@DGK Ausschuss Geodiésie (DGK)

der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 967

Fabian Ruwisch

GNSS Feature Maps — Robust Lane-level Accurate
GNSS Navigation in Urban Trenches

Miinchen 2025

Verlag der Bayerischen Akademie der Wissenschaften, Miinchen

ISSN 0065-5325 ISBN 978 3 7696 5379 3






@DGK Ausschuss Geodasie (DGK)

der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen

GNSS Feature Maps — Robust Lane-level Accurate

GNSS Navigation in Urban Trenches

Von der Fakultat fiir Bauingenieurwesen und Geodasie
der Gottfried Wilhelm Leibniz Universitat Hannover
zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Fabian Ruwisch, M. Sc.

Minchen 2025

Heft Nr. 967

Verlag der Bayerischen Akademie der Wissenschaften, Minchen

ISSN 0065-5325 ISBN 978 3 7696 5379 3



Adresse des Ausschusses Geodasie (DGK)
der Bayerischen Akademie der Wissenschaften:

@DGK

Ausschuss Geodasie (DGK) der Bayerischen Akademie der Wissenschaften

Alfons-Goppel-Stralte 11 ® D — 80 539 Miinchen

Telefon +49 — 89 — 23 031 1113 e Telefax +49 — 89 — 23 031 - 1283 / - 1100
e-mail post@dgk.badw.de e http://www.dgk.badw.de

Prifungskommission:

Vorsitzender:  Prof. Dr.-Ing. habil. Christian Heipke

Referent: Prof. Dr.-Ing. Steffen Schén

Korreferenten: Associate Prof. Dr. Li-Ta Hsu (The Hong Kong Polytechnic University)
apl. Prof. Dr.-Ing. Claus Brenner

Tag der mundlichen Prifung: 25.03.2025

Diese Dissertation ist auf dem Server des Ausschusses Geodasie (DGK)
der Bayerischen Akademie der Wissenschaften, Miinchen unter <http://dgk.badw.de/>
sowie unter Wissenschaftliche Arbeiten der Fachrichtung Geodasie und Geoinformatik
der Leibniz Universitat Hannover (ISSN 0174-1454), Nr. 415,
<https://repo.uni-hannover.de/items/a02de733-f4df-49b7-809d-b55643667551>, Hannover 2025, elektronisch publiziert

© 2025 Ausschuss Geodasie (DGK) der Bayerischen Akademie der Wissenschaften, Miinchen

Alle Rechte vorbehalten. Ohne Genehmigung der Herausgeber ist es auch nicht gestattet,
die Veroffentlichung oder Teile daraus zu vervielfaltigen.

ISSN 0065-5325 ISBN 978 3 7696 5379 3



Abstract

The demand for high accuracy and high integrity positioning using the Global Navigation
Satellite System (GNSS) sensor is on the rise, as GNSS is the only observation system capable
of providing absolute positioning information. However, all GNSS positioning strategies are
sensitive to the operating environment, posing a substantial challenge in fulfilling the local-
ization requirements of autonomous vehicles, particularly in dense urban areas. The primary
error source for GNSS-based vehicle positioning in these areas is the reception of multipath
signals — combinations of direct and reflected signals — and NLOS (Non-Line-of-Sight) signals,
which are only reflected signals that reach the antenna. These signals can cause significant
inaccuracies in vehicle position estimation regardless of the GNSS positioning technique used.
To address multipath and NLOS errors, two primary strategies have been developed. One is
3DMA (3D-Mapping-Aided) GNSS, which improves urban GNSS navigation by utilizing 3D
city models. Another involves using robust estimation strategies that include all observations
but reduce the impact of erroneous observations on the positioning solution through various
robust loss functions. However, these techniques have limitations, such as an overly conser-
vative down-weighting of observations, lack of robustness for highly contaminated data, the
need of additional 3D city model information or computationally intensive algorithms.

In this thesis, two innovative strategies are proposed to improve GNSS-based navigation in
urban trenches, building upon existing multipath mitigation strategies for single, static sta-
tions (i.e., utilizing the ground-track repeatability of ranging errors) with the objective of
generating a GNSS Feature Map tailored for automotive applications. The thesis discusses all
critical aspects of the map generation process in detail, including the coordinate information
serving as foundation of the map, its resolution in longitudinal, lateral and vertical direction,
and an in-depth evaluation of the GNSS ranging error similarity. The final product is a GNSS
Feature Map consisting of satellite visibility information or pseudorange residual information
for all satellite positions in a regular grid along a selected trajectory. The performance of
employing various robust loss functions for computing the observation weights based on map
information is theoretically evaluated through a Monte-Carlo simulation. In this context, the
HG-estimator, an adapted robust estimator, is introduced. Simulation results for multi-GNSS
SPP (Single Point Positioning) demonstrate that when prior knowledge of ranging errors is
applied to compute observation weights, a 3D position error of around 2 m is achieved even
if 70 % of the observations have a standard deviation of 100 m. The map information is
further incorporated into an extended Kalman filter (EKF) framework for GNSS RTK (Real-
time Kinematic) positioning, allowing either the exclusion of potential NLOS satellites or the
adaption of robust estimation techniques. The evaluation and validation of these strategies
are carried out based on two kinematic automotive experiments, located in a medium and
deep urban trench, respectively. The impact of GNSS Feature Map information is assessed
by means of typical GNSS performance parameters, such as accuracy, integrity and ambiguity
resolution. Improvements of 54 % and 79 %, and 60 % and 64 % in horizontal and vertical
accuracy for the medium and deep urban trenches, respectively, are achieved when applying
the HG-estimator with map information. Consequently, lane keeping and lane determination
accuracy requirements are met. The integrity and reliable ambiguity resolution are signifi-
cantly enhanced, which leads to an overall more robust state estimation. By combining the
map information with raw data from different receiver grades, the hardware independence
is successfully proven. Finally, the results are compared to receiver-internal RTK solutions,
yielding a significant improvement in the deep urban trench.

Keywords: Urban GNSS navigation, GNSS Feature Map, multipath mitigation, robust esti-
mation, autonomous vehicles






Zusammenfassung

Die Nachfrage nach einer hochgenauen und zuverlédssigen Positionsbestimmung mittels des
Global Navigation Satellite System (GNSS)-Sensors steigt, da GNSS das einzige Beobach-
tungssystem ist, das absolute Positionsdaten liefern kann. Allerdings sind alle GNSS-Positio-
nierungsstrategien sensitiv gegeniiber der Umgebung, was eine Herausforderung bei der Erfil-
lung der Lokalisierungsanforderungen autonomer Fahrzeuge darstellt, insbesondere in dichten
Stadtgebieten. Die Hauptfehlerquelle fiir die GNSS-basierte Fahrzeugortung in diesen Gebie-
ten ist der Empfang von Mehrwegesignalen — Kombinationen aus direkten und reflektierten
Signalen — und NLOS-Signalen (Non-Line-of-Sight), bei denen es sich nur um reflektierte Sig-
nale handelt, die die Antenne erreichen. Zur Behebung dieser Fehler wurden zwei Hauptstra-
tegien entwickelt. Die eine ist 3D-Mapping-Aided (3DMA) GNSS, das die GNSS-Navigation
in Stddten durch die Verwendung von 3D-Stadtmodellen verbessert. Zum anderen werden ro-
buste Schétzstrategien verwendet, die alle Beobachtungen einbeziehen, aber die Auswirkungen
fehlerhafter Beobachtungen auf die Positionierungslosung durch verschiedene robuste Verlust-
funktionen reduzieren. Diese Verfahren weisen jedoch Einschrinkungen auf, wie z. B. eine
zu konservative Herabgewichtung, mangelnde Robustheit bei stark kontaminierten Daten, die
Notwendigkeit zusétzlicher Gebdudemodellinformationen oder rechenintensive Algorithmen.

In dieser Arbeit werden zwei innovative Strategien zur Verbesserung der GNSS-Navigation in
stadtischen Gréaben vorgeschlagen, die auf bestehenden Strategien zur Verringerung von Mehr-
wegeffekten fiir statische Stationen aufbauen, mit dem Ziel, eine Karte zu erstellen, die im
Automobilbereich anwendbar ist. In dieser Arbeit werden alle kritischen Aspekte des Karten-
erstellungsprozesses erortert, einschliefllich der Koordinaten, ihrer Auflésung in Léngs-, Quer-
und Vertikalrichtung, sowie einer Bewertung der Ahnlichkeit der GNSS-Entfernungsfehler.
Das Endprodukt ist eine GNSS-Merkmalskarte, die aus Sichtbarkeitsinformationen oder Ent-
fernungsfehlern fiir alle Satellitenpositionen in einem regelméfligen Gitter entlang einer ausge-
wahlten Trajektorie besteht. Die Leistung der verschiedenen robusten Verlustfunktionen zur
Berechnung der Beobachtungsgewichte aus Karteninformationen wird durch eine Monte-Carlo-
Simulation bewertet. In diesem Kontext wird der HG-Schétzer eingefiihrt, ein angepasster ro-
buster Schétzer. Simulationsergebnisse fiir Multi-GNSS SPP (Single Point Positioning) zeigen,
dass ein 3D-Positionsfehler von etwa 2 m erreicht wird, selbst wenn 70 % der Beobachtungen
eine Standardabweichung von 100 m aufweisen, wenn Vorwissen iiber Entfernungsfehler ver-
wendet wird. Diese Karteninformationen werden in einen extended Kalman-Filter (EKF) fiir
die RTK-Positionierung (Real-Time Kinematic) integriert, was entweder den Ausschluss von
NLOS-Satelliten oder die Anpassung robuster Schétzverfahren erméglicht. Die Bewertung und
Validierung dieser Strategien erfolgt anhand von zwei kinematischen Experimenten in einem
mittleren bzw. tiefen stddtischen Graben. Die Auswirkungen der GNSS-Merkmalskarte werden
anhand typischer Parameter wie Genauigkeit, Integritdt und Mehrdeutigkeitsauflésung bewer-
tet. Verbesserungen von 54 % und 79 % sowie 60 % und 64 % bei der horizontalen und verti-
kalen Genauigkeit fiir den mittleren bzw. tiefen stadtischen Graben werden durch die Anwen-
dung des HG-Schétzers mit Karteninformationen erreicht. Folglich werden die Anforderungen
an Fahrspurhaltungs- und Fahrspurbestimmungs-Anwendungen erfiillt. Die Integritdat und die
zuverlassige Auflosung von Mehrdeutigkeiten werden erheblich verbessert, was zu einer ins-
gesamt robusteren Zustandsschitzung fihrt. Durch die Anwendung der Karteninformationen
auf Rohdaten von verschiedenen Empfingertypen wird die Hardwareunabhingigkeit erfolg-
reich nachgewiesen. Schliellich werden die Ergebnisse mit empfangerinternen RTK-Losungen
verglichen, was zu einer signifikanten Verbesserung in tiefen stddtischen Grében fiihrt.

Schlagworter: Stadtische GNSS-Navigation, GNSS-Merkmalskarte, Mehrwegeabschwéichung,
Robuste Schéitzung, Autonome Fahrzeuge
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Introduction

1.1 Motivation

Global Navigation Satellite System (GNSS) is a geospatial infrastructure that allows users
with compatible devices to determine their position, velocity and time by processing signals
from satellites. The use of the GNSS sensor for position, navigation and timing is a signifi-
cant enabler of functionality across a number of markets, including agriculture and precision
farming, aviation and drones, insurance and finance, maritime and inland waterways, rail, and
road and automotive. The focus of this thesis is on navigation in the automotive sector.

Accurate localization in urban environments plays a crucial role in many Intelligent Trans-
portation System (ITS) applications, such as autonomous driving. The demand for high
accuracy and high integrity positioning using the GNSS sensor is on the rise, as GNSS is the
only observation system capable of providing absolute positioning information. To fulfill the
stringent localization requirements for autonomous vehicles, such as for lane determination or
lane keeping applications, carrier phase-based positioning techniques must be utilized. The
employment of high-precision GNSS positioning strategies, such as Precise Point Positioning
(PPP), Real-Time Kinematic (RTK) or PPP-RTK, enables the achievement of centimeter-
level accuracy in the determination of the users’ location. However, all GNSS positioning
strategies are sensitive to the operating environment, which presents a significant challenge in
meeting the localization requirements for autonomous vehicles in dense urban environments.

The GNSS signal is subject to a number of different error sources along its path from the
satellite to the user antenna. The satellite clock error is addressed by the broadcast naviga-
tion message, which is transmitted concurrently with the pseudoranges or by orbit and clock
products of the International GNSS Service (IGS). Furthermore, atmospheric effects, such
as ionospheric and tropospheric delays, are either physically modeled, estimated within the
positioning model, or corresponding corrections are transmitted by GNSS correction service
providers. The primary source of error in GNSS-based vehicle positioning in urban environ-
ments is the reception of multipath signals — combinations of direct and reflected signals —
and Non-Line-Of-Sight (NLOS) signals, which are only reflected signals that reach the an-
tenna. Regardless of the high-precision GNSS positioning strategy employed, these signals
can introduce significant errors in the vehicle’s position estimation.

The characteristics of GNSS signals are dependent upon both the location of the user antenna
and the positions of the satellites. In static multipath environments, a common method is
to consider the ground-track repeatability of reflection-based errors in order to map errors
induced by the local environment. In dynamic urban scenarios, the signal propagation-related
characteristics exhibit a complex spatiotemporal behavior, whereby they are dependent on the
moving user antenna location, the changing satellite positions, and the buildings in the sur-
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rounding area. However, the ground-track repeatability of reflection-based errors still shows
potential for generating such a map for automotive applications, yet there is a lack of re-
search contributions in this field. Consequently, numerous other multipath and NLOS error
mitigation strategies have been investigated with the objective of enhancing GNSS-based nav-
igation. However, all of these strategies exhibit constraints with respect to their applicability
to autonomous vehicles in urban environments. The performance of a GNSS-based navigation
system can be significantly enhanced when information regarding the propagation character-
istics of the signal is accessible, which is achieved through the utilization of 3D city models
and ray tracing computation. However, an accurate initial user position is necessary, and
the performance is limited due to inaccuracies of the 3D city models and the computational
complexity that depends on the environmental situation. While the effectiveness of satellite
exclusion strategies is dependent on the number of available Line-Of-Sight (LOS) signals, error
rectification strategies have only been studied for pseudorange-based positioning.

Another method of mitigating multipath and NLOS signal reception errors is the utilization
of robust estimation strategies. They substantially improve the accuracy of the resulting
GNSS positioning solution, provided that the number of faulty satellites is moderate. Robust
estimation techniques retain all observations, but significantly dampen the impact of erroneous
observations on the positioning solution through the implementation of diverse designs of
robust loss functions. However, in the event that the number of measurement errors exceeds
the number of available nominal observations, it becomes impossible to compute an optimal
solution.

The aforementioned limitations of existing methods to enhance GNSS-based navigation in
urban environments and the lack of research contributions in the field of mapping GNSS signal
propagation conditions and ranging errors for automotive applications present a substantial
opportunity for a comprehensive scientific investigation into the generation of such a map.
This encompasses not only the generation of the map but also the combination with and
adaptation of robust estimation techniques, with the objective of leveraging the advantages
of existing methods while mitigating their inherent limitations.

1.2 Objective and Outline

The main focus of this thesis is the generation of a GNSS Feature Map tailored for automo-
tive applications, aimed at improving GNSS navigation in urban trenches. A comprehensive
review of the map generation process is provided, addressing all critical aspects, including the
coordinate information that serves as the foundation of the map, its resolution in the longitu-
dinal, lateral, and vertical directions, and an in-depth evaluation of the GNSS ranging error
similarity. The potential of combining these map information with existing robust estimation
techniques is theoretically assessed through Monte-Carlo simulation for pseudorange-based
Single Point Positioning (SPP). As the localization requirements for automotive applications
are very stringent, carrier phase-based positioning has to be implemented. To this end, the
map information is further incorporated into an Extended Kalman Filter (EKF) framework
for GNSS RTK positioning, allowing either the exclusion of potential NLOS satellites or the
adaption of robust estimation techniques. The evaluation and validation of these strategies
are carried out based on two kinematic automotive experiments, located in a medium and
deep urban trench, respectively. The impact of GNSS Feature Map information is assessed
by means of typical GNSS performance parameters, such as accuracy, integrity and ambiguity
resolution. Additionally, the thesis investigates the hardware dependency and performance
with respect to the receiver-internal RTK solution. In alignment with the aforementioned
objectives, this thesis is organized as follows.
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Chapter 2 provides an overview of the methodologies and models employed in this thesis, as
well as an examination of the most advanced techniques from the literature. First, the fun-
damentals of GNSS are presented, including an overview of the various observation types and
the combination of observations. Additionally, the discussion addresses the variance models
assigned to GNSS measurements. Secondly, Kalman filtering is examined as a foundation for
subsequent filter implementation with respect to the GNSS positioning formulation. Thirdly,
the discussion turns to the precise GNSS positioning techniques, with an examination of their
respective advantages and disadvantages. Subsequently, this section will review integer ambi-
guity resolution techniques, which are necessary when utilizing carrier phase-based positioning.
Furthermore, an extensive review of the mathematical foundation for robust estimation tech-
niques is presented, along with a discussion of the robust loss functions that are applied in this
thesis. Next, current state of the art strategies for GNSS positioning in urban environments
are reviewed with respect to their applicability and limitations. Finally, the most important
GNSS performance parameters are introduced, together with the performance specifications
for ITS.

Chapter 3 is devoted to the EKF framework for urban navigation. It includes a detailed
overview of the state estimation formulation, an in-depth presentation of the outlier detec-
tion methodology, an illustration of the incorporation of 3D-Mapping-Aided (3DMA) fault
detection and exclusion strategy, and a thorough explanation of the computation procedure
involving all essential components of the positioning algorithm.

Chapter 4 introduces the GNSS Feature Map-aided robust EKF by providing initial moti-
vation and a detailed description of the adapted robust estimation. This is followed by a
performance analysis of existing and newly introduced robust estimators through a Monte-
Carlo simulation study. The second part of this chapter provides extensive information on the
GNSS Feature Map generation, including the concept, map generation, waypoint resolution
study, observation error similarity analyses and, finally, the provision of fully populated map
information.

After introducing the theoretical framework and methodology employed in this work, chap-
ter 5 extensively evaluates the proposed methods and models using data from two automotive
experiments, classified as medium urban trench and deep urban trench. The achieved im-
provement of the GNSS Feature Map-aided robust EKF is quantified in terms of various
performance parameters, including accuracy, integrity, and ambiguity resolution. Addition-
ally, the applicability of these approaches when utilizing different hardware is assessed, along
with a performance comparison with the receiver-internal RTK solution.

The thesis concludes with a summary of the most significant results and findings in chapter 6.
Additionally, it provides an outlook that addresses open questions and defines topics for future
investigations.






Basics

2.1 Fundamentals of Global Navigation Satellite Systems

2.1.1 Observables

One of the prevailing technologies to globally determine the absolute position, velocity or
time are GNSS with billions of users and a vast number of applications (Betz, 2021). The
market for GNSS applications is growing in recent years (EUSPA, 2024), especially due to the
increasing availability of various GNSS, i.e. the American Global Positioning System (GPS),
the Russian Globalnaja Nawigazionnaja Sputnikowaja Sistema (GLONASS), the European
Galileo and the Chinese BeiDou Navigation Satellite System (BDS). The transmitted GNSS
signals are electromagnetic waves that, in theory, propagate at the speed of light. The signals
frequencies are part of the L-band between 1.2 GHz and 1.6 GHz or equivalently at signal
wavelengths between 19 cm and 25 cm, enabling measurements of high precision. In addition,
these signals are not attenuated in the atmosphere under common weather conditions and
thus, reasonably simple user equipment is sufficient in order to receive the transmitted signals
(Langley et al., 2017).

For the computation of position, velocity and time, three basic GNSS observation types are
used, namely the pseudorange, carrier phase and Doppler observations. A fourth observ-
able, the signal strength, which is often represented as Carrier-to-Noise-Power-Density Ratio
(C/Ny), provides information about the signal quality. Further, it is adequate for develop-
ing C/Ny-based weighting models (Brunner et al., 1999; Luo et al., 2009) or for detecting
and mitigating multipath effects (Larson et al., 2007; Rost and Wanninger, 2009; Smyrnaios,
2016).

Pseudorange

The basic measurement of every GNSS is the observed difference between the time of trans-
mission with respect to the satellite timescale and the time of reception with respect to the
receiver time scale (Hauschild, 2017a). By multiplying this measured time difference with
the speed of light, the signal travel time is converted to a range measurement which can be
expressed as the geometric range between user A and satellite i and is written as

g = /(X1 = X4)2 + (Y = Ya)? + (21 — Za)? (2.1)

with the respective Earth-centered, Earth-fixed (ECEF) Cartesian coordinates X,Y, Z of the
user and satellite, respectively. Since the receiver and satellite timescales are asynchronous,
biases for the receiver and satellite clock need to be introduced and thus, the measurements
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become the so-called pseudorange measurement. Due to other error sources along the signal
path, the basic observation equation for pseudoranges yields

P = O+ (Sta— 5') + 8ty oy + OTH +0T4 + 84, — 5 + €, (2.2)

with

o the pseudorange observation in meters,

oY the Euclidean distance in meters,

c the speed of light in meters per second,

Ota the receiver clock bias in seconds,

ot the satellite clock bias in seconds,

57524,7481 the relativistic correction term in meters,

5T21 the tropospheric correction in meters,

oIy the ionospheric correction in meters,

04, — 0, the hardware delays of the receiver and satellite in meters,

e"A7 p the pseudorange measurement noise in meters.

Depending on the application, the parameters in Eq. 2.2 may either be estimated, corrected
by using models, eliminated by combining observations, or even neglected in accordance with
application and accuracy requirements.

Carrier Phase

An additional observation type of the signal travel time measurement is the so-called carrier
phase, which is 100 - 1000 times more precise than the pseudorange measurement thanks
to its short wavelengths of approximately 19 to 25 cm. The receiver does not observe the
absolute distance but continuously measures the fractional phase shift between a generated
replica of the carrier signal and the incoming carrier signal from the satellite. Contrary to
the pseudorange measurement, the carrier phase produces ambiguous measurements, since
the integer number of full cycles between the satellite and user is randomly initialized and
remains unknown (Hauschild, 2017a). In case the signal tracking is interrupted, e.g. due to
obstructions, multipath effects or ionospheric scintillation, the integer number of full cycles
is re-initialized which yields a so-called cycle slip. The observation equation for the carrier
phase measurement is

Yy = ol +c (6tA — 5#) + 6t o + 6T — 6I% + 640 — 0 + AN + €4 g (2.3)

with
f4 the carrier phase observation in meters,
oY the Euclidean distance in meters,
c the speed of light in meters per second,
Ota the receiver clock bias in seconds,
ott the satellite clock bias in seconds,
Ol el the relativistic correction term in meters,
5T}" the tropospheric correction in meters,
oIy the ionospheric correction in meters,
04,0, 0 the hardware delays of the receiver and satellite in meters,
A the wavelength of the carrier signal in meters,
NY the integer number of full cycles,

€A o the carrier phase measurement noise in meters.
k)
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Differences to the pseudorange equation (Eq. 2.2) are the negative sign of the ionospheric
correction, the additional term of the carrier phase ambiguity and the smaller observation
noise.

Doppler

A relative motion between a transmitter — the satellite — and a receiver — the user — results
in a frequency shift called the Doppler shift. The receiver measures the shift between the
nominal frequency and the observed frequency of the satellite signal, which differs from its
nominal frequency due to the relative motion. According to Hofmann-Wellenhof et al. (2008),
the equation of the frequency shift reads

Af=fa— = (24)

where f4 is the received frequency at receiver A, f the emitted frequency from satellite i and
v, is the line-of-sight velocity between satellite and receiver:

v, = % _,

T

Since the Doppler shift is linearly dependent on the relative velocity, it allows for instantaneous
velocity determination of the receiver.

(2.5)

Including the most relevant error sources, the basic Doppler observation equation is denoted
as

Pl =—ADY = 0y +6fa+06f +0fh e +0Th+ 0+ €4 p (2.6)

with

A the wavelength of the carrier signal in meters,

DY, the Doppler shift in Hertz,

Qf4 the relative velocity between satellite and receiver in meters per second,

0fa the receiver clock frequency bias in meters per second,

Sf? the satellite clock frequency bias in meters per second,

0 f};"ml the relativistic frequency correction term in meters per second,

(5Tﬁl the tropospheric rate correction in meters per second,

6[2 the ionospheric rate correction in meters per second,

ef47 P the Doppler shift measurement noise in meters.

Denoting the relative velocity between satellite and receiver by its velocities and ranges, the
geometric change reads

Xt — X4
4 r | Y=Yy
p “/}Zﬁ _“;X’A Z' — 24 (2.7)
04 = V}; - VXZ’,j Xi— X, .
A

with the respective ECEF Cartesian coordinates and velocities X,Y, Z and Vx,Vy,Vz. In
Eq. 2.6, the Doppler shift measurement is transformed into a metric value, also referred to as
pseudorange rate measurement p, by multiplying with the negative of the carrier wavelength.
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In addition to the main error sources listed in Eq. 2.2, Eq. 2.3 and Eq. 2.6, further GNSS errors
are present in undifferenced measurements, such as phase windup effects or site displacements.
However, these signal delays are eliminated through a process referred to as double differencing
(Kouba and Héroux, 2001; Bisnath, 2021), which will be described in the next section. As
this thesis mainly focuses on double difference observations and the accuracy requirements are
rather at the centimeter to decimeter level than in the millimeter range, these effects will be
neglected.

Signal Power

The fourth observable generated by the receiver for each tracked signal is the estimated re-
ceived signal power. Unlike the GNSS observables described above, the signal power is inde-
pendent from the Numerically Controlled Oscillator (NCO). It is derived from averaging over
all prompt I/Q correlator values that are available during a measurement interval:

I+Q*-2

C/No = or

(2.8)
where T is the integration time of the receiver. For more details on the internal receiver signal
processing steps, it is referred to textbook literature (Won and Pany, 2017). The estimate
of the C/Ny is affected by thermal noise but is otherwise an unbiased estimate. In general,
the C/Np is a good indicator for the GNSS signal quality, because the signal power and
the standard deviations of the receiver’s Delay-Locked-Loop (DLL) and Phase-Locked-Loop
(PLL) are directly correlated with each other (Hauschild, 2017a):

[ dBj,
~ A 2.9
ODLL 2C/N, C (2.9)

Bp AL
C/No 27‘("

opLL & (2.10)

where d is the correlator spacing in units of code chips, By, is the equivalent code loop noise
bandwidth in Hz, A¢ is the wavelength of the code in meters, Bp is the carrier loop noise
bandwidth in Hz and Ay, is the carrier-phase wavelength in meters. From Eq. 2.9 and Eq. 2.10
it is obvious that the C/Ny directly affects the measurement noise of the receiver’s DLL and
PLL. Typically, current receivers achieve a standard deviation of the code measurement noise
of a decimeter or less while a typical carrier-phase noise standard deviation is less than a
millimeter for high C/Nj values.

2.1.2 Combination of Observations

Multiple observations — either from the same type (e.g., pseudorange observations) or differ-
ent types (e.g., pseudorange and carrier phase observations or from various frequencies) — can
be combined for GNSS data processing or analysis applications. The advantage of combin-
ing observations is that, depending on the type of application, various nuisance parameters
can either be eliminated, reduced or separated (Hauschild, 2017b). Two major strategies of
combining observations exist.

The utilization of a Linear Combination (LC) typically includes different types of observations,
such as different frequencies or pseudorange and carrier phase observations. These are linked
in a way that different error sources of the signals are eliminated or separated. Examples for
LCs are the ionosphere-free LC, which almost completely eliminates the frequency-dependent
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ionospheric refraction of GNSS signals and the multipath LC, which separates the pseudor-
ange multipath error from other signal components. Other LCs (wide-lane LC, Melbourne-
Wiibbena LC, geometry-free LC) can be applied in ambiguity resolution studies and to cycle
slip fixing algorithms. All of the above mentioned L.Cs have their own characteristics in terms
of the resulting wavelength and noise amplification. As none of the aforementioned LCs are
utilized in this thesis, the reader is referred to standard literature for more detailed informa-
tion, e.g. Hauschild (2017b).

Differencing of observations, which will be utilized in this thesis, is the second major strategy
of combining observations. Assuming time-synchronized carrier phase measurements from two
satellites ¢ and j to two receivers A and B

iy = o ¢ (Ota = Ot) 08y o + 0T — 014 + 640 — 0 + AN4 + €l g
Oy = oy + ¢ (ta— 57) + 06y 0 + 0T — 6T, + 6a0 — 04 + AN + €y g
b= o +c(0tn — 0t") + 6t oy + 0T — 015+ op0 — O + ANp + ch g
Oy = gy + ¢ (0t — 07) + 6t + OTh — 0 + op.0 — 0 + AN} + ey g

there are two possible options of linking observations in order to form a Single Difference
(SD): i) between-receiver SD, further denoted as A and between-satellite SD, further denoted
as V. Both combinations are shown in Fig. 2.1(a) and Fig. 2.1(b), respectively. The two
receivers A and B thereby form a so-called baseline.

Combining the observations from one satellite to two receivers eliminates the receiver clock
error and the receiver hardware delay and the SD observation equation reads as

Aé%,B =
Adly g+ ¢ (08 = 6t ) + Abty oy + ATTh g — ALYy — Ol + 0 + ANAN} g + Aéy o
(2.15)

When forming the difference of the observations from two satellites to one receiver, the satellite
clock bias and the satellite hardware delay are eliminated and the SD observation equation
yields

Vol =
Vo +c(5ta—0tp) + Vot + VoI — VoI + a0 — 0o+ AVNY +Vely. (2.16)

"' S & . 248 W |
'n “ “% o \s f!'n

A B A B

(a) (c)

Figure 2.1: Double difference combination of GNSS observations derived from two single differences. (a)
between-receiver single difference, (b) between-satellite single difference, (¢) double difference.
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Both SD combinations lead to an increased noise level of v/20, assuming an identical standard
deviation ¢ for the uncombined observations.

When forming the Double Difference (DD), i.e. the difference of the two SD combinations
(see Fig. 2.1(c)), the advantages of both observation combinations are utilized, meaning that
the receiver and satellite clock errors as well as the receiver and satellite hardware delays are
eliminated. Therefore, the DD carrier phase observation equation reads

VAR, = &) — & — (9, - 35)
= VAQ%B + VA(Sti’\{B,Tel + VA‘STQ?B - VAMZ{B + )‘VANXE + VA(SE%B‘I"
(2.17)

Considering short baselines (e.g., < 1 km), the relativistic error, the tropospheric error and the
ionospheric error are greatly reduced and thus, can be neglected, which yields the simplified
DD carrier phase observation equation

VADY ;= VA, + AVANY, + VA 5 4, (2.18)

containing the DD Euclidean distance VAQ% 5, the DD integer ambiguity VANZE and the

DD carrier phase measurement noise VAGZ] .o which is amplified by a factor of 2 compared
to the uncombined observations. o

The same derivations and characteristics hold true for the DD pseudorange measurements,
but no ambiguity is present in that observation equation.

2.1.3 Weighting of Observations

The functional model describes the mathematical relation between observations and parame-
ters, denoted in the observation equations. Many solvers, such as Least-squares Adjustment
(LSA) or Kalman filters, require unbiased and normal distributed input data in order to
compute optimal state estimates (Gelb, 1974). In the case of GNSS, all remaining parts
which are neither modeled nor canceled, e.g. multipath effects, have to be either eliminated
or incorporated into the stochastic model. Otherwise, biased observations would deteriorate
the state estimation. Hence, the distribution of the measurements and determination of its
variance-covariance matrix is essential for obtaining optimal results. The stochastic model is
expressed in the so-called variance-covariance matrix, containing information on the precision
and mathematical correlation of observations (Tiberius and Kenselaar, 2000). An appropriate
modeling of the observations uncertainty is essential, since in addition to the states themselves,
the quality measures of the parameters are affected by the selection of the stochastic model.
Depending on the application, e.g., the uncertainty of carrier phase ambiguities (Teunissen,
2000; Wang et al., 2002), site coordinates (Schon and Brunner, 2008) or troposphere param-
eters (Jin and Park, 2005) is influenced. For weighting the observations, only the relative
magnitude of variances is important and impact the estimated parameters, however, the abso-
lute values of the uncertainties play a crucial role in quality control and integrity monitoring
and thus, need to be chosen adequately (Kim and Langley, 2001; Wieser and Brunner, 2002).

Equal variances for GNSS observations are unrealistic and suffer from neglected physical
characteristic of the transmitted signals. Due to atmospheric effects or site-specific effects,
the antenna gain of the satellites’ antenna, antenna gain of the receiving antenna and the dis-
tance between receiver and satellite, the precision of GNSS measurements is varying (Butsch
and Kipka, 2004). Therefore, suitable weighting schemes that assign higher weights to pre-
cise observations and lower weights to observations with higher noise have to be applied in
order to improve the parameter estimation by balancing the impact of different measurements
(Hartinger and Brunner, 1999; Brunner et al., 1999; Wieser and Brunner, 2000; Luo et al.,
2009).
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Elevation-dependent Model

One commonly applied weighting model in GNSS processing — other than the scaled identity
matrix — are elevation-dependent models due to the simplicity and global efficiency. The
model takes into account that satellites at low elevation suffer from larger atmospheric errors
and are more likely to be prone to multipath effects. Also, GNSS antennas are designed to
have the maximum antenna gain in zenith direction and minimum gain values at low elevation
angles in order to directly suppress lower quality satellite signals (Magsood et al., 2017). This
is the reason why the received signal power and thus, also the received observation noise
show an elevation-dependent behaviour (Wanninger et al., 2021). Therefore, the elevation-
dependent weighting model is expecting higher noise at low elevation angles and thus, assigning
lower weights and higher uncertainties to these satellites, respectively. Possible mathematical
expressions for the weighting model are the scaling by the sine of the elevation angle (Rothacher
and Beutler, 1998; Li et al., 2016)
2 3
0t = ” (2.19)

or an exponential form (Euler and Goad, 1991)

e
o =c3+ctexp . : (2.20)
0

where e; is the elevation angle of satellite ¢ and cg, 1, €9 are model parameters depending on
the used hardware and environment.

A strong correlation between the satellites elevation angle and GNSS signal quality is as-
sumed, which is true for scenarios under good observation conditions (e.g., open-sky GNSS
data). However, the elevation-dependent model suffer from deficiencies in more complex en-
vironments, such as urban areas, where satellites at higher elevations may also be affected by
multipath effects. In these cases, the elevation-dependent model cannot compensate for these
erTors.

C/Ny-dependent Models

For measurements collected under challenging conditions, the signal-to-noise-power-density
ratio can be used to apply a weighting model, which is more appropriate to describe the
GNSS signal quality for non-ideal observations. The relation of the received signal power and
the measurement noise is defined in Eq. 2.9 and Eq. 2.10. In addition to pseudorange, carrier
phase and Doppler shift observations, C/Ny values are recorded, which makes a more realistic
signal quality evaluation easily accessible.

In Hartinger and Brunner (1999), the SIGMA-¢ model is developed. The SIGMA-e¢ model
directly links the measured C/Ny value to the signal quality of the measured range observation,
which can be expressed as

No

2 -9
o2 =V, +C, 10" ™ (2.21)

with the model parameters V,, [m?] and C, [m?Hz] and the receiver/antenna type and signal
type index a. As soon as the model parameters for the desired receiver/antenna combination
are determined, the weights can be adjusted during GNSS signal processing using the observed
C/Ny values.

Another C/Np-dependent weighting model is the SIGMA-A model (Brunner et al., 1999).
To apply the SIGMA-A model, a receiver/antenna type dependent template function has to
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be determined beforehand, which represents the elevation dependency of C/Ny values. Signal
distortions lead to a change of the signal-to-noise ratio and are accounted for via the deviation
of the actual received C/Ny from the template function:

_C/Ng—a-|A]

02 =Vy+Cy-100" 10 (2.22)

with the deviation from the C/Nj template A and an empirical constant factor a. Signal
distortions may also increase the signal-to-noise ratio and that is why |A] is used instead
of A (Wieser and Brunner, 2000).

In contrary to the existing C/No-dependent weighting models which need a priori calibration
of the receiver/antenna influenced model parameters, Luo et al. (2009) derived an empirically
C/Np-dependent weighting model. The observed signal-to-noise ratios are evaluated and global
minimum and maximum C/Ny values, which correspond to the most extreme signal strengths
representative for the sites environment and receiver/antenna characteristics, are determined.
All observed GNSS measurements are then weighted with respect to the observed C/Ng values
scaled by the ratio of the minimum and maximum C/Nj value. The resulting mathematical
expression for the weighted variance reads

o? = ! (2.23)

A . 27
C/NZ _C/leﬂ
(CL + (1 + a’) ' C/Ng]%X—C/lc\)Ig]in>

where C/NJ, is the observed C/Nj of satellite 7, C/N"™ and C/NJ™ are the minimum and
maximum signal strength corresponding to the data set, respectively, and a is a parameter
introduced to avoid numerical issues.

Hybrid Models

Since the C/Ny-dependent weighting models still exhibit weaknesses — especially in harsh
environments and severe signal reception conditions — hybrid weighting models have been
developed to further minimize these deficiencies. Hybrid models usually require additional
information complementary to the received GNSS signals, e.g. 3D city model information, in
order to realistically weight measurements in harsh environments.

In Zhu (2018), a hybrid model is proposed combining the information of C/Ny, satellite
elevation and the Urban Multipath Model which is based on the Urban Trench Model (Betaille
et al., 2013). Since not all GNSS signals with high signal strength possess high quality and
in urban areas, multipath errors can occur for satellites at high elevations, an additional
indicator whether a satellite is in LOS or NLOS condition is included. The weighted hybrid
model variance can be written as

m - 1070.1-C/Né

sin e;

ol =k- (2.24)

with the receiver/antenna dependent model parameter m and the factor k, which differentiates
between LOS and NLOS signal conditions expressed as

— {k:l, LOS signal (2.25)

ko, NLOS signal

and k1 < k2. In this way, the received C/Nj and the satellites elevation contribute to the
respective variance of the signal and additionally, the uncertainty of NLOS signals is scaled
compared to LOS signals.



2.1 Fundamentals of Global Navigation Satellite Systems 13

Another hybrid weighting model is proposed by Xin et al. (2022), where well established
elevation-dependent (Rothacher and Beutler, 1998) and C/Ny-dependent (Realini and Reguz-
zoni, 2013) weighting schemes are combined with a newly developed 3DMA weighting factor.
The combined weighting model reads

W (3DMA, C/Ny, Blev) = Wiiey - (- Weyn, + 8- Wapata ) (2.26)

where Wrjev, We /N, and Wspnma are the elevation-dependent, C/Ny-dependent and 3DMA-
dependent weighting factors, respectively, and «, 8 are coefficients that linearly fit the mea-
surement errors to the weighting factors in a way that o« + 8 = 1. The key parameter of
the 3DMA-dependent weighting model is the difference of the elevation angles between the
satellite and the building boundary AElev, which takes into account that LOS signals are
received at elevations higher than the building boundary, reflection-caused multipath occur
close to the building boundary and measurements in NLOS condition with large biases are
received at elevation angles lower than the building boundary. The mathematical expression
therefore reads

W3pma = (2.27)
O

1, ] AElev > T3pya
AEI:V7T3DMA R o

10 3DMA | 0° < AElev < T5ppa
AElev—T2

_ 3DMA AElev—T2
10 a3DMA . (( FOA3DN£ATO — 1) . Iwwff’ém +1|, AElev<0°
_3pma~f3pma 3DMA ~13DMA
10 a3DMA

(2.28)

where aspma, bspma, Aspma and Fgpya are model parameters which can be tuned or esti-

o

mated in a nonlinear least-squares optimization problem. The threshold parameter T5py,a is
set to 30°. The C/Ny-dependent weighting model is formulated as

7
1, , C/Ny > Toy,
C/No=To/N .
WC/N _= 7M A C/Nz T .
0 “C/N . . Ae/Ng . 2/NoT2C/Ng. i
0 e _Fo/ng—Te/Ng 1 Foyng—To)N, +1/, C/No < TC/NO
10 4C/Ng

(2.29)

and the model parameters ac /Ny Ac /N, and Fg /N, and Tg /N, are also set by nonlinear
least-squares optimization. Finally, the elevation-dependent weighting model complements
the proposed hybrid model and can be written as

1, e; > 30°
Welev = { . el~ - 300" (2.30)
(3

2sine;’

The outcome of the hybrid model is a scale factor which is applied to the standard deviation
of the measurements and hence, scales the uncertainties of the received GNSS signals.

An alternative hybrid weighting model, which is based on the SIGMA-¢ model and 3D city
model information, has been developed in Schaper et al. (2022). The C/N, dependent weighted
variance of the SIGMA-e model is scaled by a calibrated factor f, which depends on the
receiver /antenna combination and the environment:

o2 =02 f, (2.31)

where 02 is the obtained variance from the SIGMA-e model (see Eq. 2.21). For each of
the possible signal reception condition classes, a different scaling factor is determined, which
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fits the uncertainty with the measurement error distribution in the specific environment. In
addition to the reflection-based error sources in urban areas, the proposed model also adds
information on signal diffraction leading to eight signal reception condition classes and thus,
in total eight different scaling factors applied in the hybrid weighting model.

As described above, a solver is optimal in the case of unbiased, normal distributed observations.
The main objective of applying a weighting model is to adjust the stochastic information for
measurements, which derogate from this restriction. Especially the described hybrid models
are typically evaluated with respect to an improved accuracy of the positioning solution.
However, the adequateness of the model — which is the additionally introduced stochastic
information matching the observation distribution — has not been evaluated. A sound analysis
of whether the weighted observations or the weighted residuals, respectively, follow the normal
distribution, is essential for an unobjectionable utilization of these weighting models.

2.2 Kalman Filtering

Kalman filtering (Kalman, 1960) describes a recursive state estimation algorithm that opti-
mally combines the time propagated state vector and its covariance matrix from a previous
epoch and the measurements at the current epoch. According to standard literature, the esti-
mation of the state of a dynamic system is described by a linear ordinary differential equation
(Gelb, 1974; Simon, 2006b; Farrell, 2008). The inhomogeneous linear differential equation of
a Kalman filter reads

x(t) = F(t)x(t) + L(t)u(t) + G(t)w(t), (2.32)

with state vector x, control-input vector u, white process noise vector w, dynamics matrix F,
control-input matrix L and noise distribution matrix G. All parts are given at time instance t.
The deterministic control-input components are usually unknown and thus will be neglected
from this point on:

x(t) = F()x(t) + GHw(t). (2.33)

The first homogeneous part of Eq. 2.33 can be solved by means of a Taylor series expansion
up to the linear segment which yields

X(t) = F(t, to)X(to), (2.34)

where F' is the state transition matrix propagating the state vector from time instance tg to t.
The particular solution of the inhomogeneous part reads

t
x(t) = | Ft, )G )w(t)dt'. (2.35)
to
Solving Eq. 2.33 therefore yields
t
x(t) = F(t,to)x(to) + | F(t,t")G(tw(t')dt . (2.36)
to

Input values for such a system model are available at discrete time instances in the majority
of the cases. Hence, the continuous system model in Eq. 2.36 has to be transformed to the
linear discrete-time system equation

Xp = Fr_1Xp_1 + W1, (2.37)
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where at a certain time instance k, xX; is the state, F} is the state transition matrix. The
corresponding measurement equation reads

I, = Hixy, + v (238)

with the noisy measurement vector yj. The noise processes of the system (wy) and the mea-
surements (vy) are white, zero-mean, uncorrelated and the corresponding covariance matrices
are known:

wy = Grwr ~ N (0, Quk) , (2.39)
Vi v N (0,Qup) - (2.40)

The above described method only applies for linear systems. For non-linear system formu-
lations, such as those on which this thesis is based on (see GNSS measurement equations in
Eq. 2.2 and Eq. 2.3), non-linear Kalman filters are introduced which approximate the solution
to the above problem.

The Linearized Kalman Filter (LKF) is usually implemented for applications where the trajec-
tory is predetermined or an accurate reference trajectory is available. Hence, the linearization
point is known and the system is linearized at, e.g., given coordinates of a vehicle. The ad-
vantage of this non-linear Kalman filter is that online computations can be simplified, since
all related data to the nominal trajectory can be computed beforehand. The resulting state
estimate is the error between the nominal trajectory and the actual trajectory. Moreover, a
control law can be introduced to further minimize this error.

For many applications, such as autonomous vehicles, the trajectory cannot be accurately
predetermined and thus, the nominal trajectory is not known a priori. Therefore, the nominal
trajectory is defined to be equal to the estimated trajectory. In this case, the system is
linearized at the estimated state. If sufficiently accurate measurements are available, the
estimated linearization point should be close to the actual state and the performance of the
EKF similar to the performance of the LKF. However, the EKF is riskier due to the possibility
of a rapid divergence in the case when the estimated state is far from the actual state.

The two non-linear Kalman filters utilize the same formulae and computation procedure to
estimate the state vector, though they differ in terms of nominal trajectory and linearization
point. Consequently, the selection of a particular Kalman filter is contingent upon the specific
requirements of the application. Alternatives to the two introduced Kalman filters are the
Unscented Kalman Filter (UKF) and Particle Filter (PF), which themselves demonstrate
specific advantages and disadvantages compared to the EKF. As the objective of this thesis
is not to provide a comprehensive comparison of different filtering techniques, the reader is
referred to standard textbooks for more detailed information on this topic (Simon, 2006a).
Within the scope of this thesis, the EKF is employed for vehicle navigation applications, which
necessitate real-time capability.

2.3 GNSS Precise Positioning

GNSS have transformed the field of positioning, navigation and timing, providing ubiquitous
and accurate location information for a variety of applications. The demand for high-precision
positioning has grown with the increasing precision requirements of modern safety-critical
applications. That is why standard pseudorange-based positioning techniques, such as SPP
(Langley et al., 2017) and pseudorange Differential GNSS (DGNSS) (Odijk, 2017), are not
suitable due to their precision limitations. Instead, the importance of carrier phase-based
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positioning methods such as PPP (Zumberge et al., 1997), RTK (Bisnath, 2021) and PPP-
RTK (Wiibbena et al., 2005) is becoming increasingly prominent, because of their much higher
precision due to the smaller noise level of carrier phase observations compared to pseudorange
observations. An overview on the different positioning methods in terms of nominal accuracy,
convergence time, coverage area and the positioning type is summarized in Tab. 2.1.

Table 2.1: Overview on the different positioning methods in terms of nominal accuracy, convergence time,
coverage area and the positioning type (adapted from European GNSS Agency (2020) and Medina (2021)).

Method Accuracy  Convergence Coverage Type

SPP < 10m Instantaneous Global  Absolute

Pseudorange-based DGNSS 0.5-2m Instantaneous Regional Relative

PPP 1-2dm < 20 min Global  Absolute
Carrier phase-based RTK < 1dm Instantaneous Local Relative
PPP-RTK < 1dm <5-100s Regional ~ Absolute!

IPositioning model is absolute but correction data from a network of reference stations is required.

Precise Point Positioning

PPP is the logical extension of a standard SPP algorithm. As described in Teunissen (2021),
the pseudorange observations are complemented with their much more precise counterpart,
which is the carrier phase observation. Usually observations from two or more frequencies
are combined to eliminate ionospheric delays. Broadcast satellite orbit and clock information
are replaced by precise estimates, which are downloaded or obtained in real-time from service
providers (e.g., IGS products (Kouba and Héroux, 2001; Montenbruck et al., 2014)) using
internet or satellite links. Since no measurements from nearby reference stations are required,
PPP is globally available using a single GNSS receiver and thus, is operational flexible, espe-
cially in areas without a dense reference station network. This flexibility comes with the cost
of carefully modelling local station and environmental effects in order to reach decimeter-level
accuracy. By using the State Space Representation (SSR) method, the various error sources
are estimated separately by a network of Continuously Operating Reference Station (CORS),
as shown in Fig. 2.2, before being sent to the receiver. While PPP is capable of delivering
highly precise positioning results worldwide, it often requires longer observation periods to
achieve this accuracy. The convergence time is mainly influenced by the existing carrier phase
ambiguities and its linear dependency with other parameters to be estimated, which also leads
to a loss of the integer nature of the ambiguities (Du et al., 2020).

Real-Time Kinematic

DGNSS positioning describes the concept of computing a rover’s position with respect to
a base station. While pseudorange DGNSS reaches meter-level positioning accuracy, RTK
carrier phase DGNSS is essential for precise positioning applications with centimeter-level ac-
curacy (Odijk, 2017). The RTK positioning method combines GNSS measurements from one
(or more) reference stations with the user data, as described in Sec. 2.1.2, in order to eliminate
satellite and receiver clock errors and reduce satellite orbit errors and atmospheric propagation
delay errors. When requiring RTK positioning in real-time, GNSS corrections from the base
station are usually transmitted using a standardized format proposed by the Radio Techni-
cal Commission for Maritime Services (RTCM). The single-compound ranging corrections, as
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Figure 2.2: Principle of the PPP method.
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Figure 2.3: Principle of the RTK positioning method.

observed in a nearby (real or virtual) base station and provided as Observation Space Rep-
resentation (OSR), are transmitted, e.g., via the Internet using Network Transportation of
RTCM Internet Protocol (NTRIP), as illustrated in Fig. 2.3.

The achievable accuracy of RTK positioning directly depends on the distance of the rover to
the base station and if the real-valued carrier phase ambiguities are resolved to their integer
values. For short baselines (< 10 km), instantaneous integer ambiguity resolution is feasible,
leading to cm-level positioning accuracy after a single epoch. The weaker the underlying
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positioning model (e.g., single GNSS usage, single frequency usage or long baselines), the
more time is required before the ambiguities can be reliably fixed to their integer values.

PPP-RTK

The idea of PPP-RTK is a synthesis of the positive characteristics of both, PPP and RTK
positioning (Wiibbena et al., 2005). All relevant GNSS error sources, such as satellite orbits,
clocks, pseudorange and carrier phase biases and ionosphere and troposphere errors, derived
from an reference station monitoring network, are determined and transmitted via SSR. Since
the main limitation of PPP in terms of accuracy and convergence time is the estimation
of integer ambiguities due to the correlation with other parameters, PPP-RTK can have
significant advantages in ambiguity resolution, convergence time and accuracy. Due to the
merging of PPP with state-space RTK, precise estimates of the above mentioned GNSS error
sources are transmitted to the user and thus, integer ambiguity resolution within a reduced
convergence time is feasible.

2.4 Integer Ambiguity Resolution

GNSS carrier phase measurements are much more precise compared to its pseudorange mea-
surement counterpart. However, the precision gained by a factor of approximately 100 comes
with the challenge of an ambiguous range, since the receiver does not measure the absolute dis-
tance but the fractional phase phase shift between a generated replica of the carrier signal and
the incoming carrier signal from the satellite. Therefore, GNSS Integer Ambiguity Resolution
(TAR) is essential for high-precision GNSS positioning algorithms. This includes to resolve the
unknown number of cycles in the carrier phase observation data as integer values. Successful
TAR enables very precise positioning and navigation, since carrier phase measurements are
transformed into high-precision pseudorange data.

The GNSS TAR process is decomposed in three steps, as e.g. explained in Teunissen and
Montenbruck (2017). The flowchart of the ambiguity estimation process is shown in Fig. 2.4,
where N corresponds to the ambiguity vector and x corresponds to the baseline vector.

Float solution Fixed solution

Real-valued
GNSS Least-squares

Observations P [ﬁ] Qi Qs
X Qe Qe
I

Figure 2.4: Three-step GNSS integer ambiguity resolution process.

1. First, a float solution is computed in a standard LSA which can also be referred to a
Kalman filter update step. The integer nature of the ambiguities is disregarded and
floating numbers are estimated with distribution

N (5] S Q) (2.41)
X 27| Qix  Qas
where Q is the corresponding covariance matrix including the uncertainties of N and %
and their cross-correlation.
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2. The second step is the integer solution, where integer ambiguities are estimated based
on the float ambiguities, their uncertainties and by taking the integer contraint a — Z"
into account. Thus, a mapping function § : R® — Z" is introduced that maps the
real-valued float ambiguities to their corresponding integer values so that

N=s(N). (2.42)

3. The last step is the solution enhancement by computing the so-called fized solution. Once
the integer solution N is accepted, the ambiguity residual N — N is used to re-adjust
the float solution:

% =%-Q Q5 (N - N) , (2.43)
Qiz = Qis — Q;@NQE\A{QN@' (2.44)

Whenever the ambiguities are fixed to their true integer values, the maximum precision
from carrier phase observations is gained. However, if the estimated integer ambiguities
do not match with the true values, the solution is biased.

The integer solution in step 2 is a real-to-integer mapping with S : R® — Z" and the estimator
S is a many-to-one map, since different real-valued vectors are mapped to one integer vector.
Therefore, a subset Py C R™ can be assigned to each integer vector N € Z":

v ={NeRrRN =81 )}, Nez" (2.45)

The subset, which is the pull-in region of N, is the region in which all float solutions are
pulled to the same integer vector via the estimator S(-). For a subset to be a pull-in region,
according to Teunissen (1999), three conditions must be met:

a): U Py =R",

Nezn
b): Py, [Py, =2 VN1, Ny € Z", Ny # Ny, (2.46)
c): NZ’P()-FN,VNEZ”.

The first one states that the union of the pull-in region should cover the n-dimensional space
completely to avoid gaps. The second property is that any two distinct regions should not
have an overlap to ensure unique assignments of a float solution to an integer one. The third
condition is that the pull-in regions are translational invariant, which allows to work with
the fractional parts of the float solution instead of the full real-valued vector. Exemplary
two-dimensional pull-in regions for different integer estimators — i.e., Integer Rounding (IR),
Integer Bootstrapping (IB) and Integer Least-squares (ILS) — are shown in Fig. 2.5.

Integer Rounding

The simplest integer estimator is the IR method, where the float ambiguity vector is component-
wise rounded to the nearest integer value to obtain the integer ambiguity vector. The IR
estimator therefore reads

N = (81, [a)) (2.47)

where [-| denotes the operator which rounds the real-valued float ambiguity to the nearest
integer. Since each component of N is rounded to its nearest integer value, the maximum
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Figure 2.5: Pull-in regions Py of different integer estimators for a two dimensional example: (a) Integer

Rounding, (b) Integer Bootstrapping, (c) Integer Least-squares. The regions that lead to correct integer
estimates are marked in gray (Verhagen, 2005).

ambiguity residual is 1/2. The volume of the covariance matrix P g g and cross-correlations
between ambiguities are not considered using the IR estimator. The pull-in region of this
estimator therefore reads

o N ~ o 1 o
P (N) = {NeR”| Ni—Ni| <5, i= 1n} VN € Z" (2.48)

and describes n-dimensional cubes having sides of length one and centred at N € Z™.

Integer Bootstrapping

The IB estimator is a generalization of the IR estimator (Blewitt, 1989; Dong and Bock,
1989). It still uses the rounding to the nearest integer technique, but additionally considers
correlations between the ambiguities in a sequential conditional LSA. Usually, the real-valued
ambiguity vector is sorted in descending order according to the uncertainty. The starting
point is the rounding of the last element of the sorted float ambiguity vector N, to its nearest
integer value. After obtaining the first integer ambiguity, the remaining elements of the float
ambiguity vector are then corrected by virtue of their correlation with the previous element.
This process is continued until all elements are considered. Starting with the nth ambiguity,
the IB estimator is given as

NIB,n = [NnJ 5
NIB,n—l = IVanl|nJ = ’VNn—l — UananJJ?/i (Nn — NIB,n)J .

n
NIB,l = [N1|2,..,,nJ = {Nl - ZQUMNMUK,?II (Nﬂ] - NIB,i)J ; (2.49)
P

where Ni| 7 is the ith estimated element of N, which is obtained by conditioning on the previ-
ously I = {i+1,...,n} sequentially rounded ambiguities. According to Medina (2021), the
IB estimator can also be expressed in a compact vector form as

NIB = [N + (Lfl - In> (N - NIB)J R (250)

where L is the lower unit triangle matrix computed by decomposing the float ambiguity
covariance to Py = L7P/yL with the diagonal matrix of the conditional variances P’y.



2.4 Integer Ambiguity Resolution 21

Thus, the resulting pull-in region of the IB estimator is defined as

Pig (N) — {NER" | |eTL-T (N—N)‘ < é z:ln} YN € zn (2.51)

with ¢ denoting the i¢th canonical unit vector having a 1 as the ith entry.

Integer Least-squares

The ILS estimator was firstly introduced in Teunissen (1993) and is defined as
Nis = arg min [N - N3 (2.52)
Neznr N
with its pull-in region being defined by an ellipsoidal search
Pus (N) = {NeRr" | [N-NJp <|N-N[} . vN'ez"}, ¥Nez" (253

For the two-dimensional example, the ILS pull-in region has the shape of a hexagon while
the pull-in regions of the IR and IB methods are shaped as a square and a parallelogram,
respectively (see Fig. 2.5). The ILS estimator requires searching for mapping the real-valued
ambiguities to the optimal integer vector. The search space is an n-dimensional hyper-ellipsoid

centred in & and its size is defined by the covariance matrix P .

Partial Ambiguity Resolution

The above three estimators have the property of the so-called full ambiguity resolution, mean-
ing that for the full set of float ambiguities, a corresponding integer ambiguity vector is
estimated. However, under challenging circumstances, e.g. poor observation quality of single
satellites, the precision of the float ambiguity solution might be degraded and thus, integer
ambiguity resolution is not possible. Also, the probability of correct integer ambiguity esti-
mation is decreasing with increasing number of observations (Verhagen, 2004). To overcome
this issue, Partial Ambiguity Resolution (PAR) is introduced (Teunissen et al., 1999), which
is the reliable estimation of a subset of integer ambiguities instead of estimating the full set
of integer ambiguities.

The mapping S : R” — Z*| from the n-dimensional space of reals to the |Z|-dimensional space
of integers, i.e., mapping a subset of the float ambiguities to its corresponding integer vector,
is denoted as

Py = {NeR" N =51}, vN ez, (2.54)

where 7 is the index set of any of the 2" — 1 possible non-empty realizations. The constraints
of Eq. 2.46 remain the same, but with the amendment of the dimension of the index set Z:

a): U Py = R™,
NezlZl
b) : P](ﬁ ﬂPN2 =, VNLNQ € Z‘I|, Nl 75 NQ, (255)
¢): Py =P+N, VN e z"l.
In literature, different approaches of selecting the subset of ambiguities to fix have been

proposed. If full ambiguity resolution is not possible, one method is to fix only the widelane
ambiguities in case of multi-frequency GNSS observations (Hatch et al., 2000; Li et al., 2010).
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Another approach is to take constraints into account, e.g., a threshold for the ambiguities’
variances, minimum elevation angle of the satellites or minimum C/Ny (Parkins, 2011). Yet
another method is to select a subset of integer ambiguities which are consistent in the best
and second-best solution (Lawrence, 2009).

Most of the above mentioned approaches require a long search time due to the iterative
subset evaluation procedure and are not based on the success rate or precision improvement
(Teunissen and Montenbruck, 2017). Therefore, another approach is proposed by Teunissen
et al. (1999) which searches for the largest possible subset of decorrelated ambiguities Z = ZN
to be fixed using the success rate criterion

k
H [2@ ( 1 ) —1
i=1 202“1

where Z is the so-called Z-transformation matrix for ambiguity decorrelation (Teunissen,
1995b) and Py, is the user-defined minimum required success rate. The number of ambi-
guities k£ which determines the size of the subset to be fixed, is chosen such that the inequality
in Eq. 2.56 holds true.

Z Pmin, (256)

LAMBDA Method

The Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method is a well-estab-
lished method for solving the integer ambiguity problem in GNSS, based on the ILS procedure
(Teunissen, 1993, 1995a; De Jonge and Tiberius, 1996; Verhagen, 2005). The search space is
defined as

Py={Nez" | (N-N)TQ L (N-N) <»?}, (2.57)

where x? is a positive constant to be chosen. The search space is an n-dimensional ellipsoid
centered at N. Its shape is determined by the covariance matrix Q5 and its size by 2.
Due to the high correlation between the individual ambiguities, the search space in the case
of GNSS is extremely expanded, so that the search for the integer solution can take very long.
Therefore, the search space is first transformed into a more spherical shape by decorrelating
the original float ambiguities. This decorrelation is achieved by a transformation:

2=72"N, Q:=2"QuyZ, N=7"'% (2.58)

The transformation requires Z and Z~! to contain integer values, so that the integer nature
of ambiguities is preserved. Further, the transformation is volume-preserving with respect to
the search space, since the determinant of Z is equal to 1. The transformed search space is
then defined as

c={re2" | 2-2)7Ql(2-2) <\*}. (2.59)
Once the integer ambiguities are identified in the transformed space, a back transformation

into the original space is computed.

Other Integer Ambiguity Resolution Methods

There are a number of other well-known IAR methods in the literature, which differ mainly
in the definition of the ambiguity search space. A summary of other TAR methods, including
references, is given in Tab. 2.2. Only Three Carrier Ambiguity Resolution (TCAR) and
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Table 2.2: Overview of ambiguity resolution methods (modified from Verhagen (2005)).

Method Name References

Least-Squares Ambiguity Search Technique LSAST Hatch (1991)

Fast Ambiguity Resolution Approach FARA Frei and Beutler (1990)

SIGMA-Method SIGMA Dach et al. (2015)

Quasi Tonosphere-Free algorithm QIF Dach et al. (2015)

Modified Cholesky decomposition Euler and Landau (1992)

Least-squares AMBiguity

Decorrelation Adjustment LAMBDA Teunissen (1993)

Null method Martin-Neira et al. (1995)
Fernandez-Plazaola et al. (2004)

Fast Ambiguity Search Filter FASF Chen and Lachapelle (1995)

Three Carrier Ambiguity Resolution TCAR Harris (1997)

Integrated TCAR ITCAR Vollath et al. (1998)

Optimal Method for Estimating

GPS Ambiguities OMEGA  Kim and Langley (1999)

Cascade Integer Resolution CIR Jung et al. (2000)

Best Integer Equivariant Estimator BIE Teunissen (2003)

Cascade Integer Resolution (CIR) are based on the bootstrapping estimator, all other methods
are based on the ILS principle of minimizing the squared norm of the residuals (Verhagen,
2005). In Kim and Langley (2000) a conceptual comparison of some of the methods presented is
made, while in Joosten and Tiberius (2002) and Verhagen (2004) a comparison of LAMBDA
with CIR, TCAR, Integrated Three Carrier Ambiguity Resolution (ITCAR) and the null
method is made. Another method of determining a set of integer ambiguities is the Best Integer
Equivariant (BIE) estimator proposed by Teunissen (2003), where no separate ambiguity
validation step is needed.

2.5 Robust Statistics

Whenever the distribution of measurements exactly fulfill the Gaussianity requirements with
perfectly known covariance matrix, a Maximum Likelihood Estimator (MLE) for the normal
model provides an optimal solution (Kim and Shevlyakov, 2008). In reality, the underlying
assumptions on the probability distribution of observations are not perfectly met and thus,
even for minor deviations from the assumed model (e.g., due to outliers or contaminated
observations), optimality is not guaranteed. Many areas of engineering show that measure-
ments contain outliers, resulting in heavy-tailed distributions, e.g. presented in Blankenship
et al. (1997), Abramovich and Turcaj (1999), Middleton (1999) and Etter (2003), causing
the estimator to be biased or even break down (Zoubir et al., 2012). The same applies for
GNSS-based applications, where exact Gaussianity cannot be guaranteed and the assumption
of the normal model is violated — especially in multipath and NLOS contaminated situations
(Medina, 2021). Contrary to the MLE, Robust Statistics addresses the development of esti-
mators that are able to provide nearly optimal solutions for Gaussian data distributions as
well as for deviations from the model (Huber and Ronchetti, 2009). Its theory was derived in
the work of Tukey (1960), Huber (1964) and Hampel (1971), which established the framework
for the application of robust statistics to various applications in the field of technology and
engineering.
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Figure 2.6: Bias and breakdown point of three traditional estimators for a one-dimensional estimation and
different number of outliers. The true value is given in green, sample mean estimator is shown in blue, sample
median is shown in red and the a-trimmed mean (o = 0.25) is shown in yellow.

The simplified example for a one-dimensional location estimation in Fig. 2.6 is emphasizing the
need of robust statistics. The solution of three traditional estimators are compared, namely the
sample mean estimator (corresponds to minimizing the l-norm), the sample median estimator
(corresponds to minimizing the /;-norm) and the a-trimmed mean estimator (the largest and
smallest 25 % of the measurements are trimmed from the estimation for « = 0.25). Due to the
influence of an outlier, the MLE at the normal distribution (sample mean estimator) results
in a significant impact on the estimation of location. This bias can be characterized as a
systematic deviation from the true value of the location parameter. In the scenario involving
a single outlier, the sample median estimator and the a-trimmed mean estimator exhibit a
high degree of proximity to the true value, effectively nullifying the influence of the outlier.
Conversely, when confronted with six inliers and four outlying measurements, the a-trimmed
mean estimation solution demonstrates a bias, while the sample median estimator continues
to attain a solution that is nearly optimal. However, when the number of outliers exceeds half
of the total measurements, the sample median estimator breaks down, resulting in a biased
location estimation.

Breakdown Point

The breakdown point is a metric used to quantify the robustness of an estimator. As illus-
trated in Fig. 2.6, the performance of different estimators varies with increasing proportions
of outliers. The breakdown point indicates the maximum proportion of outliers that an es-
timator can handle without producing a biased solution. The MLE for the normal model
encounters failure when one outlier is present, thereby establishing a breakdown point of zero
for the estimator. In contrast, the sample median estimator demonstrates a breakdown point
of 50 %. When the fraction of outliers exceeds 50 %, the distinction between nominal and
contaminated observations becomes indistinguishable. Consequently, the maximum attainable
breakdown point for an estimator founded on robust statistics is also 50 %.

Maximum Likelihood Estimation for One-dimensional Data

Recalling the one-dimensional location estimation, we have a vector of measurements available,
which are distributed around the location p with noise v;:

Yi = o+ vi, (2.60)
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with the vector of n measurements y’ = [yl, ceey yn] and independent and identical distributed
noise v; following a distribution Fy. The likelihood function of the observations is defined as

n

L(ylw) = T f (i — w), (2.61)

i=1

where f(-) is the Probability Distribution Function (pdf). By maximization of the likelihood,
the MLE yields an estimate fi for the location u:

f(y) = arg max L(yi, -, Yn|pt)- (2.62)

In the case the distribution of the measurements is Fy = N (u, 0%), i.e. the Gaussian model,
the pdf for the measurements is given by

f(yilu, 0®) = 21 em(—M). (2.63)

7'(0'2 202

Since L(y|u) is positive in all cases, the maximization problem outlined in Eq. 2.61 for the
Gaussian model can be expressed equivalently as the following minimization

n
fimean = arg mliLn Z(ri)z, (2.64)
i=1

where the ith residual r; = y; — u is the difference between the ith observation and the esti-
mate. Equation 2.64 describes the minimization of the I3 norm corresponding to a LSA and
it is obvious that the sample mean aligns with the MLE for the normal model.
Alternatively, if the measurements follow the Laplace distribution, the pdf for the measure-
ments is given by

F(yilp, 0%) = \/150 exp (—W) (2.65)

and the corresponding MLE solves the following minimization

n
fimedian = arg m/an Z ‘Tz‘ (266)
=1

Equation. 2.66 describes the minimization of the [; norm or the Least Absolute Deviation
(LAD) adjustment and it is obvious that the sample median aligns with the MLE for the
Laplace distribution.

M-estimator

M-estimators are a generalization of MLE introduced by Huber (1964) and can resist outliers
by solving following minimization:

N N~ (T
fin =min 3 p (;) : (2.67)
i=1

where p(-) denotes the loss function. For symmetric and differentiable loss functions, its score
function is defined as the loss functions derivative

_ dp(x)

v(w) = L2,

(2.68)
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which can be solved as
Xﬂ(%“>=0 (2.69)
i=1 g

Intuitively, M-estimators for one-dimensional location estimation can also be interpreted as a
weighted average with weights given by the weighting function

Y@ i g £ 0
—{ = . 2.70
wie) Lﬂ if =0 (270)

Typically, for robust M-estimators, the weights are one (or close to one) for the inliers, while
the outliers are down-weighted according to the score function. Many score functions ) (x)
exist in order to penalize outliers in the measurements, achieving high efficiency under the
nominal model as well as robustness against outlying observations and a high breakdown
point. It is typically distinguished between monotone and redescending M-estimators, where
the latter are useful especially for data with extreme outliers.

The loss functions p(x), score functions ¢(z) and weighting functions w(x) of one typical
monotone M-estimator based on the Huber’s family of functions (Huber, 1964) and of one
common redescending M-estimator based on the Tukey’s bisquare family of functions (Tukey,
1960) are displayed together with the functions of the MLE in Tab. 2.3. The parameters cg
and cp are set to control the robustness and efficiency of the M-estimators. If they are set
to cg,cp — oo or cy,cr — 0, the M-estimator corresponds to the sample mean or sample
median, respectively. Typically, the parameters are chosen to meet 95 % relative efficiency at
the normal model, which yield the values ¢y = 1.345 and ¢ = 4.685. Another robust family
of functions — originally defined for image analysis — is based on the Geman-McClure loss
(Geman and McClure, 1985; Barron, 2019), which is also a redescending type of estimator but
is damping large values even more using continuous functions without residual-based decisions.
The tuning parameter of the Geman-McClure function is typically set to 1. Close to zero, it
behaves similar to the MLE loss and outside it is significantly bounded being robust to large
outliers.

It is evident that monotone and redescending M-estimators possess distinct traits: the former
results in convex optimization problems for Eq. 2.67, ensuring solution uniqueness, whereas
the latter are entirely bounded, providing enhanced quantitative robustness albeit with a
non-convex optimization for Eq. 2.67 and reduced efficiency within the nominal model. The
Huber, Tukey and Geman-McClure functions, as well as the MLE at the normal model, are

Table 2.3: Loss functions p(z), score functions ¢ (z) and weighting functions w(z) of the MLE at the normal
model, the Huber-based monotone M-estimator and the redescending Tukey bisquare M-estimator.

Estimator p(x) V() w(z)
MLE z x 1
2
2
< & 1
Huber ol < en 2 &2 ! . cH
|z| > cq culr| — 4 cysign(x) T
3 2 2
T (1_(1- = 2 2
wfrze [i0-62)) Fog {09
|z| > er % 0 0
2
2% 2 2
c 16ct,x 16¢
Geman-McClure 5 i4 W W
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visualized in Fig. 2.7. In terms of inliers, the Huber-based M-estimator is anticipated to
exhibit greater efficiency in the normal model compared to the redescending counterparts
due to the alignment of their loss, score, and weighting functions with the MLE for nominal
measurements. The example in Fig. 2.6 shows that the presence of one single sufficiently
large outlier can lead to a breakdown of the MLE at the normal model. The impact of large
residuals is demonstrated in the score and weighting functions, where the monotone Huber-
based M-estimator would mitigate the influence of such outliers, while the redescending Tukey-
based M-estimator would nullify their effect on the solution and the Geman-McClure-based
Me-estimator is largely reducing the impact by weights close to zero.

The computation of robust M-estimators is typically performed in an Iteratively Reweighted
Least-squares (IRLS) adjustment with an initially computed robust scale estimate using the
Median Absolute Deviation (MAD):

F(x) = 1.4826 - median (|x — median(x)|) . (2.71)

Thereby, the normalization factor 1.4826 corresponds to the standard deviation at the normal
model. The procedure of the IRLS adjustment is displayed in Alg. 1. Given a set of measure-
ments y and predictors A, the first step is to compute an initial solution i and scale & using
a LSA. In the initialization step, the weighting matrix W is typically configured to assign
unit weights to the measurements. Subsequently, the weighting matrix is adapted through
the use of robust weighting functions until the convergence criterion is met. Robust weighting
functions are utilized, such as those based on the Huber family of functions, as outlined in
Tab. 2.3. Concurrently, the location parameter [ is estimated iteratively.

If M-estimation is extended from the one-dimensional location estimation to, e.g. linear re-
gression (i.e., Generalized M (GM)-estimation), the limitation of the generalized M-estimators
is that they typically show a low breakdown point of at most 1/(p + 1) (p is the number of
parameters to be estimated) and - depending on the particular situation - do not necessarily
reach this upper bound (Maronna et al., 1979).

S-estimator

The class of S-estimators is designed to have a high breakdown point and is based on the
Least Median of Squares (LMS)

frnms = arg min median(r) (2.72)
m
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Figure 2.7: Loss functions p(z) (a), score functions ¥ (x) (b), and weighting functions w(z) (c¢) of the MLE at

the normal model and M-estimators based on the Huber’s, Tukey’s and Geman-McClure’s family of functions.

The control parameters are set to cy = 1.345, cr = 4.685 for 95 % relative efficiency at the normal model and
to cg = 1.
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Algorithm 1 IRLS adjustment using M-estimators.

Estimate initial & and [i
. n(t+1) (1)
while ——+— > ¢ do

Compute weighting matrix according to the weighting function:
t

W = diag(wy, . .., w,) with w; = w T:LT
Perform weighted LSA:
ﬂ(t-i-l) _ (ATWA)—IATWy
end while

and the Least Trimmed Squares (LTS)

h

furs = arg min > (), (2.73)
i=1

where the residuals in LTS are sorted in ascending order such that r§ < ...r2 and h is chosen
to attain a high breakdown point, e.g., h = n/2 yields a breakdown point of 50 % (Rousseeuw,
1984). The S-estimator, i.e. the minimization of a robust scale estimate for the residuals, is
then defined as

fis = arg m!iLn a(r) (2.74)

and the scale estimate is the solution of

1 n

- ;p (2) — 4, (2.75)

where ¢ balances the consistency at a particular distribution and the breakdown point, e.g.,
for maximum breakdown point 6 = 0.5(1 — n/p). The S-estimator typically considers the use
of redescending score functions. A high breakdown point of up to 50 % can be achieved while
the drawback is a relatively low efficiency at the normal model.

MM-estimator

The MM-estimator proposed by Yohai (1987) is a two-step approach to achieve both a high
breakdown point and high relative efficiency. First, an initial estimate i = [ig and its scale
41 is computed via S-estimation using a redescending function p; tuned for a high breakdown
point. The MM-estimator is then computed using a IRLS adjustment by minimizing the
following equation using a second redescending function such that ps < p;:

. v 7i(fl
fni = arg min Zpg < (A,us)> . (2.76)

i=1 g1

2.6 GNSS Positioning in Urban Environments

GNSS signals provide information about the absolute position of a user on a global scale with
accuracy in the centimeter range, depending on the positioning method (see Sec. 2.3). In
urban environments, nearby objects (e.g., buildings, trees or vehicles) block the direct LOS
between the transmitting satellite and the receiving antenna and signal reflections resulting
in numerous NLOS and multipath signal receptions. These effects are the dominant source of
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GNSS positioning errors in dense urban environments (McGraw et al., 2021). Both types of
errors are visualized in Fig. 2.8. NLOS and multipath errors — often synonymously referred
to as multipath in the GNSS community — are influenced by the geometric signal path of the
direct and indirect signals, which are defined by the local environment and satellite positions.
Additionally, these errors are affected by the complex signal-antenna-receiver interaction. Al-
though these two effects are often grouped, their error characteristics are different. When
considering a signal reflection, the reflected signal is always longer than the direct signal.
Therefore, NLOS reception always results in a positive ranging error, while the coherent na-
ture of multipath interference produces both positive and negative ranging errors, which also
vary with signal and receiver design (Groves, 2013a). NLOS delays can reach up to twice the
orthogonal distance to the reflector plane (e.g., tens of meters for smaller urban trenches in
European inner cities (Betaille et al., 2013; Icking et al., 2020) and up to hundreds of meters
for urban canyons in metropolitan cities (Hsu, 2017a; Icking et al., 2022). The delay caused
by multipath depends on the extra path delay and the receiver settings. Its assessment is typ-
ically conducted by the multipath envelope function for pseudorange observations, yielding
delays ranging from 30 to 50 meters. For the carrier phase measurement, the impact ranges
from millimeters to a maximum of a quarter of the wavelength (Braasch, 2017).

Several multipath and NLOS error mitigation strategies have been researched to improve
GNSS-based localization in urban environments, as accurate positioning plays a crucial role
in many applications and emerging technologies, such as autonomous driving or pedestrian
navigation. The demand for high accuracy and high integrity positioning models is increasing
and, due to the fact that the GNSS sensor is the only one that provides absolute positioning
information, the advancement of research into GNSS positioning is ongoing. In order to
achieve an adequate level of accuracy, it is essential to employ not only carrier phase-based
positioning techniques but also to integrate multipath and NLOS error mitigation strategies.
The details of application requirements are outlined in Sec. 2.7.
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Figure 2.8: Main GNSS error sources in urban environments: (a) multipath and (b) NLOS signal reception.

2.6.1 3D Mapping Aided GNSS

The availability of 3D city models in the standardized City Geography Markup Language
(CityGML) format (Groger et al., 2012), e.g. provided by the city of Hannover (Landeshaupt-
stadt Hannover, FB Planen und Stadtentwicklung, Bereich Geoinformation, 2017) and other
cities around the world (Berlin (Business Location Center, 2022), Amsterdam (van den Brink
et al., 2013), New York (Department of Information Technology and Telecommunications
(DoITT), 2022), Hongkong (Land Information Centre (LIC), Survey and Mapping Office
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(SMO), Lands Department, 2021)) is increasing. Google has deployed 3DMA-GNSS in An-
droid phones for almost 4,000 cities, covering major cities in North America and Europe,
Japan, Taiwan, Brazil, Argentina, Australia, New Zealand, and South Africa (van Diggelen,
2021). A 3D city model, combined with knowledge of satellite positions, enables prediction of
which signals will be affected and where.

Ray Tracing

Once an accurate 3D city model is at hand, the satellite positions are available and an ap-
proximate user location is known, ray tracing can be performed. When these conditions are
met, ray tracing is a powerful tool for distinguishing between LOS and NLOS satellite ray
conditions and for characterizing multipath error in an urban environment. The observation
error is dependent on the satellite-reflector-antenna geometry and thus, ray tracing simula-
tions were used to characterize and estimate multipath errors in different static environments,
e.g. using a steel reflector in a controlled environment (Lau and Cross, 2007), ship and air-
craft environments (Weiss et al., 2007), ground reflections (Smyrnaios et al., 2012) or complex
urban scenarios using a virtual city model (Bradbury et al., 2007).

Besides the multipath and NLOS receptions, the diffraction effect frequently occurs in urban
canyons, which will severely attenuate the signal strength when the satellite LOS transmitting
path is close to the building edge. The impact of diffraction effects on the GNSS signal is
studied, e.g. in Zimmermann et al. (2019), Zhang and Hsu (2021), Schaper et al. (2022) and
Zhang et al. (2023).

In recent years, the significance of the GNSS sensor in the domain of automotive applications
and emerging technologies has grown. Consequently, research involving ray tracing is being
expanded to include the integration into positioning algorithms, with the objective of either
eliminating or rectifying GNSS observations. A comprehensive review of the latest litera-
ture on GNSS positioning algorithms, with a particular focus on the incorporation of NLOS
exclusion or observation rectification strategies, is given in Tab. 2.4.

In addition to the necessity for an accurate city model and the typical absence of knowledge
regarding the user position, the most significant constraint of ray tracing for GNSS positioning
is its high computational complexity. Figure 2.9 depicts an illustrative example in the city of
San Francisco, USA. The scenario on the left appears relatively straightforward, with direct
rays from the satellites to the user. However, the scenario on the right, which is a zoomed-
in plot, provides a more accurate representation of the actual situation. In scenarios with
multiple reflecting surfaces, scattering and diffraction situations, the number of candidate

Table 2.4: State of the art literature summary for GNSS positioning algorithms including NLOS exclusion or
observation rectification strategies.

NLOS exclusion strategies  Observation rectification strategies

Obst et al. (2012) Betaille et al. (2013)
Peyraud et al. (2013) Suzuki and Kubo (2013)
Betaille et al. (2013) Miura et al. (2015)

Hsu et al. (2015) Hsu et al. (2015)

Zimmermann et al. (2019) Hsu et al. (2016)

Icking et al. (2020) Icking et al. (2020)

Ruwisch and Schon (2022b) Ruwisch and Schon (2022a)
O’Connor et al. (2024) Lyu and Gao (2023)
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Figure 2.9: Exemplary situation of ray tracing for a given situation in San Francisco, USA. The right image
is a zoom-in plot of the left image. Source: van Diggelen (2021).

rays becomes enormous, which is, e.g., more than a phone can handle (van Diggelen, 2021).
Therefore, special techniques are required in order to maintain the real-time applicability
(O’Connor et al., 2021).

Ray Tracing Software

The software utilized for ray tracing in the context of this thesis is developed by Icking et al.
(2020) and subsequently refined by Baasch et al. (2023). In order to assess satellite visibility,
a 3D CityGML model provided by the City of Hannover is employed. This model contains
all buildings within the city, stored across multiple files in the CityGML, a format based
on Extensible Markup Language (XML) designed for geographic data representation. The
selected Level of Detail (LoD) 2 includes building models that capture roof geometries, eaves,
and ridges, with a vertical accuracy of £ 1 meter.

Once a specific area within the city is selected and the user coordinates are set, the satellite
visibility analysis is conducted. The two core components of the algorithm are as follows (see
Fig. 2.10):

1. Dividing the building model into smaller bounding boxes.
2. Decomposing each polygon into triangles to simplify the intersection test.

It is imperative to subdivide the selected portion of the building model in order to reduce the
computational run-time. Accordingly, a reasonable area of interest is identified prior to each
data analysis, determining the amount of building information considered for the computation
steps. Once the LOS between the antenna and the satellite has been established, a ray-box
intersection test based on Williams et al. (2005) is performed to determine which boxes are
intersected by the LOS ray. Subsequently, only these boxes are subjected to analysis, as the
ray intersects only a minor subset of all the boxes within the area. This approach results in a
notable reduction in computational run-time. Once the boxes that have been intersected have
been identified, the subsequent step is to ascertain which of the building polygons that are
within these boxes impede the LOS. To streamline the computation and minimize processing
time, each polygon is triangulated. A triangle-ray intersection test, as outlined in Moller and
Trumbore (2005), is then performed. If an intersection with any triangle is detected, the
satellite is considered not visible (NLOS). If no intersection occurs, the satellite is marked as
visible (LOS).
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Figure 2.10: LOS/NLOS determination algorithm. Source: Icking et al. (2020).

To ascertain whether a signal is susceptible to multipath or reflections from building surfaces,
i.e. two-dimensional planes, it is first necessary to identify the reflection points. This, in turn,
requires that the ray vector between the antenna and the satellite, as well as the nearby build-
ing surfaces, be expressed in a common coordinate frame (Baasch et al., 2023). Figure 2.11
shows the geometry of the reflection calculation. To calculate the reflection point R on the
reflecting surface P, the antenna position A is mirrored with respect to this plane:

!/
K=A+E££#£n (2.77)
n-n
The projection of the antenna onto the reflecting surface K is computed using the normalized
outer normal vector n of the reflecting plane and any point Py on the plane. The point Pg
can be any vertex and n can be calculated from three vertices of the surface. Next, the virtual
antenna point A’ is calculated:

A=A +2(K - A). (2.78)

The intersection between the ray from the mirrored antenna point A’ to the satellite S will
give the reflection point R:

K- A')n
R=A' (— S—A). 2.
Finally, the satellite ray is classified into one of the four categories:

1. LOS: Satellite ray is not obstructed and no possible reflection point exists

2. Multipath: Satellite ray is not obstructed but a signal reflection with reflection point is
calculated
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Figure 2.11: Satellite ray reflection on a building surface P at the reflection point R. The user position is

denoted by A, its projection with respect to P as A’ . The extra path delay is represented by the difference

between the satellite S and the mirrored antenna point A’, as well as the satellite S and antenna A. Source:
Baasch et al. (2023).

3. NLOS: the direct LOS is obstructed by a building and the signal can be received via
single reflection on a buildings surface

4. Blocked: the direct LOS is obstructed by a building and no possible reflection point
exists

The integration of the ray tracing software into the developed positioning algorithm is de-
scribed in Sec. 3.3.

Shadow Matching

GNSS shadow matching is a positioning technique used in urban environments to enhance
accuracy by comparing predicted and observed satellite signal availability through the use of
predicted and measured C/Ng. As demonstrated in Groves (2011) and Groves et al. (2015),
this technique employs 3D models of the environment to predict regions of shadow, i.e., areas
where satellite signals are impeded by buildings or other structures, as well as the GNSS signals
that are visible with a direct LOS path. The principle of shadow matching is illustrated in
Fig. 2.12. A user is assumed to be in one of the shadowed areas if the measured C/Ng
is low or the signal is not received at all. If the observed C/Nj is high, shadow matching
assumes that the user is in a region with direct LOS to the respective satellite. The basis
of the LOS/NLOS decision criterion is an empirically determined function of the direct LOS
probability as a function of C/Ng. As the characteristics of antenna-receiver combinations are
inherently different, a function tailored to the respective equipment in use is required. This
function can be derived from C/Nj data collected at a known location under ideal conditions
(Wang et al., 2015).

In order to determine an initial approximate GNSS position and a search space, it is necessary
to compute match probabilities for each signal for a number of candidate positions within that
search space (McGraw et al., 2021):
Pij = p(LOS|C/No) jp(LOS|map)i; + (1 — p(LOS|C/No);) (1 — p(LOS[map)y;) ,
=1 —p(LOS|C/Ny); — p(LOS|map);; + 2p(LOS|C/Np)jp(LOS|map);;, (2.80)
where p(LOS|C/Ny) is the observed direct LOS probability, p(LOS|map) is the predicted direct

LOS probability, j is the satellite and ¢ is the candidate position. A probability score for each
candidate position is computed by multiplying the match probabilities for each signal by

Az’ = HR] (2'81)
J
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Figure 2.12: Principle of shadow matching. Source: Groves et al. (2015).

The position solution is then determined by a weighted average of the candidate positions:

~ o Zz Aixpos,i

XPOS - ZZ Az ’ (282)

where x5, is the position of the i-th candidate and A; is a positive weighting factor.

It has been demonstrated by several research groups that shadow matching is an effective
method for determining the user’s cross-street position with greater accuracy, particularly in
areas with significant signal obstructions. This approach yields positioning accuracies of better
than 3 m, as evidenced by the findings of several studies, including those by Suzuki and Kubo
(2012), Wang et al. (2012), Isaacs et al. (2014), Yozevitch and Moshe (2015), and Strandjord
et al. (2020). Further research demonstrates that the signal strength of a diffracted GNSS
signal may be attenuated depending on the percentage of blockage of the signal’s Fresnel
ellipsoid (Liso Nicolas et al., 2012; Zhang and Hsu, 2021; Schaper et al., 2022). Consequently,
the incorporation of diffraction information into a shadow matching algorithm is advantageous
(Zhang et al., 2023).

2.6.2 Consistency Checking

Consistency checking is a strategy that makes use of redundant measurement information in a
navigation filter or least-squares estimation (Teunissen, 1990). The quality of an estimator di-
rectly depends on the assumptions that the measurements align with the mathematical model.
Model misspecifications, such as outliers and sensor failures, can invalidate estimation results
and any conclusions drawn from them. It is therefore essential to implement quality control
procedures to ensure the integrity of the mathematical model. The quality of the measure-
ments is evaluated with the prior stochastic assumptions, whereby an individual observation
is assigned a specific uncertainty (for further details on GNSS variance models, please refer to
Sec. 2.1.3). Consequently, an accurate stochastic model is essential for precisely determining
measurements that deviate from these assumptions.

In other words, within the context of urban GNSS positioning, this implies that signals affected
by multipath and NLOS are inconsistent with other nominal observations and can therefore
be identified through the consistency check (Groves and Jiang, 2013). The same principle
is applied in Receiver Autonomous Integrity Monitoring (RAIM), where the integrity of a
GNSS receiver is monitored (Brown, 1992; Walter and Enge, 1995; Pervan et al., 1998). The
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effectiveness and performance of consistency checking algorithms for multipath and NLOS
error detection and exclusion in vehicle applications have been investigated in various studies
(Iwase et al., 2012; El-Mowafy, 2020; Elsayed et al., 2023). Further improvement potential is
also explored by combining RAIM methodology with 3D city model information (El-Mowafy
et al., 2020). Considering a dense urban environment, a large number of measurements are
contaminated by multipath and NLOS and therefore, a consistency checking strategy for
excluding multiple faults is required (Hsu et al., 2017).

The limitations of conventional consistency checking are discussed in Sec. 2.5. The consistency
checking methodology, which is implemented in the scope of this thesis, is described in Sec. 3.2.

2.6.3 Multi-Sensor Combination

Since GNSS measurements tend to be biased in urban environments, another strategy to
overcome the limitations of GNSS-only positioning is to incorporate other sensors, such as
Inertial Navigation System (INS), odometer or Light Detection and Ranging (LiDAR), into
a multi-sensor system. The integration of the GNSS sensor with an INS assists in providing
continuous navigation through situations where GNSS signal outages occur, e.g. in deep
urban canyons. The integration of the INS and GNSS in a tightly coupled navigation filter
enhances positioning accuracy in urban environments, particularly when compared to GNSS-
only positioning, as demonstrated in Groves (2013b) and Falco et al. (2017). In the event
of GNSS signal failure, the INS serves to bridge the navigation output, while the GNSS
sensor is able to calibrate the drifting INS error. This allows the sensor combination to
have a complementary characteristic, which helps to maintain centimeter-level accuracy. The
utilization of high-quality navigation-grade inertial sensors has the potential to attenuate the
propagation of errors. However, their cost is not aligned with the financial constraints of
automotive vehicle applications (Brown and Hwang, 2012).

The use of an Inertial Measurement Unit (IMU) based on a Micro-electromechanical Sys-
tem (MEMS) (lightweight, small size and low cost) allows for the implementation of an INS
at a reduced cost, making it a suitable solution for navigation applications. The use of a
GNSS/MEMS INS has been shown to mitigate GNSS signal disturbances, as evidenced, e.g.,
by the findings of Godha and Cannon (2007) and Yang et al. (2013). When carrier phase
observations are utilized, for example, through PPP-RTK/INS integration, such a navigation
system provides decimeter-level accuracy in GNSS-challenged environments (Li et al., 2021).
Moreover, the GNSS/INS integration enhances the availability of a navigation system.

The incorporation of additional sensors, such as LiDAR sensors or wheel speed sensors, fur-
ther improves the system’s performance. The introduction of zero velocity updates and non-
holonomic or holonomic constraints also enhances the system’s capabilities, as demonstrated,
e.g. in Nagai et al. (2024). The LiDAR sensor is capable of providing additional assistance to
the navigation solution, e.g., through relative positioning with respect to landmarks (Nagai
et al., 2024). Furthermore, a 3D map can be constructed from LiDAR point clouds, and sub-
sequently, NLOS satellite signals can be identified and rectified within the estimation process
(Wen, 2020; Wen and Hsu, 2021).

2.6.4 Machine Learning-based Approaches

In the modern digital age, data is generated at a constant and exponential rate in different
field of applications. In response to this situation, technologies have been developed that take
advantage of this characteristic. These technologies enable not only the measurement and
understanding of their origin, but also the collection, quantification, decoding, and analysis
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of data to identify behaviors and trends, formulate strategies, and gain insights. Artificial
Intelligence (AI) has already become a significant contributor to the fields of big data, image
processing, and signal processing (Franca et al., 2021). Consequently, it is also playing a
prominent role in the development of specific applications for ITS and autonomous driving,
e.g. in scene understanding, motion planning, decision making, vehicle control, social behavior,
and communication (Elallid et al., 2022).

In recent years, there has been a notable increase in the utilization of Al, particularly Machine
Learning (ML) algorithms, for GNSS positioning. The capacity of these models to describe
complex phenomena and relationships between parameters is a promising approach for multi-
path and NLOS detection, characterization, and mitigation in urban environments (Crespillo
et al., 2023). ML methods for urban GNSS positioning can be distinguished by the specific
purpose for which they are employed. This may be either the LOS/NLOS classification, as
demonstrated by a binary decision tree (Yozevitch et al., 2016), an adaptive neuro fuzzy in-
terference system (Sun et al., 2019), a gradient boosting decision tree (Sun et al., 2020) or
a support vector machine classifier (Ozeki and Kubo, 2022). The other purpose is to use
ML methods for multipath and NLOS detection for mitigation with or without a distinction
between the two states of reception (Hsu, 2017b; Suzuki et al., 2017). Multipath errors were
successfully mitigated at the receiver level by focusing on the auto-correlation function com-
puted in the receiver (Orabi et al., 2020) and at the pseudorange error level by considering
signal strength, satellite elevation angle and pseudorange residuals (Sun et al., 2020). A more
comprehensive review of ML techniques for urban GNSS positioning is beyond the scope of
this thesis. For further details, including an exploration of current challenges and limitations
of these methods, the reader is directed to, e.g., Crespillo et al. (2023).

2.6.5 Robust Estimation

In general, robust estimators are capable of providing solutions that are nearly optimal in the
presence of outliers. This is achieved by identifying the outliers and reducing their impact on
the estimation process. The mathematical foundation of robust estimators was addressed in
Sec. 2.5. In this section, recent contributions to the field of robust estimation in the context
of GNSS positioning in challenging environments are discussed. The necessity for such ro-
bust estimators for GNSS positioning is becoming increasingly apparent as the probability of
multiple outliers rises due to the growing number of satellites with multiple fully operational
satellite systems and the GNSS sensor’s role in automotive applications in challenging envi-
ronments, e.g. urban areas. Robust methods retain all observations but either down-weight
suspect observations or minimize alternatives to the sum of the squared residuals. The latest
contributions to this field of research can be classified into two distinct categories: firstly, the
pure performance simulation of various methods utilising solely simulated observations; and
secondly, the evaluation based on real data measurements for inland waterborne or urban
vehicular applications. A collection of the most notable research is presented in Tab. 2.5.
Simulation studies have demonstrated the ability of robust least-squares estimators, includ-
ing the LMS, LTS, Modified Least Trimmed Squares (MLTS), Greedy Search (GS), Position
and Time Variation (PTV), R-estimator, M-estimator, GM-estimator, S-estimator and MM-
estimator to effectively detect the error-induced observations and to mitigate their impact
with respect to standard weighted LSA (Knight and Wang, 2009; Medina et al., 2019; Wen-
del, 2022).

Further simulation studies indicate that robust estimation theory can be employed to mod-
ify the Kalman filter update step. This approach is effective for integrating the GNSS/INS
coupled EKF using pseudorange observations with the M-estimator (Crespillo et al., 2018)
and the variational inference method (Variational Bayesian Kalman Filter (VB-KF)) for RTK
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Table 2.5: Literature review for robust GNSS positioning. Estimators: LMS, LTS, MLTS, GS, PTV, R-,
M-, GM, S-, MM-estimator, EKF+M-estimator, CQKF, VB-KF, GM-KF, RIF, I-VKF, S-VKF, CAR-EKF.
Observations: Pseudorange (PR), Carrier Phase (CP), INS.

Application Estimator Observations Reference
Performance LMS, LTS, R, M, Simulated PR Knight and Wang (2009)
Simulation GM, S, MM
Inland Waterborne LMS, M, S, Ransac, Measured PR, INS Medina et al. (2016)
CQKF
Inland Waterborne S Measured PR Pozo-Pérez et al. (2017)
Urban Vehicular M, LTS Measured PR Gaglione et al. (2017)
Urban Vehicular MM Simulated/Measured Akram et al. (2018)
PR
Performance EKF+M Simulated PR, INS  Crespillo et al. (2018)
Simulation
Performance M, S, MM Simulated PR Medina et al. (2019)
Simulation
Performance VB-KF Simulated PR, CP  Li et al. (2019)
Simulation
Urban Vehicular M Measured PR Crespillo et al. (2020)
Inland Waterborne GM-KF, RIF, I- Simulated/Measured Medina et al. (2021)
VKF, S-VKF PR, CP
Performance GS, M, LTS, MLTS, Simulated PR Wendel (2022)
Simulation PTV

Urban Vehicular
Urban Vehicular

EKF+M, CAR-EKF
EKF+M

Measured PR

Ding et al. (2023)

Simulated /Measured Wang et al. (2023)

PR, CP

positioning as described by Li et al. (2019). The influence of heavy-tailed measurement dis-
tributions on position distortion can be reduced, as demonstrated by Medina et al. (2021).

The simulation results are highly promising for robust GNSS positioning. Consequently, re-
search is ongoing to apply robust estimation theory to real measurements in GNSS-challenged
environments. Many studies have demonstrated that the application of robust estimation
techniques to pseudorange-based GNSS positioning can enhance the accuracy in both inland
waterborne scenarios (Medina et al., 2016; Pozo-Pérez et al., 2017) and urban vehicular ap-
plications (Gaglione et al., 2017; Akram et al., 2018; Crespillo et al., 2020; Ding et al., 2023).
Conversely, there is a paucity of analyses for evaluating the performance of robust carrier
phase-based GNSS positioning techniques using real measurements in challenging environ-
ments. In a recent study, Medina et al. (2021) extended the investigation of robust filtering
techniques for RTK positioning. The performance of four algorithms, namely Generalized
M-estimator Kalman Filter (GM-KF), Robust Information Filter (RIF), Independent indi-
cator Variational Bayesian Kalman Filter (I-VKF), and Scalar Variational Bayesian Kalman
Filter (S-VKF), has been evaluated in a challenging waterborne scenario. Robust filtering
techniques are capable of effectively mitigating the majority of significant positioning errors.
Wang et al. (2023) have demonstrated that the integration of an EKF with M-estimation
theory can significantly enhance the ambiguity fixing ratio for RTK positioning in an urban
vehicular context.

The common limitation of the aforementioned algorithms is that the effectiveness of these ro-
bust estimation theories is only guaranteed until the respective breakdown point is reached (see
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Sec. 2.5). In the event that the number of measurement errors exceeds the number of available
nominal observations, it becomes impossible to compute an optimal solution. Consequently,
the following sections of this thesis present a method that ensures a near-optimal GNSS po-
sitioning solution in harsh propagation conditions, where the breakdown point is exceeded.

2.7 Performance Parameters

The performance of a navigation system is evaluated by several statistical parameters, with
variations in their definitions based on the specific application and type of navigation system
used. Typically, these parameters are not individually specified, but are correlated to each
other. In European Comission (2003), the relationship of the typical performance parameters
accuracy, integrity, continuity and availability are illustrated by depicting a pyramid, where
accuracy serves as the basis (see Fig. 2.13). Integrity, continuity and availability are — in this
ordering — solely a function of accuracy. The definitions of the performance parameters are
given in the following subsections and are based on the standard textbooks Hofmann-Wellenhof
et al. (2008), Farnworth (2017) and Pullen and Joerger (2021).

Availability

/
Continuity
I
Integrity
|

Accuracy

Figure 2.13: Hierarchy of GNSS performance parameters.

2.7.1 Accuracy

Accuracy refers to the systems ability to provide reliable and precise location information
and is a quantitative measure of the error, that will be experienced by a user with a certain
probability, between the estimated state (e.g., position and/or velocity) and the true value. In
real-time applications, true state values are typically unknown, however, the accuracy of an
operation can be evaluated under controlled conditions or in post-processing. In literature, it
is further distinguished between the above described (absolute) accuracy and the repeatable
accuracy — also called precision — which does not account for the true position but evaluates
the scattering around a mean value. A typical mathematical measure of the accuracy is the
Root Mean Square (RMS) which is defined as

(2.83)
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The scattering is typically described by the empirical Standard Deviation (STD)

n

STD = \l ! (@ —wi) (2.84)

n—1:4
Both measures are computed from a finite number of n data points x; withi = {1,2,...,n} € N
and their corresponding mean value .

2.7.2 Integrity

Integrity is an important measure that determines the trustworthiness of a navigation system
under a defined integrity risk. Integrity further describes the ability to provide timely warnings
to a user when the navigation system is unavailable. Integrity risk is the probability of
providing incorrect information without warning the user within a time period. In practice,
it is the probability of a large error being undetected which — in safety-critical applications —
could cause collision or accidents. Therefore, the integrity risk is required to be very low with
a probability of typically less than 10~ per operation. In order to evaluate the integrity of a
particular application, the Alert Limit (AL), which is the boundary of unsafe errors, has to
be defined based on the respective specifications. In addition, the Protection Level (PL) is
computed by the user, which is defined as the error bound and typically represented as Vertical
Protection Level (VPL) and Horizontal Protection Level (HPL). The integrity methods applied
in GNSS are evolving, and several protection level computations have been defined (Zhu et al.,
2018; Zabalegui et al., 2020). In this thesis, the method from ICAO (2006) is implemented, as
it is a rather simple method suitable for comparing different positioning estimation strategies.
The computation is straightforward when a zero-mean Gaussian fault-free error distribution
is assumed and the equations are formulated as

VPL = kvpPLOOV Quus (2.85)
+ o 2
HPL = KHPLO'Q\I w + \/(anQQee) + q%e = KHPLOOV Amaz» (2'86)

where A4 is the maximum eigenvalue of the covariance sub-matrix of horizontal positions,
Qnns Qee, Guu and gpe are elements of the rotated covariance matrix of the estimated parameters
in the local frame

qTLTL Qne Qnu

Q:L" = RQXRT = |[4en Qee Geu (287)
Gnu  deu Quu

and R is the rotation matrix from the global to the local coordinate system. The a priori
variance factor og and x factors scale the PL, which is the position domain variance, to a level
compatible with the integrity requirement of the particular application.

According to the International Civil Aviation Organization (ICAO) (ICAO, 2006) and Reid
et al. (2019, 2023), the s factors can be computed using the inverse complementary error
function. Its relation with respect to the normal inverse cumulative distribution function is

defined as
norminv(1l — p) = —v/2 erfcinv (2 (1 — p)), (2.88)

where p is the probability of failure. The x factor for the horizontal case is correspondingly
computed using the Rayleigh distribution. An overview of k factor values for different proba-
bility of failures is given in Fig. 2.14 and significant values are summarized in Tab. 2.6.
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Figure 2.14: Values for the x factor using the Rayleigh and normal distribution for the horizontal and vertical
case with respect to different probability requirements.

Table 2.6: Overview of x factors for different probabilities and the Rayleigh and normal distribution.

Probablhty -3 _4 _5 —6 _7 -8
Distribution 10 10 10 10 10 0.5-10
Rayleigh (horizontal) 3.72 429 480 526 5.68 6.18
Normal (vertical) 3.09 3.72 426 4.75 5.20 5.73

The relation between Position Error (PE), PL and AL is depicted in Fig. 2.15 with six different
conditions depending on the magnitude of the respective parameters and whether the PE is
bounded by the PL. The definition of the conditions is given in Tab. 2.7. The figure, where the
PE is plotted versus the PL is commonly denoted as Stanford diagram (Toissant et al., 2006).
In an optimal case, the PE is bounded by the PL and both values are below the AL chosen
for the particular application, which means the system is in Nominal Operation (NO) mode.
The system is unavailable if the protection levels are too conservative, hence, the condition
PE < PL holds true but the AL is exceeded. In this condition, safety can still be maintained
if an alert is transmitted to the user indicating that the system is no longer safe to use within
a specified Time to Alert (TTA). The most critical condition, which should be avoided in any
case, is Hazardous Misleading Information (HMI), where the system thinks it is safe to use
(PL < AL) but in fact it is not (PE > AL) and hence, the user is unable to be warned.

N
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Figure 2.15: Relation between position error (PE), protection level (PL) and alert limit (AL). Adapted from
Hofmann-Wellenhof et al. (2008).

2.7.3 Availability and Continuity

Availability serves as an indicator of the system’s capability to provide functional service, i.e.
required levels of accuracy, integrity and continuity are met within a specified coverage area.
The availability itself can be measured by the percentage of time during which the system is
available for the intended operation. A particular value of requirement in terms of availability
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Table 2.7: Stanford diagram conditions.

I PE < PL < AL nominal operation

I PE < AL < PL system unavailable (too conservative)

IIT AL < PE < PL  system unavailable

IV PL < PE < AL misleading information (too optimistic)

V  PL < AL < PE hazardous misleading information

VI AL < PL < PE system unavailable and misleading information

needs to be selected for a specific operation depending on various factors described in ICAO
(2006).

Assuming that the system is available at the beginning of an intended operation, continuity
describes the ability of the system to maintain the functional service without nonscheduled
interruptions. It is furthermore defined as the probability that the specified accuracy and
integrity requirements are continuously ensured over the time interval of the intended opera-
tion. Typically, the probability of continuity is defined by the so-called continuity risk, which
should be balanced with the integrity risk requirement.

2.7.4 Performance Specifications for Intelligent Transportation Systems

The definitions of the above described GNSS performance parameter are mainly based on avi-
ation applications and defined by the ICAO (ICAO, 2006). Since GNSS-based navigation is
becoming of increasing interest also in I'TS, these performance parameters have to be adapted
and new specifications for road transportation applications need to be defined. Currently,
there are no standardized or generally-accepted specifications for ITS (Du et al., 2021). How-
ever, the European Cooperation in Science and Technology (COST) action Satellite Position-
ing Performance Assessment for Road Transport (SaPPART) was launched working towards
standardized road scenarios. In an accepted European norm (EN 16803-1), the methodology
and guidelines for the terminal performance assessment are provided. A quantitative overview
of the performance requirements for road applications is given in Tab. 2.8 with impact scoring
H (high), M (medium) and L (low) based on European GNSS Agency (2015) and Stern and
Kos (2018).

In EN 16803-1, the performance metrics for accuracy and integrity are characterized by Cu-
mulative Distribution Function (CDF) percentiles (50th, 75th and 95th) since the distribution
of positioning errors — especially in challenging urban environments — suffer from heavy tails
(Stern and Kos, 2018). That is why taking just one value, e.g. the mean RMS error, is not

Table 2.8: Quantitative evaluation of performance requirements for road applications.

Road applications Accuracy Availability Integrity Continuity

Autonomous driving H M H H
Advanced navigation M/H M H H
Fleet management L/M H H L/M
Road charging L/M H H L
Insurance telematics L M H L/M
eCall services M H M L
Road navigation M H M L
Vehicle tracking L M M/H L
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robust enough. Since requirements are highly dependent on the respective application type,
e.g. Advanced Driver Assistance Systems (ADAS), collision avoidance, and different levels
of autonomous driving, detailed specifications for various ITS applications are mandatory
(Zhu et al., 2018). The accuracy classification boundaries of different ITS applications — also
standardized in EN 16803-1 (Stern and Kos, 2018) — are summarized in Tab. 2.9.

In Reid et al. (2019) and Reid et al. (2023), preliminary statements of localization require-
ments are derived — especially considering specifications for autonomously driving vehicles
and different levels of autonomy. The three different levels of autonomy are defined as road
determination, lane determination (if there are at least two lanes) and lane keeping, which
requires the highest accuracy. Requirement specifications are derived based on the geometry
dimensions of U.S. freeways and local roads and divided into lateral, longitudinal and verti-
cal components. The latter are summarized in Tab. 2.10 for a given probability of failure of
1075/h. U.S. local roads are assumed to have a minimum lane width of 3 m with a minimum
curvature of 20 m or a minimum lane width of 3.3 m with a minimum curvature of 10 m.
The derivation of the localization alert limits is based on a bounding box selection, which is
a function of the road geometry, the vehicles dimensions and the desired level of autonomy.
The bounding box geometry for the three levels of autonomy are shown in Fig. 2.16. Whereas

Table 2.9: Accuracy classification boundaries from the application perspective.

Application type P = 50th percentile P = 75th percentile P = 95th percentile

In-lane P<01m P <0.15m P <0.25m
Lane 0lm<P<04m 015m<P<06m 025m<P<10m
Carriageway 0dm<P<40m 06m<P<60m 1.0m<P<10.0m
Area 40m<P<40m 60m<P<60m 10.0 m < P <100 m
No specific P>40m P>60m P > 100 m

Table 2.10: Combined localization and map error budget for U.S. local roads with probability of failure
1075/h.

Accuracy (95 %) Alert limit
Lat. [m| Long. [m] Vert. [m] Lat. [m] Long. [m] Vert. [m]

Road determination

1.09 1.24 0.56 2.73 3.10 1.40
(two lanes)
Lane determination 0.50 1.26 0.56 1.26 3.15 1.40
Lane keeping 0.12 0.12 0.56 0.29 0.29 1.40
Lane Keeping Lane Determination Road Determination

Figure 2.16: Comparison of bounding box geometry for different levels of autonomy: lane keeping, lane
determination and road determination. Source: Reid et al. (2023).
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other shapes have the characteristics of relaxing the alert limits (Feng et al., 2018; Kigotho
and Rife, 2021), the bounding box has a more conservative nature. The location requirement
specifications for U.S. local roads when further taking the vehicle dimension into account and
using 1078 /h as probability of failure are summarized in Tab. 2.11. The desired level of au-
tonomy for these specifications is lane keeping. The differences in comparison to Tab. 2.8
can come from the difference in the derivation, the additional consideration of the vehicle
dimension and the fact that Tab. 2.11 is representing the allowable bounds from the combined
position, attitude and map errors of the collective system. However, the general order of mag-
nitude is similar when taking into account that Tab. 2.8 describes the 2D horizontal accuracy
classification boundaries.

Table 2.11: Localization requirements for U.S. local roads for different vehicle sizes and lane keeping application
with probability of failure 1078 /h. The dimensions of the vehicle type can be found in Reid et al. (2019).

Vehicle tvpe Accuracy (95 %) Alert limit
e yp Lat. [m] Long. [m] Vert. [m] Lat. [m] Long. [m] Vert. [m]
Mid-Size 0.15 0.15 0.48 0.44 0.44 1.40
Full-Size 0.13 0.13 0.48 0.38 0.38 1.40
Standard Pickup 0.12 0.12 0.48 0.34 0.34 1.40

Passenger Vehicle 0.10 0.10 0.48 0.29 0.29 1.40







An Extended Kalman Filter Framework for
Urban Navigation

This chapter outlines the mathematical foundations of an EKF framework for estimating
position and velocity using GNSS pseudorange and carrier phase measurements. It includes
a detailed description of the functional and stochastic models, the corresponding Kalman
filter equations for measurement and time updates, and the equations for state estimation.
Additionally, the chapter describes integrated algorithms within the framework for outlier
detection and the detection and exclusion of erroneous observations using 3D building models,
alongside the entire computational procedure. The framework was independently developed,
though it is based on state of the art methods. This algorithm serves as the basis for developing
innovative methods in chapter 4 to improve accuracy and integrity, and for comparing the
performance of the developed techniques in chapter 5.

3.1 State Estimation

A multi-GNSS, multi-frequency RTK positioning algorithm has been developed in an EKF to
evaluate the positioning performance in terms of availability, accuracy, and integrity in urban
environments. Although RTK positioning is real-time capable, the evaluation of collected
raw-data will be conducted in post-processing. Using an EKF, the state vector x can be
estimated with DD carrier phase, DD pseudorange, and DD Doppler measurements. Forming
DD observation equations eliminates the receiver and satellite clock biases. For short distances
between the rover and the reference station, atmospheric errors are assumed to be negligible.
Thus, the DD observation equations (see Sec. 2.1.2) can be written as follows:

Dy, = 0y + AN + €5 (3.1)
Prb = 0 T €y (3.2)
Py = O + b o (3:3)

consisting of the rover (r) and base station (b), rover (i) and reference satellite (j), the pro-
jection of the baseline vector onto the LOS g:?b, carrier phase wavelength (\) and ambiguity

(N') and the respective carrier phase (€,5.), pseudorange (€, ), and Doppler noise (e% 5)-
In order to obtain DD observations, the satellite-to-satellite SD computation is performed by
selecting a reference satellite with maximum elevation angle in each epoch. The SD computa-
tion for different GNSS is independent, so no combination of measurements is formed between

e.g., GPS and Galileo, even if they have the same carrier frequency.

The following equations and matrix definitions are based on a multi-GNSS, single-frequency
solution for the sake of clarity. In order to extend the model to the multi-frequency solution,
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additional measurements per frequency are attached as sub-vectors to the observation vector
and the covariance and measurement matrices are extended into block-diagonal structures
using sub-matrices per frequency.

The state vector x consists of the rover coordinates and velocities represented in the 3D
Cartesian coordinate system (ECEF) and the SD carrier phase float ambiguities of all GNSS:

T
_ G R E C
X = [$rayr72ravxravyravzraN Nrberberb ) (3'4)

rb?

where Ng’;, Nf,%b, NE), Ng denote the SD float ambiguity vector of the respective GNSS. As-
suming m available GPS satellites, the SD float ambiguity vector can be defined as

T
N?% = [NIG,’/’IW NQC,;Tb’ T 7N’g,rb} : (35)

The use of SD float ambiguities as state estimates instead of DD float ambiguities avoids the
hand-over handling of reference satellites (Takasu and Yasuda, 2010).

Measurement Update of EKF

The measurement vector at time k consists of DD carrier phase, pseudorange, and Doppler
observation vectors:

T
— ¢ R L C G R ,E ,C G AR AE AC
I = [(I)’rb7q’rb’(I)Tb’<I)7‘b’prb’prb’prb7prb7prb7prb7prb’prb : (36)

Assuming m available GPS satellites, the GPS observation vectors can be defined as

. . . 1T
o, = [0, 033, dip] " (3.7)
. . . 1T
per = [pﬁv pﬁﬁ cee ,Pffbn} ) (3'8)
) . . 1T

The observation model, which maps the true state space into the observed space, is obtained
by linearizing the mathematical relation between observations and parameters of the state
vector around the latest state estimates:

A 0 \°DY |
Alr 0 MEDE
AfF 0 AEDE
AY 0 DY
A 0 0

AR 0 0

Hj, = AP 0 0 : (3.10)

AY 0 0
0 A 0
0 Al 0
0 AF 0
[0 AY 0

where A represents the geometry part and D the one of the SD ambiguities.
Assuming m available GPS satellites, the partial derivatives w.r.t. the rover position — which
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is the difference of the LOS vectors from the rover position r at time k to the satellites 1 to m
and reference satellite ¢ — read

xl—xr _ Iifl'r yl_'yr _ yz_yr 21—27- _ Zi—‘Zr
or P P oy or P
2’—z. _ z'-az, Y —yr _ Y'—Yr 22—z, 2=z
2 7 2 i 2 7
AkG — Pr Pr Pr Pr Pr Pr , (3.11)
e —xy _ giexe Y"—yr _ Yoy 2z 2oz
Py Py pr Py Py Py

and the partial derivatives w.r.t. the SD float ambiguity consists of the respective wavelength
of the used signal A and the DD matrix Dg which transforms the SD model into the DD
model at epoch k:

Dy = c (3.12)

—1 1 (m—1)xm
The column containing —1 indicates the column of the epoch-wise chosen reference satellite.
This DD matrix is also used to transform the stochastic model of SD into the covariance matrix
of DD measurements which includes the mathematical correlations between measurements of
one GNSS:

) - _
DERDY )
RREDR
Qig 1 = PiReDi [ (3.13)
DEREDE i
I DiRGD}" |
DEREDET ]
oot RR RPpRT
Qi .k = DRy Dy —— (3.14)
Dy R,;Dy .
I D{RIDL" |
DYRSDE" ]
’ RRRpRT
Qi = DR, Dy [ (3.15)
Dy R;Dy .
I D{R{Df" |
Qux O 0
Qr=| 0 Q,r O (3.16)
0 0 Quk

The measurement noise matrices Re, R, and R are diagonal matrices containing the weighted
variances of the SD carrier phase, pseudorange and Doppler measurements of the different
GNSS, respectively. Assuming m available GPS satellites, the GPS measurement noise ma-
trices are expressed as

Rg:2a<2bg~ - diag (wl_l,wg_l,...,w,#) , (3.17)
el . _ _ _
R, = 20?)0@ - diag (w1 1,w2 Lo ,wml) , (3.18)

RE = 20/2"(? - diag (w{% w;l, e ,w;zl) , (3.19)



48 3 An Extended Kalman Filter Framework for Urban Navigation

2

where o2 0 and af.)G are the a priori variances of the GPS carrier phase, pseudorange and
0 0

o5
Doppler measurement noise and w,, is the respective weight of each satellite depending on

the chosen weighting model.

Time Update of EKF

In the time update step of the EKF, the state estimates of the current epoch are propagated
to the next epoch using the state transition matrix Fy, ;1 using a constant velocity motion
model and the process noise covariance matrix Qg p1:

[1 At 0
Frei=[0 1 0], (3.20)
_0 0 1
_diag (quSAt—I—%At?’qvel) diag (%At2qul) 0
Qi ht1 = diag (%At2qvel) diag (gvel At) 0 ) (3.21)
0 diag (gampAt)

where gpos and gamp are the spectral noise densities of the rover position, velocity and ambi-
guities and At is the time interval. The rover position and velocity is typically modelled as
random walk process while the rover ambiguities are modelled as random constants.

EKF Formulation

The Kalman gain matrix, the estimated unknown state vector and its covariance matrix at
time k reads

-1
Ky, = Q; Hj (HkQ;,ka + Ql,k) ; (3.22)
ar=T-KiHy)Q,, (I K Hy)" + K QiKY (3.23)
XZ_ =Xx; + K (lk —H; - X,;) . (3.24)

Finally, the linear time update of the state vector and its covariance matrix is expressed as:
X1 = Frp - X1, (3.25)
Qz i1 = Frnr1Q7  Fhpsr + Qrkrt. (3.26)

In Eq. 3.22 to Eq. 3.26, ()~ and ()T indicate the specific vectors and matrices before and
after the measurement update of the EKF, respectively.

3.2 Qutlier Detection

The global detection and local identification technique (Teunissen, 1990) is implemented as
a quality control of the filter solution. Therefore, the predicted residuals or innovations and
their covariance matrix are computed:

d =1y — Higxy Qur = Qi + HiQ, HY. (3:27)

The predicted residuals are assumed to be Gaussian distributed with zero mean and known
covariance matrix forming the null hypothesis Hy and alternative hypothesis H,

Hop: dp ~N(0,Qqp), Hy: dj ~ N (Vdg, Qax) - (3.28)
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Based on the predicted residuals dj and its covariance matrix Qgp, it is tested whether
the measurements are consistent with the system model. The test statistic T} for detecting
unspecified model errors in the null hypothesis Hy with the degrees of freedom ( reads

d%QJ}fdk

The global detection is performed using the Fisher distribution F and a certain significance
level a, The global test is failed if

(3.29)

Ty > fC,oo,lfaG- (330)

If a local model error is present at time &, the global detection is followed by the identification
of the most likely alternative hypothesis. The local slippage test statistic is

TO—-1
¢, Qg di
t = ’“7‘11 (3.31)
\V C;{Qd,kck
where the test statistic ¢, is computed (-times. The vector ¢ has the form [0,...,0,1,0,..., O]T

with the 1 corresponding to the suspect measurement. After computing the test statistic for
each of the measurements, the likelihood of the most likely model error can be tested by
comparing it with the critical value of the corresponding normal distribution A/. If

[tel > Ni—ay /2, (3.32)

then a significant error occurred and is successfully identified. The identified model error is
removed from the measurement model and an updated filter solution is computed resulting
in an updated predicted residual vector. This updated predicted residual vector is then used
for the detection of possible remaining model errors and the procedure is repeated until all
detected model errors are removed. The type I error probability of the local identification ap,
and the probability of the global detection a¢g are adjusted based on a fixed non-centrality
parameter (Caspary, 2000).

3.3 3D-Mapping-Aided Fault Detection and Exclusion

The main error source for GNSS positioning in urban environment is the reception of reflected
or blocked signals (see Fig. 3.1(a)). NLOS reception causes delays of up to several hundreds of
meters, depending on the local environment (McGraw et al., 2021). Therefore, the exclusion
of NLOS signals — the so-called 3D-Mapping-Aided Fault Detection and Exclusion (3DMA-
FDE) — is a powerful method to mitigate large errors in urban GNSS positioning applications.
The SDMA-FDE approach is integrated into the developed RTK positioning algorithm based
on epoch-wise ray tracing computation (see Fig. 3.1(b)) as described in Sec. 2.6.1. Required
information are GNSS satellite positions, 3D building model data provided by the city of Han-
nover and the user location. In this thesis, the user location is available from pre-processed
reference solutions leading to optimal ray tracing results. However, in real world scenarios,
the user location input can be taken from either an a priori estimation or pre-defined routing
information. By combining the available information, satellites are classified as LOS, mul-
tipath, NLOS and blocked. In this way, all NLOS and blocked satellites are identified and
provided in a satellite exclusion list which is applied to the measurement processing step and
consequently faulty satellites are excluded from the positioning solution.
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Figure 3.1: Erroneous signal reception in urban areas (a) and its mitigation in positioning algorithms (b).

3.4 Computation Procedure

The implementation of the proposed approach is shown in Fig. 3.2 and will be explained in
the following. Multi-GNSS carrier phase, pseudorange, and Doppler measurements from four
systems (GPS, GLONASS, Galileo, BDS) and multiple frequencies serve as input data for the
measurement processing.

Measurement Processing

In the measurement processing step, an elevation mask is applied, DD measurements are
calculated based on raw carrier phase, pseudorange, and Doppler observations and epoch-wise
selected reference satellites and the weight matrix is set up accordingly. The rising of new
satellites and the setting or loss of satellites due to blockages is handled.

Pre-processing and Matrices Set-up

In this step, the SD covariance matrix and SD ambiguities are updated based on the mea-
surement processing step and information from the previous epoch. The ambiguities of new
satellites are initialized using the SD Code-Minus-Carrier (CMC) combination. For rising
satellites, the corresponding diagonal element in the covariance matrix should be initialized
with a user-defined large value so that the imprecise initialization has no impact on the other
estimated parameters.

State Estimation

Having the DD measurements, the weight matrix, updated SD covariance matrix, SD ambi-
guity approximations and user-defined process noise and measurement noise parameters, the
EKF framework produces state estimates of the coordinates and estimated SD float ambigu-
ities. The SD float ambiguities and their covariance matrix are transformed into DD float
ambiguities and DD covariance matrix, respectively.
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Figure 3.2: Flowchart of the developed EKF framework for GNSS RTK positioning.

Ambiguity Fixing

The DD float ambiguities and their covariance matrix serve as input parameters for the
LAMBDA algorithm (Teunissen, 1995a). A common method to overcome the frequency-
dependency of GLONASS signals is to keep GLONASS ambiguities as float values while
fixing the ambiguities of all other systems (Ma et al., 2020). However, when using the same
receiver types at both the rover and reference station, the inter-frequency bias remains con-
stant (Wanninger, 2011). Although adding GLONASS data can deteriorate the ambiguity
resolution performance in multi-GNSS solutions, the satellite geometry is strengthened and
thus will improve the positioning performance (Brack et al., 2020). In this thesis, PAR is ap-
plied — which also can overcome the weakness of GLONASS ambiguity resolution (Teunissen,
2019) — in order to fix subsets of ambiguities if fixing the full set of ambiguities is not possible
(Teunissen and Verhagen, 2009).

If the ambiguity fixing is successful, the rover position is updated by Eq. 2.43 or by performing
a LSA using the vector of successfully fixed (or partially fixed and float) ambiguities. Conse-
quently, the DD carrier phase observations are corrected by the estimated (integer) ambiguities
N resulting in the shortened observation vector Al Additionally, the number of parameters
in the normal equation system is reduced to three, since only the three-dimensional rover
position is estimated. In the following equations the time-dependent indices k are neglected
for reasons of clarity:

Al =1y — AN (3.33)
—1 o
x = (ATPA)  ATPAI (3.34)

If the ambiguity fixing failed, only the float estimates of the filter solution are output.






GNSS Feature Map-Aided Robust EKF

This chapter describes the newly developed GNSS Feature Map-aided robust EKF approach,
starting with the motivation why adapted robust estimation is necessary for urban naviga-
tion applications. Subsequently, the general principle of adapted robust estimation is de-
scribed, including the methods GNSS Feature Map-Aided NLOS Exclusion (GNSS FMA-NE)
and GNSS Feature Map-Aided Weighting (GNSS FMA-W). Furthermore, a newly developed,
adapted loss function with its mathematical relationships is presented and its performance is
compared with state-of-the-art loss functions. Another focus of this chapter is the GNSS Fea-
ture Map, its concept, the detailed description of the map generation, the map resolution, the
similarity of GNSS ranging errors summarized in the map, and last but not least the provision
of a complete GNSS Feature Map for automotive applications. The positioning strategies de-
veloped in this chapter are tested in Chap. 5 using real kinematic data and evaluated against
state-of-the-art methods.

4.1 Motivation

Optimality of estimators is only guaranteed if the distribution of the measurements exactly
fulfill the Gaussianity requirements with perfectly known covariance. In order to consider
the varying uncertainty of GNSS measurements from different satellites, empirical weighting
models are introduced in Sec. 2.1.3. Another method of mitigating gross errors is to make use
of loss functions derived from robust statistics. However, the main drawback of these family
of functions is the reduced efficiency for fractions of outliers close to 50 % and a failure of
the estimator for fractions of outliers exceeding 50 %, because the robust estimator cannot
distinguish between nominal and contaminated observations.

In dense urban environments, the availability of nominal distributed measurements is largely
reduced due to high buildings in the vicinity of the antenna resulting in numerous multipath
and NLOS signal receptions. An exemplary multi-GNSS satellite availability for a kinematic
trajectory in a typical urban area in the city of Hannover is shown in Fig. 4.1. Using city
model information and ray tracing, the respective satellites are classified as LOS, multipath
(MP), NLOS and blocked (Blk), represented in each row of the figure. Depending on the local
situation and the satellite geometry, the resulting LOS signal reception ratio is often close
to or even below 50 %, which would cause the standard robust estimators to be inefficient or
break down.

In order to further illustrate the need of an adapted robust estimator, the performance of
state of the art robust estimators for SPP is compared to that of an optimal MLE using a
simulation study. A real multi-GNSS satellite constellation (GPS, GLONASS, Galileo, BDS)
is determined for a given location at a given time using final satellite orbit products provided
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Figure 4.1: Multi-GNSS (GPS, GLONASS, Galileo, BDS) satellite availability for a kinematic trajectory in a
typical urban area in the city of Hannover. The road width is ~ 3 m surrounded by four-to-five storey buildings.

by the Center for Orbit Determination in Europe (CODE). The nominal observation errors are
generated based on the normal distribution with zero mean and standard deviation o =1 m
while the contaminated observations are uniformly distributed, i.e. the bias is randomly
drawn from values between 20 m and 100 m. In total, 36 satellites are available in the multi-
constellation case. All configuration parameters are summarized in Tab. 4.1. The multi-GNSS
satellite constellation of the simulation configuration is shown in Fig. 4.2, where the left skyplot
shows the observation errors for the 50 % contamination proportion case and the right skyplot
represents the observation errors for the 70 % contamination proportion case. The observation
errors are categorized into two classes: the nominal observations with magnitudes around 1 m
and the contaminated observations with magnitudes larger than 20 m.

The loss functions of the MLE at the normal model (first column), Huber (cy = 1.345, second
column) and Geman-McClure (cg = 1, third column) estimators for the SPP formulation pro-
jected in the North-East position domain using the simulated observation errors are depicted
in Fig. 4.3.

The upper two rows represents the loss function as a surface and contour plot for a con-
tamination proportion of 50 % and bottom two rows for a contamination proportion of 70 %,
respectively. The global minimum is marked with a red cross and the ground truth is marked
with a green diamond, respectively.

Table 4.1: Simulation configuration.

GPS time 2022/8/23 9:34:55
Location Hannover, Germany
Cartesian coordinates X: 3844924.5145 m, Y: 658244.2505 m, Z: 5029382.9620 m
Geodetic datum ITRF2014, epoch 2023/235
Satellite orbits Final CODE products
PDOP 0.74
Observation distribution i, ~ N (0,1), lout ~ U (20,100)
Contamination proportion neut,1 = 50 %, nout,2 = 70 %
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Figure 4.2: Multi-GNSS satellite constellation of the simulation configuration for 50 % (left) and 70 % (right)
outliers. The measurement distribution is shown in blue (normal distribution) and red (uniform distribution).

As expected, the MLE and Huber estimators present a typical convex optimization with a
single minimum and a guarantee for uniqueness and stability. However, the minimum is not
characterized by a distinct peak, but rather by the shape of a flattened cone, especially for
the 70 % contamination proportion case. The minimization of the loss function for the MLE
results in a bias in the position domain for both simulated contamination proportions as
already a single outlier could lead to a loss of the optimality characteristics. When applying
the Huber estimator to the same observation errors, the minimization of the loss function
leads to a position result close to zero for the 50 % contamination proportion case, while the
breakdown point of 50 % is exceeded for the 70 % contamination proportion case and thus,
the minimization leads to a bias in the position domain.

The results for the Geman-McClure estimator clearly represent the characteristics of non-
convex optimization with a sharp peak at the global minimum but also an almost infinite
number of possible solutions due to local minima. The higher the contamination proportion,
the more important is the initialization of the non-convex solver, since the probability that
the redescending solver could end up at a local minimum is increasing and thus, it would lead
to a bias in the position domain. However, if the initial guess is close to the ground truth,
the Geman-McClure estimator would still converge to a global minimum yielding a solution
close to zero. This leads to the conclusion that a redescending type of robust estimator is very
useful to mitigate the impact of outliers, especially when a large percentage of observations is
contaminated.

4.2 Adapted Robust Estimation

A number of strategies are frequently used in current GNSS-based navigation solutions to miti-
gate gross errors due to faulty satellite signal receptions, including different (robust) weighting
schemes (Sec. 2.1.3 and Sec. 2.5), 3DMA GNSS (Sec. 2.6.1) or outlier detection (Sec. 3.2).
All these methods suffer from an overly conservative down-weighting of observations, lack of
robustness for highly contaminated data, the need of additional 3D city model information
or computationally intensive algorithms. To overcome these weaknesses, in this section two
new strategies are defined which are utilizing prior information through the so-called GNSS

Feature Map (Ruwisch and Schon, 2022a,b, 2023): i) GNSS FMA-NE uses map information
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Figure 4.3: Loss functions of the MLE at the normal model (first column), Huber (cg = 1.345, second

column) and Geman-McClure (cg = 1, third column) estimators for the SPP formulation using the simulated

observation errors depicted in Fig. 4.2. Upper two rows represents the loss function as a surface and contour

plot for a contamination proportion of 50 % and bottom two rows for a contamination proportion of 70 %,

respectively. Thereby, the green diamond represents the ground truth at [0,0] m and the red cross depicts the
respective minimum of the loss functions.

containing satellite visibility classification results and ii) GNSS FMA-W uses map informa-
tion containing GNSS pseudorange residuals. The detailed process of the GNSS Feature Map
generation is explained in Sec. 4.3.2.
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In Fig. 4.4, the basic principle of utilizing GNSS Feature Map information for localization of
autonomous vehicles is depicted. Vehicles driving through an urban trench are able to retrieve
information from stored map data whenever the vehicle is located within a certain distance
to the respective map point. The provided map information can be either satellite visibility
classification information (left) or predicted pseudorange residual information (right), which
are then processed by the user to enhance the vehicles localization accuracy.

The integration of the two proposed adaptive robust estimation strategies into the EKF frame-
work for urban navigation is shown in Fig. 4.5, where the new and innovative part is high-
lighted compared to the EKF framework that has been described in Chap. 3. Definitions and
implementation details of the algorithms are explained in the following subsections.
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Figure 4.4: Conceptual application of GNSS Feature Maps for localization of autonomous vehicles.
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Figure 4.5: EKF framework integration of adapted robust estimation approaches (orange parts).
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4.2.1 GNSS Feature Map-Aided NLOS Exclusion

The GNSS FMA-NE algorithm is an alternative to 3D city model-based ray tracing. Instead,
it utilizes information from offline computed ray tracing results. Each grid of the map pro-
vides an obstruction mask for the center point of the box. As soon as the predicted vehicle
position is located within one of these map grids, the provided obstruction mask is taken as
an approximation of the vehicle’s obstruction mask. If any of the received satellite signals
are classified by the map as NLOS, the respective satellites are excluded from the estimation
process. Conversely, if signals from potential LOS satellites are received, no action is required
and all satellites in view are used in the estimation process.

The processing flow of the GNSS FMA-NE is displayed in Alg. 2. This approach ensures the
rejection of NLOS satellites by leveraging 3D building model data and ray tracing computation
results, thereby avoiding the necessity of epoch-wise ray tracing computations at the vehicle
site.

Algorithm 2 GNSS Feature Map-Aided NLOS Exclusion

for every epoch do
Calculate predicted user position
Calculate satellite positions
if Predicted position is inside any box polygon then
Retrieve Feature Map classification information
if any satellite is NLOS then
Reject satellites from estimation
else
Use all satellites
end if
end if
Update user position
end for

4.2.2 GNSS Feature Map-Aided Robust Weighting

Generated maps, which provide information on the spatial distribution of pseudorange residu-
als and thus, information on the potential received magnitude of ranging errors, can be used to
modify existing robust weighting schemes. The general processing procedure is similar to the
GNSS FMA-NE algorithm. The GNSS FMA-W is initiated subsequent to the computation
of the predicted user position. Subsequently, the predicted user position is compared to the
generated box polygons present on the map. If the aforementioned condition is found to be
true, meaning that the predicted position is assigned to a map grid, the pseudorange residual
information of the GNSS Feature Map is retrieved for the specific box in question. Then, the
respective predicted residuals are normalized by the a priori pseudorange measurement noise
Tp as follows

v
viM — , (4.1)

Tpo
where vI'M is the vector of predicted pseudorange residuals retrieved from map information,

which is used for computing robust weights based on a defined robust loss function. Consid-
ering the minimization formulation in Eq. 2.67, it can be reformulated as minimization of the
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predicted pseudorange residuals

n oFM
1

with p(-) denoting one of the robust loss functions and ¢ = 1,...,n is the number of observa-
tions.

The algorithmic realization within an estimator is depicted in Alg. 3. Please note that no
iteration of the estimation is required, since the obtained predicted residuals are taken as true
values and thus, expected to solve the minimization in Eq. 4.2, which yields an efficient and
costly inexpensive robust estimator.

Algorithm 3 GNSS Feature Map-Aided Weighting

for every epoch do
Calculate predicted user position
Calculate satellite positions
if Predicted position is inside any box polygon then
Retrieve Feature Map residual information vi™
Normalize vi™ to #¥'M = ¥

g
Adapt weights based on robust loss function p(+)
else
Use conventional weighting
end if
Update user position
end for

4.2.3 The HG-estimator — An Adapted Robust Weight Model

In the preceding section, the Huber loss and Geman-McClure loss are assessed in terms of en-
hancing the robustness of GNSS based localization in the presence of contaminated data. The
two methods of different weighting for large observation errors are based on the mathematical
foundations described in Sec. 2.5. The review of the literature in Sec. 2.6.1 of urban GNSS
positioning reveals that, when a sufficient number of healthy satellites are received, the exclu-
sion of biased observations based on building models and ray tracing computations leads to a
significant enhancement in the accuracy. Reformulating the NLOS exclusion strategy in terms
of a weight model would entail maintaining the LOS satellites and assigning weights close to
zero to the NLOS satellites (i.e., the observations with the larger residuals). Revisiting the
aforementioned robust functions, it becomes evident that both the Huber loss and the Geman-
McClure loss exhibit a significant limitation. The Huber function assigns weights of one for
a range of smaller residuals (typically between -1.345 and +1.345), but only slightly dampens
large residuals. In contrast, the Geman-McClure loss exhibits a pronounced dampening effect
on increasing residuals, which aligns well with the NLOS exclusion strategy. However, the
weights are already significantly reduced for residuals that are still relatively small.

Consequently, a new adapted robust weight model — the HG-estimator — is proposed, which
incorporates the advantages of both robust functions and eliminates the drawbacks of both
models. The new model demonstrates a high level of impact from observations with rela-
tively small residuals, while strongly dampening the impact of observations with larger resid-
uals. Thus, the combination of the Huber loss and the Geman-McClure loss yields a robust
model that is comparable to a NLOS exclusion strategy. The corresponding equations for the
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loss function (p(x)), score function (¢(x)) and weighting function (w(x)) are summarized in
Tab. 4.2. A graphical representation is provided in Fig. 4.6. To illustrate the novel approach
more effectively, the graphs presented in Fig. 2.7 have been included. It can be seen that for
residuals between £1.345 the HG function adheres to the Huber definition. Conversely, for
residuals exceeding this value, the HG function aligns with the Geman-McClure loss, score
and weighting function, respectively.

The discontinuity of the HG loss function gives rise to convergence problems and, under
circumstances where the initial approximation values are not accurate, it is highly probable
that the estimator will converge at the local minimum. In this study, the developed estimator
is based on the assumption that feature map information is highly accurate and serves as a
reliable initial estimate. This eliminates the need for iteration of the HG estimator, thereby
ensuring that the disadvantages of discontinuity are negligible. As can be seen in Chap. 5, the
HG loss improves the performance of carrier phase-based positioning compared to the existing
robust functions.

In order to evaluate the applicability of the HG-estimator, the SPP performance is analyzed
by depicting the loss function (see Fig. 4.7) for the same scenario as in the previous section,
for the 70% contamination case. The global minimum of the loss function leads to a very
small deviation from the ground truth, comparable to the outcome for the Geman-McClure
loss function. Consequently, the HG-estimator is a robust estimator that effectively mitigates
the impact of outliers at a high data contamination proportion. It is also evident that the
redescending characteristic of the estimator results in the occurrence of numerous local minima
of the loss function. That in turn requires accurate initial estimates in order for the algorithm
to converge to the global minimum.

Table 4.2: Loss function p(z), score function ¢ (z) and weighting function w(z) of the proposed adapted robust
HG-estimator. The parameters are set to cyg = 1.345 and cg = 1.

Estimator p(x) ¥(x) w(z)
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Figure 4.6: Loss function p(z) (a), score function 1 (z) (b), and weighting function w(z) (c) of the proposed

adapted robust HG-estimator. In addition, the MLE at the normal model and M-estimators based on the

Huber’s, Tukey’s and Geman-McClure’s family of functions are illustrated. The control parameters are set to
cy = 1.345, ¢ = 4.685 for 95 % relative efficiency at the normal model and to cg = 1.
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Figure 4.7: Loss functions of the HG estimator for the SPP formulation using the simulated observation

errors depicted in Fig. 4.2. (a) represents the loss function as a surface and (b) illustrates the loss function as a

contour plot for a contamination proportion of 70 %, respectively. Thereby, the green diamond represents the
ground truth at [0,0] m and the red cross depicts the minimum of the loss function.

4.2.4 Performance Simulation of Robust Estimators

The idea of GNSS FMA-W is to keep the satellite geometry while increasing the robustness
of an estimator even in situations with sets of measurements containing more than 50 %
outliers. A simulation study is conducted to compare the performance of pseudorange-based
GNSS positioning using robust estimators to that of an optimal MLE. When performing
multi-GNSS SPP, one independent clock offset per constellation has to be considered yielding
in total seven parameters to be estimated. The basic simulation configuration of Sec. 4.1
is kept and thus, using four satellite systems, a total number of 36 satellites is available.
The respective observations are simulated in a Monte-Carlo experimentation with 10% runs.
Nominal observations follow a Gaussian distribution with zero mean and standard deviation
oin = 1 m while outliers are simulated with varying standard deviations:

= [ 18] s T ~ V(0,02 Lous ~ N (0, 02,,). (4.3)

Nominal observations and outlying observations are randomly assigned to the respective satel-
lites during the Monte-Carlo simulation. The impact on the performance is studied for both
the proportion of contaminated observations € and the magnitude of biases ooy, respectively.
The parameters configuration for the Monte-Carlo simulation are summarized in Tab. 4.3. In
addition to the MLE for the normal model, robust estimators with different loss functions are
compared: (i) M-estimator based on Huber loss, (ii) M-estimator based on Tukey loss, (iii)
M-estimator based on Geman-McClure loss, (iv) M-estimator based on HG loss. The perfor-
mance of GNSS FMA-W is simulated by assuming the true range bias of the measurements
to be known and thus, using the true range bias of the measurements for determining the
respective weights of the robust estimators.

The resulting RMS errors of the different estimators for the 10* Monte-Carlo runs are vi-
sualized in Fig. 4.8. Each figure represents a percentage of outliers (30 %, 50 %, 70 % from

Table 4.3: Parameters configuration for the Monte-Carlo simulation.
Percentage of outliers e € {30,50,70} %
Observation uncertainties oj, = 1 m, ooy € {1, 3,6, 10,30, 60,100} m
Robust parameters cyg = 1.345, e = 4.6851, cg =1
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Figure 4.8: RMS errors of the 3D position obtained by different estimators for (a) 30 %, (b) 50 % and (c) 70 %
contamination proportion.

left to right), respectively. Smaller contamination proportions are omitted, since it is proven
that standard robust estimators are providing reliable results for data with a small amount of
outliers. According to the rule of thumb in Langley et al. (2017), under nominal conditions,
a three-dimensional position error of i, - PDOP = 0.74 m is expected. Among the three
cases, it is clear that the MLE suffers the most from a lack of robustness. The RMS errors
are drastically influenced by the magnitude of outliers yielding to a failure of the estimator
even for smaller standard deviations of the outlying measurements. The M-Huber, M-Tukey,
M-Geman-McClure and M-HG estimators are improving the robustness of the solution for
the case € = 30 % whereas the former showcases the best performance for the normal model
(0out = 1 m) and latter two showcases the highest robustness due to its characteristics of the
loss function. Even though the theoretical breakdown points of these estimators is 50 % and
for the redescending type of estimators a global minimum would also exist for the case of
e = 70 %, all four estimators already break down for the case of € = 50 % being characterized
by a lack of robustness for highly contaminated data. On the other hand, when assuming
the magnitude of the observation error to be known, the GNSS FMA-W based estimators
provide the most accurate results. For the first two cases, the RMS errors barely increase
despite the increasing magnitude of the biases. Even when only a small proportion of nominal
observations is available (e = 70 %), reliable results can be computed. When comparing the
GNSS FMA-W based estimators among each other, the more large outliers are damped by
the respective weight function, the better the position performance and thus, FMA-Geman-
McClure and FMA-HG show the best performance and FMA-Tukey performs better than
FMA-Huber.

The two dotted lines in each figure represent the case when the true range bias of the respective
measurement is not exactly known. When determining the weights using the Geman-McClure
and HG loss function, respectively, the residuals are halved with respect to their true range
bias, which simulates a o = 50% error in the predicted residuals. Since both specific loss
functions are highly damping large residuals, the impact of the introduced uncertainty on
the computed position is rather low. For all three evaluated measurement contamination
proportions, the RMS error behaves similarly to the FM-Tukey estimator without introduced
uncertainties. That means, even if 70 % of the available measurements are contaminated with
a standard deviation of ooyt = 100 m, the resulting average RMS error is still below 2 m,
yielding a very robust solution.
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4.3 GNSS Feature Map

Characteristics of GNSS signals depend on both the antenna location and the satellite posi-
tions. In static multipath environments, a common method is to consider the ground-track
repeatability of reflection-based errors to elaborate on algorithms that mitigate errors induced
by the local environment (Braasch, 2017). Methods that have been developed for static scenar-
ios are multipath stacking maps (Fuhrmann et al., 2014) and multipath hemispherical maps
(Dong et al., 2015), which are both generated based on pseudorange or carrier phase residuals,
or the multipath impact is mapped by using the C/Ny value (Bilich and Larson, 2007).

In kinematic urban scenarios, signal propagation characteristics exhibit a complex spatiotem-
poral behavior, i.e., they are dependent upon the location of the moving user antenna, changing
satellite positions, and surrounding buildings. In order to derive potential mitigation strate-
gies for kinematic urban scenarios, a representation of these spatiotemporal dependencies is
needed. To meet this research gap, the GNSS Feature Map (Ruwisch and Schon, 2022a) has
been developed.

The proposed GNSS Feature Map is not limited to the representation of spatiotemporal depen-
dencies, but, in addition, can also aid and thus enhance urban navigation (Ruwisch and Schén,
2022b, 2023). This is realized through the provision of a map that stores spatiotemporal-
dependent features in a fully spatial-dependent tool. In terms of multi-sensor systems, one
could think of storing any feature which is characterized by such dependencies and not lim-
ited to GNSS, e.g., based on fish-eye cameras providing visibility information or LiDAR sensor
data, which provides building wall information. This thesis focuses on improving GNSS-based
navigation in urban environments and thus, the storage and analysis of GNSS-related features
is of utmost interest and is therefore addressed in the following sections.

4.3.1 Concept

The initial aim of the GNSS Feature Map has been to combine skyplots at each location of a
moving user antenna into one common map to improve the understanding of spatiotemporal
behaviours of GNSS signal propagation and to predict the signal characteristics when passing
along a trajectory at any time. Environmental structures are highlighted by this type of map,
e.g. by means of satellite ray classification, which allows the user to identify rapid changes of
the geometry in addition to challenging reception properties of satellites which can deteriorate
the positioning solution.

GNSS signal propagation-related features depend on both the varying user antenna location
and satellite position. The GNSS Feature Map shows these dependencies in one common map.
This map is two-dimensional, rectangular and constructed in the following way: At each along
track position a skyplot is computed in the vehicle body frame and mapped onto one of the axes
by appending each strip of constant azimuth below each other (see Fig. 4.9(a)). A 1° x 1° grid
resolution in azimuth and elevation, respectively, is proposed resulting in 360 azimuth bins
containing 90 elevation bins each. The second axis (see Fig. 4.9(b)) represents the distance
traveled by a vehicle. In the context of simulation data, features are generated intuitively
at specific vehicle locations. Repeatedly driven trajectories, based on real measurements, are
bounded longitudinally and laterally. However, these trajectories vary due to the inherent
impossibility of reproducing an exact repeat of the trajectory. To account for these coordinate
deviations, the user locations from the driven trajectory are perpendicularly projected onto a
reference path. This reference path can be defined, e.g., from path planning or using available
lane models. The perpendicularly projected coordinates result in the distance along track.
The maximum orthogonal distances are contingent on the width of the streets.
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Figure 4.9: GNSS Feature Map design. (a) Structure of the first axis where the upper antenna hemisphere is
represented by a 360° x 90° grid. (b) Approach for representing the user antenna location on the second axis.

Exemplary GNSS Feature Maps are shown in Fig. 4.10. The x-axis represents the azimuth
bins including elevation bins of the satellites and the y-axis represents the distance along
track, e.g., from a moving vehicle. Features located in the direction of travel can be found
parallel to the y-axis (constant azimuth and elevation, moving vehicle location). An azimuth
angle of 0° corresponds to the driving direction considering a south-to-north oriented street.
Features at a specific vehicle location can be found at lines parallel to the x-axis (constant
vehicle location, changing satellite positions).

The exemplary GNSS Feature Maps are generated from kinematic GNSS data collected in the
city of Hannover using both GPS L1 C/Nj values and DD pseudorange residuals as features
of interest. The black lines indicate respective sections of the trajectory each of them marking
a approximately 90° turn in the heading angle of the vehicle. The heading of the vehicle
is not taken into account in order to better detect dissimilarities due to the change of the
environment. One GNSS-related characteristic is common for all four street segments, which
is the north hole of northern hemisphere locations between azimuth angles of approximately
-30° and 30°. However, some high-elevating satellites pass the zenith and thus have a strong
variation in the azimuth which is also visible in the respective figures. Using the GNSS Feature
Map, differences in the signal reception characteristics caused by the changing geometry or
the street orientation is highlighted. The transitions between the specific street segments are
sharp. The magnitude of both the C/Ny values and DD residuals is subject to rapid variation
for similar satellite positions, but this variation is accompanied by a changing geometry of the
surrounding buildings. In this way, the signal propagation conditions in urban environments is
represented in a comprehensive way. As previously discussed, a valuable GNSS Feature Map
application is not only the visualization and path planning, but especially the aiding of urban
navigation. The subsequent sections provide a comprehensive explanation of the generation
of such a map that is designed to facilitate GNSS-based navigation in urban environments.

4.3.2 Map Generation

In this section, the location information extraction from Open Street Map (OSM) data is
described, followed by the generation of simulated and real data GNSS Feature Maps based
on OSM location information.
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Figure 4.10: GNSS Feature Maps based on real data from a kinematic experiment in the city of Hannover.

The black lines indicate respective sections of the trajectory each of them marking a approximately 90° turn in

the heading angle of the vehicle. (a) shows the generated map using GPS L1 C/Nj values as feature of interest
while in (b) GPS L1 C/A code double difference residuals are depicted in a map.

Open Street Map

OSM is a free and open-source mapping project, licensed under the Open Data Commons
Open Database License by the OSM Foundation (OpenStreetMap copyright, 2024). It allows
users to create, edit, and use geographic data from around the world (Haklay and Weber,
2008), which has also attracted the attention of the scientific community, which makes use
of the availability of the huge amounts of geographic data, e.g., for the autonomous robot
navigation based on OSM data (Hentschel and Wagner, 2010).

OSM provides location information through XML files which can be extracted from the
project’s website (OpenStreetMap project homepage, 2024) and contain information about
the various elements that make up a map, such as nodes, ways, and relations. The location
information of streets can be found in the way elements, each of which represents a sequence
of nodes that make up a line or shape on the map. Way nodes thereby are defining a line,
which approximates the center of the road. For more details on the structure of OSM data, it
is referred to the OSM map feature documentation (OpenStreetMap map features, 2024) or
text books, e.g. Ramm et al. (2010).

An exemplary way element is depicted in Fig. 4.11. In this example the way element has an 1D
of 232160982 and is visible on the map. It contains a sequence of nd elements, each of which
references a node element that defines a point in the street. The exemplary street contains 6
points. Another important information is the attribute with key name and value Kniestrafe
which defines the name of the street. By parsing all way elements in an OSM file, all available
location information of specific streets can be extracted. These OSM location information
is collected by volunteers, who contribute to the mapping project by performing systematic
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<way 1d="232160982" visible="true" version="8" changeset="123881637"
timestamp="2022-07-21T0©8:30:40Z" user="oswa" uid="169839">

<nd
<nd
<nd
<nd
<nd
<nd
<tag
<tag
<tag
<tag
<tag
<tag
<tag
</way

ref="1507724614"/>
ref="13784296089"/>
ref="1507724612"/>
ref="2794846555"/>
ref="2661137417"/>
ref="1507724593"/>
k="highway" v="residential"/>
k="maxspeed" v="30"/>
k="name" v="KniestraAYe"/>
k="parking:lane:both"

v="parallel"/>

k="parking:lane:both:parallel"” v="street_side"/>

k="sidewalk"™ v="both"/>
k="surface" v="paving_stones"
>

/>

Figure 4.11: Exemplary way element in an OSM file containing 6 nodes each referencing a node element that
defines a point on the street.

ground surveys with handheld GPS receivers. Thereby, geographic coordinates, i.e. latitude
and longitude, are provided referring to the World Geodetic System 84 (WGS84) ellipsoid
and are specified in degrees with a precision of seven decimal places, which corresponds to a
resolution of + 1 cm. However, uncertainty information on the given data is not defined due
to its nature of a collaborative project by volunteers. Typically, additional height information
is not provided by maps, but can be complemented by digital terrain models.

An exemplary extracted OSM lane model in the city of Hannover is shown in Fig. 4.12(a).
Different streets have different number of points forming the line which is dependent on the
shape of the streets. Obviously, more points exist at street crossings where curves need to be

modeled.
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Figure 4.12: OSM lane model and its interpolation. (a) Exemplary extracted OSM lane model in the city
of Hannover. The markers depict the lane model points which are connected to a lane. (b) OSM waypoints
interpolated with a resolution of 5 m.
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Satellite Visibility Classification Map

In order to apply the strategy of GNSS FMA-NE, satellite visibility classification results for
selected locations are required for building such a map. Therefore, the OSM road coordinates
are extracted for the streets of interest, a resolution of the distance between map points (details
about this waypoint resolution are explained in the next section) is chosen and the OSM road
coordinates are interpolated using this defined grid size. The resulting waypoints are shown
in Fig. 4.12(b) with an exemplary resolution of 5 m. For each of the waypoints, ray tracing
computation is performed for synthetic satellite positions, which cover the full sky in a 360°
azimuth x 90° elevation grid with a resolution of 1°. This fine resolution allows for accurately
determining the obstruction mask for each waypoint. The result is the classification whether
a satellite is in LOS condition or blocked by a building for all possible satellite ray reception
angles at these locations.

As illustrated in Fig. 4.13, the satellite visibility classification results for ten map waypoints
along the trajectory are depicted in skyplots. Signals received from satellite positions inside
the polygon, which represents the obstruction boundary, are labeled as LOS, while signals
received from satellite positions below the obstruction boundary elevation angle are labeled as
NLOS, indicating that they are blocked by a building. It is evident that the satellite visibility
condition is subject to variation along the trajectory, particularly for waypoints that are in
closer proximity to the street corner. The satellite ray classification conditions are related
to the respective waypoint of the GNSS Feature Map. In this way, information on potential
critical reception characteristics is provided by the GNSS Feature Map without the need of
performing computational intensive ray tracing at the rover in real-time.

Pseudorange Residuals Map

Prior information on the observation’s error magnitude, e.g., provided by the GNSS Feature
Map containing pseudorange residuals, is integrated in GNSS FMA-W in order to improve
and enhance the robustness of GNSS-based urban navigation. By utilizing such a pseudorange
residuals map, the user becomes completely independent of city model information. Compared
to the described satellite visibility classification map, this map is not generated by simulating
waypoints and performing ray tracing, but a real GNSS measurement campaign is required
to produce features based on GNSS pseudorange residuals. Therefore, multi-GNSS, multi-
frequency training data is collected in a kinematic measurement campaign. Four antennas are
mounted on the roof of the institute’s test vehicle (see Fig. 4.14(a) and Fig. 4.14(b)). Three
Tallysman TW7972 patch antennas are each connected to a Septentrio PolaRx5e receiver. A
geodetic antenna of type NovAtel NOV850 is connected to a iMAR iNAT system (RQT-4003)
which consists of a navigation-grade IMU (Inertial Measurement Unit) and a geodetic GNSS
receiver. The institute’s continuously operating reference station EE01, which is located at the
Einstein-elevator tower close to the driven trajectory (< 1 km), serves as reference, where a
Leica antenna (LEIAR20 LEIM) is connected to a Septentrio PolaRx5TR receiver. A precise
reference trajectory is computed in post-processing in a tightly-coupled GNSS/IMU relative
positioning solution using the commercial software TerraPOS (Kjersvik et al., 2009).

In order to reliably derive a fully populated GNSS Feature Map (i.e. full sky coverage), the
experiment is conducted during two days (Day of Year (DOY) 94 and 95, 2023) at different
day times with a total driving time of ~ 5.5 h periodically passing the same streets. In this
way, data is collected during significant changes in the satellite constellations. The driven
trajectory is shown in Fig. 4.14(c). Different routes in the city of Hannover were covered
in order to generate maps for different local situations, i.e. different building height, streets
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Figure 4.13: Skyplots for ten exemplary map waypoints of a satellite visibility classification map. (a) and (g)
show the location of the boxes, (b)-(f) (left to right) and (h)-(1) (top to bottom) show the obstruction masks.

orientation and street width, and to be capable of testing the performance of the proposed
algorithms in different environments and situations.

All necessary steps of the map generation work flow are depicted in Fig. 4.15. The first
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Figure 4.14: Training data experiment setup. (a) test vehicle with antenna mounts, (b) antenna and receiver
connections (the distance between the lateral antennas is 103 cm and the distance between the longitudinal
antennas is 195 cm), (c) driven trajectory in the city of Hannover.
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Figure 4.15: General concept of the data aggregation and GNSS Feature Map generation represented in a
flow chart.

step in the direction of feature generation is to aggregate the huge amount of collected data.
Therefore, box polygons need to be derived from the interpolated waypoints based on a user-
defined width in longitudinal (driving direction) and lateral direction (cross street direction).
The box sizes are set to dLongitudinal = 5 m and dLateral = 4 m. A detailed study on
the waypoint resolution and how the box size is selected can be found in the next section
(Section 4.3.3).

In Fig. 4.16, the generated boxes in conjunction with the reference trajectory data points are
shown. Based on the coordinates obtained from the computed reference trajectory, all data
points of the trajectory are assigned to a respective box polygon. Since the speed limit in
the chosen area is 30 km/h, the measurement frequency is set to 10 Hz so that the distance
between two measurement locations is smaller than the longitudinal box dimension and thus,
data availability is increased. Due to the usage of three antennas and the repeatedly driven
trajectory, each of the boxes contains many trajectory points leading to a large data pool for
generating features. In parallel to the box assignment, the collected data is further processed
to obtain pseudorange residuals from GNSS raw observations. Epoch-wise corrections are
computed with respect to the reference trajectory and final satellite orbits provided by the
CODE (Dach et al., 2024). The collected raw data is then rectified by applying these cor-
rection values, which include the geometry (Euclidean distance from satellite to the receiving
antenna), relativistic effects, satellite clock errors and ionospheric and tropospheric effects by
utilizing the Ionosphere Exchange Total Electron Content (IONEX TEC) map provided by
the IGS and Vienna Mapping Functions 3 (VMF3) (Landskron and Bohm, 2018), respectively.
Using these Observed-Minus-Computed (OMC) values, also known as pre-fit residuals, the DD
pseudorange residuals are computed, as outlined in Ruwisch et al. (2020), by forming a short
baseline to the reference station FE01 and differencing with respect to a high-elevating LOS
reference satellite.

In the next step, all computed DD pseudorange residuals of each box polygon are assigned
to a 360° azimuth x 90° elevation grid, corresponding to a resolution of 1°, which is also
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Figure 4.16: GNSS Feature Map box polygon assignment. (a) trajectory sample with generated boxes in blue
and trajectory points in red, (b) zoom-in for depicting the large data pool.

proposed for stacking residuals at static GNSS stations in Fuhrmann et al. (2014) and Dong
et al. (2015). In this way, each of the satellite grids in a box contains several data points
due to the multi-antenna setup and repetitions of driven trajectories. In order to provide one
distinct value per satellite position and box polygon, the final pseudorange residuals feature
is generated by calculating the mean values of each grid, respectively. In the end, the GNSS
Feature Map consists of a skyplot for each of the box polygons containing pseudorange residual
information with a resolution of 1°.

4.3.3 Waypoint Resolution

The density of the interpolated waypoints determines the resolution of the resulting map.
The denser the interpolated points, the higher the resolution of the map. However, the
complexity and computational costs also increase. The most significant variation in observed
GNSS pseudorange errors arises when satellite visibility transitions from LOS to NLOS or
vice versa. Therefore, it is important to study the changes in LOS and NLOS classification
conditions and its transitions between waypoints with different distances to each other. The
objective is to identify the similarities and differences caused by changes in the environmental
situation in the longitudinal and lateral directions, as well as in height.

For this waypoint resolution study, three scenarios are simulated: i) points with a point
distance of 20 cm each are simulated along the OSM road coordinates, ii) points with a point
distance of 20 cm each are simulated perpendicular to the OSM line, iii) points are simulated
by varying only the height component with a difference of 5 cm each. The location of the
scenarios is depicted in Fig. 4.17, characterized by buildings on both sides of the street, which
are 16 m to 18 m high, representing a typical urban trench in the city of Hannover. For each of
these simulated points, ray tracing is performed for all satellite positions with a map resolution
of 1° as described above, i.e. in a 360° azimuth x 90° elevation grid. In order to determine
similarities and differences between signal propagation conditions of waypoints with different
distances to each other, the LOS/NLOS classification results are compared. There are three
possible outcomes: either the classification at the waypoints is the same, LOS satellite ray
conditions turn into NLOS or NLOS satellite ray conditions transition to LOS.

Longitudinal Resolution

The results of the longitudinal waypoint resolution study are depicted in Fig. 4.18(a). In
a perfect symmetric scenario, where the buildings have the same height and the distance of
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Figure 4.17: Waypoint resolution simulation setup. (a) simulated waypoints displayed using OSM, (b)
GoogleStreet View of the simulation environment.

the user to the surrounding buildings is not changing, no change in the satellite visibility
would be expected. In a real-world scenario characterized by unequal heights of buildings
and an absence of assurance regarding equivalent distances to those buildings, a change in
the satellite visibility arises. As expected, the percentages of the same classifications decrease
with increasing waypoint distance, as the local environment is more likely to vary. However,
the similarities are substantial, with a percentage of up to 96 %, even for distances of up to
20 m. Consequently, there are only a limited number of satellite positions where the LOS-
classified signals become NLOS or vice versa. Therefore, the more critical scenario is the
classification of a true NLOS signal as an LOS signal, which would result in the decision to
retain the satellite, e.g., in GNSS FMA-NE. For subsequent map generations, analyses, and
applications, a longitudinal waypoint distance of 5 m is selected, which potentially leads to
the same classification of > 96 % of the time.

As illustrated in Fig. 4.18(b), a visual aid is employed to ascertain the geometrical variations
that give rise to the observed discrepancies. This figure demonstrates the shifting boundaries
of the obstacles. The obstruction masks, which are computed for all simulated user locations,
are presented in the skyplot and are color-coded according to their distance from the initial
user location. The substantial similarity in the satellite classification outcomes is substantiated
by the analogous structure of the obstruction masks. The minor discrepancies observed can
be attributed to variations in the local building structures.
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Figure 4.18: Changes in ray classification conditions with longitudinally distant waypoints.
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Lateral Resolution

The results of the analysis of the lateral waypoint resolution are shown in Fig. 4.19(a). As
the user moves laterally in a street, the differences in the LOS/NLOS classification results are
larger because the field of view varies more with slight changes in the user’s location. This is
confirmed by more deviations between the classification results of waypoints that have been
laterally shifted. This variation is attributed to the change in the local environment, as the
user moves closer to buildings on one side of the street while the buildings on the other side
of the street are farther away from the simulated antenna location.The obstruction masks re-
main generally similar in shape, but they are shifted more as the distance between waypoints
increases (see Fig. 4.19(b)). Consequently, the percentages of the same classifications decrease
with increasing waypoint distance. When considering the potential user locations from curb
to curb, the disparities reach up to 27 % for maximum distances of 5.7 m. However, given
that the drive-able street width is less than 4 meters due to the presence of cars parked at the
roadside, the number of instances falling into the same classification remains above 80 %. The
uneven rise in LOS signals to NLOS and vice versa can be attributed to the imperfect real-
world scenario, where buildings of varying heights result in changing visibility as one moves
laterally along the street.
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Figure 4.19: Changes in ray classification conditions with laterally distant waypoints.

Height Resolution

The resolution of the map’s height necessitates evaluation to ascertain whether cars with
varying dimensions, such as sports vehicles or camper vans, can utilize the same map or if
separate maps for different vehicle heights are required. Even in a perfectly symmetric re-
flection surface scenario, the visibility would vary when the height of the reception point is
different. This study should determine the magnitude of the change in the LOS/NLOS classi-
fication of satellite signals. To this end, the findings of the classification analysis presented in
Fig. 4.20(a) are supplemented with graphical representations depicting the varied dimensions
of different vehicle types. The one extreme is the Lamborghini Aventador with only 1.13 m
height above ground (Lamborghini Webpage, 2023). Many medium cars have dimensions
around 1.50 m height above ground exemplary shown by a Volkswagen Golf Variant (Auto-
mobile Dimensions, 2023). The other extreme is a Volkswagen Grand California which is a
van supplemented with a camper high roof leading to a total height above ground of 2.97 m
(Automobile Dimensions, 2023).
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Figure 4.20: Changes in ray classification conditions with varying height of the waypoints.

Since the field of view increases as the height of the vehicle is increasing, it is evident that the
number of LOS satellite rays transitioning to NLOS condition is zero. Conversely, a subset
NLOS satellite rays transition to LOS condition as the height of the vehicle is increasing, which
is illustrated in Fig. 4.20(b). The obstruction mask for the sports vehicle defines the inner
data points, while the mask for the camper van forms the outer frame in the skyplot. However,
the number of changed classification conditions is marginal (less than 5 %) when comparing
the sports vehicle with the camper van. The findings suggest that the incorporation of an
additional map layer for vehicles exhibiting substantial variations in height is not necessary,
given the minimal alterations in satellite ray classification conditions. Furthermore, when
considering the three-dimensional scenario, the uncertainty is predicted to be predominantly
influenced by the lateral resolution.

4.3.4 On the Similarity of GNSS Ranging Errors

For the validity of the GNSS Feature Map, it is necessary to ensure that observations re-
ceived in a common box at the same satellite positions have similar error characteristics. The
measurement campaign described in Sec. 4.3.2 provides several ways to test the error char-
acteristics: 1) Spatially distributed antennas on the roof of the test vehicle simultaneously
collecting GNSS data provide information on the stochastic distribution of errors with respect
to the changing antenna location. ii) Multi-GNSS data is available, providing information on
the potential combination of different systems in a common map.

Antenna Combination

The DD code residuals computed for the front left and front right antennas (see Fig. 4.14(b))
are compared with respect to their error distribution. Each signal of the left and right antenna
is analyzed individually for the entire training data, resulting in about one million residuals
per signal. To compare the error distributions, Gaussian Mixture Model (GMM) with one,
two, three, and four components are fitted to the extracted residuals of each signal.

The resulting fitted GMM curves together with the histogram of the respective data are shown
in Fig. 4.21. The left column shows the results of the left antenna, the middle column shows
the results of the right antenna, and the right column shows the results of the epoch-by-epoch
residual differences between the two antennas. It is clearly visible that the undifferenced
residuals of all signals show a non-normal distributed behaviour, because the environmentally
caused ranging errors lead to positive ranging biases. Therefore, the single-component GMM
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Figure 4.21: Fitted GMM curves in conjunction with the histogram of the respective data. The left column
shows the results of the left antenna, center column shows the results of the right antenna and the right column
shows the results of the residual differences between these antennas. In each row, a different GNSS is evaluated.

does not fit to the residual data at all. Since different types of error sources (multipath, NLOS,
diffraction) have different characteristics in terms of magnitude and noise, the best fitting
GMM is the one with four components. For the residuals of the left and right antennas, the
green curves smoothly follow the histogram data. The characteristics of the four-component
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GMM estimation, i.e., the proportion, mean, and standard deviation, are shown in Tab. 4.4.
The error distribution between the two antennas of the signals GCI1C, RC1C, EC1C and CC21
is very similar, which is expressed by the proportions of the four components differing by a
maximum of 6 %. Besides the GLONASS signal, the other signals also show a strong agreement
in the mean values and standard deviations of the respective components. The component
with the highest fraction always has a mean close to zero with a standard deviation around
0.2 m. The second largest component has a mean shift of about 7 m and a large standard
deviation of more than 20 m. The third component still has a large influence (proportion
values around 15 %). There is a small mean shift of less than 1 m and the standard deviation
is around 2 m. The component with the least influence has a large mean of about 20 m and a
standard deviation of 15 m to 25 m. Summing up the different components results in a GMM
that represents the error distribution of the residuals.

To further check the agreement of the residual distributions, the differences between the
residuals of the left and right antennas are analyzed. In the figures in the right column of
Fig. 4.21 it can be seen that the positive tail of the histograms is eliminated by calculating
the differences of the residuals. The residual differences have a zero mean, but the slope is
too steep and the tails are too long to fit a normal distribution. Therefore, a GMM is still the
best fit to the actual distribution of the residuals. Since there is almost no difference between
a GMM with three or four components, the characteristics of the three component estimation
are shown in Tab. 4.5. Again, all signals show similar proportions of the three components.
The mean values of all components are close to zero after differencing, indicating the removal
of any biases. The GMM is composed of a very low noise component (about 0.2 m), a moderate
noise component (2 m to 3 m), and the least influential component has the highest noise (20 m
to 30 m), representing the long tails. This is true for the signals GC1C, EC1C and CC2I,
while the noise is approximately doubled for the signal RC1C.

Table 4.4: GMM parameters (mixing proportion, mean value p and standard deviation o) for the four com-
ponent estimation.

Left antenna Right antenna
Signal Component Proportion 4 [m] o [m] | Proportion p [m] o [m]
1 0.43 0.07  0.20 0.48 0.13  0.26
2 0.31 7.48  31.05 0.32 8.22  36.34
GC1C 3 0.17 0.82 1.81 0.14 1.32 1.83
4 0.08 21.39 24.78 0.06 23.99 24.30
1 0.56 0.01  0.57 0.54 0.002  0.57
RCIC 2 0.20 11.97 76.35 0.20 13.94 95.30
3 0.20 3.79 13.38 0.16 204 648
4 0.04 18.76  66.99 0.10 8.51 14.69
1 0.45 0.06 0.17 0.49 0.11  0.22
EC1C 2 0.30 6.38  21.80 0.31 6.93 25.99
3 0.17 0.59 1.50 0.13 0.92 1.51
4 0.09 18.95 16.81 0.07 20.26 17.24
1 0.44 0.06 0.19 0.50 0.09 0.23
CCol 2 0.29 6.67 24.65 0.29 7.60 26.96
3 0.18 0.62 1.80 0.14 1.15 231
4 0.09 19.17 17.04 0.07 20.79 16.98
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Table 4.5: GMM parameters (mixing proportion, mean value p and standard deviation o) for the components
1 to 3 of the four component estimation using DD residual differences between right and left antenna.

Signal Component Proportion p [m] o [m]

1 0.43 0.03 0.19
GC1C 2 0.36 0.04 2.99
3 0.21 0.10 31.24
1 0.48 -0.003 0.43
RC1C 2 0.37 0.04 6.18
3 0.15 0.45 67.99
1 0.43 0.03 0.16
EC1C 2 0.35 0.02 2.45
3 0.22 0.004 26.37
1 0.40 0.02 0.15
CC21 2 0.36 0.01 2.18
3 0.24 0.06  23.75

GNSS Signal Combination

The above analyses demonstrate that observations from spatially distributed antennas can be
aggregated and also provide insight into the characteristics of signals from different GNSS.
While direct comparison of observation errors is not possible due to the transmission of mea-
surements from different satellites, an evaluation of the overall distribution of observation
errors can be made. Examining the estimated GMM parameters presented in Table 4.4, it
was observed that the values of the four components for the different signals (GC1C, RC1C,
EC1C and CC2I) are largely consistent, regardless of whether the observations were received
on the left or right antenna. This means that the ranging errors received are similar, so the
data can be used together to generate the map. Similarities are achieved in the respective
proportions, with a large part of the first component having an approximate zero mean and
a standard deviation below 1 m. Except for the GLONASS signal, the proportions of all
components differ only between 1 % and 2 % and the means vary in a range below 2 m.
Although the standard deviations of the RC1C signal differ from those of the other signals,
the mean values remain consistent, with a maximum difference of less than 5 m. As shown,
a basic understanding of the observation error is sufficient to mitigate the influence of er-
roneous satellites on position estimation (see Sec. 4.2.2). Consequently, the incorporation of
GLONASS observations during the aggregation step of map generation remains advantageous.
The following section provides a more comprehensive analysis, with illustrative examples, of
the need to integrate all four systems in map generation.

4.3.5 Fully Populated Map Provision

To guarantee the consistent and reliable functionality of the map in subsequent applications,
it is essential to ensure that it is fully completed, i.e. containing information for all elevation-
azimuth combinations. This includes the provision of information on possible observation
errors from all available satellites at a given location. As the foundation of the map generation
in this thesis is the training data experiment (see Sec. 4.3.2), the number of observations in
this training data set is finite. Consequently, it is necessary to ascertain whether the number
of available measurements is sufficient for the generation of a reliable and fully populated map.
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The most straightforward method of providing maps would be to generate a map for each
signal, as this would ensure the lowest possible level of uncertainty in the data aggregation,
given that only data from a single system and frequency are combined. To evaluate this pos-
sibility, two boxes from the map were selected for analysis in terms of GPS L1 measurement
availability. Figure 4.22(a) and Figure 4.22(b) give an overview of the respective locations
while Fig. 4.22(c) to Fig. 4.22(d) show the skyplots of the aggregated data from the afore-
mentioned experiment and the interpolation results for the first location and Fig. 4.22(e) to
Fig. 4.22(f) correspond to the second location. The interpolation, i.e. an eight-neighbor aver-

180°

HE
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Pseudorange residuals [m] Pseudorange residuals [m] Pseudorange residuals [m] Pseudorange residuals [m]
(c) (d) (e) ()

Figure 4.22: GPS L1 pseudorange error map for two exemplary locations. (a) and (b) provide an overview of
the respective locations with the green markers representing the center points of the boxes, (c) - (f) depict the
skyplots of the aggregated data and interpolation results, respectively.
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age interpolation, is necessary to ensure that features for all observed satellites are available in
the later application. This specific interpolation method was selected because the behavior of
multipath errors is not necessarily linear. Therefore, changes in all directions are considered
by applying the eight-neighbor average interpolation. As illustrated by the figures, the data is
interpolated through the north hole, a practice that yields no usable information, but also does
not impact subsequent data. The data points are color-coded according to the mean pseu-
dorange measurement error in each satellite bin. In addition, the theoretically available GPS
satellite positions, computed for the center point of the box using IGS final orbit information,
are shown in gray. An obstruction mask computed by ray tracing, is utilized to complete the
figures. Given the impracticality of having hundreds of stationary stations transmitting GNSS
measurements for data aggregation, and given that the data basis is a kinematic experiment,
the map is always a generalization of the true situation. It is therefore to be expected that not
each of the satellite bins is covered. However, the areas with gray satellite arcs and no map
information are extensive for both locations. The interpolation guarantees full sky coverage
of the generated maps, even in areas where training data availability was previously lacking.
However, the larger the areas with no information, the higher the probability of providing in-
correct information. To illustrate, in the region between 240 and 260 degrees of azimuth (see
Fig. 4.22(c)), the aggregated data exhibits a significant gap in that area, and it is uncertain if
the interpolation accurately represents the actual measurement error situation. A comparable
case can be observed in Fig. 4.22(e) between 240 and 270 degrees of azimuth, where large
measurement errors are expected due to the interpolation process, although the supporting
data is lacking in that area.

In order to fulfill the reliability criterion of the map provision, it is necessary to evaluate
an alternative method of providing maps. In the previous section, the similarity of GNSS
pseudorange observation errors of different systems using the same frequency was derived.
Consequently, another method of providing maps would be to generate a map using GPS,
GLONASS, Galileo and BDS L1 measurements for data aggregation. The same locations
were used for the evaluation, and the resulting skyplots of the aggregated data and the inter-
polation results are presented in Fig. 4.23. In comparison to the GPS L1 map generation, the
skyplots show three times as many satellite bins covered. In particular, the regions situated
beyond the obstruction border exhibit higher density,reducing the uncertainty associated with
the interpolation process. The interpolation result provides a more detailed representation of
pseudorange measurement error changes than the generalized pattern observed in Fig. 4.22.
Additionally, notable discrepancies in magnitude are apparent. The aforementioned lack of
data in Fig. 4.22(e) between 240 and 270 degrees of azimuth results in interpolated measure-
ment errors of approximately 10 to 20 m. However, incorporating additional observations from
other GNSS sources yields interpolated measurement errors of less than 3 m in that specific
region.

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Pseudorange residuals [m] Pseudorange residuals [m] Pseudorange residuals [m] Pseudorange residuals [m]

(a) (b) (c) (d)

Figure 4.23: Multi-GNSS L1 pseudorange error map for two exemplary locations.
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Figure 4.24: Skyplots for ten exemplary map waypoints of a pseudorange residuals map generated by ag-
gregating multi-GNSS L1 pseudorange data. First and third row show the location of the boxes, second and
fourth row show the resulting skyplots containing interpolated pseudorange residual information.
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Figure 4.25: Skyplots for ten exemplary map waypoints of a pseudorange residuals map generated by ag-
gregating multi-GNSS L1 pseudorange data. First and third row show the location of the boxes, second and
fourth row show the resulting skyplots containing interpolated pseudorange residual information.
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It can be concluded that the incorporation of multiple systems into a single map increases the
availability of measurement error, thereby reducing the uncertainty associated with interpola-
tion. Furthermore, the map is less generalized and provides more detailed information on the
error distribution, particularly in areas beyond the obstruction border. For utilization in the
following sections, a map is generated based on the available L1-band frequencies (Receiver
Indeptendent Exchange Format (RINEX) observation codes: GPS GC1C, GLONASS RC1C,
Galileo EC1C, BDS CC2I). The final product is a GNSS Feature Map consisting of pseudor-
ange residuals for all satellite positions at all boxes along the selected trajectory. Exemplary
map sections of that trajectory are depicted in Fig. 4.24 and Fig. 4.25.






Application Examples and Case Studies

This chapter is dedicated to the practical evaluation of the proposed methods. The core of
the analyses are several vehicle test drives, where the impact of the proposed observation
exclusion and weighting strategies is investigated with respect to the performance parameters
introduced in Sec. 2.7 and with respect to GNSS receiver internal solutions. These kinematic
case studies are further distinguished by their environmental situation, which encompasses
two distinct scenarios: moderate signal reception conditions in a medium urban trench and
harsh signal reception conditions in a deep urban trench. Note that parts of these application
examples are based on the author’s contributions Ruwisch and Schén (2022b), Ruwisch and
Schon (2023) and Ruwisch and Schon (2025).

5.1 Kalman Filter Settings

The Kalman filter is a mathematical algorithm that is employed for the estimation of the state
of a dynamic system from a series of measurements that are susceptible to noise and other
forms of inaccuracy (see Sec. 2.2). It is of significant importance to ensure that the Kalman

Table 5.1: GNSS RTK EKF Settings.

Satellite Orbit/Clock Final CODE MGEX Products (Montenbruck et al.,
2013)
Observation Data Multi-GNSS Multi-Frequency
Elevation Cutoff 10°
Standard weight model C/No-dependent (see Eq. 2.23)
Ambiguity Resolution Partial Ambiguity Resolution using LAMBDA (Teu-
nissen, 1995a)
Probability of false alert 1-1072
Probability of missed detection 1-1073
0o, 0.005 m
Opo 0.5 m
Opo 0.1 %
Opos 10 m
Ovel 10 ?
Camb 10 cycles
dpos 100 m?/s
Gvel 100 2 /s

Gamb 10~* cycles? /s
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filter is correctly configured, as this has a considerable impact on its overall performance
and the precision of the estimation. These settings encompass the selection of process and
measurement noise covariance, initial state estimates, and the state transition model. The
process noise covariance matrix represents the uncertainty inherent to the model’s dynamics,
whereas the measurement noise covariance reflects the uncertainty inherent to the sensor
measurements. Accurate tuning of these matrices is of vital importance, as overly optimistic
settings may result in filter divergence, whereas overly conservative settings may result in
a failure to respond adequately to changes in the system state. The correct configuration
of these settings determines the Kalman filter’s ability to provide optimal state estimates,
influencing the accuracy and reliability of the navigation solution.

In the context of applying the proposed Kalman filter to automotive experiments, where the
environment is subject to rapid change and the dynamics of the vehicle are neither constant nor
known in advance, it is evident that a single set of parameters cannot yield optimal results for
a range of data sets. The objective of this thesis is to evaluate the relative performance of the
proposed algorithms in comparison to established navigation solutions. Therefore, the focus
is not on achieving the optimal tuning of Kalman filter parameters, but rather on utilizing
the same set of parameters for all approaches. The set of parameters employed to generate
the results presented in the following sections is illustrated in Tab. 5.1.

5.2 Automotive Experiment in Medium Urban Trench

5.2.1 Setup

In order to evaluate the performance of the proposed approaches for urban GNSS navigation,
a kinematic experiment was carried out in a residential area in the city of Hannover, Germany,
on DOY 235 in 2023 (23rd August 2023). The test drive was planned and conducted within
the framework of the KOMET project (Ruwisch et al., 2024).

The ground truth of the trajectory together with the institute’s reference station EE01 is
depicted in Fig. 5.1(a). The trajectory starts and ends with a static phase on a parking space
with only few obstructions and in between, the rectangular shaped part was repeatedly driven
(ten times). The kinematic part of the route passes through a residential area in the city of
Hannover, where the streets are about 5 m wide and the surrounding houses are about 20 m
high. A typical situation of this trajectory is shown in Fig. 5.1(b), where additionally the
projected grids of the generated map are displayed with white boxes.

The measurement configuration depicted in Fig. 5.1(c) consisted of one Septentrio PolaRz5e
receiver connected to a Tallysman TW7972 patch antenna mounted on the roof of the test
vehicle. The receiver collected raw multi-GNSS data at a sampling rate of 1 Hz. The used
observation data, given in the RINEX notation, is depicted in Tab. 5.2. In addition, a high
quality inertial navigation system (iMAR iNAT-RQT-4003) was connected to a NavXperience
NAX3G+C antenna collecting multi-GNSS data at a sampling rate of 1 Hz and IMU data
at a sampling rate of 400 Hz. To this end, the ground truth of the trajectories is computed
by combining the GNSS carrier phase and Doppler observations with the IMU data in a
tightly coupled relative positioning that was computed in post-processing using the commercial
software TerraPOS (Kjersvik et al., 2009).

In post-processing, the data is further evaluated with regards to the multi-GNSS satellite
visibility condition by investigating ray tracing classification results. All observed satellite
signals are classified as LOS, MP, NLOS and blocked. The number of available satellites per
ray condition is illustrated in Fig. 5.1(d) (upper row), together with the percentage of LOS
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Figure 5.1: Kinematic experiment setup of the automotive experiment in medium urban trench. (a) ground

truth of the ten times repeatedly driven trajectory, (b) typical environmental situation with map grids depicted

as white polygons, (¢) measurement configuration, (d) multi-GNSS satellite visibility information based on ray
tracing results.

Table 5.2: Observation data recorded by the Septentrio PolaRz5e receiver, given in RINEX notation.

Observation Data GL1C, GL2L, GL2W, GL5Q, RL1C, RL1P, RL2C, RL2P, EL1C,
EL50Q, EL7Q, ELSQ, CL1P, CL5P, CL2I, CL6I, CL7I

satellites (bottom row). The data set is classified as a medium urban trench, given that in a
majority of the trajectory, the LOS satellite availability is below 50 % (minimum 20 % LOS
satellites), yet there is a recovery in availability between these parts, reaching up to 70 %.
This provides a foundation for evaluating the performance of existing state-of-the-art GNSS
RTK algorithms and for assessing the effectiveness of our proposed approaches.

5.2.2 Accuracy Performance

At first, the position solution of the GNSS RTK EKF with respect to the reference trajectory
is shown in Fig. 5.2. Two approaches from existing literature, i.e., C/Ng weighting and 3DMA
NLOS exclusion (3DMA-NE) are compared with the developed GNSS Feature Map-aided
approaches, i.e., GNSS FMA-NE, GNSS FMA-W using Huber loss function, GNSS FMA-
W using Geman-McClure loss function, and GNSS FMA-W using HG loss function.
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The horizontal and vertical PE with respect to the ground truth are illustrated in Fig. 5.2
versus time and as a cumulative distribution. Thereby, the static phases at the parking space
have been excluded from the analyses, as for this non-dynamic, nearly open-sky scenario, all
methods provide deviations of a few centimeters, which can be considered typical for an RTK
solution. During the drive through the medium urban trench, the horizontal deviations varied
between centimeters and decimeters. However, notable discrepancies between the various
estimation methods are evident. Both NLOS exclusion strategies (3DMA-NE and GNSS FMA-
NE) transition from an RTK fix solution to a DGNSS solution at 9.83 h and 9.86 h, respectively,
due to the absence of LOS carrier phase availability. This results in a maximum horizontal
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Figure 5.2: Horizontal and vertical position errors of the different approaches versus time ((a) and (b)) and as
cumulative frequency diagrams ((c) and (d)). Note the different axis limits for horizontal and vertical errors.
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PE of approximately 8 m. All the remaining strategies are capable of maintaining centimeter-
to-decimeter accuracy throughout the entire trajectory, even in scenarios with only 20 % LOS
observation availability. The GNSS FMA-W methods demonstrate a comparable performance,
exhibiting a notable reduction in horizontal PE at epochs where the C/Ng weighting solution
reaches deviations that exceed 40 cm. The similarity is further emphasized by the cumulative
distribution, in which the yellow, purple and green graphs are superimposed. They follow
the 3DMA-NE graph at small deviations but show a steeper slope as soon as the deviations
increase, indicating a reduction in larger errors.

The relative performance of the aforementioned approaches is similar when investigating the
vertical PE. However, since the vertical component is less precisely determinable, the magni-
tude of the error is increased to the meter-level in challenging situations. In particular, the
NLOS exclusion strategies and the C/Ny weighting approach demonstrate repeatable meter-
level deviations from the ground truth. Conversely, all GNSS FMA-W approaches are capable
of mitigating larger errors while still providing solutions within the centimeter to decimeter
range.

Table 5.3 provides an overview of the characteristic values of the different approaches for hor-
izontal and vertical position accuracy. As expected, the proposed GNSS FMA-NE method
shows comparable performance to the 3DMA-NE method, given that the similar principle of
excluding faulty satellites is employed. Furthermore, the similarity in performance of the three
GNSS FMA-W approaches is evidenced by the minor differences in position errors observed
for specific percentiles. In consideration of the performance specifications for automotive ap-
plications outlined in Section 2.7.4, Tab. 2.10, it can be seen that the C/Ny weighting and the
GNSS FMA-NE methods are unable to meet the lane keeping application requirements for
95 % accuracy in both the horizontal and vertical directions. On the other hand, 3DMA-NE,
GNSS FMA-W Huber, GNSS FMA-W Geman McClure and GNSS FMA-W HG methods pro-
vide a 95 % accuracy of the horizontal and vertical component, which meets the specified lane
keeping requirement. A comparison of the overall RMS reveals that the GNSS FMA-W meth-
ods enhance accuracy in comparison to C/Ng weighting. The utilization of map information
and the Huber, Geman-McClure and HG loss functions has resulted in an improvement of the
RMS of the horizontal PE by 58 %, 54 % and 54 %, respectively, and an improvement of the

Table 5.3: Horizontal and vertical position accuracy of the different approaches given in percentiles.

Horizontal position accuracy [m]
50% 75% 95% 99% RMS Ratio [%]

C/No 0.029 0.046 0.222 0.536 0.101 -
3DMA-NE 0.027 0.039 0.067 2.295 0.466 -362
GNSS FMA-NE 0.027 0.041 0.172 2.080 0.482 -379

GNSS FMA-W Huber 10:026770:037 0.069
GNSS FMA-W Geman-McClure 0.027  0.038 0.086 0.176  0.047 54

GNSS FMA-W HG  [02GIO03TNO06SIOTHS] 0,046 o4

Vertical position accuracy [m]
50% 5% 95% 99 % RMS Ratio [%)]

C/No 0.025 0.055 1.519 2.229 0.557 -
3DMA-NE 0.023 0.043 0.148 2.751 1.068 -92
GNSS FMA-NE 0.024 0.047 1.214 3.994 1.276 -129
GNSS FMA-W Huber 0.020 0.039 0.155 1.126 0.209 62

GNSS FMA-W Geman-McClure 0.021 0.041 0.290 1.829 0.272 o1

GNSS FMA-W HG [ N0200N0 08 Ta0 20 0 533 0 G Mo
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RMS of the vertical PE by 62 %, 51 % and 79 %, respectively. Conversely, the 3SDMA-NE and
GNSS FMA-NE methods have an adverse impact on the overall result due to the transition
from an RTK fix solution to a DGNSS solution at specific epochs.

5.2.3 Attainable Integrity

The integrity of the different position solutions is evaluated by Stanford diagrams for the
horizontal and vertical components, respectively. The corresponding protection levels of the
solutions were computed using Eq. 2.85 and Eq. 2.86 based on a probability of failure of 1075.
The corresponding alert limits are HAL = 1/0.442 + 0.44%2 = 0.622 [m] and VPL = 1.40 [m)]
(see Tab. 2.11), although values for German roads have recently been defined (Kulemann and
Schon, 2025; Schon et al., 2025).

The resulting Stanford diagrams are illustrated in Fig. 5.3 for the horizontal component and
in Fig. 5.4 for the vertical component. Again, the static phases at the parking space have been
excluded from the analyses, as for this non-dynamic, nearly open-sky scenario, all methods
provide an accuracy better than the alert limits and the position errors are well bounded.
Therefore, the presented integrity evaluation is an accurate reflection of the actual situation
and have not been embellished by the static part of the experiment. The attainable integrity
is assessed on the basis of a probability of failure of 1078, In this regard, the test data (1211
epochs) provide a good estimate of integrity. However, more test data must be evaluated in
order to assess the defined probability of failure.
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Figure 5.3: Integrity evaluation of the horizontal component for the different methods.
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5.2 Automotive Experiment in Medium Urban Trench
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