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Abstract 

Providing real-time precise positioning services with Global Navigation Satellite Systems 

(GNSSs) has a profound impact on various fields such as autonomous driving, natural hazard 

monitoring and early warning, and surface loading. Stable, reliable, and high-precision real-

time satellite orbits and clocks are the prerequisites for real-time Precise Point Positioning (PPP) 

services. Serving as the essential information for real-time precise positioning, satellite orbits 

are usually estimated with the latest available observations and predicted for real-time 

applications. However, the orbit accuracy drops progressively when the orbit update interval 

becomes longer. This thesis focuses on investigating the provision of  high-precision satellite 

orbits in the real-time, including dynamic orbit modeling, ambiguity fixing and data processing 

strategy. 

Solar radiation pressure (SRP) is the most critical non-gravitational force acting on satellite 

orbits, especially in the eclipsing seasons. Taking GPS orbit as an example, it is demonstrated 

that the number of  unknown parameters in the Empirical CODE Orbit Model (ECOM), 

which served as a parameterization model, can be reduced if  there is a precise a priori box-

wing model. For those eclipsing satellites, the shadow factor is recommended to apply in the 

D (pointing toward to the Sun) direction instead of  all three directions. The active parameters 

in Y and B directions could absorb some unknown forces under eclipse seasons. The 

superiority of  combining the a priori precise box-wing model with five-parameter ECOM 

(ECOM1) as well as adding shadow factor only in the D direction is proved by orbits and 

Earth rotation parameters. Compared with the solution with only the ECOM1 model as a 

parameterization model, the RMS values of  orbit day boundary discontinuity (DBD) are 

improved by 17.8%, 22.7%, and 26.1% for the BLOCK IIR satellites in eclipsing seasons in 

the along, cross, and radial direction, respectively. 

Another key role for high-precision satellite orbits is carrier phase integer ambiguity resolution 

(IAR). Besides double difference (DD) IAR, undifferenced (UD) IAR has also been proven to 

be achievable in precise orbit determination (POD). The POD solution derived from UD IAR 

is demonstrated to be superior to that from DD IAR. For example, the orbit accuracy of  BDS 

MEO satellites is improved by 21.7% and 10.4% in the along and cross component, 

respectively. Similar results can be observed from geodetic parameters including ERPs, station 

coordinates and geocenter coordinates. The orbits and geodetic parameters demonstrate that 

the differences between DD IAR and UD IAR solutions stem from the absence of  

independent DD ambiguities and incorrectly fixed DD ambiguity, in which the former takes 

the primary leading to orbit differences. Solving the above two problems is challenging, 

particularly when dealing with a massive network, so UD IAR is highly recommended for daily 

GNSS data processing. 

In the last part, a novel data processing strategy that parallels the epoch processing and 

significantly enhances the computation efficiency is proposed. In our proposed strategy, a 24-
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hour processing job is split into several sub-sessions that are processed in parallel, and then 

stacked to solve and recover parameters. Together with paralleling other procedures such as 

orbit integration and using open multi-processing (openMP), the multi-GNSS POD of  120 

satellites using 90 stations can be fulfilled within 30 min. With historical information, including 

fixed UD ambiguities and cleaned observations, the network solution with 100 stations and 

120 satellites can be finished in 10 min, in which one iteration of  parameter estimation only 

costs 3 min. The predicted orbits derived from epoch-parallel-based solution equal to the 

legacy sequential batch solution. Compared with IGS products, the average 1D RMS values of  

user-available predicted orbits updated per 10 min are 3.1, 5.8, 3.4, 138.8, 18.1, and 6.8 cm for 

GPS, GLONASS, Galileo, BDS GEO, BDS IGSO, and BDS MEO satellites, respectively. The 

DBDs of  corresponding orbits are around 1.0 cm for MEO satellites.  

This thesis demonstrates the feasibility of  the proposed strategies in providing high-precision 

near real-time satellite orbits. The refined satellite force modeling and ambiguity fixing strategy 

improve the accuracy, while the proposed epoch-parallel strategy can shorten orbit update time 

effectively with the aid of  multi-nodes and historical information. The stable and high-

precision satellite orbits are beneficial for real-time clock estimation, precise point positioning, 

and atmospheric sounding. 
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Kurzfassung 

Die Bereitstellung von Echtzeit-Präzisionspositionierungsdiensten mit Globalen 

Satellitennavigationssystemen (GNSS) hat einen tiefgreifenden Einfluss auf  verschiedene 

Bereiche wie autonomes Fahren, Überwachung von Naturgefahren und 

Frühwarnungsystemen sowie Oberflächenbelastung. Stabile, zuverlässige und hochpräzise 

Echtzeit-Satellitenbahninformationen und Taktkorrekturen sind die Voraussetzung für 

Echtzeit-Präzisionspositionsbestimmungsdienste. Satellitenorbits, die als wesentliche 

Informationen für die Echtzeit-Präzisionspositionierung dienen, werden in der Regel mit den 

neuesten verfügbaren Beobachtungen geschätzt und für Echtzeitanwendungen vorhergesagt. 

Die Genauigkeit der Bahnen nimmt jedoch progressiv ab, wenn das Intervall für die 

Bahnaktualisierung länger wird. Diese Arbeit konzentriert sich auf  die Untersuchung der 

Bereitstellung von hochpräzisen Satellitenorbits in Echtzeit, einschließlich dynamischer 

Bahnenmodellierung, Fixierung der GNSS-Mehrdeutigkeiten und Datenaufbereitungsstrategie. 

Der Strahlungsdruck der Sonne (SRP) ist die kritischste nicht-gravitative Kraft, die auf  

Satellitenorbits wirkt, insbesondere in den Erdschattendurchgängen. In dieser Studie wird am 

Beispiel der GPS-Bahn gezeigt, dass die Anzahl der unbekannten Parameter im Empirischen 

CODE-Orbitmodell (ECOM), das als Parametrisierungsmodell dient, reduziert werden kann, 

wenn ein präzises a priori Box-Wing-Modell vorhanden ist. Für diese sich im Schatten 

befindlichen Satelliten wird empfohlen, den Schattenfaktor in Richtung D (zum Sonnenpunkt 

hin) anstatt in allen drei Richtungen anzuwenden. Die aktiven Parameter in den Richtungen Y 

und B könnten einige unbekannte Kräfte während der Eklipsesaisons absorbieren. Die 

Überlegenheit der Kombination des a priori präzisen Box-Wing-Modells mit dem 

fünfparameterigen ECOM (ECOM1) sowie der Hinzufügung des Schattenfaktors nur in 

Richtung D wird durch Bahnen und Erdrotationsparameter nachgewiesen. Im Vergleich zur 

Lösung mit nur dem ECOM1-Modell als Parametrisierungsmodell werden die RMS-Werte der 

Bahngrenzdiskontinuität (DBD) der BLOCK IIR-Satelliten in den Eklipsesaisons in der 

Längs-, Quer- und Radialrichtung um 17,8%, 22,7% bzw. 26,1% verbessert. 

Eine weitere wichtigef  Faktor für hochpräzise Satellitenorbits ist die Lösung der Trägerphasen-

Mehrdeutigkeiten (IAR). Neben der Auflösung der doppelten Differenz (DD) hat sich gezeigt, 

dass auch die Auflösung der undifferenzierten (UD) IAR bei der präzisen Bahnbestimmung 

(POD) erreichbar ist. Die aus UD IAR abgeleitete POD-Lösung erweist sich als überlegen 

gegenüber der aus DD IAR. Beispielsweise wird die Bahngenauigkeit der BDS-MEO-Satelliten 

in den Längs- und Querkomponenten um 21,7% bzw. 10,4% verbessert. Ähnliche Ergebnisse 

sind bei geodätischen Parametern wie ERPs, Stationskoordinaten und 

Geozentrumkoordinaten zu beobachten. Sowohl die Bahnen als auch die geodätischen 

Parameter zeigen, dass die Unterschiede zwischen DD IAR und UD IAR-Lösung auf  das 

Fehlen unabhängiger DD-Mehrdeutigkeiten und falsch fixierter DD-Mehrdeutigkeiten 

zurückzuführen sind, wobei die erstere die Hauptursache für Bahnunterschiede darstellt. Die 

Lösung der beiden oben genannten Probleme ist besonders bei der Bewältigung eines großen 
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Netzwerks herausfordernd, daher wird UD IAR für die tägliche GNSS-Datenverarbeitung 

dringend empfohlen. 

Im letzten Teil wird eine neuartige Datenverarbeitungsstrategie vorgeschlagen, die die 

Epochenverarbeitung parallelisiert und die Recheneffizienz erheblich verbessert. In unserer 

vorgeschlagenen Strategie wird ein 24-Stunden-Verarbeitungsvorgang in mehrere 

Teilabschnitte unterteilt, die parallel verarbeitet und dann gestapelt werden, um Parameter zu 

lösen und wiederherzustellen. Zusammen mit der Parallelisierung anderer Verfahren wie der 

Bahnenintegration und der Verwendung von Open-Multi-Processing (OpenMP) kann die 

Multi-GNSS-POD von 120 Satelliten mit 90 Stationen innerhalb von 30 Minuten durchgeführt 

werden. Mit vorhandenen Informationen, einschließlich fixierter UD-Ambiguitäten und 

bereinigter Beobachtungen, kann die Netzwerklösung mit 100 Stationen und 120 Satelliten in 

10 Minuten abgeschlossen werden, wobei eine Iteration der Parameterabschätzung nur 3 

Minuten dauert. Die aus epochenparallelen Lösungen abgeleiteten vorhergesagten Bahnen 

entsprechen der traditionellen sequentiellen Batch-Lösung. Verglichen mit IGS-Produkten 

zeigen sich 1D-RMS-Werte der alle 10 Minuten aktualisierten vorhergesagten Bahnen für GPS-, 

GLONASS-, Galileo-, BDS-GEO-, BDS-IGSO- und BDS-MEO-Satelliten von 3,1, 5,8, 3,4, 

138,8, 18,1 bzw. 6,8 cm. Die DBDs der entsprechenden Bahnen liegen bei etwa 1,0 cm für 

MEO-Satelliten. 

Diese Arbeit zeigt die Machbarkeit der vorgeschlagenen Strategien zur Bereitstellung von 

hochpräzisen Satellitenbahnen in Echtzeit auf. Die verfeinerte Modellierung von 

Satellitenkräften und die Strategie der Mehrdeutigkeitsfixierung verbessern die Genauigkeit, 

während die vorgeschlagene epochenparallele Strategie die Bahnenaktualisierungszeit effektiv 

verkürzen kann, unterstützt durch mehrere Rechnerknoten und verfügbare Informationen. 

Die stabilen und hochpräzisen Satellitenorbits sind vorteilhaft für die Echtzeit-

Uhrenschätzung, die präzise Punktpositionierung und die Beobachtung der Atmosphäre. 
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1 Introduction 

1.1 Overview 

Global Navigation Satellite System (GNSS) profoundly impacts on various fields, including 

navigation, surveying, geodesy and geodynamics. Owing to the continuous signal tracking from 

globally distributed stations, GNSS contributes to the spatial and temporal densification of  the 

International Terrestrial Reference Frame (ITRF) (Altamimi & Collilieux, 2009; Altamimi et 

al., 2018; Bizouard et al., 2018). Since mid-1995, the International GNSS Service (IGS) 

Analysis Centers (ACs) started to deliver satellite orbits and clocks, station coordinates, and 

earth rotation parameters (ERPs) (Geoffrey et al., 1994; Ferland & Piraszewski, 2009; 

Rebischung et al., 2016; Rebischung, 2021). The operational provision of  precise satellite orbit 

and clock products provided by IGS ACs also contribute to the study of  crustal movements, 

slow slip events, and surface mass redistribution (El-Mowafy & Bilbas, 2016; Kobayashi & 

Tsuyuki, 2019; Zhang et al., 2021; White et al., 2022; Heki & Jin, 2023).  

Since 2013, IGS has launched real-time service (RTS). Through RTS, the IGS extends its 

capability to support applications requiring real-time access to IGS products, for example, self-

driving cars (Knoop et al., 2017; Elsheikh et al., 2019), unmanned aerial vehicles (Ragauskas et 

al., 2017), weather monitoring (Li et al., 2015). The RTS is an official GNSS service providing 

access to precise real-time products, including orbit and clock corrections, code and phase 

biases and so on1. Among those real-time products, precise satellite orbits and clocks are the 

most essential parts for RT precise point positioning (PPP) applications. The satellite clocks 

are usually estimated via a filter (Laurichesse et al., 2013; Zuo et al., 2021), while the orbit 

estimation can be carried out by the least-squares (LSQ) batch processing (TA Springer & 

Hugentobler, 2001; Lutz et al., 2014) or epoch-wise filtering (Laurichesse et al., 2013).  

For most IGS RT ACs, the available real-time orbits are predicted from the batch least-squares 

solution owing to its feasibility of  routine processing. IGS began providing ultra-rapid (IGU) 

GPS orbits in November 2000 and then reduced the update latency of  ultra-rapid orbits from 

12 to 6 h in April 2004 (TA Springer & Hugentobler, 2001; Jan Kouba, 2009a). As a member 

of  the Multi-GNSS Experiment (MGEX) ACs, German Research Centre for Geosciences 

(GFZ) started to provide five GNSS system ultra-rapid products with a 3-hour update rate in 

November 2015, including GPS, GLONASS, Galileo, BDS, and QZSS (Deng et al., 2017). 

Whuhan University (WHU) provided hourly updated multi-GNSS orbits with an accuracy of  

3 to 5 cm (Zhao et al., 2017).  

The rest of  the ACs also provide real-time orbits via filtering, such as the square root 

information filter (SRIF) at JPL (Bertiger, Bar-Sever, Dorsey, Haines, Harvey, Hemberger, 

Heflin, Lu, Miller, Moore, et al., 2020) and the Kalman filter at CNES (Laurichesse et al., 2013). 

 
1 https://igs.bkg.bund.de/ntrip/ 

https://igs.bkg.bund.de/ntrip/
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For the filter-based method, the stochastic constraint is introduced in the orbit state elements 

update, which is formed as a linear blend of  the previous estimate and the current 

measurement information. 

1.2 Motivation and objective 

High-precision real-time orbits are prerequisites for real-time applications. Nevertheless, 

generating high-precision real-time orbits from a batch solution still faces many challenges, 

such as imperfect solar radiation pressure (SRP) model, incorrect integer ambiguity resolution, 

and time-consuming processing procedure. With more satellites and stations involved, a huge 

number of  unknown parameters must be estimated and among them the number of  

undifferenced (UD) ambiguity parameters is the most. In that case, the computation time is 

always a burden. Since the orbit accuracy drops progressively when the orbit update interval 

becomes longer (Dai et al., 2019; Duan et al., 2019), enhancing computation time means 

providing better satellite orbits. Therefore, numerous studies have been conducted to address 

these challenges. 

1.2.1 Solar radiation pressure modeling 

SRP is the dominant non-gravitational perturbation for GNSS satellites, which relies on the 

knowledge of  satellite-related properties. The SRP models are mainly divided into two 

categories, the analytical and empirical models. Analytical models such as the box-wing and ray 

tracing approach are established based on the physical properties of  the satellite components, 

including the area and its optical property, and the satellite attitude. Despite the analytical 

models having a clear physical interpretation, they can still cause large model errors due to the 

possible inaccurate satellite structure or optical property. There are two feasible methods refine 

these models. The first one is to adjust optical coefficients of  reflection, diffusion, absorption 

with satellite tracking data (Rodriguez-Solano et al., 2012), named adjustable box-wing model. 

Based on the observed GNSS observations and a priori satellite metadata, a plenty of  studies 

have been implemented to get high-precision adjustable box-wing models (Duan et al., 2019; 

Duan et al., 2020; Duan & Hugentobler, 2021; Duan et al., 2022). The second one is to develop 

an expression of  Fourier series based on the analysis of  accelerations caused by SRP, such as 

the ROCK model series (ROCK-S, ROCK-T), which was developed by the satellite 

manufacturer Rockwell International (H. Fliegel et al., 1985; H. Fliegel, 1989; H. F. Fliegel et 

al., 1992; H. F. Fliegel & Gallini, 1996), and the GPS solar radiation model (GSPM) developed 

by Jet Propulsion Laboratory (JPL) (Y. Bar-Sever & Kuang, 2005). 

In addition to the models derived from physical-based methods, the empirical SRP models are 

developed by fitting the long-term orbit estimates regardless of  the satellite metadata—for 

instance, the Empirical CODE Orbit Model (ECOM) developed by the Center for Orbit 

Determination in Europe (CODE) (Beutler et al., 1994). The ECOM was then further refined 
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by reducing the periodic terms in the satellite–Sun direction, that is, the ECOM1 model with 

five coefficients (T. A. Springer et al., 1999). The ECOM2 was developed in 2015 to consider 

the SRP variation caused by different satellite shapes, for instance, the Galileo satellites (Arnold 

et al., 2015). Both ECOM1 and ECOM2 are widely used as parameterization models by several 

ACs (Guo et al., 2016; Deng et al., 2017; Prange, Beutler, et al., 2020). However, estimating 

more parameters in ECOM2 can cause an overparameterization and destabilize orbit solutions, 

and the pure parameterization models may also introduce draconitic errors in GNSS-based 

geodetic products (Meindl et al., 2013; Rodriguez-Solano et al., 2014). To minimize the number 

of  SRP parameters and consider the SRP force components that cannot be described by the 

parameterization model, an a priori SRP model is recommended (Oliver Montenbruck, 

Steigenberger, & Hugentobler, 2014). Hence, a hybrid strategy of  combining the a priori box-

wing model and the parameterization model, that is, ECOM1 or ECOM2, is beneficial for the 

orbit quality (P. Steigenberger et al., 2015; Li et al., 2019). 

The orbit differences among different ACs have been proven to be largely caused by using 

different approaches to SRP modeling (Sibthorpe et al., 2011). Many studies also reported that 

the performances of  different SRP models are related to specific satellite types (Chang et al., 

2021). For instance, ECOM1 has better performance than ECOM2 in terms of  predicated 

orbit precision (Y. Liu et al., 2019). In addition, an analysis of  Chinese BDS Inclined 

Geosynchronous Orbit (IGSO) and medium Earth orbit (MEO) orbits indicated that the box-

wing model can remove the β- and μ-dependent systematic orbit errors (Guo et al., 2017). All 

the analyses mentioned above have summarized the discrepancy of  satellite orbit precision 

between ECOM1 and ECOM2 and the importance of  the a priori box-wing model. Despite 

the above studies, a comprehensive investigation of  different SRP models especially when 

satellites are in eclipse seasons is still lacking. 

1.2.2 Integer ambiguity resolution 

For network solutions, integer ambiguity resolution (IAR) approaches are mainly divided into 

two categories: Double-difference (DD) IAR and UD IAR. DD IAR achieves IAR by forming 

ambiguity difference between station pairs and satellite pairs, in which common hardware 

delays originating in satellite transmitters and receivers are eliminated and the resulted DD 

ambiguity has natural integer feature (Blewitt, 1989; Dong & Bock, 1989). Over the past three 

decades, DD IAR is widely adopted in GNSS network processing by most IGS ACs for routine 

GNSS data processing, such as JPL, CODE and GFZ. For DD IAR of  a massive network, 

the step of  picking independent DD ambiguities from the entire network can be very time-

consuming. Currently, two alternative strategies are proposed to reduce computation burden. 

One is selecting the most-easy-to-fix independent DD ambiguities on each baseline firstly and 

then across the entire network (M. Ge et al., 2005b). The other one is firstly determining a 

subset with optimal independent baselines and then independent DD ambiguities are picked 

on each baseline (Blewitt, 2008). 
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On the other hand, the hardware delay at satellite and receiver sides, that is, uncalibrated phase 

delay (UPD), can be estimated and applied as corrections to recover the integer feature of  UD 

ambiguities, and thus, the UD IAR can be performed. UD IAR was primarily developed for 

PPP and aimed to realize IAR station by station (M. Ge et al., 2007; Laurichesse et al., 2009; 

Collins et al., 2010) and was also applied for network solution for better computation efficiency 

(Chen et al., 2014). Recently, UD IAR is adopted by several IGS ACs for network solutions 

(Strasser et al., 2018; Katsigianni et al., 2019; Deng et al., 2022; Calero-Rodríguez et al., 2023). 

Compared with DD IAR, UD IAR is more efficient for the network solutions since the fixed 

carrier-phases ambiguities can be converted into carrier-ranges so that a huge number of  

ambiguity parameters are not involved (H. Chen et al., 2014; Ruan & Wei, 2019; Xie et al., 

2023). Beyond computation efficiency, H. Chen et al. (2014) also show that the orbit quality 

of  UD IAR is better than that of  DD IAR by 10% in terms of  orbit overlaps, which is further 

confirmed by Deng et al. (2022). Furthermore, station coordinates derived from UD IAR are 

demonstrated to be superior to solutions from DD IAR (Geng & Mao, 2021). 

Although many studies have highlighted computation efficiency and improved quality of  

satellite orbits and station positions as advantages of  UD IAR, the reason of  the differences 

are not yet investigated comprehensively. Geng and Mao (2021) show that the improved 

coordinate accuracy of  UD IAR is possibly caused by the incorrectly resolved DD ambiguities 

in DD IAR. However, their study concentrates on the PPP solution, the impact on a global 

network solution for precise orbit determination should be more important as there are more 

parameters involved. They also showed the dependency of  the solutions on the specific 

implementation of  the DD IAR strategies, but without further investigation on the reasons. 

1.2.3 Data processing efficiency 

The straightforward way to reduce the computing time is parallel processing, including the 

parallel processing of  sub-networks, individual satellites or constellations, and sub-sessions. 

The results of  parallel processed tasks will be combined later to generate final orbit products. 

In the network parallel processing, the network is divided into several sub-networks to be 

processed in parallel, and NEQs of  sub-networks are combined by utilizing a certain number 

of  common stations to derive a final solution (Beutler et al., 1996; Bruni et al., 2018; Zurutuza 

et al., 2019; Pintori et al., 2021). As the satellite and receiver clocks are eliminated during parallel 

processing, they cannot be combined by stacking the NEQs and thus it is not equivalent to 

the integrated solution. In a satellite or constellation parallel processing, each group of  

satellites is processed separately in parallel and delivered to users (Q. Chen et al., 2021). The 

constellation solutions can be combined via common parameters, such as ERP and station 

coordinates, which would potentially improve the consistency and precision of  orbits. 

However, it is still not possible to combine other processing parameters such as tropospheric 

parameters and receiver clocks, as they are pre-eliminated once inactive. Another method is to 

split an undivided processing into several sub-sessions and each sub-session is processed 

separately but in parallel to generate the sub-session NEQs. In this study, a session refers to 
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the time length of  observations involved in a processing job, for example, a 24-hour session 

in the daily POD jobs. All the sub-session NEQs are stacked, with all necessary parameters 

combined, including both global parameters such as ERP, orbits, and station coordinates, and 

the processing parameters such as ambiguities covering different sub-sessions. This method is 

much more efficient as the computation burden can be shared by several computing nodes. 

Jiang et al. (2021) applied the epoch-parallel into multi-GNSS precise orbit determination 

(POD) with double-differenced observations. However, they keep all parameters in the NEQ, 

including the tropospheric delays, clocks, and ambiguities, which consumes a huge amount of  

time in the multi-GNSS POD with un-differenced observations. In addition, keeping the 

ambiguities in the NEQ leads to an enormous NEQ, slowing the speed of  inversion. 

In addition, special algorithms are also developed for solving a GNSS network with a huge 

number of  stations. By keeping only active parameters in the NEQ, M. Ge et al. (2006) reduces 

the requirement of  computer memory and computation burden. The optimized algorithms 

based on newly developed processors, i.e., block-partitioned algorithms (Quintana-Orti et al., 

2008; Gong et al., 2017) and Open Multi-Processing (openMP) (Chandra et al., 2001) continue 

improving the computation efficiency. Since most active parameters in GNSS POD are 

ambiguities, a carrier-range method is brought up and successfully implemented in the huge 

network processing with the UD ambiguity resolution (Blewitt; et al., 2010; H. Chen et al., 

2014). However, because precise orbits and clocks are the prerequisite for PPP IAR, it 

therefore cannot be applied to ultra-rapid POD of  a network solution with around 100 stations. 

Y. Cui, Chen, et al. (2021) also designed a parallel computing of  large GNSS network, which 

is suitable for multi-core and multi-node environments, by decomposing the GNSS modelling 

tasks of  each epoch to different nodes and cores. However, the efficiency was demonstrated 

with PPP and baseline processing of  large GNSS networks instead of  network solution itself  

which is essential for ultra-rapid GNSS POD. Of  course, with the improvement of  modern 

computer power like modern central processing unit (CPU) and solid-state drive (SSD), the 

efficiency in GNSS POD can be further improved (Li et al., 2018). 

Facing with sharply increased number of  GNSS observations, a huge number of  parameters 

must be handled in the least-squares batch processing. Parameter estimation takes the majority 

of  the computation time of  a GNSS data processing task. Beside from the refinement of  

parameter-elimination strategy proposed by X. Chen et al. (2022), multiple parallel-processing 

strategies are proposed to improve data processing efficiency, for example sub-networks, 

individual satellite constellations and sub-sessions. Among all the ultra-rapid orbits provided 

by IGS ACs, the shortest orbit update interval is still one hour. As the update interval increases, 

the users can only access the predicted orbits of  a longer arc which are of  worse quality. 

1.2.4 Objective 

Based on the previous studies, the primary objective of  this thesis is to provide high-precision 

real-time satellite orbits. The performance of  different SRP models, especially during eclipse 

seasons, is discussed first, which is a prerequisite for high-precision orbits. Different from the 
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DD IAR commonly applied in network solutions, the characteristics of  UD IAR in POD are 

further investigated to reveal the possible cause of  its superiority. After achieving these 

objectives, strategies for improving data processing efficiency are proposed and validated. 

Specifically, the following questions will be discussed. 

• How to choose the appropriate SRP model and handle the shadow factor? 

o What is the performance of  box-wing models and empirical models on 

eclipsing satellites. 

o How the shadow factor should be applied in the SRP modeling for eclipsing 

satellites? 

• What are the benefits of  applying UD IAR in POD? 

o How is the agreement between UD IAR and DD IAR?  

o If  not well, how to explain the potential discrepancy? 

o what are the advantages of  UD IAR on satellite orbits, as well as other geodetic 

parameters? 

• How to improve data processing efficiency for real-time POD processing? 

o How to utilize the advantages of  multiple computer resources?  

o How to integrate historical information to speed up data processing? 

o How is the impact of  predicted orbits and clocks on real-time PPP after 

improved data processing efficiency?  

The performance of  different SRP models, including the box-wing and adjustable box-wing 

as the a priori model, and the ECOM1 and ECOM2 as the parameterization model, is analyzed 

and the handling of  the shadow factor in the SRP modeling for eclipsing satellites is also 

investigated. The performance of  UD IAR is discussed with an emphasize on satellite orbits 

and geodetic parameters and the consistency between UD IAR and DD IAR is investigated to 

find out where the potential discrepancy originates from. Based on the refined SRP model and 

UD IAR, the strategies for shortening orbit update interval are proposed by applying multiple 

computer resources and introducing historical information. Finally, an example of  RT PPP 

with predicted orbits and clocks is performed to show the superiority of  shortening orbit 

update interval. 

When the data processing efficiency is improved and the orbit update interval is shortened, 

this thesis also performs an example of  RT PPP to show the advantage of  shortening orbit 

update interval. Owing to the high-stability hydrogen clocks onboard, the accuracy of  one-

hour clock estimates for Galileo is better than 0.1 ns (X. Wang, Chai, et al., 2020; H. Ge et al., 

2021). The corresponding kinematic PPP accuracy in each component is better than 0.2 m, 

without significant accuracy degradation (Yang et al., 2017; Peng et al., 2019). Therefore, 

investigating the feasibility of  RT PPP with both predicted orbits and clocks derived from 



Introduction   7 

 

 

batch processing products provides an additional option for users in some cases, for example 

interruption in data communicating. 

1.3 Outline 

This section describes the background, motivation and objectives of  this study and the 

structure of  the thesis. The outline of  this thesis is given below: 

Chapter 2 briefly describes the basic theoretical backgrounds of  precise orbit determination 

and the data processing methods. The modeling of  satellite orbits is introduced, together with 

the signal delay models. The least-squares adjustment is then presented briefly. Two integer 

ambiguity resolution strategies are also described. The POD processing strategy is summarized 

based on Position And Navigation Data Analyst (PANDA) software at the end of  this chapter. 

In Chapter 3, the main focus lies on evaluating of  the applicability of  different SRP models 

and the shadow factor on eclipsing satellites. This chapter begins by analyzing the relationship 

between the ECOM model and box-wing models. Apart from the introduction of  SRP models, 

how to handle the shadow factor and its impact on eclipsing satellites are also discussed. The 

data processing procedure is summarized secondly. Thirdly, the performance of  different SRP 

models and the shadow factor assessed based on unknown ECOM parameters, satellite orbits 

and ERPs.  

Chapter 4 investigates the characteristics of  UD IAR on POD. The theoretical relationship 

between UD IAR and DD IAR is discussed first. Based on the characteristics of  UPDs, a 

flowchart of  UD IAR in POD is presented. Then the performance of  UD IAR is evaluated 

in terms of  estimated UPDs, satellite orbits, ERPs, station coordinates and geocenter 

coordinates. By setting different POD scenarios, in which the only difference is the strategy 

of  ambiguity fixing, the possible reasons causing the orbit discrepancy between UD IAR and 

DD IAR are analyzed. The impact of  the discrepancy on geodetic parameters is also 

investigated. 

With the refined SRP model achieved in Chapter 3 and UD IAR realized in Chapter 4, the 

strategies for improving data processing efficiency (i.e., shortening orbit update interval) are 

proposed in Chapter 5. Before introducing the detailed epoch-parallel processing strategy, the 

consistency of  the legacy batch processing and the proposed strategy is demonstrated 

theoretically. Then, the epoch-parallel processing strategy is realized in PANDA software is 

realized and its processing efficiency on multi nodes (i.e., servers) is presented. Except the 

newly introduced data, all the others is clean, i.e. without either outliers or cycle slips. Using 

the historical information of  data cleaning will reduce the computation time significantly.  The 

fixed UD ambiguities are removed in the parameter estimation. The orbit accuracy of  user-

available parts with different orbit update intervals is validated. The advantage of  shortening 

orbit update interval is also demonstrated by an example of  RT PPP with predicted orbits and 

clocks at the end of  this chapter. 
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Finally, the major findings from this study are summarized in Chapter 6, together with a concise 

outlook for the research work in the foreseeable future. 

 



 

 

2 Theory of precise orbit determination 

In this Chapter, the theoretical background of  GNSS POD is introduced. The data processing 

method including satellite orbits, signal delay models, least-squares adjustment, and integer 

ambiguity resolution are then introduced concisely, which serves as the fundamental role of  

the following study. The detailed data processing strategies are also discussed in Section 2.5. 

2.1 Satellite Orbits 

Currently, there are two methods to determine satellite orbits, including kinematic and dynamic 

orbit determination (Ashkenazi et al., 1990). Kinematic orbit determination is sensitive to 

measurement quality and observational geometry, often applied for Low earth orbiters (LEO). 

In contrast, dynamic orbit determination, applied to determine GNSS satellite orbits, is less 

sensitive to observation gaps and outlier. Beside from measurement quality, the quality of  

satellite orbits could be poor due to limited force model accuracy. In the determination of  

satellite orbits with GNSS observations, the knowledge of  a GNSS satellite’s attitude or 

orientation in space is vital for accounting for horizontal satellite antenna offset with respect 

to mass center, representing SRP and describing variations of  the phase measurement caused 

by the circularly polarized nature of  GNSS signals. In this section, the satellite force models 

are first summarized. Then, the variational equations are described in Section 2.1.2. Finally, the 

details of  the GNSS satellite attitude are described in Section 2.1.3. 

2.1.1 Force models 

According Newton’s second law of  motion, for the motion of  a satellite around a central body 

(i.e., Earth), various forces acting on a satellite result in an acceleration 

 𝐫̈(𝑡) = 𝒂(𝑡, 𝒓, 𝐫̇, 𝜷), (2.1) 

where 𝑡  is time, 𝒓 the satellite’s position, 𝐫̇ the satellite’s velocity 𝐫̇, and 𝜷  is a number of  

additional force model parameters. The force model parameters 𝜷 are required for forces 

which are not exactly known and must be represented precisely with unknown parameters. 

Equation (2.1) is called equation of  motion. Integrating Equation (2.1) leads to the velocity of  

the center-of-mass and again to the position. The satellite state vector 𝐗s(𝑡) = [𝐫(𝑡), 𝐫̇(𝑡)]𝐓 

at each epoch depends on the unknown initial state vector 𝐗0
s = [𝐫𝟎, 𝐫̇𝟎]

𝐓 and force model 

parameters 𝜷. 

The acceleration 𝒂 can be represented as follows 

 𝒂 = 𝒂𝑔 + 𝒂𝑛𝑔 + 𝒂𝑒𝑚𝑝, (2.2) 

where 𝒂𝑔 is the sum of  accelerations caused by conservative forces, including Earth’s gravity 

field, astronomical tides, solid Earth tides, ocean tides, atmospheric tides, pole tides, and ocean 

pole tides. Those conservative forces can be modeled with sufficient accuracy and 
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corresponding in-depth descriptions are provided in the IERS conventions (Petit & Luzum, 

2010). 𝒂𝑛𝑔  is the sum of  accelerations caused by non-gravitational forces, including solar 

radiation pressure, Earth radiation pressure, antenna thrust and atmospheric drag force (mainly 

for LEOs). Some non-gravitational forces, such as solar radiation pressure, often cannot be 

modeled with sufficient accuracy. This is because the precise physical properties of  the satellite, 

such as its shape and materials, are prerequisites for accurate modeling and may not be precisely 

known. In most cases, satellite operators have not officially disclosed this information, or some 

disclosed values from ground calibration may need be adjusted again due to the space 

environment. Therefore, empirical model parameters have to be estimated to compensate for 

unmodeled forces, e.g., radiation of  thermal blankets, thermal radiation from the satellite 

radiators, solar panels thermal radiation, thermal radiation of  excess solar array power (shunt). 

𝒂𝑒𝑚𝑝 are empirical accelerations, consisting of  constant and periodic terms. 

Solar radiation pressure 

Currently, direct SRP acting on the GNSS satellites can be handled using parametrization 

models, such as the Empirical CODE Orbit Model (Arnold et al., 2015), a priori models like 

adjustable box-wing model (Rodriguez-Solano et al., 2012), or hybrid models that combine the 

two. 

Box-wing model 

As the name suggests, the Box-Wing model uses a small number of  surfaces to describe 

momentum transfer of  photons according to the Lambert law (Milani et al., 1987; H. F. Fliegel 

et al., 1992; Rodriguez-Solano et al., 2012). The physical interaction between the SRP and 

satellite solar panel is formulated as 

 𝒂𝑆𝑅𝑃,𝑠𝑝 = −𝑑
𝐴𝑆0

𝑚𝑐
cos θ [(𝛼 + δ) ⋅ 𝒆𝐷 + 2 (

𝛼

3
+ 𝜌cosθ) ⋅ 𝒆𝑁], (2.3) 

where 𝑑 denotes the squared ratio between Earth–Sun and satellite–Sun distance; 𝐴 denotes 

the area of  solar panel, 𝑚 denotes the mass of  the satellite, 𝑆0 denotes the solar flux at 1 

𝐴𝑈 (≈ 1376 𝑊/𝑚2 ), c denotes the velocity of  light in vacuum, 𝛼 , 𝜌 , and δ denote the 

fractions of  absorbed, specularly reflected, and diffusely scattered photons, respectively. 𝒆𝐷  

denotes the unit vector from satellite to Sun. 𝒆𝑁 denotes the unit normal vector of  surface. θ 

denotes the angle between 𝒆𝐷  and 𝒆𝑁 (𝑐𝑜𝑠𝜃 ≥ 0). 

For the satellite body, surfaces are usually covered by multi-layer insulation (MLI) blankets, 

which will reradiate the absorbed energy back into space instantly. The acceleration of  a surface 

can be represented as follows 

 𝒂𝑆𝑅𝑃,𝑖 = −𝑑
𝐴𝑆0

𝑚𝑐
cos θ[(𝛼 + δ) ⋅ 𝒆𝐷 + 𝑘1(𝛼 + δ) ⋅ 𝒆𝑁 + 𝑘2𝜌cosθ ⋅ 𝒆𝑁]. (2.4) 

The coefficients 𝑘1 and 𝑘2 depend on the shape of  satellite body, with 𝑘1 =
2

3
 and 𝑘2 = 2 in 

case of  a flat surface or 𝑘1 =
𝜋

6
 and 𝑘2 =

4

3
 in case of  a cylindrical surface (H. F. Fliegel et al., 

1992). 
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The total acceleration induced by solar radiation can then be obtained as the sum of  the 

accelerations from all surfaces. 

 𝒂𝑆𝑅𝑃,𝑖 = 𝑓 ∙ (∑ 𝒂𝑆𝑅𝑃,𝑖
𝑛
𝑖 + 𝒂𝑆𝑅𝑃,𝑠𝑝) (2.5) 

where 𝑛 is the number of  illuminated surfaces and 𝑓 is the shadow factor, representing the 

percentage of  the Sun that is visible from the satellite’s point of  view based on a conical 

shadow model (Oliver Montenbruck et al., 2002). The in-depth introduction of  shadow factor 

can be found in Chapter 3. 

As mentioned at the beginning of  this section, modeling solar radiation pressure analytically 

based on Equations (2.3) and (2.4) requires detailed information of  all satellite surfaces. 

However, in most cases, satellite manufactures only provide this information in a simplified 

form (GSA, 2017; CSNO, 2019a, 2019b), The detailed structures on the surfaces, e.g., signal 

transmitting antenna units, communication antenna, radiators and thrusters, is missing. 

Therefore, the accuracy of  such an analytical model is limited even if  the area and material 

properties are available. Moreover, current box-wing model do no account for self-shadowing, 

e.g., antennas (C. Wang et al., 2018a) and solar panels casting shadows on the bus. When a 

detailed 3D models of  the satellites are available, ray tracing has been demonstrated to be a 

useful way to model solar radiation pressure analytically (Ziebart, 2004).  

Facing the situation with limited information on satellite surfaces, an adjustable box-wing 

model is proposed by Rodriguez-Solano et al. (2012) to estimate the coefficients of  optical 

properties of  the satellite surfaces as well as other additional parameters (e.g., solar sensor bias 

and solar panel rotation lag) using tracking data. Then the coefficients of  the box-wing model 

for several satellite types, including GPS, GLONASS, Galileo, and BDS, have been updated 

with a similar approach (Duan et al., 2019; Duan et al., 2020; Duan & Hugentobler, 2021, 2022; 

Duan et al., 2022). The orbit results and SLR residuals confirms the advantages of  the 

application of  box-wing model, even though these adjusted optical properties do not strictly 

fulfill the constraint 𝛼 + δ + 𝜌 = 1. 

ECOM model 

Due to the restriction of  attitude accuracy, the complex components in illuminated surfaces, 

and the existence of  thermal radiations, the adjustable box-wing model cannot fully describe 

all the solar radiation on the satellite surface. In absence of  sufficiently accurate analytical solar 

radiation pressure models, empirical models are commonly applied in GNSS satellite orbit 

determination. These models aim to describe the effect of  solar radiation pressure on satellite 

orbits by means of  a set of  empirical coefficients, which can be set up as parameters in the 

orbit determination process.  

The most widely used empirical models are the ECOM presented by Beutler et al. (1994) and 

its extensions (Arnold et al., 2015; X. Chen et al., 2023). The acceleration of  solar radiation 

pressure with ECOM model can be represented by 

 𝒂𝑆𝑅𝑃 = 𝑓 ∙ (𝐷(𝜇)𝐞𝐷 + 𝑌(𝜇)𝐞𝑌 + 𝐵(𝜇)𝐞𝐵) (2.6) 
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where 𝜇 denotes the satellite’s argument of  latitude, which is replaced by the angular argument 

Δ𝜇 = 𝜇 − 𝜇𝑠  and 𝜇𝑠  is the Sun’s argument of  latitude in satellite orbital plane for 

straightforward interpretation (Arnold et al., 2015). 𝐞𝐷 denotes the unit vector in the satellite-

sun direction (i.e., 𝐷 direction), 𝐞𝑌 denotes the unit vector along the satellite’s solar panel axis 

(i.e., 𝑌 direction), and 𝐞𝐵  completes the right-handed frame (i.e., 𝐵 direction). In different 

ECOM models, the functions D(μ), Y(μ), and B(μ) are represented as a truncated Fourier 

series 

 

𝐷(𝜇) = 𝐷0 + ∑ (𝐷𝐶𝑖𝑐𝑜𝑠(𝑖𝜇) + 𝐷𝑆𝑖𝑠𝑖𝑛(𝑖𝜇))𝑖

𝑌(𝜇) = 𝑌0 + ∑ (𝑌𝐶𝑖𝑐𝑜𝑠(𝑖𝜇) + 𝑌𝑆𝑖𝑠𝑖𝑛(𝑖𝜇))𝑖

𝐵(𝜇) = 𝐵0 + ∑ (𝐵𝐶𝑖𝑐𝑜𝑠(𝑖𝜇) + 𝐵𝑆𝑖𝑠𝑖𝑛(𝑖𝜇))𝑖

. (2.7) 

The acceleration along each axis consists of  constant ⊡0 and 𝑖-per-revolution sine and cosine 

terms (⊡𝐶𝑖 ,⊡𝑆𝑖). Within the analysis centers of  the IGS, the two most common ECOM 

models are ECOM1 with five parameters (𝐷0, 𝑌0, 𝐵0, 𝐵𝐶1, 𝐵𝑆1), as proposed in T. A. Springer 

et al. (1999) and ECOM2 with nine parameters (𝐷0, 𝐷𝐶2, 𝐷𝑆2, 𝐷𝐶4, 𝐷𝑆4, 𝑌0, 𝐵0, 𝐵𝐶1, 𝐵𝑆1), as 

proposed in (Arnold et al., 2015). The major difference between ECOM1 and ECOM2 is the 

addition of  the twice-per-revolution terms in 𝐷 direction, which aims to mitigate the systematic 

effects caused by the elongated shape of  GLONASS and Galileo satellite buses (Arnold et al., 

2015). With multi-year orbit observations, some modified ECOM model are proposed to 

improve the ability of  the model, for example ECOM3 with seven parameters (𝐷0, 𝐷𝐶2, 𝐷𝑆2, 𝑌0, 

𝐵0, 𝐵𝐶1, 𝐵𝑆1) (Prange, Villiger, et al., 2020), and ECOME model, with seven parameters (𝐷0, 

𝐷𝑆4, 𝐷𝑆6, 𝑌0, 𝐵0, 𝐵𝐶1, 𝐵𝑆1) for BDS IGSO and MEO (X. Chen et al., 2023). Besides on the 

solar radiation pressure, the estimated unknown empirical parameters can take the role of  

absorbing some unmodeled forces on satellite, such as thermal forces. Sidorov et al. (2020) found 

that the ECOM2 model with additional 𝐷𝑆1  and activation of  the constant term in the 𝑌 

direction leads to a substantial reduction of  orbit misclosures, especially the radial orbital 

component during eclipse seasons. 

Earth radiation 

In addition to the direct solar radiation pressure, the satellite also suffers pressures from the 

Earth-reflected shortwave optical radiation and emitted longwave infrared radiation, the 

second largest non-gravitational forces. The optical albedo radiation is produced by scattering 

and reflecting the incident solar radiation on the Earth’s surface. The infrared radiation is a 

near-isotropic re-emission of  the direct solar radiation absorbed by the Earth. Inclusion of  

Earth radiation and antenna thrust reduces the GPS orbit radius by 2 cm, resulting in a 

corresponding reduction of  the observed bias of  satellite laser ranging (SLR) residuals 

(Rodriguez-Solano et al., 2011). Therefore, it is essential to consider this force in GNSS data 

processing. 

The acceleration caused by by one element of  Earth’s surface can be computed as 

 𝐚𝐸𝑅𝑃 =
𝐴𝑆0

𝜋𝑟2
cos𝜃𝐸 ∑ (𝑅cos𝜃𝑆𝒂𝑆𝑅𝑃,𝑖(𝛼𝑂 , δO, 𝜌𝑂) +

𝐸

4
𝒂𝑆𝑅𝑃,𝑖(𝛼𝐼, δI, 𝜌𝐼))

𝑁
𝑖 , (2.8) 
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where 𝐴 is the area of  the element on Earth’s surface, 𝑁 the number of  illuminated satellite’s 

surfaces, 𝑟 the distance between the satellite and the element’s center, 𝑘 the shadow function 

of  Earth’s surface. 𝜃𝐸 is the angle between the vector from the element’s center (instead of  

the Sun) to the satellite 𝐞𝐷 and the normal vector of  the Earth’s surface element 𝒏. 𝜃𝑆 is the 

angle between the vector from the element’s center to the Sun 𝐞𝑆𝑢𝑛 and the normal vector of  

the Earth’s surface element 𝒏. 𝛼𝑂, δO and 𝜌𝑂 are the respective optical properties of  satellite’s 

surface materials. 𝛼𝐼 , δI  and 𝜌𝐼  are the respective infrared properties of  satellite’s surface 

materials. 𝑅 is the reflectivity of  the element, that is albedo. 𝐸 is the emissivity of  the element. 

The albedo and emissivity can be expressed analytically using a twice-order zonal spherical 

harmonic model (Knocke et al., 1988), or using data from a finite element model, e.g., the 

Clouds and the Earth’s Radiant Energy System (CERES).  

Although the CERES data is available from March 2000 until today (with a delay of  few 

months), this is not enough for reprocessing or operational data processing within the IGS. 

For computation efficiency, an analytical model, independent of  the CERES data is proposed 

and represented as 

 𝐚𝐸𝑅𝑃 =
𝑇2𝑆0

𝑟2
cos𝜃𝐸 ∑

𝑁
𝑖=1 (

2𝑅

3𝜋
C1𝒂𝑆𝑅𝑃,𝑖(𝛼𝑂 , δO, 𝜌𝑂) +

1−R

4
𝒂𝑆𝑅𝑃,𝑖(𝛼𝐼, δI, 𝜌𝐼)), (2.9) 

where T is top of  atmosphere fluxes, around 6401000 𝑚 . the C1 = (𝜋 − 𝜃𝑆) cos(𝜃𝑆) +

sin(𝜃𝑆) is a function of  angle 𝜃𝑆 . The albedo 𝑅  is set as a constant value, such as 0.34. 

Rodriguez-Solano et al. (2011) found that the most important model components are the solar 

panels of  the satellites while different Earth radiation models have a minor impact on orbits 

at GPS altitudes. 

Antenna thrust 

Antenna thrust is a small acceleration acting on GNSS satellites caused by the transmission of  

radio navigation signals. The acceleration due to antenna thrust can be expressed as (Milani et 

al., 1987) 

 𝐚AT =
𝑃

𝑐⋅𝑚

𝐫

|𝐫|
 (2.10) 

where 𝑃  is the satellite’s transmit power in Watt, 𝑚  is satellite’s mass in kg, 𝐫 is satellite’s 

geocentric position. The above expression assumes a narrow-beam, rotationally symmetric 

gain pattern and an antenna boresight directed toward the Earth’s center. The transmit power 

of  GPS, GLONASS, Galileo, and BeiDou satellites with a high-gain antenna are measured by 

Peter Steigenberger et al. (2017) and new related data can be found on the IGS website2. 

2.1.2 Variational equations 

Through variational equations, satellite state vector, as well as some unknown force model 

parameters, such as SRP parameters can be solved. The equations of  satellite motion can be 

expressed as a first-order differential equation system 

 
2 https://igs.org/mgex/metadata/ 
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 𝑿̇(𝑡) = 𝑓(𝑡,𝑿,𝜷), (2.11) 

based on the state vector  

 𝑿̇(𝑡) = [
𝒓̇(𝑡)

𝒂(𝑡, 𝒓, 𝐫̇, 𝜷)
]. (2.12) 

and the vector of  force model parameters 𝜷 = [𝛽𝟏 ⋯ 𝛽𝒏]
𝑇 . In Equation Error! R

eference source not found., 𝒓 and 𝒓̇ are vectors of  satellite position and velocity, respectively. 

Deriving Equation (2.11) with respect to the initial state vector 𝑿0 leads to 

 
𝜕𝑿̇(𝑡)

𝜕𝑿0
=

𝜕𝑓(𝑡,𝑿,𝜷,⋯ )

𝜕𝑿
.
𝜕𝑿(𝑡)

𝜕𝑿0
. (2.13) 

by introducing the state transition matrix 

 𝛟(𝑡) =
𝜕𝑿(𝑡)

𝜕𝑿0
= [

𝜕𝒓(𝑡)

𝜕𝒓0

𝜕𝒓(𝑡)

𝜕𝒓̇0
𝜕𝒓̇(𝑡)

𝜕𝒓0

𝜕𝒓̇(𝑡)

𝜕𝒓̇0

], (2.14) 

which contains the partial derivatives of  the satellite position and velocity with respect to the 

initial position and velocity. Substituting 
𝜕𝑓(𝑡,𝑿,𝜷,⋯ )

𝜕𝑿
 and 

𝜕𝑿(𝑡)

𝜕𝑿0
, Equation (2.13) can be written 

as 

 𝛟̇(𝑡) = [
𝟎3×3 𝐈3×3

𝜕𝒂(𝑡,𝒓,𝐫̇,𝜷)

𝜕𝒓(𝑡)

𝜕𝒂(𝑡,𝒓,𝐫̇,𝜷)

𝜕𝒓̇(𝑡)

]𝛟(𝑡). (2.15) 

Starting from the initial value 𝛟0 = I, the state transition matrix for each epoch 𝑡 can be 

determined by numerical integration using Equation (2.15) . 

Derivating Equation (2.11) with respect to the unknown force model parameters 𝜷 gives 

 
𝝏𝑿̇(𝑡)

𝜕𝜷
=

𝜕𝒇(𝑡,𝑿,𝜷,⋯)

𝜕𝜷
+

𝜕𝒇(𝑡,𝑿,𝜷,⋯)

𝜕𝑋
.
𝜕𝑿(𝑡)

𝜕𝜷
. (2.16) 

by introducing the parameter sensitivity matrix 

 𝐒(𝑡) =
𝜕𝑿(𝑡)

𝜕𝜷
= [

𝜕𝒓(𝑡)

𝝏𝜷

𝜕𝒓̇(𝑡)

𝜕𝜷

], (2.17) 

which the partial derivatives of  the satellite state with respect to the unknown force model 

parameters 𝜷, Equation (2.16) can be written as 

 𝐒̇(𝑡) = [
𝟎3×3 𝐈3×3

𝜕𝒂(𝑡,𝒓,𝐫̇,𝜷)

𝜕𝒓(𝑡)

𝜕𝒂(𝑡,𝒓,𝐫̇,𝜷)

𝜕𝒓̇(𝑡)

] 𝐒(𝑡) + [
𝟎3×3

𝜕𝒂(𝑡,𝒓,𝐫̇,𝜷)

𝜕𝜷

]. (2.18) 

Starting from the initial value 𝐒0 = 0 (Milbert & Jekeli, 2023), the state transition matrix for 

each epoch 𝑡 can be determined by numerical integration using Equation (2.18). The state 

transition and parameter sensitivity matrices are then used to connect the GNSS observation 

equations to the orbit parameters (𝐗0, 𝜷). 

Additional empirical parameters are often set up to further mitigate imperfections in the 

applied force models. Various parametrizations are implemented (see Jäggi et al. (2006), for 
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examples) and in use among the IGS analysis centers. One of  them is so-called 

pseudostochastic pulses (Beutler et al., 1996), which are small, instantaneous velocity changes 

at specific epochs, for example at the center of  a 24-hour orbit arc. Such empirical parameters 

are usually constrained in order to limit their negative impact due to overparameterization. The 

main reason is that they usually do not have a physical interpretation and the dynamic nature 

of  an orbit should be maintained as much as possible. Ideally, future improvements in force 

modeling would render this type of  parameter unnecessary. 

2.1.3 Satellite attitude 

The knowledge of  a GNSS satellite’s attitude or orientation in space is vital for high precision 

applications. As mentioned by O. Montenbruck et al. (2015), satellite attitude model in POD 

mainly affects the following three aspects: 

⚫ Phase center correction. It is necessary to correctly account for satellite antenna offsets 

with respect to the center of  mass and potential direction-dependent variations.  

⚫ phase wind-up correction. The circularly-polarized nature of  GNSS signals leads to 

variations of  the phase measurement depending on the relative orientation between the 

transmitting and receiving antennas. 

⚫ Non-gravitational force modeling. Knowing the orientation of  a satellite’s body and solar 

panels is important for modeling accelerations induced by solar and Earth radiation 

pressure and atmosphere drags for LEOs during orbit integration. 

Satellite attitude is defined as the orientation of  a satellite body-fixed reference frame (SRF) 

with respect to a specified reference frame, such as terrestrial reference frame (TRF) or celestial 

reference frame (CRF). However, the origins and axes of  SRF depend on the definition for 

example by satellite manufactures. Attitude control is the manner of  maintaining the attitude 

in space, for example the transmitting antenna of  most of  the GNSS satellite always toward 

the earth and its solar panels perpendicular to the Sun direction. Adopting the IGS-specific 

body frame orientation leads to a common formulation of  the nominal attitude of  all GNSS 

satellites in yaw-steering mode irrespective of  their specific orbit and constellation (O. 

Montenbruck et al., 2015). It is defined as follows: 

Origin: located in the satellite’s center of  mass. 

𝒆𝑥 axis: pointing towards the permanently sunlit panel of  the satellite bus. 

𝒆𝑦 axis: pointing along the solar panel rotation axis in the direction defined by (𝒆𝑦 = 𝒆𝑧 × 𝒆𝑥). 

𝒆𝑧 axis: pointing along the antenna boresight direction. 

The rotation matrix from this SRF to the CRF is represented as 

 𝐑𝑆𝑅𝐹
𝐶𝑅𝐹 = [𝒆𝑥 𝒆𝑦 𝒆𝑧], (2.19) 

which describes the satellite’s attitude or orientation in space. Note that all vectors in this 

section are given in the CRF. Satellite attitude should obey the following two rules to achieve 

better service. One is that the satellite antenna needs to point to the Earth’s center to ensure 

enough signal strength around the Earth. The other one is that solar panel needs to be 
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perpendicular to the satellite-Sun direction for maximum energy input. Most satellites follow 

a nominal yaw-steering behavior outside of  so-called eclipse seasons. 

Nominal Attitude Model 

Following the IGS conventions, the two kinds of  commonly applied nominal modes for GNSS 

satellites are yaw-steering mode and orbit normal mode (O. Montenbruck et al., 2015). The 

yaw-steering mode, rotating around the 𝑍 axis (defined in SRF), is predominantly applied by 

GNSS satellites in medium Earth orbit (Y. E. Bar-Sever, 1996; J. Kouba, 2009b). On the other 

hand, orbit normal mode, keeping a constant alignment in the local orbit frame without 

rotation, is usually used by GNSS satellites in geostationary or geosynchronous orbits (O. 

Montenbruck et al., 2015). 

For the yaw-steering mode, the unit vectors of  three SRF axes are defined as  

 𝒆𝑥
𝑌𝑆 = 𝒆𝑦

𝑌𝑆 × 𝒆𝑧
𝑌𝑆 (2.20) 

 𝒆𝑦
𝑌𝑆 =

𝒆⊙×𝒆𝑟

‖𝒆⊙×𝒆𝑟‖
 (2.21) 

 𝒆𝑧
𝑌𝑆 = −𝒆𝑟 . (2.22) 

Here, 𝒆𝑟 =
𝑟

‖𝑟‖
 is the normalized satellite position vector, 𝒆⊙ =

𝑟𝑠𝑢𝑛−𝑟

‖𝑟𝑠𝑢𝑛−𝑟‖
  the unit vector 

pointing from the satellite towards the Sun. 𝑟𝑠𝑢𝑛 and 𝑟 are the position vectors of  the Sun and 

satellite, respectively. 

For the orbit normal mode, the unit vectors of  three SRF axes are aligned with the orbital 

frame and are defined as 

 𝒆𝑥
𝑂𝑁 = −𝒆𝑎 (2.23) 

 𝒆𝑦
𝑂𝑁 = −𝒆𝑐  (2.24) 

 𝒆𝑧
𝑂𝑁 = −𝒆𝑟 . (2.25) 

Here, the unit vectors 𝒆𝑎, 𝒆𝑐 , and 𝒆𝑟 represent the along, cross, and radial axes of  a local orbit 

frame. Rotating the orbit normal frame around the 𝒆𝑧 axis by the nominal yaw angle (Y. E. 

Bar-Sever, 1996) 

 𝜓𝑛𝑜𝑚 = 𝑎𝑡𝑎𝑛2(−𝑡𝑎𝑛𝛽, 𝑠𝑖𝑛𝜇) (2.26) 

is so called the yaw-steering model. Here, 𝛽 = acos (−𝒆𝑐 ⋅
𝑟𝑆𝑢𝑛

‖𝑟𝑆𝑢𝑛‖
) −

𝜋

2
 is an angle between 

the Earth-Sun vector 𝑟𝑆𝑢𝑛  and the satellite’s orbital plan (J. Kouba, 2009b). 𝜇 = 𝜇(𝑟) −

𝜇(𝑟𝑆𝑢𝑛) + 𝜋 is an orbit angle describing the position of  the satellite along the orbit counting 

from orbit midnight, which is the point farthest from the Sun (Beutler et al., 1994). When the 

angle between the (satellite–Earth) and (satellite–Sun) vectors is close to 0, the yaw rate will 

exceed the maximum hardware yaw rates near noon and midnight, as shown in Figure 2.1. In 

that case, special attitude models are established to describe the orientation variation of  

satellites. 
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Figure 2.1 Nominal yaw around orbit midnight for various angles 𝛽.  

Special attitude behavior around orbit noon and midnight 

A major problem of  the yaw-steering attitude mode is that a satellite would have to yaw at a 

very high rate around the orbit noon and midnight points when the Sun is close to the orbital 

plane (Y. E. Bar-Sever, 1996). At very low angles, for example |𝛽| < 1°, the yaw rate required 

to maintain the nominal attitude usually exceeds the maximum yaw rate a satellite can physically 

achieve. Another problem is that when a satellite crosses Earth’s shadow, which happen once 

per revolution at orbit midnight when the 𝜇 angle is below a certain threshold (e.g., 14° for 

GPS), the Sun is invisible and solar sensors mounted on the satellite cannot provide 

information to the attitude control system (Y. E. Bar-Sever, 1996). For these reasons, satellite 

manufacturers developed special attitude behavior around orbit noon and midnight. This 

behavior can differ between manufacturers and different satellite types from the same 

manufacturer (J. Kouba, 2009b). For example, GPS-IIR satellites manufactured by Lockheed 

Martin behave differently during shadow crossings than GPS-IIA and GPS-IIF satellites, 

which were manufactured by Rockwell International/Boeing. GPS-IIA and GPS-IIF satellites 

also do not share the same behavior. In addition, satellites might not necessarily behave the 

same way around orbit noon and midnight. The general implemented attitude modes used by 

GNSS are shown in Figure 2.1, including GPS, Galileo, GLONASS and BDS. Note that most 

BDS-2I/2M satellites have transitioned to BDS-3I/3M modes. 

Table 2.1 GNSS Satellite Attitude modes. 

Satellite type Default  Midnight Noon References 

GPS-II/IIA N Y0 Y1 Y. E. Bar-Sever (1996), J. Kouba (2009b) 
GPS-IIR/IIR-M N Y0 Y0 J. Kouba (2009b) 
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GPS-IIF N Y0 Y3 Dilssner (2010), Dilssner, Springer, and Enderle 
(2011), Kuang et al. (2017) 

GPS-IIIA N Y0 Y0 Peter Steigenberger et al. (2020) 
GLO N Y2 Y4 Dilssner, Springer, Gienger, et al. (2011) 
GAL-1 N S0 S0 GSA (2017) 
GAL-2 N S1 S1 GSA (2017) 
BDS-2G/3G O O O C. Wang et al. (2018b), Dilssner (2017) 
BDS-2I/2M N ON ON Dai et al. (2015) ,C. Wang et al. (2018b)  
BDS-3I/3M N S1 S1 C. Wang et al. (2018b), CSNC (2019)  

 

• N: The nominal yaw-steering mode 

• O: The orbit normal mode which is a quite a simple yaw attitude control mode 

compared to the other models 

• yaw models adopted by other GNSS satellites 

• ON: The orbit normal mode with switches between yaw-steering (N) and orbit normal 

attitude (O) under certain conditions 

• S0/S1: The "smoothed" yaw-steering modes which happen during a lower β angle and 

near noon or midnight. 

• Y0/Y1/Y2/Y3/Y4: the model with linear yaw changes and its details can be found in 

the list references. All modes only require an approximate orbit and some satellite- or 

type-specific metadata, for example the maximum yaw rate, as input. 

Figure 2.1 reveals that GPS features yaw maneuvers with a constant yaw rate. During midnight, 

BLOCK IIF satellites start maneuver when entering the eclipse, while BLOCK IIR and IIF 

satellites start when the yaw speed reaches their maximum values. Taking the yaw angle 

computed by PANDA as a reference, the difference is less than 2.6° with respect to CODE 

and 9.3° with respect to WHU. The attitudes generated by GFZ show apparent differences 

from others, especially for BLOCK IIIA satellites. During noon, three satellite types show the 

same yaw behavior. They only differ in their maximum yaw rates, which are approximately 

0.12°/s, 0.20°/s, and 0.11°/s for GPS-IIA, GPS-IIR, and GPS-IIF, respectively (J. Kouba, 

2009b; Dilssner, 2010). 
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Figure 2.2 Attitude behavior of some GPS satellites around orbit midnight (left panel) and noon (right 

panel) in 2023. NOM stands for the nominal attitude, PAD the attitude used in PANDA software, COD 

the attitude applied in CODE, GFZ the attitude applied in GFZ MGEX products and WHU the attitude 

applied in Wuhan University. The values in each label stand for the maximum attitude difference with 

respect to corresponding PAD results. For a clear show, the yaw angles derived from PAD, COD, GFZ, and 

WHU are shifted 10°, 20°, 30°, and 40°, respectively. 

Figure 2.3 shows the attitudes of  GLONASS satellites, including GLONASS-M and 

GLONASS-K generations. Similar to the GPS results, significant differences are observed in 

the yaw attitudes derived from GFZ products, especially for night maneuvers. For the night 

maneuver, it seems that GFZ products keep a constant value during the eclipse and then 

recover rapidly at the end. This attitude mode does not fit the reality, as the yaw rates at the 

end of  the eclipse are possibly larger than the maximum yaw rates. For the noon maneuver, 

GFZ also performs a different attitude mode. The yaw differences between our calculations 

and WHU and CODE products are less than 5°, except for the yaw variation of  GLONASS-

K1B in CODE products. A nominal attitude is applied in GLONASS-K1B in CODE products. 

Among three AC products, the yaw angles calculated in our software are close to that derived 

from WHU products, which indicates that the attitude modes of  GLONASS satellites are 

identical in the two products. 
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Figure 2.3 Attitude behavior of some GLONASS satellites around orbit midnight (left panel) and noon 

(right panel) in 2023. NOM stands for the nominal attitude, PAD the attitude used in PANDA software, 

COD the attitude applied in CODE, GFZ the attitude applied in GFZ MGEX products and WHU the attitude 

applied in Wuhan University. The values in each label stand for the maximum attitude difference with 

respect to corresponding PAD results. For a clear show, the yaw angles derived from PAD, COD, GFZ, and 

WHU are shifted 10°, 20°, 30°, and 40°, respectively. 

Figure 2.4 shows the attitudes of  Galileo satellites, including PRN E02 and E14, in a highly 

eccentric orbit. Compared with other systems, the yaw angles of  Galileo satellites between 

different AC products are consistent owing to the published satellite metadata3. The maximum 

difference of  satellite yaw angle is less than 0.1°, except for the noon maneuver calculated by 

GFZ. However, the two satellites (E14, E18) show different performances when applying the 

identical attitude mode of  other FOC satellites. A discontinuity, larger than 30°, is observed in 

while the satellite is running out of  the eclipse, which also exists in the noon maneuver. 

Interestingly, the yaw angles derived from the CODE product are continuous during the night 

and noon maneuvers. The attitude modes of  E14 and E18 need further investigation in the 

future. 

 
3 https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata  

https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata
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Figure 2.4 Attitude behavior of some Galileo satellites around orbit midnight (left panel) and noon 

(right panel) in 2023. NOM stands for the nominal attitude, PAD the attitude used in PANDA software, 

COD the attitude applied in CODE, GFZ the attitude applied in GFZ MGEX products and WHU the attitude 

applied in Wuhan University. The values in each label stand for the maximum attitude difference with 

respect to corresponding PAD results. For a clear show, the yaw angles derived from PAD, COD, GFZ, and 

WHU are shifted 10°, 20°, 30°, and 40°, respectively. 

Figure 2.5 shows the attitudes of  BDS satellites, including BDS-2 IGSO/MEO and BDS-3 

IGSO/MEO satellites. For BDS-2 IGSO and some BDS-2 MEO satellites, satellite attitude 

mode has transitioned from nominal yaw-steering attitude to orbit normal attitude. For BDS-

3 and some BDS-2 MEO (e.g., SVN C015 and C017) satellites, the "smoothed" yaw-steering 

modes mentioned in Table 2.1 are used. Among the three products, the GFZ products show 

a different performance for BDS-3 MEO CAST and IGSO satellites, in which the attitude of  

BDS-3 MEO CAST satellites is abnormal. Similar to the attitude of  GLONASS-K1B in 

CODE products, a nominal attitude mode is applied for BDS-3 IGSO satellites in GFZ 

products. 
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Figure 2.5 Attitude behavior of some BDS satellites around orbit midnight (left panel) and noon (right 

panel) in 2023. NOM stands for the nominal attitude, PAD the attitude used in PANDA software, COD 

the attitude applied in CODE, GFZ the attitude applied in GFZ MGEX products and WHU the attitude 

applied in Wuhan University. The values in each label stand for the maximum attitude difference with 

respect to corresponding PAD results. For a clear show, the yaw angles derived from PAD, COD, GFZ, and 

WHU are shifted 10°, 20°, 30°, and 40°, respectively. 

2.2 Observation equations and modeling 

In this section, the very basic background about GNSS algorithms is described. As the GNSS 

technique has been developed for decades and the technical details are very well documented, 

basic models shall not be described again but referred to the related literature given below. 

2.2.1 Basic observation equations 

The generic ionosphere-free (IF) observation equations for pseudo-range and carrier-phase 

observations from satellite to receiver are described by 
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 {
𝑃𝐼𝐹 = |𝐗s(𝑡𝑠) − 𝐓𝑇𝑅𝑆

𝐶𝑅𝑆(𝑡𝑟)𝐗r(𝑡𝑟)| + 𝑐(𝜏̅𝑟 − 𝜏̅
𝑠) + 𝑡𝑡𝑟𝑜𝑝 + 𝜀𝑃,𝐼𝐹

𝐿𝐼𝐹 = |𝐗s(ts) − 𝐓𝑇𝑅𝑆
𝐶𝑅𝑆(𝑡𝑟)𝐗r(𝑡𝑟)| + 𝑐(𝜏̅𝑟 − 𝜏̅

𝑠) + 𝑡𝑡𝑟𝑜𝑝 + 𝑁𝑟,𝐼𝐹
𝑠 + 𝜀𝐿,𝐼𝐹

 (2.27) 

with 

 𝜏̅𝑟 = 𝜏𝑟 + 𝑏𝑟,𝐼𝐹 , 𝜏̅
𝑠 = 𝜏𝑠 + 𝑏𝐼𝐹

𝑠  (2.28) 

 𝑁𝑟,𝐼𝐹
𝑠 = 𝑁𝑟,𝐼𝐹

𝑠 + Δ𝜙𝑟,𝐼𝐹 + Δ𝜙𝐼𝐹
𝑠  (2.29) 

 Δ𝜙𝑟,𝐼𝐹 = 𝐵𝑟,𝐼𝐹 − 𝑏𝑟,𝐼𝐹 , Δ𝜙𝐼𝐹
𝑠 = −𝐵𝐼𝐹

𝑠 + 𝑏𝐼𝐹
𝑠 , (2.30) 

where 𝑃𝐼𝐹  and 𝐿𝐼𝐹  denote pseudo-range and phase observations in the unit of  meter, 

respectively; 𝐗𝑠(𝑡𝑠) is the satellite position at the signal transmitting time 𝑡𝑠  in Geocentric 

Reference System (GCRS); 𝐗r(𝑡𝑟)  the station position at the signal receiving time 𝑡𝑟 in 

International Terrestrial Reference System (ITRS); 𝐓𝑇𝑅𝑆
𝐶𝑅𝑆(𝑡𝑟) the transition matrix converting 

station positions from ITRS to GCRS. 𝑐 the speed of  light in vacuum; 𝜏𝑟𝑒𝑐  the receiver clock 

offset; 𝜏𝑠the satellite clock offset; 𝑏𝑟,𝐼𝐹  and 𝑏𝐼𝐹
𝑠  the receiver- and satellite-related code biases; 

𝐵𝑟,𝐼𝐹  and 𝐵𝐼𝐹
𝑠  the receiver- and satellite- related phase biases; 𝑡𝑡𝑟𝑜𝑝 the slant tropospheric delay; 

𝑁𝑟,𝐼𝐹
𝑠  the IF phase ambiguities; Δ𝜙𝑟,𝐼𝐹 and Δ𝜙𝐼𝐹

𝑠  the receiver and satellite UPD, respectively; 

𝜀𝑃,𝐼𝐹 and 𝜀𝐿,𝐼𝐹 the measurement noise and other unmodelled errors for the pseudo-range and 

carrier phase observations, respectively. The inter-system/frequency dependent code biases 

relative to the GPS biases at the receiver end are considered in multi-GNSS POD. The other 

errors are modelled and corrected while forming IF equations, for example observable-specific 

bias, phase wind-up, and relativistic effects. 

2.2.2 Delay modeling 

Besides from estimating some of  parameters mentioned in Equation (2.27), the remaining 

errors need to be modeled during GNSS data processing. 

Tropospheric Delay 

When going through troposphere (0–60 km altitude) the signals, affected by the atmospheric 

pressure, temperature, and humidity, is called the tropospheric delay (Böhm & Schuh, 2013). 

As the troposphere is a nondispersive medium with respect to GNSS signals, this delay does 

not depend on the frequency of  the signal. The delay is commonly split into a hydrostatic part 

and a wet part. The hydrostatic, accounting for roughly 90% of  the total delay can be modeled 

accurately. The wet part, on the other hand, can change rapidly in space and time and be hardly 

modeled. Therefore, it is essential to estimate a residual wet delay in high-precision GNSS 

processing. The tropospheric delay at the signal path can be represented as 

 𝑡𝑡𝑟𝑜𝑝 = 𝑚𝐻(𝑒)D𝑍𝐻 +𝑚𝑊(𝑒)(D𝑍𝑤 + ΔD𝑍𝑤) +𝑚𝐺(𝑒) ∗ (D𝐺𝑁cos𝑎 + D𝐺𝐸sin𝑎),(2.31) 

where D𝑍𝐻 and D𝑍𝑤 are the a priori hydrostatic and wet delays in zenith direction, respectively; 

𝑚𝐻 , 𝑚𝑊, and 𝑚𝐺  are the hydrostatic, wet and gradient mapping functions, respectively. The 

residual zenith wet delay ΔD𝑍𝑤 is the remaining part to be estimated. The hydrostatic delay 

can be calculated accurately given the accurate pressure profile using the Saastamoinen 
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equation (Saastamoinen, 1972). Since tropospheric delays can also be systematically biased with 

respect to a horizontal direction, D𝐺𝑁 and D𝐺𝐸  are the north-south and east-west gradient 

delays that must be estimated. They depend on the azimuth angle 𝑎 of the observation at the 

station. The mapping functions are usually provided as empirical functions, e.g., the Global 

Mapping Function (J. Boehm, Niell, et al., 2006), Vienna Mapping Functions (Johannes Boehm, 

Werl, et al., 2006; Landskron & Böhm, 2018). 

Signal biases 

Pseudo-range biases are hardware delays that occur during the transmission and reception of  

GNSS signals (Teunissen & Montenbruck, 2017). They are generally categorized as either 

satellite signal-related or receiver-type-related biases. On the satellite end, a delay exists between 

the signal generation and transmission at the antenna. The same is the case on the receiver end, 

where there is a delay between signal receiving and the actual observations of  a specific signal. 

There are two types of  signal biases corresponding to the observation types: pseudo-range 

biases and phase biases. The phase biases will be discussed in Section 2.4. These signal biases 

can be estimated and provided as corrections in advance. In terms of  pseudo-rang biases, there 

are currently two kinds of  corrections. One is by providing the differences among different 

pseudo-range types, including the traditional differential code biases (DCB), and and the recent 

differential signal bias (DSB) (Jefferson et al., 2001; Oliver Montenbruck, Hauschild, et al., 

2014; N. Wang et al., 2015). The other one is Observable-specific Signal Biases (OSB) (Villiger 

et al., 2019; N. Wang, Li, et al., 2020). In general, signal biases differ per constellation, satellite, 

frequency, signal attribute (e.g., C, W, I, Q), as well as receiver hardware and firmware (related 

to signal processing approaches). Therefore, DSB or OSB is recommended in daily data 

processing. 

Station displacement 

When the observation equations are set up in the CRF, the receiver position is 

 𝐗r(𝑡𝑟) = 𝐗r(𝑡𝑟) + Δ𝑿𝑟,𝑡𝑖𝑑𝑒𝑠(𝑡𝑟) + Δ𝑿𝑟,𝑙𝑜𝑎𝑑𝑖𝑛𝑔(𝑡𝑟), (2.32) 

where 𝐗r(𝑡𝑟) is the benchmark without any corrections, Δ𝑿𝑟,𝑡𝑖𝑑𝑒𝑠(𝑡𝑟) and Δ𝑿𝑟,𝑙𝑜𝑎𝑑𝑖𝑛𝑔(𝑡𝑟) 

are the tidal and loading deformations, respectively. Time-variable tide displacements 

Δ𝑿𝑟,𝑙𝑜𝑎𝑑𝑖𝑛𝑔(𝑡𝑟) contain Solid Earth tides, Ocean Tides, Atmospheric Tides, Pole Tides and 

Ocean Pole Tides. As the IERS conventions (Petit & Luzum, 2010) provide in-depth 

descriptions of  these models and how to apply the respective corrections, no further 

explanations will be given here. The loading displacements Δ𝑿𝑟,𝑙𝑜𝑎𝑑𝑖𝑛𝑔(𝑡𝑟) are mainly induced 

by atmospheric pressure, wind-induced ocean currents, and changes in terrestrial water storage 

(Klos et al., 2021). 
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Antenna phase center offsets and variations 

Various antenna-related offsets and corrections have to be taken into account in GNSS 

processing. For the antenna reference points (ARPs), the satellite orbits refer to center-of-mass 

positions, while the receiver coordinates refer to the position of  a marker that represents the 

station. Moreover, the electronic center of  an antenna can vary for different frequencies. In 

that case, antenna center offsets and variations need to be considered as well. 

Antenna offsets 

At the station, the ARP is usually located at the bottom of  the physical antenna. Since ground 

station antennas are often mounted on monuments, the connection between station marker 

and ARP is 

 𝑿𝑟,𝐴𝑅𝑃 = 𝑿𝑟,𝑀𝑎𝑟𝑘𝑒𝑟 +𝐑𝐿𝑅𝐹
𝑇𝑅𝐹Δ𝑿𝑟,𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 , (2.33) 

Station operators usually provide Δ𝑿𝑟,𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦  in a local topocentric reference frame (i.e., 

north, east, up). Therefore, this vector has to be transformed to the TRF via 𝐑𝐿𝑅𝐹
𝑇𝑅𝐹. 

At the satellite, the center of  mass (COM) and the ARP are related via 

 𝑿𝐴𝑅𝑃
𝑠 = 𝑿𝐶𝑂𝑀

𝑠 + 𝐑𝑆𝐶𝐹
𝐶𝑅𝐹(Δ𝑿𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦

𝑠 − Δ𝑿𝐶𝑂𝑀
𝑠 ). (2.34) 

Here, the center-of-mass offset Δ𝑿𝐶𝑂𝑀
𝑠  and the eccentricity of  the ARP Δ𝑿𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦

𝑠  are 

given in the SRF with respect to a physical origin 𝐑𝑆𝐶𝐹
𝐶𝑅𝐹. The location of  this origin and the 

orientation of  the SRF depend on the corresponding definition. For this reason, the IGS has 

adopted a common SRF for all GNSS satellites (O. Montenbruck et al., 2015). The constant 

ARP and origin make the Origin-ARP vector Δ𝑿𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝑠  constant over time because they 

are tied to the physical structure of  the satellite. In contrast, the position of  the center of  mass 

can change over time, mainly due to the usage of  propellant to maneuver the satellite. For 

example, the center of  mass of  two Galileo satellites in highly eccentric orbit (E14 and E18) 

have changed by about 5 cm after a large part of  their on-board propellant are consumed to 

correct their orbits (Navarro-Reyes et al., 2015; GSA, 2017). In Equation (2.34), both Δ𝒙𝐶𝑂𝑀
𝐶𝑅𝐹,𝑠

 

and Δ𝒙𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝐶𝑅𝐹,𝑠

 are supposed to be known (i.e., have been published by satellite 

manufacturers). However, Galileo is the only one to publish these values among four GNSS 

constellations considered in this thesis. For other three constellations, estimated offsets 

between the satellite center of  mass and the antenna center are available (Schmid et al., 2007). 

Recently, new launched satellites start to publish calibrated offset values, for example GPS-

IIIA satellites. 

Antenna center offsets and variations 

Following the sign conventions of  the IGS ANTEX file format (Markus Rothacher & Schmid, 

2010), antenna center offset and variation corrections for a satellite or receiver antenna can be 

applied as 

 𝑎𝑛𝑡(𝑓) = −𝑘𝐴𝑅𝐹Δ𝑿𝑃𝐶𝑂(𝑓) + Δ𝑿𝑃𝑉(𝑓, 𝑎, 𝑒). (2.35) 
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Here, Δ𝑿𝑃𝐶𝑂(𝑓) is the offset from the antenna reference point to the electronic antenna 

center for a signal 𝑓 and 𝑘𝐴𝑅𝐹  is line-of-sight vector, which is defined from the local antenna 

center to the remote antenna center. Due to the large distance between GNSS transmitters and 

receivers, this vector is equivalent to the line-of-sight vector between the receiver and satellite 

antenna reference points. The vector Δ𝑿𝑃𝑉(𝑓, 𝑎, 𝑒) in Equation (2.35) is phase correction 

(PV), which describes direction-dependent variations for a signal. 𝑎 and 𝑒  are the azimuth and 

elevation angles, respectively. 

Carrier-phase wind-up 

From the perspective of  an inertial frame, a ground-based receiver antenna rotates with Earth. 

At the same time, a GNSS satellite orbiting Earth constantly adjusts its attitude and, thus, its 

antenna orientation. The relative orientation between the two antennas continuously changes 

over time and, therefore, leads to variations in the phase measurements. This phase variations 

caused by the change in relative orientation of  transmitter and receiver antennas is called phase 

wind-up (J.-T. Wu et al., 1992). The phase wind-up in terms of  cycles can be modeled as 

 pwur
𝑠 = 𝑠𝑖𝑔𝑛(𝜂) cos−1 (

𝑫𝑠⋅𝑫𝑟

‖𝑫𝑠‖‖𝑫𝑟‖
), (2.36) 

where 𝜂, 𝑫𝑠 and 𝑫𝑟 are defined respectively as 

 𝜂 = 𝒌 ⋅ (𝑫𝑠 × 𝑫𝑟) (2.37) 

 𝑫𝑠 = 𝒙𝑠 − 𝒌 ⋅ (𝒌 ⋅ 𝒙𝑠) − 𝒌 × 𝒚𝑠 (2.38) 

 𝑫𝑟 = 𝒙𝑟 − 𝒌 ⋅ (𝒌 ⋅ 𝒙𝑟) + 𝒌 × 𝒚𝑟, (2.39) 

Respectively. Here 𝒌  is the unit vector from transmitter to receiver, 𝒙𝑠  and 𝒚𝑠  are the 

corresponding dipole unit vectors of  the transmitting antenna in local reference system, 𝒙𝑟 

and 𝒚𝑟 are the corresponding dipole unit vectors of  the receiver antenna in local reference 

system. In a local reference system, 𝒆𝒙𝑟 points towards a vendor-defined reference marker in 

the plane normal to the antenna boresight direction and 𝒆𝒛𝑟 points along the antenna boresight 

direction, while 𝒆𝒚𝑟  completes the left-handed frame. Note that continuity of  the phase 

correction in Equation (2.36) has to be maintained if  the relative rotation exceeds 360°. 

Relativistic effects 

Various relativistic effects have to be considered in GNSS processing (Ashby, 2003; 

Formichella et al., 2021). Relativity not only affects dynamic satellite orbits, but also satellite 

clocks and signal propagation. For the effects on signal propagation, these effects can be 

directly applied as range corrections to the observations. 

First of  all, time dilation and gravitational redshift cause a constant frequency offset in the 

satellite clocks (Ashby, 2003). The offset depends on the semimajor axis of  the satellite orbit 

and thus differs per GNSS constellation. However, this offset is corrected for on a hardware 

level directly in the satellites so that for ground-based receivers the apparent satellite clock 
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frequency conforms to its nominal value. Therefore, no explicit correction of  this constant 

offset is required when processing GNSS observations.  

Next to this constant offset, periodic variations caused by the slight eccentricity of  the satellite 

orbits affect satellite clock frequencies as well. According to Ashby (2003), this effect can be 

modeled directly as a range correction 

 𝜌𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑡𝑦
𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦(t) =

2

𝑐2
𝐗𝑠(𝑡)𝐗̇𝑠(𝑡). (2.40) 

The variations in Earth’s gravitational potential due to Earth’s oblateness can also cause an 

additional periodic variation in the satellite clock frequency (Jan Kouba, 2004). This effect is 

represented as 

 𝜌𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑡𝑦
𝐽2,0 (t) =

3

2
J2,0

R2

c
√
GM

a3
sin2 𝑖 sin(2u(t)), (2.41) 

where 𝐽2,0 = 1.083 × 10
−3 is the potential coefficient describing Earth’s oblateness, 𝑅 

Earth’s equatorial radius, GM Earth’s gravitational constant, 𝑎  the semimajor axis of  the 

satellite’s orbit, and 𝑖  its inclination angle. The argument of  latitude u(t) = 𝜔 + 𝑣(𝑡) 

describes the position of  the satellite in the Keplerian orbit based on the argument of  perigee 

𝜔 and the true anomaly 𝑣. However, it is IGS convention to not apply this correction in GNSS 

processing according to Jan Kouba (2009a). 

The curvature of  spacetime is another factor delaying GNSS signals (Ashby, 2003). The range 

correction due to this delay, referred to as Shapiro effect can be modeled as 

 𝜌𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑡𝑦
𝑠𝑝𝑎𝑐𝑒𝑡𝑖𝑚𝑒(t) =

2𝐺𝑀

𝑐2
ln (

∥𝐗𝑠∥+∥𝒙𝑟∥+𝜌𝑟
𝑠

∥𝐗𝑠∥+∥𝒙𝑟∥−𝜌𝑟
𝑠), (2.42) 

where, 𝜌𝑟
𝑠 is the geometric range between receiver and satellite. The maximum Shapiro effect 

is approximately 2 cm (i.e., 60 ps) for MEO satellites of  GNSS and  2.3 cm (i.e., 70 ps) for 

IGSO satellites. A correction for the Sagnac effect is necessary in case the computations are 

conducted in an Earth-fixed reference frame (Ashby, 2003). However, in the context of  this 

thesis, the observation equations are set up in an inertial reference frame and receiver positions 

and velocities are rotated into this frame when needed. Therefore, this correction can be 

disregarded and is not further discussed here. 

2.3 Parameter estimation 

The least-squares adjustment is well known and widely used in geodetic data processing. In 

this section, the algorithm of  parameter estimation and NEQ stacking is described. The 

comprehensive background is referred to the literature (Brockmann, 1997; Thaller, 2008; Koch, 

2013). 
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2.3.1 Least-squares adjustment 

In case of  the GNSS processing, let 𝒇(𝒙) the functional model for phase or code observations 

in Equation (2.27), which is generally nonlinear w.r.t. to unknown parameters 𝒙 and has to be 

linearized by expanding it into a Taylor series at its initial value 𝒙𝟎 

 𝒍 = 𝒇(𝒙0) + 𝐀(𝒙 − 𝒙𝟎) + 𝒆, (2.43) 

where the design matrix 

 𝐀 =
𝒇(𝒙0)

𝜕𝒙
|𝒙0 (2.44) 

is the Jacobian of  𝑓 with respect to the parameters 𝒙 at the initial values 𝒙𝟎. Introducing the 

shorthand Δ𝒍 = 𝒍 − 𝒇(𝒙0)  for observation residuals and Δ𝒙 = 𝒙 − 𝒙𝟎  for parameter 

corrections, Equation (2.43) can also be written as 

 Δ𝒍 = 𝐀Δ𝒙+ 𝒆. (2.45) 

The observations in 𝒍 can have different measurement accuracies and are possibly correlated. 

This information can be represented by the covariance matrix of  observations 𝚺𝒍. Inverting 

this matrix results in the weight matrix 

 𝐏 = 𝜎0
2Δ𝚺𝒍

−𝟏, (2.46) 

where 𝜎0 is an a priori unitless variance factor, for example 𝜎0
2 = 1. 

Minimizing the weighted sum of  squared residuals 

 ‖𝒆‖2 = 𝒆𝑇𝐏𝒆 = (Δ𝒍−𝐀Δ𝒙)𝑇𝑃(Δ𝒍−𝐀Δ𝒙)  → 𝑚𝑖𝑛 (2.47) 

leads to the so-called normal equations 

 𝐀𝑇𝑷𝐀Δ𝒙 = 𝐀𝑇𝐏Δ𝒍, (2.48) 

where 

 𝐍 = 𝐀𝑇𝑷𝐀 (2.49) 

denotes the normal equation matrix, and 

 𝐖 = 𝐀𝑇𝐏Δ𝒍 (2.50) 

is the vector of  the right-hand side. Solving the system of  equations results in the estimated 

parameter corrections 

 Δ𝒙 = 𝐍−1𝑾 (2.51) 

and, in combination with the initial values 𝑥0, the estimated parameters 𝒙 is 

 𝒙 = 𝒙𝟎 + Δ𝒙. (2.52) 

In many cases, solving a nonlinear least-squares adjustment requires iteration, which means the 

estimated parameters 𝒙 are introduced back into Equation (2.43) as initial values 𝒙𝟎 and the 

system of  equation is solved repeatedly until convergence is reached. Moreover, the iteration 

in GNSS data processing also plays a role of  data cleaning. The estimated variance factor 

 𝜎̂0
2 =

𝒆̂𝑇𝑷𝒆̂

𝑛−𝑚
 (2.53) 

can then be computed based on the estimated residuals 

 𝒆̂ = Δ𝒍 − 𝐀Δ𝒙 (2.54) 
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and the number of  observations 𝑛 and parameters 𝑚. Using the law of  error propagation, the 

covariance matrix of  estimated parameters follows as 

 Δ𝚺𝒙 = 𝜎̂0
2𝐍−1. (2.55) 

Starting from these basic formulas for the least squares adjustment, several manipulations of  

the system of  normal equations can be carried out.  

2.3.2 Constraints of  parameters 

To solve the problem of  data rank-defection occurring in GNSS data processing or strengthen 

solutions, external information is usually introduced, i.e., either constrain some parameters to 

a priori value with the corresponding uncertainties or constrain a set of  parameters with certain 

conditions. This step can be done by applying the pseudo-observation equation named 'Gauss-

Markoff  model with restrictions/conditions'. 

Constraints based on the a priori stochastic information 

To constrain parameters 𝑥  to corresponding known values 𝑥𝑐  with the corresponding 

uncertainty 𝜎𝑥, the pseudo-observation equation reads 

 𝑣𝑥 = Δ𝑥 − 𝑙𝑥, P𝑥 =
1

𝜎𝑥
2, (2.56) 

where Δ𝑥 is unknown parameters, 𝑙𝑥  is the residual (𝑥𝑐 − 𝑥0). The constraint can also be 

applied between two parameters 𝑥𝑖  and 𝑥𝑗 , e.g., the two ZTD parameters at consecutive 

epochs in the random walk process. The relationship between two parameters reads 

 𝑥𝑖 − 𝑥𝑗 = Δ𝑥𝑖𝑗 (2.57) 

where Δ𝑥𝑖𝑗 is a known value for the tie between them which should be realized by the solution. 

Then, the normal equation can be retrieved easily. 

Free-network constraints 

Constraining ground station coordinates or so-called ”No-Net Conditions” (NNC) on the 

normal equation are the commonly two ways of  getting rid of  the rank deficiency in a datum-

free network (Altamimi et al., 2002). The NNC contains no-net-translation (NNT), no-net-

rotation (NNR), and no-net-scale (NNS), in which the NNS is usually not applied. One 

applicable scenario for NNS is to estimate the GNSS satellite antenna phase offset and 

variation (M. Ge et al., 2005a; Schmid et al., 2007). 

2.3.3 Linear parameter transformation 

When the parameter vector 𝑥 in a normal equation system can be transformed to another 

parameter vector 𝑦 by linear transformation 
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 𝑥 = 𝐶𝑦 + 𝑐0, (2.58) 

the normal equation with the new parameter vector can be obtained after a short derivation as 

following: 

 𝑁𝑦 = 𝐶
𝑇𝑁𝑥𝐶 (2.59) 

 𝑊𝑦 = 𝐶
𝑇(𝑊𝑥 −𝑁𝑥 ⋅ 𝑐0) (2.60) 

 𝑙𝑦
𝑇𝑃𝑙𝑦 = 𝑙𝑥

𝑇𝑃𝑙𝑥 − 2𝑐0
𝑇𝑊𝑥 + 𝑐0

𝑇𝑁𝑥𝑐0 = 𝑙𝑥
𝑇𝑃𝑙𝑥 − 𝑐0

𝑇(𝑊𝑥 +𝑊𝑦). (2.61) 

Where 𝑊𝑥 = 𝑁𝑥𝑙𝑥 and 𝑊𝑦 = 𝑁𝑦𝑙𝑦. The linear parameter transformation is a convenient tool on 

which many other operations are based, for example the transformation of  a priori values 

which often occurred in the steps of  normal equations (NEQ) stacking. 

2.4 Carrier phase integer ambiguity resolution 

In Equation (2.27), non-integer hardware biases or other inaccurately modeled biases in the 

receiver and satellite end prohibit direct access to integer ambiguities. For simplicity, we assume 

that non-integer hardware biases have absorbed other inaccurately modelled biases, which will 

be mentioned separately in the following. The IF ambiguity 𝑁𝑟,𝐼𝐹
𝑠  is also not naturally an 

integer, even though the hardware delays are removed. To facilitate IAR, Equation (2.29) can 

be decomposed into wide-lane (WL) and narrow-lane (NL) ambiguities 

 𝑁𝑟,𝐼𝐹
𝑠 = 𝜆𝑁𝐿 (

𝜆𝑊𝐿

𝜆2
(𝑁𝑟,𝑊𝐿

𝑠 + Δ𝜙𝑟,𝑊𝐿 + Δ𝜙𝑊𝐿
𝑠 ) + 𝑁𝑟,𝑁𝐿

𝑠 + Δ𝜙𝑟,𝑁𝐿 + Δ𝜙𝑁𝐿
𝑠 ), (2.62) 

where 𝜆𝑊𝐿  and 𝜆𝑁𝐿  are the wavelength of  WL and NL ambiguity in the unit of  meter, 

respectively; Δ𝜙𝑟,𝑊𝐿 and Δ𝜙𝑟,𝑁𝐿 the WL and NL UPD in receiver end, respectively; Δ𝜙𝑊𝐿
𝑠  

and Δ𝜙𝑁𝐿
𝑠  the WL and NL UPD in satellite end, respectively; 𝑁𝑟,𝑊𝐿

𝑠  and 𝑁𝑟,𝑁𝐿
𝑠  integer WL and 

NL ambiguity in the unit of  cycle, respectively. Usually, only integer WL ambiguity is inserted 

in to Equation (2.62), the WL UPDs (Δ𝜙𝑟,𝑊𝐿 + Δ𝜙𝑊𝐿
𝑠 ) are ignored and thus merged to NL 

fractional part. Resolving DD-ambiguities (DD IAR) or directly fixing UD ambiguities by 

correcting UPDs with the estimated values (UD IAR) are the two typical methods to obtain 

IAR. 

Double-difference integer ambiguity resolution 

In the DD IAR, the hardware delay at satellite and receiver sides (i.e., UPDs) are eliminated by 

double difference and then the integer nature can be easily recovered. Over the past three 

decades, DD IAR is widely adopted in GNSS network processing by most IGS ACs for routine 

GNSS data processing, such as JPL, CODE and GFZ. 

By forming DD-ambiguities between two selected stations (𝑚, 𝑛) and satellites (𝑖, 𝑗), the 

hardware delays mentioned in Equation (2.62) can be eliminated directly (M. Ge et al., 2005b) 

 𝑁𝑚𝑛,𝐼𝐹
𝑖𝑗

= 𝑁𝑚,𝐼𝐹
𝑖 −𝑁𝑚,𝐼𝐹

𝑗
− 𝑁𝑛,𝐼𝐹

𝑖 +𝑁𝑛,𝐼𝐹
𝑗

. (2.63) 



Theory of precise orbit determination  31 

 

After eliminating common code and phase biases in Equation (2.62), both WL ambiguities 

(𝑁𝑚𝑛,𝑊𝐿
𝑖𝑗

) and NL ambiguities (𝑁𝑚𝑛,𝑁𝐿
𝑖𝑗

) restore integer nature and can be fixed to integers 

directly. Once they are fixed to integers, the estimated IF ambiguity is expressed as 

 𝑁𝑚𝑛,𝐼𝐹
𝑖𝑗

= 𝜆𝑁𝐿 (
𝜆𝑊𝐿

𝜆2
𝑁𝑚𝑛,𝑊𝐿
𝑖𝑗

+ 𝑁𝑚𝑛,𝑁𝐿
𝑖𝑗

). (2.64) 

Then, the following tight constraint is imposed to the four related UD ambiguities in Equation 

(2.63) as 

 𝑁𝑟,𝐼𝐹
𝑠 −𝑁𝑚𝑛,𝐼𝐹

𝑖𝑗
= 0;  𝜎 = 0.001 𝑚𝑚 (2.65) 

where 𝜎 is the uncertainty of  DD ambiguity constraint. Note that a tight constraint is usually 

applied, that is,” 0.001 𝑚𝑚” in this study. The ambiguity-fixed solutions are obtained after all 

selected constraints are applied.  

To ensure the accuracy of  orbits, clocks and other geodetic products, all theoretically 

independent DD ambiguities need to be selected from the whole network. For DD IAR of  a 

massive network, the step of  picking independent DD ambiguities from the entire network 

can be very time-consuming. The computation burden of  DD IAR for a massive GNSS 

network is mainly caused by the formation and selection of  independent DD ambiguities. 

Currently, there are two strategies to select independent DD ambiguities to accelerate DD IAR: 

⚫ Picking independent DD ambiguity from global fixable ambiguities (M. Ge et al., 

2005b). 

At first stage, fixable DD ambiguities in each baseline are sorted based on fixing probability 

and then the independence of  fixed DD ambiguities is checked by Gram-Schmidt process 

(Cohen, 1993). Afterward, the selected DD ambiguities of  all baselines are pooled together to 

pick an independent subset. This procedure has been implemented in the EPOS software of  

the German Research Center for Geosciences (GFZ) and the NAPEOS software of  the 

European Space Agency (ESA) (Tim Springer, 2009; Reckeweg, 2020). 

⚫ Obtaining independent DD ambiguities from the maximum independent baseline 

set (Blewitt, 2008). 

To accelerate DD-IAR, this strategy acquires independent DD ambiguities from the maximum 

independent baseline set only, rather than all possible baselines across the network. This 

baseline subset can be picked according to the baseline lengths or ambiguity fixing rates. 

Shorter baselines or those with higher fixing rates are prioritized. Compared to the approach 

by Ge et al. (2005), this strategy achieves computation efficient DD-IAR for a massive GNSS 

network consisting of  thousands of  stations. Blewitt (2008) refused to identify all independent 

DD ambiguities of  a network, and demonstrated that this DD-IAR strategy was able to achieve 

daily horizontal coordinates of  less than 1 mm different from those achieved by harnessing all 

independent DD ambiguities of  the entire network. This DD-IAR strategy has been adopted 
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in GipsyX/RTGx (Bertiger, Bar-Sever, Dorsey, Haines, Harvey, Hemberger, Heflin, Lu, Miller, 

Moore, et al., 2020). 

2.4.1 Undifferenced integer ambiguity resolution 

Different from DD IAR, the hardware delay at satellite and receiver sides, that is, UPD, can be 

estimated and applied as corrections to recover the integer feature of  UD ambiguities, and 

thus, the UD IAR can be performed. For recovering the integer nature of  UD-ambiguities, 

only the fractional part is critical, whereas the integer part is anyway not separable from the 

integer ambiguities. With the DSBs or OSBs provided by IGS, the satellite-specific biases 

between different signals are calibrated priori to the UPD estimation. To recover the integer 

nature of  WL and NL ambiguities, the fractional part of  hardware delays can be separated and 

estimated in a reference network. Supposing there are 𝑚 reference stations with 𝑛 satellites 

observed on each station, the observation equation of  WL or NL UPDs can be written as 

 U = ⌊I𝑚⊗e𝑛 e𝑛⊗ I𝑚⌋ [
x𝑟
x𝑠
], (2.66) 

where U = [𝑈1 ⋯ 𝑈𝑚+𝑛]
𝑇  are the fractional parts of  WL or NL ambiguities; x𝑟 =

[Δ𝜙𝑟,1 ⋯ Δ𝜙𝑟,𝑚]𝑇  the WL or NL UPDs in receiver end; x𝑠 = [Δ𝜙1
𝑠 ⋯ Δ𝜙𝑛

𝑠]𝑇  the 

WL or NL UPDs in satellite end; ⊗ is the operator of  Kronecker product; I𝑚 is the 𝑚−order 

identity matrix, respectively; e𝑛 is the 𝑛 −column vector with all one elements, respectively. 

Due to the linear dependence between receiver and satellite UPD, the rank deficiency of  

Equation (2.66) is 1, which can be solved by selecting one reference UPD, e.g., fixing one 

satellite UPD to zero. Usually, the fractional parts of  WL ambiguities are derived from the 

corresponding carrier-phase and pseudo-range combinations (Melbourne, 1985; Wübbena, 

1985). After achieving WL UPDs with Equation (2.66), then the fractional parts of  NL UPD 

are derived from the real-valued solution. Finally, NL UPDs are estimated. For more details 

on UPD estimation, please refer to (M. Ge et al., 2007). 

With estimated WL and NL UPDs, the integer property of  WL and NL ambiguity are 

recovered and the corresponding IF ambiguity 𝑁𝑟,𝐼𝐹
𝑠  is imposed as an additional pseudo-

observation to achieve the ambiguity-fixed solution 

 𝑁𝑟,𝐼𝐹
𝑠 −𝑁𝑟,𝐼𝐹

𝑠 = 0;  𝜎 = 0.001 𝑚𝑚. (2.67) 

Although many studies have demonstrated the stability of  UD ambiguities in PPP solutions 

(M. Ge et al., 2007; Li et al., 2017; B. Cui, Li, et al., 2021), the UD ambiguities estimated from 

POD processing are not such accurate as that from PPP because much more parameters are 

estimated simultaneously in POD processing. This may result in a vulnerable UD IAR if  

directly using UD ambiguities from POD float solutions, which will be further explained in 

Chapter 4. Therefore, Deng et al. (2022) recommend a DD IAR procedure before performing 

UD IAR to ensure the accuracy of  UD ambiguities. 
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2.5 POD processing strategy in PANDA software 

The POD processing in this thesis is performed using PANDA software (J. Liu & Ge, 2003; 

Shi et al., 2008), which is capable of  multi-GNSS post and real-time processing (Zuo et al., 

2021; Tang, Wang, Zhu, et al., 2023), LEO data processing (H. Ge et al., 2022) and handling 

multiple space geodetic techniques (J. Wang et al., 2022). The performance of  POD and PCE 

have been demonstrated by several studies (W. Huang, Männel, Sakic, et al., 2020; Tang et al., 

2021; X. Chen et al., 2023). A vast range of  applications using the software have been 

performed, including orbit maneuver detection (Qin et al., 2023), phase center estimation (W. 

Huang, Männel, Brack, et al., 2020), precipitable water vapor retrieve (J. Wang et al., 2019; Z. 

Wu et al., 2020), sea surface height measurement (Penna et al., 2018), earthquake detection (K. 

Chen et al., 2016). The PANDA software is also used by the IGS analysis centers at WHU4, 

SHAO5 and several other ACs of  the iGMAS6. 

Table 2.2 lists the force models applied in POD processing (see Chapters 3, 4, and 5). The 

Earth’s gravity field only comprises the static field, as the impact of  the time-variable gravity 

field on GNSS POD is minor7 . All other force models are utilized following the IERS 

conventions. For solar radiation pressure, the surface areas and optical properties of  GNSS 

satellite box-wing models originate from various sources. Besides from the a priori box-wing 

models, additional empirical solar radiation pressure parameters are estimated. The ECOM1 

model is selected for our processing. Combined with six initial state parameters, eleven 

parameters are set up per satellite orbit each day. The performance of  different ECOM models 

and box-wing model will be discussed in Chapter 3. 

Table 2.2 A priori force models used in satellite orbit integration. 

Item Model Reference 

Earth’s gravity field EIGEN-GRACE02S Reigber et al. (2005) 
Astronomical tides JPL DE405 Standish (1996) 
Solid Earth tides IERS 2010 Petit and Luzum (2010) 
Ocean tides FES2014b Lyard et al. (2021) 
Pole tides IERS 2010 Petit and Luzum (2010) 
Atmospheric tides IERS 2010 Petit and Luzum (2010) 
General relativity IERS 2010 Petit and Luzum (2010) 

Solar radiation pressure Box-wing 

GPS: Duan and Hugentobler (2021),  
         Peter Steigenberger et al. (2020) 
GLONASS: Duan et al. (2020) 
Galileo: (GSA, 2019) 
BDS: Duan et al. (2019), 
         Duan et al. (2022) 

Earth radiation pressure Box-wing Rodriguez-Solano et al. (2011) 
Antenna thrust Measured values Peter Steigenberger et al. (2017) 

The vast majority of  the settings in the processing strategy are listed in Table 2.3. Following 

the rule of  IERS conventions (2010) (Petit & Luzum, 2010), tidal deformations including solid 

 
4 http://www.igs.gnsswhu.cn/index.php/home/index.html?lang=en-us 
5 http://202.127.29.4/shao_gnss_ac/ 
6 http://en.igmas.org/ 
7http://acc.igs.org/workshop2016/posters/Nikta_Amiri_Impact_Of_Time_Variable_Gravity_Field_on_GPS_Precise_Or

bit_Determination_2016.pdf 
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Earth tides, ocean tides, pole tides, ocean pole tides and atmospheric tides, are added to station 

coordinates. For station parameters, constant station coordinate parameters are set up for each 

day. Some of  global stations are selected as core stations to add No-Net-Rotation and No-

Net-Translation constraints (Zajdel et al., 2019) with tight constraints. Note that loading 

deformations due to nontidal mass variations are not applied as corrections. For tropospheric 

residual zenith wet delays, it is estimated at each station using piece-wise constant method. 

Horizontal gradient delays in north-south and east-west directions are parameterized as 

constant components over the full day for each station. Therefore, 14 tropospheric parameters 

(12 for wet delays and one each for both gradient directions) were set up per station and day. 

For ERP parameters, polar motion, polar motion rate and length of  day (LOD) are 

parameterized as constant components over the full day. For ambiguity fixing, DD IAR and 

UD IAR will be discussed in Chapter 4. UD IAR is applied in other Chapters. Taking into 

account the known satellite biases (N. Wang et al., 2015), integer rounding is used to separate 

the fractional biases and to determine the integer-valued wide-lane and narrow-lane 

ambiguities for all passes. Inter-system biases (ISBs), and geocenter coordinates are also 

considered in POD processing.  

Table 2.3 Description of observation modeling strategies. 

Item Settings 

Observation Ionospheric-free combined GNSS pseudorange and phase observations, 5-min sampling 
Observation 
weighting 

UD pseudorange and phase: 0.5 m and 0.01 cycle, respectively; elevation-dependent downweighing 

Station 
coordinates 

Estimated as daily constant, no-net-rotation and no-net-translation constraints on the datum 
stations to IGS14 (Rebischung et al., 2016) 

Receiver and 
satellite 
clock 

Estimated as epoch-wise white noise 

Surface 
displacement  

IERS 2010 Conventions (Petit & Luzum, 2010) 

Earth 
rotation 
parameters 

IERS finals2000A product is taken as a priori values. Polar motion components estimated as daily 
offset and rate. UT1-UTC are fixed to the a priori value but its rate is estimated (LOD). Sub-daily 
variations modelled following to IERS 2010 Conventions (Petit & Luzum, 2010) 

Tropospheri
c delay 

GPT3 (Böhm et al., 2014) for the a priori zenith delay, residual zenith wet delay estimated as 2-hour 
piece wise constant, north and east gradients estimated as daily constant 
Mapping functions: GMF (J. Boehm, Niell, et al., 2006) for zenith delays and Chen-Herring (G. 
Chen & Herring, 1997) for horizontal gradients

 
Code bias  DSB product (N. Wang et al., 2015) 
Ambiguity 
fixing 

YES 

Uncertainty 
of  integer 
ambiguity 
constraints 

Tight constraint: 0.001 mm 

Based on satellite force and observation models, all the unknown parameters are estimated 

with LSQ. It must be pointed out that the estimation part is repeated several times, typically 

four iterations, for data cleaning and parameter update and a final iteration for generating the 

float solution for integer ambiguity resolution. For a network solution with 100 tracking 

stations and four satellite systems, the total number of  unknown parameters is more than 

ninety thousand. To save computer memory and reduce the computation burden, only active 
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parameters in NEQ are kept. Otherwise, the inactive parameters will be removed immediately 

from the NEQ (M. Ge et al., 2006). In this case, the percentage of  the parameter elimination 

in the whole-time consumption is at least 85%. Therefore, the OpenMP technology is 

introduced to accelerate parameter elimination (X. Chen et al., 2022). OpenMP consists of  

compiler directives, library routines, and environment variables. These instructions can be 

employed to build a portable, scalable model, providing developers with a simple, flexible 

interface for parallel processing based on multiple platforms. In parameter elimination, the 

NEQ should be defined as a shared memory that can be accessed by multiple threads in parallel. 

In the NEQ system, one element from each row or column vector can be removed without 

any intervention from other elements. This indicates that the entire NEQ-level computation 

can be separated into sub-blocks row by row, and the sub-blocks are distributed among the 

threads without data dependence. From the principal perspective, it is possible to parallelize 

the parameter elimination in a row-wise manner by using OpenMP tools. 

2.6 Chapter summary 

The major content of  this chapter are summarized as follows. 

Section 2.1 introduces the orbit modeling and satellite attitude applied in dynamic orbit 

determination. The quality of  dynamic orbits is mainly limited by the applied force models, 

especially non-gravitational force models. Therefore, the basic theory of  solar radiation 

pressure, Earth radiation, and antenna thrust is discussed in detail. Based on those force 

models, the variational equation used in POD is then summarized. During orbit integration, 

the satellite’s attitude is essential for modeling accelerations induced by solar and Earth 

radiation pressure. Compared with published attitude products by CODE, GFZ, and WHU, 

the attitude models applied in PANDA are consistent with CODE and WHU, with a maximum 

difference less than 10°. 

Section 2.2 presents the mathematical delay models of  GNSS. Instead of  giving the detailed 

models of  each delay, here only the a priori models are summarized. 

Section 2.3 describes the method of  parameter estimation, including least-squares adjustment, 

constraints of  a priori parameters and linear parameter transformation which will be applied 

in Chapter 5. 

Section 2.4 discusses the method of  integer ambiguity resolution, including DD IAR and UD 

IAR. For DD IAR, the strategy of  double difference between two station-satellite pairs can 

recover the integer nature easily. Two strategies for selecting independent baselines are 

introduced. However, picking independent DD ambiguities could be a computation burden in 

a massive network as all theoretically independent DD ambiguities should be selected from 

the whole network. For UD IAR, the UPDs must be estimated in advance and then applied as 

corrections to recover the integer feature of  UD ambiguities.  The consistency of  DD IAR 

and UD IAR will be discussed in Chapter 4. 
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Section 2.5 introduces the PANDA software briefly, with both the applied force models and 

observation models.  

 



 

 

3 Investigation of Solar Radiation 

Pressure modeling  

When a satellite enters the umbra or the penumbra area of  the occulting bodies (usually the 

Earth and the Moon), that is, the eclipse season, a shadow factor is adopted to represent the 

degrees of  Sun occultation. Different ACs adopt different strategies, either in 𝐷  or all 

directions. Although several studies tried to refine its function model, few studies focus on the 

relationship between the shadow factor and the parameterization model and its impact on 

eclipsing satellites. The eclipse seasons are quite common for GNSS satellites. Therefore, it is 

necessary to investigate the orbit accuracy during eclipse seasons and clarify the proper method 

of  combining shadow factor and the parameterization SRP model. 

In this Chapter, the SRP model with the application of  shadow factor is first introduced, 

including the analysis of  the relationship between a priori box-wing model and 

parameterization model (that is, ECOM1 or ECOM2). Based on different data processing 

strategies in Section 3.2, the variations of  estimated ECOM parameters, day boundary 

discontinuity (DBD), and ERPs are evaluated in the following sections. 

Note：This chapter has been published in Tang et al. (2021). The italicized text 

represents the content from the published paper. 

3.1 SRP model 

In the third IGS reprocessing campaign, ECOM1 is suggested for BLOCK IIR and IIF and 

ECOM2 or GSPM with a priori box-wing models is for all the others8. For the SRP modeling 

analysis in this study, the box-wing model is used as the a priori model and ECOM1 or ECOM2 

as the parameterization model. The acceleration of  an in-orbit satellite caused by SRP 

perturbation can be expressed as 

 𝒂𝑠𝑟𝑝 = 𝒂𝑝𝑟𝑖𝑜𝑟 + 𝒂𝑝𝑎𝑟𝑎 , (3.1) 

where 𝑎𝑝𝑟𝑖𝑜𝑟  denotes acceleration derived from the a priori model and 𝒂𝑝𝑎𝑟𝑎  denotes the 

residual acceleration represented by the parameterization model with the force model 

parameters to be estimated. 

 
8 http://acc.igs.org/repro3/repro3.html 
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3.1.1 Relationship between box-wing and ECOM model 

According to the operation law of  satellite attitude, the nominal yaw-steering attitude of  

satellites is set by accomplishing two conditions at the same time: (1) the antennas should 

always point toward the center of  the Earth to transmit the navigation signals; (2) the solar 

panels should always be perpendicular to the Sun to keep a maximum power supply. Normally, 

satellites will rotate around 𝑍 axis when the satellite is orbiting. In that case, the effects of  SRP 

only concentrate on ±𝑍  and +𝑋  surfaces of  the satellite body under nominal attitude. 

Therefore, the box-wing model in three surfaces can be represented as 

 

{
 
 

 
 +𝑍: ((𝛼+𝑍 + 𝛿+𝑍)𝐞𝐷 + (

2

3
(𝛼+𝑍 + 𝛿+𝑍) + 2𝜌+𝑍 cos(𝜀)) 𝐞+𝑍) 𝑙 𝐴+𝑍 cos(𝜀)

+𝑋: ((𝛼+𝑋 + 𝛿+𝑋)𝐞𝐷 + (
2

3
(𝛼+𝑋 + 𝛿+𝑋) + 2𝜌+𝑋sin (𝜀)) 𝐞+𝑋) 𝑙 𝐴+𝑋 sin(𝜀)

−𝑍:− ((𝛼−𝑍 + 𝛿−𝑍)𝐞𝐷 + (
2

3
(𝛼−𝑍 + 𝛿−𝑍) + 2𝜌−𝑍 cos(𝜀)) 𝐞−𝑍) 𝑙 𝐴−𝑍 cos(𝜀)

,(3.2) 

where 𝐞+𝑍, 𝐞−𝑍 and 𝐞+𝑋 are the unit normal vector of  +𝑍, −𝑍 and +𝑋 surfaces, respectively; 

𝐴+𝑍, 𝐴+𝑋 and 𝐴−𝑍 the area of  +𝑍, −𝑍 and +𝑋 surfaces, respectively; 𝑙 =
𝑑𝑆0

𝑚𝑐
 and 𝑐𝑜𝑠(𝜀) =

𝑐𝑜𝑠 (𝛥𝜇)𝑐𝑜𝑠 (𝛽). The meaning of  the remaining characters 𝑑, 𝑆0 , 𝑚 , 𝑐, 𝛥𝜇  and 𝛽  can be 

found from Section 2.1.1. The range of  𝜀 angle is (0, 𝜋). Considering the IGS conventional 

body-fixed frame (SCF) (O. Montenbruck et al., 2015), as shown in Figure 3.1, the 

transformation from SCF to DYB frame can be presented as 

 [
𝐷
𝑌
𝐵
] = [

sin(𝜀) 0 cos(𝜀)
0 1 0

−cos(𝜀) 0 𝑠𝑖𝑛 (𝜀)
] [
𝑋
𝑌
𝑍
]

𝑆𝐶𝐹

. (3.3) 
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Figure 3.1 Relationship between DYB frame and SCF frame in nominal yaw-steering mode. Note that 

the Y-axis is identical in both DYB and SCF frames. 

The accelerations of  irradiated surfaces including satellite body and solar panels mainly acts 

on the 𝐷 and 𝐵 direction in DYB frame and is represented as follow 
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𝐷 = 𝑙(𝐷0 +𝐷1𝑐 cos(𝜀) + 𝐷1𝑠 sin(𝜀) + 𝐷2𝑐 cos(2𝜀)

+𝐷3𝑐 cos(3𝜀) − 𝐷3𝑠 sin(3𝜀))                      

𝐵 = 𝑙(−𝐵1𝑐 cos(𝜀) + 𝐵1𝑠 sin(𝜀) + 𝐵2𝑐 cos(2𝜀)       

+𝐵3𝑐 cos(3𝜀) + 𝐵3𝑠 sin(3𝜀))              

 0 < 𝜀 <
𝜋

2
, (3.4) 

and 

 

𝐷 = 𝑙(𝐷0
′ −𝐷1𝑐

′ cos(𝜀) + 𝐷1𝑠 sin(𝜀) + 𝐷2𝑐
′ cos(2𝜀)

−𝐷3𝑐
′ cos(3𝜀) − 𝐷3𝑠 sin(3𝜀))                     

𝐵 = 𝑙(−𝐵1𝑐 cos(𝜀) − 𝐵1𝑠
′ sin(𝜀) + 𝐵2𝑐

′ cos(2𝜀)       

+𝐵3𝑐 cos(3𝜀) − 𝐵3𝑠
′ sin(3𝜀))              

  
𝜋

2
≤ 𝜀 < 𝜋, (3.5) 

where 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝐷0 =

𝐴+𝑍

3
(𝛼+𝑍 + 𝛿+𝑍) +

𝐴+𝑋

3
(𝛼+𝑋 + 𝛿+𝑋) + 𝐴+𝑆 (1 + 𝛼+𝑆 +

2

3
𝜌+𝑆)

𝐷0
′ =

𝐴−𝑍

3
(𝛼−𝑍 + 𝛿−𝑍) +

𝐴+𝑋

3
(𝛼+𝑋 + 𝛿+𝑋) + 𝐴+𝑆 (1 + 𝛼+𝑆 +

2

3
𝜌+𝑆)

𝐷1𝑐 = 𝐴+𝑍 (1 +
1

3
𝜌+𝑍) , 𝐷1𝑠 = 𝐴+𝑋 (1 +

1

3
𝜌+𝑋) , 𝐷1𝑐

′ = 𝐴−𝑍 (1 +
1

3
𝜌−𝑍)

𝐷2𝑐 =
𝐴+𝑍

3
(𝛼+𝑍 + 𝛿+𝑍) −

𝐴+𝑋

3
(𝛼+𝑋 + 𝛿+𝑋)

𝐷2𝑐
′ =

𝐴−𝑍

3
(𝛼−𝑍 + 𝛿−𝑍) −

𝐴+𝑋

3
 (𝛼+𝑋 + 𝛿+𝑋)

𝐷3𝑐 =
𝐴+𝑍𝜌+𝑍

3
 𝐷3𝑠 =

𝐴+𝑋𝜌+𝑋

2
 𝐷3𝑐

′ =
𝐴−𝑍𝜌−𝑍

3

𝐵1𝑐 = 𝐵3𝑐 =
𝜌+𝑋

2
, 𝐵1𝑠 = 𝐵3𝑠 =

𝜌+𝑍

2

𝐵2𝑠 =
𝐴+𝑍

3
(𝛼+𝑍 + 𝛿+𝑍) −

𝐴+𝑋

3
(𝛼+𝑋 + 𝛿+𝑋)

𝐵1𝑠
′ =

𝜌−𝑍

2
 𝐵2𝑠

′ =
𝐴−𝑍

3
(𝛼−𝑍 + 𝛿−𝑍) −

𝐴+𝑋

3
(𝛼+𝑋 + 𝛿+𝑋) 𝐵3𝑠

′ =
𝜌−𝑍

2

. (3.6) 

Based on Equation(3.4) and Equation(3.5), it is obviously that accelerations of  ±𝑍 , +𝑋 

surfaces and solar panels represented by the box-wing model can be fully allocated to 

coefficients in 𝐷 and 𝐵 directions under the nominal attitude. The amplitude of  each periodic 

term is highly related with area and optical properties of  the illuminated area, for example, 

determining whether a period term is significant or not (O. Montenbruck et al., 2015). 

For the accelerations in 𝐷 direction, it consists of  constant- terms and the twice, fourth- and 

sixth- per-revolution terms, in which zero-per-revolution term is the biggest one. When a 

satellite is a cube, the fourth-per-revolution term is close to zero and can be ignored, for 

example, GPS IIR (Duan & Hugentobler, 2021). In contrast, the fourth-per-revolution will be 

significant for the cuboid-shaped satellites, for example, Galileo and BDS3 satellites. 

Compared with the fractions of  absorbed and diffusely scattered photons, the specularly 

reflected scattered photons (𝜌) is usually the lowest one. Hence, the sixth-per-revolution term 

is less significant than other periodic terms. 

For the accelerations in 𝐵 direction, once-, twice- and three- per-revolution terms are observed, 

while the once-per-revolution term is prominent. These even and odd orders the 𝐷 and 𝐵 

direction are also found by Arnold et al. (2015). 

If  precise satellite metadata is available beforehand, the number of  unknown parameters can 

be reduced to make solutions stronger. However, the official values of  most satellite types are 
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unknown. The optical values calibrated from the ground could change in space. Some key 

elements (e.g., absorb, diffuse and specular reflection properties) in the box-wing model need 

to be estimated and updated. When a precise box-wing model is applied, the number of  

unknown parameters can be reduced. However, using a priori box-wing model as the satellite 

force model purely could also suffer from some other unmodeled forces, for example thermal 

radiation in 𝑌 direction (Duan & Hugentobler, 2021). Moreover, non-nominal attitude is also 

a possible factor influencing the accuracy of  the box-wing model. 

3.1.2 Shadow factor 

For GNSS satellites, the main occulting body is Earth. The relative geometry between 

Earth, Sun, and a satellite’s orbital plane leads to GNSS satellites entering eclipse seasons 

approximately twice per year. An eclipse season usually lasts for around one month, 

during which a satellite crosses Earth’s shadow once per revolution, as shown in Figure 

3.2. GNSS satellites usually cross Earth’s penumbra in a few minutes, while the period in 

full shadow can last up to an hour at the center of an eclipse season.  

Sun

Penumbra

Umbra

Occulting body
 

Figure 3.2 Schematic visualization of conical shadow model and partial occultation. 

Figure 3.3 shows that among the 32 operational GPS satellites in 2019, the average number 

of  eclipsing satellites is around 6 and the maximum number is 12, and a single eclipse event 

lasts 40 minutes on average. Moreover, some unmodeled non-SRP forces may exist and will 

become conspicuous for those satellites during the eclipsing season, which cannot be neglected 

(Sidorov et al., 2020; Duan & Hugentobler, 2021). 
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Figure 3.3 Daily number of GPS satellites in eclipse seasons in 2019. 

When a satellite enters so-called eclipse seasons, a shadow factor is usually employed to 

describe the corresponding solar irradiance variation. Adopting the conical shadow 

model, the shadow factor 𝑓 can be calculated in the following three cases: 

⚫ Full phase: the Sun is fully visible to the satellite, therefore 𝑓 = 1; 

⚫ Penumbra: the satellite is in the penumbra area of the Earth and the Moon and it 

can receive only part of the solar irradiance from the Sun, therefore 

 𝑓 = 1 −
𝑆

𝜋𝑟𝑆𝑢𝑛
 (3.7) 

where 𝑆 denotes the total area of the Sun occulted by the Earth and the Moon, and 𝑟𝑆𝑢𝑛 

the apparent radius of the Sun. 

⚫ Umbra: the satellite is in the umbra of occulting bodies, therefore 𝑓 = 0. 

When the shadow factor is applied in three directions, Equation (2.27) can be rewritten 

as 

 𝒂𝑠𝑟𝑝 = 𝑓 ∙ 𝒂𝑝𝑟𝑖𝑜𝑟 + 𝑓 ∙ (𝐷(𝜇)𝐞𝐷 + 𝑌(𝜇)𝐞𝑌 + 𝐵(𝜇)𝐞𝐵) (3.8) 

The other one is that the shadow factor is applied in satellite-Sun directions and 

Equation (2.27) can be rewritten as 

 𝒂𝑠𝑟𝑝 = 𝑓 ∙ 𝒂𝑝𝑟𝑖𝑜𝑟 + 𝑓 ∙ 𝐷(𝜇)𝐞𝐷 + 𝑌(𝜇)𝐞𝑌 + 𝐵(𝜇)𝐞𝐵 (3.9) 

The 𝑌(𝜇) term usually consists of two parts. The first part is the instrument bias, namely the 

yaw bias, which is caused by the misalignment of solar panels or solar sensor errors and 

observed for BLOCK II and IIA satellites (H. F. Fliegel & Gallini, 1996). The second one is 

the thermal radiation, which was found on the Y surfaces (radiated from louvers) of the 

BLOCK IIR satellites (Oliver Montenbruck et al., 2002). The thermal radiator is designed 

for evacuating excessive heat from onboard payloads to space, and as a result, an 
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additional force is generated. However, thermal control information, not available to the 

public, is hardly to model. Ignoring these small forces, for example, using Equation (3.8) 

can degrade the orbit accuracy in the eclipse season. An inspection of Equation (3.9) shows 

that keeping the 𝑌(𝜇) active during the Earth’s shadow transitions can help to model the 

thermal radiation during eclipse seasons, along with other possible non-SRP nature forces 

in 𝑌 surfaces. Besides the ±𝑌 surfaces, the ±𝑋 and −𝑍 surfaces may also undergo thermal 

radiations. Assuming there is a constant acceleration 𝑎−𝑋 in the −𝑋 surface and it can be 

represented as 𝑎−𝑋𝑠𝑖𝑛(𝜀) , 0, and 𝑎−𝑋𝑐𝑜𝑠(𝜀)  in the D, Y, and B directions, respectively. 

Similarly, assuming there is a constant acceleration 𝑎−𝑍 in the −𝑍 surface and it can be 

represented as −𝑎−𝑍𝑐𝑜𝑠(𝜀), 0, and 𝑎−𝑍𝑠𝑖𝑛(𝜀) in the D, Y, and B directions, respectively. 

Therefore, these constant accelerations corresponding to the B direction can be modeled 

by the once-per-revolution terms in both ECOM1 and ECOM2, whereas the rest part 

corresponding to the D direction can only be partially modeled in ECOM1 and ECOM2, 

where ECOM2 has better performance due to its additional twice-per-revolution and 

fourth-per-revolution terms. 

In addition to those potential thermal radiations mentioned above, there are other 

potential non-gravitational forces that need to be considered during eclipse seasons—for 

example, a surface undergoing heating up and cooling down periods during shadow 

transitions, active thermal control of shadow season, etc. If there are thermal radiation or 

other unmodeled non-gravitational forces in 𝑌or other surface, keeping parameters in the 

𝑌and 𝐵 directions active in the eclipse season can compensate for the forces of non-SRP 

nature to some extent, and this inference will be proved in the following results. 

3.2 Data processing 

Section 3.1 presented the relationship between box-wing and ECOM model, the ways of 

applying the shadow factor, and its relationship with possible unmodeled or inaccurately 

modeled non-SRP forces. As the ECOM2 has more periodic terms than ECOM1 in the D 

direction, it may have different behaviors for eclipsing satellites. Taking GPS orbits as an 

example, three years (2017-2019) of observation data are selected to evaluate the 

performance of different SRP models, with an emphasis on satellites in eclipsing seasons. 

Combining the strategies of using ECOM1 or ECOM2 as the parameterization model, using 

no model, the box-wing, and adjustable box-wing model as a priori model, and the 

application of the shadow factor, i.e., in the 𝐷or 𝐷𝑌𝐵directions, 12 different solutions are 

listed, as shown in Table 1. For the box-wing model, satellite metadata and optical 

properties comes from the manufacturers (H. F. Fliegel & Gallini, 1996; Rodriguez-Solano 

et al., 2012), and for the adjustable box-wing model, adjusted metadata and optical 

properties are provided by (Duan & Hugentobler, 2021). Each satellite may suffer from 

different magnitudes of unmodeled forces, even for the same block type. Considering that 

the purpose of this work is to evaluate different SRP models and shadow factor, the 
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additional accelerations in either 𝑋  or 𝑌  surface provided by Duan and Hugentobler 

(2021) are not considered, which are applied for remaining forces after employing the 

adjustable box-wing model. 

Table 3.1 The 12 cases of GPS daily precise orbit determination solutions using different methods in 

handling the a priori model, the parameterization model, and the shadow factor. Note that the 

directions in which shadow factor is applied refers to the parameterization model, and in the a priori 

model, the shadow factor is always applied. See Equation (3.8) and (3.9) for details. 

Solution Empirical SRP Model Shadow Factor A Priori SRP Model 

E1DYB ECOM1 D,Y,B None 
E1DYB_BW ECOM1 D,Y,B Box-wing 
E1DYB_ABW ECOM1 D,Y,B Adjustable box-wing 
E1D ECOM1 D None 
E1D_BW ECOM1 D Box-wing 
E1D_ABW ECOM1 D Adjustable box-wing 
E2DYB ECOM2 D,Y,B None 
E2DYB_BW ECOM2 D,Y,B Box-wing 
E2DYB_ABW ECOM2 D,Y,B Adjustable box-wing 
E2D ECOM2 D None 
E2D_BW ECOM2 D Box-wing 
E2D_ABW ECOM2 D Adjustable box-wing 

To minimize the possible errors caused by integration, the Adams–Bashforth–Moulton 

predictor–corrector integration method is switched to the Runge–Kutta–Fehlberg (RKF) 

integration method with small steps during the shadow transition, that is, the period 

from full phase to umbra or inverse.  

Unlike the GLONASS, Galileo, and BeiDou satellites where the SLR tracking observations 

are available, the GPS BLOCK IIA, IIR, IIF, and III satellites used in this study are not 

equipped with retroreflector arrays, and thus using SLR as an external orbit validation is 

not possible (Sośnica et al., 2015). It is also not optimal to use the orbit products from the 

IGS ACs as a reference for comparison, as their SRP modeling and the strategies of applying 

the shadow factor are different and can affect the orbit product. Therefore, the following 

quantities are used to assess the different solutions  

⚫ Analyses of the estimated SRP parameters: The estimated ECOM parameters should 

not show systematic biases if the a priori model can describe all essential 

characteristics of the satellite. The correlation between the satellite orbit dynamic 

parameters can also measure the association of these parameters; 

⚫ DBD of the satellite orbits: 3D distance between the orbital positions of two 

consecutive arcs are commonly used to assess the internal consistency of the orbit 

solution 

⚫ Agreement of the ERPs to the IERS EOP 14 C04 product. The GPS technique provides 

precise polar motion and LoD estimates, and thus the ERP estimates from different 

solutions can be compared to the IERS product. the weighted STD (WSTD) of the 

differences between the POD solution and the IERS 14C04 product is calculated 

(Bizouard et al., 2018) as 
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 𝑊𝑆𝑇𝐷 = √
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 𝑃𝑖 =
1

𝜎𝑖
2+𝜎𝑟𝑒𝑓,𝑖

2 , (3.12) 

where 𝑑𝑥𝑖 denotes the difference between the ERP parameters and reference values, 𝑛 

denotes the number of records, and 𝜎𝑖 and 𝜎𝑟𝑒𝑓,𝑖 the formal errors of the estimates and 

the reference product, respectively.  

We first analyze the orbital parameters in Section 3.3 and the orbit precision of the BLOCK 

IIR and IIF satellites in Section 3.4, and then present the ERP agreement with the IERS EOP 

14C04 product in Section 3.5. For the orbit precision analyses, the BLOCK IIA satellites are 

not presented because precisely modeling its post-shadow recovery can be difficult 

(Rodriguez-Solano et al., 2013) and only one or two satellites are in operation during 

the time span. The newly commissioned BLOCK III satellites are also not included, as the 

precise adjustable box-wing model is not available until now and they may undergo 

outgassing phase at their initial operation period, which will influence the comparison 

(H. Fliegel, 1989). 

3.3 Analysis of  Estimated ECOM Parameters 

To investigate the correlation between ECOM SRP parameters, Figure 3.4 and Figure 3.5 

show the correlation coefficients in the E2DYB solution among the estimated satellite 

dynamic parameters (𝑃𝑋,𝑃𝑌, 𝑃𝑍,𝑉𝑋,𝑉𝑌, 𝑉𝑍, 𝐷0, 𝑌0, 𝐵0, 𝐵1𝑐, 𝐵1𝑠, 𝐷2𝑐 , 𝐷2𝑠 , 𝐷4𝑐 , 𝐷4𝑠)  of 

G067, a BLOCK IIF satellite, and EPRs during non-eclipsing and eclipsing seasons, 

respectively. In both higher and lower 𝛽 angles, the 𝐷2𝑐 term is highly correlated with the 

𝐷0 and 𝐵1𝑐 terms, with correlation coefficients larger than 0.9 and 0.6, respectively, and 

the correlation between 𝐷2𝑠 and 𝐵1𝑠 term is close to −1, which means that they are highly 

correlated. Similar correlation can also be observed for the BLOCK IIR satellites (not 

shown here). Comparing Figure 3.4 and Figure 3.5, the correlation coefficients become 

larger in eclipse seasons, i.e., the coefficients between 𝐷2𝑐  and 𝑃𝑋, 𝐵1𝑐 and 𝑉𝑋, 𝐷0 and 𝐵0 

at lower β angle are larger than that at the higher 𝛽. Consequently, the SRP parameters 

in the D direction can be hardly separated from that in the Y and B directions. 



Investigation of solar radiation pressure modeling  45 

 

 
Figure 3.4 WRMS Correlation coefficients between the Earth rotation parameters and the satellite 

dynamic parameters using the ECOM2 as a parameterization model (E2DYB solution) for SVN G067 

(BLOCK IIF) in non-eclipsing season (𝛽 ≈ −34.3𝑜). 

 
Figure 3.5 Correlation coefficients between the Earth rotation parameters and the satellite dynamic 

parameters using the ECOM2 as a parameterization model (E2DYB solution) for SVN G067 (BLOCK IIF) 

in eclipsing season (𝛽 ≈ −1.3𝑜). 



46  Investigation of solar radiation pressure modeling 

 

Figure 3.6 presents the time series of estimated 𝑌0  for all BLOCK IIR and BLOCK IIF 

satellites in the E1DYB solution. The BLOCK IIR satellites show a larger 𝑌0 value than the 

BLOCK IIF satellites, which exhibits as a constant acceleration along the satellite Y-axis, 

that is, the Y-bias. As the accelerations caused by yaw bias are related to the Sun 

irradiation, the 𝑌0 term can be omitted as Equation (3.8) represented if it is dominated by 

the yaw bias. The magnitude of perturbations caused by the yaw bias for BLOCK IIR 

satellites is about 0.15 𝑛𝑚/𝑠2  (Duan & Hugentobler, 2021), which is consistent with the 

behavior of Galileo Full Operational Capability (FOC) satellites (Bertiger, Bar-Sever, Dorsey, 

Haines, Harvey, Hemberger, Heflin, Lu, Miller, & Moore, 2020; Sidorov et al., 2020). However, 

most of the estimated 𝑌0  coefficients for BLOCK IIR satellites are larger than 0.5 𝑛𝑚/𝑠2 , 

indicating that there are possible thermal forces in the Y direction. Taking unmodeled non-

SRP forces, Equation (3.9) is more reasonable than Equation (3.8). It is noteworthy that the 

highest dispersion is visible for the legacy BLOCK IIR-A and BLOCK IIR-B satellites (the upper 

two panels in Figure 1.6), and the largest difference is greater than 0.4 𝑛𝑚/𝑠2, whereas the 

variation of the 𝑌0 coefficient is less significant for Block IIR-M and BLOCK IIF satellites (the 

lower two panels in Figure 1.6). This diversity means the magnitude of thermal forces 

are different between the BLOCK IIR-A, BLOCK IIR-B, and BLOCK IIR-M satellites. 

 
Figure 3.6 SRP coefficient 𝑌0 with respect to the β angle (the Sun elevation above the orbital plane) in 

the E1DYB solution from 2017 to 2019. From top to bottom: BLOCK IIR-A, BLOCK IIR-B, BLOCK IIR-M, 

and BLOCK IIF satellites, respectively. Note that there is no change of PRNs of listed satellites during 

this  period. 

For a further comparison of Equation (3.8) and Equation (3.9), taking SVN G050 (BLOCK 

IIR) and G073 (BLOCK IIF) as an example, the estimated coefficients in the Y and B 
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directions derived from the E1D and E1DYB solutions are shown in Figure 3.7. The 

coefficients of SVN G050 in the B direction are shifted by 6 𝑛𝑚/𝑠2  for better view. The 

estimated coefficient 𝑌0 derived in the E1D solution shows less scatter between the phases 

in and out of eclipse seasons. A similar pattern was also reported when an a priori box-

wing model was used (see Figure 15 in (Bury et al., 2020)). It indicates that BLOCK IIR 

satellites have a relatively noticeable thermal radiation in Y surfaces. In addition, the 𝑌0 

estimates of BLOCK IIF satellite (SVN G073 in Figure 3.7) have a visible linear trend during 

eclipse seasons and are reduced after the 𝛽 angle switches the sign (see Figure 4 in (Duan & 

Hugentobler, 2021)). This needs further investigation. In contrast to the 𝑌0  of BLOCK IIR 

satellites, the trend of 𝐵1𝑐 (for instance, SVN G073) shows larger variation. 

 

 

Figure 3.7 SRP coefficients 𝑌0 (upper left), 𝐵0 (upper right), 𝐵1𝐶  (lower left), and 𝐵1𝑆 (lower right) with 

respect to the β angle in solution E1DYB (red dots) and solution E1D (blue dots) spanning from 2017 

to 2019. The results of SVN G050 are all shifted by 6 nm/s2   for better visualization, except for the 

coefficient 𝑌0. Note the different y-axis scales between the upper-left panel (the 𝑌0 panel) and the others. 

Furthermore, the statistics of the estimated SRP parameters in the 12 solutions are given 

in Figure 3.8. For the ECOM1 solutions (that is, using ECOM1 as the parameterization 

model) shown in the upper panels of Figure 3.8, the STD of the 𝐵1𝑐 (marked with black X-

cross) is improved when an a priori box-wing model is used or a shadow factor is applied 

only in the D direction, except for BLOCK IIF satellites, whereas other coefficients have 

comparable STD values between different solutions. The STD difference of 𝐵1𝑐  between 

solution E1DYB and solution E1D_ABW is around 0.2 𝑛𝑚/𝑠2 for BLOCK IIR satellites and 

BLOCK IIF satellites. As for the ECOM2 solutions (that is, using ECOM2 as parameterization 

model) shown in the lower panels in Figure 3.8, the STD values of 𝐵1𝑐  do not show any 
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significant reductions either using box-wing models or adding the shadow factor only in the 

D direction, that is, between E2DYB and E2D_ABW solution. Compared with the ECOM1 

solutions, all SRP coefficients in ECOM2 solutions show lower stability except for the 𝑌𝑜 term, 

and the STD values of the twice- and fourth order periodic terms are greater than 1 𝑛𝑚/𝑠2 

in the ECOM2 solutions. A noticeable reduction of 𝐷4𝑠  (blue star) is found when the 

shadow factor is applied only in the D direction and 𝐷2𝑠  shows similar but smaller 

decline. 

Summarizing the sensitivity of the GPS BLOCK IIR and IIF satellites to the accelerations in 

the direction of 𝑌 and 𝐵, they both suffer from the accelerations in the 𝑌direction, which 

is independent on 𝛽 angle, whereas the BLOCK IIF satellites show smaller accelerations. 

The visible changes during eclipse seasons for the BLOCK IIR satellites may be caused by 

the active thermal control before and after the middle of an eclipse event and can be 

removed mostly by considering additional accelerations in the 𝑋surfaces. The dependence 

of the accelerations in the B direction on 𝛽 angle is caused not only by SRP but also by 

other non-gravitational forces, such as the thermal radiation. Applying an a priori box-

wing or adjustable box-wing model will improve the stability (STD values) of periodic 

terms (for instance, 𝐵𝑐) but not for the BLOFK IIF satellites. Compared with using Equation 

(3.8), using Equation (3.9) has a positive effect on the stability of periodic terms, especially 

for the 𝐷4𝑠 term of the BLOCK IIR satellites.  

 

 

Figure 3.8 Standard deviation (STD) of SRP coefficient time series for eclipsing satellites in the 12 

solutions. Upper panels: ECOM1 empirical SRP modeling; lower panels: ECOM2 empirical SRP 

modeling; left panels: GPS BLOCK IIR satellites; right panels: GPS BLOCK IIF satellites. Note the different 

y-axis scales between the upper and lower panels. 
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3.4 Analysis of  satellite orbits 

The mean 3D RMS values of orbit DBD (Griffiths & Ray, 2009) for the BLOCK IIR and IIF 

satellites in different solutions are shown in Figure 3.9. The method using ECOM2 as a 

parameterization model (the E2DYB solution) has slightly improved orbit precision in 

eclipse seasons compared to that using ECOM1, especially for the BLOCK IIR satellites. 

Using the box-wing as an a priori model (the E1DYB_BW solution) slightly improves the 

orbit precision for BLOCK IIR satellites and using the adjustable box-wing as an a priori 

model (the E1DYB_ABW solution) further improves the orbit quality for both the BLOCK 

IIR and IIF satellites, in and out of eclipse seasons. By comparing each pair of solutions 

between the shadow factor applied in the D direction and that in the DYB directions, for 

instance, between the E1DYB and E1D solutions, and also between the E1DYB_ABW and 

E1D_ABW solutions, it is obvious that eclipsing satellites have smaller RMS values of DBD 

in latter solutions with the shadow factor applied only in the D direction. A slight 

improvement for non-eclipsing satellites can also be observed when the shadow factor is 

applied in the D direction of ECOM2, which can be explained by the stability 

improvement of higher periodic terms (𝐷2𝑠 or 𝐷4𝑠) in Figure 3.8. 

 

Figure 3.9 Mean 3D RMS of day boundary discontinuities in the 12 types of GPS daily precise orbit de-

termination solutions spanning from 2017 to 2019. Upper panels: GPS BLOCK IIR satellites, and lower 

panels: GPS BLOCK IIF satellites. Left panels: satellites in non-eclipsing seasons; right panels: satellites 

in eclipsing seasons. 

For the BLOCK IIR satellites, the orbit precision of E1DYB_ABW and E2DYB_ABW, in 

which ECOM1 or ECOM2 parameterization model is combined with the a priori 
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adjustable box-wing model and the shadow factor is applied in the D direction, is better 

than 4 cm for the non-eclipsing satellites, and close to 4 cm for eclipsing satellites. As for 

the BLOCK IIF satellites, using the adjustable box-wing as an a priori model slightly 

improves the orbit precision, whereas using the box-wing degrades the orbit precision. 

Therefore, the solutions using the box-wing model are not discussed in the following 

analysis. 

Taking SVN G050 (BLOCK IIR) and SVN G073 (BLOCK IIF) as an example, Figure 3.10 

presents the radial orbit differences between solutions with the shadow factor applied in 

the 𝐷 direction and those in the 𝐷𝑌𝐵 directions. As shown in Figure 3.10, orbit differences 

between two methods of using the shadow factor are observed at lower 𝛽 angle, in which 

the differences based on ECOM2 are more visible. When 𝛥𝜇 is around 0𝑜 (𝛥𝜇 + 180𝑜 =

±180°), that is, the orbit noon, the orbit differences are negative at lower negative 𝛽 angle 

and positive at lower positive 𝛽 angle. Note that BLOCK IIF satellites show a more visible 

pattern than BLOCK IIR satellites, which is possibly owing to instability of higher periodic 

terms in ECOM2 (twice-per-revolution and fourth-per-revolution term). 

 
Figure 3.10 Differences of satellite orbits in the radial component caused by applying the shadow factor 

in the D and DYB directions for SVN G050 (BLOCK IIR, upper panels) and G073 (BLOCK IIF, lower panels) 

as a function of 𝛽 and Δ𝜇 angle in 2019. Δ𝜇 is the angular argument. Left and right: using ECOM1 and 

ECOM2 as parameterization SRP models, respectively. 
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Moreover, the orbit differences with and without a priori box-wing models are investigated 

and the radial differences are shown in Figure 3.11 and Figure 3.12 for the GPS SVN050 

satellite (BLOCK IIR) and SVN073 (BLOCK IIF), respectively. From Figure 3.11, using the 

box-wing or adjustable box-wing as a priori model with the ECOM1 as parameterization 

model leads to the visible peanut-like distribution of the orbit differences, where the 

differences can be up to ±6 mm. This pattern is likely owing to the variation of effective 

illuminated area in the 𝑍 direction (pointing to Earth). Large antenna arrays, namely W-

sensor, are installed in ±𝑋 surfaces of BLOCK IIR satellites, which cannot be modeled by 

only one constant parameter in the D direction. The differences shown in the left panel of 

Figure 3.11 are reduced when using ECOM2 as parameterization model, especially 

between box-wing model and no a priori model, indicating that the box-wing as a priori 

model does not contribute that much when ECOM2 is used as parameterization model. 

 
Figure 3.11 Differences of satellite orbit in the radial component between solutions using different a 

priori models for SVN G050 (BLOCK IIR) as a function of 𝛽  and Δ𝜇  angle in 2019. Δ𝜇  is the angular 

argument. Upper: differences between using no a priori SRP model and using the box-wing model; 

lower: differences between using no a priori SRP model and using the adjustable box-wing model. Left 

and right panels: using the ECOM1 and ECOM2 as the parameterization model, respectively. 

In addition to the BLOCK IIR satellites, the orbit radial differences of the BLOCK IIF satellites 

(SVN G073) shown in Figure 3.12 are further investigated. As it is shown, the differences 

caused by applying a priori box-wing model are largely reduced compared with 
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corresponding results of BLOCK IIR satellites shown in Figure 3.11. Note that when using 

the ECOM2 as parameterization model, the visible differences at lower 𝛽 angle between 

with and without an a priori adjustable box-wing model may be related to the 

adjustment of shape value in the adjustable box-wing modeling. 

 
Figure 3.12 Differences of satellite orbits in the radial component between different a priori models for 

G073 (BLOCK IIF) as a function of 𝛽  and Δ𝜇  angle in 2019. Δ𝜇  is the angular argument. Upper: 

differences between using no a priori SRP model and using the box-wing model; lower: differences 

between using no a priori SRP model and using the adjustable box-wing model. Left and right panels: 

using ECOM1 and ECOM2 as parameterization model, respectively. 

Due to the fact that current box-wing model has a little improvement on BLOCK IIR 

satellite orbit precision, even a negative effect on BLOCK IIF satellites, only the adjustable 

box-wing model is considered for evaluation. The 3D RMS values of DBD with respect to 𝛽 

angle for eclipsing satellites in different solutions are shown in Figure 3.13. For BLOCK IIR 

satellites shown in the upper panel, RMS values of DBD in E1DYB (red dot) and 

E1DYB_ABW (blue dot) solutions increase with 𝛽  declining during the eclipse period. 

Applying the shadow factor only in the D direction removes the rising trend mostly for 

4𝑜 < 𝑎𝑏𝑠(𝛽) < 12𝑜 , that is, the E1D (black dot) and E1D_ABW (green dot) solutions. 

However, in the E1D solution, the RMS values still increase in the case of lower β angle, 

that is, 𝑎𝑏𝑠(𝛽) < 4𝑜 . By using the ECOM2 instead of the ECOM1 and applying the 

shadow factor in the D direction, the RMS values are reduced to a large extent. Note the 
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relatively larger RMS values of DBD are up to 6–8 cm for both BLOCK IIR and BLOCK IIF 

satellites at the beginning of eclipse events, that is, 13° < 𝑎𝑏𝑠(𝛽) < 14°. This is because 

the eclipsing time at the beginning or end of the eclipse seasons is less than 600 s, which 

may be omitted as our processing interval is 300 s. 

For the BLOCK IIF satellites shown in the lower panel of Figure 3.13, an asymmetrical 

pattern is observed between negative and positive 𝛽 angles, which is similar with the SRP 

coefficients 𝑌0 variation in Section 3.3 (see Figure 3.6 and Figure 3.7). The 3D DBD RMS of 

all solutions are small and close to each other with slight difference when the 𝛽  angle is 

positive, including the E1DYB and E1DYB_ABW solutions. The large RMS values and even 

large difference among different solutions are also observed for BLOCK IIF satellites at 

transition from full phase to umbra or inverse. This phenomenon also needs further 

investigation. 

 

Figure 3.13 3D RMS values of DBD for BLOCK IIR (upper panel) and BLOCK IIF (lower panel) in eclipse 

seasons with respect to the β angle spanning from 2017 to 2019. Note that there is no difference 

between using no a priori SRP model and using the box-wing model; the solutions using the box-wing 

model are thus not presented. 

Further statistics of the RMS values of DBD in the along, cross, and radial components 

from 2017 to 2019 are summarized in Table 3.2. The solutions with shadow factor in the 

𝐷 direction are generally better than that those with shadow factor applied in the 𝐷𝑌𝐵 

directions, especially for the cross and radial components. For the BLOCK IIR satellites in 

eclipse seasons, the RMS values of DBD are reduced from 2.8 cm and 3.1 cm in the E1DYB 

solution to 2.1 cm and 2.4 cm in the E1D solution in the cross and radial directions, 

respectively. For the BLOCK IIF satellites in eclipse seasons, the improvement from the 

E1DYB to E1D solution is only 0.4 cm in the radial direction, and that in the along and 
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cross directions are neglectable. When an adjustable box-wing model is used, the orbit 

improvement in and out of eclipse seasons and the improvement of the BLOCK IIR satellites 

are larger than that of BLOCK IIF satellites. The orbits are further improved when applying 

the shadow factor in the D direction and using the adjustable box-wing model as a priori 

SPR model simultaneously, that is, the E1D_ABW and E2D_ABW solutions. The values of 

E1D_ABW solution for BLOCK IIR satellites out of eclipse seasons are 2.3 cm, 1.7 cm, and 

1.7 cm in the along, cross, and radial directions, respectively, and the corresponding 

values in eclipse seasons are 2.5 cm, 2.4 cm, and 2.7 cm. Moreover, the DBD of the 

E1D_ABW solution has a comparable accuracy with the E2D_ABW solution. 

Table 3.2 RMS values of the orbit DBD in 2017–2019. The statistics in and out of eclipse seasons for 

both BLOCK IIR and BLOCK IIF satellites are summarized separately. A, C and R stand for the along, 

cross radial direction, respectively. The unit is cm. Note that there is no difference between using no a 

priori SRP model and using the box-wing model; the solutions using the box-wing model are thus not 

presented. 
   BLOCK IIR    
Solutions  Eclipse   Noneclipse  

 A C R A C R 

E1DYB 2.6 2.8 3.1 2.8 2.2 2.3 

E1DYB_ABW 2.5 2.4 2.7 2.3 1.7 1.7 

E1D 2.5 2.1 2.4 2.8 2.2 2.3 

E1D_ABW 2.4 1.9 2.0 2.3 1.7 1.7 

E2DYB 2.4 2.1 2.4 2.7 2.1 2.2 

E2DYB_ABW 2.3 2.0 2.3 2.4 1.8 1.7 

E2D 2.4 1.8 2.3 2.7 2.0 2.2 

E2D_ABW 2.3 1.7 2.2 2.3 1.7 1.7 

   BLOCK IIF    
  Eclipse   Noneclipse  
 A C R A C R 

E1DYB 3.1 2.2 2.7 2.5 1.7 1.8 

E1DYB_ABW 3.1 2.1 2.7 2.4 1.7 1.7 

E1D 3.1 2.1 2.3 2.5 1.7 1.8 

E1D_ABW 3.1 2.1 2.3 2.4 1.6 1.7 

E2DYB 3.0 2.0 2.6 2.5 1.8 1.8 

E2DYB_ABW 3.0 1.9 2.6 2.4 1.7 1.7 

E2D 3.1 1.9 2.5 2.5 1.8 1.8 

E2D_ABW 3.0 1.8 2.5 2.4 1.7 1.7 

3.5 Analysis of  ERPs 

In addition to the performance of satellite orbit precision, the ERP components are also 

sensitive to the satellite orbit dynamic modeling (M. Rothacher et al., 1999). The ERP 

component estimates of different solutions are compared to the IERS EOP 14C04 product 

(Bizouard et al., 2018) and the WSTD values are given in Table 3.3. The different methods 

of modeling SRP and applying the shadow factor have an insignificant impact on the ERP 

agreement with the IERS product, and the WSTD of each solution is around 43.6 to 44.7 

𝜇𝑎𝑠, 23.1 to 24.8 𝜇𝑎𝑠, 213.2 to 216.0 𝜇𝑎𝑠/𝑑𝑎𝑦, and 8.7 to 9.8 𝜇𝑠/𝑑𝑎𝑦 for the x-pole, y-pole, 

x-pole rate, and LoD components, respectively. As for the y-pole rate, however, using the 
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adjustable box-wing as an a priori SRP model clearly improves the precision. For instance, 

the WSTD value reduces from 205.3 𝜇𝑎𝑠/𝑑𝑎𝑦  in solution E1DYB to 184.9 𝜇𝑎𝑠/𝑑𝑎𝑦  in 

solution E1DYB_ABW. The impact of using ECOM1 or ECOM2 models and that of applying 

the shadow factor in the 𝐷 or 𝐷𝑌𝐵 directions on y-pole rate precision are rather diverse. 

There is insignificant difference between applying the shadow factor in the 𝐷 direction 

and in the 𝐷𝑌𝐵 directions for the polar motion offset and rate, whereas the LoD always 

shows an improved precision when the shadow factor applied in the 𝐷  direction. 

Moreover, the E1D_ABW solution has the smallest WSTD of the LoD (8.7 𝜇𝑠/𝑑𝑎𝑦), which 

is improved by about 8% compared with the E2DYB_ABW solution (9.7 𝜇𝑠/𝑑𝑎𝑦). 

Table 3.3 WSTD values of the ERP differences between GPS precise orbit determination solutions and 

the IERS EOP 14C04 product. Note that there is no difference between using no a priori SRP model and 

using the box-wing model; the solutions using the box-wing model are thus not presented. 

Solutions x-Pole [μas] y-Pole [μas] x-Pole Rate [μas/day] y-Pole Rate [μas/day] LoD [μs/day] 

E1DYB 44.1 24.8 214.4 205.3 9.2 
E1DYB_ABW 43.7 23.4 214.4 184.9 9.3 
E1D 43.6 24.4 214.6 199.5 9.1 
E1D_ABW 43.9 23.3 214.7 193.2 8.7 
E2DYB 44.3 23.6 215.8 190.6 9.8 
E2DYB_ABW 43.8 23.3 213.3 185.6 9.7 
E2D 44.7 23.5 216.0 200.3 9.2 
E2D_ABW 44.0 23.1 213.2 191.4 9.1 

Figure 3.14 further presents the power spectra of the LoD in eight solutions, which 

demonstrates the impact of the SRP modeling. A clear reduction in the 1.04 cpy and 6.30 

cpy signals is observed when applying the shadow factor in the 𝐷 instead of the 𝐷𝑌𝐵 

directions. The only exception is when using the pure ECOM1 parameterization model 

without an a priori model, that is, between E1DYB and E1D, where the 1.04 cpy signal is 

larger in the E1D solution than in the E1DYB solution. 

 
Figure 3.14 Power spectra of the LoD differences with respect to the IERS EOP 14C04 product. Upper 

panels: ECOM1 for the empirical SRP modeling, lower panels: ECOM2 for the empirical SRP modeling; 

left panels: no a priori SRP modeling, right panels: adjustable box-wing for the a priori SRP modeling. 
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3.6 Chapter summary 

The main findings in this chapter are summarized as follows: 

Section 3.1 investigates the relationship between box-wing and ECOM model and then 

introduces two ways of  using shadow factor, which are currently used by some IGS ACs, that 

is to apply the factor in either the D only or all the D, Y, and B directions. For a satellite under 

nominal attitude model, the accelerations caused by SRP can be fully represented by the 

coefficients in 𝐷 and 𝐵 directions. The expression in 𝐷 and 𝐵 directions derived from box-

wing model are similar to the ECOM models. Whether the periodic terms are significant 

depends on the shape of  a satellite and optical properties. For example, the fourth-per-

revolution is significant for a cuboid-shaped satellite, while it is not for a cube satellite. The 

number of  unknown parameters in ECOM model should be reduced if  there is a precise a 

priori box-wing model. 

Taking GPS as an example, Section 3.2 introduces the setting of  processing strategies and 

evaluated indexes, including the stability of  SRP coefficients, DBD, and related ERP results. 

Section 3.3 analyzes the variation of  estimated ECOM parameters. For the GPS BLOCK IIR 

satellite, the performance of  SRP coefficient 𝑌0  between in and out of  eclipse seasons is 

consistent with the shadow factor that is applied in the D direction but rather diverse when 

applied in the DYB directions. The diversity of  the coefficient 𝑌0 in and out of  eclipse seasons 

is possibly stemming from non-gravitational forces in ±𝑌  surfaces, e.g., radiator. A notable 

discrepancy in the behavior of  𝑌0 for the BLOCK IIR and BOCK IIF satellites is probably 

related to the difference in satellite design, thermal control model, etc., which needs further 

investigation in the future. For the coefficients in the B direction, its dependency on 𝛽 angle is 

caused not only by SRP but also by other unmodeled non-SRP forces, which can partly be 

absorbed by the once-per-revolution terms in ECOM1 and ECOM2. Moreover, applying an a 

priori box-wing model can improve the stability of  periodic terms, especially for the 𝐷2𝑠 and 

𝐷4𝑠 terms in the D direction because of  the parameters’ correlation, except for the BLOCK 

IIF satellites using the a priori box-wing model. Among all solutions, the one combining a 

priori adjustable box-wing with ECOM1 with the shadow factor applied in the D direction 

(that is, the E1D_AWB) is recommended in future POD processing since it has the best SRP 

coefficient stability with the smallest STD values. 

Section 3.4 shows orbit accuracy. With or without a priori adjustable box-wing model, applying 

the shadow factor in the D instead of  the DYB directions can improve the orbit quality, 

especially in the cross and radial directions. Compared with the E1DYB solution using no a 

priori SRP and the shadow factor applied in the DYB directions, the RMS values of  orbit DBD 

in the E1D_ABW solution (using a priori adjustable box-wing model with shadow factor applied 

in the D direction) are improved by 7.7%, 32.1%, and 35.5% for the BLOCK IIR satellites in 

non-eclipsing seasons in the along, cross, and radial direction, respectively, and the corresponding 

improvements in the eclipse season are 17.8%, 22.7%, and 26.1%. In the E1D_ABW or 

E2D_ABW solution, the BLOCK IIR satellites show similar behavior in and out of  eclipse seasons. 
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The reason for the deteriorated performance of  SRP coefficients and DBD values for the 

BLOCK IIF satellites when applying box-wing model can be attributed to the fact that the 

shape and optical properties were collected directly from some documents, which might not 

be accurate enough. The orbit results confirmed the advantages of  applying a precise box-

wing model and applying the shadow factor only in the D direction during eclipse seasons, which 

are consistent with the conclusion in Section 3.3. 

Section 3.5 shows the performance of  ERPs with different solutions. Applying adjustable box-

wing as an a priori SRP model improves ERP precision. The WSTD value of  the y-pole rated 

is reduced from 205.3 to 184.9 𝜇𝑎𝑠/𝑑𝑎𝑦. An insignificant difference between applying the 

shadow factor in the 𝐷 direction and in the 𝐷𝑌𝐵 directions for the polar motion offset and rate 

is observed, whereas the LoD always shows an improved precision when the shadow factor is 

applied in the 𝐷 direction, reduced from 9.7𝜇𝑠/𝑑𝑎𝑦 to 8.7 𝜇𝑠/𝑑𝑎𝑦. 

 

 





 

 

4 Undifferenced integer ambiguity 

resolution 

This chapter aims to investigate the performance of  UD IAR on GNSS network solutions and 

explore the potential reasons causing discrepancies between UD IAR and DD IAR. Section 

4.1 presents the insights of  DD IAR and UD IAR and a realization strategy of  UD IAR in 

GNSS data processing. Section 4.2 evaluates the performance of  UPDs estimated in the 

network solution. Section 4.3 and Section 4.4 analyze the impacts of  UD IAR on satellite orbits 

and other geodetic parameters, including ERP, stations coordinates and geocenter coordinates 

(GCC). In Section 4.5, using GPS solutions, the factors causing the difference between DD 

and UD IAR are investigated in terms of  the quality of  satellite orbits, as well as ERP, station 

coordinates, and GCC. Finally, conclusions are summarized in Section 4.6. 

4.1 Implementation of  UD IAR 

Different from the high stability of  float ambiguities in PPP solutions (M. Ge et al., 2007; Li 

et al., 2017; B. Cui, Li, et al., 2021), the float ambiguities in GNSS POD before applying 

ambiguity resolution are not such accurate as that from PPP because much more parameters 

are estimated simultaneously in POD processing. This may result in a vulnerable UD IAR if  

directly using ambiguities from POD float solutions, which will be further explained in Section 

4.1.1. Therefore, Deng et al. (2022) recommended to perform DD IAR first to ensure the 

accuracy of  ambiguities before applying UD IAR. Section 4.1.2 presents the implementation 

of  UD IAR in PANDA software. 

Before explaining the differences between DD IAR and UD IAR, some concepts are defined 

in advance as below. 

⚫ Maximum independent DD-ambiguity set 

A DD-ambiguity set containing all theoretically independent DD ambiguities which are 

selected from the whole network. 

⚫ Maximum independent baseline set 

A baseline set containing the maximum number of  independent baselines.  

⚫ Absence of  sufficient independent DD ambiguities: 

Suppose the number of  selected independent DD ambiguities is typically less than that 

of  the maximum independent DD-ambiguity set, this situation is called the absence of  

sufficient independent DD ambiguities.  
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⚫ Outlier DD ambiguity 

The unfixable ambiguities refer to the ambiguities whose integer property cannot be 

recovered even after applying UPD corrections. If  one or more unfixable UD ambiguities 

join the formation of  a DD ambiguity, the DD ambiguity should not be fixed and is 

deemed an outlier or incorrect DD ambiguity. 

4.1.1 Relationship between UD IAR and DD IAR 

Suppose that there are 𝑘 ambiguities in a network and all of  them can be fixed to integers in 

UD IAR. The number of  the maximum independent DD ambiguities are 𝑙, in which all UD 

ambiguities will be involved. The relationship between UD ambiguities and DD ambiguities 

can be represented as follows 

 𝐍𝑑𝑑⏟
𝑙×1

= 𝐃𝑑𝑑⏟
𝑙×𝑘

𝐍𝑢𝑑⏟
𝑘×1

, (4.1) 

where 𝐃𝑑𝑑 is the DD mapping matrix, 𝐍𝑢𝑑 and 𝐍𝑑𝑑are the UD-ambiguity and DD-ambiguity 

vectors respectively. Clearly, the fixable DD-ambiguity vector 𝐍𝑑𝑑 cannot be transformed to 

UD-ambiguity vector 𝐍𝑢𝑑  directly since the rank of  mapping matrix 𝐃𝑑𝑑 is 𝑙, less than 𝑘. 

Additional 𝑘 − 𝑙 independent UD ambiguities, termed as reference ambiguities, have to be 

selected for converting DD ambiguities to UD ambiguities (Blewitt, 1989). In DD IAR, only 

the relative relationship between reference ambiguities and other UD ambiguities is considered. 

Therefore, those reference ambiguities can be deemed as “float solutions” since they are not 

constrained to integer values directly. In contrast, they can be fixed to integers with the aid of  

UPDs. This distinction underlies the limited improvements observed in real-time clock 

estimation within DD IAR, as reported by Zuo et al. (2023). When both independent DD 

ambiguities and reference ambiguities are imposed as integers, it is anticipated that the 

solutions obtained from DD IAR and UD IAR should be equivalent.  

Although DD IAR and UD IAR are considered as equivalent theoretically, the behavior of  

UD IAR is highly tied to the accuracy of  float ambiguities whose fractional parts are employed 

as UPD observations for UPD estimation. As already mentioned, the UPD is proved stable 

over long-term, for example, several days. However, the fractional parts of  estimated UD 

ambiguities may vary significantly along with time because of  the high correlation between 

ambiguities, orbit, and clock parameters in POD where both are estimated simultaneously. 

This is why ambiguities estimated in PPP are much more stable and accurate than those in 

POD. Those UD ambiguities with a lower accuracy could result in inconsistent fractional parts 

for the ambiguities of  the same station-satellite pair but occurred at different time epochs in a 

session. In that case, a consistent UPD estimates for the whole session can hardly be achieved. 

To provide stable and accurate ambiguity estimates, which is a fundamental requirement for 

achieving UD IAR of  high performance, the float solution must be enhanced to minimize the 

variation of  UD ambiguities in POD processing. In contrast, the integer property of  DD 

ambiguities can be easily recovered since the four UD ambiguities forming a DD ambiguity 
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are usually required to have a minimum simultaneous observation time, i.e., they are temporally 

close to each other. Therefore, if  they are biased, they should have similar biases which 

consequently can be removed in the formation of  DD ambiguity.  

Theoretically, all independent fixed DD ambiguities need to be picked of  in order to ensure a 

maximum fixing to achieve the best accuracy of  orbits, clocks, and other geodetic products. 

Usually, there are two strategies of  selecting independent DD ambiguities: to select the 

independent DD ambiguities from all fixable ambiguities of  the whole network (M. Ge et al., 

2005b) and to from the fixable ambiguities over a maximum set of  independent baselines 

defined in advance (Blewitt, 2008). Both are expected to achieve comparable fixing results. 

However, there might be too many unfixable ambiguities over some of  the pre-defined 

independent baselines due to poor tracking performance. This could significantly reduce the 

total number of  total fixed ambiguities. Suppose there are three stations A, B, and C and each 

station tracking four satellites. If  selecting the DD-ambiguities over the whole network, all 

independent DD ambiguity set, which contains five DD ambiguities, can be selected. If  

independent baselines are first determined, for example A-B and A-C, only four independent 

DD ambiguities can be selected since the A-4 ambiguity is excluded. 

STA B

STA A

STA C

SAT 1
SAT 2 SAT 3

SAT 4

 
Figure 4.1 A small network with three stations and four satellites. Each satellite is observed by three 

tracking stations, in which the ambiguity A-4 is assumed biased.  

UD IAR is much more robust than DD IAR when facing incorrectly resolved ambiguities. As 

opposed to UD IAR, some incorrectly resolved DD ambiguities in DD IAR can hardly be 

identified. The rounding method, rounding to the nearest integer, is commonly applied in a 

large network and only DD ambiguities close to the integer are selected for fixing, which makes 

it very difficult to identify wrong fixings. Usually, wrong fixings can be identified by checking 

the phase observation residuals after applying the fixing constraints. Some of  the wrong fixings 

can still hardly be detected since the outlier DD ambiguities are accommodated smoothly by 

the cross-connected DD ambiguities in the network. However, in the UD IAR, the bad float 
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ambiguities have quite different fractional parts to the majority, which are easily identified while 

estimating UPDs. Obviously, the integer feature of  the excluded outlier ambiguities cannot be 

recovered even after the estimated UPDs are applied and so that they will not be fixed. 

When it comes to computation burden of  GNSS data processing, applying UD IAR exhibits 

superior data processing efficiency, especially for massive networks (H. Chen et al., 2014), since 

upon UD ambiguities are fixed, the carrier phases can be converted to carrier ranges, which 

removes almost all ambiguity parameters. On the other hand, the step of  selecting independent 

DD ambiguities is time-consuming, especially for massive network with possibly millions of  

DD ambiguity candidates. 

4.1.2 Flowchart of  UD IAR 

As explained in Section 4.1.1, the performance of  UD IAR is highly tied to the accuracy of  float 

ambiguities and the float ambiguities in POD solution are not accurate enough to achieve high-

precision UPDs and integer solutions. However, DD IAR can be easily conducted based on float 

ambiguities. After DD IAR, the ambiguities are accurate enough for UD IAR even though there 

could be wrong fixings and less fixings. Therefore, the POD processing with UD IAR, as shown 

in Figure 4.2,  includes three steps:  

⚫ Ionospheric-free observations are processed to get float POD solution. Through three- or 

four-times iterations of  parameter estimation mainly for data cleaning, the final float 

solution is achieved. 

⚫ Based on float solutions, DD IAR is performed to get DD ambiguity fixed solutions. 

⚫ UD IAR is then performed based on the solutions derived from DD IAR. Section 4.2 will 

further compare the performance of  satellite UPDs in the float solution and DD-

ambiguity-fixed solution, respectively. Note that the NL UPD is estimated as one value 

during 24 hours if  there is no specific explanation. 
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satellite meta data, etc.)

Float UD ambiguities
Orbits, clocks and 

ERPs 

Fixed ambiguities
Orbits, clocks and 
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Parameter Estimation with tight 
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Figure 4.2 Flowchart of precise orbit determination with undifferenced ambiguity fixing. 

4.2 Performance of  UPD Estimation 

Although a number of  studies have demonstrated the stability of  UD ambiguities in PPP 

solutions (M. Ge et al., 2007; Li et al., 2017; B. Cui, Li, et al., 2021), the performance of  UD 

ambiguities estimated from POD processing has not been fully investigated. Since WL UPDs 

are only related to observations, the stability has nothing to do with the estimations, i.e. PPP 

or POD and will not be discussed here. The NL UPDs are estimated epoch by epoch based 

on the float and DD IAR solutions and the time-series are shown in Figure 4.3, respectively. 
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Obviously, the UDPs based on the DD-IAR solution surpass those based on the float solution 

in terms of  stability. For the UPDs based on float solution, the STD values of  NL UPD range 

from 0.04 to 0.2 cycles. The performance of  selected UPDs in the left panel conveys that 

UPDs derived from float solution are not stable enough to be estimated as a constant value. 

In contrast, the STD values of  UPDs derived from the DD IAR solution are less than 0.05 

cycles, which is close to the UPD performance in PPP results (Li et al., 2017). The high stability 

of  UPDs in the DD IAR solution demonstrates the feasibility of  estimating UPD as one value 

for the whole session, in this case a session of  24 hours, as well as the realization of  UD IAR. 

The different performances of  NL UPDs between different satellites need further 

investigation in the future. 

 

Figure 4.3 Time series of estimated GPS NL UPDs for selected satellites of DOY 001 of 2021. The UPD is 

estimated per 30 s. The number following each satellite PRN is its STD value. The left panel is the 

estimated UPDs based on the float solutions and the right panel is that based on DD IAR solution. 

Different colors represent different satellites. 

Figure 4.4 presents the stability of  all GPS, Galileo, and BDS-2/3 satellites of  DOY 001, 2021. 

The mean STD value of  GPS NL UPDs is less than 0.06 cycles. The maximum STD value is 

0.08 cycles. Compared with GPS UPDs, the Galileo NL UPDs show similar performance, with 

mean STD value of  0.03 cycles. The BDS UPDs show the lowest stability among the three 

constellations, with an average value of  0.11 and 0.13 cycles for BDS-2 and BDS-3, respectively. 

None of  GEO satellites is considered in the UPD estimation because of  poor ambiguity 

accuracy. The STD values for newly launched BDS-3 satellites, for example, C38 - C46 are 

larger than 0.2 cycles because they are newly launched in 2021 and fewer observations are 

available, as shown in Figure 4.5. As expected, the STD values of  NL UPDs decrease to 0.07 

cycles after removing C38 - C46. The poorer stability of  the BDS constellation with respect 

to GPS and Galileo constellation is possibly related to the imperfect non-conservative force 

models (Guo et al., 2023). 
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Figure 4.4 The stability of GPS (upper panel), Galileo (middle panel) and BDS (lower panel) 

constellations in DOY 001, 2021. 

 
Figure 4.5 Number of total phase observations of the BDS satellites for the whole network. The newly 

launched satellites have much less observations because many receivers have not updated. 

After the separation of  both WL and NL UPDs, the ambiguities should be close to integers. 

The residuals can be expressed by the difference between the float ambiguities after removal 

of  UPDs and the nearest integers, in other words, the fractional parts of  the float ambiguities 

after removal of  the estimated UPDs. The histograms of  both WL residuals and NL residuals 

for the three constellations are presented in Figure 4.6, Figure 4.7, and Figure 4.8, respectively. 

The thresholds, checking whether a UD ambiguity can be fixed, of  WL and NL are 0.3 cycles 

and 0.15 cycles, respectively. For the calculation of  the ambiguity-fixing rate, the WL-fixing 

rate means the ratio between the number of  fixed WL ambiguities and the number of  all WL 
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ambiguities, whereas the NL-fixing rate means the ratio between the number of  fixed NL 

ambiguities and the number of  all fixable NL ambiguities. 

Figure 4.6 shows the histograms of  both WL and NL residuals of  GPS satellites. For WL 

ambiguities, 91.6% of  the residuals are within ±0.15 cycles, while 98.3% of  residuals are within 

±0.3 cycles. For NL ambiguities, the percentages of  residuals within ±0.10 cycles and ±0.15 

cycles are 90.5% and 94.6%, respectively. The average values of  WL and NL residuals are both 

0, and the STD values are 0.09 (for WL) and 0.08 (for NL) cycles, which indicates that the NL 

residuals have a slightly better distribution more concentrated around the zero than that of  

WL. 

 

Figure 4.6 Residual distributions of the GPS WL (left panel) fractional parts (in cycles) and NL (right 

panel) fractional parts (in cycles) after UPD correction. 

Figure 4.7 shows the histograms of  both WL and NL residuals of  the Galileo. The percentages 

of  WL ambiguity residuals within ±0.15 and ±0.30 cycles are 94.7% and 98.4%, respectively. 

For NL ambiguities, the percentages of  residuals within ±0.10 cycles and ±0.15 cycles are 

97.3% and 100.0%, respectively. The STD values of  WL and NL residuals are 0.08 and 0.04 

cycles for WL and NL ambiguities, respectively. Both the WL and NL ambiguity residuals of  

Galileo perform better than those of  GPS in Figure 4.6, especially for NL ambiguities. The 

better NL ambiguity results are possibly related to the published attitude control model and 

satellite metadata (GSA, 2017). 

Figure 4.8 shows the histograms of  both WL and NL residuals of  the BDS. For WL 

ambiguities, 91.0% of  the residuals are within ±0.15 cycles, while 97.9%, of  residuals are 

within ±0.30 cycles. For NL ambiguities, the percentages of  residuals within ±0.10 cycles and 

±0.15 cycles are 84.4% and 100.0%, respectively. Compared with results derived from GPS 
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and Galileo, the NL ambiguity residuals within ±0.10 cycles for BDS show the lowest 

percentage. 

 

Figure 4.7 Residual distributions of the Galileo WL (left panel) fractional parts (in cycles) and NL (right 

panel) fractional parts (in cycles) after UPD correction. 

 

Figure 4.8 Residual distributions of the BDS WL (left panel) fractional parts (in cycles) and NL (right 

panel) fractional parts (in cycles) after UPD correction. Note that BDS GEO satellites are excluded and 

satellite-induced biases of BDS-2 are corrected before WL computation. 
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4.3 Impacts of  UD IAR on satellite orbits 

Figure 4.9 shows the average 1D RMS values of  daily DBDs in along, cross, and radial 

components for each GPS satellite. The satellites experiencing outages according to NANU 

messages were not considered in the statistics, which is also suitable for the following 

GLONASS, Galileo, and BDS. The left panel of  Figure 4.9 illustrates that the UD IAR strategy 

has a notable improvement in three directions, especially for the along direction. Compared 

with DD IAR results, the orbit derived from UD IAR is improved by 17.0%, 11.0%, and 4.0% 

in the along, cross, and radial components respectively. The 95th percentile of  orbit precision 

for the DD IAR is 48.0 mm, while for UD IAR is only 40.8 mm, as shown in the right panel 

of  Figure 4.9. In addition to the indicator of  DBD, the orbit differences of  average 1D RMS 

values between UD IAR and DD IAR with respect to IGS final products are less than 2 mm, 

which is not shown here. This is because the IGS final products are generated by IGS ACs are 

generated by DD IAR strategies. 

 
Figure 4.9 Day boundary discontinuities (DBD) for GPS orbits. Left panel is the average RMS values 

while right panel is the cumulative distribution function (CDF) of 1D RMS values for all GPS satellites. 

The pink dash-lines stand for 95th percentile. 

Figure 4.10 shows the average RMS values of  daily DBDs in along, cross, and radial 

component, and 1D for each Galileo satellite. Compared with DD IAR results, the average 

RMS values of  UD IAR decrease from 40.4, 26.0 and 39.1 to 33.5 mm, 22.6 and 37.7 mm in 

the along, cross, and radial components, respectively, as shown in the left panel of  Figure 4.10. 

The 95th percentile of  orbit precision for the DD IAR is 64.0 mm, while for UD IAR is only 

58.0 mm, as shown in the right panel of  Figure 4.10. 
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Figure 4.10 Day boundary discontinuities for Galileo orbits. Left panel is the average RMS values while 

right panel is the cumulative distribution function (CDF) of 1D RMS values for all Galileo satellites. The 

pink dash-lines stand for 95th percentile. 

Figure 4.11 shows the average RMS values of  daily DBDs in the along, cross, and radial 

components and 1D for each BDS MEO satellite. Compared with DD IAR results, the orbit 

derived from DD IAR is improved by 21.7% and 10.4% in the along and cross component 

respectively, whereas no improvement is observed in the radial component, as shown in the 

left panel of  Figure 4.11. A noticeable correlation between DBD and the available tracking 

data can be identified. For satellites C19–C25 tracked by most stations, the best orbit accuracy 

is achieved, followed by C26–C37. The orbits of  C38–C45 show the worst performance due 

to the fewest data available for analysis. As expected, the largest errors of  up to about 172.0 

mm (C43) are in along component, whereas the cross and radial orbit components show the 

best consistency. As shown in the right panel of  Figure 4.11, the 95th percentile of  orbit 

precision for the DD IAR and UD IAR are both larger than 120 mm.  

Figure 4.12 shows the average RMS values of  daily DBDs in along, cross, and radial 

components and 1D for each BDS GEO and IGSO satellite. For BDS GEO satellites, they 

show a similar performance between DD IAR and UD IAR since their difference of  average 

1D RMS values is only 1.6%. For BDS IGSO satellites, the UD IAR solution is slightly worse 

than the DD IAR solution. Due to lower orbit accuracy with an average 1D RMS value larger 

than 100.0 mm, poorer ambiguity parameters may be achieved and hence they may easily be 

fixed to wrong values resulting in a fixed solution of  lower quality. 
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Figure 4.11 Day boundary discontinuities for BDS MEO orbits. Left panel is the average RMS values 

while right panel is the cumulative distribution function (CDF) of 1D RMS values for all BDS satellites. 

The pink dash-lines stand for 95th percentile.  

 

Figure 4.12 Day boundary discontinuities for BDS GEO and IGSO orbits. Left panel is the average RMS 

values of GEO orbits while the right panel is the average RMS values of IGSO orbits. Note that BDS GEO 

are excluded in IAR. 
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We expect that UD IAR ambiguity fixing can also improve the orbits of  those satellites which 

are excluded in the ambiguity fixing like BDS GEO satellites and GLONASS satellites. The 

results of  BDS GEO shown in Figure 4.12 preliminarily demonstrate that ambiguity fixing 

brings almost no improvements on their orbits. Further analysis of  the accuracy of  GLONASS 

satellite orbits in Figure 4.13 illustrates the differences in DD and UD IAR is negligible with 

a maximum value of  2.1% in the cross component.  

 

Figure 4.13 Day boundary discontinuities for GLOANSS orbits. 

4.4 Impacts of  UD IAR on global geodetic parameters 

The impact of  UD IAR on the parameters of  ERPs, station coordinates, and GCC besides 

satellite orbits is further investigated in this section. For station coordinates and GCC, the 

weekly coordinate repeatability is used as an indicator of  the quality of  the station coordinates 

and GCC, respectively. A seven-day moving STD, taking the STD of  last seven days, is 

performed. With a seven-day sliding window, most of  the long-term signals are got rid of. 

4.4.1 ERP 

The statistics of  the ERP parameters with respect to the IGS Final ERP products are shown 

in Figure 4.14 for the solutions of  UD and DD IAR for comparison. From the aspects of  

MEAN and STD values, UD-IAR lowers both the system bias and noise in terms of  the PM 

offsets and PM rates at the same time, except for the MEAN values of  y-pole offset which is 

already very close to zero. Compared to DD-IAR, the STD values of  x-pole, y-pole, x-pole 
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rate y-pole rate, and LOD is reduced by 21.6%, 18.5%, 19.0%, 8.7%, and 12.2%, respectively. 

The RMS values for x- and y-pole offset are decreased to 20.2 𝜇𝑎𝑠 and 16.7 𝜇𝑎𝑠 respectively, 

for x- and y-pole rates are decreased to 87.0 𝜇𝑎𝑠/𝑑𝑎𝑦 and 111.0 𝜇𝑎𝑠/𝑑𝑎𝑦 respectively, for 

LOD are decreased to 13.3 𝜇𝑠/𝑑𝑎𝑦. 

 

Figure 4.14 Statistics of earth rotation parameters of the UD and DD IAR with IGS final products. Note 

that the absolute mean values are presented. 

Figure 4.15 shows the statistics of  the ERP parameters concerning IERS-14-C04. Apparently, 

no matter system bias or noise, UD-IAR shows better consistency. Regarding the average RMS 

value, the PM offsets are improved by 11.1% (reduced from 89.5 𝜇𝑎𝑠 to 79.5 𝜇𝑎𝑠) on the x-

pole and 9.5% (reduced from 79.3 𝜇𝑎𝑠 to 71.8 𝜇𝑎𝑠) on the y-pole. The PM rates are also 

improved by 8.0% (reduced from 187.9 𝜇𝑎𝑠/𝑑𝑎𝑦 to 172.8 𝜇𝑎𝑠/𝑑𝑎𝑦) and 9.2% (reduced from 

164.6 𝜇𝑎𝑠/𝑑𝑎𝑦 to 149.4 𝜇𝑎𝑠/𝑑𝑎𝑦). Although the LOD component does not show significant 

improvements, as the RMS value reduction is only 2.1%, its formal error shows about 10% 

improvement, which is not shown here. 

In addition to the comparison with the IGS final product and IERS-14-C04, the DBD of  PM 

shown in Figure 4.16 can be further investigated to indicate the internal precision. Similar to 

the previous results, UD IAR outperforms DD IAR. On average, the RMS value is reduced 

by 16% for the x-pole (from 162.7 𝜇𝑎𝑠 to 136.4 𝜇𝑎𝑠) and 6.8% for the y-pole (from 131.1 

𝜇𝑎𝑠 to 122.2 𝜇𝑎𝑠). 
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Figure 4.15 Statistics of earth rotation parameters compared with IERS 14 C04. Note that the absolute 

mean values are presented. 

 

Figure 4.16 Statistics of day boundary discontinuities for polar motion. Note that the absolute mean 

values are presented. 

4.4.2 Station coordinates 

Figure 4.17 illustrates the distribution of  station coordinate repeatability. The differences 

between DD IAR and UD IAR are minor from the average RMS values which are reduced by 

UD IAR by 3.6%, 1.5%, and 1.2% for the east, north, and up components, respectively. Figure 

4.18 shows the geographical distribution of  the east repeatability differences between UD IAR 

and DD IAR. It can be found that most stations with larger repeatability improvement (solid 

dots in blue and cyan) which can reach up to 0.4 mm are located in oceanic or remote areas with 

a sparse station distribution. By checking daily station coordinates and ambiguity-fixing results, 

it is found that, for a selected station, a large position difference will occur if  the number of 
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fixable DD ambiguities is too low. In a sparse network, it is usually more difficult to resolve DD 

ambiguities, which is probably because the fractional parts over long baselines are not consistent. 

In contrast, the repeatability differences for regions with dense stations, for example in Europe, 

are normally well below 0.2 mm. 

 

Figure 4.17 Distribution of station coordinate repeatability in the east, north and up component. 

 

Figure 4.18 Geographical distribution of the repeatability differences of the east station component 

between UD and DD IAR. A negative difference means the UD IAR solution is better than the DD one. 
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4.4.3 Geocenter coordinates 

As the ambiguity fixing rate also has a significant impact on the observability for GCC (Kuang 

et al., 2015), the weekly GCC repeatability is also checked in the same way as done for station 

coordinates. Figure 4.19 shows the mean repeatability for each GCC component. The GCC 

results derived from UD-IAR suffer from noise, the reduction of  the average RMS values is 

hardly visible with 3.1%, 1.7%, and 1.0% for the X, Y, and Z components, respectively.  

 
Figure 4.19 Mean repeatability of geocenter coordinates of the UD and DD IAR solutions.  

4.5 Investigation on the difference of  DD and UD IAR 

In Sections 4.3 and 4.4, It is found that the results derived from UD IAR perform better than 

those of  the DD IAR, especially for satellite orbits. As is mentioned in Section 4.1.1, a 

comparable result should be observed with two IAR strategies theoretically. To investigate the 

possible reasons, a comprehensive data analysis with ten different solutions which are 

described in Section 4.5.1 is carried out for GPS observations. Two possible factors causing 

orbit disparities between DD IAR and UD IAR are identified in this study, i.e. inappropriate 

selection of  fixed DD ambiguities and possible wrong fixings. This section is arranged as 

follows. The overview of  orbit results based on commonly used IAR strategies is then given 

in Section 4.5.2. Subsequently, the impact of  incorrect DD ambiguities and insufficient 

independent DD ambiguities are discussed in Sections 4.5.3 and 4.5.4, respectively. Similar to 

Section 4.4, the impacts of  the two factors on global geodetic parameters are also discussed in 

Section 4.5.5. However, in Section 4.5.3 and 4.5.4, orbits derived from the UD IAR solution 

serve as a reference to investigate orbit differences under various DD IAR strategies. In this 

investigation external orbit products, for example, the IGS combined orbits are not employed, 

because they are mainly based on solutions by IGS ACs generated using DD IAR strategy. 
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4.5.1 Data processing scenarios 

Based on the processing strategies described in Section 4.1.2, ten different IAR strategies are 

chosen, as shown in Figure 4.20. The outlier DD ambiguities can be figured out according to 

list of  unfixable UD ambiguities in the UD IAR solution (UD_std). After removing outlier DD 

ambiguities, different DD IAR strategies can be performed again. More details of  different IAR 

strategies are listed in Table 2.3. 

Float solution

UD_std

DD_std DD_ind DD_all DD_allck

DD_stdrm DD_indrm DD_allrm DD_add DD_aud

Remove outliers

 
Figure 4.20 Flowchart for different processing strategies, including four DD IAR (i.e., DD_std, DD_ind, 

DD_all, and DD_allck), one UD IAR (i.e., UD_std) and five DD IAR based on UD IAR (i.e., DD_stdrm, 

DD_indrm, DD_allrm, DD_add, and DD_aud). 

Two groups of  DD IAR strategies are designed mainly for investigating the impact of  wrong 

fixing and missing enough independent DD ambiguity constraints. The first group as listed in 

Table 4.1 includes four different strategies, i.e., DD_std, DD_ind, and DD_all which are 

utilized by IGS ACs in their operational data processing. The second group of  DD IAR 

consists of  DD_stdrm, DD_indrm, DD_allrm, DD_add, and DD_aud, in which all unfixable 

UD ambiguities have already been removed based on the result of  UD-IAR. In this way, any 

possible wrong fixing can be avoided, so the impact of  different strategies for selecting fixable 

DD ambiguities can be quantified. The UD IAR group comprises only one strategy namely 

UD_std. 

Among the first DD-IAR group, the difference between DD_std and DD_ind lies in the way 

of  picking independent DD ambiguities, namely, to select the independent ones from a pre-

defined maximum independent baseline set and from all baselines, respectively, while DD_all 

selects all fixable DD ambiguities no matter they are independent or not. In the DD_allck 
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solution, a quality control strategy based on phase residuals is performed. Specifically, if  the 

RMS of  phase residuals corresponding to one pair of  fixed ambiguities increases significantly 

after applying the fixing constraints, the constraint is considered as inappropriate, i.e., wrong-

fixing, and removed. If  the same quality control strategy on DD_std and DD_ind are applied, 

the excluded independent DD ambiguities need to be compensated with new independent DD 

ambiguities; otherwise, the two strategies will face the situation of  lacking independent DD 

ambiguities. Therefore, this quality control strategy is only applied on DD_all to check whether 

all the outliers can be sifted. 

Table 4.1 Description of 10 different IAR strategies. 

Group Strategy Description 

 DD_std 
Pick independent DD ambiguities from an subset consisting of  the 
maximum number of  independent baselines (Blewitt, 2008) 

DD IAR DD_ind 
Pick independent DD ambiguities for each baseline and then across the 
entire network. Independent DD ambiguities are then picked across the 
entire network by Gram–Schmidt (Cohen, 1993; M. Ge et al., 2005b) 

 DD_all Pick all DD ambiguities across the entire network 

 DD_allck 
The same as DD_all, but unfixable DD ambiguities are excluded by 
checking observation residuals 

UD IAR UD_std Pick all fixable UD ambiguities 

 DD_stdrm 
The same as DD_std, but incorrect UD ambiguities are identified via UD-
IAR and excluded before forming DD ambiguities. 

 DD_indrm 
The same as DD_ind, but incorrect UD ambiguities are identified via UD-
IAR and excluded before forming DD ambiguities 

DD IAR based 
on UD IAR 

DD_allrm 
The same as DD_all, but incorrect UD ambiguities are identified via UD-
IAR and excluded before forming DD ambiguities 

 DD_add 
The same as DD_stdrm, but independent fixed DD ambiguities from the 
whole network are added 

 DD_aud 
The same as DD_stdrm, but independent fixed UD ambiguities derived 
from the UD_std solution are added 

The last group, consists of  DD_stdrm, DD_indrm, DD_allrm, DD_add, and DD_aud. In all 

the five strategies unfixable UD ambiguities have already been removed with the assistance of  

UD-IAR. In the above, the DD ambiguities containing unfixable ambiguities will be omitted 

while selecting independent DD ambiguities. This strategy can avoid the side effects of  any 

possible wrong-fixing. The first three are the same as the corresponding ones in the first group 

except excluding the unfixable UD ambiguities. The comparison of  the corresponding 

strategies of  the two groups will reveal the impact of  wrong fixings. The last two strategies in 

this group, i.e., DD_add and DD_aud, are designed for assessment of  the impact of  missing 

fixable independent DD ambiguities. The DD_add strategy is based on the DD_stdrm and 

supplements all independent fixable DD ambiguities until no further could be introduced or 

the maximum number of  independent DD ambiguities is reached. Similarly, the DD-aud is 

based on DD-indrm but fixable UD ambiguities for UD_std are further selected to form the 

maximum independent fixable ambiguities (including both UD and DD ambiguities). 

4.5.2 Orbit accuracy of  DD and UD IAR 

The orbit accuracy of  the three representative DD IAR strategies (DD_std, DD_ind and 

DD_all) and one UD IAR strategy (UD_std) are firstly compared to take an overview of  the 
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differences among DD IAR and UD IAR. Moreover, The DD IAR solution with quality 

control (DD_allck) is also considered for comparison. Table 4.2 presents DBDs of  DD_std, 

DD_ind, DD_all, DD_allck and UD_std solution. From the table, the UD-std solution 

outperforms the other four DD IAR solutions. Among four DD IAR strategies, the DD_std 

solutions show the maximum differences with respect to that of  the UD_std, reaching 7.2, 3.4, 

and 3.5 mm for the along, cross, and radial components, respectively. Conversely, the 

differences between the DD_ind, DD_all and DD_allck solutions are marginal, with a 

difference in the average 1D root mean square (RMS) of  orbit less than 0.4 mm. In comparison 

to the DD-std solution, the DD_ind solution shows about 12% improvement in DBD for the 

average 1D RMS, indicating the importance of  proper implementation of  DD ambiguity fixing. 

Table 4.2 Day boundary discontinuities of GPS satellite orbits for five different IAR strategies. Unit is 

mm. 

Direction UD_std DD_std DD_ind DD_all DD_allck 

Along 24.8 32.0 26.5 26.5 26.3 
Cross 22.1 25.5 22.9 22.8 22.8 
Radial 22.5 26.0 23.0 24.7 24.5 
1D 23.3 28.1 24.3 24.9 24.7 

4.5.3 Impacts of  wrong fixings  

Figure 4.21 shows orbit DBDs for the DD_stdrm, DD_indrm and DD_allrm solutions, in 

which all incorrect UD ambiguities are excluded before forming DD ambiguities to avoid 

possible incorrectly fixed DD ambiguities. Note that this approach based on UD IAR result is 

usually not feasible in operational DD IAR processing. Excluding unfixable UD ambiguities 

improves the orbit accuracy of  all three DD IAR strategies, especially for the along and radial 

components and the average 1D RMS value decreases by 1.1, 1.6 and 0.7 mm in the DD_stdrm, 

DD_indrm and DD_allrm solutions, respectively. Among the three DD IAR strategies, the 

DD_indrm and DD_allrm solutions are comparable to each other and both are close to the 

UD_std solution. The DBD differences between the DD_indrm and UD_std solutions are 

insignificant, i.e., 0.8, 0.3, and 0.1 mm for the along, cross, and radial components, respectively. 

In contrast, the differences between DD_stdrm and UD_std are still noticeable, about 4.0 mm 

for the mean average 1D RMS value. This discrepancy confirms that wrong-fixing of  DD 

ambiguities is not the only factor. 
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Figure 4.21 Day boundary discontinuities of satellite orbits for the DD_std, DD_ind, and DD_all solutions 

(all in hollow bars) without wrong-fixing detection; DD_stdrm, DD_indrm and DD_allrm solutions (all 

in solid bars) excluding wrong-fixing based on UD IAR solution. Note that the DBD in cross component 

of DD_std is same as that of DD_stdrm, and thus the two bars are overlapped. 

Since the DD_all solution includes all fixable DD ambiguities, this solution is selected for a 

comprehensive assessment in terms of  the impact of  wrong-fixings on DD IAR solutions 

without having to worry about the possibility of  lacking enough independent DD ambiguities. 

Figure 4.22 presents orbit differences of  the DD_all, DD_allck and DD_allrm solutions with 

respect to the UD_std solution in three directions. The DD_all solution has the largest STD 

of  orbit differences, which are 4.9, 3.3 and 2.4 mm for the along, cross, and radial components, 

respectively. Compared to the DD_all solution, the improvement of  the DD_allck solution is 

around 1.0 mm in three components. Among the three solutions, the DD_allrm solution 

performs the best. Specifically, the percentage of  orbit differences within ±1  mm are 

increased from 54.8% to 85.2% for the along component, from 57.1% to 87.3% for the cross 

component and from 76.0% to 93.4% for the radial component. The difference beyond ±10 

mm for the along component is also decreased from 3.1% to 1.0%. The clock result (not 

shown here) is consistent with that of  orbits, showing the most significant advantages of  

DD_allrm over DD-all and DD_allck. 
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Figure 4.22 Distribution of the orbit differences of all satellites of the DD_all (upper), DD_allck (middle), 

and DD-allrm (lower) solutions with respect to the UD_std solution, in the along (left), cross (middle), 

and radial (right) components, respectively. In each panel, the mean, STD, and distribution statistics are 

given. 

The results in Figure 4.22 suggest that wrong-fixings of  DD ambiguities contribute to the 

relatively bad orbit accuracy compared to the UD IAR solution. Taking DD ambiguities at 

DOY 330 as an example, the distributions of  WL and NL fractional parts of  the DD 

ambiguities are further presented in Figure 4.23. The WL fractional part of  an outlier DD 

ambiguity can be achieved by DD of  WL fractional parts of  corresponding four UD 

ambiguities. The WL fractional parts of  four UD ambiguities are achieved in the UD_std 

solution. NL fractional parts of  each outlier DD ambiguity can be done in the same way with 

WL fractional parts. In total, 2641 of  40265 DD ambiguities are identified as outlier DD 

ambiguities. All the fractional parts of  WL DD ambiguities are within the threshold value (0.3 

cycles), while fractional parts of  NL DD ambiguities within the threshold value (0.15 cycles) 

are about 64.0%. These incorrectly fixed DD ambiguities cannot be easily figured out since 

most of  them meet the fixing threshold values. 
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Figure 4.23 Distribution of fractional parts of DD ambiguities containing at least one unfixable UD 

ambiguity for DOY 330. The left panel shows the fractional parts of wide-lane ambiguities and the right 

panel shows the fractional parts of narrow-lane ambiguities. The red dash line represents the wide-

lane and narrow-lane threshold, respectively. 

4.5.4 Impacts of  selecting independent DD ambiguities 

As shown in Figure 4.21, the satellite orbits between DD-stdrm and DD-indrm show large 

difference, even though the incorrect DD ambiguity constraints are avoided in both cases. 

Therefore, the DD_stdrm, DD_indrm, DD_add, and DD_aud solutions are further 

compared with the UD_std solution to investigate the influence of  the different selections of  

independent fixable DD ambiguities on satellite orbits, given in Figure 4.24. Among the four 

solutions, the DD_stdrm solution exhibits the largest differences compared to the UD_std 

solution, reaching 10.0, 6.0, and 3.9 mm for the along, cross, and radial components, 

respectively. Notably, the distribution of  the orbit differences within ±1 mm in the DD_stdrm 

solution is also significantly lower than the other solutions, especially for the along and cross 

component. On the contrary, the DD_indrm, DD_add, and DD_aud solutions exhibit 

comparable results with the UD_std solution. In contrast to the DD_stdrm solution, the 

percentage of  orbit differences within ±1 mm for the DD_aud solution is improved by 71.5%, 

65.8% and 54.7% for the along, cross, and radial components, respectively. The comparable 

performance between the DD_indrm and DD_add solution conveys that lack of  sufficient 

independent fixed DD ambiguities is a key factor that causes large orbit differences between 

DD IAR and UD IAR. 
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Figure 4.24 Distribution of the orbit differences of all satellites of the DD_stdrm (upper), DD_indrm 

(second row), DD_add (third row), and DD-allrm(lower) solutions with respect to the UD_std solution, 

in the along (left), cross (middle), and radial (right) components, respectively. In each panel, the mean, 

STD, and distribution statistics are given. 

These results illustrate that the primary difference between DD_stdrm and DD_indrm arises 

from the absence of  sufficient independent fixed DD ambiguities. After adding missing 

independent DD ambiguities (DD_add solution), the number of  independent DD ambiguities 

will reach that of  all inpdendent fixable DD-ambiguties and the corresponding orbit accuracy 

is, therefore, improved to the comparable level of  the UD_std solution. Adding independent 

UD ambiguities (DD_aud solution) shows similar behavior. Concerning the DD_indrm 

solution, Figure 4.25 presents the differences in the number of  newly added independent DD 

ambiguities between DD_stdrm and DD_indrm solution. The average daily number of  

missing independent DD ambiguities is around 269 over the whole year, which is around 4% 

of  all independent DD ambiguity constraints, occasionally reaching 10.0% of  all independent 

DD ambiguities. 

To give an example of  the missing DD ambiguities, the spatial distribution of  independent 

baselines in the DD_stdrm solution and the supplemented independent baselines are given in 

Figure 4.26. Compared to the network established in the DD_stdrm solution, the new 

network, featuring additional 232 DD ambiguities. As mentioned before, picking independent 

DD ambiguities from those over a maximum independent baseline set has the risk of  missing 

independent DD ambiguities and results in temporal and spatial discontinuities. Excessive 
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discontinuities have the potential to degrade orbit and clock accuracy. That is why fixable DD 

ambiguities over all baselines should be considered while selecting the independent fixable DD 

ambiguities.  

 

Figure 4.25 The daily number of insufficient independent DD ambiguities in the DD_stdrm solution.  

 
Figure 4.26 The spatial distribution of independent DD ambiguities in the DD_stdrm solution, along 

with supplemental independent DD ambiguities from the DD_add solution in DOY 233, 2021. Each 

triangle stands for a station and each baseline has at least one selected fixable DD ambiguity. In order 

to have a clear display of all independent baselines, the stations and baselines on the right side of the 

dashed line are identical to the left part of the map, with longitude ranging from -180 to 0 degrees. 
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4.5.5 Impacts of  inappropriate IAR on geodetic parameters 

The findings presented in Section 4.5.3 and 4.5.4 illustrate that the difference between the 

DD_std and UD_std solution arises from both incorrect ambiguity constraints and insufficient 

independent DD ambiguities. Upon removing incorrectly fixed UD ambiguities, the DD IAR 

strategy with maximum independent DD ambiguities set shows a comparable result to that of  

the UD IAR strategy. Besides removing unfixable UD ambiguities detected in UD IAR before 

constructing DD ambiguities, the alternative approaches are explored, including checking 

observation residuals (DD_allck solution), and avoid super long baselines while selecting 

independent baselines, which is not shown here. However, these refinements yield only 

marginal improvements in satellite orbits. Furthermore, the absence of  independent DD 

ambiguities remains a fundamental issue when the set of  the maximum independent baselines 

is selected firstly. 

 
Figure 4.27 Statistics of ERP accuracy compared with IERS EOP 14 C04. 

The above conclusions are summarized mainly based on the satellite orbits. The impact of  

different DD IAR and UD IAR strategies on other parameters, including ERPs, station 

coordinates and GCC are also investigated in this section. Figure 4.27 shows the statistics of  

ERPs for each DD IAR and UD IAR solution. Compared with IERS 14-C04, the UD_std 

solution is consistent with the DD_indrm and DD_allck solutions, but outperforms the other 

solutions, particularly regarding the polar motion and polar motion rate. The differences in 

mean values between the DD_std and UD_std solutions are substantial, reaching 9.5 and 12.9 

𝜇𝑎𝑠 for the x-pole and y-pole offsets, and 26.4 and 22.8 𝜇𝑎𝑠/𝑑𝑎𝑦 for the x-pole and y-pole 

rates, respectively. As for the DD_ind solution, the mean values are comparable with those of  

the UD_std solution, but its STD values are notably higher, with the polar motion rate 

differences exceeding 20 𝜇𝑎𝑠/𝑑𝑎𝑦. Following the elimination of  incorrect UD ambiguities, 

the STD values in the DD_indrm solution return to the same level as the UD_std solution. 

Among the six solutions, the DD_indrm and DD_allck solutions exhibit greater alignment 
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with the UD_std solution and show about 4.0% RMS values for the polar offsets and rates in 

comparison to the DD_std, DD_stdrm and DD_ind solutions. 

Table 4.3 shows the mean station position repeatability of  the six IAR strategies in Table 4.1 

with a seven-day sliding window. As expected, the outcomes for the DD_std, DD_stdrm and 

DD_ind solutions are on par with each other and inferior to the remaining three solutions. 

The maximum position repeatability differences between the UD and DD solutions are 0.16, 

0.09, and 0.19 mm for the east, north, and up components, respectively. In solutions where an 

adequate number of  independent DD ambiguities are available, the removal of  incorrect UD 

ambiguities makes the DD_ind solution close to the UD_std solution, consistent with the 

section by Geng and Mao (2021). 

Table 4.3 Mean repeatability of all stations for the six solutions and the percentage of each DD IAR 

solution w.r.t. UD-STD. Units are mm. 

Direction UD_std DD_std DD_stdrm DD_ind DD_indrm DD_allck 

East 1.36 1.44 (5%) 1.47 (7%) 1.52 (10%) 1.36 (0%) 1.37 (1%) 
North 1.36 1.39 (2%) 1.41 (3%) 1.45 (6%) 1.36 (0%) 1.35 (-1%) 
Up 4.67 4.71 (1%) 4.75 (2%) 4.85 (4%) 4.66 (0%) 4.65 (0%) 

In addition, the weekly repeatability of  GCC of  different solutions are presented, shown in 

Table 4.4. The most significant differences in GCC repeatability lie between the UD_std 

solution and the DD_ind solution, reaching 0.56, 0.55, and 0.52 mm for the X, Y, and Z 

components, respectively. Particularly, the DD_ind solution is inferior to the DD_stdrm 

solution in terms of  position and GCC repeatability. Therefore, both incorrect DD ambiguities 

and the absence of  enough independent DD ambiguities are critical for DD solutions. 

Table 4.4 Mean repeatability of geocenter coordinates for six types of solutions and the percentage of 

each DD IAR solution w.r.t. UD-STD. Units are mm. 

Component UD_std DD_std DD_stdrm DD_ind DD_indrm DD_allck 

X 2.54  2.68 (5%) 2.61 (3%) 3.10 (18%) 2.53 (-1%) 2.63 (3%) 
Y 2.66  2.87 (7%) 2.86 (7%) 3.21 (17%) 2.65 (0%) 2.68 (1%) 
Z 3.99  4.17 (4%) 4.06 (2%) 4.51 (11%) 4.05 (2%) 4.06 (2%) 

4.6 Chapter summary 

The main findings in this chapter are summarized as follows. 

Section 4.1 introduces the relationship between DD IAR and UD IAR and the flowchart of  

UD IAR on GNSS data processing. DD IAR and UD IAR are considered equivalent 

theoretically when both independent DD ambiguities and remaining independent reference 

ambiguities are imposed as integers. However, there are some different characteristics between 

DD IAR and UD IAR. (1) UD IAR is more sensitive to the accuracy of  float ambiguities 

compared with DD IAR. This is because the temporal variation of  those UD ambiguities with 

lower accuracy in UD IAR, which is not a problem in DD IAR. That’s why the UD IAR cannot 

be conducted directly based on float solutions. (2) The performance of  DD IAR relies on the 

strategy of  selecting independent DD ambiguities, as the number of  selected independent DD 
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ambiguities could vary significantly. (3) UD IAR is more robust DD IAR. The unfixable 

ambiguities can be easily detected because the fractional parts of  unfixable ambiguities deviate 

notably from the mean value of  the majority. (4) UD IAR outperforms DD IAR in terms of  

processing efficiency as the fixable UD ambiguities can be removed before parameter 

estimation. Based on the characteristics of  UD IAR, an efficient processing procedure of  UD 

IAR for large network data processing is proposed. 

Section 4.2 presents the performance of  estimated UPDs and corresponding ambiguity fixing 

of  GPS, Galileo, and BDS. The STD values of  NL UPDs are 0.03 cycles, 0.03 cycles, 0.11 

cycles, and 0.13 cycles for GPS, Galileo, BDS-2, and BDS-3, respectively. The ambiguity 

residuals of  the three constellations obey the normal distribution in which BDS satellites 

behave a little bit worse than the other two constellations. The lower ambiguity fixing rate of  

BDS satellites is mainly attributed to the smaller number of  available observations. 

Section 4.3 presents the impact of  UD IAR on satellite orbits. The orbits derived from UD 

IAR are better than those derived from DD IAR, except for BDS IGSO satellites with lower 

orbit accuracy. For GPS satellites, the average RMS values are 28.2 mm, 22.2 mm, and 23.8 

mm in the along, cross, and radial components respectively. For Galileo satellites, the average 

RMS values decrease to 33.5 mm, 22.6 mm, and 37.7 mm in the along, cross, and radial 

components respectively. Similarly, the orbit accuracy of  BDS MEO satellites is also improved 

by 21.7% and 10.4% in the along and cross component, respectively. 

Section 4.4 presents the impact of  UD IAR on ERPs and other global geodetic parameters. 

Adopting UD IAR exhibits a better performance for ERPs, station coordinates, and GCC, 

especially for ERPs. Compared with IERS 14 C04, the PM offsets are reduced from 89.5 μas 

to 79.5 μas on the x-pole and from 79.3 μas to 71.8 μas on the y-pole. The PM rates also show 

an improvement of  8.0% and 9.2% for the x-pole rate and the y-pole rate, respectively. The 

improvements of  station coordinates and GCC in three components are less than 5%. 

Section 4.5 interprets the reasons causing performance differences between DD IAR and UD 

IAR. Although DD IAR and UD IAR are considered as equivalent theoretically, the practical 

investigations show that UD IAR could achieve a better performance. The performances of  

different DD IAR and UD IAR solutions are investigated with one year of  GPS POD 

processing. Depending on how it is implemented, DD IAR is usually worse than UD IAR, 

especially for the case that independent DD ambiguities are picked from the maximum 

independent baseline set determined in advance. The largest orbit differences are up to 7.2, 

3.4, and 3.5 mm for the along, cross, and radial components, respectively. Compared with the 

UD IAR solution convey that incorrectly fixed DD ambiguity and the absence of  independent 

DD ambiguities are two factors that degrade satellite orbits, in which the latter one takes the 

priority. The two reasons are also confirmed in the investigation of  other parameters, including 

ERPs, station coordinates, and GCC. Compared with satellite orbits, station coordinate, and 

GCC are more sensitivs to incorrect DD ambiguity constraints. If  all incorrect DD ambiguities 

are accurately identified and sufficient independent DD ambiguities are picked, DD IAR can 

achieve comparable results as those of  UD IAR. However, it can be challenging to achieve 
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these two conditions, particularly when dealing with a massive network. First, incorrect DD 

ambiguities are hardly to be identified. Second, selecting independent DD ambiguities from 

pre-defined maximum independent baseline set carries the risk of  missing a part of  

independent DD ambiguities. Moreover, picking independent DD ambiguities is 

computationly expensive for large networks. Compared with DD IAR, UD IAR is much more 

robust and efficient to automatically rejected ambiguities with inconsistent fractional part of  

the majority, which is highly recommended in daily GNSS data processing. 

 

 

 





 

 

5 Improving processing efficiency of 

multi-GNSS data 

To speed up the provision of  Ultra-rapid orbits, a strategy by using epoch-parallel processing 

and historical information is proposed. The epoch-parallel processing strategy can achieve 

multi-GNSS batch POD solutions within 30 minutes and keep their consistency with 

sequential batch solutions. Considering the historic information, the processing of  Ultra-rapid 

orbit can be finished in 10 min. Section 5.1 describes the consistency between legacy batch 

and proposed epoch-parallel processing strategies. Based on the epoch-parallel strategy, 

Section 5.2 investigates multi-GNSS data processing efficiency with multi-nodes. Based on the 

strategy proposed in Section 5.2, the historical information is further considered in Section 5.3. 

The performance of  the predicted orbits of  the user-available part is evaluated in Section 5.4. 

Owing to the rapid orbit update interval (e.g., 30 min), the accuracy of  one-hour high-stability 

hydrogen clocks is better than 0.1 ns. Hence, an example of  RT PPP with both predicted orbits 

and clocks is discussed in Section 5.5. 

Note: This chapter has been published in Tang, Wang, Zhu, et al. (2023) and Tang, 

Wang, Cui, et al. (2023). The italicized text represents the content from the published 

paper. 

5.1 Epoch-parallel processing strategies 

Currently, the ultra-rapid POD solution is usually performed with 24-hour observations, 

which ensures a precise and reliable solution. The latency is 3-hour and later reduced to 

1-hour by utilizing the SSDs (Li et al., 2018), but any further reduction of the processing 

time is difficult due to the large number of parameters to be processed. Instead of 

sequential processing from the first to last epoch, the epoch-parallel processing divides 

the 24-hour session into a set of sub-sessions processed parallelly. Each sub-session is 

processed using the sequential LSQ. Only the active parameters are kept in NEQ, and 

deactivated parameters are eliminated immediately. Within a sub-session processing, 

parameters which are not active in the priori or subsequent sub-session can be 

eliminated before connecting sub-sessions, and the eliminating equation can be used to 

recover the eliminated parameters to obtain the same result as for sequential processing. 

Different from the method introduced by Jiang et al. (2021), the proposed strategy 

considers parameter elimination as soon as they are deactivated, significantly 

decreasing memory requirement and computation burden. 
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To demonstrate this, all the deactivated parameters are assumed to eliminate at once 

and the NEQs of the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ sub-session are expressed as 

 [
𝐍11,𝑖 𝐍12
𝐍21 𝐍22

] [
𝒙1
𝒙2
] = [

𝒘1,𝑖
𝒘2

], (5.1) 

and 

 [
𝐍11,𝑖+1 𝐍13
𝐍31 𝐍33

] [
𝒙1
𝒙3
] = [

𝒘1,𝑖+1
𝒘3

]. (5.2) 

Here 𝒙1 are the active parameters which cover at least the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ session, for 

example, satellite state parameters. 𝒙2  and 𝒙3  are the inactivated parameters in 

(𝑖 + 1)𝑡ℎ and 𝑖𝑡ℎ session, respectively, for example ambiguities and epoch-wise clocks. 

For sequential processing, 𝒙2 are eliminated from Equation (5.1) and can be represented 

as 

 𝒙2 = 𝐍22
−1(𝒘2 − 𝐍21𝒙1), (5.3) 

and 

 (𝐍11,𝑖 −𝐍12𝐍22
−𝟏𝐍21)𝒙1 = 𝒘1,𝑖 − 𝐍12,𝑖𝐍22

−1𝒘2. (5.4) 

Contributing the next sub-session (Equation (5.2)) into the NEQ (Equation (5.4)) 

 [𝐍11 𝐍13
𝐍31 𝐍33

] [
𝒙1
𝒙3
] = [

𝒘11
𝒘3

] (5.5) 

with 

 𝐍11 = 𝐍11,𝑖 + 𝐍11,𝑖+1 −𝐍12𝐍22
−1𝐍21, (5.6) 

and 

 𝒘11 = 𝒘1,𝑖 +𝒘1,𝑖+1 −𝐍12𝐍22
−1𝒘2. (5.7) 

Then 𝒙3 is eliminated from Equation (5.5)  

 𝒙3 = 𝐍33
−1(𝒘3 − 𝐍31)𝒙1 (5.8) 

 (𝐍11 −𝐍13𝐍33
−𝟏𝐍31)𝒙1 = 𝒘11 −𝐍13𝐍33

−𝟏𝒘3. (5.9) 

After solving Equation (5.9), the eliminated parameters can be recovered with Equation 

(5.3) and Equation (5.8). 

For the parallel processing, 𝒙2 and 𝒙3 are eliminated in parallel. The elimination of 𝒙2 is 

expressed by Equation (5.3) and Equation (5.4), while that for 𝒙3 is similar as 

 𝒙3 = 𝐍33
−1(𝒘3 − 𝐍31)𝒙1 (5.10) 

 (𝐍11,𝑖+1 −𝐍13𝐍33
−𝟏𝐍31)𝒙1 = 𝒘1,𝑖+1 −𝐍13,𝑖𝐍33

−1𝒘3. (5.11) 

Combining the NEQs of the sub-sessions, i.e., Equation (5.4) and Equation (5.11) results 

in the same NEQ of the sequential processing, i.e., Equation (5.9). Therefore, both 

eliminating equations and the final NEQ are the same. 

Parameter elimination must be carried out carefully to guarantee the equivalence of 

epoch-parallel and sequential batch processing, especially when there are temporal 

constraints. First, in each sub-session processing, only parameters not used in the 

previous and subsequent sub-sessions can be eliminated, such as ambiguities and epoch-
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wise clocks. However, temporal constraints between adjacent parameters should be 

imposed for the parameterization of the stochastic process, such as the random-walk 

process (RW). These parameters, for example, tropospheric delay parameters, can only 

be removed after all related observations and the corresponding temporal constraints 

are added. 

It should also be pointed out that to keep the consistency of active ambiguities in the 

adjacent NEQs, phase windup corrections should be prepared before NEQ generation so 

that possible integer jumps could be corrected. The phase windup correction is 

accumulated along with time, starting from a fractional cycle at the beginning. 

Therefore, there could be integer cycle differences from one sub-session to another sub-

session, that prevent the connection of ambiguities of continuous data arc. 

From the above discussion, epoch-parallel processing strategy divides the long session 

into short sub-sessions and each sub-session can be processed parallelly using sequential 

processing software and all the sub-session results can be combined into the final 

solution. It is obvious that it can take full advantage of multi-cores and multiple 

computers with only a minor modification of GNSS sequential processing strategies. 

Hence, it can be easily implemented. 

5.2 Improving data processing efficiency with multiple nodes 

With the proposed epoch-parallel processing strategy, a 24-hour session can be divided into 

several sessions and distributed to several nodes. In this section, the processing efficiency of  

epoch-parallel processing strategy on multi nodes are explored. 

5.2.1 Realization of  epoch-parallel processing 

The flowchart of the optimized POD strategy is shown in Figure 5.1, including data 

preparation, data preprocessing, parameter estimation and update, ambiguity 

resolution, and product generation. In the data preparation, hourly observation and 

navigation files for specified stations are downloaded from the IGS data centers and 

recorded from IGS real-time streams; they are merged after preliminary quality control 

to session-files. The main function of data preprocessing is initializing satellite orbits, 

generating phase windup correction files, and initial quality control using the single 

station editing method referred to as TurboEdit (Blewitt, 1990), all in a parallel way. 

Different from the parameter estimation part in sequential batch processing, it is 

optimized by assigning and coordinating sub-session generation, sub-session stacking 

and solving, orbit update and post-fit residual-based quality control. To continue 

shortening the computation time, the OpenMP multithreading model is adopted as well 

for parameter elimination during sub-session generation and sub-session stacking. 



92  Improving processing efficiency of multi-GNSS data 

 

Quality control 

（TurboEdit）

24h Observation Files

Preprocessed Data Satellite Orbit Files

NEQ-files & Recovery-files

NEQ stacking Parameter Files

Satellite and Receiver 

Clocks update

24h Broadcast 

Ephemeris

Ambiguity Fixing

Download and Merge

Hourly files and real-

time streams

Consistency check and

Remove bad records

Residual Checking

(EdtRes)

Orbit Integration

(OI)

NEQ Generation

orbits

Sub-

NEQ

NO.1

Sub-

NEQ

NO.2

...

Sub-

NEQ

NO.n

Parallel Estimation

Preprocessing

Estimation (float & fixed)

Broadcast Ephemeris  Other System Files

Phase Windup 

Calculation

Phase Windup 

Correction Files

FixedNo

Yes output stop

New cycle slips

 or Outliers

Yes

No

 

Figure 5.1 The optimized processing strategy for POD. The rectangle filled with dark orange colour 

means the processes are implemented in a parallel way. Note that the module name in the PANDA 

software is in italic here and in the following sections, e.g., TurboEdit, EdtRes and OI. 

In the stacking of sub-session NEQs, it is also very important to eliminate deactivated 

parameters in a timely manner for computation efficiency. Consequently, after any two 

sub-session NEQs are stacked, the parameters which become deactivated in the 

subsequent combination should be eliminated immediately. Abide by this rule, there are 

usually two available approaches, adjacent stacking and sequential stacking. The 

adjacent stacking approach stacks two adjacent sub-session NEQs whenever available, 

until all sub-session NEQs are combined. In contrast, the sequential stacking approach 

stacks the sub-session NEQs one by one and it can be optimized by two parallel stacking 

processing starting from both ends towards the middle. Taking the stacking of 24 1-hour 

NEQs generated by each sub-session as an example, Figure 5.2 illustrates the two 
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different stacking approaches. Besides the 1-hour NEQ generation step (step 1), the 

adjacent stacking approach requires another five steps to obtain the final 24-hour NEQ, 

while the sequential stacking approach needs 12 steps. For the adjacent stacking 

approach, there are 12 2-hour NEQs needed to be generated in step 2, then six 4-hour 

NEQs in step 3, three 8-hour NEQs in step 4, one 16-hour NEQ and 8-hour NEQ in step 5 

and a 24-hour NEQ in the last step. Assuming that there are sufficient threads available 

and the parallel combinations take the same time of a single combination, the adjacent 

stacking should take less time than the sequential stacking at the first glance. However, 

it is in the fact opposite due to too many active parameters kept in the NEQs generated 

in adjacent stacking The details will be given in Section 5.2.3. 

Adjacent Stacking

...

24-h NEQ

4-h NEQ

...

Sequential Stacking

1-h NEQ1-h NEQ1-h NEQ1-h NEQ1-h NEQ 1-h NEQ 1-h NEQ 1-h NEQ

2-h NEQ 2-h NEQ 2-h NEQ 2-h NEQ

4-h NEQ

Step 1

 (24 NEQs)

.

.

.

Step 2

 (12 NEQs)

Step 3

 (6 NEQs)

Step 6

 (1 NEQ)

...

24-h NEQ

3-h NEQ

...

1-h NEQ1-h NEQ1-h NEQ1-h NEQ 1-h NEQ 1-h NEQ

2-h NEQ 2-h NEQ

3-h NEQ

Step 1

 (24 NEQs)

.

.

.

Step 2

 (22 NEQs)

Step 4

 (20 NEQs)

Step 13

 (1 NEQ)  

Figure 5.2 Illustration of the adjacent and sequential stacking of NEQs stacking. h stands for hour. 1-h 

NEQ is generated by sequential POD of a sub-session. 

For this processing, multiple computer nodes should be included, among them one serves as 

the master or coordinator to distribute tasks, monitor processing status (start and complete, or 

any disrupt) and check results, as shown in Figure 5.3. The parallel tasks are distributed to the 

available nodes along with all necessary files for computation. The number of  involved nodes 

is determined by how many sub -session NEQs are divided, for example, 12 nodes are required 

for epoch-parallel processing of  12 sub-session NEQs. On each node, the proposed strategy 

can also take advantage of  multi-threads, for example, accelerating parameter elimination by 

OpenMP. 
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Figure 5.3 Architecture of the cluster in this study. 

5.2.2 Data processing 

Table 5.1 shows the CPU types equipped in computer nodes used in this study. The 

CPU frequency of each node ranges from 3.20 to 4.10 GHz. For a convenient and clear 

statement, one node here means a single server or computer. All nodes are equipped 

with SSDs for high-speed data input-output (IO). 

Table 5.1 CPU architecture information. 

Node 
name 

3.20 GHz 3.60 GHz 3.80 GHz 4.10 GHz 

CPU type 
Intel(R) Xeon(R) 
CPU E3-1271 v3 @ 
3.20GHz 

Intel(R) Xeon(R) 
CPU E3-1271 v3 @ 
3.60GHz 

Intel(R) Xeon(R) 
CPU E3-1275 v6 @ 
3.80GHz 

Intel(R) Xeon(R) 
CPU E3-1285 v6 @ 
4.10GHz 

A network of 120 multi-GNSS ground stations are selected for multi-GNSS POD 

solutions. In addition, a subnet using 90, 100, or 110 stations within the 120 stations 

are selected, to further evaluate the POD efficiency and accuracy of different networks. 

Note that the MGEX tracking stations take the priority while choosing stations globally. 

The time span of our experiments ranges from Day of Year (DOY) 335 to 365, 2021. 

Considering the CPU information, the number of threads for parallel parameter 

elimination in a node is set to four. In the following experiments, the session length is 

24 hours, similar to IGS ACs, even though a longer session might bring marginal 

improvement. The entire session is divided into at most 24 sub-sessions, as the 

processing of 1-hour observations only takes a few seconds. Unless otherwise noted, 

the experiments in this section are carried out using 100 tracking stations and 120 

satellites on the 4.1 GHz node. 

5.2.3 The timeliness of  multi-GNSS POD 

As the length of a sub-session becomes shorter, more NEQs are generated and the NEQ 

stacking tends to be more time-consuming. But if a sub-session is too long, the benefit of 

epoch-parallel is less significant. Therefore, the balance between generating and 
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stacking of sub-sessions needs to be further investigated. Note that the number of nodes 

mentioned in the following equals to the number of sub-sessions as there is only one 

process of sub-session NEQ generation running on a node, e.g., the number of four nodes 

means that a 24-hour session is split into four 6-hour sub-sessions. 

Taking into consideration all the optimized strategies mentioned in Section 5.2.1, along 

with parallel parameter elimination utilizing OpenMP, the computation efficiency on 

different numbers of sub-sessions is shown in Figure 5.4 (a). With the assistance of 

parallel processing of TurboEdit, OI and EdtRes, the sequential batch POD strategy with 

and without parallel parameter elimination costs 54 minutes and 73 min, respectively. 

Compared with sequential batch solutions, all epoch-parallel cases have the priority in 

computation efficiency. When there are more than six nodes (six sub-sessions) available, 

the computation time of the new POD processing strategy is less than 30 min, while the 

improvement of using 12 nodes reaches up to 49% compared to using one node. The 

increased time using 24 nodes is caused by the stacking of too many sub-sessions coupled 

with many active ambiguities. Even for the two nodes case, the computation efficiency is 

improved by 25%. Obviously, the most time-consuming part in a POD is the process of 

parameter estimation.  

 

Figure 5.4 Computation efficiency of POD with various numbers of nodes over the period from 

December 1 to 7, 2021, using 100 stations on a 4.1 GHz node. (a) The running time of an entire POD 

(total), where “Preprocessing” stands for processing steps before parameter estimation, 

“Estimation(float)” for four iterations of parameter estimation without ambiguity resolution; 

“Estimation(fixed)” for one time of parameter estimation with ambiguity resolution. (b) The running 

time of one iteration of parameter estimation including the generation of NEQs (green) and NEQ 

stacking (orange). Sequential stacking method is selected here. The number of the sub-sessions is 

identical with the number of nodes, so that each node processes only one session for NEQ generation. 

Note that “1(np)” stands for using one node but non-parallel parameter elimination. 

Figure 5.4 (b) illustrates the computation time of one iteration of parameter estimation, 

including NEQ generation and NEQ stacking, using different numbers of nodes. If four or 
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more nodes are used, then one iteration of parameter estimation takes only around 5 

minutes and the difference caused by more nodes is less than 1 min. The computation 

efficiency on two nodes is reduced by more than 2 minutes compared with the sequential 

POD method. 

When the number of sub-sessions increases, the time-consumption of sub-session 

stacking becomes more prominent. As aforesaid, there are mainly two ways of stacking 

NEQs: sequential stacking and adjacent stacking. Their consuming-time are presented 

in Figure 5.5. The step of stacking two sub-sessions only costs around 17 s. When there 

are more than two sub-sessions, the stacking time increases sharply. In case of six or 

more sub-sessions, sequential stacking is more efficient, e.g., 67 s is saved in the situation 

of stacking 24 sub-sessions, even though the sequential stacking requires more stacking 

steps. The reason is that in the sequential stacking only the active ambiguities of one side 

(either starting or ending part of the sub-session) are kept in NEQ, while in adjacent 

stacking, many parameters which are also active in the adjacent two sub-session NEQs 

must be kept for further stacking, leading to a larger dimension of the NEQ and more 

time consuming in parameter elimination. When the number of sub-sessions is no more 

than four, the time-consuming of two methods are the same as they perform identically. 

Although both three sub- sessions and four sub-sessions need two times stacking, the 

latter costs much more time, as the additional 3rd and 4th NEQ stacking spends more 

time than the 1st and 2nd NEQ stacking. Therefore, sequential stacking is adopted in the 

following POD results. It is worth mentioning that the sequential stacking can be easily 

performed on a single node while the benefit of using two nodes is marginal. 

 

Figure 5.5 Computation efficiency for different stacking methods. 
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Apart from the NEQ generation and stacking, multi-nodes are profitable for the other 

steps, e.g., preprocessing of GNSS observations (TurboEdit), orbit integration (OI), and 

posterior residual-based quality control (EdtRes), which can be easily realized station-

wise and/or satellite-wise. As shown in Figure 5.6, the computation time of TurboEdit, 

OI, and EdtRes decreases gradually along with the increasing of the node number. When 

three or more nodes are involved, TurboEdit of 100 stations requires less than 1 min. 

However, with more nodes involved, the improvement of computation efficiency for OI 

and EdtRes decreases progressively as each program needs a little time to process single 

station or satellite, e.g., files reading which cannot be omitted. Provided that there are 

100 stations and 120 satellites, four nodes equipped with eight threads processing at 

most four times of OI and EdtRes, costs around merely 10 s. The improvement of the 

available nodes more than four is less than 5 s. 

 

Figure 5.6 Computation efficiency of TurboEdit, OI, and EdtRes with various nodes. “1(seq)” in the 

horizontal axis stands for sequential processing without station or satellite parallel. 

The above comparison and analysis are derived from processing 100 tracking stations 

based on the 4.1 GHZ CPU nodes. The computation efficiency of the new strategy using 

different types of CPU is further shown in Figure 5.7. The process of POD is usually faster 

with higher CPU performance. Compared with the results based on nodes equipped with 

3.2 GHZ CPU, the time consuming on the 4.1 GHz CPU of three solutions, including four, 

two, and one sub-sessions is down by 37%, 33%, and 29%, respectively. Consistent with 

the above conclusion, using four nodes is always faster than using two, especially for 
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larger number of stations. In general, the new strategy can secure a processing time 

within one hour except for few special cases with too many stations and/or outdated 

CPU such as the case of processing 120 stations on 3.2 GHz node, whereas the sequential 

strategy has to reduce the number of stations and on a high-performance node to satisfy 

the 1-hour requirement, such as the case using 90 stations, and that using 100 stations 

on 4.1 GHz node. More important is that the half-hourly update can be achieved using 

the new strategy, for instance, using 90 stations on a 3.8 GHz or 4.1 GHz node. 

 

Figure 5.7 Computation efficiency with different number of nodes and stations over the period from 

December 1 to 7, 2021. More information of the different types of nodes is provided in Table 1. 1 session 

means a sequential batch POD solution. 

5.3 Improving data processing efficiency with historic 

information 

For the process of  generating hourly orbits, the first 23-hours of  a 24-hour session have been 

processed in the previous job, leaving only one hour of  new observations to be processed. As 

mentioned in Section 5.2, the most time-consuming part of  orbit generation is the iteration of  

parameter estimation for data cleaning, which usually consists of  five times of  iterations i.e., 

four-time parameter estimation for data cleaning and one-time parameter estimation for 

ambiguity fixing, to get high-precision products. If  the historical information in the previous 

session can be utilized in the current session, the iterations of  data cleaning can therefore be 

reduced because new observations need to be cleaned. Moreover, the fixed UD ambiguities 

can also be removed to reduce the number of  estimated parameters (H. Chen et al., 2014). 
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5.3.1 Realization of  epoch-parallel processing with historic information 

Based on Figure 5.1, an optimized flowchart of  the POD strategy is shown in Figure 5.8. 

According to our experience, the latest 3-hour observations will be processed in the 

preprocessing step. Specifically, 3-hour observations will contain 1-hour new observations if  

the orbit update interval is one hour. Therefore, the latest 3-hour observations contain at least 

2-hour historic observations, which serves for the data connection in the next step. After 

preprocessing, 24-hour initialized satellite orbits, as well as 3-hour phase windup and initial 

quality control files (log-file) are generated. In the process of  data connection, newly generated 

phase windup, log-file and fixed UD ambiguities are connected with corresponding files in the 

previous session to generate 24-hour files. For the parameter estimation and data cleaning 

(float) step, one iteration is enough since most outliers and cycle slips have been removed and 

labeled in the previous session. After removing fixed UD ambiguities, the parameter estimation 

step shall be faster. Owing to that most UD ambiguities are already fixed in the parameter 

estimation step, the accuracy of  float ambiguities in float solution is good enough to realize 

UD IAR directly, which is different from the ambiguity fixing step mentioned in Chapter 4. 

After ambiguity fixing, all the estimated parameters are updated, including fixed UD 

ambiguities, and related information are prepared for the next session.  

Preprocessing (latest 3 hours)

Hourly and real-time 

observations

System files (Planet 

ephemeris, satellite meta data, 

etc.)

• Merged observations and broadcast

• Initialized satellite orbits

• Phase windup 

• Flags of observation quality (log)

Historic information (HI)

Data connection

• Phase windup 

• Log

• Fixed UD ambiguities

Estimation(float) Estimation (UD IAR)

• Orbit and clocks

• ERPs

• Fixed UD ambiguities 

• Log 

• Phase windup

 

Figure 5.8 The optimized processing strategy for POD.  
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5.3.2 The timeliness of  multi-GNSS POD 

The following comparison and analysis are derived from processing 100 tracking stations and 

120 satellites. Taking historic information mentioned in Section 5.3.1 into consideration, along 

with epoch-parallel processing strategy proposed in Section 5.2.1, the computation time of  

one iteration of  parameter estimation, including NEQ generation and NEQ stacking, using 

different numbers of  nodes is illustrated in Figure 5.9. With the assistance of  historic 

information, one parameter estimation only costs 3 min. Otherwise, 100 stations and 120 

satellites will cost more than 9 min. Compared with low-frequency CPU, the contribution of  

higher-frequency CPU is less than 0.2 min. This is because most ambiguity parameters have 

been fixed and removed during parameter estimation, with only around 2000 unknown 

parameters left in NEQ which do not cost too much time. When there are two nodes available, 

then one iteration of  parameter estimation takes only around 2.4 min, in which the NEQ 

stacking step costs around 0.4 min. The computation efficiency on four nodes is reduced by 

more than 1 minutes compared with the sequential POD method. 

 

Figure 5.9 The computation time of one iteration of parameter estimation including the generation of 

NEQs (green) and NEQ stacking (orange) from December 1 to 7, 2021, using 100 stations. The number 

of the sub-sessions is identical with the number of nodes. 

The computation efficiency of  the proposed strategy using different types of  CPU is further 

shown in Figure 5.10. The process of  POD is usually faster with higher CPU performance. 

Compared with the results based on nodes equipped with 3.2 GHz CPU, the time consuming 

on the 4.1 GHz CPU of  the three solutions, including one, two, and four sub-sessions is down 

by 10%, 10%, and 18%, respectively. Consistent with the above conclusion, using four nodes 

is always faster than using two. In general, the proposed strategy can secure a processing time 
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within half  hour or even 10 minutes with the case including four nodes. More important is 

that the half-hourly update can be easily achieved using the new strategy without special 

consideration of  CPU types. In practical processing, the half-hourly orbits can be provided in 

time even if  a job is processed again due to errors. 

 

Figure 5.10 The running time of an entire POD (total) from December 1 to 7, 2021, using 100 stations.  

5.4 Assessment of  multi-GNSS real-time orbits 

Currently, most IGS ACs select around 100 stations to realize the routine ultra-rapid orbit 

solution with latency between one to three hours, whereas the proposed strategy in Section 5.2 

and Section 5.3 can realize half-hourly or even shorter orbit update. Therefore, five solutions 

over one month in January 2021 are designed to evaluate the performance of  the epoch-

parallel processing strategy. The 120min, 60min, 30min, 20min, and 10min solutions in Section 

5.4.3 indicate that orbits are updated per 120, 60, 30, 20 and 10 min, respectively. Note that 

the sequential batch and epoch-parallel strategy are strictly equivalent, which are shown in 

Section 5.4.2. The performance of  the user-available part is then investigated in Section 5.4.3. 

5.4.1 Orbit validation strategy 

For real-time positioning purpose, only the predicted orbits are available for users, 

therefore it is of great importance. However, here both estimated and predicted orbits 

are evaluated. Figure 5.11 shows the processing and update scenarios of ultra-rapid 

orbits. 
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a a
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b c
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Figure 5.11 Update latency for ultra-rapid orbits. 

Let the processing of session one start at 𝑡1, the session time of estimated part is (𝑡1 −

24ℎ, 𝑡1), the processing period is 𝛥𝑡𝑐, then the orbits are available from 𝑡1 + 𝛥𝑡𝑢 . 𝛥𝑡𝑢 

could be different from 𝛥𝑡𝑐  as it is determined by product provider. Afterward, the 

session two starts at 𝑡1 + 𝛥𝑡𝑢 , in which 𝛥𝑡𝑢 is the orbit update interval, the orbits are 

available from 𝑡1 + 2𝛥𝑡𝑢 . From this epoch, the predicted orbits from session one will be 

replaced by that of session two. The inconsistency at switch epoch of the two consecutive 

predicted orbits are the boundary discontinuities, that are investigated. The current 

used predicted orbits can also be compared with the later available estimated orbits for 

quality validation, i.e., the predicted part of session one with the estimated part of session 

three, termed as orbit overlap. Compared with session three, orbit overlap in session one 

starts from 𝑡1 + 𝛥𝑡𝑢 to 𝑡1 + 2𝛥𝑡𝑢 , which is represented as shade part in Figure 5.11. 

5.4.2 Consistency of  batch and epoch-parallel solution 

The estimated orbits are first evaluated and compared with the IGS Final products and 

Rapid products provided by GFZ, known as GBM, is shown in Figure 5.12. The orbit 

accuracy for GPS, GLONASS, Galileo, and BDS MEO satellites in terms of averaged 1D 

RMS is 1.4, 4.7, 2.2, and 3.7 cm, respectively, while for BDS GEO and IGSO satellites the 

value is 117.0 cm and 11.6 cm, respectively. Due to the uneven tracking stations and 

insufficient force models, e.g., solar radiation pressure, the performance of BDS is inferior 

to that of GPS and Galileo, especially for BDS GEO and IGSO satellites (Zhao et al., 2022). 

As expected, there is almost no difference between the epoch-parallel and traditional 

batch solutions. 
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Figure 5.12 RMS values of estimated part for different solutions. GPS orbits are compared with the IGS 

Final products, while the other constellations are compared with the GBM Rapid products. Note the 

different y-axis scales between different panels. 

5.4.3 Accuracy of  real-time orbits 

Taking the IGS Final products and GBM products as references, the averaged RMS values of  

user-available orbits are provided in Figure 5.13. The 120min solution shows the worst results, 

with an average 1D RMS value of  4.7, 7.3, 6.4, 164.7, 29.3, and 9.2 cm for the GPS, GLONASS, 

Galileo, BDS GEO, BDS IGSO, and BDS MEO satellites, respectively. With the decrease of  

the orbit update interval, the orbit accuracy in three directions is improved gradually, especially 

for the along direction. Compared with the 120min solution as a reference, the average 1D 

RMS values in the 60min solution are improved by 34%, 20%, 47%, 16%, 38%, and 26% for 

the GPS, GLONASS, Galileo, BDS GEO, BDS IGSO, and BDS MEO satellites, respectively. 

When the orbit update interval is reduced to 30 minutes (i.e., 30min solution), the average 1D 

RMS values is further reduced to 3.4, 6.0, 3.9, 141.1 19.8, and 7.3 cm for the GPS, GLONASS, 

Galileo, BDS GEO, BDS IGSO, and BDS MEO satellites, respectively. The differences of  

MEO satellites between 30min, 20min, and 10min solutions are less than 1.0 cm, in which the 

10min solution shows the best performance. Specifically, the orbit differences between the 

30min and 10min solution in the along direction are 0.5 cm, 0.6 cm, 0.9 cm, 2.2 cm, 1.9 cm, 

and 0.9 cm for the GPS, GLONASS, Galileo, BDS GEO, BDS IGSO, and BDS MEO satellites, 

respectively. In addition, a notable improvement is also found in the radial direction for BDS 

GEO and IGSO satellites. Compared with the 120min solution, the accuracy in the along 

direction is improved by 55% and 27%. The obvious improvements in radial direction are 

attributed to the imperfect satellite force models (Guo et al., 2023). 
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Figure 5.13 RMS values of user-available part for different solutions. GPS orbits are compared with the 

IGS Final products, while the other constellations are compared with the GBM Rapid products. Note the 

different y-axis scales between different panels. 

The positioning performance could be affected by the update of  the GNSS ultra-rapid orbits, 

i.e., switching from one to the next orbits inevitably leads to residual fluctuations in positioning 

solutions due to the discontinuities of  two consecutive sessions. Hence, orbit discontinuity is 

a key indicator for evaluating orbit quality. Figure 5.14 shows the statistics of  the orbit 

discontinuities for different solutions and constellations. The orbit discontinuities decrease 

gradually with the reduction of  orbit update interval. For the satellite orbits updated per 120 

min, the averaged 1D RMS values for GPS, GLONASS, Galileo, BDS GEO, BDS IGSO, and 

BDS MEO satellites are 3.5, 4.4, 4.5, 62.8, 15.6, and 6.0 cm. When the satellite orbit update 

interval is reduced to 60 min, the average 1D RMS value is improved by 30%, 29%, 28%, 40%, 

13%, and 24% for the GPS, GLONASS, Galileo, BDS GEO, BDS IGSO, and BDS MEO 

satellites, respectively. Similar to the improvements observed in the 60min, the 30min solution 

also shows notable improvements with respect to the 60min solution, reaching 36%, 33%, 

35%, 39%, 26%, and 29% for the GPS, GLONASS, Galileo, BDS GEO, BDS IGSO, and BDS 

MEO satellites, respectively. The best performance is observed in the 10min solution, with an 

average 1D RMS value around 1.0 cm for MEO satellites. 
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Figure 5.14 RMS values of orbit discontinuities for different solutions. Note the different y-axis scales 

between different panels. 

In terms of  the 95th percentile, as shown in Figure 5.15, the orbit discontinuity values are 

decreased by a factor of  three to four. The orbit discontinuities in the 10min solution for GPS, 

GLONASS, Galileo, BDS GEO, BDS IGSO, and BDS MEO satellites are 1.6, 2.1, 2.0, 17.8, 

11.0, and 3.9 cm, respectively, which show an obvious drop if  the update latency is lengthened, 

from 10-min to 20-min, 20-min to 30-min, 30-min to 60-min and 60-min to 120-min. Both 

Figure 5.14 and Figure 5.15 show that satellite orbits with 10-minute update perform best 

among the four solutions. 

The differences between the observed ranges (via SLR observations) and the computed spatial 

distances (via GNSS orbits and coordinates of  SLR stations) form the so-called "SLR 

residuals". The analysis of  these SLR residuals offers the opportunity to investigate the quality 

of  the GNSS orbits. Figure 5.16 shows the statistics of  SLR residuals for different solutions. 

The orbit differences between different solutions are minor, less than 0.5 cm, except for BDS 

IGSO and BDS MEO satellites in the 120min solutions. The differences between BDS MEO 

satellites in the 120min solution and the other solutions are attributed to the low orbit accuracy 

of  PRN C10 (BDS-2 MEO). Reducing orbit update interval can improve orbit accuracy with 

poor orbit accuracy, e.g., BDS IGSO satellites. 
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Figure 5.15 Averaged 1D RMS (solid bar) values of orbit discontinuities for different solutions. Note the 

different y-axis scales in different panels. 

 
Figure 5.16 The statistics of SLR residuals for different solutions. Note that outliers have been removed 

before statistics. The BDS GEO satellites are excluded since there are no SLR observations available 

during January of 2021. Note that only the predicted part is used in the SLR validation. 
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5.5 Application of  multi-GNSS orbits in positioning 

GNSS RT-PPP strongly relies on precise satellite orbits and clocks, especially the latter requires 

a high update rate, e.g., five seconds, due to its limited prediction accuracy. Such a high-rate 

update frequency is a burden to both data analysis and communication. Moreover, interruption 

in data communication is almost unavoidable. For the new constellations such as Galileo and 

BDS-3 with high-stability hydrogen clocks onboard, it is possible to predict satellite clocks to 

a longer arc. The strategies proposed in Section 5.2 and Section 5.3 enable the half-hourly or 

even rapid orbit update. Section 5.4 further demonstrates that most satellite orbits with orbit 

update interval of  less than 30 minutes show similar performance. Therefore, the feasibility of  

RT-PPP with predicted orbits and clocks updated per 30 minutes is investigated in this section. 

The solution with orbits and clocks updated per 60 minutes is taken as a reference. 

5.5.1 Clock prediction strategy 

Most GNSS satellites are equipped with highly-stable clocks, such as hydrogen maser 

clocks, especially the newly-launched Galileo, BDS-3, and GPS BLOCK III satellites. 

Various clock prediction models have been proposed for the prediction of short-term and 

long-term periods (Senior et al., 2008; Zheng et al., 2008; G. W. Huang et al., 2013; El-

Mowafy et al., 2016; Nie et al., 2017). Despite several studies with sophisticated clock 

prediction methods, the polynomial model plus periodic terms is widely used and has 

been demonstrated with good performance (Nie et al., 2017; H. Ge et al., 2021). 

Therefore, the following function is adopted to describe the clock at epoch 𝑖 (time 𝑡𝑖) 

 𝜏𝑠𝑎𝑡(𝑡𝑖) = 𝑎0 + 𝑎1𝑡𝑖 + 𝑎𝑠 𝑠𝑖𝑛 (
2𝜋

𝑇
𝑡𝑖) + 𝑎𝑐 cos (

2𝜋

𝑇
𝑡𝑖), (5.12) 

where 𝑎0  denotes clock offset at the reference time; 𝑎1  is frequency, 𝑎𝑠  and 𝑎𝑐  are the 

coefficients of periodic terms. To avoid the impact of potential jumps, the initial value 

can be eliminated by differencing between two adjacent epochs, for example, 𝑡𝑖 and 𝑡𝑖+1. 

The above function is rewritten as follows 

 
𝜏𝑠𝑎𝑡(𝑡𝑖+1) − 𝜏

𝑠𝑎𝑡(𝑡𝑖) = 𝑎1(𝑡𝑖+1 − 𝑡𝑖) + 𝑎𝑠 [𝑠𝑖 𝑛 (
2𝜋

𝑇
𝑡𝑖+1) − 𝑠𝑖 𝑛 (

2𝜋

𝑇
𝑡𝑖)]

+𝑎𝑐 [𝑐𝑜 𝑠 (
2𝜋

𝑇
𝑡𝑖+1) − 𝑐𝑜 𝑠 (

2𝜋

𝑇
𝑡𝑖)]

. (5.13) 

Given a series of clocks with n epochs, the n-1 epoch-differenced clocks are fitted via the 

least-square adjustment to estimate the unknown parameters in Equation (5.13). Then, 

the predicted clock at a given time 𝑡  after epoch n is represented as follows 

 
𝜏𝑠𝑎𝑡(𝑡) = 𝜏𝑠𝑎𝑡(𝑡𝑛) + 𝑎1(𝑡 − 𝑡𝑛) + 𝑎𝑠 [𝑠𝑖 𝑛 (

2𝜋

𝑇
𝑡) − 𝑠𝑖 𝑛 (

2𝜋

𝑇
𝑡𝑛)]

+𝑎𝑐 [𝑐𝑜 𝑠 (
2𝜋

𝑇
𝑡) − 𝑐𝑜 𝑠 (

2𝜋

𝑇
𝑡𝑛)]

, (5.14) 
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where 𝑡𝑛  is the last epoch of the fitting arc, 𝜏𝑠𝑎𝑡(𝑡𝑛)  is the clock offset at epoch 𝑛 . 

According to Equation (5.14), the corresponding formal error of predicted clocks is 

represented as  

 
𝜎𝜏𝑠𝑎𝑡(𝑡)
2 = 𝜎𝜏𝑠𝑎𝑡(𝑡𝑛)

2 + 𝜎𝑎1
2 (𝑡 − 𝑡𝑛)

2 + 𝜎𝑎𝑠1
2 [𝑠𝑖 𝑛 (

2𝜋

𝑇
𝑡) − 𝑠𝑖 𝑛 (

2𝜋

𝑇
𝑡𝑛)]

2

+𝜎𝑎𝑐1
2 [𝑐𝑜 𝑠 (

2𝜋

𝑇
𝑡) − 𝑐𝑜 𝑠 (

2𝜋

𝑇
𝑡𝑛)]

2 , (5.15) 

where 𝜎𝑎1, 𝜎𝑎𝑠 and  𝜎𝑎𝑐are the formal errors of 𝑎1, 𝑎𝑠 and 𝑎𝑐 respectively, 𝜎𝜏𝑠𝑎𝑡(𝑡𝑛)
2  is the 

precision of the clock offset at epoch 𝑛. Following H. Ge et al. (2021), the optimal length 

of fitting arc for the polynomial model is 24 hours. To avoid the impact of large clock 

discontinuities and outliers in the clock time series, quality control must be carried out 

before calculating clock coefficients and obtaining predicted clocks using Equation (5.13) 

- (5.15). The clock time series are converted to the frequency, which is defined as 

 𝑑𝜏𝑖 =
𝜏𝑖−𝜏𝑖−1

𝑡𝑖−𝑡𝑖−1
. (5.16) 

In addition, anomalies in frequency data are detected based on five times of the Median 

Absolute Deviation. As satellite clocks are estimated simultaneously with orbits, the 

update rate is the same as orbits. 

5.5.2 Observation weighting strategies 

After considering all errors related to the satellite, propagation path, and ground station, 

the following stochastic model is applied (Takasu, 2013) 

 𝜎2 =
𝜎𝑜𝑏𝑠
2

sin2(𝑒𝑙𝑒𝑣)
+ 𝜎𝑜𝑟𝑏

2 + 𝜎𝑐𝑙𝑘
2 , (5.17) 

where 𝜎𝑜𝑏𝑠 denotes the constant observation noise, 1 m for pseudorange and 1 cm for 

phase observations, respectively. 𝑒𝑙𝑒𝑣  is the elevation angle and the term 𝑠𝑖𝑛2(𝑒𝑙𝑒𝑣) 

considers the mismodeling effects and multi-path for observation at low elevation angle. 

To further consider the impact of satellite orbits and clocks, the terms of 𝜎𝑜𝑟𝑏 and 𝜎𝑐𝑙𝑘  

are included. Note that the last two terms can be ignored in most post- or real-time 

processing where the precise satellite orbits and clocks are available. It would not cause 

any problem as long as the quality of orbits and clocks of each satellite is comparable. 

However, if the performance of different satellites differs with each other significantly, 

for example, in a multi-GNSS solution where a certain type of satellite yields poorer 

quality, it is necessary to properly downweight them to avoid any degradation to the 

solution (Kazmierski et al., 2018; Kiliszek et al., 2022). 

In this section, optimized weighting strategies of the observations are introduced to 

account for the orbit and clock prediction error. For a comprehensive assessment of orbit 

and clock errors, SISRE is the first choice (Kazmierski et al., 2018). By considering the 
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contribution of orbit and clock errors to observation equation, Equation (5.17) is 

represented as 

 𝜎2 =
𝜎𝑜𝑏𝑠
2

sin2(𝑒𝑙𝑒𝑣)
+ 𝜎𝑠𝑖𝑠

2 , (5.18) 

where 𝜎𝑠𝑖𝑠 is SISRE. The typical SISRE, which is calculated by comparing the real-time 

orbits and clocks to a reference product, cannot be achieved due to the lack of reliable 

reference products in real-time. However, the accuracy of estimated and predicted orbits 

and clocks of consecutive sessions is comparable in most cases, and thus the SISRE is also 

expected to show a similar pattern. Therefore, the real-time SISRE of the epoch (epoch 

𝑖𝑒𝑝𝑜) at the current session (session 𝑖𝑠𝑒𝑠) can be predicted by previous sessions and an 

approximation of 𝑆𝑠𝑖𝑠  is proposed  

 𝜎𝑠𝑖𝑠
2 (𝑖𝑠𝑒𝑠, 𝑖𝑒𝑝𝑜) = (

𝑆𝑠𝑖𝑠(𝑖𝑠𝑒𝑠−𝑛,𝑖𝑒𝑝𝑜)+⋯+𝑆𝑠𝑖𝑠(𝑖𝑠𝑒𝑠−1,𝑖𝑒𝑝𝑜)

𝑛
)
2
, (5.19) 

where 𝑖𝑠𝑒𝑠  is the session number, 𝑖𝑒𝑝𝑜  is the epoch number of a session, 𝑛𝑠𝑒𝑠  is the 

number of sessions. 𝑆𝑠𝑖𝑠(∙) is the function of SISRE calculation, detailed description of 

SISRE is made by Oliver Montenbruck, Steigenberger, and Hauschild (2014). Different 

from the statistic description of SISRE, the SISRE value 𝜎𝑠𝑖𝑠(𝑖𝑠𝑒𝑠, 𝑖𝑒𝑝𝑜) is derived from 

the several epochs of previous sessions, one epoch per session. According to my 

experience, three sessions, that is, 𝑛𝑠𝑒𝑠 is set to 3 are taken. 

The SISRE is mainly dependent on the error of the radial component of orbits and clocks, 

especially the latter one (Cheng et al., 2018). Consequently, the time variation of the 

clocks differs not only between constellations but also between satellites (Kazmierski et 

al., 2020; Carlin et al., 2021). Therefore, the precision of predicted clocks is assessed in 

Figure 5.17. Similarly, the Galileo, GPS, BLOCK IIIA, and BDS-3 MEO satellites have better 

performance than other satellites, in which Galileo performs the best, with an average 

RMS of less than 0.1 ns (30-min updated clocks). For GLONASS, BDS GEO and IGSO 

satellites, the clock accuracy is as large as 0.5 ns. The performance of different types of 

satellites is similar for the 60-min updated clocks, and the magnitude is much larger 

than the 30-min updated clocks. Compared with the clock precision presented in Figure 

5.17, the clock error still dominates the SISRE value for most satellites. Therefore, 

Equation (5.17) can be simplified as 

 𝜎2 =
𝜎𝑜𝑏𝑠
2

sin2(𝑒𝑙𝑒𝑣)
+ 𝜎𝑐𝑙𝑘

2 . (5.20) 

In this case, only the clock accuracy information is required for PPP users. 
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Figure 5.17 Satellite clock prediction precisions for different types of satellites with 30-min and 60-min 

update rate. 

Although the clock formal error in Equation (5.15) can serve as an indicator to reflect the 

performance of predicted product, it can be over-optimistic. Therefore, the above formal 

error should be scaled to represent the real precision with 

 𝜎𝑐𝑙𝑘 = 𝑓 ∗ 𝜎𝑐𝑙𝑘_𝑓𝑜𝑟𝑚𝑎𝑙, (5.21) 

where 𝜎𝑐𝑙𝑘_𝑓𝑜𝑟𝑚𝑎𝑙   is the formal error. The factor is calculated based on the satellite-

specific empirical value from several previous sessions 

 𝑓 =
𝑀𝐸𝐴𝑁𝑠𝑡𝑑

𝑀𝐸𝐴𝑁𝑐𝑙𝑘_𝑓𝑜𝑟𝑚𝑎𝑙
, (5.22) 

where 𝑀𝐸𝐴𝑁𝑠𝑡𝑑   is the mean STD of clock precision for a certain satellite group, 

𝑀𝐸𝐴𝑁𝑐𝑙𝑘_𝑓𝑜𝑟𝑚𝑎𝑙 is the corresponding mean formal error. Through Equation (5.22), the 

rough scaling law between the precision of the satellite clock and its formal error is 

established. Table 5.2 lists the scaling factors for satellites used in this study. These values 

are determined empirically using one month of data, but could be updated using 

different periods in real-time applications. 

Table 5.2 Scaling factors between the accuracy and formal errors of predicted clocks for different types 

of satellites. 

Type G_IIR G_IIF G_III R E 

Scaling factor 13  49  49  28  56  

Type C_2G C_2I C_2M C_3I C_3M 

Scaling factor 171  75  46  319  74  
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5.5.3 Data processing 

According to the proposed orbit and clock prediction strategy, one month of 100 multi-

GNSS stations is processed to generate predicted orbits and clocks with 30- and 60-min 

update rate. The 30-s sampling observations from additional 62 stations (Figure 5.18) 

are then processed in static and kinematic PPP mode to validate our method. In total, 

five cases are designed to evaluate our proposed methods, as shown in Table 5.3. 

 

Figure 5.18 IGS stations for PPP validation. 

Table 5.3 Cases of weighting the observations and handling the SISRE in PPP solutions. 

Case Observation weighting Estimating SISRE 

ORIG 
𝜎2 =

𝜎𝑜𝑏𝑠
2

sin2(𝑒𝑙𝑒𝑣)
 

No 

CLK 
𝜎2 =

𝜎𝑜𝑏𝑠
2

sin2(𝑒𝑙𝑒𝑣)
+ 𝜎𝑐𝑙𝑘

2  
No 

CLK_F 
𝜎2 =

𝜎𝑜𝑏𝑠
2

sin2(𝑒𝑙𝑒𝑣)
+ 𝑓2 ∙ 𝜎𝑐𝑙𝑘

2  
No 

SISPRE 
𝜎2 =

𝜎𝑜𝑏𝑠
2

sin2(𝑒𝑙𝑒𝑣)
+ 𝜎𝑠𝑖𝑠𝑟𝑒

2  
No 

SISEST 
𝜎2 =

𝜎𝑜𝑏𝑠
2

sin2(𝑒𝑙𝑒𝑣)
 

Yes 

Three single-constellation solutions, including GPS, Galileo, and BDS are investigated. 

GLONASS-only solution is not included due to the poor clock prediction accuracy (around 

0.6 ns for 30-min update interval) and thus the expected poor positioning performance. 

Multi-GNSS solutions, including Galileo+BDS (GE), Galileo+GPS+BDS (GEC) are 

investigated and the quad-constellation solution where the contribution of GLONASS is 

considered (GREC). Apart from the different weighting methods, the same processing 

strategies are adopted by the five cases. To evaluate the accuracy, the coordinates from 

the IGS weekly combined solution are taken as a reference, and calculate the 3-
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dimensional (3D) error, that is, 3𝐷 = √𝑁2 + 𝐸2 +𝑈2  where (𝑁, 𝐸, 𝑈)  are the 
coordinate bias in the north, east, and up components, respectively. 

5.5.4 PPP Validation 

Static positioning 

Figure 5.19 presents the statistics of positioning accuracy for different cases. When no 

special consideration of the orbit and clock errors is applied, that is, solution ORIG, the 

positioning accuracy using the 30-min updated products is within 5 cm for the Galileo-

only and multi-GNSS solutions, meanwhile for the GPS-only and BDS-only solutions, the 

accuracy is around 7 to 11 cm. A significant improvement is introduced in all solutions 

if the predicted clock accuracy is considered, especially in the CLK_F case where the clock 

formal error is scaled properly (see Table 5.2). The proposed strategy (SISPRE) achieves 

a comparable accuracy with solution CLK_F for both single-GNSS and multi-GNSS 

solutions, which is slightly better than the solution where the SISRE is estimated as 

unknown parameters in the GPS-only and multi-GNSS solutions. It is also obvious that 

the accuracy of predicted clocks instead of orbits has a larger impact on positioning, as 

expected. Regarding the contribution of different constellations, the Galileo-only 

solutions are much better than the GPS-only and BDS-only solutions, and both have 

comparable accuracy with respect to its combination with other constellations, mainly 

thanks to the highly stable clocks onboard the Galileo satellites. Note that in ORIG where 

no special handling of the observation weighting is applied, the Galileo-only solutions 

are better than the multi-GNSS solutions. The reason is that the clock prediction 

accuracy of BDS and GPS is much worse (see Figure 5.17), and without downweighing 

these satellites properly they will degrade the accuracy in multi-GNSS solutions. 

For the 60-min predicted solutions, the positioning accuracy is worse than the 30-min 

solutions by a factor of up to two (the BDS-only case), due to the poorer clock prediction 

accuracy in the 60-120 minutes arc than in the 30-60 minutes arc (see Figure 5.17). The 

quad-constellation solution achieves an accuracy of 9 cm in the ORIG case, and is 

improved to 5 cm if the proper weighing is adopted (CLK_F and SISPRE) or additional 

parameter is estimated (SISES). It is also confirmed that the Galileo constellation 

contributes larger than GPS and BDS constellations in the multi-GNSS solutions, and 

proper weighting of different systems is necessary, otherwise the positioning accuracy 

would be deteriorated. 
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Figure 5.19 Accuracy of different cases in static PPP in terms of 3D RMS position error. The upper and 

lower panel is the positioning results based on 30-min and 60-min predicted orbits and clocks, 

respectively. 

To investigate the difference between CLK_F and SISEST cases, a further comparison of 

each station is shown in Figure 5.20 and Figure 5.21. For the Galileo-only solution, the 

SISEST case performs better than the CLK_F on most stations, except for the horizontal 

component of a few stations. In contrast, the horizontal components for the SISEST case 

with quad-constellation are worse than those for the CLK_F case. By comparing the 

Galileo-only solution and quad-constellation solution, the results show that the 

contribution of multi-GNSS in the CLK_F case is larger than that in the SISEST case in the 

horizontal components. The possible reason for the different behaviors is that CLK_F 

approach gives a deterministic relationship between different satellite types, which 

needs to be estimated in the SISEST approach. 
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Figure 5.20 Horizontal position accuracy of each station with 30-min updated orbits and clocks for 

Galileo-only (upper) and GREC (lower) solutions. 

 

Figure 5.21 Vertical position accuracy for each station with 30-min updated orbits and clocks for 

Galileo-only (upper) and GREC (lower) solutions. 
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In addition to the average 3D RMS results, the horizontal and vertical RMS for Galileo-

only and quad-constellation solution are also given in Table 5.4. The Galileo-only and 

GREC solutions are presented as they have optimal performances compared to other 

solutions. For the 30-min solutions, the horizontal accuracy of Galileo-only solutions is 

2.2 cm, and the vertical one varies between 2.5 and 3.2 cm. The quad-system GREC 

solutions on the other hand, are more sensitive to handling weights. In the ORIG case, 

the accuracy is worse than the Galileo-only solutions in horizontal and vertical 

components, whereas in the CLK_F and SISPRE cases, the accuracy is much better. The 

60-min solutions are worse than the 30-min ones, indicating the necessity to further 

reduce the update rate when using predicted products in real-time PPP. In any case, 

horizontal and vertical accuracy within 5 cm and 7 cm can be achieved for the 30-min 

and 60-min solutions, respectively. 

 

Table 5.4 Average static position error for Galileo-only and GREC solutions using 30- and 60-min 

updated orbits and clocks. The unit is cm. 

Solution 30-min  60-min 

 E GREC  E GREC 

 Up 2D 3D Up 2D 3D  Up 2D 3D Up 2D 3D 

ORIG 3.2 2.3 4.0 4.4 2.9 5.3  5.6 4.0 7.0 6.8 5.2  8.9 

CLK 3.2 2.3 4.0 3.6 2.5 4.5  5.6  3.9 7.0 5.4 4.7  7.3 

CLK_F 2.8 2.2 3.6 2.3 1.7 2.9  5.0 3.7 6.3 4.0 3.1  5.1 

SISPRE 2.9 2.2 3.7 2.4 1.8 3.1  4.9 3.6 6.2 3.8 3.3 5.2 

SISEST 2.5 2.3 3.6 2.6 2.3 3.6  4.3  3.6 5.8 3.9 3.5  5.3 

Kinematic positioning 

Kinematic PPP results of five cases with different constellation combinations are also 

performed using the same set of observations. Figure 5.22 depicts the positioning 

accuracy of kinematic PPP results based on 30-min orbits and clocks. For the first 30-

min, the cases of CLK-F and SISPRE both have better performance than the SISEST, 

especially for the GEC and GREC solution, even though a jump is observed at the 30-min 

epochs in some solutions, for example, the Galileo-only and EC solutions in the CLK and 

CLK_F case. This could be attributed to the orbit quality change when switching the 

different products. In general, our proposed solution (CLK_F and SISPRE) can reach a 

higher accuracy quickly than the SISEST case, and after 30-min the performances are 

similar. After 1-h convergence, single constellation can converge to 40.0 cm, while GEC 

and GREC converge to 30 cm. All the kinematic solutions with Galileo included can 

converge to 30.0 cm at the end of a 300 minutes session.  
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Figure 5.22 3D positioning accuracy using 30-min updated orbits and clocks. The average RMS of 62 

stations over one month is presented. Note that each dot denotes the RMS of all epochs within 5-min 

and the observation sampling rate is 30-sec. 

As an example, Figure 5.23 shows the 24-h coordinates time series with the quad-

constellation observations at station XMIS on DOY 340, 2021. One hour after the first 

epoch, the north and east components reach within 10 cm, whereas the up one fluctuates 

within 20 cm. The CLK_F and SISEST cases are more stable than other solutions, even 

though the SISEST case converges faster than the SISPRE one. 

The kinematic PPP accuracy based on 30-min updated orbits and clocks over all stations 

in one month is summarized in Figure 5.24, where both the single-system and multi-

GNSS solutions are included. Similar to the static PPP results, Galileo-only solution 

performs the best because of the superior quality of satellite clocks, while BDS-only still 

performs the worst. The horizontal accuracy of multi-GNSS solutions is around 5 cm, and 

the vertical one is within 10 cm, as long as the proper weighing strategy is adopted 

(CLK_F) or the SISRE is estimated (SISEST), which is much better than the ORIG and CLK 

cases. It is also interesting to observe that the SISEST case has the best accuracy for the 

Galileo-only solution compared to the other cases in both horizontal and vertical 

components.  
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Figure 5.23 Positioning errors in the East, North, and Up components on DOY 340 of 2021 for station 

XMIS in kinematic mode. 

 

Figure 5.24 Average 3D positioning error with 30-min updated orbits and clocks for horizontal (upper) 

and vertical (lower) components. 
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The statistics of using both 30-min and 60-min updated products are given in Table 5.5, 

including both Galileo-only and GREC solutions. For 30-min solutions, the GREC solution 

shows a position accuracy of 6.9 cm and 8.9 cm for the horizontal and vertical 

component, respectively. The CLK_F in the GREC solution is better than the ORIG case by 

a factor of two, reaching 6.2 cm horizontally and 9.6 cm vertically. The 60-min solutions 

have less optimal performance, as expected, and the best accuracy is achieved by the 

GREC solution in the SISEST case, with a horizontal and vertical RMS of 9.8 and 12.5 cm, 

respectively. For the Galileo-only solution, the SISPRE case is worse than the CLK_F 

results in both horizontal and vertical components, which is also observed in all single-

constellation solutions (not shown here). Compared with the SISPRE case, the CLK_F 

considers not only empirical behaviors for each satellite type by the scaling factor in 

Equation (5.21), but also the real clock performance of the current session by the formal 

error in Equation (5.21). When there are more observations involved (the GREC situation) 

or the prediction time becomes shorter (30 min), the discrepancy between the two cases 

becomes smaller. 

Table 5.5 Averaged position error for the Galileo-only and GREC solutions with 30- and 60-min updated 

orbits and clocks. The unit is cm. 

Solution 30-min  60-min 

 E GREC  E GREC 

 Up 2D 3D Up 2D 3D  Up 2D 3D Up 2D 3D 

ORIG 25.5 15.3 29.9 22.0 12.4 25.4  38.8 22.4 44.9 33.4 20.1 39.1 

CLK 25.4 15.3 29.8 18.0 10.2 20.8  38.7 22.5 44.9 26.6 15.9 31.2 

CLK_F 21.0 13.3 24.9 9.6 6.2 11.4  27.7 17.8 33.0 14.8 10.0 17.9 

SISPRE 21.0 13.3 24.9 11.7 7.2 13.8  35.8 23.0 42.7 23.2 14.5 27.4 

SISEST 15.4 10.6 18.8 8.9 6.9 11.3  20.5 14.0 25.0 12.5 9.8 16.0 

5.6 Chapter summary 

The main findings in this chapter are summarized as follows. 

Section 5.1 demonstrates the consistency between batch and epoch-parallel processing 

strategies. The proposed method is rigorously equivalent to the sequential batch processing 

strategy. Moreover, it can take full advantage of  multi-cores and multiple computers by 

dividing the long session into short sub-sessions and each sub-session can be processed 

parallelly. 

Section 5.2 presents the flowchart of  epoch-parallel processing strategy and computation 

efficiency for multi-GNSS observations. Together with parallel processing of  data 

downloading, quality control, phase windup calculation, residual checking and orbit integration, 

the main contribution of  this strategy is the realization of  parallel parameter estimation, 

including parameter recovery. The time required for one parameter estimation of  around 100 

stations and 120 satellites can be reduced from 13 minutes to 6 min. Compared with sequential 
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batch processing, the overall computation time is reduced by 25% to 49%, with more than two 

nodes utilized. However, the benefits of  using more than four nodes are less significant. With 

an optimized epoch-parallel POD strategy, the ultra-rapid orbits can be updated within 30 

minutes for a global network of  90 tracking stations and one hour for a global network of  120 

tracking stations. 

Section 5.3 presents the orbit computation efficiency of  the epoch-parallel processing strategy 

with historical information. Based on the UD-IAR strategy mentioned in Chapter 4, most 

fixed UD ambiguities will be removed. Since only a short arc of  new observations is introduced, 

only one or two iterations of  parameter estimation and observation cleaning is required. With 

the aid of  historical information, the data processing with 100 stations and 120 satellites can 

be finished within 15 min, in which one iteration of  parameter estimation only costs 3 min. To 

provide half-hourly orbits, the strategy proposed in Section 5.2 requires a high-frequency CPU 

(3.8 GHZ or 4.1 GHZ) and a smaller number of  stations (e.g., 90), whereas the strategy 

proposed in this section does not require such strict hardware setup. 

Section 5.4 presents the real-time orbit accuracy. The shorter the orbit update interval, the 

higher the orbit accuracy. Compared with IGS and GBM products, the average 1D RMS values 

of  orbit updated per 10 minutes reach 3.1, 5.8, 3.4, 138.8, 18.1, and 6.8 cm for GPS, 

GLONASS, Galileo, BDS GEO, BDS IGSO, and BDS MEO satellites, respectively. The 

corresponding orbit DBDs is around 1.0 cm for MEO satellites. Except for BDS GEO and 

IGSO satellites, the orbits updated per 10-, 20-, and 30-minutes show similar performance, 

with a difference of  less than 10%. 

Section 5.5 investigates the performance of  RT PPP with predicted orbits and clocks. Thanks 

to the high stability of  onboard satellite clocks, the SISRE of  newly launched satellites with 

predicted orbits and clocks, for example, Galileo, BDS-3, and GPS BLOCK IIIA satellites, is 

less than 8 cm within orbits updated per 30 to 60 min. Static and simulated kinematic PPP 

experiments show that applying predicted orbits and clocks to a PPP model is achievable, and 

3D positioning accuracy is within 4.0 cm and 25.0 cm, respectively. 

  





 

 

6 Conclusions and outlook 

6.1 Conclusions and recommendations 

With the increasing number of  available satellites, the multiple GNSS constellations bring 

more opportunities and challenges for more reliable GNSS applications, in which the precise 

orbit and clock products are the key elements, especially for real-time GNSS applications. 

Currently, the available real-time orbits provided by IGS ACs are mainly predicted from the 

batch least-squares solution owing to its feasibility of  routine processing. In order to provide 

high-precision satellite orbits, not only accurate force and signal-delay models are necessary, 

but also data processing efficiency should be improved. Parameter estimation takes the 

majority of  the consuming time of  a GNSS data processing task. Therefore, this thesis aims 

to provide high-precision real-time orbits from the following three aspects: (1) refining SRP 

modeling during eclipse seasons; (2) investigating the necessity of  choosing UD IAR instead 

of  DD IAR; and (3) improving data processing efficiency without destroying the consistency 

of  estimated parameters. 

Through three years of  GPS observations, the performance of  different SRP models, 

including the box-wing and adjustable box-wing as the a priori model and the ECOM1 and 

ECOM2 as the parameterization mode are investigated, especially for eclipsing satellites. 

Moreover, the two methods of  handling the shadow factor, applying it to either the D (pointing 

toward to the Sun) or all directions, are also discussed. According to the theoretical analysis of  

acceleration expressions in 𝐷  and 𝐵  directions in DYB frame, where 𝑌  points along the 

satellite’s solar panel axis and 𝐵 completes the right-handed frame, it is confirmed that the 

number of  significant periodic terms depends on the shape of  a satellite and optical properties. 

The number of  unknown parameters in the ECOM model can be reduced if  there is a precise 

a priori box-wing model. The large coefficient values in the 𝑌 direction for some satellites 

convey that they possibly stem from non-gravitational forces in ±𝑌 surfaces. Therefore, the 

parameter in 𝑌  direction should remain active during eclipse seasons. The high correlation 

between coefficients in the 𝐵 direction and 𝛽 angle is also possibly caused by unmodeled non-

SRP forces. Therefore, keeping parameters in 𝑌 and 𝐵 directions during eclipse seasons, that is, 

applying the shadow factor only in the D direction, is helpful to absorb some unmodeled forces. 

The statistics of  estimated ECOM coefficients show that the best performance is achieved when 

applying the a priori adjustable box-wing model and applying the shadow factor to the D 

direction. This conclusion is also confirmed by orbit and ERP results. Compared with the 

solution using ECOM1 as the parameterization model without the a priori box-wing model 

and the shadow factor applied in three directions as reference, the RMS values of  orbit DBD 

in the solution using a priori adjustable box-wing model with shadow factor applied in the D 
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direction are improved by 17.8%, 22.7%, and 26.1% for the BLOCK IIR satellites in eclipsing 

seasons in the along, cross, and radial direction, respectively. 

Besides the investigation of  SRP models, the superiorities of  UD IAR are exploited in GNSS 

POD solutions. Although DD IAR and UD IAR are considered equivalent theoretically, there 

are still some differences between DD IAR and UD IAR: (1) UD IAR is based on the similarity 

of  the fractional parts of  float ambiguities and so is more sensitive to the accuracy of  float 

ambiguities compared with DD IAR due to the temporal variation of  UD ambiguities; (2) UD 

IAR is more robust than DD IAR since UD IAR has the ability to exclude outliers 

automatically; (3) UD IAR outperforms DD IAR in terms of  processing efficiency, as the 

fixable UD ambiguities can be removed before parameter estimation. Owing to the 

dependence of  UD IAR on the accuracy of  float ambiguities in POD solution, UD IAR 

cannot be performed directly based on a float solution. Therefore, DD IAR should be 

performed in advance to achieve UD IAR solution. In the UD IAR solution, the STD values 

of  NL UPDs are 0.03, 0.03, 0.11, and 0.13 cycles for GPS, Galileo, BDS-2, and BDS-3, 

respectively. Compared with the DD IAR solution, a better performance of  orbits is observed 

in the UD IAR solution. For example, the orbit accuracy of  BDS MEO satellites is also 

improved by 21.7% and 10.4% in the along and cross component, respectively. A similar 

conclusion can be derived for ERPs and other global geodetic parameters. Compared with 

IERS 14 C04, the PM offsets are reduced from 89.5 μas to 79.5 μas on the x-pole and from 

79.3 μas to 71.8 μas on the y-pole. The PM rates also show an improvement of  8.0% and 9.2% 

for the x-pole rate and the y-pole rate, respectively. The improvements of  station coordinates 

and GCC in three components are less than 5%. 

Addressing the differences that occurred between UD IAR and DD IAR solutions, the 

performances of  different realization of  DD IAR and UD IAR are investigated with one year 

of  GPS POD processing. DD IAR is usually worse than UD IAR, depending on how it is 

implemented. The largest orbit differences reach 7.2, 3.4, and 3.5 mm for the along, cross, and 

radial components, respectively. Compared with the UD IAR solution, orbit results show that 

the absence of  independent DD ambiguities is the main factor causing significant orbit 

differences. Incorrectly fixed DD ambiguity is the other factor that degrades orbit accuracy. 

The two reasons are also confirmed in the investigation of  other parameters, including ERPs, 

station coordinates, and GCC. In practice, achieving the two conditions is challenging, 

particularly when dealing with a massive network. One reason is that incorrect DD ambiguities 

can be hardly identified. The other reason is selecting independent DD ambiguities just from 

a pre-defined maximum independent baseline set carries the risk of  missing a part of  

independent DD ambiguities. In general, UD IAR is highly recommended for daily GNSS data 

processing. 

Based on the refined SRP model and UD IAR strategies, an epoch-parallel processing strategy, 

which is rigorously equivalent to the sequential batch processing strategy, is proposed to 

improve data processing efficiency. For the proposed epoch-parallel processing strategy, almost 

all the processes (e.g., orbit integration) can run in a parallel way. The time required for one 

parameter estimation of  100 stations and 120 satellites is reduced from around 13 minutes to 
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6 minuets. When there are two or more nodes, the whole processing time of  achieving a POD 

solution is reduced from 25% to 49%. The improvement of  overall computation efficiency is 

minor when the number of  nodes is larger than four. With an optimized epoch-parallel POD 

strategy, the ultra-rapid orbits can be updated within 30 minutes for a global network of  90 

tracking stations and one hour for a global network of  120 tracking stations. Taking advantages 

of  UD IAR, the fixed UD ambiguities can be removed from normal equation. Moreover, we 

can reduce the number of  data-cleaning steps from four to two as only a short arc containing 

new observations need data cleaning. With the aid of  historical information, the data 

processing with 100 stations and 120 satellites can be finished in 15 minutes, in which one 

iteration of  parameter estimation only costs 3 minutes. Thanks to the 30 minutes or even less 

orbit update interval and high stability of  onboard satellite clocks, 3D positioning accuracy in 

static and simulated kinematic PPP with GPS, Galileo and BDS observations and predicted 

orbits and clocks is within 4.0 cm and 25.0 cm, respectively. 

In conclusion, the real-time orbits with refined SRP model and UD IAR strategies show the best 

performance. Compared with IGS and GBM products, the average 1D RMS values of  orbit 

updated per 10 minutes are 3.1, 5.8, 3.4, 138.8, 18.1, and 6.8 cm for GPS, GLONASS, Galileo, 

BDS GEO, BDS IGSO, and BDS MEO satellites, respectively. The corresponding orbit DBDs 

is around 1.0 cm for MEO satellites. Except for BDS GEO and IGSO satellites, the orbits 

updated per 10-, 20-, and 30-minutes show similar performance and the orbit difference of  them 

is less than 10%. The superiority of  shortening orbit update interval also is demonstrated from 

PPP results. 

6.2 Future work 

Inspired by the work already done in this study, the following studies will be performed in 

future. 

It is well known that the modeling of  solar radiation pressure is the main limiting factor in 

terms of  orbit quality. SRP modeling still needs further investigation, especially for unmodeled 

forces during eclipse seasons. As shown in Figure 3.7, a visible linear trend of  the coefficient 𝑌0 

is observed for BLOCK IIF during eclipse seasons and then reduced after the 𝛽 angle switches 

the sign. A similar phenomenon is found in Figure 4 of  Duan and Hugentobler (2021). This 

phenomenon cannot be explained solely by thermal radiation, as the variation is asymmetrical. 

According to the results of  this thesis, the SRP performances of  different satellites in the same 

group are also different. Therefore, the classification of  box-wing models should be divided 

according to satellite types.  

A better understanding of  the signal biases occurring in satellite and receiver hardware could 

lead to improved parametrizations. Currently, receiver-end deviations are not considered in the 

UD IAR solution. In practice, the receivers distributed worldwide are from multiple 

manufacturers of  different types and/or versions. Different manufacturers or brands of  

receivers could cause deviations in the pseudo-range observations. The significant biases of  
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up to 0.4 cycles found in WL UPDs among different receiver types will impact the UPD 

estimation and hinder ambiguity resolution (B. Cui, Li, et al., 2021). Achieving accurate 

ambiguity resolution across all receiver types necessitates consistent pseudo-range and precise 

UPD products. Therefore, these deviations should be carefully estimated and compensated in 

the future.  

Investigating the feasibility of  UD IAR based on the ambiguity directly derived from float 

solution. Although in POD, the fractional parts of  estimated UD ambiguities vary significantly 

along with time, some of  satellites still have stable time series of  NL UPD as shown in Figure 

4.3. Hence, it is worthwhile to investigate the ambiguities of  certain satellites with stable time 

series of  NL UPDs to find out why these satellites performs better. After solving this problem, 

the realization of  direct UD IAR based on the ambiguity derived from the float solution is 

possible. 

Last but not least, data processing efficiency still needs to be improved. Including as many 

signals and stations as possible could make GNSS data processing time-consuming, For 

example, daily number of  stations contributing to the IGS combination is up to 800 

(Rebischung, 2021), which will increase sharply once Galileo, GLONASS and BDS enter the 

processing. For a network with 800, estimating millions of  parameters many need more than 

20 hours on a cluster of  servers. Moreover, when we choose an undifferenced and uncombined 

processing strategy, unknown parameters could be much larger, for example, ionosphere 

parameters. Therefore, efficiency improvement of  GNSS data processing is an ongoing topic. 
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