2(1, λi) with λi = fT (k0 − ki)(k0 − ki)T f

σ2
∆,i

.

(2.54)

Fig. 2.8 illustrates the principle of the SS test statistic.

(a) 1 full-set solution using 5 satellites

(b) 5 subset solutions using 4 satellites

Figure 2.8: Concepts of solution separation detection. With five satellites available, six combinations of at
least four satellites can be formed for estimation. Fig. 2.8(a) illustrates the full-set solution for a single state,
which is biased by a fault on Satellite 1. In Fig. 2.8(b) of subset solutions, the solutions involving Satellite 1
all have their mean shifted with respect to the fault-free subset (using Satellite 2-5, red dashed curve). The
maximum solution separation maxi∈{1,...,5} ∆SS,i = maxi∈{1,...,5} (x̂0 −x̂i) is an intuitive and efficient detection

test statistic (Pullen and Joerger, 2021).

The normalized SS test statistic is a projection of the parity vector on the corresponding
fault mode line (Joerger et al., 2014):

qSS,i = (k0 − ki)T

σ∆,i
y = uTi p,

uTi := QH∗
i√

H∗
i
TQTQH∗

i

, for i = 1, ..., n,
(2.55)

where Q is the matrix defined in Eq. 2.44. The vector ui indicates the direction of the fault line
passing through the origin in parity space, corresponding to a fault on the i-th measurement
in the presence of single-measurement faults.

For further theoretical comparison between the two methods, the readers are referred to
literature, e.g., Joerger and Pervan (2014); Joerger et al. (2014); Joerger and Pervan (2016).
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2.4.4 Loss of integrity and loss of continuity

Loss of continuity

The continuity risk (CR), or probability of loss of continuity (LOC) P (LOC), is the probability
of a detected but unscheduled navigation function interruption after an operation has been
initiated (Zhai et al., 2015) for aviation applications. It includes:

� the probability due to false alert (FA), i.e., P (FA),

� the probability due to fault detection when a fault occurs, and

� the probability due to other causes of loss of continuity.

In practice, the FA probability is limited by an allocated CR requirement CREQ,0. The other
components are typically evaluated dependent on dedicated fault models, which is beyond the
scope of this work. Relevant information can be found in, e.g., Zhai et al. (2015), Joerger and
Pervan (2016), and Zhai (2018).

For the RB detector, the CR is dependent on the test threshold TRB:

P (|qRB| ≥ TRB | H0) · P (H0) ≤ CREQ,0. (2.56)

TRB can be determined once CREQ,0 is given using the following equation:

P (|qRB| ≥ TRB | H0) =
∫ +∞

T 2
RB

χ2
qRB

(n−m, 0) dq2
RB. (2.57)

The SS detection thresholds TSS,i for each fault mode i are associated with CREQ,0:

P (|qSS,1| ≥ TSS,1 ∨ ... ∨ |qSS,h| ≥ TSS,h | H0) · P (H0) ≤ CREQ,0. (2.58)

The CR budget for SS detection is influenced by all fault modes and thus should account for
multiple test statistics to ensure that the overall requirement is satisfied (Joerger and Pervan,
2014). A precise assessment can be done on the joint probability based on multidimensional
PDFs. An upper bounding approach is usually employed for real-time implementations:

P (|qSS,1| ≥ TSS,1 ∨ ... ∨ |qSS,h| ≥ TSS,h | H0) · P (H0)

≤
h∑
i=1

P (|qSS,i| ≥ TSS,i | H0) · P (H0).
(2.59)

Subsequently, the SS detection thresholds TSS,i can be computed by

TSS,i = Q−1
{
CREQ,i

2 · P (H0)

}
,

CREQ,0 =
h∑
i=1

CREQ,i, e.g., CREQ,i = CREQ,0
h

,

(2.60)

where Q−1(P ) denotes the (1 − P ) quantile of a standard normal distribution, i.e., Q(x) =
1−FΦ(x) where FΦ(·) is the CDF of a standard normal distribution. The CR can be allocated
arbitrarily, e.g., the equal allocation is used in Eq. 2.60. This ensures that the CR requirement
is met but may cause the integrity risk bound to be loose.



2.4 (Advanced) receiver autonomous integrity monitoring 35

Loss of integrity

The integrity risk (IR), or equivalently the probability of Hazardous Misleading Information
(HMI) or loss of integrity (LOI), is a joint probability:

P (HMI) = P (|ε0| > ℓ ∧ |q| < T ), (2.61)

with

� ε0 the estimation error using full-set measurements,

� ℓ a specific Alert Limit (AL) that defines the hazardous situations,

� q RB/SS detection test statistic (qRB/qSS),

� T RB/SS detection thresholds (TRB/TSS),

which involves the event of Position Failure (PF, or termed Hazardous Information (HI),
|ε0| > ℓ), and the No Detection (ND) event (|q| < T ).

Given an alternative hypothesis Hi, the HMI probability is set to

P (HMI | Hi) = P (|ε0| > ℓ ∧ |q| < T | Hi). (2.62)

For the multiple-hypothesis approach, all hypotheses and test statistics must be considered
when evaluating the HMI probability:

P (HMI) =
h∑
i=0

P (|ε0| > ℓ ∧ |qSS,1| < TSS,1 ∧ ... ∧ |qSS,h| < TSS,h | Hi) · P (Hi) (2.63)

Here, P (Hi) is interpreted as the probability of a specific fault mode, discussed in Sec. 2.4.2.

2.4.5 Classical RAIM

Integrity risk evaluation

The classical residual-based RAIM is designed for GPS-based navigation against potential
single-measurement faults. Binary hypotheses typically considered are as follows:

� H0: fault-free hypothesis.

� HA: faulty hypothesis.

The conditional HMI probability under H0 can be upper bounded by

P (HMI | H0) = P (|ε0| > ℓ ∧ |qRB| < TRB | H0)
≤ P (|ε0| > ℓ | H0),

(2.64)

where the upper bound P (|qRB| < TRB | H0) = 1−P (FA) ≤ 1 is used since the FA probability
is limited by the CR requirement.

A bound on the HMI probability given HA can be evaluated for the n× 1 worst-case fault
(WCF) vector fworst:

P (|ε0| > ℓ ∧ |qRB| < TRB | HA) ≤ P (|ε0| > ℓ ∧ |qRB| < TRB | fworst). (2.65)

fworst is defined such that the IR is maximized for the alternative hypothesis HA.
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It is shown in literature, e.g., Potter and Suman (1977), that the least-squares estimate
error is independent of the RB test statistic qRB. Subsequently, Joerger et al. (2012) rewrites
the joint probability in Eq. 2.62 as a product of probabilities:

P (HMI | HA) = P (|ε0| > ℓ | HA) · P (|qRB| < TRB | HA)
≤ P (|ε0| > ℓ | fworst) · P (|qRB| < TRB | fworst).

(2.66)

The direction of fworst can be found utilizing the knowledge of geometry; for example, Joerger
and Pervan (2014) provides analytical solutions. Subsequently, the magnitude of fworst can be
determined using a line search method.

The ND probability P (|qRB| < TRB | fworst) can be evaluated considering the RB test
statistic’s distributions (cf Eq. 2.42). The PF probability P (|ε0| > ℓ | fworst) is evaluated
based on the estimation error distribution cf. Eq. 2.37 and Eq. 2.38.

Furthermore, Joerger and Pervan (2014) establishes a tight IR bound for RB RAIM in the
multiple hypotheses framework:

P (HMI) =P (HMI | H0) · P (H0) +
h∑
i=1

P (HMI | Hi) · P (Hi)

≤P (|ε0| > ℓ | H0) · P (H0)+
h∑
i=1

P (|ε0| > ℓ | fi,worst) · P (|qRB| < TRB | fi,worst) · P (Hi),

(2.67)

where fi,worst represents the worst-case fault vector in the i-th fault mode. It should be
mentioned that Eq. 2.67 is only for evaluation purposes and not for real-world implementations.

PL computation

In classical RAIM, the PL is computed as a conservative upper bound in the state domain,
capturing the “worst” satellite geometry. Various approaches have been developed to address
this issue, such as Walter and Enge (1995), Brown and Chin (1997), Milner and Ochieng
(2011), etc., and to extend to multiple-fault situations in Angus (2006) and Liu et al. (2022).
This section aims to introduce a representative method from Brown and Chin (1997), which
will be implemented in the experimental evaluation for comparison.

Brown and Chin (1997) takes advantage of the SLOPE concept that characterizes the re-
lationships between the range biases (fault) in each measurement and the induced position
errors. For example, the detection threshold is determined based on a required FA probabil-
ity in Fig. 2.9(a); the red solid line in Fig. 2.9(b) illustrates the relationship between the test
statistic (qRB) and the position error (|ε|) under the no-noise assumption. The slope of the
line is a function of the geometry matrix and indicates the difficulty of detecting a bias (fault)
in the respective measurement. The slope for horizontal positioning associated with the i-th
measurement is

HSLOPEi =

√
K2

1i + K2
2i√

Sii
, (2.68)

where S is defined in Eq. 2.42, and the indices indicate the particular elements of a matrix.

Eq. 2.68 can be understood as follows. Given a fault vector f = [0, ..., 0, f, 0, ..., 0]T , i.e.,
the i-th measurement is faulty with the fault magnitude f , the noise-free assumption would
produce a position bias on the horizontal plane based on Eq. 2.37 and Eq. 2.38:∥∥∥∥∥

[
E(ε(1))
E(ε(2))

]∥∥∥∥∥ =
∥∥∥∥[k(1),k(2)

]T
· f
∥∥∥∥ =

√
(K1i)2 + (K2i)2 · f. (2.69)
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(a) Fault-free hypothesis (H0) (b) Alternative hypothesis (HA)

Figure 2.9: Conceptual sketch for the distribution of position errors and the RB test statistic for both fault-
free and in the case of a faulty measurement (Brown and Chin, 1997).

According to Eq. 2.41, the induced bias in the test statistic qRB is represented by the square
root of the non-centrality parameter in Eq. 2.42:√

λRB =
√

fTSf =
√

Sii · f. (2.70)

The slope of the fault line associated with the i-th measurement (Eq. 2.68) can be determined
by the ratio of Eq. 2.69 and Eq. 2.70.

Fig. 2.9(b) provides another interpretation. The projection of the cloud’s center onto the
vertical axis can be determined once its projection on the horizontal axis is known.

It is claimed that a fault in the direction associated with the largest slope is the most
difficult to detect and yields the smallest test statistic for a given position error:

HSLOPEmax = max
i=1,2,...,n

{
K2

1i + K2
2i√

Sii

}
. (2.71)

Subsequently, the HPL is computed as a sum of two terms:

� The first term protects against biases (undetected faults), involving the maximum slope
HSLOPEmax and a deterministic bias pbias. pbias is defined such that the ND probability
conditioned on

√
fTSf = pbias

P (|qRB| < TRB |
√

fTSf = pbias) =
∫ T 2

RB

0
χ2
qRB

(n−m, p2
bias) (2.72)

is limited by the IR requirement (IREQ). The detection threshold TRB has been de-
termined using Eq. 2.57. It can be seen that any faults yielding

√
fTSf ≥ pbias would

satisfy

P (|qRB| < TRB ∧ |ε0| > HSLOPEmax · pbias |
√

fTSf ≥ pbias)

=P (|qRB| < TRB |
√

fTSf ≥ pbias) · P (|ε0| > HSLOPEmax · pbias |
√

fTSf ≥ pbias)
≤IREQ.

(2.73)

Eq. 2.73 implies that the first term alone can protect against relatively large faults.
Specially, it has an upper bound of 0.5 · IREQ for

√
fTSf = pbias. The presence of

smaller undetected faults necessitates the second term.
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� The second term is a product of the standard deviation of the estimation error (denoted
by σbias) with a multiplier kH . The derivation starts from the expansion for the error
term εH , denoting the horizontal position error (Angus, 2006):

εH :=
√
ε2

(1) + ε2
(2)

=
√
µ2

(1) + µ2
(2) +

µ(1)√
µ2

(1) + µ2
(2)

(
ε(1) − µ(1)

)
+

µ(2)√
µ2

(1) + µ2
(2)

(
ε(2) − µ(2)

)
+ O

(√
(ε(1) − µ(1))2 + (ε(2) − µ(2))2

)
,

with ε(1), ε(2) defined in Eq. 2.37 and µ(1) = kT(1) f , µ(2) = kT(2) f .

(2.74)

Ignoring the second and higher-order terms, εH is approximated by a Gaussian distri-
bution εH ∼ N (

√
µ2

(1) + µ2
(2), σ

2
bias). The variance σ2

bias is determined by

σ2
bias = hTH(ATPA)−1hH ,

with hH =
[ µ(1)√

µ2
(1)+µ2

(2)

µ(2)√
µ2

(1)+µ2
(2)

0 0
]T
.

(2.75)

From Eq. 2.69 and Eq. 2.71, hH is computed using

µ(1)√
µ2

(1) + µ2
(2)

= K1imax√
(K1imax)2 + (K2imax)2 ,

µ(2)√
µ2

(1) + µ2
(2)

= K2imax√
(K1imax)2 + (K2imax)2 ,

(2.76)

where imax indicates the element whose associated measurement results in the maximum
slope.

This term captures the impact of the noise, showcased by the spread of the blue clouds
in Fig. 2.9. Limiting the fraction of the clouds above the PL line to IREQ leads to a
kH coefficient such that the resulting HPL can upper bound both the deterministic and
noise terms. In Eq. 2.77, this fraction is denoted by Pnoise:

Pnoise :=P
(
εH − E(εH) ≤ HPL − HSLOPEmax · pbias

∣∣∣√fTSf = pbias
)

=IREQ.
(2.77)

The knowledge about the estimation error distribution (Eq. 2.74 and Eq. 2.75) is used
for the computation of kH :

kH = Q−1(Pnoise). (2.78)

Consequently, the HPL is in the form of

HPL = HSLOPEmax · pbias + kH · σbias. (2.79)

To summarize, three probability specifications are utilized in computing the HPL: P (FA),
P (|qRB| < TRB |

√
fTSf = pbias) and Pnoise. P (FA) is addressed by the CR requirement and

the other two specifications are limited by the IR requirement. This setting ensures that the
HMI probability will never exceed the required IR for any single-measurement fault condition.
The proofs of safety are as follows (notably, the HMI probability in this section is concerning
HPL, different from the one defined in Eq. 2.61 concerning AL):
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� When pbias is reached exactly, the conditional HMI probability is

P (HMI |
√

fTSf = pbias) =P (|qRB| < TRB |
√

fTSf = pbias)

· P (|εH − E(εH)| > kH · σbias |
√

fTSf = pbias)
=I2

REQ.

(2.80)

� In the case of greater fault magnitude (
√

fTSf > pbias), P (HMI |
√

fTSf > pbias) ≤ IREQ
is easily known from Eq. 2.73.

� In the case of lower fault magnitudes (
√

fTSf < pbias),

P (HMI |
√

fTSf < pbias) =P (|qRB| < TRB |
√

fTSf < pbias)

· P (|εH − E(εH)| > kH · σbias |
√

fTSf = pbias)
≤IREQ.

(2.81)

The inequality is obtained by considering

P (|qRB| < TRB |
√

fTSf = pbias) ≤ P (|qRB| < TRB |
√

fTSf < pbias) ≤ 1 (2.82)

and

P (|εH − E(εH)| > kH · σbias |
√

fTSf < pbias)

≤ P (|εH − E(εH)| > kH · σbias |
√

fTSf = pbias). (2.83)

The conditional HMI probability under fault-free hypothesis (H0) can be bounded by

P (HMI | H0) ≤ P (|εH | > HPL | H0) ≤ IREQ. (2.84)

Consequently, the overall HMI probability is ensured.

Similarly, the VPL is computed using a counterpart VSLOPEmax and kV :

VPL = VSLOPEmax · pbias + kV ·
√[

(ATPA)−1
]

33
. (2.85)

In practice, the IR requirement is allocated to the horizontal and vertical components arbi-
trarily (denoted by IREQ,H and IREQ,V ) depending on dedicated operations. The multipliers
kH and kV are determined accordingly.

It is worth mentioning that this approach differs from Eq. 2.67, where a worst-case fault
that maximizes the HMI probability is evaluated. Using pbias may lead to a loose bound for
IR, which has been realized and discussed in various studies (Ober, 1998; Milner and Ochieng,
2011). However, searching for the worst-case fault is computationally expensive, preventing
its usage in earlier GPS RAIM.

2.4.6 Advanced RAIM

Integrity risk evaluation

The baseline ARAIM algorithm adopts the MHSS method, where multiple SS test statistics
are computed against respective fault modes. The IR is evaluated and bounded based on the
following considerations over the fault-free hypotheses H0 and each faulty hypothesis Hi, for
i = 1, ..., h (Joerger and Pervan, 2014):
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Under H0: An upper bound is established as follows:

P (|ε0| > ℓ ∧ |qSS,1| < TSS,1 ∧ ... ∧ |qSS,h| < TSS,h | H0) ≤ P (|ε0| > ℓ | H0). (2.86)

Joerger and Pervan (2014) argues that this inequality establishes a tight bound, given the CR
requirements allocated to FA (similar to Eq. 2.64). The evaluation is straightforward, as the
distribution of ε0 is fully defined in Eq. 2.51.

Under Hi: The following consecutive inequalities illustrate how to derive a bound for the
probability in faulty cases:

P (|ε0| > ℓ ∧ |qSS,1| < TSS,1 ∧ ... ∧ |qSS,h| < TSS,h | Hi) (2.87)
≤P (|ε0| > ℓ ∧ |qSS,i| < TSS,i | Hi) (2.88)
≤P (|ε0| > ℓ | Hi ∧ |qSS,i| < TSS,i) · P (|qSS,i| < TSS,i | Hi) (2.89)
≤P (|ε0| > ℓ | Hi ∧ |qSS,i| < TSS,i) (2.90)
≤P (|εi| + TSS,i · σ∆,i > ℓ | Hi). (2.91)

� The first inequality (Eq. 2.88) ignores knowledge of No Detection for all test statistics,
except for the one specifically designed to detect Hi.

� The second inequality (Eq. 2.89) rewrites the original formulation in the conditional
form.

� The third inequality (Eq. 2.90) is a relatively loose bound due to the fact P (|qSS,i| <
TSS,i | Hi) ≤ 1.

� The fourth inequality (Eq. 2.91) is based on the feature of SS detection:

|ε0| ≤ |εi| + |∆SS,i|, with |∆SS,i| = |ε0 − εi|, (2.92)

and the facts that |∆i| = qSS,iσ∆,i and qSS,i ≤ TSS,i in the detection.

� The bound on the HMI probability is established as follows:

P (HMI) ≤
h∑
i=0

P (|εi| + TSS,i · σ∆,i > ℓ | Hi) · P (Hi) ≤ IREQ, (2.93)

with εi defined in Eq. 2.51 and σ∆,i in Eq. 2.54.

In practice, some fault modes that are very unlikely to happen may not be monitored for
efficiency reasons. Hence, the sum of probabilities of ’not-monitored’ fault modes is excluded
from the exact assessment process and bounded by a constant value, denoted by PNM . For
example, the event of nNM or more simultaneous satellite faults is replaced by an upper bound,
cf WG-C ARAIM TSG (2016) A.VIII.2. The final equation is

h∑
i=0

P (|εi| + TSS,i · σ∆,i > ℓ | Hi) · P (Hi) ≤ IREQ − PNM . (2.94)

PL computation

Eq. 2.94 can also be used to derive the PL, which, consequently, provides an intuitive, spatial
representation of the volume that is guaranteed to contain the true position with a probability
higher than 1 − IREQ (Joerger et al., 2014).
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Replacing ℓ in Eq. 2.94 with PL, an equation is constructed for a specific hypothesis Hi:

PLi = Q−1
(
IREQ,i

2

)
· σi +Q−1

(
CREQ,i

2

)
· σ∆,i. (2.95)

Solving for each hypothesis Hi provides a respective PLi. The final solution of PL can be
determined by an optimization process involving all PLi. The baseline ARAIM algorithm
additionally captures the impact of nominal bias bnom (cf. Sec. 2.4.2) by its ℓ∞ norm:∣∣∣kTi,(m)

∣∣∣ bnom for m = 1, 2, 3. (2.96)

With a few more practical adaptions, the final formulations are:

� Vertical Protection Level (VPL): The IR is below the requirement allocated to the
vertical component:

2 ·Q

VPL −
∣∣∣kT0,(3)

∣∣∣ bnom
σ0,(3)

+

h∑
i=1

P (Hi) ·Q

VPL − TSS,i,(3) · σ∆,i,(3) −
∣∣∣kTi,(3)

∣∣∣ bnom
σi,(3)


= IREQ,V ·

(
1 − PNM

IREQ

)
. (2.97)

As a reminder, the subscript “(3)” indicates the vertical state, and the same rule applies
to HPL; the subscript “V ” and “H” stand for Vertical and Horizontal PL, respectively.

� Horizontal Protection Level (HPL): The calculation begins with the two horizontal
components, namely, m = 1 and m = 2:

2 ·Q

PL(m) −
∣∣∣kT0,(m)

∣∣∣ bnom
σ0,(m)


+

h∑
i=1

P (Hi) ·Q

PL(m) − TSS,i,(m) · σ∆,i,(m) −
∣∣∣kTi,(m)

∣∣∣bnom
σi,(m)


= 1

2 · IREQ,H ·
(

1 − PNM
IREQ

)
. (2.98)

To obtain the final HPL, the ℓ2 norm of the two horizontal components is calculated:

HPL =
√

PL2
(1) + PL2

(2). (2.99)

For more details and proofs of safety, readers of interest are referred to literature such
as (Blanch et al., 2015a) and the baseline ARAIM algorithm description document (WG-C
ARAIM TSG, 2019, 2022).





3
Distribution-free uncertainty modeling for

GNSS pseudorange measurements

Uncertainty modeling and error bounding for observations are of vital importance for high-
integrity GNSS applications before they are transformed into the state domain. In addition to
classical stochastic approaches, the necessity of interval representation for uncertainty becomes
evident due to the remaining systematics in GNSS measurements, as discussed in Sec. 2.2.

This chapter aims to tackle this challenge by developing practical approaches to realistic
uncertainty modeling and error bounding for GNSS pseudorange measurements. These ap-
proaches are distribution-free, describing the uncertainty by intervals. The GNSS pseudorange
measurement model will be presented first, discussing the major error sources that need to
be accounted for. Subsequently, various error sources, including the residual tropospheric er-
ror, residual ionospheric error, and multipath error, will be investigated using interval-based
methods. Real-world measurements will be used for validation and performance evaluation.

3.1 GNSS pseudorange measurement model

A GNSS receiver measures the apparent signal travel time from the navigation satellite to the
user, which is equal to the geometric range divided by the speed of light. It generates a local
signal code replica and estimates the misalignment with the received signal. The unambiguous
apparent signal travel time is determined by combining the time shift (a measure of the appar-
ent transit time modulo the code chip length), the number of complete code chips, complete
code repeats, and additional information from the satellite’s navigation data. Multiplying
this time with the speed of light yields the apparent range, also known as pseudorange. No-
tably, these time or range measurements differ from the true signal travel time or true range.
The difference is mainly caused by the receiver’s and the satellite’s clock offsets relative to
the GNSS system time, among other errors and signal delays (Teunissen and Montenbruck,
2017). In this regard, the GNSS pseudorange measurement model is expressed as a non-linear
observation equation in Eq. 3.1:

pkr (t) =

√√√√√√√


(xk(t− τkr ) − xr(t))2

+(yk(t− τkr ) − yr(t))2

+(zk(t− τkr ) − zr(t))2

+ c (δtr(t) − δtk(t− τ jr ))

+ Ikr (t) + T kr (t) + ϵkMP,r(t) + ϵkNLOS,r(t) + ϵnoise(t),

(3.1)

where,
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� pkr (t): pseudorange measurement for satellite k and receiver r at epoch t;

� τkr : apparent signal travel time;

� xk(t− τkr ), yk(t− τkr ), zk(t− τkr ): coordinates of satellite k at time of transmission;

� xr, yr, zr: coordinates of receiver r at time of reception;

� c (δtr(t) − δtk(t − τ jr )): speed of light multiplied by the difference of the receiver’s and
satellite’s clock offsets (“metric clock error”);

� Ikr : ionospheric delay;

� T kr : tropospheric delay;

� ϵkMP,r(t): multipath error;

� ϵkNLOS,r(t): Non-Line-of-Sight (NLOS) extra path delay (EPD);

� ϵnoise: noise term and other remaining error.

Eq. 3.1 indicates major error sources that are critical to land navigation. Various error cor-
rection and mitigation techniques against single or multiple error sources have been developed
so far, categorized by Schön and Kutterer (2006) into four groups:

� More or less sophisticated correction models reduce the amount of systematics de-
pending on the specific requirements and applications of the users;

� Algebraic combinations of the observations include, e.g., the Ionosphere-Free Linear
Combination, single or double differences, etc;

� Additional model parameters can be introduced and estimated for high-precision
applications;

� Systematics can be integrated into the stochastic model in terms of correlations or
individual observation weights.

This thesis investigates explicitly integrity monitoring for the standard positioning approach
- pseudorange-based Single Point Positioning (SPP), for which the first of the aforementioned
approaches is commonly applied to correct, e.g., the tropospheric and ionospheric delays.
The uncertainties in the observation domain that the correction models give rise to can be
well-captured by intervals. The remainder of this chapter introduces the interval-based pro-
cedures for bounding the residual tropospheric and ionospheric errors, and discusses how the
pseudorange multipath error can be handled by interval-based methods. Interested readers
are recommended to read textbooks such as Teunissen and Montenbruck (2017), Kaplan and
Hegarty (2017), Morton et al. (2021), etc,.

3.2 Residual tropospheric error

3.2.1 Introduction

The GNSS signal is refracted as it travels through the neutral atmosphere, inducing one of the
primary sources for GNSS ranging error: the tropospheric delay. Its non-dispersive feature for
the L-band GNSS signals prevents the possibility of forming linear combinations to eliminate
it in navigation applications.
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The tropospheric path delay T kr in units of meter [m] depends on the tropospheric refrac-
tivity nT integrated along the signal propagation path l (from satellite k to receiver r):

T kr = 10−6
∫ r

k
nT (l) dl. (3.2)

In general, the tropospheric delay consists of two components: a hydrostatic (or dry) com-
ponent depending solely on pressure, and a non-hydrostatic (wet) component depending on
the water vapor profile (Saastamoinen, 1972; Davis et al., 1985). The hydrostatic component
can be well-modeled empirically thanks to the relatively predictable behavior of the dry at-
mosphere constituents, which vary minimally over temporal and spatial scales of hours and
kilometers, respectively (Hobiger and Jakowski, 2017). On the contrary, the water vapor pro-
file is highly inhomogeneous, and the weather patterns can change rapidly, making the affected
signal propagation effect challenging to model and compensate with empirical models.

To denote the tropospheric delay for GNSS observations at any arbitrary azimuths and
elevations, the Zenith Path Delay (ZPD) and Slant Path Delay (SPD) are introduced. Readers
may find the term Zenith Total Delay (ZTD) in the literature, which is equivalent to ZPD.
The SPD is determined by multiplying the a priori zenith troposphere correction (ZPD) with
an elevation-dependent scaling factor (the mapping function, denoted by MT (θ)):

SPD = ZPD ·MT (θ). (3.3)

For the hydrostatic and non-hydrostatic components, the corresponding terms, Zenith Hy-
drostatic Delay (ZHD) and Zenith Wet Delay (ZWD), are defined, respectively. The ZPD
is typically on the order of 2.4 m, with 90% of this due to the ZHD. Imperfect modeling of
the Zenith Wet Delay (ZWD) can significantly contribute to the uncertainty in estimating or
describing the ZPD.

In practice, various well-developed empirical troposphere models are widely applied to cor-
rect for the tropospheric delays. For example, the Saastamoinen model (Saastamoinen, 1972)
is developed for optics and applied in a “blind” mode with a priori standard atmosphere, e.g.,
ISO2533 (ISO/IEC GUIDE 98-3:2008(E), 2008) or U.S. standard atmosphere (U.S. Standard
Atmosphere, 1976), and the Global Pressure and Temperature model model GPT2 (Lagler
et al., 2013); the Radio Technical Commission for Aeronautics (RTCA) recommends the UNB3
model by Collins and Langley (1997) in MOPS for the Wide Area Augmentation System
(WAAS) users, which originates from the model by Askne and Nordius (1987) to estimate the
wet delay (RTCA/DO-229D, 2006); these models are also adopted in GPT2w (Böhm et al.,
2015) and GPT3 (Landskron and Böhm, 2018), fed with corresponding empirical meteorolog-
ical models. The performance of these models must be evaluated, and the residual error must
be bounded to ensure high-integrity navigation solutions.

Up until now, the residual tropospheric error has been treated stochastically in almost all
bounding methods. For example, in aviation, MOPS indicates a maximum standard deviation
of 0.12 m globally for its correction model in the zenith direction, which is currently in use
in SBAS and ABAS (RTCA/DO-229D, 2006; WG-C ARAIM TSG, 2015, 2016). Researchers
have applied the extreme value theory to model residual tropospheric errors (Rózsa, 2018;
Rózsa et al., 2020), conducted statistical evaluations of correction models (Feng et al., 2020;
Lai et al., 2023), developed models for terrestrial navigation (Narayanan, 2023) and explored
time correlation modeling has also been by bounding the Autocorrelation Function (ACF)
and Power Spectral Density (PSD) (Gallon et al., 2021b).

For interval solutions, Collins et al. (1999) analyzes radiosonde data for the UNB3 tropo-
spheric delay model and indicates a range of [−20, 20] cm that covers over 99.9925% profiles
investigated, representing a conservative bound valid for the entire WAAS-served area; Schön
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and Kutterer (2006) introduces the method of sensitivity analysis to assess the residual tro-
pospheric error in terms of uncertainty intervals, which is adopted by Dbouk (2021). This
approach has not been validated with real data. In response, this thesis aims to estimate real-
istic interval bounds for residual tropospheric errors using the sensitivity analysis method with
real-world measurements. Different meteorological models are used as inputs to the Saasta-
moinen model in the comparative analysis. The remainder of the section is based on the initial
results published in Su and Schön (2022b) and will summarize the subsequent extensions.

3.2.2 Methodology: Sensitivity analysis via interval arithmetic

Sensitivity analysis is a forward modeling approach to assess the uncertainty due to remaining
systematic errors and can be applied to GNSS observations. To obtain interval solutions, the
approach by Schön and Kutterer (2006) computes sensitivity coefficients through partial dif-
ferentiation and subsequently determines an interval radius for the final uncertainty budget, cf
Eq. 2.22. This method relies on the model being differentiable and assumes that uncertainties
of influencing factors are fairly small, which may not always be valid.

Researchers investigate the method of sample-based sensitivity analysis, taking advantage
of Monte Carlo simulation, in the stochastic context (Schwieger, 2007b). This approach is
practical for a “black box” model and may be applied to interval-described uncertainties.
However, it can be less attractive due to relatively higher computational demands in the
presence of explicit mathematical expressions of the investigated model. To cope with these
issues, this thesis proposes to implement the sensitivity analysis via natural interval arithmetic,
as described below.

The model’s uncertainty budget (interval value [f ]) is expressed as the sum of all influence
factors’ contributions:

[f ] ≜ [f, f ] =
nd∑
i

[fi], (3.4)

with a lower bound (f) and an upper bound (f).

The sensitivity fi of f with respect to the change of one specific influence factor di in its
interval [di] ≜ [∆di,∆di] + d∗

i = [di, di] is determined by

[fi] ≜ f([di] | d∗) − f(d∗), (3.5)

where,

� d∗ denotes nominal values of the influence factors that are input to the functional model
f . Hence, the evaluation result is with respect to the model’s output f(d∗).

� f([di] | d∗) is the set image of [di] under f , cf. Sec. 2.18, representing the variation of the
models’ output due to any potential changes of di within [di].

There are two main advantages:

� Compared to the approach of real-valued operations on interval radii, the implementa-
tion via natural interval arithmetic allows for individual estimation of the lower bound
and upper bound. Therefore, the resulting uncertainty intervals are not necessarily
symmetric with respect to f(d∗).

� While this approach is particularly straightforward for monotonic functions, interval
mathematics also allows for nonlinear, discontinuous, or nonmonotonic models. Should
any readers be interested in further details of interval computations, textbooks such as
Moore et al. (2009) are recommended.
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3.2.3 Uncertainty of model influence factors

Characterization of influence factors This work investigates the impact of residual tropo-
spheric error due to the application of the Saastamoinen model developed by Saastamoinen
(1972), which shows that the tropospheric Zenith Path Delay (ZPD) can be calculated from
surface meteorological parameters:

TZPD = β1
(1 + β2 cos(2Φ) + β3H)

cos(z)

[
p+ β4

e

T
+ β5e−B tan2(z)

]
+ δr, (3.6)

where TZPD is the range correction in meter (m), p is the pressure at the antenna site in
hectopascal (hPa), T is the absolute temperature in Kelvin (K), e is the partial water vapor
pressure in hPa, B and δr are correction terms, β1, β2, β3, β4, β5 are constants, and z is the
apparent zenith distance, which is determined from the true zenith distance Z of the satellite
by the formula z = Z − δz:

δz = α1
T

tan(Z)
(
p+ α2

T
e

)
− α3 tan(Z)

(
tan2(Z) + 1

) p

1000 . (3.7)

In Eq. 3.7 α1, α2, and α3 are constant coefficients, and Z can be determined from the station
height H in meter (m), station latitude Φ in degree (◦), and satellite elevation θ in radius.
All the primary variables and constants above-mentioned constitute the vector of influence
factors dSAAST , cf. Eq. 3.4-3.5, for the Saastamoinen model:

dSAAST = [T, p, e, α1, α2, α3, β1, β2, β3, β4, β5, B, δr, H,Φ, θ]T .

Type B evaluation Any physical quantity should be given with a meaningful number of
digits, depending on, e.g., the indicative resolution of measurement devices. The uncertainty
due to rounding errors, described in Sec. 2.2, must be accounted for in the evaluation. The
introduced method is used, allocating an uncertainty budget for rounding errors to all influence
factors of the Saastamoinen model, denoted by dSAAST . This allocation corresponds to the
radii of symmetric intervals, cf. Eq. 2.22. For example, Dbouk and Schön (2019) suggests
rad([p]) = 0.5 · 10−4 when the input value for surface pressure is given with 4 digits.

However, this method of evaluating uncertainty may sometimes prove insufficient and overly
optimistic. The actual range of variation for certain factors could differ significantly in mag-
nitude. For example, in the case of the Saastamoinen model, researchers have examined the
uncertainty of a constant coefficient β1 = 2.277 · 10−3. Davis et al. (1985) proposes an error
bar of 0.5 · 10−6, while Zhang et al. (2016) suggests a value of 2.2794 · 10−3. Accordingly, the
interval radius is determined as the difference between the suggested value and the original
one plus the rounding error, rad([β1]) = (2.4 + 0.5) · 10−6, indicating the maximum range of
variation of β1.

Type A evaluation Additional care must be taken for the meteorological parameters T , p,
and e, as they vary temporally and spatially, significantly influencing the model’s output.

According to Feng et al. (2020), pressure measurements at ground level may not be as
representative of the “true” mean surface pressure as those taken at higher levels, possibly
due to turbulence. This introduces uncertainty to the Saastamoinen model. Therefore, it
is proposed that long-term statistical analysis using on-site measurements be conducted to
estimate their interval bounds.

Without loss of generality, the ISO2533 standard atmosphere is analyzed in this work, used
as the a priori parameters to feed the Saastamoinen model. A sliding window is defined
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over two consecutive months in the time series to determine intervals that slide in daily
steps. The residuals of parameters from the meteorological model with respect to the on-site
measurements are computed within the window t ∈ [t1, t2], using the equation:

δξ(t) = ξ(t) − ξ0(t) for t ∈ [t1, t2]. (3.8)

Here, ξ denotes the outcome of the meteorological model (p, T or e) and ξ0 is the corresponding
on-site measurement.

Next, the upper and lower bounds of an interval are derived as minimum and maximum
values. This allows for the daily interval bounds to be obtained, i.e., [p], [T ], and [e].

Fig. 3.1 shows the example results for the IGS stations Potsdam (POTS, a, c and e) and
Warnemünde (WARN, b, d and f) during the year 2020: residuals of the ISO standard atmo-
sphere (with respect to on-site measurements, shown as gray dots) and corresponding interval
bounds (colored curves), which enclose all the residuals.

(a) Temperature (T), POTS (b) Temperature (T), WARN

(c) Surface pressure (P), POTS (d) Surface pressure (P), WARN

(e) Water vapor pressure (e), POTS (f) Water vapor pressure (e), WARN

(g) ZPD error, POTS (h) ZPD error, WARN

Figure 3.1: Example results of IGS station POTS (left) and WARN (right) in 2020: residuals (ISO-to-
RNX) and bounds for meteorological parameters (temperature, pressure, partial water vapor) from long-term

statistics. ZPD bounds are computed with these results and compared to residuals (SAAST-to-IGS)
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Tab. 3.1 summarizes the influence factors and associated uncertainty evaluation in the cur-
rent work.

Influence factors Uncertainty evaluation

Temperature (T ) Type A: long-term observations
Pressure (p) Type A: long-term observations
Water vapor pressure (e) Type A: long-term observations
Model constant (β1 = 2.277 · 10−3) Type B: rad([β1]) = 2.9 · 10−6

Model constants Type B: rounding error by half of the last digit
(α1, α2, α3, β2, β3, β4, β5)

Model correction terms (B, δr) Type B: rounding error by half of the last digit
Station latitude (Φ) and height (H) Type B: rounding error by half of the last digit
Satellite elevation (θ) Type B: rounding error by half of the last digit

Table 3.1: Influence factors and associated uncertainty evaluation for the Saastamoinen model

3.2.4 Interval maps for residual tropospheric errors

Sensitivity analysis via interval arithmetic is applied to the Saastamoinen model after evalu-
ating the uncertainty intervals for all influence factors dSAAST . The sensitivity of the model
fSAAST to each of the 16 elements of dSAAST , denoted by [fSAAST,i], is calculated using
Eq. 3.5. Subsequently, the interval bounds for residual ZPD errors can be determined, de-
noted by [fSAAST ], based on Eq. 3.4. At this stage, the impact of mapping functions for
determining SPD is yet assessed.

To demonstrate results, ZPD residuals (δT ), defined as the difference of computed ZPD
(TM ) from the Saastamoinen model with respect to the reference estimates (TR), can be used:

δT = TM − TR. (3.9)

By definition, the actual residual ZPD error is referenced to the truth. The IGS analysis
centers generate ZPD products continuously for its global station network, with a reported
accuracy of 4 mm (Johnston et al., 2017). This study considers the IGS ZPD products as
sufficiently accurate for use as a reference. In Fig. 3.1 (g, h), the residuals are compared with
the assessed interval bounds, showing a complete enclosure of gray dots as expected.

In addition, Deutscher Wetterdienst (DWD) operates a dense network of climate sensors
over Germany (Kaspar et al., 2013), which enables the analysis for multiple stations and
the estimation of error bounds across the country. Linear interpolation is used to create a
grid network of 0.25◦ (latitude) ×0.25◦ (longitude) and obtained example results for three
meteorological parameters on day 239 of 2020, as shown in Fig. 3.2.

Using these interval bounds as input to the proposed sensitivity analysis, the interval maps
for residual ZPD errors are obtained cf. Fig. 3.3. The cross-sections of the interval maps in
Fig. 3.3 along 9.7◦E and 11.3◦E meridians, which pass through Hannover and Potsdam, are
presented in Fig. 3.4. From these figures, the focus is to identify potential dependencies of
the uncertainty intervals for the residual ZPD error on meteorological parameters in terms of
their geographical distributions. There are some noteworthy observations:

� The “wet” troposphere dominates the overall interval bound. Similar geographical dis-
tribution patterns are observed between water vapor pressure and residual ZPD error.
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(a) Lower bounds (T ) (b) Lower bounds (p) (c) Lower bounds (e)

(d) Upper bounds (T ) (e) Upper bounds (p) (f) Upper bounds (e)

Figure 3.2: Geographical distribution of lower interval bounds (upper column) and upper interval (lower
column) bounds (right) for meteorological parameters over Germany on DOY 239 in 2020. The parameters
include the temperature (t), pressure (p), and partial water vapor pressure (e). The interval bounds are obtained
from statistics for on-site measurements from 215 out of 345 DWD stations. Climate data source: Deutscher

Wetterdienst (DWD) (Kaspar et al., 2013)

(a) Lower bounds (b) Upper bounds

Figure 3.3: Geographical distribution of lower interval bounds (left) and upper interval bounds (right) for the
residual ZPD error over Germany on DOY 239 in 2020. The computation is based on the proposed sensitivity

analysis for the Saastamoinen model using interval bounds from Fig. 3.2

� The impact of regional, small-scaled weather events, not captured by empirical tropo-
spheric correction models, is accounted for by interval bounds. For instance, the region
between Hamburg and Hannover indicates significantly wider intervals for water vapor
pressure and residual ZPD error.
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(a) Interval bounds along 9.7◦E (b) Interval bounds along 11.3◦E

Figure 3.4: Example results: Interval bounds for meteorological parameters (from ISO-to-DWD) and ZPD
(Saastamoinen with ISO) along the 9.7◦E (a) and 11.3◦E (b) meridians (denoted in Fig. 3.3 as black dashed

lines) on DOY 239 in 2020. Climate data source: Deutscher Wetterdienst (DWD) (Kaspar et al., 2013)

� The interval maps for residual ZPD errors exhibit good agreement with the station-wise
experimental results. For example, there are consistent ZPD bounds for POTS station
on day 239 of 2020, both when using on-site meteorological measurements (Fig. 3.1 (g),
Oct. 26th) and using interpolated values from sensor network (Fig. 3.4 (b), 52.379◦N).
The differences observed in tests for the WARN station and for more days are at the
level of mm to 10 mm.

3.2.5 Validation

This section is intended to validate the developed strategy through real-world scenarios, specif-
ically the IGS station POTS, and the extension to further meteorological models:

� the UNB3 meteorological model (used in MOPS)

� the Global Pressure and Temperature model (GPT2w)

To quantify the overbounding performance, the bound-minus-residual (BMR) values, de-
noted by ζ

T
, ζT , are defined as follows:

ζ
T

= f − δT , ζT = f − δT , with δT = TM − TR, (3.10)

where f and f are the lower and upper bounds of the sensitivity analysis results, δT denotes
the residuals of tropospheric delay, defined in Eq. 3.9 and extended to arbitrary directions.
This indicator will be calculated in this section and used to evaluate the performance in the
comparative analysis.

By definition, ζT should be positive values and ζ
T

negative, while both are expected to be
close to zero ideally. In this work, the Empirical Cumulative Density Function (ECDF) for a
large amount of data is presented in a folded form (folded CDF): each residual corresponds
to a single BMR value, either ζ

T
or ζ

T
depending on whichever has a smaller absolute value

(i.e. which side the residual is biased toward); then, the CDFs of ζ
T

and ζ
T

are folded around
zero and they sum up to one. Two key aspects are of interest:
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� Success of bounding: Whether the bounds sufficiently enclose all residuals, i.e., non-
negative ζT and non-positive ζ

T
.

� Tightness of overbounding: The width of the margin between the bounds and resid-
uals in the case of successful bounding, i.e., the width of the folded CDFs.

Residual SPD errors Due to the difficulty of achieving ground truth for arbitrary tropo-
spheric delays, this work takes estimates from Vienna Ray-Tracer as references (Hofmeister
and Böhm, 2017). The ray tracing (RT) technique is capable of reconstructing the true signal
path and calculating the atmospheric delay based on numerical weather models, providing
high-quality estimates for ZPD and SPD. The online Ray Tracer allows for computing arbi-
trary SPD at IGS stations, requiring inputs of the Modified Julian Date (MJD), azimuth, and
elevation (VMF Data Server, 2020).

Take the day 239 of 2020 as an example. The folded ECDFs of BMR for ZPD and SPD
are provided in Fig. 3.5(a), with ZPD in green and SPD in blue. The left and right curves
indicate ζ

T
and ζT , respectively, with the 95% intervals highlighted in light green and light

purple, corresponding to the 5% quantile of ζ
T

and 95% of ζT . These intervals, along with
the min/max range, are given in Tab. 3.2. It is worth noting:

(a) POTS station (b) WARN station

Figure 3.5: Folded ECDF of BMR values ([ζ
T
, ζT ]) for POTS station (left) and WARN station (right). For

POTS station, the parameters of ISO standard atmosphere are input into the Saastamoinen model, computing
zenith delays (ZPD) and slant delays (SPD) on day 239 of 2020. Residuals are obtained referencing the estimates
from Vienna Ray-Tracer. ZPD at WARN station are computed for the same year with input parameters from
ISO standard atmosphere, UNB3 model, and GPT2w model in the Saastamoinen model. Residuals are obtained
referencing IGS ZTD products. For all curves in both sub-figures, 95% of the values are located within the

respective shadow areas.

Table 3.2: 95% and min/max range intervals of folded ECDF for BMR values as in Fig. 3.5(a) (POTS station).

95% interval [m] Min/max interval [m]

ZPD [−0.146, 0.142] [−0.165, 0.168]
SPD [−0.551, 0.498] [−0.895, 0.864]

� The ECDF curves may not be perfectly symmetric around the y-axis due to (i) the
imperfection of the reference and (ii) inadequate assessment of certain influence factors.
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� While the proposed method assesses the uncertainty due to residual ZPD errors, the
intervals for slant directions are computed by expanding ZPD intervals using mapping
factors without directly assessing the impact of mapping functions on the uncertainty.
Therefore, the ECDF curves for SPD BMR (blue) are significantly wider than those
for ZPD. Nevertheless, the impact of mapping functions on the uncertainty may be
observed from the change of asymmetry of ECDF curves from zenith to slant directions.
For example, the min/max interval is “fatter” on the right side (|ζ

T
| ≤ |ζT |) for ZPD

while “thinner” for SPD (|ζ
T

| > |ζT |). This finding suggests the presence of systematic
error due to mapping functions, which should be accounted for by an additional interval.

Further meteorological models In addition to the ISO standard atmosphere, the proposed
strategy is validated for the UNB3 and GPT2w meteorological models. Unlike the other
models, the UNB3 model provides parameters with respect to zero altitude above sea level
instead of the Earth’s surface. To minimize the impact of height discrepancies, the IGS sta-
tion WARN, which has a geoid height of approximately 14 meters, is chosen. Fig. 3.6 (a/c/e)
and (b/d/f) present the intervals for meteorological parameters from the UNB3 and GPT2w
models. These intervals were obtained using the same procedures outlined in Sec. 3.2.3. The
computed intervals for residual ZPD errors, determined through sensitivity analysis via inter-
val arithmetic, are shown in Figures 3.6 (g/h).

Subsequently, BMR values are computed by referencing the Saastamoinen model outputs
to IGS ZPD products. Their 95% and min / max intervals are summarized in Tab. 3.3.

Table 3.3: 95% and min / max range interval of folded ECDF for BMR values as in Fig. 3.5(b) (WARN station).

Meteorological model 95% interval [m] Min/max interval [m]

ISO2533 [−0.197, 0.216] [−0.248, 0.258]
UNB3 [−0.211, 0.215] [−0.269, 0.247]

GPT2w [−0.199, 0.218] [−0.249, 0.260]

Key observations are as follows:

� The choice of meteorological model used in the Saastamoinen model has minimal impact
on the uncertainty budget of residual tropospheric errors. This is because the inputs are
representative values, and the model’s construction process does not favor one model
over another.

� High-quality meteorological models, such as GPT2w, contribute to more stable ZPD
estimates, displaying better temporal consistency. The ZPD residuals appear symmetric
around zero value, and the corresponding uncertainty intervals show less variation over
months.

3.2.6 Discussion

The implementation of the Saastamoinen model demonstrates the feasibility of the proposed
method for qualifying and bounding residual tropospheric errors. This is achieved through
sensitivity analysis using interval arithmetic. The bounding performance was evaluated by
calculating BMR values as overbounding indicators. Three empirical meteorological models
were used as input to the Saastamoinen model, and tropospheric delay estimates from the
IGS and Vienna Ray-Tracer were used as reference values. The results show that for the test
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(a) Temperature (T), UNB3 (b) Temperature (T), GPT2w

(c) Surface pressure (P), UNB3 (d) Surface pressure (P), GPT2w

(e) Water vapor pressure (e), UNB3 (f) Water vapor pressure (e), GPT2w

(g) ZPD error, UNB3 (h) ZPD error, GPT2w

Figure 3.6: Example results of IGS station WARN in 2020: residuals and bounds for UNB3 (left) and GPT2w
(right) meteorological parameters (temperature, pressure, partial water vapor) from long-term statistics. ZPD

bounds are computed with these results and compared to residuals (SAAST-to-IGS)

data collected at the POTS and WARN stations, all ZPD and SPD residuals were successfully
bounded, with 95% of the overbounding BMR values for ZPD around 0.2 m.

Careful assessment of the uncertainties in the model’s influence factors is crucial. Meteoro-
logical parameters were evaluated through long-term statistics against on-site measurements,
facilitating the modeling and bounding of seasonal and geographical dependencies. Taking
advantage of a dense network of climate sensors, such as DWD, interval maps were generated
to assess uncertainties in meteorological parameters and residual ZPD errors. Future improve-
ments could include evaluating the impact of mapping functions to further reduce bounding
conservatism.

This analysis is primarily intended for code measurements. For carrier-phase-based applica-
tions, more precise tropospheric correction models are used and, therefore, should be evaluated
in future work. In highly complex models, the identification of numerous influence factors can
pose a challenge, potentially limiting the applicability of the proposed method. Furthermore,
the current implementation assumes independence between influencing factors. Any correla-
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tions between these factors could lead to overestimated uncertainty, which represents another
limitation of the method. Addressing the reduction of conservatism due to correlated factors
should be a focus for future research.

3.3 Residual ionospheric error

3.3.1 Introduction

At approximately 1000 km above Earth’s surface, GNSS signals encounter the ionosphere, a
layer of electrically charged particles extending down to about 50 km altitude. Gas molecules
in the ionosphere are broken up into free electrons and ions caused by the Sun’s ultraviolet
radiation. The induced ionospheric delay depends on the number of free electrons along the
signal’s path, described by the total electron content (TEC) (Hobiger and Jakowski, 2017):

TEC =
∫ r

k
ne(l) dl, (3.11)

where TEC is defined as the number of electrons in a tube with a cross-section of 1 m2, and
ne(l) is the electron density along the signal path integrated from the satellite to the receiver.

The electron density is not constant along the signal path due to spatial and temporal
variations. This is because (i) different layers of the ionosphere are strongly affected by the
ionization process in different ways, and (ii) the varying amount of solar radiation can cause
diurnal, seasonal, as well as long-term (i.e., eleven years) variations in the electron density.
In addition, unpredictable short-term effects due to irregular changes in solar activity and
traveling ionospheric disturbances cause rapid changes in electron density (Hauschild, 2017).

The ionospheric delay is also frequency-dependent due to its dispersive nature. The phase
and code of the same signal travel at different velocities, and hence, they must be treated
separately. Approximating the refraction index to first order makes it possible to determine
the ionospheric path delay, denoted by Ikr , in the unit of length for pseudorange and carrier-
phase measurements:

Ikr =
{ 40.3·TEC

f2 , for pseudorange measurement,
−40.3·TEC

f2 , for carrier-phase measurement. (3.12)

In Eq. 3.12, f denotes the signal frequency. This equation reveals that the pseudorange delay
has an opposite sign compared to the phase delay and decreases with increasing frequency,
linearly depending on the TEC along the signal path to first order.

Dual- or multi-frequency receivers can significantly reduce or eliminate the ionospheric de-
lay through ionosphere-free linear combinations. For single-frequency GNSS users, correc-
tion models such as the Klobuchar model for GPS (Klobuchar, 1987), NeQuick G model for
Galileo (Nava et al., 2008), and BeiDou Global broadcast Ionospheric delay correction Model
(BDGIM) model for BDS-3 are applied. These models rely on a set of model coefficients that
are updated regularly and broadcast to users in the navigation message. However, these mod-
els only partially correct the ionospheric delay, for example, GPS Klobuchar model provides
a correction capability of at least 50% root mean squared (RMS) error IS-GPS-200N (2022)
and the Galileo NeQuick G model of 70% (European Commission, 2016), necessitating the
evaluation of residual ionospheric errors for high-integrity applications. To this end, MOPS
determines the variance of User Ionospheric Vertical Error (UIVE) for the GPS Klobuchar
model and for the SBAS-based ionospheric correction model (RTCA/DO-229D, 2006); Schön
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and Kutterer (2006) models the interval-represented uncertainty due to the residual iono-
spheric error through sensitivity analysis; however, it has not yet been validated with real
data.

This section aims to investigate the feasibility of performing interval-based sensitivity anal-
ysis for bounding residual ionospheric error with real measurements, building on the initial
results in Su and Schön (2021). The principle of interval-based sensitivity analysis is referred
to Sec. 2.2 and Sec. 3.2.2. The remainder of this section will introduce the implementation and
performance evaluation of a refined approach for residual ionospheric errors.

3.3.2 Characterization of influence factors for sensitivity analysis

The GPS-based Klobuchar model (Klobuchar, 1987) is the focus of this work. It approximates
the diurnal variation of TEC as a positive half cosine-shaped curve with a constant bias (cf.
Fig. 3.7). The phase of the cosine function is set at 14 h local time, and the vertical time delay
at nighttime is set as a constant value of 5 ns. The amplitude and period of the cosine term
are described as functions of geomagnetic latitude, represented by third-order polynomials,
consisting of eight coefficients (αi, βi for i = 1, 2, 3, 4). These coefficients are updated at least
once every six days by the GPS control segment and transmitted in the navigation message
to users (IS-GPS-200N, 2022).

Figure 3.7: Cosine curve approximating the ionospheric effect in the Klobuchar model (Klobuchar, 1987)

The ionospheric correction algorithm is implemented in seven steps:

1. Calculate the Earth-centered angle ψ (semi-circles 1):

ψ = 0.0137
θ + 0.11 − 0.022, with θ the satellite elevation (semi-circles). (3.13)

This is an approximation with an error of 0.2◦ to 0.4◦, indicated by Klobuchar (1987).
Accordingly, the influence factor concerning the approximation model fψ is associated
with uncertainty represented by an interval of radius dfψ = 0.4◦.

2. Compute the subionospheric latitude ΦI (semi-circles):

ΦI = Φ+ψ cosϕ, with ϕ the azimuth, Φ the user’s latitude, both in semi-circle. (3.14)

1Conversion of units: 1 semicircle = 180◦ (degree) = 0.5 · π (radius)
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If ΦI > +0.416, then ΦI = +0.416. If ΦI < −0.416, then ΦI = −0.416.

3. Compute the subionospheric longitude ΛI :

ΛI = Λ + ψ sinϕ
cos ΦI

, with Λ the user’s longitude in semi-circle. (3.15)

4. Find the geomagnetic latitude Φm (semi-circles):

Φm = ΦI + 0.064 cos (ΛI − 1.617). (3.16)

This approximation is reported to represent the exact form to within 1◦ at all geomag-
netic latitudes equatorward of 40◦, and is within 2◦ up to 65◦ on either side of the
geomagnetic equator. Hence, an influence factor concerning the approximation model
fΦm should be recognized, associated with an uncertainty interval of radius dfΦm = 1◦

or dfΦm = 2◦ depending on the geomagnetic location.

5. Find the local time t:

t = 4.32 · 104 ΛI + tGPS , with tGPS the GPS time in second. (3.17)

If t > 86400, use t = t− 86400. If t < 0, add 86400.

6. Compute the slant factor MI(θ) (unitless):

MI(θ) = 1.0 + 16.0 · (0.53 − θ)3. (3.18)

The uncertainty due to this approximated obliquity factor is up to two percent of the
exact value. Hence, the associated uncertainty interval has a radius dMI = 0.02 ·MI(θ).

7. Compute the ionospheric time delay I (ns), referred to the L1 frequency:

I = MI(θ) ·
[
DC +

4∑
n=1

αnΦn−1
m · (1 − x2

2 + x4

24)
]
, (3.19)

where

� DC = 5 · 10−9 represents the constant delay during nighttime;

� x = 2π (t− t0) /
(∑4

n=1 βnΦn−1
m

)
approximates the cosine term by third-order poly-

nomials;

� t0 = 50400 is the initial phase term, representing 14 h local time.

Wang et al. (2016) depicts that the nighttime delays may vary from 2.8 ns to 15 ns,
depending on the latitude and solar activity. Accordingly, the DC term may be linked
with an uncertainty interval of [−2.2, 10] ns. The authors also investigate the model
error induced by fixing the phase term to 14 h, which becomes significant near sunrise
and sunset. The phase values mainly range from 13 h to 15 h as solar activities vary,
based on which an interval of [−1, 1] h may be assigned.

Analyzing the above model’s construction process helps identify influence factors and asso-
ciated uncertainties in the model:

dKLOB = [θ, ϕ,Φ,Λ, tGPS , t0, DC, α1, α2, α3, α4, β1, β2, β3, β4, fψ, fΦm ,MI ] (3.20)

Principally, the sensitivity of the model fKLOB with respect to to each of the 18 elements
of dKLOB, i.e., [fKlob,i], is determined using Eq. 3.5, given the uncertainty intervals of all
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influence factors dKLOB. Subsequently, [fKLOB], the interval bounds for residual ionospheric
errors can be computed based on Eq. 3.4.

Su and Schön (2021) conducted experimental analysis based on the above evaluation of
dKLOB and the method in Sec. 3.2.3, with test data from the IGS station Wettzell (WTZZ).
The uncertainties for (partial) influence factors were assessed concerning their rounding errors
in the absence of further information. It was found that the residual ionospheric errors were
not adequately bounded by the obtained intervals, indicating an overly optimistic uncertainty
evaluation. This means that intervals due to rounding errors can be insufficiently represen-
tative of these factors to reflect systematic uncertainty, and hence, the performance of the
sensitivity analysis is degraded.

Researchers also investigated the eight broadcast coefficients, αi and βi for i = 1, ..., 4,
whose uncertainty may be underestimated, because:

� The Klobuchar correction model can be characterized as a data-driven model, estimating
the VTEC using ground-based GNSS data in an approximation model, hence, is never
perfect in accuracy with respect to the actual values;

� The coefficients are selected from a set of pre-determined parameters based on the current
date and solar activity, indicating limited representativity;

� The updating frequency is relatively low (i.e., daily), which may be insufficient to capture
rapid, instantaneous events and anomalies.

To address these issues, two possible approaches may be used:

� Adding a compensation interval to the final interval budget as a supplementary com-
ponent. Such an interval can be estimated based on the user’s location and time using
high-quality global ionosphere (TEC) maps (GIM). An introduction to computing com-
pensation intervals will be given in Sec. 3.3.3.

� Inflating the intervals for influence factors with expert knowledge. Particularly, Sec. 3.3.4
proposes a method of evaluating the uncertainty intervals for the eight broadcast coeffi-
cients in the Klobuchar model despite lacking information from the system’s operational
side or initial determination of the coefficients. This is achieved by utilizing publicly
available re-estimated products.

3.3.3 Estimation of compensation intervals

Estimating compensation intervals follows the principle of GUM Type A evaluation, i.e., tak-
ing advantage of long-term statistics for zenith ionospheric correction residuals. The reference
values for zenith ionospheric delay are derived from IGS global ionosphere (TEC) maps prod-
ucts in the IONEX format. The residuals (δI) are subsequently computed as follows:

δI = IM − IR, (3.21)

where IM is the Klobuchar estimates, and IR is the reference from IGS GIM.

To obtain daily intervals with respect to each ionospheric pierce points (IPP), a sliding
window of two consecutive months (as an example) is defined along the time series of bound-
minus-residual (BMR, denoted by ζ

I
and ζI):

ζ
I

= f − δI , ζI = f − δI , (3.22)

where f and f are the lower and upper bounds of the sensitivity analysis results. The objective
is to determine compensation intervals [CI , CI ] such that δI ∈ [f+CI , f+CI ]. These intervals
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are generated as the min/max enclosure of the sliding window. Fig. 3.8 shows an example of the
lower bounds and upper bounds distribution for the ionospheric compensation intervals with
respect to worldwide IPPs. These intervals are presented in grid nodes with a resolution of 2.5◦

(latitude) by 5◦ (longitude). Notably, these intervals are strongly geographically dependent,
depicting significant upper bounds around the geomagnetic equator and the opposite situation
for the lower bounds.

(a) Lower bound distribution of compensation intervals

(b) Upper bound distribution of compensation intervals

Figure 3.8: Global distribution of the compensation intervals computed for day 239 of the year 2020.

When analyzing a specific location, it is essential to consider all potential IPPs that could
impact the received signals. The selection of IPPs is based on the orbital inclination and the
satellite cutoff angle. For instance, the GPS, GLONASS, Galileo, and BDS MEO satellites
orbit the Earth at inclinations of 55◦, 64.8◦, 56◦, and 55◦, respectively. Fig. 3.9 depicts the
distribution of chosen IPPs (dashed red contour) for the Wettzell station and for GPS satellites
when setting the elevation cutoff to 5◦.

3.3.4 Uncertainty intervals for broadcast coefficients

To enhance the performance of the Klobuchar model, two approaches have been explored in
the literature: (i) re-estimating the coefficients and constants in the model using higher quality
GIM; (ii) introducing additional parameters for the Klobuchar model, such as replacing the
constant DC term. Institutions like the Center for Orbit Determination in Europe (CODE)
(Dach et al., 2009) and Chinese Academy of Sciences (CAS) (Wang et al., 2016) routinely re-
estimate the eight broadcast coefficients, using different methodologies based on global TEC
maps. These refinements offer stronger capabilities for correcting ionospheric delays compared
to the broadcast coefficients in GPS navigation messages (Wang et al., 2019).
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Figure 3.9: Example map of IPPs taken into the computation of compensation intervals for the Wettzell
station and for GPS satellites. The grid resolution is 2.5◦ (latitude) × 5◦(longitude).

This section is intended for a more realistic uncertainty budget. The variation range of the
coefficients is critical, as any change that could improve the model’s output indicates uncer-
tainty in the coefficients. Consequently, comparing broadcast values to reliable re-estimated
values yields intervals that indicate uncertainty. For instance, re-estimated values from CODE
and their GIM products are used in the subsequent analysis (Dach et al., 2023). Figure 3.10
shows the residuals of the eight re-estimated coefficients relative to the GPS broadcast values.
The interval bounds are computed as the enclosure of the residuals using a sliding window of
two consecutive months. Additionally, the uncertainty due to rounding errors is taken into
account to ensure consistent placement of intervals around the broadcast values.

A comparative analysis was conducted using data from 2020, examining residual ionospheric
errors with respect to GIM for IPPs between 37.5◦N to 60◦N and 5◦W to 40◦E. The success-
bounding rate, the percentage of bounded residuals by sensitivity analysis results, increased
from 52.8% to 72.5% when using the “improved” method instead of the “rounding” method,
which solely accounts for rounding errors. The results, shown as histograms in Figure 3.11,
indicate that while residuals around zero are mostly bounded in both cases, the “improved”
approach better covers large residuals and partially improves the bounding of middle-sized
residuals. However, the impact of remaining systematics is not fully captured by the current
bounds. Possible reasons for this are:

� The re-estimated coefficients, while improving overall model performance, are still asso-
ciated with uncertainties, and the resulting intervals are only partially representative;

� The GIM products used as reference have reported accuracies of 2-8 TECU in terms of
RMS, which should be considered in the evaluation;

� Systematics due to other influence factors may persist and require further investigation.

Therefore, for residual ionospheric errors, a geographically and temporally dependent com-
pensation interval is advised to be taken into consideration in applications.

3.3.5 Discussion

Implementing interval-based sensitivity analysis for the GPS Klobuchar model allows for deter-
mining interval bounds that represent the uncertainty due to the imperfect correction model.
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(a) α1 (b) β1

(c) α2 (d) β2

(e) α3 (f) β3

(g) α4 (h) β4

Figure 3.10: Intervals associated with the broadcast coefficients αi and βi for i = 1, .., 4: differences of
the CODE re-estimated values from the broadcast values are observed (gray dots), from which the intervals
are determined from their envelope. The rounding error is taken as the minimum bounds, assuring that the

resulting intervals are placed around the broadcast values.

Two approaches have been evaluated to facilitate the bounding of residual ionospheric errors.
By evaluating the uncertainty of GPS Klobuchar broadcast coefficients using re-estimated
products, the bounding rate was significantly improved from 53.2% to 76.6% in an analysis
for the WTZZ station. However, further investigation is essential to capture the remaining
systematics to ensure high integrity. In the absence of complete information on partial influ-
ence factors, it is proposed to determine compensation intervals based on the user’s location
and time to guarantee full enclosure of residual ionospheric errors. Using IGS GIM products as
a reference, compensation intervals can be derived considering selected IPPs. These intervals
can be interpreted as supplementary components to the uncertainty budget.
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(a) “improved” bounding results (b) “rounding” bounding results

Figure 3.11: Histograms for residuals of vertical Klobuchar estimates with respect to the CODE GIM products.
The data is collected from IPPs covering 37.5◦N to 60◦N and −5◦W to 40◦E for the year 2020. Two approaches
are used to determine the uncertainty interval associated with the GPS Klobuchar broadcast coefficients: (a)
derived from the CODE re-estimated coefficients (“improved”), (b) intervals representing the rounding error
(“rounding”). Residuals successfully bounded by the sensitivity analysis results are indicated as black bars,
and unbounded residuals as light gray bars in both histograms. The two-color bars do not overlap but sum up

the overall histogram.

The evaluation of all aforementioned influence factors is summarized in Table 3.4, ensuring
that residual ionospheric error can be safely bounded with intervals derived from sensitivity
analysis.

Table 3.4: Influence factors and associated uncertainty interval evaluation for the GPS Klobuchar model.

Influence factors Uncertainty evaluation

Satellite elevation (θ) and azimuth (ϕ) Type B: rounding error by half of the last digit
Station latitude (Φ) and longitude (Λ) Type B: rounding error by half of the last digit
GPS time (tGPS) Type B: rounding error by half of the last digit
Phase (t0) of the cosine term Type A: historical data analysis
Constant delay during nighttime (DC) Type A: historical data analysis
Broadcast coefficients Type B: rounding error and reference to reliable

(α1, α2, α3, α4, β1, β2, β3, β4) re-estimated products
Approx. of Earth-centered angle (ψ) Type B: 0.4◦

Approx. of geomagnetic latitude (Φm) Type B: 1◦ or 2◦ depending on geomagnetic
coordinates

Slant factor (mapping function) (MI) Type B: 2% of F
Compensation interval*([CI , CI ]) Type A: statistical analysis referenced to GIM
* The compensation interval is not characterized as an influence factor but can be interpreted as a supple-

mentary component to the uncertainty budget.

3.4 Multipath error in urban canyons

3.4.1 Introduction

Challenges that emerge in urban navigation include signal blockage, reflection, refraction, etc,
due to sophisticated measurement environments. A prevalent issue is the multipath effect,
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where GNSS signals arrive at the receiver via multiple paths due to reflection and diffraction.
In this situation, the received signal is a combination of the direct Line-of-Sight (LOS) signal
and Non-Line-of-Sight (NLOS) signals that are reflected and/or diffracted from nearby objects.
The undesired NLOS component causes distortion of the received signal, leading to tracking
errors in the receiver and resulting in pseudorange and carrier-phase observation errors, known
as multipath errors.

Fig. 3.12 depicts a typical multipath scenario in a dense urban canyon environment, where
the GNSS signal can arrive at the receiver via the direct LOS as well as through reflected and
refracted paths.

Figure 3.12: A typical measurement environment where the GNSS multipath effect occurs.

The multipath effect can have a significant impact on some applications. Pseudorange
multipath errors can be as large as 100 m in severe conditions, while carrier-phase multipath
errors can range from millimeters to centimeters (Braasch, 2017). To ensure accuracy, var-
ious techniques have been explored to model and mitigate multipath errors at the antenna,
receiver, and navigation processor levels. Carefully designed antennas can significantly reduce
multipath errors. Examples in the literature include antenna siting (McGraw et al., 2004),
and choke ring technologies (Braasch, 2017), etc,. At the receiver level, techniques based
on modified discriminator design have been developed to increase the resolution of the sig-
nal correlation process, thereby reducing the tracking errors. Additionally, vector tracking,
which replaces the Delay Locked Loop (DLL) with an extended Kalman filter (EKF), has
been demonstrated to track GNSS signals and calculate the user position simultaneously un-
der various conditions (Pany et al., 2005; Hsu et al., 2015). 3D map aided GNSS is a typical
technique deployed at the navigation processor level, utilizing city building models to improve
the positioning accuracy through shadow matching, terrain height-aiding or NLOS detection
(Adjrad and Groves, 2018; Ruwisch and Schön, 2022). Consistency checking can also be used
to identify both NLOS and multipath-contaminated signals, although it is less effective in
dense urban environments (Groves et al., 2013). In the context of cooperative positioning,
vehicle-to-vehicle (V2V) ranging and vehicle-to-features (V2F) ranging can be leveraged to
alleviate the impact of multipath effect and NLOS (Zhang et al., 2018; Soatti et al., 2018).

The main goal of this section is to upper bound the pseudorange error caused by multipath
effects, as there is currently no standard correction model in place. This is especially impor-
tant in urban areas where a large portion of the signals are affected by multipath because: (i)
the fault detection and exclusion (FDE) function based on the self-consistency checking may
not be effective; (ii) removing the erroneous signals can degrade satellite availability, threat-
ening navigation continuity and availability. Therefore, the uncertainty budget, containing
the multipath effect, should be adequately assessed for integrity purposes.
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Stochastic approaches have been developed to address this problem. For example, the
SBAS airborne multipath models leverage Gaussian overbounding concepts, providing a single-
frequency model since 2000 (RTCA/DO-229D, 2006) and another for dual-frequency multi-
constellation SBAS currently under development (Caizzone et al., 2022; Crespillo et al., 2024).
There are also automotive multipath models based on similar concepts Khanafseh et al. (2018),
as well as statistical models for urban canyon environments (Kong, 2011; Wang et al., 2018).

Alternatively, researchers have investigated the multipath error envelope (MEE) for GNSS
signals – the upper and lower curves of the envelope represent the maximum delayed and ad-
vanced error on pseudorange measurements, respectively. They implicitly indicate the upper
and lower bounds, and the actual values oscillate between these curves due to phase changes.
The different signs depend on whether the multipath is in-phase or out-of-phase with the direct
signal. Therefore, the interval representation is effective to upper bound the GNSS pseudo-
range multipath errors. Sec. 3.4.2 will introduce an interval bounding approach, followed by
experimental validation and a discussion of its real-world application performance.

3.4.2 Methodology: Interval bounding based on multipath error envelope

Characterization of the multipath environment

In a typical multipath scenario like Fig. 3.12, all multipath signals travel longer distances than
the direct signal, resulting in delayed arrival times. Typically, a multipath-affected signal is
characterized by five parameters (Braasch, 2017):

� Relative delay is the extra path delay (EPD, denoted by D), induced by a multipath
signal relative to the direct LOS signal. It can be determined using image theory and
trigonometry.

� Relative amplitude, also known as the multipath-to-direct signal strength ratio (or
M/D, denoted by ω), is dependent on the size, shape, and reflection coefficient of the
multipath-inducing surface (i.e., reflector or diffractor). The reflection coefficient is a
function of the incidence angle of the signal, typically approaching unity for near-parallel
incidence. For example, Tab. 3.5 provides approximate values of the reflection coefficients
and attenuation factors for common surface materials for GPS L1 frequency with normal
incidence (elevation angle of 90◦).

Table 3.5: Reflection coefficients and attenuation factors for common surfaces (normal incidence, GPS L1)
(Braasch, 2017).

Surface material Reflection coefficient Attenuation factor (dB)

Soil (dry/moderate/wet) 0.268/0.566/0.691 -11.4/-4.94/-3.21
Glass 0.421 -7.51
Tinted glass 0.950 -0.446
Brick 0.345 -9.24
Concrete 0.404 -7.87

� Relative phase of the multipath relates to whether it interferes with the direct signal
constructively or destructively. It is a function of the EPD and the reflection coefficient
of the multipath-inducing surface and can change instantly upon reflection.

� Relative phase rate, also termed fading frequency, is related to the relative motion
of the transmitter, receiver, and multipath-inducing obstacles. Notably, GNSS receiver
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tracking loops can attenuate the multipath signal to some extent if its relative phase
rate is higher than the tracking loop bandwidth.

� Relative polarization: GNSS signals are circularly polarized, but when reflected by
a nonmetallic surface, they become elliptically polarized. This means that the reflected
signal comprises both right- and left-handed polarized components. GNSS antennas are
designed to receive the intended polarization and will reduce the strength of the opposite
polarization. As a result, only the portion of the signal that becomes reverse-polarized
due to reflection will be attenuated.

Multipath signal models

Van Nee (1993) modeled a received GNSS signal consisting of the LOS signal and n reflected
signals:

s(t) =
n∑
i=0

ai(t)mc (t− τi(t)) cos (f0 t+ ϑi(t)) + ϵc(t), (3.23)

where

� i denotes the i-th component; the LOS signal component corresponds to i = 0;

� τi is the relative time delay of the i-th component;

� ai(t) is the amplitude of the i-th component. The relative amplitude of the i-th compo-
nent with respective to the LOS component, i.e., M/D ratio, is ωi(t) = ai(t)/a0(t);

� mc(t) represents the GNSS code modulation;

� f0 is the nominal frequency of the LOS signal;

� ϑi(t) is the relative phase of the i-th component;

� ϵc(t) represents the noise.

The Delay Locked Loop (DLL) can track the code of most GNSS signals. However, mul-
tipath components can distort the correlation function, leading to tracking errors. This dis-
tortion causes pseudorange multipath errors, while the distorted phase of the received signals
results in carrier-phase multipath errors. For a detailed description of the distortion process,
readers of interest can refer to textbooks such as Braasch (2017).

Determination of multipath error interval bounds

The full extent of the envelope for a multipath signal was derived in Braasch (1997). The
study considered the discriminator function and autocorrelation sidelobes for a binary phase
shift keying (BPSK) signal such as GPS/GLONASS C/A-code and P-code. Accordingly, the
upper bounds for multipath error can be derived based on the parameterization.

Eq. 3.24 shows the determination of MEE (denoted by ϵMEE) for a BPSK signal. The
interval values [ϵMP , ϵMP ] can be computed as the upper and lower bounds of the envelope
(ϵMEE), each consisting of four segments. The first segment is a slope, which is a function
of M/D ratio and EPD, independent of correlator spacing and PRN chipping rate. In the
extreme case of materials of the reflector, i.e., ω → 1, the lower slope will be infinitely close
to vertical. The second segment depends purely on the M/D ratio and correlator spacing,
regardless of the EPD. Therefore, the interval for the P-code within this segment will be
significantly narrower than the one for the C/A-code. The third segment is additionally
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affected by the discriminator, and the fourth segment is again independent of EPD.

ϵMEE =

ωmD

ωm + 1 , for D ∈
[
0, dc2 (ωm + 1)

]
;

ωmdc
2 , for D ∈

[
dc
2 (ωm + 1), 1 + dc

2 (ωm − 1)
]

;

ωm(D − dc
2 − 1) · (1 − Γ − Γmax + Γmin) − ωmd(Γmax − Γmin)
ωm(1 − Γ − Γmax + Γmin) − 2(1 − Γ) ,

for D ∈
[
1 + dc

2 (ωm − 1), 1 + dc
2

(
1 + ωm(Γmax − Γmin)

1 − Γ

)]
;

ωmdc(Γmax − Γmin)
2(1 − Γ) , for D ∈

[
1 + dc

2

(
1 + ωm(Γmax − Γmin)

1 − Γ

)
,∞
]
.

(3.24)

In this equation,

� ωm has two possibilities: ωm = ω for the in-phase multipath signal (relative to the direct
signal), and ωm = −ω for the out-of-phase case, with ω the M/D ratio.

� dc represents the correlator spacing in the unit of PRN chips;

� Γ denotes the first sidelobe level of the autocorrelation function for PRN codes;

� Γmax and Γmin are the maximum/minimum autocorrelation sidelobe levels.

Newer signal structures have been developed based on binary offset carrier (BOC), mul-
tiplexed binary offset carrier (MBOC), composite binary offset carrier (CBOC) techniques,
etc. The correlation functions of these signals have the same envelope as those of BPSK
signals (with the same chipping rate) but differ via the sawtooth shape within the envelope
(Braasch, 2017). As a result, the general BPSK multipath error envelope also encloses the
envelopes of the aforementioned signals. For instance, Galileo E1 Open Service (OS) signals
adopt the CBOC(6,1,1/11) modulation, the induced multipath error of which can be bounded
by a simpler BOC(1,1) multipath error envelope. Without loss of generality, the analytical
MEE model of a general BOC(n1, n2) signal is utilized. The resulting lower bound (ϵMP ) or
upper bound (ϵMP ) is computed by (Harris and Lightsey, 2009)

ϵMEE =

ωmD

ωm + 1 , for D ∈
[
0, dc2 (ωm + 1)

]
;

ωm · (−1)k · dc ·
4 n1
n2

− 2 k + 1
2 − 8 n1

n2

, for D ∈ [Dt2,k, Dt1,k+1] ;

ωm · (−1)k+1
dc
(
4 n1
n2

− 2 k + 3
)

+
(
4(k − 1) − 8 n1

n2

)
·
(
D + dc

2 − (k − 1) · TC/A

2n1

)
−8 n1

n2
+ 2 + ωm · (−1)k+1

(
−8 n1

n2
+ 4(k − 1)

) ,

for D ∈ [Dt1,k, Dt2,k] ;

ωm · (−1)2n1/n2
−D + TBOC + dc

2
−8 n1

n2
+ 2 − ωm · (−1)2n1/n2

, for D ∈
[
Dt3 , TBOC + dc

2

]
;

0, for D ∈ [Dt1,k+1,∞] ,

(3.25)

where TBOC is the service time associated with one chip of the BOC signal; n1 and n2 are
normalized as multiples of the GPS C/A signal, with a chip rate at 1/TC/A = 1.023 MHz.
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Additionally,
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,
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⌈ 2D
TBOC

· n1
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⌉
,

(3.26)

where ⌈·⌉ is a ceiling operator. Subsequently, the interval values [ϵMP , ϵMP ] can be computed
as the upper and lower bounds of the envelope (ϵMEE) (ϵMEE).

The subsequent experiments in this thesis apply this method to GPS L1 C/A (Eq. 3.24),
GLONASS L1 C/A (Eq. 3.24), and Galileo E1 OS (Eq. 3.25-Eq. 3.26) signals. The basic pa-
rameters involved are given in Tab. 3.6.

Table 3.6: GNSS signal plan for GPS L1 C/A code, GLONASS L1 C/A code and Galileo E1 OS code.

GPS L1 C/A GLONASS L1 C/A Galileo E1 OS

RINEX naming GC1C RC1C EC1C
Central frequency 1575.42 MHz (1598.0625 − 1605.375) 1575.42 MHz

±0.511 MHz
Spreading modulation BPSK(1) BPSK(0.5) CBOC(6,1,1/11)
Primary PRN code length 1023 511 4092
Code frequency 1.023 MHz 0.511 MHz 1.023 MHz

3.4.3 Experimental validation

The multipath bounding method is applied to the dataset collected from a test drive in
Hannover, Germany, in December 2021, detailed in Sec. 6.2.1.

Initially, example parameters in Eq. 3.24 and Eq. 3.25 are used to model the multipath error
envelope. The parameters included:

� Γ = 1/1023,Γmax = 65/1023,Γmin = −63/1023 for GPS C/A-code according to Braasch
(1997);

� dc = 1/30 the early-minus-late (E-L) correlator spacing of the Septentrio PolaRx5e
receiver for C/A-code (according to Hauschild et al. (2012) an older model PolaRx2 of
the product line, with “A Posteriori Multipath Estimator (APME)” inactivated)

� the M/D ratio ω determined by the incidence angle, antenna gains, and reflection co-
efficients that are associated with characteristics of the material. For example of the
concrete, the conductivity is set 2 · 10−5 S/m, the relative permittivity is around 3 F/m
at GPS L1 frequency (Hannah, 2001).

Mathematical models to determine the reflection coefficients, and subsequently the M/D
ratio, can be found in Smyrnaios et al. (2013) and Icking et al. (2022).

Fig. 3.13 depicts an example of the multipath error envelope used in the experiment. No-
tably, the impact of autocorrelation sidelobes for the BOC signal is modeled similarly to
Eq. 3.24 from a conservative perspective.
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Figure 3.13: Example of multipath error envelopes for different signals used in the experiment: ω = 0.3877,
d = 1/30, Γ = 1/1023,Γmax = 65/1023,Γmin = −63/1023

Next, the ray tracer developed at IfE is employed to classify signals affected by the multi-
path effect (Icking et al., 2020, 2022). The ray tracer uses 3D city models to geometrically
identify the signal obstructions, reflections, and refractions caused by buildings, walls, and
other structures. For illustration, 256 epochs near Asternstraße are chosen, where the multi-
path effect is prominently observed (see Fig. 3.14(a)). The results of the signal classification
from the ray tracer for all the tracked GPS signals are shown in Fig. 3.14(b). Six out of
seven signals are classified as multipath affected at certain epochs and, therefore, should be
accommodated by the proposed interval bounding method.

To validate the obtained multipath error bounds, the pseudorange multipath errors are
computed using the ray tracer and used to form the Multipath Linear Combination (LC), cf.,
denoted by LCMP in Eq. 3.27, for comparison:

LCMP = p1 − φ1 + 2 f2
2

f2
1 − f2

2
(φ2 − φ1), (3.27)

where p∗, φ∗ are code and phase observations, with subscripts representing different frequen-
cies, and f∗ denoting the corresponding signal frequency.

The Multipath LC observation is potentially dominated by the pseudorange multipath error,
apart from the noise terms and remaining higher-order ionospheric delays. The carrier-phase
multipath error and carrier-phase noise are negligible due to their fairly low magnitude. Hence,
the LC observations are expected to fall within the interval bounds.

The remaining ambiguity term in the multipath LC should be removed first. One effective
method to achieve this is to remove the median value in each continuous arc. Furthermore,
cycle slips can frequently occur in challenging measurement environments, such as urban
canyons, and need to be detected. When a cycle slip is found, the associated arc is split
into two consecutive arcs and handled separately to mitigate the remaining ambiguities. This
study uses a time-difference geometry-free LC method to detect cycle slips.

To minimize data gaps, three different LCs are formed, cf. Table 3.7 Line 1-3, involving
GPS C1C and four phase observables: L1C, L2W, L2L, and L5Q (as RINEX 3 naming).

The experimental results are depicted in Fig. 3.15:
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(a) Map of ‘Asternstraße’, where the experimental data was collected. The black dots indicate the reference
trajectory and the driving direction from positions ‘A’ to ‘D’.

(b) Signal classification by ray tracer developed at IfE (Icking et al., 2022). LOS signals are marked green,
signals affected by multipath as yellow, NLOS as purple, and blocked signals as red. The ray tracer evaluates
single reflections only, and hence, “blocked” signals may be tracked.

Figure 3.14: The measurement environment (a) and signal classification by ray tracer (b) for the data used
in the multipath experiment.

� In Fig. 3.15(a), the computed pseudorange error from the ray tracer is plotted as colored
dots for six GPS satellites (PRN 13, 14, 17, 19, 23, 24), with the corresponding interval
bounds as dashed line segments. All the cases of interest present sufficient enclosure of
errors as expected.

� In Fig. 3.15(b), three LCs are displayed with consistent color code and are absent at
some epochs due to data gaps. Notably, the computed intervals successfully enclose the
observed LC values for signals classified as multipath-affected.

The LC observations are typically smaller than the computed errors, possibly because:
(i) suppression due to the relative polarization of reflected signals at the antenna level;
(ii) the multipath component of the received signal may be better-attenuated thanks
to the relatively high multipath phase rate at a moving receiver; (iii) the imperfect
computation of multipath errors due to the uncertainty of the 3D city model used in the
ray tracer.

For the analysis of the entire dataset of 9866 epochs, the BMR values (denoted by ζ
MP

and
ζMP ) can be calculated by subtracting multipath LC residuals from corresponding interval
bounds (cf. Eq. 3.28) for GPS, GLONASS, and Galileo signals as Tab. 3.7. The results are
presented as folded ECDF in Fig. 3.16.

ζ
MP

= ϵMP − LCMP , ζMP = ϵMP − LCMP (3.28)
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LC Code Obs Phase Obs 1 Phase Obs 2 Bounded % 95% interval [m]

1 GC1C GL1C GL2W 93.258% [−1.308, 1.440]
2 GC1C GL1C GL2L 94.213% [−1.430, 1.488]
3 GC1C GL1C GL5Q 96.480% [−1.465, 1.537]
4 RC1C RL1C RL2C 88.646% [−2.886, 2.581]
5 RC1C RL1C RL3Q 95.805% [−3.007, 2.977]
6 EC1C EL1C EL5Q 94.254% [−1.604, 1.492]
7 EC1C EL1C EL6C 94.891% [−1.624, 1.518]

Table 3.7: Seven multipath LCs formed in the experiment and corresponding bounding performance metrics:
the percentages of bounded residuals and 95% range intervals of the BMR’s folded ECDF.

(a) Computed pseudorange multipath errors using ray tracer and interval bounds.

(b) Multipath LC observations and interval bounds. Missing epochs are due to data gaps in phase observations.

Figure 3.15: Computed multipath errors (a, shown as “o”) or multipath LC observations (b, shown as “x”),
with corresponding interval bounds (dashed curves) from the experiment. Uniform colors are used for each
satellite. Grey dots indicate (a) detours caused by NLOS and (b) observations not classified as multipath-

affected by the ray tracer.

All ECDF curves crossing the y-axis indicate the presence of unbounded residuals, i.e., some
LC observations are not bounded by the multipath interval bounds. Possible causes include:
(i) receiver hardware noise, usually modeled using a Gaussian distribution and not captured
by the multipath interval bounds; (ii) NLOS signals misclassified as multipath-affected due
to the imperfect city model, leading to errors equal to EPD and exceeding the multipath
interval bounds (also reported in Karimidoona and Schön (2023)); (iii) inaccurate estimates
of EPD due to the limited quality of the city model, resulting in incorrect interval bounds
from the MEE model; (iv) multiple reflections, which are not evaluated by the interval bounds.
Additional key observations:

� Different LCs for the same code observable show similar performance in terms of tight-
ness (similar patterns of BMR ECDF) and effectiveness (similar bounding rates). The
GLONASS C/A code is exceptional, possibly due to insufficient observations.
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Figure 3.16: Folded ECDF of BMR values ([ζ
MP

, ζMP ]) computed from the investigated dataset. Seven
multipath LCs are formed, for each of which ζ

MP
are plotted as dashed curves while ζMP as solid curves.

Corresponding 95% intervals are highlighted with consistent color code.

� The bounding performance for GPS is generally better than for GLONASS and Galileo.
The GLONASS bounds are inherently wider due to signal modulation (see Fig. 3.13),
whereas the BOC MEE model used in the computation is conservative for the actual
Galileo CBOC signals, resulting in relatively loose bounds.

3.4.4 Discussion

Utilizing the multipath error envelope, interval bounds for the multipath errors can be deter-
mined with predefined parameters. The bounding performance depends on multiple factors:
uncertainty of the building models, affecting the determination of multipath relative delay;
uncertainty in parameters involved in multipath error envelope computation; Misclassification
of signals, such as classifying multipath-affected signals into other categories, thus not eval-
uating the interval bounds. Based on the results presented, Sec. 6.2.3 will further investigate
the impact of receiver hardware noise.





4
State estimation and error bounding

Estimation is a key concept across various fields, such as statistical inference, mathematical
optimization, geodetic adjustment, and automatic control, all of which involve determining
unknown parameters. In this chapter, the goal is to estimate the position and time as unknown
states in the GNSS positioning and navigation problem, with a special emphasis on ensuring
the reliability of state estimation for user safety (integrity purposes). In this regard, it is both
reasonable and vital to address estimation errors through proper uncertainty modeling and
its propagation in an acceptably conservative manner. This challenge motivates us to explore
error bounding for state estimation, which constitutes the core objective of this chapter.

The content builds upon the foundational work presented in Su and Schön (2022c), which
investigated uncertainty propagation and error bounding through a comparative analysis of
the least-squares estimator, the interval extension of the least-squares estimator, and the set
estimator based on constraint satisfaction. While the principles and methodologies introduced
in that work form the basis of this chapter, the scope is significantly expanded to include
additional point estimators and bounding strategies.

The chapter is organized as follows. The first section introduces the GNSS positioning
problem. The second section revisits the classical least-squares estimator, which is widely
used in GNSS applications, and discusses suitable error bounding approaches. The third
section focuses on the set-based state estimation approaches, discussing the formulation of
the set estimator based on constraint satisfaction and proposing two point estimators: the
set-based central estimator and the set-constrained least-squares (SCLS) estimator. A com-
parative analysis of these estimators is presented, culminating in conclusive remarks about
their applicability in GNSS tasks.

4.1 Introduction

The basic GNSS positioning problem aims to estimate the receiver coordinates (pr = [xr, yr,
zr]T ) and clock offset (dtr) based on the non-linear observation equation in Eq. 3.1. In prac-
tice, providing an initial estimate of the receiver’s position, denoted by pr,0 = [xr,0, yr,0, zr,0]T ,
improves convergence. Taking advantage of Taylor’s theorem, we can then linearize the geo-
metrical term in the observation equation, neglecting the second and higher-order terms:

ρkr
∼= ρkr,0 + Ak

p∆pr (4.1)

where,

� ∆pr = pr − pr,0 denotes the coordinate increment;
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� ρkr =
√

(xr − xk)2 + (yr − yk)2 + (zr − zk)2 denotes the true range between the satellite
k and receiver’s position pr;

� ρkr,0 =
√

(xr,0 − xk)2 + (yr,0 − yk)2 + (zr,0 − zk)2 is the “computed” range between the
satellite k and the initial estimate of the receiver r’s position;

� Ak
p =

[
∂ρk

r
∂xr

∂ρk
r

∂yr

∂ρk
r

∂zr

]
reflects the relative geometry of the satellite k and the receiver

r, forming a row vector of Ap.

Notably, the uncertainty due to linearization, i.e., the error arising when neglecting sec-
ond and higher-order terms, is considered negligible thanks to the considerably long distance
between the GNSS satellites and the receiver on the Earth’s surface.

The residual observations yk := pkr − pkr,0, also termed Observed-Minus-Computed (OMC)
values, are defined as the difference between the actual pseudorange observations (pkr , see
Eq. 3.1) and the observations computed using the approximate parameter values and correction
models (pkr,0). Consequently, the obtained measurement model is expressed as:

y = Ax + e, (4.2)

where,

� y: [n× 1], vector of measurements, i.e., the OMC values of pseudorange observations;

� x: [m × 1], vector of states/parameters to estimate, including both the coordinate in-
crement (∆pr) and receiver clock offsets (dtr), e.g., m = 4 when using single satellite
constellation;

� e: [n× 1], measurement error vector, i.e., the remaining errors due to imperfect correc-
tions or stochasticity, which should be modeled or bounded adequately;

� A: [n × m], the design matrix. The row vectors in Ap from Eq. 4.1 are expanded to
additionally capture the receiver clock offset, e.g., using GPS-only satellites:

Ak =
[
∂ρk

r
∂xr

∂ρk
r

∂yr

∂ρk
r

∂zr
1
]

(4.3)

=
[
xr,0−xk

ρr,0

yr,0−yk

ρr,0

zr,0−zk

ρr,0
1
]

(4.4)

This chapter addresses the core problem described above. Conventional solutions rely on
stochastic methods, such as the family of the least-squares estimator. For instance, in civil
aviation, RAIM and ARAIM make use of the weighted least-squares estimator. Critical consid-
erations include the implementation of fault detection and exclusion functions, which involves
the least-squares residuals, and the proper evaluation of estimation error bounds that need to
be delivered to users (Brown, 1992; Joerger et al., 2014).

Additionally, several new estimators have been developed to fulfill different objectives. Ro-
bust estimators such as M-estimators can mitigate the impact of a small portion of outliers,
hence enhancing robustness (Huber, 1981). The DIA estimator has been introduced to im-
prove GNSS integrity through the least-squares estimation coupled with statistical testing
(Teunissen, 1990; Teunissen et al., 2024). The Non-Least-Squares estimator deviates from the
least-squares principle, trading off accuracy for improved integrity performance (Joerger et al.,
2012). Blanch and Walter (2022) formulated an optimization problem concerning ARAIM in-
tegrity and continuity risks, which leads to a high-confidence region and a new estimator.

The interval-described uncertainty, in the literature, also known as set-membership or un-
known but bounded uncertainty, offers an alternative approach to estimation problems, where
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the optimality differs from the least-squares sense. The interval-described uncertainty is propa-
gated to the state domain in a linear manner and, subsequently, represented or approximated
by various types of sets. These sets are interpreted as the maximum possible variation in
estimation errors. In this regard, the deterministic approach is more suitable for address-
ing worst-case scenarios, while traditional stochastic methods focus on an average-case sense
(Casini, 2002). For example, in the field of navigation or localization, Drevelle and Bonnifait
(2009) calculated high confidence regions for the vehicles’ location as the union of numerous
elementary boxes. Shi et al. (2017) investigated the wireless sensor network localization with
bounded-error range measurements, and Dbouk and Schön (2018) explored different methods
for computing bounding zones for unknown GNSS receiver positions.

Moreover, point estimators can be improved through interval-described uncertainty mod-
eling. Milanese and Vicino (1991) provided a comprehensive overview of various classes of
deterministic algorithms, in particular, the central algorithms and projection algorithms.
Kacewicz et al. (1986) and Milanese (1995) connected the classical least-squares method with
deterministic approaches, showcasing the optimality of the least-squares method under cer-
tain deterministic bounding conditions. Studies on filter techniques for a dynamic system with
interval or set-described uncertainties are also investigated, for example, an extension of the
classical Kalman filter to interval linear systems (Chen et al., 1997), zonotope-based methods
(Combastel, 2003; Alamo et al., 2005), and a hybrid Kalman filter in Combastel (2016).

However, the potential benefits of set-based estimators for GNSS integrity have yet to be
fully explored. To fill this gap, the remainder of this chapter covers different tasks toward
four estimators, i.e., the classical least-squares estimator, set estimator based on constraint
satisfaction, set-based central estimator, and set-constrained least-squares estimator. The
organization of sections is summarized in Tab. 4.1.

Table 4.1: Organization of tasks in Chap. 4.

Estimator Task
Esti. principle
and properties

Error bounding
approach

Performance evaluation
and comparison

Least-squares estimator Sec. 4.2.1 Sec. 4.2.2 - 4.2.4 Qualitative comparison:
Sec. 4.4.1

Theoretical evaluation:
Sec. 4.4.2

Statistical evaluation:
Sec. 4.4.3

Set estimator based on con-
straint satisfaction

Sec. 4.3.1

Set-based central estimator Sec. 4.3.2
Set-constrained least-squares
estimator

Sec. 4.3.3

4.2 Revisit: Error bounding for the least-squares estimator

4.2.1 Introduction

The basic idea of the least-squares (LSQ) method was described in detail by Gauss (1809):

The most probable value of the unknown quantities will be that in which the sum
of the squares of the differences between the actually observed and the computed
values multiplied by numbers that measure the degree of precision is a minimum.

For the model in Eq. 4.2, the followings are presumed:
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� The Variance-Covariance Matrix (VCM) of measurements is a positive definite matrix:

D(y) = D(e) = Σ = P−1

.

� The expectation of measurement vector is a linear function of the unknown parameters:

E(y) = A x

.

Let ŷ denote an estimator of E(y), the least-squares method minimizes the quadratic form
(Koch, 1999):

Ω = (y − A x)TΣ−1(y − A x). (4.5)

Subsequently, the least-squares estimator reads:

x̂ = (ATPA)−1ATP y. (4.6)

Given sample values y, the least-squares estimate of the parameters is obtained, along with

� The least-squares estimate of the measurements: ŷ = A x̂ = A(ATPA)−1ATP y, and

� The least-squares residuals: r := y − ŷ = (I − A(ATPA)−1ATP) y. Or, another nota-
tion ê is also found in literature, e.g., Teunissen (2003), interpreted as the least-squares
estimate of the measurement errors.

For the sake of brevity, a m×n transformation matrix K is introduced to the remainder of
the thesis: K = (ATPA)−1ATP. Subsequently, the least-squares estimator in Eq. 4.6 can be
expressed as x̂ = K y.

Notably, the least-squares estimator applied in this chapter differs from that in Sec. 2.4.3,
where it is used for fault detection by introducing an additional fault term to capture unmod-
eled or unbounded errors. Here, by contrast, the focus lies on state estimation under nominal
conditions.

4.2.2 Stochastic error bounding

Fundamentally, the definition in Sec. 4.2.1 is established under two principles:

� The least-squares principle;

� The principle of best linear unbiased estimation.

The least-squares principle is a deterministic principle to the estimation problem without any
statements concerning the characteristics of observations (Teunissen, 2003). It requires only
the minimization of (weighted) sum of squared residuals. In contrast, the principle of best
linear unbiased estimation relies on assumptions concerning the expectation and dispersion of
the measurement error:

� E(e) = 0;

� D(e) = Σ = P−1 is a known positive definite matrix.

Subsequently, the least-squares estimator gains some “optimal” properties in the sense of
stochasticity:

� It is an unbiased estimator;
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� It leads to the minimum variance of the estimated parameters.

The above properties are always true, independent of whichever distribution the observations
follow. Concerning error bounding for the least-squares estimates, however, how to model the
measurement error has to be specified.

For instance, in GNSS applications (as well as many other fields), the errors (e) are usually
assumed to follow zero-mean Gaussian distributions, or to be overbounded by inflated zero-
mean Gaussian distributions in (advanced) RAIM. Based on this assumption, the least-squares
method can provide the best linear unbiased estimation. The VCM of the estimates as a
measure of their uncertainty is derived by quadratic variance-covariance propagation:

Σx̂x̂ = (ATPA)−1ATPΣPA(ATPA)−1

= (ATPA)−1.
(4.7)

The VCM contains all precision and correlation information, i.e., the variances (diagonal
elements) and covariances between estimated parameters (off-diagonal elements). If we assume
that the observation errors are normally distributed with VCM Σ, then the estimates are
normally distributed with VCM Σx̂x̂. The variances and covariances of the observations are
obtained from the quadratic error propagation through the observation correction models, cf.
Sec. 3.1.

With this, the concept of confidence region can be used to assess the uncertainty for the
least-squares estimation. In particular, it is in the form of an ellipsoid in 3D and ellipse in 2D
for the point position estimated from GNSS observations:

E1−α = {x ∈ Rm|(x − x̂)TΣ−1
x̂x̂ (x − x̂) ≤ c1−α,m}, (4.8)

where 1−α represents the confidence level and c1−α,m is a constant, which can be determined
by solving the following equation based on a chi-square distribution of m degree of freedom:

1 − α =
∫ x

−∞
χ2(m, 0) dx. (4.9)

4.2.3 Deterministic error bounding

The assumption of Gaussian distribution for observation errors can be easily violated, in
particular, due to neglecting remaining systematics (Schön and Kutterer, 2005b) so that the
confidence level no longer reflects the realistic uncertainty.

In order to assess the uncertainty due to remaining systematics, Kutterer (1994) proposed
a straightforward method the interval extension of the least-squares estimator, i.e., replacing
the real-valued measurement vector by an interval vector that is symmetric around zero and
applying the computation rules from interval mathematics.

In the model of Eq. 4.2, a symmetric interval vector around zeros [s] = [−∆s,∆s] is con-
structed to represent the uncertainty due to remaining systematics in the observation domain.
Subsequently, the uncertainty is transferred linearly to the state domain by the m×n matrix
K = (ATPA)−1ATP: (

(ATPA)−1ATP
)

[s] = K [s]. (4.10)

In this way, the uncertainty due to remaining systematics in the state domain can be repre-
sented by Eq. 4.10 in the form of a set. Given measurement values y, the position information
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is related:

ZD ={x ∈ Rm | x ∈ K(y − [s])}
= {x ∈ Rm | x ∈ K y − K · [−∆s,∆s]}

=
{

x ∈ Rm | x = x̂ +
n∑
i

wi · coli(K) · ∆s,i, with − 1 ≤ wi ≤ 1
}
,

(4.11)

where coli(K) represent the i-th column vector of K.

By definition, the set in Eq. 4.11 is a zonotope Z(x̂,K · diag(∆s)) with its center being
the least-squares solution x̂ and generators being K · diag(∆s). It is a suitable measure of
point uncertainty due to remaining systematics that is linearly propagated (by K) from the
observation domain (Schön and Kutterer, 2005b).

4.2.4 Error bounding for combined uncertainties

An extended confidence region, denoted by CE , represents the combined measure of uncer-
tainties due to both stochasticity and remaining systematics. In the context of set theory,
this region is computed as the Minkowski sum of two convex sets (Schön and Kutterer, 2001a,
2006):

CE :=E1−α ⊕ ZD

=
{

x ∈ Rm
∣∣∣ (x − z)TQ−1

x̂x̂ (x − z) ≤ χ2
1−α,n,

with z = x̂ +
n∑
i

wi · coli(K) · ∆s,i, −1 ≤ wi ≤ 1
}
,

(4.12)

where,

� ZD represents the zonotope uncertainty due to remaining systematics;

� E1−α denotes the confidence ellipse with confidence level 1 − α;

� CE is the extended confidence region, which remains a symmetric convex set but no
longer elliptical nor zonotopic.

The conceptual sketch in Fig. 4.1 provides a heuristic understanding of Eq. 4.12, illustrating
how two classes of uncertainty interact. The point uncertainty due to random errors can
be bounded by an elliptical range that is related to a confidence level. Each point within
this range is also concerned with interval-bounded systematic errors. Therefore, the desired
confidence region is defined by the envelope of zonotopes whose centers lie on the elliptical
boundary. The resulting extended confidence region can be interpreted as follows:

Taking into account the uncertainty due to remaining systematics, the extended
confidence region covers the true position with a probability of 1 − α for least-
squares estimations (Schön, 2003).

Let x∗ denote the unknown true value of the state vector (e.g., receiver’s position), and the
estimation error bound is known by

x∗ ∈ CE ⇔ ∥εLS∥ := ∥x∗ − x̂∥ ≤ rad(CE), (4.13)

which is the radius of the extended confidence region, and the true position is assured to be
covered with a lower bounded probability:

P (x∗ ∈ CE) = P (∥εLS∥ ≤ rad(CE)) ≥ 1 − α (4.14)
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Figure 4.1: Minkowski sum of zonotope and confidence ellipse.

Eq. 4.12-4.13 are promising for GNSS integrity applications. They allow for addressing non-
Gaussian error sources by distribution-free interval solutions instead of restricting them to
Gaussian distributions when applying the least-squares estimator. This has the potential to
reduce estimation error bounds (or the confidence region, equivalently) while ensuring the
required confidence level.

In ARAIM, this approach can be directly utilized to calculate Protection Levels (PL). The
PL is designed to accommodate not only stochastic nominal errors, which are overbounded
by inflated Gaussian distributions, but also nominal biases, for which worst-case values are
specified. In Sec. 6.1, the worst-case nominal bias is interpreted as interval bounds. This
error bounding approach is applied to the ARAIM framework to reduce computed fault-
free Horizontal Protection Level (HPL)s without increasing unacceptable complexities. The
improvements with respect to the baseline ARAIM algorithm are then evaluated through a
simulation analysis.

4.3 Set-based state estimation

The classical least-squares estimator makes use of all available measurements and provides an
optimal solution in the least-squares sense, i.e., the ℓ2 norm of residuals is minimum. However,
it remains questionable whether the least-squares estimator is still representative or provides
a “best” estimate for the unknown parameters in case of interval-described uncertainty of
measurements. This section aims to fill the gap by (i) formulating the set estimator based
on constraint satisfaction, (ii) proposing a central set-based estimator that is optimal in a
deterministic sense, (iii) discussing the feasibility of the set-constrained least-squares estimator
that takes advantage of the least-squares principle along with set constraint.

4.3.1 Set estimator based on constraint satisfaction

Estimation principle and concepts

Now consider again the measurement model in Eq. 4.2 but with different uncertainty handling.
The VCM of the measurement error, i.e., Σ, is not accessible. Instead, it is known that the
errors can be bounded by an interval vector [e] = [e, e], which is not necessarily symmetric.
Subsequently, it is possible to characterize a measurement uncertainty set (MUS):

The set including all possible measurement values whose errors will not exceed given
interval bounds. The MUS contains all the information that could have generated
the noisy measurements (Casini, 2002).
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Using x∗ to denote the unknown true position of the GNSS receiver and neglecting the lin-
earization error, the MUS reads:

[y∗] := A x∗ + [e]. (4.15)

It is a subset of the Rn observation space in the form of an interval box (or interpreted as an
n-dimensional hypercube).

To explore the state domain, the set membership can be formulated based on Eq. 4.2 as
follows:

A x ∈ y − [e]. (4.16)

Thanks to the definition of intervals, the following inequalities can be constructed:{
A x ≤ y − e

−A x ≤ −y + e . (4.17)

Here, ≤ and ≥ denote component-wise inequalities between vectors (cf. the entry “≤ and ≥”
in the Notations and Nomenclatures section).

Applying B =
[

A
−A

]
and b =

[
y − e

−y + e

]
leads to a short version: B x ≤ b, which formulates

an inequality-based constraint satisfaction problem. Solving this problem results in a solution
set in the form of a H-polytope:

Ps(B,b) =
{

x ∈ Rm | B x ≤ b,B ∈ R2n×m,b ∈ R2n
}
. (4.18)

In an ideal situation, i.e., the expected measurements y∗ := A x∗ do not present any random
error nor systematic bias, the solution set is a H-zonotope centered at the true position (x∗):

Zs(B,b∗) =
{

x ∈ Rm
∣∣∣∣∣B (x − x∗) ≤ b∗,B ∈ R2n×m,b∗ =

[
−e
e

]
∈ R2n

}
. (4.19)

Zs is a set in the state domain that is directly mapped by the linearized model (cf. Eq. 4.2)
from the MUS. Any candidate point of the zonotope can be traced back to an element in the
MUS, i.e., a vector of measurement values y ∈ [y∗]. In this context, it can be interpreted as
a confidence region for the desired set estimator.

If a set of measurement samples is given, the set solution becomes a reshaped and shifted
polytope, deviating from the true position. The shape and position of the polytope Ps are
jointly influenced by the measurement geometry, measurement samples, and interval bounds
for the observation errors. Fortunately, it is still guaranteed that the true position is enclosed
thanks to the linear propagation of interval-described uncertainty:

x∗ ∈ Ps. (4.20)

The elaboration is as follows. The interval bound [ei] represents the worst case that the error
of i-th measurement can reach; hence, an admissible measurement value yi would lie within
the range y∗

i + [ei]. Alternatively, given a measurement sample yi, yi − [ei] indicates the
possible range of the expected measurement y∗

i . Subsequently, the interval box containing the
expected y∗, denoted by [y], is known immediately:

y ∈ [y∗],
with [y∗] := y∗ + [e].

⇒
y∗ ∈ [y],

with [y] := y − [e].
(4.21)

In this context, Ps can be understood as the result of mapping a set [y] from the Rn observation
space to the Rm state space through the linearized model (Eq. 4.2). As such, Eq. 4.20 is proven.
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Furthermore, it is reminded that the interval bounds are not necessarily tied to distributional
assumptions, as discussed in Sec. 2.2. Therefore, no “exact” information is available regarding
which point within Ps represents the truth, but all elements are treated equally. In this regard,
Ps is referred to as a feasible solution set (FSS):

The set consisting of all admissible solutions, compatible with the available infor-
mation in the estimation problem (Casini, 2002).

By definition, the worst-case estimation error of a set estimator equals the maximum possible
Euclidean distance between any pair of points within the FSS:

∥εs∥ ≤ max
x1,x2∈FSS

∥x1 − x2∥. (4.22)

Geometrically, it is the diameter of the FSS, i.e.,

∥εs∥ ≤ diam(FSS), (4.23)

which represents a scalar measure of the estimation error bound for the set estimator.

It is important to note that some literature additionally defines the “feasible problem el-
ement set (FPS)”. This term is not distinguished in this thesis since it aligns with the FSS
concept in parameter estimation problems such as Eq. 4.2. Furthermore, the FSS can take on
complex forms, e.g., highly irregular shapes. Hence, it may be beneficial to seek approximate
representations for practical applications, such as using boxes or ellipsoids that either contain
or are contained in the FSS (Milanese and Vicino, 1991; Schön, 2003).

In current GNSS applications, the standard practice is to provide a point solution along
with an indication of estimation uncertainty rather than a set solution, although the latter
would offer greater trustworthiness. Accordingly, the remainder of this chapter seeks to design
alternative point estimators formulated as optimization problems based on the FSS for various
purposes.

Extension to probabilistic framework

The set estimator can be extended to the probabilistic context. If probabilities are associated
with interval bounds, the probability associated with the FSS can also be determined. For
instance, P∆ represents the probability that the i-th measurement error ei does not exceed
the interval range [ei] := [ei, ei]. Subsequently, the probability that Eq. 4.21 is valid for yi is
also P∆:

P (ei ∈ [ei]) =P (yi ∈ [y∗
i + ei, y

∗
i + ei])

=P (y∗
i ∈ [yi])

=P∆,

with


yi :=y∗

i + ei,

[yi] :=yi − [ei]
=[yi − ei, yi − ei].

(4.24)

In the remainder of the thesis, this probability is termed bounding probability. According to
the binominal law, the probability that Eq. 4.21 is valid for all independent measurements
simultaneously is (Drevelle and Bonnifait, 2011)

P (y∗ ∈ [y]) :=P (y∗
1 ∈ [y1] ∩ ... ∩ y∗

n ∈ [yn])
=P (y∗

1 ∈ [y1]) · ... · P (y∗
n ∈ [yn])

= (P∆)n ,
(4.25)

which equals P (x∗ ∈ Ps) due to linear mapping, i.e., the probability that the set solution
described in Eq. 4.18 encloses the truth.
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Taking advantage of this feature, as an example, we can apply the set estimator under
the Gaussian-related assumptions, which is widely used in GNSS applications. Precisely, the
observation errors are assumed to be independent Gaussian distributed or can be overbounded
by a Gaussian distribution e ∼ N (0,Σ), with Σ containing the variance of each measurement
error σ2

i . In this context, seeking a worst-case error bound becomes meaningless due to the
infinite tails of the distributions. Nevertheless, the bounding probability can be calculated
based on the required confidence level 1 − α for estimation.

Let [ei] be an interval that is symmetric around zero for the i-th measurement error; its
radius ∆i is calculated as a product of a coefficient kα and the standard deviation of the
measurement error σi:

[ei] = [−∆i,∆i], ∆i = kα · σi. (4.26)

The coefficient kα can be determined by

kα = Q−1
(
P∆
2

)
, (4.27)

with (P∆)n ≥ 1 − α. (4.28)

In Eq. 4.28, the product (P∆)n is lower bounded by the confidence requirement 1 − α, which
can be used to determine P∆. Then, kα is computed using the assumed Gaussian distribution
in Eq. 4.27, where Q−1(P ) is the (1 − P ) quantile of the standard normal distribution.

The aforementioned strategy opens the possibility of handling stochastic error components
by constructing probability-associated interval bounds and applying them to the set estimator.
This aspect is further explored in the comparison analyses and application examples in the
remainder of the thesis.

Demonstrative example

A two-dimensional positioning example is designed to demonstrate the performance of the set
estimator, utilizing the following parameters:

� Measurement vector: y = [0.5083, 2.7495,−2.5043,−0.2377]T , i.e., four observations
n = 4,

� Geometry matrix: A =


0.2588 0.9659
0.5000 0.8660
0.7071 −0.7071
0.9659 −0.2588

,

� True states (the coordinate increments): x∗ = [0, 0]T , i.e., the initial guess coincides
with the true position, so that the expected observations y∗ = A x∗ = [0, 0, 0, 0]T .

At first, three example interval bounds are specified for measurement errors ([−∆i,∆i] with
the radius ∆i). These bounds are determined from some uncertainty model, which remains
unspecified at this stage. Applying these intervals to the set estimator leads to different poly-
tope solutions. Comparing these intervals with the simulated measurement errors culminates
in different scenarios concerning measurement error bounding:

1. Adequate bounding. The first interval radius ∆i = 4.708 adequately bounds all
simulated measurement errors. The resulting polytope set solution is illustrated as the
green contour in Fig. 4.2, enclosing the truth marked by a red star.

2. Tightened bounding. Reducing the interval radius to 3.662 demonstrates the situa-
tion with tightened measurement error bounds (e.g. when more information on measure-
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ment uncertainty is available). This adjustment results in a smaller, yet still sufficient,
polytope solution depicted as the yellow contour in Fig. 4.2.

3. Inadequate bounding. When applying the smallest radius (∆i = 2.226), the third
measurement error exceeds the interval bound. The polytope solution under this setting
is shown in blue in Fig. 4.2, failing to encompass the truth.

Figure 4.2: A numerical demonstrative example for the set estimator, with solutions obtained using different
interval bounds.

Alternatively, this example can be interpreted from a stochastic perspective. If the prior
distribution of the measurement error is available, i.e., e ∼ N (0,Σ = I), interval bounds
should be probabilistically defined based on the desired confidence level α, cf. Eq. 4.26 to
Eq. 4.28. Three example confidence levels are shown in Tab. 4.2, resulting in various interval
radii. Correspondingly, Fig. 4.2 implies how the set solution varies with the confidence level,
i.e., lower bounding probabilities increase the chance of the set solution failing to cover the
truth.

Table 4.2: Confidence levels, bounding probabilities, and interval radii in the demonstrative example.

Parameter Set solution
Polytope 1 Polytope 2 Polytope 3

Confidence level 1 − α 1 − 10−5 1 − 10−3 1 − 10−1

Bounding probability P∆ 1 − 2.5 × 10−6 1 − 2.5 × 10−4 1 − 2.6 × 10−2

Interval radius ∆i = kα σi 4.708 3.662 2.226

4.3.2 Optimal set-based central estimator

Deterministic optimality concept

Set-membership estimation theory incorporates concepts of optimality borrowed from informa-
tion-based complexity theory (Traub et al., 1988). Referring to the sets defined in Sec. 4.3.1,
three types of optimality for an estimator can be identified. Let x̂ = g(y) denote the desired
estimator for the problem described in Eq. 4.2, which is a function of the measurement vector,
and ε denote the estimation error. The three types of optimality can then be formulated as
follows:
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� X-locally optimal. Let x ∈ Rm, the X-local error

εX := max
y∈MUS

∥x − x̂∥, with x̂ = g(y) (4.29)

is minimized when the measurements are not known, and x̂ offers the best estimate
related to the worst value of y in MUS. The X-local error can be considered as an a
priori measure since it is not based on the observations.

� Y-locally optimal. Let y ∈ Rn, the Y-local error

εY := max
x∈FSS

∥x − x̂∥, with x̂ = g(y) (4.30)

is minimized when a set of sample values for the measurement y is available and, hence,
x̂ is the best achievable estimate for y. Different from the X-local error, the Y-local
error reflects the posteriori goodness of the estimation. Notably, a necessity for the
Y-local optimality is that FSS is non-empty; otherwise, the above expression becomes
meaningless. For example, the FSS derived in Sec. 4.3.1 is guaranteed to be non-empty,
providing worst-case measurement intervals (at least x∗ ∈ Ps).

� Globally optimal. The global error

εG := max
x∈Rm

εX = max
y∈Rn

εY (4.31)

is minimized. In this regard, two possibilities exist for achieving global optimality be-
cause of the dual definitions of global error.

It follows that the choice of a favorite “optimal” estimator depends on the condition of
the investigated estimation problem. Given measurement samples y, the Y-local optimality is
desired where the worst-case error is minimized for all observed values. On the contrary, the X-
locally optimality gives the best estimation related to the worst possible value of measurements
despite the absence of sample values. Furthermore, it is noticed that the local optimality is
stronger than global optimality (Milanese and Vicino, 1991). For instance, an estimator is not
only Y-locally optimal but also provides the minimal “worst-case” Y-local error for all possible
measurement samples y ∈ Rn, then, it is also globally optimal. However, the converse is not
necessarily true.

Considering the introduced optimality conditions, an optimal estimator for the model in
Eq. 4.2 is expected to account for the following scenario:

Y-locally optimal, therefore, also globally optimal, provided interval-described un-
certainty for the measurements.

The measurement errors are known to be bounded by interval values, regardless of distributions
within the range. Hence, they are interpreted as worst-case variations of the measurement
errors. In this context, the resulting point solution is not linked with any information about
the error distribution and is concerned with the worst-case situation.

Seeking the Y-local optimality is straightforward and directly driven by the problem context.
For instance, observation error sources are primarily evaluated through interval-described
uncertainty models. This evaluation allows for the use of the set estimator based on constraint
satisfaction. Given a set of measurement samples, the outcome of the set estimator (regarded
as a FSS in Eq. 4.18) then serves as a priori information to derive a “best” point solution.
According to the deterministic optimality concepts, the desired estimator is naturally Y-locally
optimal and, as a consequence, globally optimal.
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Optimal central estimator

Designing the optimal point estimator starts from the following assumption:

x∗ ∈ FSS, (4.32)

which is fulfilled conditioning on adequate interval bounding for measurement errors. For
example, Eq. 4.20 shows the case where the outcome of the set estimator shall be used.

Denoting the desired estimator as x̂c, the worst-case error in the state domain can be
expressed as

∥εc∥ := ∥x∗ − x̂c∥ ≤ max
x∗∈FSS

∥x∗ − x̂c∥. (4.33)

It follows that x̂c yields Y-locally optimality and, naturally, global optimality:

x̂c = arg min
x∈Rm

max
x∗∈FSS

∥x∗ − x∥. (4.34)

The interpretation is as follows. Considering all candidates of truth being within FSS, x̂c
leads to the minimum-achievable worst-case estimation error. It is the Chebyshev center of
FSS by definition (cf. Eq. 2.8):

x̂c = cen(FSS), (4.35)

and the corresponding worst-case error can be interpreted as the Chebyshev radius of FSS (cf.
Eq. 2.9), i.e., maxx∗∈FSS ∥x∗ − x̂c∥ = rad(FSS). Thereby, the estimation error of the desired
central estimator can be upper bounded by

∥εc∥ ≤ rad(FSS). (4.36)

It is noteworthy that the proposed estimator does not rely on any assumptions regarding
the distributions of measurement errors. Instead, it depends entirely on the a priori FSS,
which captures the uncertainty in the state domain propagated from interval-described un-
certainties at the measurement level. This approach ensures optimality in minimizing the
worst-case estimation error. The shape of the FSS defines the estimation error bounds, while
the Chebyshev radius of FSS provides a scalar measure of these bounds.

The following properties of the central estimator regarding the convexity of FSS are ob-
served:

� If FSS forms a convex set, Eq. 4.34 constitutes a convex optimization problem where an
optimal and unique solution is achievable.

� If FSS is non-convex, the point solution might not reside within the FSS.

Thus, the set-based central estimator is particularly practical in the case of convex FSS, for
instance, when using the outcome of the set estimator based on constraint satisfaction. If the
scenario is different, the convexity of the FSS should be carefully examined.

Suboptimal central estimator

Finding the Chebyshev center of a set may be a difficult and typically intractable problem,
with two exceptional cases (Eldar et al., 2008):

� When the set is polyhedral;

� When the set is finite.
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Fortunately, the set solution Ps from the set estimator based on constraint satisfaction, cf.
Eq. 4.18, satisfies these requirements and, hence, can provide an optimal point solution.

In certain scenarios, a suboptimal estimator may be of particular interest for practical
reasons. For example, real-time processing often requires high computational efficiency, which
can be limited by the capabilities of onboard hardware. Therefore, instead of computing the
Chebyshev center of the exact FSS, it is preferable to seek the center of the outer approximation
of FSS, denoted by S, such that FSS ⊆ S. The desired outer approximation remains convex
and, hence, is applicable to Eq. 4.34:

x̂′
c := arg min

x∈Rm
max
x∗∈S

∥x∗ − x∥ = cen(S). (4.37)

Some properties of x̂′
c may be noticed:

� It is contained in S;

� It does not necessarily coincide with the optimal central estimator x̂c;

Furthermore, if FSS is associated with a probability P (x∗ ∈ FSS), i.e., the probability that
the truth is covered by FSS, it is easy to show that the probability associated with the outer
approximated set is no smaller than that associated with FSS:

FSS ⊆ S ⇒ P (x∗ ∈ FSS) ≤ P (x∗ ∈ S). (4.38)

In complex systems, the set estimator based on constraint satisfaction may not be directly
usable, or multiple set solutions must be estimated, contributing to the final FSS. Subse-
quently, the obtained FSS may be non-convex. To address this, the exact non-convex FSS in
Eq. 4.34 can be replaced with its outer convex approximation to make the problem solvable.

The outer approximation can take various forms, such as:

� The convex hull of FSS for non-convex FSS: conv(FSS).

� The axis-aligned interval bounding box containing FSS: [xs], referred to as minimum
volume outer box in literature such as Milanese and Vicino (1991).

� Other regular-shaped sets that circumscribe FSS. For instance, researchers have investi-
gated ellipsoids (Schweppe, 1968; Kurzhanskiy and Varaiya, 2007), zonotopes (Le et al.,
2013; Scott et al., 2016), parallelotopes (Chisci et al., 1996), etc., in various problems.

Specifically, in the case of axis-aligned interval bounding box S = [xs], the point solution
can be computed state-wise as the center of each interval component of [xs]:

x̂′
c,i := arg min

x∈Rm
max
x∗∈S

∥x∗
i − xi∥

= cen([xs,i])

= cen
([

min
x∈FSS

xi, max
x∈FSS

xi

])
for i = 1, ...,m,

(4.39)

where the subscript i represents the i-th component of the variable.

Demonstrative example

The two-dimensional positioning example from Sec. 4.3.1 is revisited to elucidate the features
of the set-based central estimator.
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The FSS is determined using the set estimator based on constraint satisfaction, and the
optimal central estimator computes for a point solution as the Chebyshev center of FSS. In
Fig. 4.3(a), various point solutions (shown as colored dots) are obtained for varying interval
radii, and the corresponding metrics are given in Tab. 4.3 (i.e., estimation errors and error
bounds). Notably, when the smallest polytope fails to encompass the truth, the worst-case
error bound does not upper bound the position error, emphasizing the importance of adequate
interval bounding for measurement errors.

(a) Result of optimal set-based central estimator (b) Result of suboptimal set-based central estimator

Figure 4.3: A demonstrative example for the set-based central estimator. The solutions are obtained using
different observation interval bounds.

Table 4.3: Numerical results of the set-based central estimators in the demonstrative example. Three feasible
solution sets, determined using different interval bounds, are fed into the optimal and suboptimal set-based

central estimators, corresponding to various confidence levels under the Gaussian assumption.

Parameter Feasible solution set
Polytope 1 Polytope 2 Polytope 3

Interval radius ∆ 4.708 3.662 2.226
Optimal central estimator

Estimation error ∥ε∥ 2.270 2.149 2.059
Worst-case error bound 5.561 4.190 2.013

Suboptimal central estimator (state-wise)
Estimation error (|ε1|, |ε2|) 0.355, 1.872 0.323, 1.885 0.073, 1.903
Worst-case error bound (x1, x2) 5.314, 4.447 4.064, 3.153 1.996, 1.376

Confidence level 1 − α 1 − 10−5 1 − 10−3 1 − 10−1

In scenarios where the interval bounds are set unrealistically narrow, the FSS might become
empty, preventing the derivation of a point solution from the central estimator. This is a
different behavior from the classical least-squares estimator that will, in all cases, lead to a
point solution. Unlike the classical least-squares estimator, which can, in all cases, provide a
point solution, the set-based central estimator exhibits robustness against outliers since the
estimation will not be biased severely.

Re-consider this example within the probabilistic framework (as in Tab. 4.2). It is observed
that the smallest polytope reflects the lowest confidence level 1 − α with the worst bounding
probabilities for interval bounds and vice versa. This observation can be interpreted as follows:
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The higher the bounding probabilities of the interval bounds are, the more confi-
dence we have when taking the Chebyshev radius of FSS as the estimation error
bound for the set-based central estimator.

Suboptimal point solutions can be computed from the axis-aligned bounding box containing
FSS, cf. Eq. 4.39, shown in Fig. 4.3(b). The estimation errors and error bounds are summarized
in Tab. 4.3, which are slightly different from optimal solutions. Although it appears, in this
case, that the suboptimal solutions are more accurate, the tendency is not conclusive and
can vary from time to time. Nevertheless, the suboptimal central estimator is advantageous
in computational efficiency as it requires only a sorting function rather than solving a two-
dimensional Chebyshev center problem.

4.3.3 Set-constrained least-squares estimator

Introduction

Consider a scenario where measurement errors are known to be bounded by interval values,
which may or may not be associated with probabilities. Additionally, an “overbounding”
variance is provided. A representative example is the residual tropospheric error. Traditional
integrity methods treat such errors stochastically, assuming that they are overbounded by
Gaussian distributions with inflated variances that are computed from extensive historical
datasets. In contrast, Sec. 3.2 presents an adequate interval bounding approach, supported by
experimental analysis.

Within this context, the objective is to develop an estimator that yields the “best” point
solution by incorporating the following aspects:

� Assurance of componentwise interval bounds for measurement errors.

� Retention of the least-squares principle.

� Availability of a sufficiently accurate initial position estimate to ensure valid lineariza-
tion.

These factors motivate the formulation of the set-constrained least-squares (SCLS) estimator.

Considering the model in Eq. 4.2 and Eq. 4.17, the desired estimator can be formulated as:

minimize (y − A x)TΣ−1(y − A x),
subject to x ∈ FSS,

(4.40)

where the feasible solution set contains all admissible solutions compatible with interval error
bounding for observations, hence forming a closed constrained region (i.e., a set constraint).

When determining the set constraint imposed by the set estimator based on constraint
satisfaction, the SCLS estimator is a special class of the inequality-constrained least-squares
(ICLS) estimator. The problem can be formulated as follows:

minimize (y − A x)TΣ−1(y − A x),

subject to BTx ≤ b, with B =
[

A
−A

]
, b =

[
y − e

−y + e

]
.

(4.41)

The polytope set constraint (Ps) is mathematically equivalent to these inequality constraints.
Therefore, any method used to solve a general ICLS problem is applicable to Eq. 4.41. The
remainder of this section focuses on Eq. 4.41 to maintain consistency and avoid introducing
unnecessary complexity in the context.
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Solving the SCLS problem

By definition, the SCLS problem is solved in two steps:

1. Defining the objective function (the weighted sum of squared residuals). In Fig. 4.4,
this objective function is represented by colored elliptical isolines centered around the
classical least-squares solution.

2. Transferring measurement-level intervals into the position domain linearly as a “hard”
set constraint. The truth is presumed to reside in the set constraint (FSS) with a certain
confidence, which is depicted by the black contour in Fig. 4.4.

(a) Example of inactive set constraint for SCLS (b) Example of active set constraint for SCLS

Figure 4.4: Conceptual sketch for an SCLS problem. Isolines of the objective function are plotted as colored
elliptical contours and set constraints as black polygons. The classical least-squares solution is enclosed by the
set constraint in Fig. 4.4(a), i.e., none of the inequality constraints is active. Hence, the resulting SCLS solution
is invariant from the least-squares solution. One constraint appears active in Fig. 4.4(b) as the least-squares
solution is located in the infeasible region. The SCLS solution is the projection of the unconstrained solution

onto the boundary of the set constraint (two connected red dots).

The optimal solution for the given SCLS problem is then the point within the set constraint
that minimizes the objective function. If the classical least-squares solution is contained
within the set constraint, it is accepted as the SCLS solution (Fig. 4.4(a)). If any inequality
constraints are active, the classical least-squares solution lies outside the set constraint, ne-
cessitating the search for an alternative point that is typically located at the boundary of the
set constraint (Fig. 4.4(b)).

The general ICLS estimator and consequently the desired SCLS can be regarded as convex
optimization problems where a quadratic function (the weighted sum of squared residuals) is
to be minimized subject to linear inequality constraints (Eq. 4.40) (Boyd and Vandenberghe,
2004). Techniques suitable for solving such problems include the simplex methods (e.g., active
set method) and interior point methods.

Several methods have been investigated to address specific questions that can be described as
ICLS problems. For example, Liew (1976) focused on identifying active constraints to convert
the ICLS estimator to an equality-constrained one; Geweke (1986) advocated a Bayesian
approach, which was later on extended and applied to GPS positioning with height constraints
by Zhu et al. (2005); Werner (1990) utilized the theory of generalized inversion and developed
a method yielding closed-form solutions; Peng et al. (2006) suggested merging multiple simple
inequality constraints into a single complex equality constraint in a least-squares problem;
Mead and Renaut (2010) formulated the box constraints as quadratic constraints, establishing
an unconstrained regularized least-squares problem applicable to hydrological problems; Yuan
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et al. (2020) adapted the ICLS problem into a corresponding linear complementarity problem
for estimating LEO-GPS receiver differential code bias (DCB).

However, challenges persist in uncertainty qualification due to the statistical limitations
of the estimator imposed by inequalities (Werner, 1990), which is crucial for their usage in
engineering applications. For example, the VCM of the SCLS estimation is assessed using
the converted equality-constrained least-squares estimator in Liew (1976); O’Leary and Rust
(1986) examined the confidence interval estimation for a least-squares estimator under a non-
negative constraint; Zhu et al. (2005) explored the posterior distribution and the mean square
error (MSE) matrix of the parameters; Roese-Koerner et al. (2012) proposed a framework for
the quality description of SCLS estimates via the Monte Carlo method, emphasizing that accu-
mulation of densities at the constrained boundaries is more realistic to account for the impact
of constraints. However, there are two main concerns with respect to existing approaches:

� Potentially unrealistic uncertainty modeling. For example, the treatment of the trun-
cated probability mass may lead to over-optimistic results;

� Potential unsuitability to the set-constrained estimation problem. For instance, con-
straints are oftentimes fixed regardless of observation geometry and uncertainty, which
is not in line with the current problem of interest.

To overcome these limitations, the confidence region is calculated using set theory, rather than
focusing on the exact PDF. This is further elaborated in the following subsection.

Constrained confidence region

For a standard least-squares estimator, the uncertainty due to stochastic errors can be modeled
as a confidence ellipse E1−α associated with a confidence level 1 − α. Taking additionally the
set constraint (Ps) into account, we get a constrained confidence region for the SCLS estimator
as the intersection of the two sets:

Cc = E1−α ∩ Ps, (4.42)

which can be interpreted as the possible range of the unknown truth at the required probability.
The following arguments support its validity:

� The definition of SCLS is free of any distributional assumptions about the actual errors.

� Overbounding of the actual errors is deemed achievable using both approaches, i.e.,
stochastic and interval-based error bounding.

While implementing the second argument may rely on assumptions related to error distri-
butions (e.g., the overbounding variance, cf. Sec. 2.4.2), the obtained constrained confidence
region can be simply seen as the interaction of two estimators, namely, the least-squares esti-
mator and set estimator. Their estimation error bounds compensate for each other, leading
to a contracted confidence region that yields the required probability of safety:

P (x∗ /∈ CC) ≤P (x∗ /∈ Ps ∨ x∗ /∈ E1−α)
≤P (x∗ /∈ Ps) + P (x∗ /∈ E1−α)−
P (x∗ /∈ Ps) · P (x∗ /∈ E1−α)

≤αp + αe,

with
{
P (x∗ /∈ Ps) ≤ αp,

P (x∗ /∈ E1−α) ≤ αe,
(4.43)

which implies that the probability of CC not covering the truth is no greater than α = αp+αe.

This inequality of probabilities eliminates the need to examine the independence of the two
events (x∗ /∈ Ps and x∗ /∈ E1−α), despite the potential conservatism (P (x∗ /∈ Ps)·P (x∗ /∈ E1−α)
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is neglected). Subsequently, a tradeoff should be considered concerning the allocation of
confidence requirements, i.e., αp and αe, which would highly affect the shape of the resulting
constrained confidence region. This feature is further explored in the comparative analysis in
Sec. 4.4.3.

A highly suitable scenario for applying the SCLS estimator is when deterministic interval
error bounds are available. In this case, the intervals do not necessarily have any probabilistic
interpretations. Consequently, Eq. 4.43 can be simplified to the following form:

P (x∗ /∈ E1−α) ≤ αe ⇒ P (x∗ /∈ CC) ≤ αe. (4.44)

(a) Constrained confidence region for Fig. 4.4(a) (b) Constrained confidence region for Fig. 4.4(b)

Figure 4.5: Conceptual sketch of the SCLS constrained confidence region for the examples in Fig. 4.5: The
confidence ellipses are shown as colored dashed contours corresponding to various confidence levels, centered
at the least-squares solution, and set constraints as the black polygons. The constrained confidence regions are
represented by the intersection of a dedicated ellipse and the polytope, depicted as light blue areas. In both

cases, the set constraint is active when determining the constrained confidence region.

Fig.4.5 are conceptual sketches of the constrained confidence region for Fig. 4.4. The poly-
tope set constraint is obtained by the set estimator in black contours. In Fig. 4.5(a), the
standard least-squares solution is depicted in red, which overlaps with the SCLS solution be-
cause the set constraint appears inactive when determining the point solution. Meanwhile,
the SCLS solution differs from the least-squares solution in Fig. 4.5(b) due to the active set
constraint. In both cases, the set constraint is active in determining the constrained confidence
region, which remains a convex set and is no greater than either the polytope or the ellipse.

With the constrained confidence region CC , a scalar measure of the estimation error bound
can be defined as the maximum possible Euclidean distance between the estimated point (x̂)
and any admissible point of the truth (x). This can be expressed mathematically as:

∥εSC∥ ≤ max
x∈CC

∥x̂ − x∥, (4.45)

indicating the worst-case estimation error at a specified confidence level. It is noticed that

rad(CC) ≤ ∥εSC∥ ≤ diam(CC). (4.46)

This means that the worst-case estimation error of the SCLS estimator is lower bounded by
the radius of the constrained confidence region while upper bounded by its diameter.



92 4 State estimation and error bounding

4.4 Comparitive analysis of different estimators

This section aims to compare the investigated estimators from different aspects. The analysis
begins with a qualitative comparison of their characteristics to provide a comprehensive in-
sight into these estimators, followed by a theoretical evaluation for a simplified one-dimensional
problem. Finally, a two-dimensional positioning problem is designed to evaluate their perfor-
mance through statistical analysis, focusing on estimation accuracy and error bounding.

4.4.1 Qualitative comparison

Tab. 4.4 provides a detailed overview of the characteristics of the classical least-squares esti-
mator, set estimator, set-based central estimator, and set-constrained least-squares estimator:

Confidence region. All estimators are capable of addressing both stochastic and systematic
uncertainties, thus defining corresponding confidence regions. The least-squares estimator ac-
counts for stochasticity with a confidence ellipse, and the remaining systematics are addressed
by the interval extension of the least-squares estimator; thus an extended confidence region is
deemed adequate. The set, central, and SCLS estimators define their confidence regions via
interval mathematics and set theory, with measurement-level interval bounds fundamental to
their operation.

Optimality. The least-squares estimator is optimal under the best linear unbiased estimation
(BLUE) principle, offering the least variance of the estimate. If the variance of observations
is only known with an upper-bounded value and interval bounds are available, the SCLS
estimator can provide a modified least-squares solution that guarantees a minimally acceptable
performance. This modification enhances the robustness of the least-squares estimator. In
contrast, the set-based central estimator is optimal in terms of estimation error bounding by
leveraging the set estimator based on constraint satisfaction.

Estimation error bounding. For both the least-squares estimator and set-based central esti-
mator, the estimation error bound can be simply determined by the Chebyshev radius of their
confidence regions. For the set estimator, this is the diameter of the polytope set solution, and
for the SCLS estimator, it is the maximum Euclidean distance between the estimated point
and the boundary of the confidence region.

4.4.2 Theoretical evaluation for a one-dimensional problem

To better understand the estimators’ behavior, a simplified one-dimensional scenario based
on the linearized model in Eq. 4.2 is considered. In this case:

� The geometry matrix (vector of 1 × n) A = [1 ... 1];

� y∗ = A x∗ = 0, i.e., the unknown truth is assumed to be at the origin, and the initial
guess of the state is overlapped with the truth;

� Observation errors e follow independent and identical continuous distributions with vari-
ances σ2

i = 1, i.e., Σ = P−1 = In. Accordingly, identical interval bounds [∆s,∆s] are
defined and assigned to observations.

In this case, each estimator behaves as follows:
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Table 4.4: Comparison of the properties of different estimators and associated uncertainty modeling.

Property Estimator
Least-squares estimator Set estimator based on Set-based central Set-constrained least-squares

constraint satisfaction estimator3 estimator (SCLS)3

Estimation
principle

Minimize
(y − A x)TΣ−1(y − A x)

B x ≤ b, with

B =
[

A
−A

]
,b =

[
y − e

−y + e

] Minimize
maxx∗∈FSS ∥x∗ − x∥

Minimize
(y − A x)TΣ−1(y − A x),
subject to x ∈ FSS

Solution type Point Set Point Point

Estimation
solution

x̂ = (ATPA)−1ATPy Ps = { x ∈ Rm | B x ≤ b} x̂ = cen(FSS) Analytical expression of x̂
not available

Observation e is composed of stochastic error components (v), and remaining systematic error components (s).
errors

Observation
uncertainty
modeling1

Stochasticity:
E(v) = 0, D(v) = Σ = P−1

Systematics:
[s] = F · [d]

Stochasticity:
[vi] = [−kασi, kασi],

if v ∼ N (0,Σ)
Systematics:

[s] = F · [d]

Stochasticity:
[vi] = [−kασi, kασi],

if v ∼ N (0,Σ)
Systematics:

[s] = F · [d]

Stochasticity:
E(v) = 0, D(v) = Σ = P−1 and

[vi] = [−kασi, kασi], if v ∼ N (0,Σ)
Systematics:

[s] = F · [d]

Confidence Stochasticity:
Confidence ellipse E1−α

Systematics: Zonotope ZD

Combined:
Extended confidence region CE

Confidence zonotope Zs
2 FSS3 Constrained confidence region CC

region

Estimation Stochasticity: ∥ε∥ ≤ rad(E1−α)
Combined: ∥ε∥ ≤ rad(CE)

∥ε∥ ≤ diam(Ps) ∥ε∥ ≤ rad(FSS) ∥ε∥ ≤ maxx∈CC ∥x̂ − x∥ ≤ diam(CC)
error bound1

1 The error bounds, especially with respect to stochasticity, may be associated with probabilities.
2 A confidence zonotope is not a statistically-viewed confidence region but is defined as the nominal solution for the set estimator.
3 The FSS is a key input to the set-based central estimator and set-constrained least-squares estimator. An example is the outcome of the set estimator. The

determination of FSS may vary in complex systems, such as a “combination” of multiple set solutions, which is further discussed in Chap. 5.
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� The least-squares estimator degenerates into a mean estimator:

x̂LS := (ATPA)−1ATP y = Σn
i=1yi
n

. (4.47)

� The set estimator degenerates into an interval estimator related to the sample range:

[x̂] = [max(y) − ∆s,min(y) + ∆s]. (4.48)

� Taking the set solution [x̂] from Eq. 4.48 as the input FSS, the set-based central estimator
degenerates into a midpoint estimator, or termed mid-range estimator:

x̂c = 1
2 · (max(y) + min(y)) , (4.49)

conditioning on [x̂] ̸= ∅.

� The set-constrained least-squares (SCLS) estimator can be expressed with respect to the
least-squares and set estimators:

x̂SC =


max(y) − ∆s, i.e., lower bound of [x̂],
x̂LS ,
min(y) + ∆s, i.e., upper bound of [x̂],

if x̂LS ≤ max(y) − ∆s,

if x̂LS ∈ [x̂],
if x̂LS ≥ min(y) + ∆s,

(4.50)

conditioning on [x̂] ̸= ∅.

Consequently, it becomes possible to evaluate and compare the estimators qualitatively:

� Statistical property. The classical least-squares estimator is optimal with the least
variance of estimation and unbiasedness thanks to the best linear unbiased estima-
tion principle. In contrast, the set-based central estimator can provide an unbiased,
minimum-variance solution for uniformly distributed errors. It, as well as the set esti-
mator, may be regarded as L estimators under certain conditions since they depend on
the maximum and minimum values of the samples. The SCLS may be regarded as a
compromise between the least-squares estimator and set-based central estimator.

� Robustness. None of the least-squares estimator, the set estimator, nor the set-based
central estimator in the current problem is robust. They are sensitive to outliers. The
set estimator and the set-based central estimator may return an empty solution in the
presence of extreme outliers. In contrast, the classical least-squares estimator still out-
puts a point solution but loses its unbiasedness feature in the same situation. While the
SCLS is desired to enhance the robustness of the classical least-squares estimator, it can
benefit from the additional set constraint if and only if the interval error bounding is
adequate (e.g., high confidence).

4.4.3 Statistical evaluation for a two-dimensional problem

This subsection uses a Monte Carlo approach to conduct a statistical evaluation, focusing on
the two-dimensional positioning scenario introduced in Sec. 4.3.1. Various observation error
models are employed to generate datasets (four measurements at each of 105 epochs).

Scenario definition. Five different scenarios are evaluated. Fig. 4.6 displays the simulated
errors (black dotted curves) and established error bounds for different estimators in Scenarios
2-5 (blue-colored for interval bounds and red solid curves for Gaussian bounds), compared to
the standard normal distribution (Scenario 1, red dashed curves). All the error bounds are
adequate; however, they may be pessimistic for certain probabilities inherently.
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� Scenario 1: Observation errors are identically and independently normally distributed,
i.e., e ∼ N (0, I). Interval bounds for the set estimator are determined at a confidence
level 1 − α, specifically [−kα, kα] (cf. Eq. 4.27).

� Scenario 2: Observation errors follow a uniform distribution e ∼ U[−3,3]. Hence, all
generated samples lie within the interval bounds [−3, 3], and the VCM of the observations
is computed as

Σ = (3 − (−3))2

12 · I = 3 · I. (4.51)

However, Eq. 4.51 is not adequate to establish an overbounding Gaussian distribution,
as shown in Fig. 4.6(a). The standard deviation should be inflated to achieve CDF
overbounding, cf. Sec. 2.4.2. The following evaluation adopts the overbounding sigma
as σob = 2.3293.

� Scenario 3: Observation errors follow identically and independently long-tailed dis-
tributions. A student’s t-distributed error model e ∼ t(ν = 10) is used to represent
this scenario. An overbounding sigma is obtained σob = 1.9307. For the set estimator,
the interval bounds are determined as [−kα − bt−N , kα + bt−N ], where the term bt−N is
defined for overbounding the tail distribution:

bt−N = Q−1
t(ν=10)

( 1
4 × 105

)
−Q−1

( 1
4 × 105

)
≈ 4.2474, (4.52)

where Q−1(P ) and Q−1
t(ν)(P ) denote the (1 − P ) quantile of a normal distribution and a

student’s t-distribution of ν degree of freedom.

� Scenario 4: Observation errors are modeled as e = e1 + e2. The component e1 follows
a Gaussian distribution e1 ∼ N (0, 0.52 · I), and e2 follows a uniform distribution e2 ∼
U[−3,3]. Interval bounds for the set estimator are computed as [−0.5 ·kα − 3, 0.5 ·kα + 3].

� Scenario 5: Observation errors simulate a hybrid model e = e1 + e2. The component
e1 follows a normal distribution e1 ∼ N (0, I). The component e2 is a deterministic bias
known to be upper bounded by an interval [−3, 3]. In the MC trials, this component
is set to e2 = 3 for generating the observation samples. The set estimator uses interval
bounds [−kα − 3, kα + 3].

Furthermore, three scenarios are defined for the SCLS estimator based on the determination
of set constraints, which utilizes observation interval bounds and the set estimator based on
constraint satisfaction:

� Scenario a: The confidence requirement α is equally allocated to the least-squares and
set estimators (αp = αe).

� Scenario b: More stringent confidence requirement for the set estimator (αp < αe).

� Scenario c: A deterministic set constraint is specified, i.e., the set estimator is not
associated with any confidence requirement.

The confidence level is set to 1 − α = 1 − 10−5.

The estimation error bounds are computed using the formulas in Tab. 4.4. Tab. 4.5 summa-
rizes the interval bounds used for each estimator, with specific details for the SCLS estimator
(e.g., the confidence requirement allocation). Particularly, interval bounds in Scenario c are
determined by the maximum value of each observation in the MC trials.

Comparison of the Set, Central, and Least-Squares Estimators. The following performance
metrics are focused on:
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(a) Scenario 2 (b) Scenario 3

(c) Scenario 4 (d) Scenario 5

Figure 4.6: Scenarios of observation error modeling for statistical evaluation in the form of folded CDFs. Four
subfigures show Scenarios 2-5, where the interval error bounds and Gaussian error bounds are compared with
the simulated errors and standard normal distribution (i.e., Scenario 1). For illustration in subfigures (b) - (d),
interval error bounds are shown as a combination of two Gaussian distributions: N (−∆, σ2

ub) (negative side of
the folded CDF) and N (∆, σ2

ub) (positive side of the folded CDF), with [−∆,∆] for the interval-bounded error
component and σub for the stochastic error component.

� 95% and 99.7% percentiles of estimation errors, which measure accuracy. Three point
estimators are evaluated. Smaller values represent better accuracy.

� Maximum value of the estimation error bounds, comparing four estimators (note: the
least-squares estimator has a fixed estimation error bound that depends on the required
confidence level). An estimator with smaller error bounds is preferred.

These metrics are assessed based on the ECDFs for estimation errors and their error bounds
in Fig. 4.7.

Tab. 4.6 ranks the performance of each estimator across the evaluated scenarios. The key
insights are as follows:

� In an ideal situation, such as Scenario 1, where the systematic effects are negligible and
the stochastic errors are perfectly modeled (i.e., Gaussian), pure stochastic handling
shows superior performance in both accuracy and error bounds. This supports the con-
clusion that pure stochastic handling through Gaussian overbounding and least-squares
estimator is optimal under such conditions.

� When systematics contribute to a long-tailed error distribution (Scenario 3), stochas-
tic approaches continue to outperform other approaches. Signal-In-Space Range Error
(SISRE) exhibits such behaviors, as shown in Fig. 2.6(a).

� For errors yielding interval bounds, deterministic approaches become advantageous, e.g.,
Scenario 2. The set-based central estimator improves the 99.7% accuracy and error
bounding compared to the least-squares estimator.
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(a) Accuracy comparison for Scenario 1 (b) Error bound comparison for Scenario 1

(c) Accuracy comparison for Scenario 2 (d) Error bound comparison for Scenario 2

(e) Accuracy comparison for Scenario 3 (f) Error bound comparison for Scenario 3

(g) Accuracy comparison for Scenario 4 (h) Error bound comparison for Scenario 4

(i) Accuracy comparison for Scenario 5 (j) Error bound comparison for Scenario 5

Figure 4.7: Statistical evaluation for different estimators across five scenarios. 105 Monte Carlo trials are
conducted for each scenario. The ECDFs for estimation errors and error bounds are shown.
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Table 4.5: Interval bounds used in the statistical evaluation for different estimators.

Estimator Interval bounds
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Least-squares N/A1 N/A1 N/A1 N/A1 3.0

Set & set-based central 4.7081 3.0 8.9555 5.3541 7.7081

SCLS Scenario a 4.8475 N/A2 9.0949 5.4238 Set: 7.8475
(αp = 5 · 10−6) LSQ: 3.0

Scenario b 5.1577 N/A2 9.4051 5.5789 Set: 8.1577
(αp = 1 · 10−6) LSQ: 3.0

Scenario c3


4.7
4.3
4.3
4.2




3.0
3.0
3.0
3.0




8.6
7.8
9.7
9.4




3.5
3.6
3.5
3.7

 Set:


7.3
7.3
7.3
7.1


LSQ: 3.0

1 Interval error bounding is not applied and, hence, “N/A” is indicated.
2 Interval bounds are adequate in the case of uniform distributions and, hence, not necessarily associated

with probabilities, making these two scenarios invalid.
3 The interval bounds are determined by the maximum value of the samples.

� Scenario 4 represents a more complex and realistic situation with stochastic errors plus
remaining systematic errors that dominate the total budget. The overbounding Gaussian
distribution tends to pessimistic overbounding at tail probabilities due to excessive kur-
tosis, as shown in Fig. Fig. 4.6(c). In contrast, the interval error bounds provide tighter
overbounding, and subsequently, the central estimator demonstrates smaller estimation
error bounds than the least-squares estimator.

� When biases are only upper-bounded by intervals, interval bounds can still be integrated
into the least-squares estimator to enhance estimation error bounding (cf. Sec. 4.2.1).
Interstingly, in Scenario 5, the central estimator outperforms the least-squares estimator
in terms of accuracy, while the least-squares estimator retains an advantage in error
bounding. This illustrates the complementary nature of the two approaches in handling
hybrid error models.

� The set estimator shows consistent error bounding performance relative to the central
estimator, i.e., it offers error bounds that are double those of the central estimator.
Hence, suggestions on applying the central estimator drawn from the evaluation hold
for the set estimator as well.

Analysis for SCLS. In this evaluation, the accuracy performance of SCLS remains unchanged
across three scenarios (a, b, and c) for each observation error model. This is due to two factors:
(i) the simulation assumes fault-free, where the observation errors are adequately bounded,
and (ii) a fairly strict confidence level for estimation. Consequently, the set constraint is not
active in determining point solutions. The corresponding ECDFs are displayed in Fig. 4.7 (a),
(c), (e), (g), and (i) for Scenarios 1-5.

In contrast, the estimation error bounds vary depending on the scenarios, influenced by
both the observation error bounding (Scenarios 1-5) and confidence requirement allocation
(Scenarios a-c). Key observations include:
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Table 4.6: Performance comparison for different estimators in terms of estimation accuracy and
error bounds. The number indicates the performance ranking under various scenarios. The best-
performing estimator in each case is highlighted in bold. SCLS under Scenario c is involved in the

comparison.

Scenario Observation
errors

Performance
metric

Estimator
LSQ set central SCLS

1 e ∼ N (0, I) accuracy (95%) 1 / 3 1
accuracy (99.7%) 1 / 3 1

error bounds* 1 4 3 2
2 e ∼ U[−3,3] accuracy (95%) 1 / 3 1

accuracy (99.7%) 2 / 1 2
error bounds* 4 3 1 2

3 e ∼ t(ν = 10) accuracy (95%) 1 / 3 1
accuracy (99.7%) 1 / 3 1

error bounds* 1 4 3 1
4 e = e1 + e2 with accuracy (95%) 1 / 3 1

e1 ∼ N (0, 0.52 × I) accuracy (99.7%) 1 / 3 1
e2 ∼ U[−3,3] error bounds* 3 4 2 1

5 e = e1 + e2 with accuracy (95%) 2 / 1 2
e1 ∼ N (0, I) accuracy (99.7%) 2 / 1 2
e2 ∈ [−3, 3] error bounds* 2 4 3 1

* The estimation error bounds for set, central, and SCLS estimators are compared with respect
to their maximum value.

� SCLS consistently benefits from both central and least-squares estimators, showing mod-
erate performance in terms of accuracy and error bounds for all scenarios. It balances the
strengths of both approaches without significantly sacrificing any performance metric.

� The confidence requirement allocation for SCLS directly impacts the interval bounds
used for the set constraint, which in turn affects the SCLS error bounds. For instance,
in Scenario 4 with dominant systematic errors, Scenario b (with the strictest confidence
requirement for the set constraint) results in the largest interval and, subsequently, the
largest estimation error bound. In Scenarios a and c, smaller interval bounds result in
correspondingly reduced error bounds, visible in the ECDFs of estimation error bounds
in Fig. 4.7(h). In other cases, the set constraint may be inactive in error bounding, and,
as a result, the SCLS error bounds are solely dependent on the confidence requirement
allocated to the least-squares estimator.

� Deterministic interval bounds are recommended to be used in SCLS when available. In
Scenario c, interval bounds are derived from the maximum value of observation samples,
leading to smaller estimation error bounds compared to the other scenarios (a and
b). This finding is independent of observation error models. Particularly, Scenario 4
showcases the most notable improvement, as the other scenarios tend to overbound the
observation errors conservatively.

Concluding Remarks. Four estimators – the classical least-squares estimator, set estima-
tor, set-based central estimator, and set-constrained least-squares (SCLS) – were evaluated
and compared for a two-dimensional example. Since each estimator operates under differ-



100 4 State estimation and error bounding

ent assumptions regarding observation errors, their performance was analyzed across various
scenarios using metrics such as accuracy and error bounding.

The least-squares estimator excels in handling purely stochastic errors. In the case of
pure Gaussian-distributed errors and long-tailed distributed errors, using the least-squares
estimator with Gaussian overbounding led to better accuracy and error bounding compared
to the other estimators.

The set estimator based on constraint satisfaction provides a set solution using interval
error bounds in the observation domain rather than conventional point solutions. Its accuracy
was not evaluated, and the estimation error bounds, accounting for all possible set elements,
were not as small as those of the other estimators.

The set-based central estimator is designed to offer the minimum estimation error bounds
providing observational interval bounds. When using the outcome of the set estimator as in-
put (i.e., the feasible solution set (FSS)), it outperformed the classical least-squares estimator
in both accuracy and error bounding for uniformly distributed errors (i.e., with known inter-
val bounds) and hybrid errors dominated by interval-bounded components (e.g., significant
remaining systematic errors).

Furthermore, the proposed SCLS estimator, combining the strengths of the least-squares
principle with set constraints, demonstrated robust performance. Its effectiveness depends on
the observation error model and the confidence requirement allocation. When both are care-
fully balanced, SCLS offers a flexible and reliable solution, as evidenced in various scenarios.

In conclusion, each estimator has strengths tailored to specific error models, and the choice
of estimator should be aligned with the nature of the observation errors and the trade-off
between accuracy and error bounding.



5
Interval-based GNSS receiver autonomous

integrity monitoring

Classical GNSS integrity monitoring methods, including the (Advanced) RAIM, use residual-
based (RB) or solution separation (SS) methods for fault detection and exclusion (FDE).
While being widely implemented in aviation (RTCA/DO-229F, 2020; Joerger et al., 2012;
Blanch et al., 2019a), integrity concepts have not yet achieved a similar level of maturity for
land navigation. Recent years have seen investigations into detectors and estimators utilizing
different strategies to fill this gap, e.g., Blanch and Walter (2021) and Wendel (2022).

Interval or set-theoretic methods, representing uncertainty as intervals or sets, explore the
linear uncertainty propagation in localization problems, computing confidence zones in which
the user is claimed to be located with a given confidence or risk (Moore et al., 2009; Meizel
et al., 2002; Drevelle and Bonnifait, 2009). This chapter, partially stemming from prior
works (Su and Schön, 2022a; Su et al., 2023), aims to evaluate the interval or set-theoretic
methods within the integrity context and to develop a practical approach for autonomous
integrity monitoring. The remainder of this chapter first formulates the set-based detector,
evaluates its performance in a probabilistic context for benchmark examples, and compares it
to classical test theory-based methods. The second section focuses on the proposed interval-
based approach utilizing set-based FDE. The architecture is developed based on the evaluation
of the probability of loss of integrity (LOI), design of optimal estimator, and solutions to
Protection Level (PL) computation. Its performance is then evaluated and compared to
conventional approaches through analytical analysis and Monte Carlo simulation.

5.1 Set-based fault detection

5.1.1 Introduction

Fault detection (FD) and fault exclusion (FE) are critical for ensuring the reliability and safety
of complex systems across various domains, such as aerospace, process controls, automotive
and manufacturing, etc. (Katipamula and Brambley, 2005). In GNSS applications, a faulty
measurement or a satellite failure that may harm the navigation solution must be detected,
and subsequently, a procedure may be activated to identify and exclude the fault to maintain
a reliable navigation solution (Wang and Ober, 2009). Conventional techniques often rely
on stochastical approaches. For instance, the detection, identification and adaptation (DIA)
theory is widely adopted for data snooping in geodetic applications (Teunissen, 2018), and the
RB and SS detectors are utilized in the RAIM and ARAIM. Details on these two detectors
are provided in Sec. 2.4.3.
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Efforts concerning FDE for navigation integrity purposes over the past decades have focused
on two main methodological aspects:

� Reducing computation load by addressing certain issues related to FDE procedures;

� Exploiting detector characteristics to precisely model or tightly bound associated
probabilities.

For example, reducing the number of monitored fault modes can boost the computation ef-
ficiency of SS approach without substantially degrading the navigation performance (Walter
et al., 2014; Ge et al., 2017; Blanch et al., 2018; Wang et al., 2023). By formulating FDE as an
optimization problem of an underdetermined linear system, Yang and Sun (2020) applied the
least absolute shrinkage and selection operator and solved the problem relatively efficiently.
Zhang and Papadimitratos (2021) proposed to accelerate the FE function by focusing on spe-
cific subset pairs of interest. Moreover, greedy search-based approaches have been explored to
reduce the computational complexity when dealing with a large number of faults, applicable to
both GNSS standalone systems (Blanch et al., 2015b; Wendel, 2022) and multi-sensor fusion
scenarios (Zhu et al., 2023).

Concerning the second aspect, various studies aim at accurately determining the worst-case
fault that results in the largest possible integrity risk (Milner and Ochieng, 2011; Jiang and
Wang, 2014). Other efforts include refining the upper bounds for position error distributions
(Liu et al., 2022; Racelis and Joerger, 2022), and precisely evaluating the risks or optimizing
risk allocation (Blanch et al., 2010, 2013; Joerger and Pervan, 2016; Zhai et al., 2018).

Despite these advancements, traditional strategies predominantly rely on stochastic mod-
eling of measurement errors, using adapted or combined RB and SS detectors. Recently, the
set-based method, or named set-membership approach, has emerged as a promising alterna-
tive for FD. This approach explicitly computes the set of parameters or states consistent with
the measurements; a fault is declared to have occurred once a measurement is found to be
inconsistent with this set (Puig et al., 2007).

A number of studies have demonstrated the effectiveness of set-based detection across dif-
ferent fields. For example, approximating the parameter uncertainty by different classes of set
such as zonotopes (Ingimundarson et al., 2009; Samada et al., 2023), polytopes (Blesa et al.,
2012), ellipsoids (Watkins and Yurkovich, 1996) and parallelotopes (Kesavan and Lee, 2001),
set-based detection has been successfully implemented in wind turbine monitoring (Blesa
et al., 2011), sewer network monitoring in Barcelona (Puig and Blesa, 2013), and aerospace
applications (Pons et al., 2008). In the context of satellite navigation, Drevelle and Bonnifait
(2009) demonstrated the potential of set-based methods to enhance positioning performance.
Despite these developments, a rigorous formulation of set-based detection tailored to strict
integrity requirements remains an open question.

The remainder of this section presents a formal formulation of set-based detection for GNSS
positioning. This is followed by analytical evaluations within a probabilistic framework us-
ing benchmark examples, and a Monte Carlo assessment of two-dimensional scenarios. The
performance of the set-based method is analyzed and compared against classical detection
techniques, leading to a proposed enhancement through a novel weighting strategy for im-
proved robustness.

5.1.2 Basics of set-emptiness method

The detection problem for GNSS navigation can be modeled as follows:

y = Ax + e + f , (5.1)
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where y, A, x and e are introduced in Eq. 4.2. The additional n× 1 vector of unknown faults
f represents the unmodeled biases to be detected. f = 0 if the measurements are fault-free.

To construct a detector, a vector of thresholds ±∆d or intervals [−∆d,∆d] is defined for
an acceptable amount of observation errors. The primary objective is to identify the following
conditions:

|e| ≤ ∆d, while (5.2)
|ej + fj | > ∆d,j if fj ̸= 0, with ej ∈ e, fj ∈ f ,∆d,j ∈ ∆d. (5.3)

This is a straightforward way of detecting faulty measurements using intervals, aligning with
the direct test introduced in Puig (2010). However, The errors e are not accessible at the
measurement level in GNSS problems. To address this, Eq. 5.2 is reformulated as

−∆d ≤ e ≤ ∆d

⇒ Ax − ∆d ≤ Ax + e ≤ Ax + ∆d,
(5.4)

and Eq. 5.3 is rewritten as

ej + fj > ∆d,j or ej + fj < −∆d,j

⇒ Ajx + ej + fj > Ajx + ∆d,j or Ajx + ej + fj < Ajx − ∆d,j

if fj ̸= 0, with ej ∈ e, fj ∈ f ,∆d,j ∈ ∆d,
(5.5)

where Aj denotes the j-th row of matrix A.

The desired detector should differentiate between fault-free and faulty conditions:

� Fault-free case (f = 0). Substituting y = Ax + e in Eq. 5.4 leads to the following
inequalities:

Ax − ∆d ≤ y ≤ Ax + ∆d ⇒
{

Ax ≤ y + ∆d

−Ax ≤ −y + ∆d
. (5.6)

� Faulty cases (f ̸= 0). The inequalities in Eq. 5.5 are reformulated as

y ≰ Ax + ∆d or y ≱ Ax − ∆d

⇒ −Ax ≰ −y + ∆d or Ax ≰ y + ∆d,
(5.7)

where ≰ and ≱ denote the violation of component-wise vector inequalities, cf. the
corresponding entry in the Notations and Nomenclatures section for details.

These inequalities represent the expected binary outcomes of fault detection, essentially
checking the validity of Eq. 5.6. Notably, the detection operates in the state domain (x ∈ Rm).

Solving the constraint satisfaction problem in Eq. 5.6 results in a polytope set solution:

Pd(B,b) =
{

x ∈ Rm
∣∣∣∣∣Bx ≤ b,B =

[
A

−A

]
∈ R2n×m,b =

[
y + ∆d

−y + ∆d

]
∈ R2n

}
. (5.8)

Detection occurs when the detection polytope is empty (Pd = ∅), signifying that no feasible
solution to the constraint satisfaction problem is available. Pd can be interpreted as an
“inconsistency area” defined by specific interval constraints and satellite geometry.

Geometrically, each interval forms a “slab” (Sj), perpendicular to the j-th LOS:

Sj = {x ∈ Rm | Ajx ∈ [yj − ∆d,j , yj + ∆d,j ]}. (5.9)
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It follows that Pd is the intersection of all these “slabs”.

Similar to Eq. 4.19, a confidence zonotope can be obtained in an ideal situation of error-free
(e = 0) and fault-free (f = 0), regarded as a nominal solution:

Zd = {x ∈ Rm | Ax ≤ y∗ + ∆d,−Ax ≤ −y∗ + ∆d}
= {x ∈ Rm | A(x − x∗) ≤ ∆d,−A(x − x∗) ≤ ∆d} ,

(5.10)

which is centered at the unknown true position x∗.

The geometrical difference of Pd and Zd indicates the impact of observational consistency
in the position domain and may be quantified via an “inconsistency measure” based on their
relative volume V olr (Dbouk and Schön, 2020):

V olr = V olZ − V olP
V olZ

, (5.11)

where V olZ and V olP denote the volume (area) of the zonotope and polytope, respectively.
A lower inconsistency measure is expected for higher reliability of the solution.

Fig. 5.1 conceptualizes the two-dimensional slabs and detection polytopes in various scenar-
ios:

(a) Nominal solution set as zonotope (b) Non-empty polytope (c) Empty polytope

Figure 5.1: Conceptual sketch of the detection polytope (blue), represented as the intersection of two-
dimensional slabs.

� Fig. 5.1(a) depicts the nominal zonotope solution Zd;

� In reality, e ̸= 0 as in Figure 5.1(b), where Pd is deformed and shifted from the nominal
situation to the indicated direction, dependent on both geometry and measurement
errors.

� An unknown fault occurs in Fig. 5.1(c) and results in no intersection (detection trig-
gered), i.e., no feasible point solution for the inequalities in Eq. 5.6.

This thesis takes set emptiness as the test criterion, alleviating the need for scalar test thresh-
olds typical of classical testing theory-based approaches.

5.1.3 Performance evaluation: Benchmark problem

Introduction

The set-based detector is designed to address the fundamental question:
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Are the measurements considered to be self-consistent, given the interval-based un-
certainty modeling?

Evaluating the detection performance entails answering two key questions:

1. How likely is it that the detection is mistakenly triggered by properly modeled errors?

2. What is the failure rate of detection in the presence of unmodeled or unbounded faults?

Statistical hypothesis testing provides a framework for checking the statistical significance
of information about parameters (Koch, 1999). For our detection problem of interest, the
following hypotheses are defined:

� Null hypothesis (H0). All observation error components are exhaustively modeled,
and the resulting interval bounds are adequate.

� Alternative hypothesis (HA). In addition to interval-bounded error components,
unmodeled or unbounded faults exist and may bias the state estimator.

The task of detection, therefore, becomes deciding whether to reject the null hypothesis in
favor of the alternative. This decision-making process involves assessing the risk of two types
of errors (Teunissen, 2006):

� Type I error occurs if H0 is rejected erroneously and it is actually true, alternatively
named false alert (FA).

� Type II error occurs due to the failure of rejecting H0 when it is false, also known as
missed detection (MD).

Minimizing Type I errors ensures that FA is rare, meaning the detector does not overreact
to “normal” variations due to properly modeled errors. Conversely, reducing Type II errors
enhances the detector’s ability to identify actual faults, thus decreasing the chances of MD.

However, minimizing both error types simultaneously is impossible due to their inherent
trade-off. Furthermore, in the context of GNSS integrity, both the magnitude and distribution
of potential faults are typically unknown, complicating the task of assessing the impact of FD
on navigation continuity and integrity.

This section aims to quantitatively evaluate the performance of the set-based detector in
terms of the FA and MD probabilities. For clarity and simplicity, a scalar benchmark example
is analyzed, assuming a standard normal distribution for the error components. The perfor-
mance of the set-based approach is compared with traditional methods, including RB and SS
approaches.

Benchmark problem

A simplified scenario is considered to demonstrate the detection principle and performance in
a probabilistic context:

1. Scalar state estimation problem;

2. Exclusive Gaussian-distributed errors in the measurement model.

A benchmark example is used, cf. Joerger et al. (2013), without making unnecessarily com-
plicated context. The problem is configured with three measurements:

y = Ax + e + f , A =
[
1 1 1

]T
. (5.12)

The following assumptions are made:
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� y∗ = A x∗ = 0: the initial guess of the state is overlapped with the truth;

� e ∼ N(0, I): the errors follow standard normal distributions;

� Equal magnitude of the detector intervals [−∆d,∆d];

� The fault vector f represents three single-measurement faults, corresponding to three
alternative hypotheses Hi, with unknown fault magnitude fi:

f =

f1
0
0

 or f =

 0
f2
0

 or f =

 0
0
f3

 . (5.13)

Subsequently, the following inequality system is obtained for the set-based detection problem
in Eq. 5.6: 

x ≤ y1 + ∆d, −x ≤ −y1 + ∆d,
x ≤ y2 + ∆d, −x ≤ −y2 + ∆d,
x ≤ y3 + ∆d, −x ≤ −y3 + ∆d,

(5.14)

which results in a detection polytope, i.e., an interval:

Pd := [x, x] = [max(y1, y2, y3) − ∆d,min(y1, y2, y3) + ∆d]. (5.15)

To retain its non-emptiness, the following inequality must be ensured:

max(y1, y2, y3) − min(y1, y2, y3) ≤ 2∆d. (5.16)

Detection is triggered once the difference value exceeds 2∆d.

Test statistic formulation

Denote the difference value in Eq. 5.16 by W and extend the question to n measurements
y = [y1, ..., yn]T . Then, W and its criterion can be expressed as follows:

W := max(y1, ..., yn) − min(y1, ..., yn) ≤ 2∆d, (5.17)

which can be interpreted as an analog “test statistic”. By nature, this formulation represents
an application of order statistics (David and Nagaraja, 2003):

Let Y1, Y2, ..., Yn be independent random variables drawn from a population with
CDF FN (y) and PDF fN (y). Then the CDF of Y(r:n) (r-th order statistic, r =
1, ..., n) is given by

FY(r:n)(y) =P
(
Y(r:n) ≤ y

)
=P (at least r of Y1, Y2, ..., Yn are ≤ y)

=
n∑
i=r

(
n

i

)
·
(
FN (y)

)i
·
(
1 − FN (y)

)n−i
.

(5.18)

The binomial probability in the summand represents the probability that exactly r
of the Yi’s are no greater than y.

Therefore, the test statistic W is the difference of the n-th order statistic (maximum, Y(n:n))
and the first order statistic (minimum, Y(1:n)), i.e., the sample range:

W = Y(n:n) − Y(1:n). (5.19)
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Its PDF and CDF, under H0, are

fW (w) =n(n− 1)
∫ ∞

−∞
fN (y) ·

(
FN (y + w) − FN (y)

)n−2
· fN (y + w) dy,

FW (w) =n
∫ ∞

−∞
fN (y) ·

(
FN (y + w) − FN (y)

)n−1
dy.

(5.20)

Fig. 5.2 presents the PDF and CDF of W with various Gaussian-distributed samples n. The
derivation of the above equations is given in Annex. A.2.2, summarized based on textbooks
such as David and Nagaraja (2003).

Figure 5.2: PDF and CDF of test statistic W := Y(n:n) − Y(1:n) with various Gaussian-distributed samples n.

False alert probability

The probability of an empty intersection (a detection event) under H0, i.e., false alert (FA),
can be determined by

P (FA) :=P (empty intersection ⇒ W ≥ 2∆d | H0)

=
∫ ∞

2 ∆d

fW (w)dw

=1 − FW (2∆d).

(5.21)

To validate Eq. 5.21, Monte Carlo simulations are carried out with 107 trials for the bench-
mark problem. The FA occurrence is counted as ∆d varies within the range of [1.5σ, 4σ],
compared to analytically determined probabilities using Eq. 5.21. In Fig. 5.3, the two curves,
representing the results of the two approaches, are overlapped, verifying the evaluation.

Alternatively, if P (FA) is limited by a required value, solving Eq. 5.21 results in a minimal
∆d. For instance, ∆d = 3.608σ for P (FA) = 1.003 × 10−6, as indicated in Fig. 5.3. Fig. 5.4(a)
showcases the relations between ∆d/σ, n (the number of measurements) and P (FA):

� Involving more measurements increases P (FA) if ∆d/σ is unchanged;

� Given a fixed number of measurements, using wider intervals tends to reduce P (FA).
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Figure 5.3: FA probabilities determined by analytical and Monte Carlo methods for the benchmark example.

(a) FA probabilities: log10 (P (FA)) (b) MD probabilities: log10 (P (ND | f , n = 3))

Figure 5.4: Analytically determined FA and MD probabilities for the simplified scalar-state problems as
contour plots.

Missed detection probability

Under an alternative hypothesis Hi, where the i-th measurement is faulty with the fault
magnitude of fi, a MD event occurs when the intersection remains non-empty. The MD
probability is given by

P (MD) :=P (non-empty intersection ⇒ W < 2 ∆d | Hi)

=
∫ 2 ∆d

0
fW (w)dw

=FW (2 ∆d).

(5.22)

In this case, the detection criterion remains, but the measurements no longer follow indepen-
dent identically distributed (iid) Gaussian distributions. Instead, the i-th measurement may
be considered to be drawn from a population with a CDF FN (y, fi) and PDF fN (y, fi) (i.e.,
a Gaussian distribution with non-zero mean fi ̸= 0). Consequently, the CDF FW (w) and
PDF fW (w) of the test statistic W under Hi are influenced by the fault magnitude fi. The
detailed expressions for FW (w) and fW (w), as well as the evaluation of Eq. 5.22, are provided
in Annex. A.2.3.
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Fig. 5.4(b) illustrates the relationship between the MD probability and two key parameters:
the detection interval ∆d and fault magnitude fi, both in the unit of σ. Larger faults tend to
be detected with a lower failure rate, while wider intervals are more likely to result in MD.

Alternatively, setting the required P (MD) in Eq. 5.22 establishes an equation of the fault
magnitude fi. The solution can be regarded as an equivalent of the Minimum Detectable
Bias (MDB) in test theory (Teunissen, 2006), ensuring that the detection failure rate against
greater faults does not exceed the specified requirement. Notably, the MDB is not necessarily
the worst case in the sense of integrity risk (IR), similar to the conceptions in RAIM. This
aspect is further elaborated in the subsequent sections.

Comparison to RAIM detectors

To develop a common ground for comparison, this section concentrates on the detection ca-
pability, which may also be interpreted as the sensitivity to fault magnitudes.

First, prior probabilities for each hypothesis are assumed, as depicted in Tab. 5.1.

Table 5.1: Prior probabilities of multiple hypotheses for the benchmark example.

Hypothesis Prior probability

H1: f = [f1, 0, 0]T P (H1) = 10−3

H2: f = [0, f2, 0]T P (H2) = 10−3

H3: f = [0, 0, f3]T P (H3) = 10−3

H0: f = [0, 0, 0]T P (H0) = 1 −
∑3
i=1 P (Hi) = 0.997

While being parameterized differently, the three detectors to be compared should be con-
structed based on equivalent conditions, e.g., the same required FA probability. In this study,
the CR budget allocated to FA is set to CREQ,0 = 10−6 (see Sec. 2.4.4). Subsequently, the FA
probability must not be greater than

P (FA) = CREQ,0
P (H0) = 1.003 × 10−6. (5.23)

� The set-based detector is characterized by the detection interval [−∆d,∆d] intended
for the set-emptiness check. ∆d is determined by solving Eq. 5.21 as discussed earlier;

� The RB detector is characterized by a single test statistic qRB. The test threshold
TRB is determined using Eq. 2.56 to Eq. 2.57;

� For the SS detector, the FA probability requirement is equally allocated to three test
statistics qSS , which is optimal for the benchmark problem. Then, Eq. 2.58 to Eq. 2.60
can be used to determine the test thresholds TSS .

The obtained parameters for the three detectors are indicated in Tab. 5.2.

In the presence of faults, the distributional properties of test statistics have been fully
understood:

� The RB and SS test statistics q2
RB and q2

SS follow non-central Chi-square distributions
with n−m and 1 degree of freedom, cf. Eq. 2.42 and Eq. 2.54, respectively;

� The analytical expressions concerning the “test statistic” W for the set-based detector
are derived using independent nonidentically distributed (inid) order statistics, with de-
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tailed formulations provided in Annex. A.2.2. Given a measurement-level fault vector f ,
the detection probability is computed from respective CDF.

Table 5.2: Parameters for three detectors used in the benchmark example.

Detection method Parameter

RB detection TRB = 5.2560σ
SS detection TSS = 5.1030σ
Set-based detection ∆d = 3.6080σ

To verify the analytical evaluations, Monte Carlo simulations are performed by adding a
constant bias f to one of the measurements in each trial, constituting the fault term f . Con-
sistently, the measurements are randomly generated based on standard normal distributions.
Then, the detection occurrence, i.e. P (D | f), is counted. By varying f , the detection sensi-
tivity is observed. Specifically, the SS detector is evaluated against a single test statistic qSS,i
corresponding to the known fault mode. For example, qSS,1 should be selected if the fault has
been added to the first measurement.

Fig. 5.5 compares the detection probabilities for RB, SS, and set-based detectors.

(a) Analytically evaluated probabilities (b) Monte Carlo evaluated probabilities

Figure 5.5: Detection probabilities with known added faults for RB, SS and set-based detectors determined
by (a) analytical evaluation, (b) Monte Carlo evaluation.

All curves start at 1.003 × 10−6 (set-based and RB detectors), or 1
3 × 1.003 × 10−6 (SS

detector), representing the fault-free condition. Fig. 5.5(a) and Fig. 5.5(b) show similar pat-
terns as expected. Additionally, the comparison verifies the slightly superior performance of
SS detector over RB detector (higher detection probabilities achieved). A theoretical analysis
for this effect can be found in Joerger and Pervan (2014). Meanwhile, the set-based detector
performs relatively worse than the other two detectors, particularly for greater biases. It may,
therefore, be concluded at this stage that the classical RAIM detectors, especially the SS
detector, are optimal in terms of detection capability under the Gaussian error assumption.

5.1.4 Investigation on two-dimensional scenarios

Besides observational errors, geometry is an additional important factor influencing positioning
performance in higher-dimensional problems compared to the scalar-state scenario. It refers
to the geometry of the lines of positioning associated with the measurements. For GNSS, it
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is the constellation of the group of satellites from which signals are being received, informing
(i) how many satellites are observable, (ii) how high they are in the sky, and (iii) the bearing
towards them.

To further explore the potential of the set-based detector, this section examines its behavior
in a two-dimensional estimation problem using Monte Carlo simulations, particularly quantify-
ing the impact of geometry on the detector’s performance. In the remainder of this subsection,
an alternative geometry measure is first designed, followed by a Monte Carlo evaluation to
examine the relation between the detection interval and the designed geometry measure.

Geometry measures. The dilution of precision (DOP) is a widely-used indicator of the qual-
ity of the geometry, computed as the trace of (ATA)−1 (Langley et al., 1999). While DOP
is prominent for methods that utilize the least-squares estimator, its effectiveness for the
set-based approach is still unclear.

To explore an alternative for DOP, a heuristic measure of two-dimensional geometry mG

is designed for the set-based detector, evaluating how far a given geometry is from an ‘ideal”
configuration:

mG := min
{ϕ∗

1,...,ϕ
∗
n}⊂Ψ∗

n∑
i=1

(ϕi − ϕ∗
i )

2 , (5.24)

where ϕi represents the azimuth angle of the i-th measurement, and ϕ∗
i belongs to a set of

angles Ψ∗ that can offer “ideal” configurations of geometry.

By design, under an “ideal” geometry, the set-based method should exhibit equal detection
capabilities against any possible single-measurement fault. For instance, the MD probability
against a given fault magnitude remains unchanged, no matter whether it affects the first,
second, or third measurement. In this regard, the geometry is considered ideal when lines of
positioning associated with the measurements are equally distributed within the unit circle
(shown in Fig. 5.6(a)). Fig. 5.6(b) is also ideal since its positioning lines lie over the dotted
lines too. Notably, the two scenarios indicate equal (and minimal) DOP values. This means
that the configuration is not unique, and hence, mG yields the minimum achievable value.

(a) “Ideal” geometry 1 (b) “Ideal” geometry 2 (c) Random geometry example

Figure 5.6: Examples of 2D geometry. The dotted lines are evenly distributed within the dashed unit circle.
They indicate the ideal cases of three measurements where the lines of positioning (gray) are expected to lie

(a&b). In other cases, they are not colinear (c).

In contrast, Fig. 5.6(c) illustrates an example of non-ideal geometry, which should be qual-
ified by Eq. 5.24. Since multiple choices for ϕ∗

i ∈ Φ∗ are possible, e.g., Lines {1, 2, 3}, or Lines
{1, 3, 6}, etc., it is practical to first convert ϕi to angles between [0◦, 180◦], denoted by ϕ′

i,
and set ϕ∗

i as a sequence of ϕ0, ϕ0 + 180◦

n , ..., ϕ0 + (n−1)·180◦

n . The unknown constant ϕ0 can be
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calculated by

ϕ0 = arg min
{ϕ∗

1,...,ϕ
∗
n}⊂ϕ∗

n∑
i=1

(ϕi − ϕ∗
i )

2 , with ϕ∗
i = ϕ0 + (i− 1) · 180◦

n
, ϕ′

i ∈ [0, 180]◦. (5.25)

Subsequently, ϕ∗
i is obtained, and mG can be determined using Eq. 5.24.

Detection interval evaluation. The detection interval [−∆d,∆d] associated with a specific
FA probability is used to characterize the set-based detector. In the Monte Carlo context,
P (FA) corresponds to the occurrence of an empty polytope Pd under nominal (fault-free)
conditions (cf. Eq. 5.8).

For a given geometry, normally distributed measurement samples are generated for 1000
epochs, with 3 to 15 measurements per epoch, simulating nominal conditions. For each trial
(a fixed number of measurements at a single epoch), the set-based detector is applied with
a given ∆d. The null hypothesis is either correctly accepted (Pd ̸= ∅) or wrongly rejected
(Pd = ∅, FA event). The objective is to determine a proper ∆d to ensure that the FA
occurrence does not exceed the required probability.

Starting from an initial guess, ∆d is iteratively refined until the desired FA probability is
achieved, which is set to P (FA) = 10−2 in this study. Once ∆d is determined, the set-based
detector is considered calibrated to guarantee the required FA probability for users under the
given geometry.

Geometry measures evaluation. A specific geometry is represented by randomly generated
azimuth angles (uniformly distributed within [0, 2π]). For a given number of measurements,
2000 various geometries are generated. They are measured by either DOP or the designed
parameter mG.

Fig. 5.7 depicts the relation between the geometry measures (DOP or mG) and the detection
interval (∆d/σ). DOP can capture the impact of measurement numbers, i.e., more measure-
ments tend to reduce the DOP value, which results in a lower chance of FA for a given ∆d.
The designed measure mG, on the contrary, does not present a functional relationship with the
measurement numbers. Nevertheless, it can capture the quality of geometry, which is more
significant with fewer measurements. This trend is visible in the density plots in Fig. 5.8.

In conclusion, the DOP is not an effective indicator of geometrical quality for the set-based
detector as it is in stochastic approaches. A heuristic measure mG has been developed to
serve two main purposes: (i) to indicate the detection capability of the set-based detector
under specific conditions and (ii) to assist in determining detection intervals that meet certain
requirements. However, further improvements to this measure are necessary to address higher-
dimensional problems.

5.1.5 Enhancement of robustness with weighting models

In urban navigation scenarios, potential extra path delay (EPD) due to signal reflections
and refraction can severely bias the GNSS measurements and, subsequently, threaten the
navigation quality. These threats are considered unbounded faults, and they are expected to
be detected and excluded before a navigation solution is estimated without degrading system
integrity and availability.

Sec. 5.1.3 reveals that the fault magnitude strongly influences the detection capability of the
set-based method. To enhance the detector’s robustness, weighting models may be applied.
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(a) DOP as geometry measure (b) Designed heuristic geometry measure

Figure 5.7: Impact of geometry on the set-based detector in 2D scenarios. Two geometry measures (DOP
and a heuristic measure mG) are explored, and their relation with detection intervals ∆d is demonstrated.

If any external information indicates that a subset of measurements is very likely biased but
remains undetected under the current settings, reducing their detection intervals can help
increase sensitivity to undetectable biases.

The vector of detection intervals can be adjusted by multiplying it with a weighting model
T in Eq. 5.6: {

Ax ≤ y + T∆d

−Ax ≤ −y + T∆d
. (5.26)

Inspired by the weighted least-squares estimator, this thesis proposes a method for de-
termining the matrix T by decomposing the weighting matrix P that is used in stochastic
approaches. The desired weighting matrix is given by

P = (T)TT, (5.27)

which is a diagonal matrix. For example, T could represent either an elevation-dependent
model (EDM) or a signal strength-dependent model (SDM). In the case of EDM, the diagonal
matrix is constructed as follows:

TEDM = diag
(√

sin θ
)
, (5.28)

where θ is a vector of elevation angles expressed in radians.

For SDM, a possible diagonal matrix may be constructed based on the sigma-ε model
(Hartinger and Brunner, 1999), which determines the variance of GNSS measurements using
C/N0 information:

σ2
i = Vi + Ci · 10− C/N0

10 , (5.29)

where Vi and Ci are model parameters in the unit of m2 and m2 · Hz. C/N0 is the measured
carrier-to-noise power-density ratio in the unit of dB-Hz. Subsequently, the proposed weighting
matrix reads

TSDM = diag (tSDM) , with tSDM,i =
√
Vi + Ci · 10− C/N0

10 . (5.30)

The above examples are not exclusive and may be adapted according to the measurement
environment, hardware, etc.
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(a) DOP: n = 3 (b) mG: n = 3

(c) DOP: n = 6 (d) mG: n = 6

(e) DOP: n = 9 (f) mG: n = 9

(g) DOP: n = 12 (h) mG: n = 12

(i) DOP: n = 15 (j) mG: n = 15

Figure 5.8: Impact of geometry on the set-based detector with various numbers of measurements in 2D
scenarios. Two geometry measures (DOP and a heuristic measure mG) are explored, and their relation with

detection intervals ∆d is highlighted.
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5.2 Development of interval-based integrity monitoring

This section focuses on interval-based autonomous integrity monitoring for the model pre-
sented in Eq. 5.1. The proposed approach employs set-based fault detection and exclusion
(FDE) functions in conjunction with the computation of Protection Level (PL) that is de-
livered to users. The development begins with the definition of the loss of integrity (LOI)
in Sec. 5.2.1. This is followed by an analytical evaluation of integrity risk (IR) bound and
the design of an optimal estimator aimed at minimizing the PL. Additionally, the strategy’s
architecture is outlined, and a sub-optimal solution is introduced to address practical require-
ments.

5.2.1 Evaluation for loss of integrity

Definition of loss of integrity

The classical definition of the Hazardous Misleading Information (HMI) or loss of integrity
(LOI) in RAIM refers to the concurrent occurrence of No Detection (ND) and Position Failure
(PF) (see Eq. 2.61):

� No Detection: The detection is not triggered, implying that the measurements are
presumed self-consistent. In the context of set-based detection, ND occurs when the
detection polytope (Pd) remains non-empty.

� Position Failure: The Position Error (PE), denoted by ε, exceeds the Alert Limit
(AL, ℓ), indicating that the Euclidean distance between the estimated position (x̂) and
the true position (x∗) surpasses ℓ, i.e., ∥ε∥ := ∥x̂ − x∗∥ > ℓ.

The HMI probability, also referred to as integrity risk (IR), is then formulated as follows:

P (HMI) = P (ND ∧ PF)
= P (Pd ̸= ∅ ∧ ∥ε∥ > ℓ) ≤ IREQ,

(5.31)

where IREQ represents the IR requirement.

Integrity risk bound derivation

Starting from the definition in Eq. 5.31, it is feasible to establish an upper bound as follows:

P (HMI) = P (ND ∧ PF) = P (ND | PF) · P (PF) ≤ P (PF). (5.32)

Here, the PF probability is used to upper bound the HMI probability since P (ND | PF) ≤ 1
hold true regardless of the dependence between ND and PF. This approach may introduce
some looseness to the resulting IR bound, which is further discussed in the subsequent analyses.
Nevertheless, it offers the following benefits:

� It protects the system in any case of missed detection;

� It alleviates the need for analytically quantifying test thresholds in fault detection;

� It supports the entire FDE functions, ensuring protection even if a fault cannot be
identified or excluded;

� It allows the integration of any FD method into the system without harming its integrity.
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Similar concepts are adopted in the literature, e.g., Bayesian RAIM, a variant of RAIM that
takes measurements as inputs, defines Eq. 5.32 as posterior integrity risk.

The next step is to evaluate P (PF). The interval-based integrity monitor takes advantage
of a feasible solution set (FSS, denoted by S) in the state domain to determine the point
estimate and assess the integrity risk. As described in Chap. 4, S indicates the possible range
for the truth with high confidence. This setup introduces the probability of a No Protection
(NP) event:

P (NP) = P (x∗ /∈ S), (5.33)

which quantifies the probability that S fails to enclose the truth.

To establish the upper bound, a functional model g(S), yet unspecified, is needed to serve
as a scalar measure of S. This model must ensure that the estimation error ε satisfies the
following condition:

∥ε∥ := ∥x̂ − x∗∥ ≤ g(S), (5.34)

for all cases where x∗ ∈ S. In Chap. 4, the term ∥ε∥ is defined as the estimation error bound
for a set-based point estimator.

g(S) should admit two critical properties:

� It reflects the geometric configuration of S and is unique with respect to S;

� It is scalable, meaning that adjustments to S proportionally alter g(S).

By scaling S to guarantee g(S) ≤ ℓ, the corresponding probabilistic assurance also varies.
Therefore, an inequality for P (PF) can be sought:

P (PF) :=P (∥ε∥ > ℓ)
≤P (∥ε∥ > g(S) | g(S) ≤ ℓ) .

(5.35)

Taking Eq. 5.33 into consideration, Eq. 5.35 can be broken down into two components:

P (∥ε∥ > g(S) | g(S) ≤ ℓ) =

P
(
(∥ε∥ > g(S) ∧ x∗ ∈ S)

∣∣∣ g(S) ≤ ℓ
)

+ P
(
(∥ε∥ > g(S) ∧ x∗ /∈ S)

∣∣∣ g(S) ≤ ℓ
)
. (5.36)

By definition, the first component is zero because the estimation error is bounded by g(S)
when x∗ ∈ S. The second component, representing the error when x∗ /∈ S, is further bounded
through the inequalities in Eq. 5.37. For better readability, ∥ε∥ > g(S) is denoted by Event
A, x∗ /∈ S by Event B, and g(S) ≤ ℓ by Event C. Hence,

P (AB | C) =P (ABC)
P (C) = P (BC) − P (ABC)

P (C) = P (B | C) − P (AB | C)

≤P (B | C),
(5.37)

where A is the complement of Event A.

These inequalities lead to an upper bound for P (PF):

P (∥ε∥ > ℓ) ≤ P (x∗ /∈ S | g(S) ≤ ℓ) , (5.38)

which is a conditional NP probability. It is obtained by disregarding the concurrence of
∥ε∥ ≤ g(S) and x∗ /∈ S. The potential conservatism is systematic because a scalar measure
g(S) is never sufficient to fully capture the geometrical information of S, especially in scenarios
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involving higher dimensions or complex geometries. This aspect is further analyzed with
illustrative examples in the remainder.

Conclusively, the final IR bound is expressed as

P (ND ∧ PF) ≤ P (NP | g(S) ≤ AL),
i.e., P (Pd ̸= ∅ ∧ ∥ε∥ > ℓ) ≤ P (x∗ /∈ S | g(S) ≤ ℓ).

(5.39)

5.2.2 Integrity monitoring against multiple faults

In the presence of multiple simultaneous faults, which are likely to occur with multi-GNSS
in urban scenarios (as reported by Ruwisch and Schön (2024)), it is crucial to enhance the
integrity performance against multiple faults. To achieve this, the interval-based approach
adopts a multiple hypothesis framework, which is used in ARAIM. Under this framework,
multiple hypotheses are considered for each potential fault mode. Each hypothesis Hi for
i = 0, 1, ...h assumes that a certain subset of measurements is faulty while the rest are nominal
(fault-free). Specifically, the null hypothesis H0 represents the case where all measurements
are fault-free.

A key advantage of the multiple hypothesis framework is that it establishes a straightforward
link between the threat model, PL and integrity risk (Blanch et al., 2007). It provides explicit
probabilistic interpretations for the interval-based integrity monitor, which in turn enables
effective bounding of unscheduled and undetected faults down to very low probabilities.

Equation for Protection Level

In practical applications, it is more computationally efficient to calculate the position-domain
Protection Level (PL) based on required IR rather than evaluating IR from a specified AL.
By referencing the computed PL to AL, the user will be informed whether the navigation
integrity is assured under the current satellite geometry and availability.

The baseline ARAIM algorithm achieves this by adapting the IR bound formula (replacing
AL with PL) and then solving the obtained equation. Similarly, concerning the established
IR bound for the interval approach in Eq. 5.39, the desired PL equation is formulated as

P (x∗ /∈ S | g(S) = PL) = IREQ. (5.40)

Eq. 5.40 is not directly solvable, which necessitates a two-step solution:

1. Determine the feasible solution set S. Limit the NP probability with respect to S
to meet the IR requirement using

P (x∗ /∈ S) = IREQ. (5.41)

2. Compute the scalar measure g(S) as PL. Determine the PL based on the designed
scalar measure:

PL = g(S). (5.42)

In Step 1, the fundamental elements for constructing S have been fully defined, though the
procedures remain unspecified at this stage. Known satellite geometry from the linearized
model (Eq. 4.2) and measurement intervals derived from observational uncertainty models
support this process.



118 5 Interval-based GNSS receiver autonomous integrity monitoring

In Step 2, the PL is computed through the functional model g(S), ensuring adherence to
the derived IR bound.

Now it becomes clear that the keys to this strategy include the determination of the FSS
S, a proper scalar measure g(S) and the corresponding point estimator x̂S . These aspects are
thoroughly addressed in the remainder of this section.

In general, the above strategy is straightforward and offers two significant advantages:

� The PL and IR are linked through the construction of FSS.

� By design, the computed PL is not smaller than PE at required probabilities, ensuring
that the PL provides a reliable and conservative estimate of the position uncertainty.

Feasible solution set for integrity purpose

Based on the principles discussed in Sec. 4.3.1, a feasible solution set (FSS) can be established
using the set estimator based on constraint satisfaction. For the fault-free case (H0) in the
model of Eq. 5.1, a polytope solution set Ps,0 can be obtained as follows:

Ps,0 =
{

x ∈ Rm | B x ≤ b,B =
[

A
−A

]
∈ R2n×m,b =

[
y − ∆s

−y + ∆s

]
∈ R2n

}
. (5.43)

Here, the measurement intervals are denoted by [∆s] = [∆s,∆s].

In the multiple hypothesis framework, the FSS S must account for potential unbounded or
undetected faults, which Ps,0 does not fully capture. To address this, S is defined as the union
of multiple polytope solution sets:

S =
h⋃
i=0

Ps,i, (5.44)

where Ps,i corresponds to the polytope solution set for each hypothesis Hi. For instance,
consider Hi for i > 0, where the measurement yi is assumed to be faulty. However, no
information is available regarding the fault magnitude fi, nor should any assumption be made.
By expanding the interval bounds for the corresponding measurements to infinity, the resulting
solution set can tolerate the impact of potential faults on estimation. The inequalities can be
expressed as 

Aix ≤ Hi
Ty + Hi

T∆s,

Aix ≤ H∗
i
Ty + H∗

i
T∞,

−Aix ≤ −Hi
Ty + Hi

T∆s,

−Aix ≤ −H∗
i
Ty + H∗

i
T∞,

(5.45)

where Hi, H∗
i , and Ai are defined in Eq. 2.48 and Eq. 2.49.

Ps,i for i > 0 is designed to mitigate the influence of specific faulty measurements, making
it a fault-tolerant solution set with respect to the i-th fault mode. Therefore, the union S
can be interpreted as a solution set that tolerates the impact of any potential faults across all
monitored fault modes. Additionally, Eq. 5.45 can be reformulated into a shorter version:{

Aix ≤ Hi
Ty + Hi

T∆s,
−Aix ≤ −Hi

Ty + Hi
T∆s.

(5.46)

This simplification excludes assumed faulty measurements and utilizes the remaining fault-free
ones. It is mathematically equivalent to Eq. 5.45 and allows Ps,i to be expressed as

Ps,i =
{

x ∈ Rm | Bi x ≤ bi,Bi =
[

Ai

−Ai

]
∈ R2n×m,bi =

[
Hi

T (y − ∆s)
−Hi

T (y − ∆s)

]
∈ R2n

}
. (5.47)
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It is useful to note the hierarchical relationship among different Ps,i. For example, consider
any two hypotheses Hi1 and Hi2 . If the faulty measurements under Hi1 are a subset of those
under Hi2 , then Ps,i1 ⊆ Ps,i2 . This inclusion relationship reveals the construction of S: The
active constraints defining the boundaries of S are predominantly shaped by the polytopes
with the fewest fault-free measurements (see Fig. 5.9). It also underscores the adaptability of
FSS to varying levels of system integrity, ensuring that the most critical scenarios dictate the
safety margins.

Figure 5.9: Conceptual sketch for the feasible solution set S in a two-dimensional example with three mea-
surements (slabs): (i) with r = 0, Ps,0 configures S in black contour; (ii) with r = 1, the envelope of Ps,1, Ps,2

and Ps,3 defines S in red contour.

Evaluation for No Protection probability

In this analysis, a bounding probability for any fault-free measurement interval is referred to
as P∆s , representing the probability that the measurement error is bounded by an interval
[−∆s,∆s]. The alternative interpretation, as in Eq. 4.24, is also valid, i.e., the probability
that the expected observation y∗ is contained by the interval [y − ∆s, y + ∆s]. Utilizing the
binomial law, it is possible to calculate relevant probabilities for each fault-tolerant polytope
Ps,i.

Under H0: The probability of Ps,0 containing the true state is simply expressed as

P (x∗ ∈ Ps,0 | H0) = (P∆s)n. (5.48)

Reflecting on S as the union of h+ 1 polytopes, the probability that S provides protection
under H0 is computed by summing up the probabilities across all polytopes. For instance, the
polytope PS,j is formed by n− j measurement intervals:

P (x∗ ∈ PS,j | H0) = (P∆s)n−j · (1 − P∆s)j , (5.49)

which can be interpreted as a polytope solution set that tolerates any potential errors in the
j measurements. And,

Ps,0 ⊆ Ps,j , for j > 0. (5.50)
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Hence, the conditional NP probability for S under H0 is

P (x∗ /∈ S | H0) = 1 −
r∑
j=0

(
r

j

)
· (P∆s)n−j · (1 − P∆s)j , (5.51)

where r is the maximum number of tolerated measurements, which must be specified in
advance.

It is worth noting that Eq. 5.51 has been used in various prior works, although often with
different interpretations. For example, Drevelle and Bonnifait (2009) applies a similar formu-
lation without considering a multiple-hypothesis framework, leading to differing implications
for integrity monitoring.

Under Hi: For an alternative hypothesis Hi where ni out of n measurements are deemed
faulty and n− ni are fault-free, the probability that the fault-tolerant polytope Ps,i encloses
the truth is computed by

P (x∗ ∈ Ps,i | Hi) = (P∆s)n−ni . (5.52)
Excluding ni faulty measurements allows for the omission of assumptions on the distribution
or magnitude of the faults. This approach ensures that the induced position error remains
bounded, given available information.

Similarly, if a maximum of r out of n measurements are monitored by S, a tolerance of up to
r−ni measurements is permitted for any potential errors under Hi (ni ≤ r). The conditional
NP probability for S under Hi is expressed as

P (x∗ /∈ S | Hi) = 1 −
r−ni∑
j=0

(
r − ni
j

)
· (P∆s)n−ni−j · (1 − P∆s)j . (5.53)

Therefore, the overall NP probability in the multiple-hypothesis framework integrates the
conditional NP probabilities for all hypotheses weighted by their prior probabilities P (Hi):

P (x∗ /∈ S) =
h∑
i=0

P (x∗ /∈ S | Hi) · P (Hi)

=
h∑
i=0

1 −
r−ni∑
j=0

(
r − ni
j

)
· (P∆s)n−ni−j · (1 − P∆s)j

 · P (Hi).
(5.54)

The ARAIM threat model can be leveraged. Relevant probabilities include:

� Single satellite failure probability: Psat;

� Probability of ni simultaneous satellite failure: P (ni) =
( n
ni

)
· (Psat)ni · (1 − Psat)n−ni ;

� Probability of fault-free mode (H0): P (H0) = P (ni = 0) = (1 − Psat)n;

� Probability that more than r simultaneous satellite failures occur but are not monitored.
It is used to upper bound their IR contribution:

PNM = 1 −
r∑

ni=0
P (ni). (5.55)

This term is for practical usage since some fault modes with multiple simultaneous
failures can rarely occur and can be ignored compared to the IR requirement. A threshold
Psat_thres can be pre-defined for determining r by limiting PNM , i.e.,

1 −
r∑

ni=0
P (ni) ≤ Psat_thres. (5.56)
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The above model is simplified without considering constellation failure probabilities. A com-
pleted description can be found in the baseline ARAIM algorithm description document (WG-
C ARAIM TSG, 2019).

Accordingly, Eq. 5.54 can be further rewritten as

P (x∗ /∈ S) ≤
r∑

ni=0

1 −
r−ni∑
j=0

(
r − ni
j

)
· (P∆s)n−nj−j · (1 − P∆s)j

 · P (ni) + PNM . (5.57)

Eq. 5.57 reveals a comprehensive framework for evaluating the NP probability. By applying
Eq. 5.57 to Eq. 5.41, one can solve for P∆s , which enables the determination of [∆s] based
on specific observation uncertainty model. For example, if a Gaussian model is assumed, the
relevant formulations in Eq. 4.26-4.28 should be used. Additionally, Tab. 4.4 offers further
guidance on incorporating both stochastic and systematic uncertainty representations. Once
[∆s] is defined, the feasible solution set S is fully determined.

As an example, assuming Psat = 10−5, the interval radius (normalized by measurement
error standard deviation ∆/σ) is jointly influenced by the number of measurements and IR
requirements, as shown in the contour plots in Fig. 5.10(a) for the case of r = 1, and in
Fg. 5.10(b) for r = 2.

(a) ∆/σ for r = 1 (b) ∆/σ for r = 2

Figure 5.10: Normalized interval radius (∆/σ) with respect to the number of measurements and IR require-
ment as contour plots. Identical satellite-wise Psat is assumed, and the subfigures correspond to various numbers

of maximum simultaneous satellite failures monitored (r)

� More satellites (hence more chance of fault) require larger intervals to ensure the IR
requirement;

� Stricter IR requirements can only be satisfied with wider intervals if the number of
satellites is unchanged;

� Excluding more fault modes from being monitored must be compensated for by enlarging
intervals to ensure the IR requirement.

These features are remarkable and essential to understanding the characteristics of the desired
interval approach, which are further explored with demonstrative examples in the following
sections.
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Optimal estimator design to minimize PL

Once the FSS is determined, the remaining questions include the design of an optimal point
estimator and the desired scalar measure g(S), computed as PL.

While the PL is defined to be the position bound, it is expected that

PL ≥ max ∥ε∥,
i.e., PL ≥ max

x̂,x∈Rm
∥x̂ − x∗∥. (5.58)

Eq. 5.58 may be discussed under two conditions concerning S: x∗ ∈ S and x∗ /∈ S.

� Condition 1 (x∗ ∈ S). It is desired that

g(S) ≥ max
x̂∈Rm,x∗∈S

∥x∗ − x̂∥. (5.59)

Subsequently, the “best” achievable scalar measure can be formulated as

g(S) = arg min
g(S)

max
x∈Rm,x∗∈S

∥x∗ − x∥, (5.60)

which is indeed a minimax estimation problem. Equivalently, an optimal point estimator
can be formulated as

x̂ = arg min
x∈Rm

max
x∗∈S

∥x∗ − x∥. (5.61)

� Condition 2 (x∗ /∈ S). Fortunately, this case is captured by IREQ, cf. Eq. 5.41, and
therefore, it needs no longer to be considered.

Sec. 4.3.2 has provided a solution to problems like Eq. 5.60 and Eq. 5.61. Its optimal estima-
tor is the Chebyshev center of S that minimizes the worst-case error bound (max ∥ε∥), which
is its Chebyshev radius. Hence,

x̂ = cen(S), and PL = rad(S). (5.62)

Notably, S may not be a convex polytope. Nevertheless, the existence and uniqueness of
x̂ = cen(S) ∈ Rm still hold since S is formed as the union of a set of polytopes.

A conceptual example is given in Fig. 5.11. The red dashed contour represents the minimum
bounding circle enclosing the union of four fault-tolerant polytopes. The center and radius of
the circle indicate the point estimator x̂ and PL by definition.

The problem of the minimum bounding spheres, or the smallest enclosing circle problem,
is of interest to various disciplines, such as computer graphics and computational geometry.
A number of algorithms have been developed to address this problem, such as Seidel (1991),
Ritter (1990), Welzl (1991), and Skyum (1991). As an example, the method in Seidel (1991)
solves the linear programming algorithm in expected O(n) computation time.

In particular, this problem degrades to finding the minimum bounding interval for the
scalar estimation problem (m = 1), which can be efficiently solved by a sorting algorithm. The
corresponding optimal estimator is the midpoint of the minimum bounding interval. Sec. 5.3.1
further explores this feature, based on which a practical solution to integrity monitoring for
road applications is developed in Sec. 5.2.4.
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Figure 5.11: Conceptual sketch of the optimal point estimator and associated PL for a two-dimensional
example.

(a) Workflow of interval-based FDE (b) Workflow of ARAIM FDE, adapted from She
et al. (2023)

Figure 5.12: Flowcharts of ARAIM and interval-based FDE. In both diagrams, solid arrows apply to either
FD or FE purposes, while dotted arrows apply to FD-only and dashed arrows to the entire FDE.

5.2.3 Architecture of the interval-based integrity monitor

To summarize, the workflow of the developed real-time interval-based integrity monitor is
given in Fig. 5.12(a). The procedures are introduced as follows:

1. Fault tolerant subset determination. Fault modes with more than r multiple simultane-
ous faults will not be monitored:

� Input: Psat, Psat_thres.
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� Output: r, P (Hi), PNM .

2. Measurement interval determination:

a. Compute bounding probabilities P∆s , cf. Eq. 5.57.

� Input: n, r, Psat, PNM , IREQ.

� Output: P∆s .

b. Determine interval bounds [∆s], cf. Tab. 4.4 and Chap. 3.

� Input: P∆s , F, [d].

� Output: [∆s].

3. Set-based fault detection and exclusion (FDE) functions:

a. Compute the detection polytope Pd = Ps,0 and perform a global emptiness-check
(FD function).

b. If the emptiness check returns a negative result, jump into the next step.

c. If the emptiness check returns a positive result, activate FE functions by exhaustive
local emptiness check against each monitored fault mode.

d. If any fault is detected but not identified, inflate P∆s and determine the new mea-
surement intervals until the global emptiness check can pass.

e. If any fault is identified, exclude the corresponding measurement from y and per-
form Steps 2 to 3 again.

The output varies with the detection and exclusion results:

� Input: A, y, [∆s] and possibly r (for FE function).

� Output:

– (Step b) None.

– (Step d) P∆s and [∆s].

– (Step e) A, y, r, P∆s and [∆s].

4. Feasible solution set (S) determination, cf. Eq. 5.44.

� Input: A, y, [∆s], r.

� Output: S.

5. PL calculation and central estimator, cf. Eq. 5.62.

� Input: S.

� Output: x̂, PL.

6. Reference the computed PL to AL and, based on which, notify the user about the service
availability.

� Input: PL, AL.

� Output: service availability.
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The above workflow demonstrates a baseline algorithm for interval-based integrity monitor-
ing. In comparison with the ARAIM FDE process summarized in Fig. 5.12(b), the functions
are implemented in a different order, indicating their fundamental difference. The least-squares
estimator is implemented initially in ARAIM, and its residuals are used in the FDE functions.
In contrast, the interval-based approach employs the central estimator that is derived from
its FDE results.

5.2.4 Practical solution to road application

For road transportation applications, the horizontal position is of primary interest. Re-
searchers have developed Alert Limit (AL) concepts for autonomous vehicles in the scenario
of US road transportation (Reid et al., 2019, 2023). This section proposes a sub-optimal but
practical point estimator compatible with the referenced AL framework for road applications.

Referenced AL framework. The referenced AL concept is based on a bounding box around
the vehicle on the road, determined by (i) road width and curvature and (ii) the desired
level of situational awareness. Situational awareness in this context is broken down into three
categories: (i) which road, (ii) which lane, and (iii) where in the lane, and, hence, can be
characterized in three levels:

1. Road determination,

2. Lane determination,

3. In-lane positioning,

which demand various sizes of bounding boxes, cf. Fig. 5.13, which, by definition, can be
described as (two-dimensional) interval boxes.

(a) Lane keeping (b) Lane determination (c) Road determination

Figure 5.13: Bounding box geometry for different levels of situation awareness (Reid et al., 2023). Road
determination is shown for a 3-lane freeway as an example.

PL for road geometry. A lateral and a longitudinal PLs are expected accordingly. To achieve
this, the FSS is projected onto the along-track and cross-track directions, resulting in two
circumscribed intervals, i.e., [SLon] and [SLat], respectively:

[
SLat/Lon

]
:=

h⋃
i=0

[
PLat/Lon,i

]
, with

[
PLat/Lon,i

]
=
{

pTLat/Lon · x | x ∈ Ps,i
}
, (5.63)
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where pLat/Lon is the projection vector that depends on the road’s geometry. For instance, for
GPS-only solutions (four unknowns) in an n-frame:

� pLat = [− sinϕ, cosϕ, 0, 0]T for the lateral component,

� pLon = [cosϕ, sinϕ, 0, 0]T for the longitudinal component,

where ϕ denotes the road’s orientation, specifically the azimuth angle of the tangent to the
road arc. This information is not estimable by the designed algorithm and, hence, should be
provided by external sources, e.g., inertial sensors and the steering control system.

The estimated coordinates and PLs can be obtained by following these steps, which substi-
tute Steps 4 to 5 in Sec. 5.2.3:

1. Determine h fault-tolerant polytope solution sets Ps,i for i = 0, 1, ..., h;

2. Project Ps,i onto lateral/longitudinal directions, yielding h+ 1 intervals:

[PLat/Lon,i] := [pLat/Lon,i, pLat/Lon,i].

3. Determine the interval bounding box’s lateral and longitudinal edges:

[SLat] := [min(pLat,i),max(pLat,i)],

[SLon] := [min(pLon,i),max(pLon,i)].
(5.64)

4. Employ the central estimator and calculate lateral/longitudinal PLs:

x̂S,Lat/Lon =| p([SLat/Lon]) = 1
2
(
min(pLat/Lon,i) + max(pLat/Lon,i)

)
,

PLLat/Lon = rad([SLat/Lon]) = 1
2
(
max(pLat/Lon,i) − min(pLat/Lon,i)

)
.

(5.65)

Subsequently, by comparing the computed lateral and longitudinal PLs to corresponding
ALs for different levels of situational awareness, the user will be informed about the system
availability.

Sub-optimal point estimator. Fig. 5.14 conceptualizes the bounding box derived from the
FSS, which are used to determine the point solution (red triangle) and PLs.

Figure 5.14: Interval box as lateral and longitudinal PLs for vehicles on the road.
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The point estimate differs slightly from the solution from the bounding sphere’s center (red
dot). This is because the latter is optimal in the sense of minimum horizontal positioning
error and is unique and invariant under rotation of the coordinate system. In contrast, the
bounding box is an arbitrary enclosure of S and varies with the choice of the orientation of
the coordinate system. Hence, the changes in road geometry potentially affect both its shape
and scalar measure. In this regard, the point estimator from the bounding box is sub-optimal
compared to the one directly from FSS. Schön and Kutterer (2005b) discusses in detail the use
and limits of interval boxes as point uncertainty measures for geodetic applications. Despite
this, it is advantageous in computational efficiency and fits the referenced AL framework for
road applications.

5.3 Performance evaluation and validation

The integrity monitoring algorithms are designed to meet users’ requirements concerning both
IR and position uncertainty; therefore, it is essential to evaluate both the IR bound and
position bound (indicated by PL). The IR bound is compared to a specified IR requirement,
while the PL is referenced to AL to assess system availability, which is the percentage of time
the navigation solution can be used safely (Joerger and Pervan, 2014). Therefore, deriving a
tight IR bound and generating a small PL is critical for ensuring system availability.

This section focuses on evaluating the performance of the developed interval-based integrity
monitoring approach in terms of the tightness of its IR bounds. The assessment utilizes both
analytical methods and Monte Carlo simulations, comparing the results to classical RAIM
approaches through benchmark examples and realistic scenarios.

5.3.1 Analytical evaluation for integrity risk bound: Benchmark problem

The benchmark example (cf. Sec. 5.1.3) is analyzed to compare the interval approach with
two RAIM approaches in terms of IR bounds.

Configuration of interval-based approach

A formal description of the FSS S is fundamental to configuring the interval-based approach.
In the benchmark problem, the fault-tolerant solution sets can be expressed explicitly for the
null hypothesis (H0) and each single-measurement fault hypothesis (Hi with i = 1, 2, 3):

Ps,0 = [max(y1, y2, y3) − ∆s,min(y1, y2, y3) + ∆s],
Ps,1 = [max(y2, y3) − ∆s,min(y2, y3) + ∆s],
Ps,2 = [max(y1, y3) − ∆s,min(y1, y3) + ∆s],
Ps,3 = [max(y1, y2) − ∆s,min(y1, y2) + ∆s],

(5.66)

where the measurement intervals [−∆s,∆s] are identical for three measurements as they all
follow normal distributions, and hence, can be determined from the CDF of a normal distri-
bution, cf. Eq. 4.26 to Eq. 4.28.

While S is determined as the union of the four intervals in Eq. 5.66, the scalar measure g(S)
corresponds to the radius of the minimum enclosing interval of S, and the point solution is
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represented by its midpoint. Utilizing order statistics leads to the formulation as follows:

[S] =
[
Y(2:3) − ∆s, Y(2:3) + ∆s

]
,

g(S) := rad([S]) = ∆s,

x̂ := cen([S]) = Y(2:3),

(5.67)

where [S] denotes the minimum enclosing interval of S, and Y(2:3) stands for the second order
statistic out of three samples. A complete guidance of deriving [S] is given in Annex. A.1.

Eq. 5.67 suggests that the designed point estimator degenerates to a median estimator, with
an estimation error bound of ∆s. This is fundamentally different from its counterpart in the
RAIM approaches, which degenerates to a mean estimator.

Thereafter, the corresponding IR bound can be computed using Eq. 5.54. Alternatively, the
focus can shift to seeking the worst-case fault (WCF) in the sense that the associated HMI
probability is maximized, similar to RB RAIM cf. Sec. 2.4.5. For each alternative hypothesis
Hi, a worst-case fault vector is defined as fi,worst, under which the conditional HMI probability
given Hi is maximized.

Subsequently, the overall HMI probability can be tightly upper bounded by

P (HMI) ≤ P (HMI | H0) · P (H0) +
3∑
i=1

P (HMI | fi,worst) · P (Hi). (5.68)

The detailed procedure of determining each term in Eq. 5.68 is introduced in Annex. A.2.4.

In the following analysis, the former IR bound is named NP bound, while the latter is termed
WCF bound for differentiation.

It is essential to understand the fundamental difference between the two bounds. The NP
bound is established through several inequalities, which can introduce looseness of bounding.
In contrast, the WCF bound is directly assessed in relation to the potential worst-case fault,
making it a reflection of realistic IR bounds. This distinction is further supported by analytical
evaluations.

Notably, in the presence of more than three measurements for the scalar problem, the
designed point estimator in the interval-based approach is a general L-estimator, revealing its
inherent robustness. The expected L-estimator is configured by the coefficients r (maximum
monitored simultaneous faults) and n (total number of measurements):

[S] =
[
Y(n−r:n) − ∆s, Y(r+1:n) + ∆s

]
, x̂ := cen([S]) = 1

2 ·
(
Y(n−r:n) + Y(r+1:n)

)
. (5.69)

Configuration of RAIM approaches

The derivations in Joerger et al. (2014) serve as a foundation for the following analysis:

� For SS RAIM, the FA probability requirement is equally allocated among the three test
statistics, which is deemed optimal in this case. The IR bound is then determined using
Eq. 2.93.

� For RB RAIM, the worst-case fault magnitude is computed following the instruction
provided (using a line search method). Subsequently, the IR bound can be determined
based on Eq. 2.67.

Relevant parameters are summarized in Tab. 5.2 and utilized in the evaluation. Notably,
the parameter ∆d (for set-based detection) is exclusively for evaluation purposes but not
necessarily needed in the integrity monitoring algorithm.
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Comparative analysis

Fig. 5.15 compares four IR bounds for the three approaches:

� NP bound for the interval approach (blue-colored curves),

� WCF bound for the interval approach (green-colored curves),

� IR bound for RB RAIM (red-colored curves),

� IR bound for SS RAIM (black-colored curves).

Figure 5.15: Integrity risk bound comparison among the interval based approach, SS RAIM and RB RAIM
for the benchmark example.

The IR bounds are displayed with respect to various AL values, allowing for performance
comparison in terms of bounding tightness. Specifically, lower IR bound values indicate tighter
bounds for a given AL. Such tight bounds are desirable, as they contribute to enhanced system
availability.

Comparing the NP and WCF bounds for the interval approach, there is no doubt that the
WCF bound is tighter. The main reason is discussed in Sec. 5.2.1 that two inequalities for
the NP bound may introduce conservatism, i.e., the ignorance of the impact of ND event
(Eq. 5.32) and using NP probability to bound PF probability (Eq. 5.37). The difference is
most significant when AL approaches zero. As shown in Fig. 5.15, the blue curve representing
the NP bound starts from one while the green curve for the WCF bound from zero. This is
due to the impact of ND event, which is virtually not happening at AL = 0. The WCF bound
gets closer to the NP bound as AL grows. The peak value of the WCF bound appears at
AL ≈ 0.6σ. Both bounds approach zero at infinity.

Additionally, it can be noticed that the two RAIM approaches have tighter bounds than
the WCF bound of interval approach when the AL is only between around 1.1σ to 1.9σ (RB)
or to 2.4σ (SS), while interval-based approach outperforms for smaller and larger ALs. The
NP bound of the interval approach is less but still advantageous. For instance, it outperforms
the two RAIM approaches when the AL is greater than 2.2σ (SS) and 2.6σ (RB). In this
benchmark example, at larger AL values, the IR bounds for the interval approach are up to
two orders of magnitude tighter than the SS bound and one order than the RB bound.

To better understand the different behaviors, the bounds based on Eq. 5.39, Eq. 5.68,
Eq. 2.93 and Eq. 2.67 are broken down into two components for each approach, i.e. the fault-
free hypothesis H0 and the sum of probabilities over all faulty hypotheses Hi, i = 1, 2, 3.
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The former is displayed as dashed curves, dominating the total IR bound for smaller AL val-
ues. Meanwhile, the latter has a greater impact on the total budget for larger AL values in
all approaches. The major difference lies in the criterion, i.e., the switch point of dominant
component, is greater for the interval-based approach than the SS RAIM and RB RAIM, i.e.,
around 3.2σ (WCF bound), 3.1σ (NP bound), 1.7σ (SS) and 1.9σ (RB).

The sensitivity of the IR bounds for RB RAIM, SS RAIM and interval approach is further
investigated in Fig. 5.16, where the AL and CREQ,0 (the CR requirement allocated to FA) are
varied for the benchmark example. The two bounds of the interval approach are independent of
CREQ,0. Both outperform the RB and SS bounds for stricter CREQ,0 and/or greater AL (ℓ/σ),
i.e, in the lower-right portion of Fig. 5.16(a) to Fig. 5.16(d). This trend is valuable because
those cases where the interval-based approach can provide tighter IR bounds are usually of
particular interest to integrity applications. Moreover, the advantage of WCF bounds of the
interval approach at lower ALs remains for all CREQ,0, which is visible in Fig. 5.16(c) and
Fig. 5.16(d).

(a) NP bounds of interval approach & SS RAIM (b) NP bounds of interval approach & RB RAIM

(c) WCF bounds of interval approach & SS RAIM (d) WCF bounds of interval approach & RB RAIM

Figure 5.16: Contour plots: IR bounds with respect to the Alert Limit and continuity risk requirements for
the interval approach and RAIM approaches for the benchmark example.

5.3.2 Analytical evaluation for integrity risk bound: Hybrid error models

In addition to purely Gaussian-distributed errors, further hybrid error models should be eval-
uated, accounting for more complicated scenarios. The following scenarios are analyzed:
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� Scenario 1: The observation errors consist of two components e = e1 + e2. One com-
ponent follows a normal distribution, i.e., e1 ∼ N (0, I). The other component e2 is a
deterministic bias that is known to be upper bounded by an interval [−1, 1].

� Scenario 2: The observation errors follow identically and independently long-tailed
distributions. This evaluation uses a student’s t-distributed error model e ∼ t(ν = 10).

The evaluation method is the same as in Sec. 5.3.1, comparing the NP bound of the interval
approach with the IR bounds of RB and SS RAIM.

Following the ARAIM nominal error concepts (cf. Sec. 2.4.6), the measurement error bounds
for RB/SS RAIM are configrued with two parameters σob (zero-mean overbounding Gaussian
standard deviation) and bnom (worst-case nominal bias). To construct measurement intervals
for the interval-based approach, two parameters are defined, i.e., σub (standard deviation de-
scribing random errors) and bub (interval radius describing remaining systematic errors). This
leads to the radius ∆s = k∆ σub+bub. Tab. 5.3 shows the specified values for these parameters,
aimed at achieving CDF overbounding based on the principles described in Sec. 2.4.2.

Table 5.3: Overbounding parameters used in different approaches for IR bounds evaluation (units: σ).

Scenario 1 Scenario 2

RB/SS RAIM σob = 1, bnom = 1 σob = 1.341, bnom = 0
Interval-based approach σub = 1, bub = 1 σub = 1, bub = 1.054

Fig. 5.17 presents the folded CDF for hybrid error models along with established error
bounds. Notably, the illustration principles are consistent with those in Fig. 4.6, with the
key difference being the probability that errors are guaranteed to be bounded. While Fig. 4.6
aims to bound all simulated errors for a fault-free analysis, Fig. 5.17 restricts its probabilistic
bounds down to Psat = 10−3.

(a) Scenario 1 (b) Scenario 2

Figure 5.17: Folded CDF for two scenarios of hybrid error models and associated bounds.

In Scenario 1, two approaches share identical error bounds, and consequently, in Fig. 5.18(a),
they demonstrate unchanged tightness of bounding (compared to Fig. 5.15) with enlarged ALs.
In contrast, different error bounding strategies are applied in Scenario 2, i.e., the remaining
systematic error that results in the long tails is handled deterministically in the interval-based
approach, while both strategies bound the tail distribution of simulated errors down to 10−3.
As a consequence, the bounding tightness differs from Scenario 1, i.e., both the disadvantage of
the interval approach at smaller ALs (or equivalently, higher IR) and its advantage at greater
ALs (lower IR) appear more significant cf. Fig. 5.18(b). In conclusion, the interval bounding
for remaining systematic errors benefits the interval-based integrity monitoring approach,
contributing to tighter IR bounds under certain conditions, e.g., critical IR requirements.
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(a) Scenario 1 (b) Scenario 2

Figure 5.18: IR bound comparison among the interval based approach, SS RAIM and RB RAIM for two
scenarios of hybrid error models.

5.3.3 Monte Carlo evaluation for realistic scenarios

In order to understand whether the difference between the interval-based and RAIM ap-
proaches is still significant in more realistic scenarios, an example with joint GPS and Galileo
systems in Blanch et al. (2015a) and WG-C ARAIM TSG (2019) is assessed in the following
analysis. Besides, the IR bounds are evaluated over 24 hours at an example Hannover location.
Comparative analysis is conducted for both scenarios.

Benchmark dual-constellation example

Consider the following geometry matrix A (for 5 GPS observations followed by 5 Galileo
observations) and the variances of measurement errors contained in Σ:

A =



0.023 0.995 −0.097 1 0
0.675 −0.690 −0.261 1 0
0.072 −0.660 −0.748 1 0

−0.940 0.255 −0.227 1 0
0.591 −0.754 −0.288 1 0

−0.324 −0.035 −0.946 0 1
−0.675 0.436 −0.596 0 1
0.094 −0.700 −0.708 0 1
0.557 0.309 −0.771 0 1
0.662 0.696 −0.278 0 1


, Σ = diag





3.887
1.438
0.860
1.638
1.323
0.843
0.896
0.867
0.857
1.362




. (5.70)

A skyplot is shown in Fig. 5.19 for five GPS satellites (denoted by G1 to G5) and five Galileo
satellites (E6 to E10). In addition to the full set of ten satellites, five subsets are chosen for
analysis, with corresponding excluded satellites highlighted.

A total of 100 Monte Carlo trials were conducted, each under six scenarios, including a
full set and various subsets. Observation values were generated randomly based on Gaussian
distributions, with variances in Eq. 5.70. It is noteworthy that faulty measurements were
not particularly considered in simulations for the following reasons: (i) the satellite failure
probability was set Psat = 10−5, which is fairly low given the number of Monte Carlo runs;
(ii) fault detection is not the focus of this study.
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Figure 5.19: Skyplot of the benchmark dual-constellation example. The full set and five subsets out of the
ten satellites are used in the comparative analysis. The excluded satellites in each scenario are highlighted.

With the IR requirement set to 10−7, the FSS of the interval-based approach can be com-
puted using the method in Sec. 5.2.2. To establish a baseline for comparison, state-wise PLs
were calculated. Subsequently, the IR bounds for RB and SS RAIM can be evaluated with
respect to these PLs following the same method as outlined in Sec. 5.3.1, assuming only single-
measurement faults and no risk due to not-monitored fault modes (PNM = 0). The final IR is
the sum of IR from all states. In this context, the three approaches are aligned in the position
domain, corresponding to the same PL or AL, based on the principles used to evaluate scalar
estimation problems discussed in Sec. 5.3.1 and Sec. 5.3.2. A tight IR bound is consistently
preferred.

This strategy is free of dependence on PL computation during evaluation, thereby avoiding
additional variability in performance results that may arise from differences in how RAIM
methods implement PL calculations.

Fig. 5.20 displays the comparison. The RB and SS RAIM are evaluated for CREQ,0 = 10−4

and CREQ,0 = 10−6. Despite the advantage of RB RAIM over SS RAIM, the interval-based
approach outperforms the other two approaches partially, i.e., for CREQ,0 = 10−6, Subsets
1/3 (SS) and Subsets 2/5 (both), while for CREQ,0 = 10−4, Subsets 2/5 (SS only). Hence, the
following influence factors may be summarized concerning the performance of the interval-
based approach:

� CR requirement. The interval approach may be advantageous in the case of stringent
CR requirements (i.e., low probabilities). This finding is consistent with the analysis for
the benchmark scalar problem.

� Satellite geometry. The interval approach outperforms the RAIM approaches under
certain geometries, which is not necessarily reflected by the DOP values.

� Satellite numbers (interval width). Despite wider intervals required due to fewer
excluded satellites in Subsets 1/2/5, the interval approach still provides relatively tight
IR bounds, suggesting that the satellite number (or equivalently the interval width) does
not necessarily dominate the bounding performance.

In conclusion, in a realistic scenario under pure stochastic measurement error bounding, the
advantage of the interval-based approach over classical RB/SS RAIM approaches may not be
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(a) Full set (b) Subset 1

(c) Subset 2 (d) Subset 3

(e) Subset 4 (f) Subset 5

Figure 5.20: IR bound comparison among the interval based approach, SS RAIM and RB RAIM for a
benchmark dual-constellation example. The full set and five subsets out of ten satellites are taken into analysis.

assured significant, which is jointly affected by the satellite geometry, satellite numbers, as
well as the CR requirement for RAIM approaches.

24-hours evaluation

For a comprehensive evaluation that takes into account all possible geometries and measurement-
level error bounding, an analysis was conducted for an example location in Hannover, Ger-
many, for 24 hours on December 9th, 2021. The assumptions and procedures for analyzing
the dual-constellation example apply to this study, except that different measurement-level
error bounding approaches are used for the interval-based approach and for RB/SS RAIM.
Tab. 5.4 showcases the management of six major error sources, with residual tropospheric and
ionospheric errors being treated differently.

Fig. 5.21(a) and Fig. 5.21(b) depict the IR bound comparison when using GPS or GPS/
Galileo satellites for single-frequency positioning. Although the RB RAIM outperforms SS
RAIM, the difference is relatively tiny at most epochs. Both provide looser IR bounds than
the interval approach (set to IREQ = 10−7), the dominant driver for which is the utilization of
interval bounding for residual ionospheric and tropospheric errors. Using more satellites (from
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Table 5.4: Nominal error modeling for RB/SS RAIM and the interval-based approach in the 24-hours IR
evaluation. Two positioning modes are investigated: single-frequency (SF) and dual-frequency (DF).

Nominal errors RB/SS RAIM Interval approach

SISRE (URA specs.) GPS in NAV data, Galileo SF: 7.5 m, DF: 6 m
Residual tropospheric error1

σTRP = 0.12 · 1.001√
0.002001+sin2 θ

m Interval bounds (Sec. 3.2)

Residual ionospheric error2 SF: σ2
UIRE =
max

{(
Ik

r
5

)2
, (Fpp τvert)2

}
DF: not considered

SF: Interval bounds
(Sec. 3.3)
DF: not considered

Multipath error not considered
Receiver code noise1 σREC = σ0

sin θ with σ0: GPS SF 0.1577 m & DF 0.4246 m,
Galileo SF 0.1373 m & DF 0.3371 m

Nominal signal deformation SF: not considered, DF: bnom = 0.75 m
1 θ is the satellite elevation angle.
2 In the MOPS User Ionospheric Range Error (UIRE) model, Ik

r is the ionospheric delay correction in meters,
Fpp is the obliquity factor and τvert is a geomagnetic latitude-dependent value; a detailed description is
referred to RTCA/DO-229D (2006).

GPS-only to GPS/Galileo) can reduce the difference because of the different behaviors with
respect to stochasticity of the interval approach and the least-squares estimator that RB/SS
RAIM is built on. Specifying a less strict CREQ,0 makes little improvement.

In the dual-frequency cases (Fig. 5.21(c) and Fig. 5.21(d)), especially the dual-constellation
case, RB/SS RAIM provide tighter IR bounds than the interval approach due to the elim-
ination of ionospheric delays. The interval approach is yet to be improved, e.g., by further
enhancing the measurement-level interval bounding for various error sources.

This evaluation relies on certain pre-conditions and assumptions, and hence, the perfor-
mance of these approaches in real-world applications may differ case by case:

� Risk allocation. The CR is allocated equally to all states for SS RAIM; and, for both
RB/SS RAIM, the IR budget is contributed by all states for fair comparison. These
approaches, by design and in practice, are only concerned with three positional states.
Moreover, the IR is usually allocated arbitrarily in prior for specific applications.

� Multiple hypotheses. This evaluation considered only single-measurement faults and
ignored the probability of not-monitored fault modes for simplicity. Even more com-
plexities can arise in real-world scenarios.

� Impact of fault detection. Faulty measurements were not particularly simulated in
the Monte Carlo evaluation, which may also have an impact.

Furthermore, the simulation is based on an ideal satellite availability, which is easily violated
in reality, especially in urban environments. Less tracked satellites will significantly degrade
the performance of RAIM approaches. The practical significance of the interval approach is
further explored in Sec. 6.2.

5.3.4 Discussion

Benefiting from the interval-represented uncertainty modeling for GNSS pseudorange mea-
surements, an alternative autonomous integrity monitoring approach has been designed in



136 5 Interval-based GNSS receiver autonomous integrity monitoring

(a) GPS-only, single-frequency

(b) GPS+Galileo, single-frequency

(c) GPS-only, dual-frequency

(d) GPS+Galileo, dual-frequency

Figure 5.21: IR bound comparison among the interval based approach, SS RAIM and RB RAIM for the
24-hours IR evaluation. Two positioning modes are investigated: single-frequency and dual-frequency.

this chapter based on the set-based fault detection and exclusion and set-based central esti-
mator. By incorporating stochastic methods, such as Gaussian overbounding, and determin-
istic interval bounding methods, the interval-based approach offers a measure of safety that
can be interpreted probabilistically for integrity purposes. It adopts the multiple hypothe-
ses framework from ARAIM and, hence, can protect the navigation system against multiple
simultaneous faults, which are likely encountered in urban navigation scenarios.

The designed approach is evaluated and compared to classical approaches, including RB/SS
RAIM, in terms of tightness of IR bounds through a benchmark scalar problem analytically;
besides, Monte Carlo simulations are performed for analyzing more realistic scenarios. Un-
der various error models, the interval approach demonstrates superior performance in certain
conditions in terms of tight IR bounding in the benchmark problem. In the Monte Carlo
evaluations, it outperforms the classical approaches for single-frequency positioning applica-
tions when equipped with the developed measurement-level interval bounds while yet to be
improved for dual-frequency scenarios.



6
Application examples and performance analysis

This chapter is dedicated to demonstrating potential applications of the strategies investi-
gated concerning error bounding, uncertainty modeling and propagation, and GNSS integrity
monitoring. Specifically, it explores the potential improvements to the baseline ARAIM al-
gorithm and the implementation of real-time integrity monitoring for urban navigation using
the interval-based approach.

6.1 Improved fault-free Horizontal Protection Level for aviation
users

The error bounding approaches for the least-squares estimator can be applied in ARAIM
to calculate the HPL that is intended for the fault-free hypothesis (H0). This is referred
to as fault-free HPL in subsequent discussions. This modification leads to improvements by
providing a reduced HPL compared to the baseline ARAIM algorithm. This section evaluates
the performance of this approach at both local and global levels.

6.1.1 Methodology

In the baseline ARAIM algorithm, the HPL is computed as the norm of two state-wise PLs,
accounting for multiple hypotheses, cf. Sec. 2.4.6. The state-wise fault-free PL consists of two
components: the uncertainty due to stochasticity, represented by a confidence interval, and
the impact of nominal bias, which is captured by worst-case interval values:

HPL0,(m) = k0,(m) · σ0,(m)) + |kT0,(m)| bnom, with m = 1, 2, (6.1)

HPLBL0 =
√
HPL2

0,(1) +HPL2
0,(2), (6.2)

where k0,(m) is a coefficient based on the IR requirement allocated to state m, σ0,(m) represents
the standard deviation of the estimation, kT0,(m) and bnom denote the m-th row vector of
the least-squares transformation matrix K and nominal bias vector, respectively (defined in
Eq. 2.36 and Eq. 2.96).

While Eq. 6.1 provides a tight bound within each state, the norm operation in Eq. 6.2 can
introduce conservatism in horizontal position bound calculation, for example, overestimating
the impact of nominal bias (Pagot et al., 2017; Nikiforov, 2019).

The error bounding approaches for the least-squares estimator, as outlined in Sec. 4.2, offer
an alternative scheme for combining uncertainties utilizing set theory and directly operating
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on the horizontal plane. This modifies Eq. 6.1 and Eq. 6.2 into

HPLZ
0 =

√(
k0,(1) · σ0,(1)

)2
+
(
k0,(2) · σ0,(2)

)2
+ rad (Z(x̂,K diag (bnom))) . (6.3)

The first term remains unchanged, calculating the norm for the stochastical component, while
the second term, the zonotope’s radius, accounts for the uncertainty due to nominal bias.

The subsequent simulation analysis evaluates the reduction by the zonotope-based HPLZ
0

from the baseline HPLBL0 :
δHPL0 = HPLBL0 −HPLZ

0 . (6.4)

The objective is to assess the impact of nominal bias on HPL computation without altering
the treatment of stochasticity in the baseline ARAIM algorithm.

6.1.2 Simulation analysis

The simulation tool was developed based on the Stanford MatLab Algorithm Availability
Simulation Tool (MAAST) for ARAIM Version 0.4 (available at https://gps.stanford.edu/
resources/software-tools/maast (Jan et al., 2001)). Tab. 6.1 summarizes the configuration of
related parameters in the simulation analysis. Particularly, the horizontal IR requirement is
set to 10−8, and a budget of 0.5 × 10−8 is allocated to each of the two states, resulting in
k0,(m) = 5.847.

Table 6.1: Configuration of related parameters for the fault-free HPL simulation analysis.

Parameter Value

Satellite elevation mask 5◦

Horizontal integrity risk requirement 10−8

URA for GPS satellites 2.4 m
URA for Galileo satellites 6 m
Nominal bias for GPS satellites (bnom) 0.75 m and 2 m
Nominal bias for Galileo satellites (bnom) 0.75 m and 2 m
Sampling time interval 300 s
Simulation duration 1 week

Two scenarios were simulated using all available GPS and Galileo satellites for comparison,
with nominal biases of bnom = 0.75 m and bnom = 2 m. The results shown in Fig. 6.1, Fig. 6.2
and Fig. 6.3 reveals the following insights:

� The zonotope-based method consistently reduces the computed fault-free HPL, both
geographically and temporally. The reductions reach up to approximately 0.65 m for
bnom = 0.75 m and around 1.7 m for bnom = 2 m.

� The degree of reduction is primarily influenced by the predefined bnom values and the
measurement geometry. Greater bnom values lead to more significant improvements,
while the global distribution pattern remains relatively consistent across different bnom
settings.

� It is inconclusive which regions benefit the most from the zonotope-based HPL computa-
tion. Interestingly, both the largest improvement (maximum δHPL0) and the smallest
reduction (minimum δHPL0) occur in the mid-latitude regions, with the low-latitude
and high-latitude regions showing moderate improvements with the zonotope method.

https://gps.stanford.edu/resources/software-tools/maast
https://gps.stanford.edu/resources/software-tools/maast
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(a) HPLBL
0 (bnom = 0.75 m) (b) HPLBL

0 (bnom = 2 m)

(c) HPLZ
0 (bnom = 0.75 m) (d) HPLZ

0 (bnom = 2 m)

Figure 6.1: Global contours of simulation results for the fault-free HPL using two methods, denoted by HPLBL
0 for the baseline ARAIM algorithm and HPLZ

0 for the
zonotope-based method. Two scenarios concerning the predefined nominal bias are simulated: bnom = 0.75 m and bnom = 2 m.
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(a) Maximal δHPL0 (bnom = 0.75 m) (b) Maximal δHPL0 (bnom = 2 m)

(c) Minimal δHPL0 (bnom = 0.75 m) (d) Minimal δHPL0 (bnom = 2 m)

Figure 6.2: Global contours of the reduction of computed fault-free HPL using the zonotope-based method compared to the baseline ARAIM algorithm (maximum and
minimum values). Two scenarios concerning the predefined nominal bias are simulated: bnom = 0.75 m and bnom = 2 m.
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(a) Latitude 0◦, Longitude 10◦ (bnom = 0.75 m)

(b) Latitude 50◦, Longitude 10◦ (bnom = 0.75 m)

(c) Latitude 80◦, Longitude 10◦ (bnom = 0.75 m)

(d) Latitude 0◦, Longitude 10◦ (bnom = 2 m)

(e) Latitude 50◦, Longitude 10◦ (bnom = 2 m)

(f) Latitude 80◦, Longitude 10◦ (bnom = 2 m)

Figure 6.3: Time series of fault-free HPL simulations: Baseline ARAIM (HPLBL
0 , blue), zonotope-based

method (HPLZ
0 , red), and achieved reduction (δHPL0, yellow). Two nominal biases are considered: bnom =

0.75,m (a–c) and 2,m (d–f), across three locations: Latitude 0◦, Longitude 10◦ (low-latitude), Latitude 50◦,
Longitude 10◦ (mid-latitude) and Latitude 80◦, Longitude 10◦ (high-latitude).
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In conclusion, the refined HPL computation scheme proves advantageous in comparison
with the baseline ARAIM algorithm, generating smaller fault-free HPL for aviation users.
This improvement can be achieved at a global scale, depending on satellite availability and
the predetermined nominal biases.

6.2 Interval-based integrity monitoring for urban navigation

This section aims to evaluate the interval-based integrity monitoring approach developed
in Chap. 5, which is equipped with the distribution-free uncertainty modeling outlined in
Chap. 3, within the context of urban navigation. The kinematic and static datasets used are
introduced in Sec. 6.2.1, followed by the experimental setup and Integrity Support Parameters
(ISP) configurations in Sec. 6.2.2. Sec. 6.2.3 introduces threat modeling, addressing nominal
error bounding through interval and Gaussian overbounding methods, as well as handling
unknown local threats. The performance of fault-free error bounding is analyzed in Sec. 6.2.4,
followed by an analysis of the loss of integrity (LOI) in Sec. 6.2.5. Finally, Sec. 6.2.6 examines
the impact of protection functions against unknown local threats.

6.2.1 Data collection

Two datasets are utilized: one in the kinematic mode collected in urban environments and
the other in the static mode collected at a continuously operating GNSS reference station.

Kinematic dataset

The kinematic measurement dataset was collected by a moving vehicle in Hannover, Ger-
many, on Dec. 9th, 2021, over approximately 2.5 hours, as shown in Fig. 6.4 and detailed
information in Tab. 6.2. The vehicle was equipped with a Septentrio PolaRx5e receiver and
a navigation-grade Inertial Measurement Unit (IMU) iMAR iPRENA-I-A. Post-processed
GNSS/IMU tightly-coupled solutions were generated using the TerraPos software with a
centimeter-level precision, serving as the reference trajectory. The dataset is publicly available
at https://doi.org/10.25835/75o9yrc0 (Axmann et al., 2023).

The dataset was initially sampled at 10 Hz. For computational efficiency, it is resampled to
1 Hz, which is appropriate given the low driving speeds in urban areas.

Table 6.2: Main information for the kinematic and static datasets.

Parameter Kinematic dataset Static dataset

Sampling interval 1 sec 30 sec
Total number of epochs 9866 20160
Trajectory length Around 17 km N/A
Approximated coordinates
(latitude, longitude)

Starting point:
(52.3865◦N, 9.7156◦E) (52.3879◦N, 9.7125◦E)

Static dataset

The static measurement dataset was collected at a continuously operating GNSS reference
station, labeled as EE01, which is situated on the rooftop of the HiTec building on the campus

https://doi.org/10.25835/75o9yrc0
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Figure 6.4: Data collection: the permanent station collecting the static dataset and the trajectory of the
kinematic dataset are marked in the map as the light blue dot and dark blue lines, respectively.

of Leibniz University Hannover, Germany (see Fig. 6.4). A Septentrio PolaRx5TR receiver,
which belongs to the same series as the receiver used for the kinematic dataset, was used
to maintain similar performance levels. This receiver operated continuously for one week,
overlapping with the period during which the kinematic dataset was collected.

6.2.2 Experimental setup

Integrity support parameters

Currently, there are no widely accepted standards for urban navigation integrity. To conduct a
meaningful evaluation, the IR requirement is set to 10−4. This setting is not tied to any specific
application but is based on the volume of data collected: Analyzing navigation integrity over
nearly 104 epochs (kinematic dataset) and 2 × 104 epochs (static dataset) necessitates an IR
requirement of 10−4 as a baseline to demonstrate the evaluation’s effectiveness.

It is noteworthy that this setting aligns with the recommended requirements for payment-
critical and regulatory-critical road applications, as outlined in the Report on Road & Auto-
motive User Needs and Requirements (EUSPA, 2021).

The remaining ISPs are listed in Tab. 6.3. For the real-time integrity monitoring of the
kinematic dataset, the satellite fault probability (Psat) is set to 10−4, which is further discussed
in Sec. 6.2.3. Moreover, this probability is set to zero for static fault-free analysis. The
constellation fault probability (Pconst) is not considered in this work, and the threshold for
not-monitored probability (Pthres) is set slightly lower than the IR requirement, consistent
with typical ARAIM settings in the literature such as Blanch et al. (2015a).

Given the ISPs, it is sufficient to monitor only single-measurement faults. This means
that the maximum number of monitored faults is one (r = 1), so fault modes with more
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Table 6.3: Integrity support parameters (ISP) in the urban navigation experiment.

Parameter Value

IR requirement (IREQ), in which
for the horizontal component (IREQ,H)

10−4

0.5 × 10−4

Satellite-wise fault probability (Psat)
0 (for static fault-free analysis)

10−4 (for kinematic real-time monitoring)
Constellation-wise fault probability (Pconst) not considered
Threshold for not-monitored
probability (Pthres)1 4 × 10−5

CR requirement (CREQ)2 10−4

Threshold for iterative
computations of PL (TOLPL)3 10−2

1 Pthres is necessary for the multiple-hypothesis framework, applied to the interval approach and ARAIM.
2 CREQ is used in ARAIM and RB RAIM.
3 TOLP L is only used in ARAIM for computing the PL.

than one simultaneous fault are accounted for by the “not-monitored” probability PNM (see
Eq. 5.55). For example, based on the formulas in Sec. 5.2.2, PNM for r = 1 varies from
2.10 × 10−7 to 7.78 × 10−6 with 7 to 40 measurements. This range is lower than the threshold
(Pthres = 4×10−5). This setup enables the legacy RB RAIM to be performed for comparison.

Processing methods and corrections applied

Two modes of pseudorange-based Single Point Positioning (SPP) are analyzed: (i) single-
frequency SPP with broadcast correction products and (ii) dual-frequency SPP with precise
IGS orbit and clock products. Tab. 6.4 summarizes the applied error correction methods.

Table 6.4: Processing methods and corrections applied.

Positioning mode
Single-frequency SPP Dual-frequency SPP

Observation types (RINEX
naming format)

GC1C, RC1C, EC1C GC1C/GC2W, RC1C/RC2C,
EC1C/EC5Q

Sat. orbit & clock error Broadcast ephemerids IGS WUM rapid products
Ionospheric delay GPS Klobuchar model Ionosphere-free LC
Tropospheric delay Saastamoinen model with ISO2533 standard atmosphere
Satellite group delay Broadcast SGD WUM OSB products
Multipath error/NLOS Not corrected

6.2.3 Threat modeling

Introduction

The threat model in the experiment is defined on the basis of ARAIM threat model (Sec. 2.4.2)
with special adaptations to reflect the unique challenges of urban environments. The following
aspects are considered:
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� For the receiver hardware noise, the uncertainty specific to the receiver type used in
the experiment is analyzed.

� Multipath effect and NLOS are dominant local threats in urban environments. While
single-reflected multipath effect can be handled by MEE-based interval bounding dis-
cussed in Sec. 3.4, more complex multipath effect and NLOS conditions are difficult to
predict, or model precisely. Therefore, these are considered as narrow faults in this work.

Nominal error bounding

The following nominal error sources are considered:

� Signal-In-Space Range Error (SISRE) due to orbit and clock errors

� Residual ionospheric errors

� Residual tropospheric errors

� Multipath errors (single-reflected or refracted)

� Receiver hardware noise

� Nominal signal deformation

Other nominal error sources are either corrected to a significant level or considered negligible.

The strategies used for bounding these nominal errors in the two positioning modes are
summarized in Tab. 6.5. Specifically, the subsequent subsection details how receiver noise is
treated in this experiment.

Table 6.5: Nominal error bounding approaches in the experiment.

Nominal errors Positioning mode
Single-frequency SPP Dual-frequency SPP

Sat. orbit & clock error Gaussian overbounds based
on URA specification

Gaussian distribution based on
IGS product quality assessment1

Res. tropospheric error Interval bounds (Sec. 3.2)
Res. ionospheric error Interval bounds (Sec. 3.3) Not considered
Multipath error Interval bounds (Sec. 3.4)
Receiver code noise Empirically determined Gaussian overbounds
Nom. signal deformation Not considered Interval bounds2based on worst-

case nominal bias bnom
1 We choose the reported RMS value (rounded to 3 cm) for IGS final precise orbit products as the sigma of

the assumed Gaussian distribution (Johnston et al., 2017).
2 We take the nominal bias value from ARAIM bnom = 0.75 m to define symmetric interval radii for the

uncertainty due to nominal signal deformation.

The RAIM approaches are implemented for comparative analysis. The residual tropospheric
and ionospheric errors are handled stochastically (refer to Tab. 5.4). Meanwhile, the multipath
error is treated using the MOPS airframe multipath model, which is included in the baseline
ARAIM algorithms (Blanch et al., 2015a). The model is represented by the following equation:

σ2
MP = 0.13 + 0.53 × e

θ
10 [m2], (6.5)
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where θ is the satellite elevation angle in degrees. This model, designed for GPS signals, is also
applied to GLONASS and Galileo signals in the experiments due to the lack of corresponding
standard specifications.

Receiver hardware noise

The receiver hardware noise is modeled in a stochastic manner. Precisely, an overbounding
Gaussian distribution for the receiver hardware noise is estimated to define the measurement
intervals. While various stochastic models exist in the literature, such as Hartinger and
Brunner (1999) and Luo et al. (2009), the following elevation-dependent model is chosen:

σ(θ)2 =
(

σ0
sin(θ)

)2
, (6.6)

where θ is the satellite elevation and σ(θ) represents the corresponding standard deviation,
describing the uncertainty due to the receiver hardware noise. σ0 is a pre-determined over-
bounding sigma value, which is input into the integrity monitoring algorithm.

It is important to note that other models could also be used; however, the tightness of
bounding (i.e., the margin between the bounds and actual errors) would vary, eventually
affecting the estimation error bounding performance, as discussed in Sec. 4.4.3. In this work,
we select the model in Eq. 6.6 based on expert knowledge and empirical experience, e.g., the
normalized experimental distributions for the elevations of interest tend to exhibit Gaussian
behavior for most GNSS signals.

To estimate σ0, the one-week static data from EE01 station is analyzed. This is an open-sky
measurement environment and, hence, is dedicated to simulating a fault-free scenario. Prior
to analysis, several aspects were checked to confirm the fault-free assumption:

� Constellation Service Provider (CSP)s’ announcements including Notice Advi-
sory to Navstar Users, Notice Advisory to GLONASS Users, and Notice Advisory to
Galileo Users were reviewed for potential satellite usability. The following events were
identified:

– GPS PRN02 unusable from 13:04 until 19:34 on Dec. 9th, 2021 (GPS time);

– GPS PRN22 unusable for the entire week (GPS time);

The CSPs of GLONASS and Galileo did not report any unusability alerts during the
experiment.

� 3D city model-based ray tracing to identify potential blocked or severely affected
signals. Fig. 6.5 showcases the sky visibility for the EE01 station, indicating that a small
portion of direct signals may be blocked. Any signals from this area of the blocked sky
are excluded from fault-free analyses.

After excluding all potentially faulted signals, the Multipath Linear Combination was formed
(cf. Eq. 3.27). The multipath error term is assumed to be zero, and hence, the receiver code
noise is considered to dominate the LC values, resulting in random variations, as illustrated
in Fig. 6.6 and Fig. 6.7 (the second column with respect to each code observable).

The overbounding sigma σ0 is estimated from normalized LC residuals based on Eq. 6.6.
The first columns of Fig. 6.6 and Fig. 6.7 present the folded CDFs of the normalized residuals
and corresponding overbounding Gaussian distributions for GPS, GLONASS and Galileo code
observables. Resulting σ0 values are summarized in Tab. 6.6.
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Figure 6.5: Sky visibility of the EE01 station: one building in front of the station can block a small portion
of the direct signals.

The impact of potential multipath-affected or NLOS signals is considered negligible for the
following reasons:

� Significant outliers observed in the Multipath LC are excluded from the analysis to
mitigate the influence of such signals;

� The determined overbounding sigma accounts for the effect of remaining multipath errors
as part of the nominal error budget.

Table 6.6: Overbounding standard deviations derived from the normalized Multipath LC values.

LC Code observable Phase observables Overbounding sigma value [m]

1 GC1C GL1C, GL2W 0.0.3244
2 GC2W GL2W, GL1C 0.1334
3 RC1C RL1C, RL2C 0.6163
4 RC2C RL2C, RL1C 0.4521
5 EC1C EL1C, EL5Q 0.2709
6 EC5Q EL1C, EL5Q 0.1320

Unknown local threats

Local threats, such as NLOS, pose significant challenges for GNSS urban navigation. These
threats are difficult to correct or compensate for using GNSS augmentation information (e.g.,
SBAS). Additionally, they are not easily captured by nominal error models or statistical
frequencies, which are necessary to navigation integrity monitoring (Crespillo et al., 2022).
Consequently, the navigation system may experience degraded integrity performance or, in
extreme cases, loss of integrity and continuity.

Functions targeted at protecting the system against the presence of local threats are es-
sential. Possible solutions include various interference detection methods and hardware-based
interference mitigation techniques. This experiment considers three typical approaches:
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(a) Folded CDF for normalized
MP LC (GC1C, GL1C, GL2W)

(b) MP LC w.r.t elevation
(GC1C, GL1C, GL2W)

(c) Normalized MP LC w.r.t ele-
vation (GC1C, GL1C, GL2W)

(d) Folded CDF for normalized
MP LC (GC2W, GL2W, GL1C)

(e) MP LC w.r.t elevation
(GC2W, GL2W, GL1C)

(f) Normalized MP LC w.r.t ele-
vation (GC2W, GL2W, GL1C)

(g) Folded CDF for normalized
MP LC (RC1C, RL1C, RL2C)

(h) MP LC w.r.t elevation (RC1C,
RL1C, RL2C)

(i) Normalized MP LC w.r.t ele-
vation (RC1C, RL1C, RL2C)

(j) Folded CDF for normalized
MP LC (RC2C, RL2C, RL1C)

(k) MP LC w.r.t elevation (RC2C,
RL2C, RL1C)

(l) Normalized MP LC w.r.t ele-
vation (RC2C, RL2C, RL1C)

Figure 6.6: Forming Multipath LC to derive overbounding standard deviations for receiver hardware noise
with respect to GPS and GLONASS code observables. Observations with elevation lower than 15◦ are not
involved in the statistics (highlighted in gray areas); the indented overbounding Gaussian distributions bound

the observations’ CDF down to 10−5.

� Receiver-level interference mitigation. The Septentrio PolaRx5 receiver enables
the function of A-Posteriori Multipath Estimation (APME), using extra correlators in
each tracking channel to estimate and correct the multipath error in pseudorange and
carrier phase measurements.
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(a) Folded CDF for normalized
MP LC (EC1C, EL1C, EL5Q)

(b) MP LC w.r.t elevation (EC1C,
EL1C, EL5Q)

(c) Normalized MP LC w.r.t ele-
vation (EC1C, EL1C, EL5Q)

(d) Folded CDF for normalized
MP LC (EC5Q, EL5Q, EL1C)

(e) MP LC w.r.t elevation (EC5Q,
EL5Q, EL1C)

(f) Normalized MP LC w.r.t ele-
vation (EC5Q, EL5Q, EL1C)

Figure 6.7: Forming multipath LC to derive overbounding standard deviations for receiver hardware noise with
respect to Galileo code observables. Observations with elevation lower than 15◦ are not involved in statistics
(highlighted in gray areas); the indented overbounding Gaussian distributions bound the observations’ CDF

down to 10−5.

� Signal classification using 3D city model-based ray tracing. The experiment
employs MEE-based interval bounding to address multipath errors in signals that are
classified as multipath-affected.

� Data editing. Excluding measurements based on reasonable checks and criteria can
reduce significant measurement errors. This process is referred to as data editing by
Crespillo et al. (2022). This work applied (i) masks for C/N0 value and satellite elevation:

– C/N0 mask: 25 dB-Hz (applied to GS1C, RS1C and ES1C observables);

– Elevation mask: 15◦.

and (ii) NLOS/multipath detection based on Multipath LC: A detection criterion is
set to kMP · σ(θ), where the coefficient kMP = 3.89 is determined based on the tail
probability 10−4 to be protected, as discussed in the subsequent subsection, and σ(θ)
is calculated using Eq. 6.6). Multipath LC observations are obtained using Eq. 3.27
with procedures introduced in Sec. 3.4.3. Observations greater than the threshold are
excluded from estimations.

Excessive protection against local threats may significantly impact satellite availability,
potentially leading to insufficient measurements for position estimation and integrity moni-
toring functions. Therefore, a trade-off must be sought without harming system availability.
Sec. 6.2.3 will explore its impact.
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Fault probabilities

The fault probabilities associated with local threats are yet to be fully understood. In the
experiment, a satellite-wise fault probability Psat = 10−4 is approximated for every satellite
based on the following considerations:

� Psat in ARAIM threat models does not exceed this level for GPS, GLONASS and Galileo
satellites (see Tab. 2.4);

� Most local threats are expected to be excluded after applying the protection functions;

� The overbounding Gaussian distributions for nominal receiver hardware noise are valid
down to 10−5, supporting this setting.

However, the second assumption may be questionable. On the one hand, it is difficult to
identify local threats with GNSS-only measurements, especially in challenging environments
where a majority of measurements are affected; on the other hand, a balance must be consid-
ered between ensuring satellite visibility and avoiding disruptions to navigation functions.

6.2.4 Fault-free error bounding analysis

For applications such as infrastructure-based augmentation systems, e.g., SBAS, the PL com-
putation must account for the nominal error budget while the augmentation system monitors
fault events (anomalies). In this context, exploring the fault-free HPL is important.

This section utilizes the static dataset for fault-free analysis, excluding all potential faulted
signals as discussed in Sec. 6.2.3. Under the fault-free assumption:

� The FSS for the interval-based approach is in the form of polytopes (cf. Sec 4.3.1), with
the point solution and HPL determined from the Chebyshev center and radius.

� The least-squares solution is expected to be protected by a MOPS SBAS-style HPL with
the detailed formula provided in Annex. B.

Fig. 6.8 presents three example epochs for the interval and stochastic approaches:

� Example 1 and Example 3 show cases where the HPL from the interval approach
is smaller than the SBAS-style HPL. The central estimator’s performance varies, be-
ing more accurate in Example 1 but less in Example 3 compared to the least-squares
solutions.

� Example 2 illustrates a scenario with poor satellite geometry, where the interval-based
HPL is slightly larger than the SBAS-style HPL (approximately 41.1 m and 39.8 m,
respectively), where both point solutions remain close to the true position (low HPE,
the central estimated solution is slightly more accurate, approximately 0.9 m and 1.4 m,
respectively).

Fig. 6.9 compares the scatter density of all estimated solutions, i.e., the central estimator
(Fig. 6.9(a)) and the least-squares estimator (Fig. 6.9(b)). The central estimated solutions
exhibit a wider spread than the least-squares solutions.This is further reflected in the time
series of HPE (Fig. 6.10(a)), where the central estimator generally shows greater HPE than
the LSQ estimator. The ECDF in Fig. 6.10(c) also confirms this observation.

In contrast, the interval-based approach provides significantly lower HPL values than the
SBAS-style HPL, as shown in the time series in Fig. 6.10(a) and ECDF plot in Fig. 6.10(d). The
reduction in HPL is generally up to 10 m, with a trade-off of approximately 1 m in accuracy.
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(a) Example 1: Dec. 6th, 10:59:30 (b) Example 2: Dec. 9th, 19:41:30 (c) Example 3: Dec. 11th, 03:35:30

Figure 6.8: Three fault-free example epochs for estimators and error bounds: the interval approach (central
estimator & feasible solution set) and the stochastic approach (least-squares estimator & confidence ellipse).

(a) Central estimator (b) Least-squares estimator

Figure 6.9: Scatter density of fault-free positioning for the central estimator and the least-squares estimator.

This trade-off does not precisely align with the simulations discussed in Sec. 4.4.3, due to the
following reasons:

� The actual error components are more complex than simulated scenarios;

� The developed observation error bounds are more conservative than simulated scenarios,
i.e, loose bounds, which can highly affect the position-domain performance.

Conclusively, the interval-based approach yields significantly tighter position bounds with
integrity assurance under fault-free conditions, offering higher system availability compared
to the stochastic approach. This makes it particularly advantageous for applications such as
infrastructure-based augmentation systems.

6.2.5 Comparative analysis for loss of integrity

This section evaluates the integrity performance of the interval-based approach, with a special
focus on fault detection (FD), and compares it with the classical RB RAIM and the state-of-
the-art baseline SS ARAIM algorithm. Both single-frequency and dual-frequency SPP modes
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(a) Fault-free HPE times series

(b) Fault-free HPL times series

(c) Fault-free HPE ECDF (d) Fault-free HPL ECDF

Figure 6.10: Fault-free HPE/HPL using different methods for the static dataset in the form of (a-b) time
series, and (c-d) ECDF.

are analyzed, as configured in Tab. 6.4, with corresponding nominal error modeling shown in
Tab. 6.5.

Single-frequency SPP

For single-frequency SPP, we compare the interval-based approach, RB RAIM and SS ARAIM
using GPS-only (G) and GPS+GLONASS+Galileo (GRE) constellations. Two key metrics
are considered:

� MI occurrence. Ideally, the MI occurrence should remain below the IR requirement;

� HPL values. Lower HPL indicates better availability performance. For this LOI
analysis, HPL is calculated only when an alert is not triggered (no fault detection).
If an alert is issued, the user is notified of system unavailability, and HPL is neither
calculated nor provided to the user, following the procedures outlined in Sec. 5.2.3.

Fig. 6.11 shows the ECDF of HPL across all scenarios, and the results are further visualized
using “partial” Stanford diagrams (i.e., without specified AL) in Fig. 6.12.

Notably, no MI occurrence was observed, indicating full protection in terms of loss of in-
tegrity. In terms of availability:
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Figure 6.11: ECDF of HPL for single-frequency SPP.

� GPS-only (G): The interval-based approach provides lower HPL values compared to
the other two methods, consistent with the simulation analysis for IR bounds in Sec. 5.3.

� Three constellations (GRE): SS ARAIM generally achieves the tightest HPL val-
ues. The interval approach, while slightly looser, still outperforms RB RAIM. The
68.27%, 95.45%, 99.73% percentiles of the HPL values are summarized in Tab. 6.7.

Table 6.7: Integrity and availability performance for the three approaches in single-frequency SPP.

Parameters Interval approach RB RAIM SS ARAIM
G GRE G GRE G GRE

MI occurrence 0 0 0 0 0 0
HPL (68.27%, [m]) 42.4 51.8 177.6 94.6 88.9 48.5
HPL (95.45%, [m]) 67.2 88.6 320.9 144.0 169.7 72.5
HPL (99.73%, [m]) 114.8 154.2 404.4 240.8 214.8 121.1

This trend differs from the simulation analysis in Sec. 5.3.3, reflecting the real-world per-
formances of the three approaches. The discrepancy mainly stems from their differences in
PL computation and risk allocation. For example, RB RAIM applies a more conservative
calculation of position bounds (HPL, see Sec. 2.4.5), leading to the worst availability perfor-
mance. The interval approach, with moderate conservatism, offers superior availability in
single-constellation scenarios and remains competitive when multiple constellations are used.

These findings underscore a critical insight for designing integrity algorithms: The tight-
ness of analytical IR bounds is fundamental for system availability. However, in real-world
applications, availability is also significantly affected by how the risk domain is translated into
the position domain. This includes PL calculation and the allocation of risk across multiple
states, both of which should balance the computational efficiency and effectiveness to enhance
availability.

Dual-frequency SPP

This section examines dual-frequency SPP, which gains more accuracy due to the formed
ionosphere-free LC and the use of IGS precise orbit and clock products. The evaluation
focuses on three metrics:
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(a) Interval approach (G) (b) Interval approach (GRE)

(c) RB RAIM (G, Brown’s method) (d) RB RAIM (GRE, Brown’s method)

(e) SS ARAIM (G, Baseline algorithm) (f) SS ARAIM (GRE, Baseline algorithm)

Figure 6.12: Partial Stanford diagrams for single-frequency SPP using GPS-only (G) and
GPS+Galileo+GLONASS (GRE) signals.

� HMI occurrence, the primary performance metric, evaluated against the specified
AL. This analysis sets the AL to 25 m to meet the requirements for payment-critical
and regulatory-critical applications as outlined by EUSPA (2021). HMI occurrence
should in no case exceed the IR requirement.

� MI occurrence, consistent with the evaluation for single-freqeuncy SPP.

� System availability, defined as the percentage of epochs where no alert is declared
(i.e., no FD) and the computed HPL does not exceed AL.
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In certain scenarios, post-FD performance may be relevant, particularly when position
bounds need to accommodate the impact of detected faults while maintaining continuous
operation. For instance, position bounds might still meet operational requirements despite
detected but unresolved faults. The interval-based approach addresses this by inflating mea-
surement intervals and recalculating the FSS (cf. Sec. 5.2.3). For RAIM approaches, a Hori-
zontal Uncertainty Level (HUL) is computed using actual measurements. This study adopts
Young’s method for RB RAIM (Young et al., 1996) and the method in WG-C ARAIM TSG
(2019) for SS ARAIM. The detailed formulas are provided in Annex. B. The evaluation in-
cludes both alerted and non-alerted epochs, i.e., the system is considered available as long as
the computed HPL (for interval approach) or HUL (for RAIM approaches) does not surpass
the specified AL.

Tab. 6.8 summarizes the results, and Fig. 6.13 illustrates them in Stanford diagrams.

Table 6.8: Integrity and availability performance for the three approaches in dual-frequency SPP.

Parameters Interval approach RB RAIM SS ARAIM
no alert all HPL (no alert) HUL HPL (no alert) HUL

HMI occurrence 0 0 0 0 0 8
MI occurrence 28 59 0 9 11 48
Availability [%] 73.8 85.7 48.1 84.9 61.3 92.4

Key observations are summarized as follows:

� Non-alerted epochs: All approaches provide full protection against HMI occurrence
concerning the specified AL. Notably, RB RAIM, while demonstrating zero MI occur-
rences, has the lowest availability due to the highest HPL values. The interval approach
exhibits significantly better availability (73.8%) compared to the SS ARAIM (61.3%)
and RB RAIM (48.1%).

� All epochs (alerted and non-alerted): The interval approach and RB RAIM re-
main to guarantee protections against HMI, both reporting zero HMI occurrences. In
contrast, the SS ARAIM experiences eight HMI occurrences, significantly exceeding the
IR requirement (8 × 10−4 > 0.5 × 10−4, for horizontal). Violating the primary safety
concerns renders any availability advantage meaningless. Despite a higher number of MI
occurrences, the interval approach maintains slightly better availability than RB RAIM
(85.7% and 84.9%, respectively).

Overall, the developed interval-based approach demonstrates robust integrity performance
compared to the RAIM approaches in the dual-frequency SPP, with a notable advantage in
availability, particularly in non-alerted scenarios. However, further refinements are needed to
address MI occurrences. A potential solution is enhancing the protection functions against
unknown local threats, discussed in the subsequent section.

6.2.6 Impact of protection functions against local threats

Sec. 6.2.3 introduces various possible protection functions against unknown local threats. The
choice of using a single function or a combination of multiple functions can influence both
integrity and availability. This section aims to evaluate the impact of the following approaches:

� C/N0 mask (25 dB-Hz). Signals with lower C/N0 values are excluded from estimation
(applied to GS1C, RS1C and ES1C observables);
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(a) Interval approach (no alert) (b) Interval approach (all)

(c) RB RAIM (Brown’s method, no alert) (d) RB RAIM (Young’s method, HUL)

(e) SS ARAIM (Baseline, no alert) (f) SS ARAIM (Baseline, HUL)

Figure 6.13: Stanford diagrams for dual-frequency SPP using different approaches.

� Satellite elevation mask (15◦). Signals with lower elevation are excluded;

� Multipath LC criterion (3.89σ(θ)). Signals with greater LC values are excluded;

� Ray tracing (RT) classification based on 3D city models. Signals classified as
NLOS or blocked are excluded;

Eight scenarios are defined regarding the applied functions, as detailed in Tab. 6.9.

It is noteworthy that Scenario 8 serves as a baseline, showcasing an ideal fault-free situation
without utilizing any protection functions. Simulated measurements were generated based on
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Table 6.9: Integrity and availability performance using different protection functions.

Scenarios

1 2 3 4 5 6 7 8*

Functions applied:
C/N0 mask ✓ ✓ ✓
Elevation mask ✓ ✓ ✓
MP LC criterion ✓ ✓ ✓ ✓
RT classification ✓ ✓ ✓

Performence metric (FDE):
HMI occurrence 6 2 6 1 1 2 1 0
MI occurrence 189 100 154 18 16 69 8 0
Availability [%] 92.1 89.8 91.3 72.9 72.5 88.6 70.6 96.6

Performence metric (FD-only):
HMI occurrence 3 0 3 1 1 0 1 0
MI occurrence 171 87 142 13 13 59 8 0
Availability [%] 84.7 86.5 84.0 71.7 71.7 85.7 69.9 96.6

* Scenario 8 is a fault-free demonstration based on Monte Carlo simulations.

nominal error models and were used in the estimation instead of actual data. Specifically,
interval-bounded error components were randomly generated using a uniform distribution,
while the variance-described error components were handled by a Gaussian-distribution ran-
dom generator.

Another notable aspect is the activation of full FDE functions in the interval approach. Once
a detection occurs (i.e., the consistency check fails) at a particular epoch, the FE function is
triggered. This function examines all potential fault modes to identify any existing faults and,
if found, removes them from the estimation process (see Sec. 5.2.3). As a result, the outcomes
may differ from those obtained using the FD function but without activating the FE function.
For example, the protection functions used to generate the results in Fig. 6.13(b) are the same
as those in Scenario 6, but the FE function is deactivated.

The evaluation results for the interval approach across eight scenarios, with and without
activating the FE function, are summarized in Tab. 6.9 with selected scenarios illustrated using
Stanford diagrams in Fig. 6.14.

The key observations from this study are as follows:

� The ideal simulated scenario (Scenario 8) demonstrates expected integrity monitoring
performance, showing zero MI or HMI occurrences. However, the presence of remaining
local threats could weaken its performance, as seen in other scenarios. To address
this, either robust protection functions should be integrated or more precise information
regarding the threat occurrence should be fed into the algorithms.

� Integrating more protection functions can reduce MI occurrences, e.g., the count drops
significantly to 8 when all functions are employed, compared to 171 when no functions
are used. However, this comes at the cost of availability performance, highlighting the
trade-off between integrity and availability in choosing which functions to employ. The
primary reason is that more active protection functions tend to exclude more satellites
from processing, resulting in either insufficient satellite numbers or increased HPL values.
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(a) Scenario 1 (FD-only) (b) Scenario 1 (FDE)

(c) Scenario 2 (FDE) (d) Scenario 5 (FDE)

(e) Scenario 7 (FDE) (f) Scenario 8 (FDE)

Figure 6.14: Stanford diagrams for the interval-based approach using different protection functions. Settings
of the scenarios are referred to Tab. 6.9.

� The ray tracing classification proves particularly effective in identifying local threats.
Scenarios that utilizes RT classification (4, 5,& 7) show fairly satisfactory integrity
performance, with HMI occurrences meeting the IR requirement (1×10−4) and relatively
low MI occurrences.

� The impact of protection functions typically extends to FDE capability. The addition of
the FE function improves availability performance by excluding detected faults. How-
ever, improper exclusion may cause LOI.
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For example, in Scenario 1, there are 3 HMI and 171 MI events in the FD-only condition.
When the FE function is activated, these numbers increase to 6 and 180, respectively,
although this also results in more available epochs thanks to the exclusion of faulty
measurements. This trend is also observed across other scenarios (2, 3, 4, 5 & 6). In
contrast, the HMI and MI occurrences do not increase in Scenarios 7 & 8, and the
availability in Scenario 7 improves slightly.

This difference is mainly attributed to the reliability (correctness) of the protection func-
tions. If the protection functions yield unreliable results, the FE function, which relies
on self-consistency checks, may be misled due to remaining faulty measurements and the
absence of nominal ones. This shows a limitation of relying on GNSS alone navigation in
challenging environments, necessitating the use of reliable external information or aiding
sensors.

To further illustrate the impact, we choose a segment of 24 epochs from the experimental tra-
jectory and observe their results in the position domain, as shown in Fig. 6.15(a) to Fig. 6.15(h).
Detailed information regarding each epoch, including the number of satellites used in the es-
timation and the calculated HPL values, is provided in Fig. 6.15(i) and Fig. 6.15(j).

The improvement of integrity and degradation of availability is visible in, e.g., the third
epoch (highlighted in Fig. 6.15(j)):

� In Scenarios 1 and 2, MI occurs as the reference point is not bounded by FSS, indi-
cating loss of integrity;

� In Scenarios 4, 5, and 7, the system is unavailable as the obtained HPL values are
beyond AL (dashed red line);

� Scenarios 3, 6, and 8 illustrates no MI nor system unavailability, with the reference
points bounded by FSS and HPL values remaining lower than AL.

The experimental results highlight the importance of properly configuring protection func-
tions against unknown local threats. On the one hand, unreliable protection functions can
lead to incorrect fault identification, which may harm the system’s nominal operations by
excluding fault-free measurements. Moreover, the FDE capabilities of the integrity monitor
are limited. Incorporating external information can help alleviate this issue, e.g., the RT
classification based on 3D city models has demonstrated strong performance in this study.

On the other hand, GNSS observations can be largely affected by the challenging envi-
ronments in urban areas. An excessive exclusion of faulty measurements may lead to an
inadequate number of satellites for estimation and integrity monitoring, ultimately disrupting
the navigation system. Therefore, the use of external sensors would be beneficial in addressing
this challenge.

In conclusion, it is critical to seek a compromise between the integrity and availability of
real-time integrity monitoring. It is highly recommended to explore external information or
sensors to compensate for the limitations of GNSS in urban environments.

6.2.7 Discussion

This section has demonstrated the effectiveness of the interval-based integrity monitoring
approach using two experimental datasets: one static dataset collected at a reference station
and one kinematic dataset captured along a trajectory in a highly urbanized area.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6 (g) Scenario 7 (h) Scenario 8

(i) Number of satellites used (eight scenarios) (j) HPL (eight scenarios)

Figure 6.15: Results of example epochs for the interval-based approach using different protection functions.
Settings of the scenarios are referred to Tab. 6.9. The driving direction is anti-clockwise. The light-blue polygon

represents the convex hull of the obtained non-convex feasible solution set (FSS).
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The analysis for fault-free conditions confirms that the interval-based approach, by lever-
aging the interval-described nominal error bounding and potential fault removal, delivers
significantly tighter position bounds compared to the classical stochastic approach. This in-
dicates superior availability performance and highlights the advantages of this approach in
applications such as infrastructure-based augmentation systems.

The interval approach is further evaluated in urban navigation scenarios with respect to
LOI, in comparison with the legacy RB RAIM and the state-of-the-art baseline SS ARAIM
algorithm. All three approaches succeed in ensuring the integrity for FD functions, with no MI
occurrences in single-frequency SPP and no HMI occurrences in dual-frequency SPP. However,
SS ARAIM failed in integrity assurance for alerted epochs, where excessive HMI events were
observed.

Regarding system availability, RB RAIM consistently shows the worst performance due
to its conservative calculation of position bounds, while the interval-based approach and SS
ARAIM are more comparable. In single-frequency SPP scenarios, the interval approach pro-
duces notably lower HPL values in single constellation setups, reducing the values by up to
79.1% compared to RB RAIM and by 60.4% compared to SS ARAIM. With more constella-
tions, however, it shows slightly increased HPL values, which is a reversed trend compared to
the other approaches. For dual-frequency SPP, the interval-based approach achieves greater
availability, outperforming RB RAIM by up to 25.5% and SS ARAIM by up to 12.5%, given
the specified AL.

In urban environments with unknown local threats, reliable protection functions used for
preprocessing are essential to maintain FDE capabilities. A crucial trade-off emerges: while
excluding more potentially faulty measurements can enhance integrity, it may simultaneously
degrade system availability. This trade-off underscores the importance of carefully balancing
protection functions in GNSS-based navigation applications.

The analyses indicate that single-frequency pseudorange measurements alone are insufficient
to meet demanding requirements. In contrast, dual-frequency pseudorange measurements
demonstrate the potential for payment-critical or regulatory-critical applications (as outlined
by EUSPA (2021)). Nevertheless, neither strategy fully achieves the required levels of integrity
and availability for safety-critical applications due to inherent uncertainties in pseudorange
observations.

To meet these stringent requirements, future research should explore the use of carrier-phase
measurements in combination with the interval-based approach. Carrier-phase observations
offer significantly higher precision, which could bridge the gap for safety-critical applications.
Other recommendations from this chapter include enhancing protection functions that explore
external information, improving availability through additional navigation sensors, and further
refining FDE functions in future studies.
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Conclusions and Outlook

In this dissertation, the key concepts, models, and methodologies for a comprehensive interval-
based framework for autonomous integrity monitoring are presented and validated through
both simulations and real-world experiments.

Unlike conventional stochastic approaches, this framework is grounded on interval-described
uncertainty modeling. The starting point is the GNSS uncertainty component classification.
Specifically, the remaining errors after applying standard correction methods to the GNSS
measurements can be traced to various sources, yielding either stochasticity (describing the
random variability of the measured values) or imprecision (caused by remaining systematics).
Intervals offer an adequate description of uncertainty due to imprecision and can naturally be
extended to probabilistic contexts, where it is interpreted as a confidence interval.

By leveraging interval mathematics and set theory, the interval-based approach outlined
in this dissertation enables rigorous error bounding, deterministic uncertainty propagation,
and fault detection and exclusion (FDE). This approach holds substantial relevance for a
range of emerging integrity-focused applications beyond civil aviation, where the integrity
concept was initially formalized. Its features are of great significance for a variety of safety-
critical scenarios, such as Advanced Driver Assistance Systems (ADAS), railway signaling, and
autonomous vehicle navigation. As highlighted in the report by EUSPA (2021), there is also a
growing need for integrity monitoring among road users across various regulatory-critical and
payment-critical GNSS applications.

Fig. 7.1 structures the road map toward an interval-based integrity monitoring framework.
In line with this, five major methodological achievements in this dissertation are summarized
as follows.

Achievement 1: Interval-described uncertainty modeling for GNSS pseudorange. Building
on the foundation of distribution-free uncertainty modeling using the interval representation
outlined in Schön (2003), this thesis introduces practical methods for characterizing uncer-
tainty in GNSS pseudorange measurements. These approaches are tailored to quantify the
uncertainty due to remaining errors after applying standard correction methods. In particu-
lar, three major error sources, including the residual tropospheric error, residual ionospheric
error, and multipath error, have been evaluated and validated through real-world data. The
key contributions include:

� The interval-based sensitivity analysis is refined using natural interval arithmetic, broad-
ening its applicability to a wider range of problems, e.g., explicit nonlinear, discontin-
uous, or nonmonotonic models. It allows for individual estimation of the lower bound
and upper bound and, hence, relaxes the limitation on symmetric intervals, potentially
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Figure 7.1: The road map toward an interval-based integrity monitoring framework developed in this thesis.

resulting in tighter bounds. This method has been used to address the residual tropo-
spheric and ionospheric errors for the standard Saastamoinen model and GPS Klobuchar
model, respectively.

� A multipath error envelope (MEE)-based method has been proposed and implemented
to upper bound pseudorange multipath errors for binary phase shift keying (BPSK) and
binary offset carrier (BOC) signals. Experimental evaluation for GPS, GLONASS, and
Galileo signals demonstrates the effectiveness of this approach.

Achievement 2: Set-based state estimation and error bounding. The interval-described
uncertainty models for GNSS state estimation problems have been explored in this disser-
tation, with an emphasis on error bounding. The classical least-squares estimator and the
set estimator based on constraint satisfaction, examined in Schön (2003) and Dbouk (2021),
are revisited, along with various error bounding approaches. Additionally, two novel point
estimators are investigated that take advantage of the obtained feasible solution set (FSS),
extending the scope of prior works:

� The optimal set-based central estimator produces a point solution as the Chebyshev
center of the FSS, which is optimal in terms of minimal estimation error bounds.

� The set-constrained least-squares estimator integrates set constraints into the classical
least-squares framework and, thereby combining the strength of both the set estimator
and the least-squares estimator.

These estimators have been comprehensively analyzed and compared through theoretical and
simulational analyses in terms of their mathematical properties, accuracy, and error bounding
performance. Notably, in a two-dimensional example, the least-squares estimator demon-
strated significant advantages in handling stochastic errors regarding both accuracy and error
bounds, including cases of purely Gaussian-distributed errors and long-tailed distributed er-
rors. The set-based central estimator is recommended for managing uniformly distributed
errors (i.e., with known interval bounds) or hybrid errors that are dominated by interval-
bounded components. This corresponds to application scenarios where there are significant
remaining systematic errors. Benefiting from both the least-squares principle and set estima-
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tor, the SCLS estimator offers robust performance, enabling the generation of a flexible and
reliable point solution.

Achievement 3: Improvement of baseline ARAIM algorithms. A minor modification of
the baseline ARAIM algorithms is suggested by this thesis, aimed at reducing the calculated
fault-free HPL. This enhancement is achieved through the implementation of the interval
extension of the least-squares estimator. The effectiveness of these improvements has been
demonstrated via simulation analysis at both global and local scales.

Achievement 4: Set-based fault detection and exclusion. Following former investigations
in Dbouk (2021), a detailed formulation of the set-based fault detection method is provided
in this thesis, emphasizing its principle of detection that operates within the state domain.
The set-based detector explores set operations and utilizes a set-emptiness check as the test
criterion, eliminating the need to compute a scalar threshold. The mathematical properties of
this method have been thoroughly analyzed for a simplified scalar estimation scenario using
order statistics and compared to classical RAIM detectors, including RB and SS methods.

The detection interval characterizes the set-based detector and significantly influences both
the false alert (FA) and missed detection (MD) probabilities, as well as its detection capability,
which refers to its sensitivity to fault magnitudes. Assuming normally distributed errors, ana-
lytical expressions for these parameters have been explicitly derived. Additionally, a heuristic
measure has been developed to qualify two-dimensional measurement geometry for set-based
detection. This measure has been tested through MC simulation in comparison with the dilu-
tion of precision (DOP), which is commonly used in stochastic approaches. Furthermore, an
innovative weighting scheme has been proposed to enhance detection capabilities.

Achievement 5: Interval-based integrity monitoring architecture. An interval-based in-
tegrity monitoring architecture has been developed in this thesis. It incorporates set-based
fault detection and exclusion methods, along with the set-based central estimator, all grounded
in interval-described uncertainty models. Leveraging the multiple-hypotheses framework from
ARAIM, the architecture is capable of managing multiple simultaneous faults, protecting the
navigation system from loss of integrity (LOI) with assured probability. This capability is
particularly beneficial in urban navigation scenarios, where multiple simultaneous faults may
arise due to challenging environments. A practical solution tailored for road transportation
applications is presented, which aligns with the referenced Alert Limit (AL) framework by
incorporating road geometry and varying levels of situational awareness.

The developed interval-based integrity monitoring approach has been evaluated in three
ways:

� Analytical evaluation for integrity risk (IR) bounds. Two bounds have been
defined and assessed for a benchmark example: (i) the NP bound, which is established
using conditional No Protection (NP) probabilities, and (ii) the WCF bound, repre-
senting the maximum reachable HMI probability with corresponding worst-case fault
(WCF). The former is computationally efficient but slightly conservative, while the
latter, though tighter, requires prior computation of the WCF, which can be compu-
tationally expensive. Both bounds exhibit advantages over the residual-based (RB) and
solution separation (SS) RAIM in cases of relatively large AL values or strict continuity
risk (CR) requirements across various assumptions about the error distribution.

� MC evaluation for integrity risk (IR) bounds. Realistic scenarios have been an-
alyzed using MC simulations, including a benchmark dual-constellation example and
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24-hour changing geometries at an example location. Both the developed interval error
bounds and the Gaussian error bounds derived from the guidance in the MOPS are in-
volved in single and dual-frequency scenarios. In terms of system availability (lower HPL
values are preferred), the interval-based approach outperforms the classical methods for
single-frequency scenarios, although improvements are still needed for dual-frequency
scenarios.

� Experimental evaluation and validation for real-world urban navigation. This
evaluation uses data collected from urban environments, focusing on integrity and avail-
ability metrics. The threat model is established by adjusting the ARAIM model, gen-
erating nominal error bounds and a set of Integrity Support Parameters (ISP). Based
on the threat modeling, the interval-based approach produces significantly tight posi-
tion bounds for fault-free conditions, indicating superior availability performance for
applications such as infrastructure-based augmentation systems. Compared to classical
RB RAIM and the state-of-art baseline ARAIM algorithms, the developed approach
consistently meets the IR requirements and shows higher availability in most scenarios.
Furthermore, the reliability of protection functions against unknown local threats is em-
phasized as an important influence factor of the interval-based approach, as evidenced
by the comparative analysis.

While the capabilities and advantages of the developed interval-based approach have been
demonstrated, there are several aspects that offer promising opportunities for further devel-
opment:

� The first aspect relates to the interval-described GNSS uncertainty modeling. In
this thesis, example atmospheric correction models have been examined. Future research
could explore additional application scenarios, such as the GPT series models for cor-
recting the tropospheric delay, as well as the Galileo NeQuick model and Beidou BDGIM
model for correcting the ionospheric delay. Another important direction is the treatment
of residual atmospheric error and multipath error for carrier-phase measurements.

� The second aspect involves extending state estimation beyond snapshot solu-
tions by exploring advanced filtering techniques to tackle dynamic issues. Key direc-
tions include deterministic uncertainty propagation through a filter structure and the
development of associated error bounding approaches, which are fundamental to future
integrity monitoring for multi-sensor fusion.

� To advance the continuous refinement of ARAIM for aviation users, future research, as
the third aspect, could focus on developing an advanced LSQ-derived estimator
that aims at minimizing position bounds and incorporates both variance-described and
interval-described error components. This advancement would be beneficial not only in
handling fault-free conditions but also in reducing the final HPL values.

� The fourth aspect concerns improving set-based FDE methods. Potential areas for
investigation include:

(i) exploring the mathematical characteristics of the set-based detector for higher-
dimensional estimation problems,

(ii) identifying meaningful geometry measures for high-dimensional measurement ge-
ometries, and

(ii) developing robust weighting models, e.g., using environmental features or informa-
tion from signal tracking.
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� The last aspect is about the integrity monitoring architecture. In addition to
the previous aspects that would ultimately benefit the integrity monitor, a number of
recommendations can be made to facilitate real-world applications, including:

(i) Realistic Integrity Support Parameter (ISP) configuration. Particularly, it is crucial
to estimate and represent fault probabilities that account for local threats. Innova-
tive strategies should be developed based on both satellite operational history and
local environments. A promising solution is the GNSS feature map proposed by
Ruwisch and Schön (2022) for urban navigation, which associates the parameter of
interest with satellite elevations and driving locations.

(ii) Integration of external information and aiding sensors. As highlighted in relevant
sections, external information can be integrated into the architecture to support
protection functions against unknown local threats. An example is the ray trac-
ing (RT) classification based on 3D city models. Other GNSS measurements or
additional sensors could help identify multipath-affected and NLOS signals, allevi-
ating the reliance on self-consistency checks and enhancing FDE capabilities. For
instance, using the GNSS Doppler shift measurements, as shown in Xu and Rife
(2019), or various sensors such as odometers, fisheye cameras, LiDAR, and inertial
sensors (Ahmad, 2013; Sánchez et al., 2016; Wen et al., 2019).

(iii) Architecture for filter-based solutions. To address dynamic issues or capture time-
correlated errors, the integrity monitoring architecture could be expanded by em-
ploying filtering techniques. Stochastic approaches, such as recursive ARAIM (Gal-
lon, 2023), are currently under development. Future work could also investigate the
multi-sensor application of the interval-based approach using filtering techniques.





A
Derivations for the benchmark problem using

order statistics

This section presents relevant derivations for the benchmark problem in Sec. 5.1.3, including
(i) the determination of feasible solution set (FSS) and (ii) probabilistic evaluation within the
integrity context.

A.1 Determination of feasible solution set

Sec. 5.2.2 defines the measurement-level intervals, denoted by [−∆s,∆s], and the associated
bounding probability P∆. Four hypotheses, Hi for i = 0, 1, 2, 3, are established considering
the single-measurement-fault assumptions:

Under H0: The following inequality system:
x ≤ y1 + ∆s, −x ≤ −y1 + ∆s,
x ≤ y2 + ∆s, −x ≤ −y2 + ∆s,
x ≤ y3 + ∆s, −x ≤ −y3 + ∆s,

(A.1)

results in the fault-free polytope solution set:

Ps,0 = [max(y1, y2, y3) − ∆s,min(y1, y2, y3) + ∆s]. (A.2)

Under H1: The measurement y1 is assumed to be faulty. Since there is no information
available regarding the fault magnitude, nor should any assumption be made, we inflate its
interval bounds to infinity. As a result, the following inequalities are obtained:

x ≤ y1 + ∞, −x ≤ −y2 + ∞,
x ≤ y2 + ∆s, −x ≤ −y2 + ∆s,
x ≤ y3 + ∆s, −x ≤ −y3 + ∆s,

(A.3)

resulting in a new polytope solution set:

Ps,1 = [max(y2, y3) − ∆s,min(y2, y3) + ∆s], (A.4)

which tolerates the potential faulty measurement y1. In this regard, Ps,1 is interpreted as a
polytope solution set that tolerates potential fault in measurement y1 (termed fault-tolerant
polytope solution set hereafter). For simplicity of expressions, the inequalities with tolerant
measurements (e.g., the first line in Eq. A.3) can be neglected without altering the calculation
result.
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Under H2: Similar to H1, a fault-tolerant polytope solution set is obtained when y2 is toler-
ated (bounded by an infinitely-wide interval):

Ps,2 = [max(y1, y3) − ∆s,min(y1, y3) + ∆s]. (A.5)

Under H3: The corresponding fault-tolerant polytope set solution is expressed as

Ps,3 = [max(y1, y2) − ∆s,min(y1, y2) + ∆s]. (A.6)

Subsequently, the feasible solution set (FSS, S) is the union of all the above polytopes:

S =Ps,0 ∪ Ps,1 ∪ Ps,2 ∪ Ps,3
=[max(y1, y2, y3) − ∆s,min(y1, y2, y3) + ∆s] ∪ [max(y2, y3) − ∆s,min(y2, y3) + ∆s]

∪ [max(y1, y3) − ∆s,min(y1, y3) + ∆s] ∪ [max(y1, y2) − ∆s,min(y1, y2) + ∆s]
=[min(max(y1, y2, y3),max(y2, y3),max(y1, y3),max(y1, y2)) − ∆s,

max(min(y1, y2, y3),min(y2, y3),min(y1, y3),min(y1, y2)) + ∆s]
=[Y(2:3) − ∆s, Y(2:3) + ∆s],

(A.7)

where Y(2:3) denotes the second order statistic out of three samples (the order statistics is
introduced in Eq. A.14), i.e., the median of three samples. Eq. A.7 implies the FSS to be
an interval around Y(2:3) with radius ∆s. Hence, the optimal point estimator is the median
estimator x̂s = Y(2:3), and the scalar measure of S, indicating the worst-case position error, is
meas(S) = ∆s.

A.2 Probabilistic evaluation

A.2.1 Introduction

This section evaluates the relevant probabilities for the benchmark problem. The PDF and
CDF of measurements are denoted by fi(y) and Fi(y) for i = 1, 2, 3. Under the fault-free
hypothesis (H0, with the fault vector f = [0, 0, 0]T ), they follow normal distributions:

f1(y) = f2(y) = f3(y) = fN (y), F1(y) = F2(y) = F3(y) = FN (y)
⇒ y ∼ N (03×1, I3×3), (A.8)

where f(y) and F (y) denote the PDF and CDF of a standard normal distribution.

Under a faulty hypothesis (Hi for i = 1, 2, 3), the faulty measurement follows a non-zero
mean normal distribution (PDF denoted by fN (y, fi) and CDF denoted by FN (y, fi)):

fi(y) = fN (y, fi), Fi(y) = FN (y, fi)
⇒ y ∼ N (f , I3×3), (A.9)

where f is defined in Eq. 5.13, dependent on the fault mode.

A.2.2 False alert probability

Without loss of generality, the joint PDF of two order statistics Y(r:n) and Y(s:n) (1 ≤ r < s ≤
n) is denoted by (see David and Nagaraja (2003), Page 11)

f(r:n)(s:n)(y1, y2) = n!
(r − 1)!(s− r − 1)!(n− s)! ·

F r−1
N (y1) fN (y1) [FN (y2) − FN (y1)]s−r−1 fN (y2) [1 − FN (y2)]n−s. (A.10)
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The joint CDF may be obtained by integration of Eq. A.10, or by a direct argument in the
discrete case for y1 < y2:

F(r:n)(s:n)(y1, y2) =P (at least r Yi ≤ y1, at least s Yi ≤ y2)

=
n∑
j=s

j∑
i=r

P (exactly i Yi ≤ y1, exactly j Yi ≤ y2)

=
n∑
j=s

j∑
i=r

n!
i!(j − i)!(n− j)!F

i
N (y1) [FN (y2) − FN (y1)]j−i

· [1 − FN (y2)]n−j .

(A.11)

For y1 > y2, Eq. A.11 can be simplified as

F(r:n)(s:n)(y1, y2) = F(s:n)(y2). (A.12)

Defining new terms w := y2 −y1, y := y1, Eq. A.10 may be re-arranged concerning the range
of the two order statistics Wrs := Y(s) −Y(r) by transforming from y1, y2 to y, w. Subsequently,
the PDF of Wrs is obtained by integrating over y for Eq. A.10:

fWrs(w) =
∫ ∞

−∞
f(1:n)(n:n)(y, y + w) dy

= n!
i!(j − i)!(n− j)! F

i(y)·∫ ∞

−∞
F r−1(y) f(y) [F (y1 + w) − F (y)]s−r−1 f(y + w) [1 − F (y + w)]n−s dx.

(A.13)

The computation of FA probability utilizes the definition of “test statistic” W (sample
range) in Eq. 5.19. Its PDF can be obtained as a special case r = 1, s = n of Eq. A.13, and
its CDF can be obtained by integrating the PDF over w > 0 and y ∈ [−∞,∞], resulting in
formulations in Eq. 5.20. Consequently,

P (FA) =
∫ ∞

2 ∆s

fW (w)dw = 1 − FW (2 ∆s). (A.14)

Notably, Eq. A.14 and Eq. 5.21 evaluate the FA probability using the same method, with the
only difference in the notation of intervals involved (∆d in Eq. 5.21 and ∆s in Eq. A.14).

A.2.3 No detection probability

Under H0: The conditional ND probability is the complementary probability to the FA
probability:

P (ND | H0) = 1 − P (FA) = FW (2∆s), (A.15)

where FW (w) is defined in Eq. 5.20.

Under Hi: The order statistics used in the fault-free hypothesis (H0) is no longer appli-
cable, because a combinatorial problem is formed under Hi, i.e., three order statistics with
one candidate faulty measurement. In this regard, the independent identically distributed
(iid) assumption must be discarded, and inid order statistics (i.e., independent nonidentically
distributed variables) should be explored. The derivation is as follows.
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The joint PDF f(1:3)(3:3)(y, y + w) of the first and third order statistics can be expressed
explicitly as

f(1:3)(3:3)(y, y + w) =
f1(y) [F2(y + w) − F2(y)] f3(y + w) + f1(y) [F3(y + w) − F3(y)] f2(y + w)+
f2(y) [F1(y + w) − F1(y)] f3(y + w) + f2(y) [F3(y + w) − F3(y)] f1(y + w)+
f3(y) [F1(y + w) − F1(y)] f3(y + w) + f3(y) [F2(y + w) − F2(y)] f1(y + w). (A.16)

Generalizations for n measurements are

f(1:n)(n:n)(y, y + w) =
2n∑
k=1

fpermk(1)(y) · [Fpermk(2)(y + w) − Fpermi(2)(y)] · ...

· [Fpermk(n−1)(y + w) − Fperm(n−1)(y)] · fpermk(n)(y + w), (A.17)

where permk(j) for k ∈ [1, 2n] and j ∈ [1, n] represents the j-th element in the k-th possible
permutation for n measurements; fpermk(1)(y) = fN (y) (also Fpermk(1)(y) = FN (y)) when k = i
and fpermk(1)(y) = fN (y, fi) (also Fpermk(1)(y) = FN (y, fi)) when k ̸= i.

The CDF of W can be derived from integration over w and y:

FW (w) =
∫ ∞

0

∫ ∞

−∞
f(1:n)(n:n)(y, y + w) dy dw

=
∫ ∞

−∞

2n∑
k=1

fpermk(1)(y) ·
∫ ∞

0
[Fpermk(2)(y + w) − Fpermk(2)(y)] · ...

· [Fpermk(n)(y + w) − Fperm(n−1)(y)] · fpermk(n)(y + w) dw dy.

(A.18)

Undoubtly, Eq. 5.20 is a special case (iid case) of Eq. A.17 and Eq. A.18.

Subsequently, the conditional ND probability is determined by

P (ND | Hi) = FW (2∆s), (A.19)

with FW (w) defined in Eq. A.18. Accordingly, Fig. 5.4(b) illustrates the results of Eq. A.18 as
∆s and fi vary when n = 3.

A.2.4 Probability of hazardous misleading information

Under H0: The conditional HMI probability can be analytically assessed by

P (HMI |H0) = P
(
|ε0| > ℓ ∧ Ps,0 ̸= ∅ | y ∼ N (0, I3×3)

)
= P

(
Y(3:3) − Y(1:3) < 2∆s∧

∣∣∣Y(2:3)| > ∆s | y ∼ N (0n×1, I3×3)
)
.

(A.20)

David and Nagaraja (2003) (Page 12) expresses the joint PDF of all n iid order statistics
as

f(1:n),...,(n:n)(y1, ..., yn) = n!fN (y1) · ... · fN (yn) with y1 ≤ ... ≤ yn. (A.21)

Defining the following variables:

w = Y(3:3) − Y(1:3) ∈ [0,∞) , r = Y(2:3) − Y(1:3) ∈ [0, w], y = Y(2:3), (A.22)

the joint PDF of three observations can be formulated as

f(1:3),(2:3),(3:3)(y1, y2, y3) = fy,w,r(y, w, r) = 3!fN (y − r) fN (y) fN (y − r + w). (A.23)
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Eq. A.20 reveals w ≥ 0, w < 2∆s and y > ∆s, and hence, the conditional HMI probability is
calculated by integration over the three variables:

P (HMI |H0)

=
∫ −∆s

−∞

∫ ∆s

0

∫ w

0
fy,w,r(y, w, r)dr dw dy +

∫ ∞

∆s

∫ ∆s

0

∫ w

0
fy,w,r(y, w, r)dr dw dy

=3!
(∫ −∆s

−∞
fN (y)

∫ ∆s

0

∫ w

0
fN (y − r)fN (y − r + w)dr dw dy

)

+
∫ ∞

∆s

fN (y)
∫ ∆s

0

∫ w

0
fN (y − r)fN (y − r + w)dr dw dy

)
.

(A.24)

Under Hi: The joint PDF of three observations is formulated by considering various permu-
tations:

f (i)
y,w,r(y, w, r) = 2 fN (y, fi)fN (y − r)fN (y − r + w) + 2 fN (y)fN (y − r, fi)fN (y − r + w)+

2 fN (y)fN (y − r)fN (y − r + w, fi), (A.25)

where the fault magnitude fi is arbitrary and the superscript (i) is associate withHi, indicating
the inid situation different from Eq. A.21. The permutations are exhaustively listed to account
for all possible orders of measurement magnitudes.

The conditional HMI probability under Hi is then given by

P (HMI |Hi)
=P (|ε0| > ℓ ∧ Ps,0 ̸= ∅ | y ∼ N (fi, I3×3))
=P (Y(3:3) − Y(1:3) < 2∆s ∧ |Y(2:3)| > ∆s | y ∼ N (fi, I3×3))

=
∫ −∆s

−∞

∫ 2 ∆s

0

∫ w

0
f (i)
y,w,r(y, w, r)dr dw dy +

∫ ∞

∆s

∫ 2 ∆s

0

∫ w

0
f (i)
y,w,r(y, w, r)dr dw dy.

(A.26)

In the benchmark example, Eq. A.26 is consistent across all faulty hypotheses.

The remaining question is to determine the value of fi to be evaluated, which is arbitrary by
definition. Similar to the evaluation method for RB RAIM (cf. Eq. 2.65), the HMI probability
for the interval approach can also be evaluated against the wort-case fault magnitude fi,worst:

P (HMI | Hi) ≤P (HMI | fi,worst)
=P (|ε0| > ℓ ∧ Ps,0 ̸= ∅ | y ∼ N (fi,worst, I3×3)),

(A.27)

where fi,worst is the i-th element of fi,worst and the other two elements are zeros. P (HMI | Hi)
is maximized for Hi in the case of fi,worst. Replacing fi with fi,worst in Eq. A.25 and using
methods such as line search, P (HMI | fi,worst) and fi,worst can be computed jointly.





B
Formulas for Horizontal Protection Level

Various formulas for calculating Horizontal Protection Level (HPL)/Horizontal Uncertainty
Level (HUL) can be found in the literature. In addition to the methods introduced in Sec. 2.4,
this section reports three approaches that are used in the experiments in Sec. 6.2.

MOPS SBAS-style HPL. The MOPS provides a formula for computing the SBAS HPL
(RTCA/DO-229D, 2006):

HPL = kH · dmajor, (B.1)

where

� dmajor may be interpreted as the semi-major axis of the confidence ellipse for the least-
squares estimation.

� kH is a coefficient, which MOPS specifies 6.18 or 6.0 for different aircraft operations
based on the required IR allocation. Its value is determined based on knowledge of
position uncertainty (Eq. 4.7) and specific IR requirements:

1 − IREQ,H =
∫ k2

H

−∞
χ2(2, 0) dx, (B.2)

where χ2(2, 0) represents a chi-square distribution with two degrees of freedom and
IREQ,H is the IR requirement allocated to horizontal components. Notably, Eq. B.2 is
slightly different from the handling of MOPS but is consistent with the error bounding
as discussed in Sec. 4.2.

Legacy RB RAIM HUL. Different from the HPL in RB RAIM, the Horizontal Uncertainty
Level (HUL) is a position error bound that meets the integrity requirement but is directly
dependent on the measurement residuals (WG-C ARAIM TSG, 2019).

It is known from Eq. 2.44 that the parity vector can be interpreted as a function of the
nominal error (e) and the fault (f). As a result, its L2-norm, equal to q2

RB, cannot fully
capture the influence of f and must be compensated for to upper bound the position error.
To do so, an upper bound is established as follows:

HUL = HSLOPEmax · (q2
RB + ∆p) + kH · σbias, (B.3)

where ∆p is added to compensate for the impact of e. Given pbias and TRB, the ∆p term may
be calculated by

∆p = pbias − TRB, (B.4)
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which can be understood as the impact of the noise term on the test statistic qRB such that it
is neither below the detection threshold (qRB < TRB, i.e., missed detection), nor approaching
pbias.

Furthermore, an empirically determined factor 1/2 may be applied to ∆p, as proposed by
Young et al. (1996), which can reduce the conservatism and has been verified by Monte Carlo
simulations. Subsequently, the final formulation of HUL reads:

HUL = HSLOPEmax ·
(
q2
RB + 1

2 (pbias − TRB)
)

+ kH · σbias. (B.5)

Baseline ARAIM HUL. Similar to HPL, the HUL in ARAIM is calculated using the two
horizontal components (WG-C ARAIM TSG, 2019):

HUL =
√

HUL2
(1) + HUL2

(2), (B.6)

where
HUL(m) = max

k=0,...,h

∣∣∣x̂i,(m) − x̂0,(m)

∣∣∣+ ki,(m)σi,(m), (B.7)

and ki,(m) is known from PL computation:

ki,(m) =
HPL(m) − TSS,i,(m) − |k(m),i| · bnom

σi,(m)
. (B.8)
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