
   Ausschuss Geodäsie (DGK)

        der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 967

Fabian Ruwisch

GNSS Feature Maps – Robust Lane-level Accurate

GNSS Navigation in Urban Trenches

München 2025

Verlag der Bayerischen Akademie der Wissenschaften, München

ISSN 0065-5325 ISBN 978 3 7696 5379 3





   Ausschuss Geodäsie (DGK)

        der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 967

GNSS Feature Maps – Robust Lane-level Accurate

GNSS Navigation in Urban Trenches

 Von der Fakultät für Bauingenieurwesen und Geodäsie

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Fabian Ruwisch, M. Sc.

München 2025

Verlag der Bayerischen Akademie der Wissenschaften, München

ISSN 0065-5325 ISBN 978 3 7696 5379 3



Adresse des Ausschusses Geodäsie (DGK)
der Bayerischen Akademie der Wissenschaften:

Ausschuss Geodäsie (DGK) der Bayerischen Akademie der Wissenschaften

Alfons-Goppel-Straße 11    D – 80 539 München

Telefon +49 – 89 – 23 031 1113    Telefax +49 – 89 – 23 031 - 1283 / - 1100
e-mail post@dgk.badw.de    http://www.dgk.badw.de

Prüfungskommission:

Vorsitzender: Prof. Dr.-Ing. habil. Christian Heipke

Referent: Prof. Dr.-Ing. Steffen Schön

Korreferenten: Associate Prof. Dr. Li-Ta Hsu (The Hong Kong Polytechnic University)

apl. Prof. Dr.-Ing. Claus Brenner

Tag der mündlichen Prüfung: 25.03.2025

:

Diese Dissertation ist auf dem Server des Ausschusses Geodäsie (DGK)

der Bayerischen Akademie der Wissenschaften, München unter <http://dgk.badw.de/>

sowie unter Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik

der Leibniz Universität Hannover (ISSN 0174-1454), Nr. 415,

<https://repo.uni-hannover.de/items/a02de733-f4df-49b7-809d-b55643667551>, Hannover 2025, elektronisch publiziert

© 2025 Ausschuss Geodäsie (DGK) der Bayerischen Akademie der Wissenschaften, München

Alle Rechte vorbehalten. Ohne Genehmigung der Herausgeber ist es auch nicht gestattet,
die Veröffentlichung oder Teile daraus zu vervielfältigen.

ISSN 0065-5325 ISBN 978 3 7696 5379 3



Abstract

The demand for high accuracy and high integrity positioning using the Global Navigation
Satellite System (GNSS) sensor is on the rise, as GNSS is the only observation system capable
of providing absolute positioning information. However, all GNSS positioning strategies are
sensitive to the operating environment, posing a substantial challenge in fulfilling the local-
ization requirements of autonomous vehicles, particularly in dense urban areas. The primary
error source for GNSS-based vehicle positioning in these areas is the reception of multipath
signals – combinations of direct and reflected signals – and NLOS (Non-Line-of-Sight) signals,
which are only reflected signals that reach the antenna. These signals can cause significant
inaccuracies in vehicle position estimation regardless of the GNSS positioning technique used.
To address multipath and NLOS errors, two primary strategies have been developed. One is
3DMA (3D-Mapping-Aided) GNSS, which improves urban GNSS navigation by utilizing 3D
city models. Another involves using robust estimation strategies that include all observations
but reduce the impact of erroneous observations on the positioning solution through various
robust loss functions. However, these techniques have limitations, such as an overly conser-
vative down-weighting of observations, lack of robustness for highly contaminated data, the
need of additional 3D city model information or computationally intensive algorithms.

In this thesis, two innovative strategies are proposed to improve GNSS-based navigation in
urban trenches, building upon existing multipath mitigation strategies for single, static sta-
tions (i.e., utilizing the ground-track repeatability of ranging errors) with the objective of
generating a GNSS Feature Map tailored for automotive applications. The thesis discusses all
critical aspects of the map generation process in detail, including the coordinate information
serving as foundation of the map, its resolution in longitudinal, lateral and vertical direction,
and an in-depth evaluation of the GNSS ranging error similarity. The final product is a GNSS
Feature Map consisting of satellite visibility information or pseudorange residual information
for all satellite positions in a regular grid along a selected trajectory. The performance of
employing various robust loss functions for computing the observation weights based on map
information is theoretically evaluated through a Monte-Carlo simulation. In this context, the
HG-estimator, an adapted robust estimator, is introduced. Simulation results for multi-GNSS
SPP (Single Point Positioning) demonstrate that when prior knowledge of ranging errors is
applied to compute observation weights, a 3D position error of around 2 m is achieved even
if 70 % of the observations have a standard deviation of 100 m. The map information is
further incorporated into an extended Kalman filter (EKF) framework for GNSS RTK (Real-
time Kinematic) positioning, allowing either the exclusion of potential NLOS satellites or the
adaption of robust estimation techniques. The evaluation and validation of these strategies
are carried out based on two kinematic automotive experiments, located in a medium and
deep urban trench, respectively. The impact of GNSS Feature Map information is assessed
by means of typical GNSS performance parameters, such as accuracy, integrity and ambiguity
resolution. Improvements of 54 % and 79 %, and 60 % and 64 % in horizontal and vertical
accuracy for the medium and deep urban trenches, respectively, are achieved when applying
the HG-estimator with map information. Consequently, lane keeping and lane determination
accuracy requirements are met. The integrity and reliable ambiguity resolution are signifi-
cantly enhanced, which leads to an overall more robust state estimation. By combining the
map information with raw data from different receiver grades, the hardware independence
is successfully proven. Finally, the results are compared to receiver-internal RTK solutions,
yielding a significant improvement in the deep urban trench.

Keywords: Urban GNSS navigation, GNSS Feature Map, multipath mitigation, robust esti-
mation, autonomous vehicles





Zusammenfassung

Die Nachfrage nach einer hochgenauen und zuverlässigen Positionsbestimmung mittels des
Global Navigation Satellite System (GNSS)-Sensors steigt, da GNSS das einzige Beobach-
tungssystem ist, das absolute Positionsdaten liefern kann. Allerdings sind alle GNSS-Positio-
nierungsstrategien sensitiv gegenüber der Umgebung, was eine Herausforderung bei der Erfül-
lung der Lokalisierungsanforderungen autonomer Fahrzeuge darstellt, insbesondere in dichten
Stadtgebieten. Die Hauptfehlerquelle für die GNSS-basierte Fahrzeugortung in diesen Gebie-
ten ist der Empfang von Mehrwegesignalen – Kombinationen aus direkten und reflektierten
Signalen – und NLOS-Signalen (Non-Line-of-Sight), bei denen es sich nur um reflektierte Sig-
nale handelt, die die Antenne erreichen. Zur Behebung dieser Fehler wurden zwei Hauptstra-
tegien entwickelt. Die eine ist 3D-Mapping-Aided (3DMA) GNSS, das die GNSS-Navigation
in Städten durch die Verwendung von 3D-Stadtmodellen verbessert. Zum anderen werden ro-
buste Schätzstrategien verwendet, die alle Beobachtungen einbeziehen, aber die Auswirkungen
fehlerhafter Beobachtungen auf die Positionierungslösung durch verschiedene robuste Verlust-
funktionen reduzieren. Diese Verfahren weisen jedoch Einschränkungen auf, wie z. B. eine
zu konservative Herabgewichtung, mangelnde Robustheit bei stark kontaminierten Daten, die
Notwendigkeit zusätzlicher Gebäudemodellinformationen oder rechenintensive Algorithmen.

In dieser Arbeit werden zwei innovative Strategien zur Verbesserung der GNSS-Navigation in
städtischen Gräben vorgeschlagen, die auf bestehenden Strategien zur Verringerung von Mehr-
wegeffekten für statische Stationen aufbauen, mit dem Ziel, eine Karte zu erstellen, die im
Automobilbereich anwendbar ist. In dieser Arbeit werden alle kritischen Aspekte des Karten-
erstellungsprozesses erörtert, einschließlich der Koordinaten, ihrer Auflösung in Längs-, Quer-
und Vertikalrichtung, sowie einer Bewertung der Ähnlichkeit der GNSS-Entfernungsfehler.
Das Endprodukt ist eine GNSS-Merkmalskarte, die aus Sichtbarkeitsinformationen oder Ent-
fernungsfehlern für alle Satellitenpositionen in einem regelmäßigen Gitter entlang einer ausge-
wählten Trajektorie besteht. Die Leistung der verschiedenen robusten Verlustfunktionen zur
Berechnung der Beobachtungsgewichte aus Karteninformationen wird durch eine Monte-Carlo-
Simulation bewertet. In diesem Kontext wird der HG-Schätzer eingeführt, ein angepasster ro-
buster Schätzer. Simulationsergebnisse für Multi-GNSS SPP (Single Point Positioning) zeigen,
dass ein 3D-Positionsfehler von etwa 2 m erreicht wird, selbst wenn 70 % der Beobachtungen
eine Standardabweichung von 100 m aufweisen, wenn Vorwissen über Entfernungsfehler ver-
wendet wird. Diese Karteninformationen werden in einen extended Kalman-Filter (EKF) für
die RTK-Positionierung (Real-Time Kinematic) integriert, was entweder den Ausschluss von
NLOS-Satelliten oder die Anpassung robuster Schätzverfahren ermöglicht. Die Bewertung und
Validierung dieser Strategien erfolgt anhand von zwei kinematischen Experimenten in einem
mittleren bzw. tiefen städtischen Graben. Die Auswirkungen der GNSS-Merkmalskarte werden
anhand typischer Parameter wie Genauigkeit, Integrität und Mehrdeutigkeitsauflösung bewer-
tet. Verbesserungen von 54 % und 79 % sowie 60 % und 64 % bei der horizontalen und verti-
kalen Genauigkeit für den mittleren bzw. tiefen städtischen Graben werden durch die Anwen-
dung des HG-Schätzers mit Karteninformationen erreicht. Folglich werden die Anforderungen
an Fahrspurhaltungs- und Fahrspurbestimmungs-Anwendungen erfüllt. Die Integrität und die
zuverlässige Auflösung von Mehrdeutigkeiten werden erheblich verbessert, was zu einer ins-
gesamt robusteren Zustandsschätzung führt. Durch die Anwendung der Karteninformationen
auf Rohdaten von verschiedenen Empfängertypen wird die Hardwareunabhängigkeit erfolg-
reich nachgewiesen. Schließlich werden die Ergebnisse mit empfängerinternen RTK-Lösungen
verglichen, was zu einer signifikanten Verbesserung in tiefen städtischen Gräben führt.

Schlagwörter: Städtische GNSS-Navigation, GNSS-Merkmalskarte, Mehrwegeabschwächung,
Robuste Schätzung, Autonome Fahrzeuge
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1
Introduction

1.1 Motivation

Global Navigation Satellite System (GNSS) is a geospatial infrastructure that allows users
with compatible devices to determine their position, velocity and time by processing signals
from satellites. The use of the GNSS sensor for position, navigation and timing is a signifi-
cant enabler of functionality across a number of markets, including agriculture and precision
farming, aviation and drones, insurance and finance, maritime and inland waterways, rail, and
road and automotive. The focus of this thesis is on navigation in the automotive sector.

Accurate localization in urban environments plays a crucial role in many Intelligent Trans-
portation System (ITS) applications, such as autonomous driving. The demand for high
accuracy and high integrity positioning using the GNSS sensor is on the rise, as GNSS is the
only observation system capable of providing absolute positioning information. To fulfill the
stringent localization requirements for autonomous vehicles, such as for lane determination or
lane keeping applications, carrier phase-based positioning techniques must be utilized. The
employment of high-precision GNSS positioning strategies, such as Precise Point Positioning
(PPP), Real-Time Kinematic (RTK) or PPP-RTK, enables the achievement of centimeter-
level accuracy in the determination of the users’ location. However, all GNSS positioning
strategies are sensitive to the operating environment, which presents a significant challenge in
meeting the localization requirements for autonomous vehicles in dense urban environments.

The GNSS signal is subject to a number of different error sources along its path from the
satellite to the user antenna. The satellite clock error is addressed by the broadcast naviga-
tion message, which is transmitted concurrently with the pseudoranges or by orbit and clock
products of the International GNSS Service (IGS). Furthermore, atmospheric effects, such
as ionospheric and tropospheric delays, are either physically modeled, estimated within the
positioning model, or corresponding corrections are transmitted by GNSS correction service
providers. The primary source of error in GNSS-based vehicle positioning in urban environ-
ments is the reception of multipath signals – combinations of direct and reflected signals –
and Non-Line-Of-Sight (NLOS) signals, which are only reflected signals that reach the an-
tenna. Regardless of the high-precision GNSS positioning strategy employed, these signals
can introduce significant errors in the vehicle’s position estimation.

The characteristics of GNSS signals are dependent upon both the location of the user antenna
and the positions of the satellites. In static multipath environments, a common method is
to consider the ground-track repeatability of reflection-based errors in order to map errors
induced by the local environment. In dynamic urban scenarios, the signal propagation-related
characteristics exhibit a complex spatiotemporal behavior, whereby they are dependent on the
moving user antenna location, the changing satellite positions, and the buildings in the sur-
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rounding area. However, the ground-track repeatability of reflection-based errors still shows
potential for generating such a map for automotive applications, yet there is a lack of re-
search contributions in this field. Consequently, numerous other multipath and NLOS error
mitigation strategies have been investigated with the objective of enhancing GNSS-based nav-
igation. However, all of these strategies exhibit constraints with respect to their applicability
to autonomous vehicles in urban environments. The performance of a GNSS-based navigation
system can be significantly enhanced when information regarding the propagation character-
istics of the signal is accessible, which is achieved through the utilization of 3D city models
and ray tracing computation. However, an accurate initial user position is necessary, and
the performance is limited due to inaccuracies of the 3D city models and the computational
complexity that depends on the environmental situation. While the effectiveness of satellite
exclusion strategies is dependent on the number of available Line-Of-Sight (LOS) signals, error
rectification strategies have only been studied for pseudorange-based positioning.

Another method of mitigating multipath and NLOS signal reception errors is the utilization
of robust estimation strategies. They substantially improve the accuracy of the resulting
GNSS positioning solution, provided that the number of faulty satellites is moderate. Robust
estimation techniques retain all observations, but significantly dampen the impact of erroneous
observations on the positioning solution through the implementation of diverse designs of
robust loss functions. However, in the event that the number of measurement errors exceeds
the number of available nominal observations, it becomes impossible to compute an optimal
solution.

The aforementioned limitations of existing methods to enhance GNSS-based navigation in
urban environments and the lack of research contributions in the field of mapping GNSS signal
propagation conditions and ranging errors for automotive applications present a substantial
opportunity for a comprehensive scientific investigation into the generation of such a map.
This encompasses not only the generation of the map but also the combination with and
adaptation of robust estimation techniques, with the objective of leveraging the advantages
of existing methods while mitigating their inherent limitations.

1.2 Objective and Outline

The main focus of this thesis is the generation of a GNSS Feature Map tailored for automo-
tive applications, aimed at improving GNSS navigation in urban trenches. A comprehensive
review of the map generation process is provided, addressing all critical aspects, including the
coordinate information that serves as the foundation of the map, its resolution in the longitu-
dinal, lateral, and vertical directions, and an in-depth evaluation of the GNSS ranging error
similarity. The potential of combining these map information with existing robust estimation
techniques is theoretically assessed through Monte-Carlo simulation for pseudorange-based
Single Point Positioning (SPP). As the localization requirements for automotive applications
are very stringent, carrier phase-based positioning has to be implemented. To this end, the
map information is further incorporated into an Extended Kalman Filter (EKF) framework
for GNSS RTK positioning, allowing either the exclusion of potential NLOS satellites or the
adaption of robust estimation techniques. The evaluation and validation of these strategies
are carried out based on two kinematic automotive experiments, located in a medium and
deep urban trench, respectively. The impact of GNSS Feature Map information is assessed
by means of typical GNSS performance parameters, such as accuracy, integrity and ambiguity
resolution. Additionally, the thesis investigates the hardware dependency and performance
with respect to the receiver-internal RTK solution. In alignment with the aforementioned
objectives, this thesis is organized as follows.
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Chapter 2 provides an overview of the methodologies and models employed in this thesis, as
well as an examination of the most advanced techniques from the literature. First, the fun-
damentals of GNSS are presented, including an overview of the various observation types and
the combination of observations. Additionally, the discussion addresses the variance models
assigned to GNSS measurements. Secondly, Kalman filtering is examined as a foundation for
subsequent filter implementation with respect to the GNSS positioning formulation. Thirdly,
the discussion turns to the precise GNSS positioning techniques, with an examination of their
respective advantages and disadvantages. Subsequently, this section will review integer ambi-
guity resolution techniques, which are necessary when utilizing carrier phase-based positioning.
Furthermore, an extensive review of the mathematical foundation for robust estimation tech-
niques is presented, along with a discussion of the robust loss functions that are applied in this
thesis. Next, current state of the art strategies for GNSS positioning in urban environments
are reviewed with respect to their applicability and limitations. Finally, the most important
GNSS performance parameters are introduced, together with the performance specifications
for ITS.

Chapter 3 is devoted to the EKF framework for urban navigation. It includes a detailed
overview of the state estimation formulation, an in-depth presentation of the outlier detec-
tion methodology, an illustration of the incorporation of 3D-Mapping-Aided (3DMA) fault
detection and exclusion strategy, and a thorough explanation of the computation procedure
involving all essential components of the positioning algorithm.

Chapter 4 introduces the GNSS Feature Map-aided robust EKF by providing initial moti-
vation and a detailed description of the adapted robust estimation. This is followed by a
performance analysis of existing and newly introduced robust estimators through a Monte-
Carlo simulation study. The second part of this chapter provides extensive information on the
GNSS Feature Map generation, including the concept, map generation, waypoint resolution
study, observation error similarity analyses and, finally, the provision of fully populated map
information.

After introducing the theoretical framework and methodology employed in this work, chap-
ter 5 extensively evaluates the proposed methods and models using data from two automotive
experiments, classified as medium urban trench and deep urban trench. The achieved im-
provement of the GNSS Feature Map-aided robust EKF is quantified in terms of various
performance parameters, including accuracy, integrity, and ambiguity resolution. Addition-
ally, the applicability of these approaches when utilizing different hardware is assessed, along
with a performance comparison with the receiver-internal RTK solution.

The thesis concludes with a summary of the most significant results and findings in chapter 6.
Additionally, it provides an outlook that addresses open questions and defines topics for future
investigations.





2
Basics

2.1 Fundamentals of Global Navigation Satellite Systems

2.1.1 Observables

One of the prevailing technologies to globally determine the absolute position, velocity or
time are GNSS with billions of users and a vast number of applications (Betz, 2021). The
market for GNSS applications is growing in recent years (EUSPA, 2024), especially due to the
increasing availability of various GNSS, i.e. the American Global Positioning System (GPS),
the Russian Globalnaja Nawigazionnaja Sputnikowaja Sistema (GLONASS), the European
Galileo and the Chinese BeiDou Navigation Satellite System (BDS). The transmitted GNSS
signals are electromagnetic waves that, in theory, propagate at the speed of light. The signals
frequencies are part of the L-band between 1.2 GHz and 1.6 GHz or equivalently at signal
wavelengths between 19 cm and 25 cm, enabling measurements of high precision. In addition,
these signals are not attenuated in the atmosphere under common weather conditions and
thus, reasonably simple user equipment is sufficient in order to receive the transmitted signals
(Langley et al., 2017).

For the computation of position, velocity and time, three basic GNSS observation types are
used, namely the pseudorange, carrier phase and Doppler observations. A fourth observ-
able, the signal strength, which is often represented as Carrier-to-Noise-Power-Density Ratio
(C/N0), provides information about the signal quality. Further, it is adequate for develop-
ing C/N0-based weighting models (Brunner et al., 1999; Luo et al., 2009) or for detecting
and mitigating multipath effects (Larson et al., 2007; Rost and Wanninger, 2009; Smyrnaios,
2016).

Pseudorange

The basic measurement of every GNSS is the observed difference between the time of trans-
mission with respect to the satellite timescale and the time of reception with respect to the
receiver time scale (Hauschild, 2017a). By multiplying this measured time difference with
the speed of light, the signal travel time is converted to a range measurement which can be
expressed as the geometric range between user A and satellite i and is written as

ϱiA =
√

(Xi −XA)2 + (Y i − YA)2 + (Zi − ZA)2 (2.1)

with the respective Earth-centered, Earth-fixed (ECEF) Cartesian coordinates X,Y, Z of the
user and satellite, respectively. Since the receiver and satellite timescales are asynchronous,
biases for the receiver and satellite clock need to be introduced and thus, the measurements



6 2 Basics

become the so-called pseudorange measurement. Due to other error sources along the signal
path, the basic observation equation for pseudoranges yields

ρiA = ϱiA + c
(
δtA − δti

)
+ δtiA,rel + δT iA + δIiA + δA,ρ − δiρ + ϵiA,ρ (2.2)

with

ρiA the pseudorange observation in meters,
ϱiA the Euclidean distance in meters,
c the speed of light in meters per second,
δtA the receiver clock bias in seconds,
δti the satellite clock bias in seconds,
δtiA,rel the relativistic correction term in meters,
δT iA the tropospheric correction in meters,
δIiA the ionospheric correction in meters,
δA,ρ − δiρ the hardware delays of the receiver and satellite in meters,
ϵiA,ρ the pseudorange measurement noise in meters.

Depending on the application, the parameters in Eq. 2.2 may either be estimated, corrected
by using models, eliminated by combining observations, or even neglected in accordance with
application and accuracy requirements.

Carrier Phase

An additional observation type of the signal travel time measurement is the so-called carrier
phase, which is 100 - 1000 times more precise than the pseudorange measurement thanks
to its short wavelengths of approximately 19 to 25 cm. The receiver does not observe the
absolute distance but continuously measures the fractional phase shift between a generated
replica of the carrier signal and the incoming carrier signal from the satellite. Contrary to
the pseudorange measurement, the carrier phase produces ambiguous measurements, since
the integer number of full cycles between the satellite and user is randomly initialized and
remains unknown (Hauschild, 2017a). In case the signal tracking is interrupted, e.g. due to
obstructions, multipath effects or ionospheric scintillation, the integer number of full cycles
is re-initialized which yields a so-called cycle slip. The observation equation for the carrier
phase measurement is

Φi
A = ϱiA + c

(
δtA − δti

)
+ δtiA,rel + δT iA − δIiA + δA,Φ − δiΦ + λN i

A + ϵiA,Φ (2.3)

with

Φi
A the carrier phase observation in meters,

ϱiA the Euclidean distance in meters,
c the speed of light in meters per second,
δtA the receiver clock bias in seconds,
δti the satellite clock bias in seconds,
δtiA,rel the relativistic correction term in meters,
δT iA the tropospheric correction in meters,
δIiA the ionospheric correction in meters,
δA,Φ, δiΦ the hardware delays of the receiver and satellite in meters,
λ the wavelength of the carrier signal in meters,
N i
A the integer number of full cycles,

ϵiA,Φ the carrier phase measurement noise in meters.
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Differences to the pseudorange equation (Eq. 2.2) are the negative sign of the ionospheric
correction, the additional term of the carrier phase ambiguity and the smaller observation
noise.

Doppler

A relative motion between a transmitter – the satellite – and a receiver – the user – results
in a frequency shift called the Doppler shift. The receiver measures the shift between the
nominal frequency and the observed frequency of the satellite signal, which differs from its
nominal frequency due to the relative motion. According to Hofmann-Wellenhof et al. (2008),
the equation of the frequency shift reads

∆f = fA − f i = −1
c
νϱf

i (2.4)

where fA is the received frequency at receiver A, f i the emitted frequency from satellite i and
νϱ is the line-of-sight velocity between satellite and receiver:

νϱ = ∂ϱ

∂t
= ϱ̇. (2.5)

Since the Doppler shift is linearly dependent on the relative velocity, it allows for instantaneous
velocity determination of the receiver.

Including the most relevant error sources, the basic Doppler observation equation is denoted
as

ρ̇iA = −λDi
A = ϱ̇iA + δfA + δf i + δf iA,rel + δṪ iA + δİiA + ϵiA,D (2.6)

with

λ the wavelength of the carrier signal in meters,
Di
A the Doppler shift in Hertz,

ϱ̇iA the relative velocity between satellite and receiver in meters per second,
δfA the receiver clock frequency bias in meters per second,
δf i the satellite clock frequency bias in meters per second,
δf iA,rel the relativistic frequency correction term in meters per second,
δT iA the tropospheric rate correction in meters per second,
δIiA the ionospheric rate correction in meters per second,
ϵiA,P the Doppler shift measurement noise in meters.

Denoting the relative velocity between satellite and receiver by its velocities and ranges, the
geometric change reads

ϱ̇iA =

V i
X − VX,A
V i
Y − VY,A
V i
Z − VZ,A


T

Xi −XA

Y i − YA
Zi − ZA


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Xi −XA

Y i − YA
Zi − ZA


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

(2.7)

with the respective ECEF Cartesian coordinates and velocities X,Y, Z and VX , VY , VZ . In
Eq. 2.6, the Doppler shift measurement is transformed into a metric value, also referred to as
pseudorange rate measurement ρ̇, by multiplying with the negative of the carrier wavelength.
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In addition to the main error sources listed in Eq. 2.2, Eq. 2.3 and Eq. 2.6, further GNSS errors
are present in undifferenced measurements, such as phase windup effects or site displacements.
However, these signal delays are eliminated through a process referred to as double differencing
(Kouba and Héroux, 2001; Bisnath, 2021), which will be described in the next section. As
this thesis mainly focuses on double difference observations and the accuracy requirements are
rather at the centimeter to decimeter level than in the millimeter range, these effects will be
neglected.

Signal Power

The fourth observable generated by the receiver for each tracked signal is the estimated re-
ceived signal power. Unlike the GNSS observables described above, the signal power is inde-
pendent from the Numerically Controlled Oscillator (NCO). It is derived from averaging over
all prompt I/Q correlator values that are available during a measurement interval:

Ĉ/N0 = I2 +Q2 − 2
2T , (2.8)

where T is the integration time of the receiver. For more details on the internal receiver signal
processing steps, it is referred to textbook literature (Won and Pany, 2017). The estimate
of the C/N0 is affected by thermal noise but is otherwise an unbiased estimate. In general,
the C/N0 is a good indicator for the GNSS signal quality, because the signal power and
the standard deviations of the receiver’s Delay-Locked-Loop (DLL) and Phase-Locked-Loop
(PLL) are directly correlated with each other (Hauschild, 2017a):

σDLL ≈
√

dBL
2C/N0

λC , (2.9)

σPLL ≈
√

BP
C/N0

λL
2π , (2.10)

where d is the correlator spacing in units of code chips, BL is the equivalent code loop noise
bandwidth in Hz, λC is the wavelength of the code in meters, BP is the carrier loop noise
bandwidth in Hz and λL is the carrier-phase wavelength in meters. From Eq. 2.9 and Eq. 2.10
it is obvious that the C/N0 directly affects the measurement noise of the receiver’s DLL and
PLL. Typically, current receivers achieve a standard deviation of the code measurement noise
of a decimeter or less while a typical carrier-phase noise standard deviation is less than a
millimeter for high C/N0 values.

2.1.2 Combination of Observations

Multiple observations – either from the same type (e.g., pseudorange observations) or differ-
ent types (e.g., pseudorange and carrier phase observations or from various frequencies) – can
be combined for GNSS data processing or analysis applications. The advantage of combin-
ing observations is that, depending on the type of application, various nuisance parameters
can either be eliminated, reduced or separated (Hauschild, 2017b). Two major strategies of
combining observations exist.

The utilization of a Linear Combination (LC) typically includes different types of observations,
such as different frequencies or pseudorange and carrier phase observations. These are linked
in a way that different error sources of the signals are eliminated or separated. Examples for
LCs are the ionosphere-free LC, which almost completely eliminates the frequency-dependent
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ionospheric refraction of GNSS signals and the multipath LC, which separates the pseudor-
ange multipath error from other signal components. Other LCs (wide-lane LC, Melbourne-
Wübbena LC, geometry-free LC) can be applied in ambiguity resolution studies and to cycle
slip fixing algorithms. All of the above mentioned LCs have their own characteristics in terms
of the resulting wavelength and noise amplification. As none of the aforementioned LCs are
utilized in this thesis, the reader is referred to standard literature for more detailed informa-
tion, e.g. Hauschild (2017b).

Differencing of observations, which will be utilized in this thesis, is the second major strategy
of combining observations. Assuming time-synchronized carrier phase measurements from two
satellites i and j to two receivers A and B

Φi
A = ϱiA + c

(
δtA − δti

)
+ δtiA,rel + δT iA − δIiA + δA,Φ − δiΦ + λN i

A + ϵiA,Φ (2.11)

Φj
A = ϱjA + c

(
δtA − δtj

)
+ δtjA,rel + δT jA − δIjA + δA,Φ − δjΦ + λN j

A + ϵjA,Φ (2.12)

Φi
B = ϱiB + c

(
δtB − δti

)
+ δtiB,rel + δT iB − δIiB + δB,Φ − δiΦ + λN i

B + ϵiB,Φ (2.13)

Φj
B = ϱjB + c

(
δtB − δtj

)
+ δtjB,rel + δT jB − δIjB + δB,Φ − δjΦ + λN j

B + ϵjB,Φ (2.14)

there are two possible options of linking observations in order to form a Single Difference
(SD): i) between-receiver SD, further denoted as ∆ and between-satellite SD, further denoted
as ∇. Both combinations are shown in Fig. 2.1(a) and Fig. 2.1(b), respectively. The two
receivers A and B thereby form a so-called baseline.

Combining the observations from one satellite to two receivers eliminates the receiver clock
error and the receiver hardware delay and the SD observation equation reads as

∆Φi
A,B =

∆ϱiA,B + c
(
δti − δtj

)
+ ∆δtiA,B,rel + ∆δT iA,B − ∆δIiA,B − δiΦ + δjΦ + λ∆N i

A,B + ∆ϵiA,B,Φ.
(2.15)

When forming the difference of the observations from two satellites to one receiver, the satellite
clock bias and the satellite hardware delay are eliminated and the SD observation equation
yields

∇Φi,j
A =

∇ϱi,jA + c (δtA − δtB) + ∇δti,jA,rel + ∇δT i,jA − ∇δIi,jA + δA,Φ − δB,Φ + λ∇N i,j
A + ∇ϵi,jA,Φ. (2.16)

(a) (b) (c)

Figure 2.1: Double difference combination of GNSS observations derived from two single differences. (a)
between-receiver single difference, (b) between-satellite single difference, (c) double difference.
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Both SD combinations lead to an increased noise level of
√

2σ, assuming an identical standard
deviation σ for the uncombined observations.
When forming the Double Difference (DD), i.e. the difference of the two SD combinations
(see Fig. 2.1(c)), the advantages of both observation combinations are utilized, meaning that
the receiver and satellite clock errors as well as the receiver and satellite hardware delays are
eliminated. Therefore, the DD carrier phase observation equation reads

∇∆Φi,j
A,B = Φi

A − Φi
B −

(
Φj
A − Φj

B

)
= ∇∆ϱi,jA,B + ∇∆δti,jA,B,rel + ∇∆δT i,jA,B − ∇∆δIi,jA,B + λ∇∆N i,j

A,B + ∇∆δϵi,jA,B,Φ.
(2.17)

Considering short baselines (e.g., < 1 km), the relativistic error, the tropospheric error and the
ionospheric error are greatly reduced and thus, can be neglected, which yields the simplified
DD carrier phase observation equation

∇∆Φi,j
A,B = ∇∆ϱi,jA,B + λ∇∆N i,j

A,B + ∇∆ϵi,jA,B,Φ, (2.18)

containing the DD Euclidean distance ∇∆ϱi,jA,B, the DD integer ambiguity ∇∆N i,j
A,B and the

DD carrier phase measurement noise ∇∆ϵi,jA,B,Φ, which is amplified by a factor of 2 compared
to the uncombined observations.
The same derivations and characteristics hold true for the DD pseudorange measurements,
but no ambiguity is present in that observation equation.

2.1.3 Weighting of Observations

The functional model describes the mathematical relation between observations and parame-
ters, denoted in the observation equations. Many solvers, such as Least-squares Adjustment
(LSA) or Kalman filters, require unbiased and normal distributed input data in order to
compute optimal state estimates (Gelb, 1974). In the case of GNSS, all remaining parts
which are neither modeled nor canceled, e.g. multipath effects, have to be either eliminated
or incorporated into the stochastic model. Otherwise, biased observations would deteriorate
the state estimation. Hence, the distribution of the measurements and determination of its
variance-covariance matrix is essential for obtaining optimal results. The stochastic model is
expressed in the so-called variance-covariance matrix, containing information on the precision
and mathematical correlation of observations (Tiberius and Kenselaar, 2000). An appropriate
modeling of the observations uncertainty is essential, since in addition to the states themselves,
the quality measures of the parameters are affected by the selection of the stochastic model.
Depending on the application, e.g., the uncertainty of carrier phase ambiguities (Teunissen,
2000; Wang et al., 2002), site coordinates (Schön and Brunner, 2008) or troposphere param-
eters (Jin and Park, 2005) is influenced. For weighting the observations, only the relative
magnitude of variances is important and impact the estimated parameters, however, the abso-
lute values of the uncertainties play a crucial role in quality control and integrity monitoring
and thus, need to be chosen adequately (Kim and Langley, 2001; Wieser and Brunner, 2002).

Equal variances for GNSS observations are unrealistic and suffer from neglected physical
characteristic of the transmitted signals. Due to atmospheric effects or site-specific effects,
the antenna gain of the satellites’ antenna, antenna gain of the receiving antenna and the dis-
tance between receiver and satellite, the precision of GNSS measurements is varying (Butsch
and Kipka, 2004). Therefore, suitable weighting schemes that assign higher weights to pre-
cise observations and lower weights to observations with higher noise have to be applied in
order to improve the parameter estimation by balancing the impact of different measurements
(Hartinger and Brunner, 1999; Brunner et al., 1999; Wieser and Brunner, 2000; Luo et al.,
2009).
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Elevation-dependent Model

One commonly applied weighting model in GNSS processing – other than the scaled identity
matrix – are elevation-dependent models due to the simplicity and global efficiency. The
model takes into account that satellites at low elevation suffer from larger atmospheric errors
and are more likely to be prone to multipath effects. Also, GNSS antennas are designed to
have the maximum antenna gain in zenith direction and minimum gain values at low elevation
angles in order to directly suppress lower quality satellite signals (Maqsood et al., 2017). This
is the reason why the received signal power and thus, also the received observation noise
show an elevation-dependent behaviour (Wanninger et al., 2021). Therefore, the elevation-
dependent weighting model is expecting higher noise at low elevation angles and thus, assigning
lower weights and higher uncertainties to these satellites, respectively. Possible mathematical
expressions for the weighting model are the scaling by the sine of the elevation angle (Rothacher
and Beutler, 1998; Li et al., 2016)

σ2 = c2
0

sin2 ei
(2.19)

or an exponential form (Euler and Goad, 1991)

σ2 = c2
0 + c2

1 · exp −ei
e0

(2.20)

where ei is the elevation angle of satellite i and c0, c1, e0 are model parameters depending on
the used hardware and environment.

A strong correlation between the satellites elevation angle and GNSS signal quality is as-
sumed, which is true for scenarios under good observation conditions (e.g., open-sky GNSS
data). However, the elevation-dependent model suffer from deficiencies in more complex en-
vironments, such as urban areas, where satellites at higher elevations may also be affected by
multipath effects. In these cases, the elevation-dependent model cannot compensate for these
errors.

C/N0-dependent Models

For measurements collected under challenging conditions, the signal-to-noise-power-density
ratio can be used to apply a weighting model, which is more appropriate to describe the
GNSS signal quality for non-ideal observations. The relation of the received signal power and
the measurement noise is defined in Eq. 2.9 and Eq. 2.10. In addition to pseudorange, carrier
phase and Doppler shift observations, C/N0 values are recorded, which makes a more realistic
signal quality evaluation easily accessible.

In Hartinger and Brunner (1999), the SIGMA-ϵ model is developed. The SIGMA-ϵ model
directly links the measured C/N0 value to the signal quality of the measured range observation,
which can be expressed as

σ2 = Va + Ca · 10− C/N0
10 (2.21)

with the model parameters Va [m2] and Ca [m2Hz] and the receiver/antenna type and signal
type index a. As soon as the model parameters for the desired receiver/antenna combination
are determined, the weights can be adjusted during GNSS signal processing using the observed
C/N0 values.

Another C/N0-dependent weighting model is the SIGMA-∆ model (Brunner et al., 1999).
To apply the SIGMA-∆ model, a receiver/antenna type dependent template function has to
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be determined beforehand, which represents the elevation dependency of C/N0 values. Signal
distortions lead to a change of the signal-to-noise ratio and are accounted for via the deviation
of the actual received C/N0 from the template function:

σ2 = Va + Ca · 10− C/N0−α·|∆|
10 (2.22)

with the deviation from the C/N0 template ∆ and an empirical constant factor α. Signal
distortions may also increase the signal-to-noise ratio and that is why |∆| is used instead
of ∆ (Wieser and Brunner, 2000).

In contrary to the existing C/N0-dependent weighting models which need a priori calibration
of the receiver/antenna influenced model parameters, Luo et al. (2009) derived an empirically
C/N0-dependent weighting model. The observed signal-to-noise ratios are evaluated and global
minimum and maximum C/N0 values, which correspond to the most extreme signal strengths
representative for the sites environment and receiver/antenna characteristics, are determined.
All observed GNSS measurements are then weighted with respect to the observed C/N0 values
scaled by the ratio of the minimum and maximum C/N0 value. The resulting mathematical
expression for the weighted variance reads

σ2 = 1(
a+ (1 + a) · C/Ni

0−C/Nmin
0

C/Nmax
0 −C/Nmin

0

)2 , (2.23)

where C/Ni
0 is the observed C/N0 of satellite i, C/Nmin

0 and C/Nmax
0 are the minimum and

maximum signal strength corresponding to the data set, respectively, and a is a parameter
introduced to avoid numerical issues.

Hybrid Models

Since the C/N0-dependent weighting models still exhibit weaknesses – especially in harsh
environments and severe signal reception conditions – hybrid weighting models have been
developed to further minimize these deficiencies. Hybrid models usually require additional
information complementary to the received GNSS signals, e.g. 3D city model information, in
order to realistically weight measurements in harsh environments.

In Zhu (2018), a hybrid model is proposed combining the information of C/N0, satellite
elevation and the Urban Multipath Model which is based on the Urban Trench Model (Betaille
et al., 2013). Since not all GNSS signals with high signal strength possess high quality and
in urban areas, multipath errors can occur for satellites at high elevations, an additional
indicator whether a satellite is in LOS or NLOS condition is included. The weighted hybrid
model variance can be written as

σ2 = k · m · 10−0.1·C/Ni
0

sin ei
(2.24)

with the receiver/antenna dependent model parameter m and the factor k, which differentiates
between LOS and NLOS signal conditions expressed as

k =
{
k1, LOS signal
k2, NLOS signal

(2.25)

and k1 < k2. In this way, the received C/N0 and the satellites elevation contribute to the
respective variance of the signal and additionally, the uncertainty of NLOS signals is scaled
compared to LOS signals.
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Another hybrid weighting model is proposed by Xin et al. (2022), where well established
elevation-dependent (Rothacher and Beutler, 1998) and C/N0-dependent (Realini and Reguz-
zoni, 2013) weighting schemes are combined with a newly developed 3DMA weighting factor.
The combined weighting model reads

W (3DMA,C/N0,Elev) = WElev ·
(
α ·WC/N0

+ β ·W3DMA
)
, (2.26)

where WElev, WC/N0
and W3DMA are the elevation-dependent, C/N0-dependent and 3DMA-

dependent weighting factors, respectively, and α, β are coefficients that linearly fit the mea-
surement errors to the weighting factors in a way that α + β = 1. The key parameter of
the 3DMA-dependent weighting model is the difference of the elevation angles between the
satellite and the building boundary ∆Elev, which takes into account that LOS signals are
received at elevations higher than the building boundary, reflection-caused multipath occur
close to the building boundary and measurements in NLOS condition with large biases are
received at elevation angles lower than the building boundary. The mathematical expression
therefore reads

W3DMA = (2.27)

1, ∆Elev ≥ T ◦
3DMA

10−
∆Elev−T ◦

3DMA
b3DMA , 0◦ < ∆Elev < T ◦

3DMA

10−
∆Elev−T ◦

3DMA
a3DMA ·

 A3DMA

10−
F ◦

3DMA−T ◦
3DMA

a3DMA

− 1

 · ∆Elev−T ◦
3DMA

F ◦
3DMA−T ◦

3DMA
+ 1

 , ∆Elev ≤ 0◦

(2.28)

where a3DMA, b3DMA, A3DMA and F ◦
3DMA are model parameters which can be tuned or esti-

mated in a nonlinear least-squares optimization problem. The threshold parameter T ◦
3DMA is

set to 30◦. The C/N0-dependent weighting model is formulated as

WC/N0
=


1, C/Ni

0 ≥ TC/N0

10
−

C/Ni
0−TC/N0

aC/N0 ·

 AC/N0

10
−

FC/N0
−TC/N0

aC/N0

− 1

 · C/Ni
0−TC/N0

FC/N0 −TC/N0
+ 1

 , C/Ni
0 < TC/N0

(2.29)

and the model parameters aC/N0
, AC/N0

and FC/N0
and TC/N0

are also set by nonlinear
least-squares optimization. Finally, the elevation-dependent weighting model complements
the proposed hybrid model and can be written as

WElev =
{

1, ei ≥ 30◦

1
2 sin ei

, ei < 30◦ . (2.30)

The outcome of the hybrid model is a scale factor which is applied to the standard deviation
of the measurements and hence, scales the uncertainties of the received GNSS signals.

An alternative hybrid weighting model, which is based on the SIGMA-ϵ model and 3D city
model information, has been developed in Schaper et al. (2022). The C/N0 dependent weighted
variance of the SIGMA-ϵ model is scaled by a calibrated factor f , which depends on the
receiver/antenna combination and the environment:

σ2 = σ2
ϵ · f, (2.31)

where σ2
ϵ is the obtained variance from the SIGMA-ϵ model (see Eq. 2.21). For each of

the possible signal reception condition classes, a different scaling factor is determined, which
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fits the uncertainty with the measurement error distribution in the specific environment. In
addition to the reflection-based error sources in urban areas, the proposed model also adds
information on signal diffraction leading to eight signal reception condition classes and thus,
in total eight different scaling factors applied in the hybrid weighting model.

As described above, a solver is optimal in the case of unbiased, normal distributed observations.
The main objective of applying a weighting model is to adjust the stochastic information for
measurements, which derogate from this restriction. Especially the described hybrid models
are typically evaluated with respect to an improved accuracy of the positioning solution.
However, the adequateness of the model – which is the additionally introduced stochastic
information matching the observation distribution – has not been evaluated. A sound analysis
of whether the weighted observations or the weighted residuals, respectively, follow the normal
distribution, is essential for an unobjectionable utilization of these weighting models.

2.2 Kalman Filtering

Kalman filtering (Kalman, 1960) describes a recursive state estimation algorithm that opti-
mally combines the time propagated state vector and its covariance matrix from a previous
epoch and the measurements at the current epoch. According to standard literature, the esti-
mation of the state of a dynamic system is described by a linear ordinary differential equation
(Gelb, 1974; Simon, 2006b; Farrell, 2008). The inhomogeneous linear differential equation of
a Kalman filter reads

ẋ(t) = F(t)x(t) + L(t)u(t) + G(t)ω(t), (2.32)

with state vector x, control-input vector u, white process noise vector ω, dynamics matrix F,
control-input matrix L and noise distribution matrix G. All parts are given at time instance t.
The deterministic control-input components are usually unknown and thus will be neglected
from this point on:

ẋ(t) = F(t)x(t) + G(t)ω(t). (2.33)

The first homogeneous part of Eq. 2.33 can be solved by means of a Taylor series expansion
up to the linear segment which yields

x(t) = F(t, t0)x(t0), (2.34)

where F is the state transition matrix propagating the state vector from time instance t0 to t.
The particular solution of the inhomogeneous part reads

x(t) =
∫ t

t0
F(t, t′)G(t′)ω(t′)dt′. (2.35)

Solving Eq. 2.33 therefore yields

x(t) = F(t, t0)x(t0) +
∫ t

t0
F(t, t′)G(t′)ω(t′)dt′. (2.36)

Input values for such a system model are available at discrete time instances in the majority
of the cases. Hence, the continuous system model in Eq. 2.36 has to be transformed to the
linear discrete-time system equation

xk = Fk−1xk−1 + wk−1, (2.37)
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where at a certain time instance k, xk is the state, Fk is the state transition matrix. The
corresponding measurement equation reads

lk = Hkxk + vk (2.38)

with the noisy measurement vector yk. The noise processes of the system (wk) and the mea-
surements (vk) are white, zero-mean, uncorrelated and the corresponding covariance matrices
are known:

wk = Gkωk ∼ N (0,Qw,k) , (2.39)
vk ∼ N (0,Qv,k) . (2.40)

The above described method only applies for linear systems. For non-linear system formu-
lations, such as those on which this thesis is based on (see GNSS measurement equations in
Eq. 2.2 and Eq. 2.3), non-linear Kalman filters are introduced which approximate the solution
to the above problem.

The Linearized Kalman Filter (LKF) is usually implemented for applications where the trajec-
tory is predetermined or an accurate reference trajectory is available. Hence, the linearization
point is known and the system is linearized at, e.g., given coordinates of a vehicle. The ad-
vantage of this non-linear Kalman filter is that online computations can be simplified, since
all related data to the nominal trajectory can be computed beforehand. The resulting state
estimate is the error between the nominal trajectory and the actual trajectory. Moreover, a
control law can be introduced to further minimize this error.

For many applications, such as autonomous vehicles, the trajectory cannot be accurately
predetermined and thus, the nominal trajectory is not known a priori. Therefore, the nominal
trajectory is defined to be equal to the estimated trajectory. In this case, the system is
linearized at the estimated state. If sufficiently accurate measurements are available, the
estimated linearization point should be close to the actual state and the performance of the
EKF similar to the performance of the LKF. However, the EKF is riskier due to the possibility
of a rapid divergence in the case when the estimated state is far from the actual state.

The two non-linear Kalman filters utilize the same formulae and computation procedure to
estimate the state vector, though they differ in terms of nominal trajectory and linearization
point. Consequently, the selection of a particular Kalman filter is contingent upon the specific
requirements of the application. Alternatives to the two introduced Kalman filters are the
Unscented Kalman Filter (UKF) and Particle Filter (PF), which themselves demonstrate
specific advantages and disadvantages compared to the EKF. As the objective of this thesis
is not to provide a comprehensive comparison of different filtering techniques, the reader is
referred to standard textbooks for more detailed information on this topic (Simon, 2006a).
Within the scope of this thesis, the EKF is employed for vehicle navigation applications, which
necessitate real-time capability.

2.3 GNSS Precise Positioning

GNSS have transformed the field of positioning, navigation and timing, providing ubiquitous
and accurate location information for a variety of applications. The demand for high-precision
positioning has grown with the increasing precision requirements of modern safety-critical
applications. That is why standard pseudorange-based positioning techniques, such as SPP
(Langley et al., 2017) and pseudorange Differential GNSS (DGNSS) (Odijk, 2017), are not
suitable due to their precision limitations. Instead, the importance of carrier phase-based
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positioning methods such as PPP (Zumberge et al., 1997), RTK (Bisnath, 2021) and PPP-
RTK (Wübbena et al., 2005) is becoming increasingly prominent, because of their much higher
precision due to the smaller noise level of carrier phase observations compared to pseudorange
observations. An overview on the different positioning methods in terms of nominal accuracy,
convergence time, coverage area and the positioning type is summarized in Tab. 2.1.

Table 2.1: Overview on the different positioning methods in terms of nominal accuracy, convergence time,
coverage area and the positioning type (adapted from European GNSS Agency (2020) and Medina (2021)).

Method Accuracy Convergence Coverage Type

Pseudorange-based SPP < 10 m Instantaneous Global Absolute
DGNSS 0.5 - 2 m Instantaneous Regional Relative

Carrier phase-based
PPP 1 - 2 dm < 20 min Global Absolute
RTK < 1 dm Instantaneous Local Relative

PPP-RTK < 1 dm < 5 - 100 s Regional Absolute1

1Positioning model is absolute but correction data from a network of reference stations is required.

Precise Point Positioning

PPP is the logical extension of a standard SPP algorithm. As described in Teunissen (2021),
the pseudorange observations are complemented with their much more precise counterpart,
which is the carrier phase observation. Usually observations from two or more frequencies
are combined to eliminate ionospheric delays. Broadcast satellite orbit and clock information
are replaced by precise estimates, which are downloaded or obtained in real-time from service
providers (e.g., IGS products (Kouba and Héroux, 2001; Montenbruck et al., 2014)) using
internet or satellite links. Since no measurements from nearby reference stations are required,
PPP is globally available using a single GNSS receiver and thus, is operational flexible, espe-
cially in areas without a dense reference station network. This flexibility comes with the cost
of carefully modelling local station and environmental effects in order to reach decimeter-level
accuracy. By using the State Space Representation (SSR) method, the various error sources
are estimated separately by a network of Continuously Operating Reference Station (CORS),
as shown in Fig. 2.2, before being sent to the receiver. While PPP is capable of delivering
highly precise positioning results worldwide, it often requires longer observation periods to
achieve this accuracy. The convergence time is mainly influenced by the existing carrier phase
ambiguities and its linear dependency with other parameters to be estimated, which also leads
to a loss of the integer nature of the ambiguities (Du et al., 2020).

Real-Time Kinematic

DGNSS positioning describes the concept of computing a rover’s position with respect to
a base station. While pseudorange DGNSS reaches meter-level positioning accuracy, RTK
carrier phase DGNSS is essential for precise positioning applications with centimeter-level ac-
curacy (Odijk, 2017). The RTK positioning method combines GNSS measurements from one
(or more) reference stations with the user data, as described in Sec. 2.1.2, in order to eliminate
satellite and receiver clock errors and reduce satellite orbit errors and atmospheric propagation
delay errors. When requiring RTK positioning in real-time, GNSS corrections from the base
station are usually transmitted using a standardized format proposed by the Radio Techni-
cal Commission for Maritime Services (RTCM). The single-compound ranging corrections, as
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Figure 2.2: Principle of the PPP method.

Figure 2.3: Principle of the RTK positioning method.

observed in a nearby (real or virtual) base station and provided as Observation Space Rep-
resentation (OSR), are transmitted, e.g., via the Internet using Network Transportation of
RTCM Internet Protocol (NTRIP), as illustrated in Fig. 2.3.

The achievable accuracy of RTK positioning directly depends on the distance of the rover to
the base station and if the real-valued carrier phase ambiguities are resolved to their integer
values. For short baselines (< 10 km), instantaneous integer ambiguity resolution is feasible,
leading to cm-level positioning accuracy after a single epoch. The weaker the underlying
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positioning model (e.g., single GNSS usage, single frequency usage or long baselines), the
more time is required before the ambiguities can be reliably fixed to their integer values.

PPP-RTK

The idea of PPP-RTK is a synthesis of the positive characteristics of both, PPP and RTK
positioning (Wübbena et al., 2005). All relevant GNSS error sources, such as satellite orbits,
clocks, pseudorange and carrier phase biases and ionosphere and troposphere errors, derived
from an reference station monitoring network, are determined and transmitted via SSR. Since
the main limitation of PPP in terms of accuracy and convergence time is the estimation
of integer ambiguities due to the correlation with other parameters, PPP-RTK can have
significant advantages in ambiguity resolution, convergence time and accuracy. Due to the
merging of PPP with state-space RTK, precise estimates of the above mentioned GNSS error
sources are transmitted to the user and thus, integer ambiguity resolution within a reduced
convergence time is feasible.

2.4 Integer Ambiguity Resolution

GNSS carrier phase measurements are much more precise compared to its pseudorange mea-
surement counterpart. However, the precision gained by a factor of approximately 100 comes
with the challenge of an ambiguous range, since the receiver does not measure the absolute dis-
tance but the fractional phase phase shift between a generated replica of the carrier signal and
the incoming carrier signal from the satellite. Therefore, GNSS Integer Ambiguity Resolution
(IAR) is essential for high-precision GNSS positioning algorithms. This includes to resolve the
unknown number of cycles in the carrier phase observation data as integer values. Successful
IAR enables very precise positioning and navigation, since carrier phase measurements are
transformed into high-precision pseudorange data.

The GNSS IAR process is decomposed in three steps, as e.g. explained in Teunissen and
Montenbruck (2017). The flowchart of the ambiguity estimation process is shown in Fig. 2.4,
where N corresponds to the ambiguity vector and x corresponds to the baseline vector.

Figure 2.4: Three-step GNSS integer ambiguity resolution process.

1. First, a float solution is computed in a standard LSA which can also be referred to a
Kalman filter update step. The integer nature of the ambiguities is disregarded and
floating numbers are estimated with distribution[

N̂
x̂

]
∼ N

([
N̂
x̂

]
,

[
QN̂N̂ QN̂x̂
Qx̂N̂ Qx̂x̂

])
, (2.41)

where Q is the corresponding covariance matrix including the uncertainties of N̂ and x̂
and their cross-correlation.
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2. The second step is the integer solution, where integer ambiguities are estimated based
on the float ambiguities, their uncertainties and by taking the integer contraint ă 7→ Zn
into account. Thus, a mapping function S : Rn 7→ Zn is introduced that maps the
real-valued float ambiguities to their corresponding integer values so that

N̆ = S
(
N̂
)
. (2.42)

3. The last step is the solution enhancement by computing the so-called fixed solution. Once
the integer solution N̆ is accepted, the ambiguity residual N̂ − N̆ is used to re-adjust
the float solution:

x̆ = x̂ − Qx̂N̂Q−1
N̂N̂

(
N̂ − N̆

)
, (2.43)

Qx̆x̆ = Qx̂x̂ − Qx̂N̂Q−1
N̂N̂

QN̂x̂. (2.44)

Whenever the ambiguities are fixed to their true integer values, the maximum precision
from carrier phase observations is gained. However, if the estimated integer ambiguities
do not match with the true values, the solution is biased.

The integer solution in step 2 is a real-to-integer mapping with S : Rn 7→ Zn and the estimator
S is a many-to-one map, since different real-valued vectors are mapped to one integer vector.
Therefore, a subset PN̆ ⊂ Rn can be assigned to each integer vector N̆ ∈ Zn:

PN̆ =
{

N̂ ∈ Rn∥N̆ = S(N̂)
}
, N̆ ∈ Zn. (2.45)

The subset, which is the pull-in region of N̆, is the region in which all float solutions are
pulled to the same integer vector via the estimator S(·). For a subset to be a pull-in region,
according to Teunissen (1999), three conditions must be met:

a) :
⋃

N̆∈Zn

PN̆ = Rn,

b) : PN̆1

⋂
PN̆2

= ∅, ∀N̆1, N̆2 ∈ Zn, N̆1 ̸= N̆2, (2.46)

c) : PN̆ = P0 + N̆, ∀N̆ ∈ Zn.

The first one states that the union of the pull-in region should cover the n-dimensional space
completely to avoid gaps. The second property is that any two distinct regions should not
have an overlap to ensure unique assignments of a float solution to an integer one. The third
condition is that the pull-in regions are translational invariant, which allows to work with
the fractional parts of the float solution instead of the full real-valued vector. Exemplary
two-dimensional pull-in regions for different integer estimators – i.e., Integer Rounding (IR),
Integer Bootstrapping (IB) and Integer Least-squares (ILS) – are shown in Fig. 2.5.

Integer Rounding

The simplest integer estimator is the IR method, where the float ambiguity vector is component-
wise rounded to the nearest integer value to obtain the integer ambiguity vector. The IR
estimator therefore reads

N̆IR =
(
⌈N̂1⌋, . . . , ⌈N̂n⌋

)T
, (2.47)

where ⌈·⌋ denotes the operator which rounds the real-valued float ambiguity to the nearest
integer. Since each component of N̂ is rounded to its nearest integer value, the maximum
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Figure 2.5: Pull-in regions PN̆ of different integer estimators for a two dimensional example: (a) Integer
Rounding, (b) Integer Bootstrapping, (c) Integer Least-squares. The regions that lead to correct integer

estimates are marked in gray (Verhagen, 2005).

ambiguity residual is 1/2. The volume of the covariance matrix PN̂N̂ and cross-correlations
between ambiguities are not considered using the IR estimator. The pull-in region of this
estimator therefore reads

PIR
(
N̆
)

=
{

N̂ ∈ Rn| |N̂i − N̆i| ≤ 1
2 , i = 1, . . . , n

}
, ∀N̆ ∈ Zn (2.48)

and describes n-dimensional cubes having sides of length one and centred at N̆ ∈ Zn.

Integer Bootstrapping

The IB estimator is a generalization of the IR estimator (Blewitt, 1989; Dong and Bock,
1989). It still uses the rounding to the nearest integer technique, but additionally considers
correlations between the ambiguities in a sequential conditional LSA. Usually, the real-valued
ambiguity vector is sorted in descending order according to the uncertainty. The starting
point is the rounding of the last element of the sorted float ambiguity vector N̂n to its nearest
integer value. After obtaining the first integer ambiguity, the remaining elements of the float
ambiguity vector are then corrected by virtue of their correlation with the previous element.
This process is continued until all elements are considered. Starting with the nth ambiguity,
the IB estimator is given as

N̆IB,n =
⌈
N̂n

⌋
,

N̆IB,n−1 =
⌈
N̂n−1|n

⌋
=
⌈
N̂n−1 − σN̂n−1N̂n

σ−2
N̂n

(
N̂n − N̆IB,n

)⌋
,

...

N̆IB,1 =
⌈
N̂1|2,...,n

⌋
=
⌈
N̂1 −

n∑
i=2

σN̂1N̂i|I
σ−2
N̂i|I

(
N̂i|I − N̆IB,i

)⌋
, (2.49)

where N̂i|I is the ith estimated element of N̂, which is obtained by conditioning on the previ-
ously I = {i + 1, . . . , n} sequentially rounded ambiguities. According to Medina (2021), the
IB estimator can also be expressed in a compact vector form as

N̆IB =
⌈
N̂ +

(
L−1 − In

) (
N̂ − N̆IB

)⌋
, (2.50)

where L is the lower unit triangle matrix computed by decomposing the float ambiguity
covariance to PN̂N̂ = LTP′

NL with the diagonal matrix of the conditional variances P′
N .
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Thus, the resulting pull-in region of the IB estimator is defined as

PIB
(
N̆
)

=
{

N̂ ∈ Rn |
∣∣∣cTi L−T

(
N̂ − N̆

)∣∣∣ ≤ 1
2 , i = 1, . . . , n

}
, ∀N̆ ∈ Zn (2.51)

with c denoting the ith canonical unit vector having a 1 as the ith entry.

Integer Least-squares

The ILS estimator was firstly introduced in Teunissen (1993) and is defined as

N̆ILS = arg min
N̆∈Zn

∥N̂ − N̆∥2
PN̂N̂

(2.52)

with its pull-in region being defined by an ellipsoidal search

PILS
(
N̆
)

=
{

N̂ ∈ Rn | ∥N̂ − N̆∥2
PN̂N̂

≤ ∥N̂ − N̆′∥2
PN̂N̂

, ∀N̆′ ∈ Zn
}
, ∀N̆ ∈ Zn. (2.53)

For the two-dimensional example, the ILS pull-in region has the shape of a hexagon while
the pull-in regions of the IR and IB methods are shaped as a square and a parallelogram,
respectively (see Fig. 2.5). The ILS estimator requires searching for mapping the real-valued
ambiguities to the optimal integer vector. The search space is an n-dimensional hyper-ellipsoid
centred in â and its size is defined by the covariance matrix PN̂N̂ .

Partial Ambiguity Resolution

The above three estimators have the property of the so-called full ambiguity resolution, mean-
ing that for the full set of float ambiguities, a corresponding integer ambiguity vector is
estimated. However, under challenging circumstances, e.g. poor observation quality of single
satellites, the precision of the float ambiguity solution might be degraded and thus, integer
ambiguity resolution is not possible. Also, the probability of correct integer ambiguity esti-
mation is decreasing with increasing number of observations (Verhagen, 2004). To overcome
this issue, Partial Ambiguity Resolution (PAR) is introduced (Teunissen et al., 1999), which
is the reliable estimation of a subset of integer ambiguities instead of estimating the full set
of integer ambiguities.

The mapping S : Rn 7→ Z|I| from the n-dimensional space of reals to the |I|-dimensional space
of integers, i.e., mapping a subset of the float ambiguities to its corresponding integer vector,
is denoted as

PN̆ =
{

N̂ ∈ Rn∥N̆ = S(N̂)
}
, ∀N̆ ∈ Z|I|, (2.54)

where I is the index set of any of the 2n − 1 possible non-empty realizations. The constraints
of Eq. 2.46 remain the same, but with the amendment of the dimension of the index set I:

a) :
⋃

N̆∈Z|I|

PN̆ = Rn,

b) : PN̆1

⋂
PN̆2

= ∅, ∀N̆1, N̆2 ∈ Z|I|, N̆1 ̸= N̆2, (2.55)

c) : PN̆ = P0 + N̆, ∀N̆ ∈ Z|I|.

In literature, different approaches of selecting the subset of ambiguities to fix have been
proposed. If full ambiguity resolution is not possible, one method is to fix only the widelane
ambiguities in case of multi-frequency GNSS observations (Hatch et al., 2000; Li et al., 2010).
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Another approach is to take constraints into account, e.g., a threshold for the ambiguities’
variances, minimum elevation angle of the satellites or minimum C/N0 (Parkins, 2011). Yet
another method is to select a subset of integer ambiguities which are consistent in the best
and second-best solution (Lawrence, 2009).

Most of the above mentioned approaches require a long search time due to the iterative
subset evaluation procedure and are not based on the success rate or precision improvement
(Teunissen and Montenbruck, 2017). Therefore, another approach is proposed by Teunissen
et al. (1999) which searches for the largest possible subset of decorrelated ambiguities ẑ = ZN̂
to be fixed using the success rate criterion

k∏
i=1

[
2Φ
(

1
2σẑi|I

)
− 1

]
≥ Pmin, (2.56)

where Z is the so-called Z-transformation matrix for ambiguity decorrelation (Teunissen,
1995b) and Pmin is the user-defined minimum required success rate. The number of ambi-
guities k which determines the size of the subset to be fixed, is chosen such that the inequality
in Eq. 2.56 holds true.

LAMBDA Method

The Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method is a well-estab-
lished method for solving the integer ambiguity problem in GNSS, based on the ILS procedure
(Teunissen, 1993, 1995a; De Jonge and Tiberius, 1996; Verhagen, 2005). The search space is
defined as

PN̆ =
{

N̆ ∈ Zn | (N̂ − N̆)TQ−1
N̂N̂

(N̂ − N̆) ≤ χ2
}
, (2.57)

where χ2 is a positive constant to be chosen. The search space is an n-dimensional ellipsoid
centered at N̂. Its shape is determined by the covariance matrix QN̂N̂ and its size by χ2.
Due to the high correlation between the individual ambiguities, the search space in the case
of GNSS is extremely expanded, so that the search for the integer solution can take very long.
Therefore, the search space is first transformed into a more spherical shape by decorrelating
the original float ambiguities. This decorrelation is achieved by a transformation:

ẑ = ZT N̂, Qẑ = ZTQN̂N̂Z, N̆ = Z−1z̆. (2.58)

The transformation requires Z and Z−1 to contain integer values, so that the integer nature
of ambiguities is preserved. Further, the transformation is volume-preserving with respect to
the search space, since the determinant of Z is equal to 1. The transformed search space is
then defined as

Pz̆ =
{

z̆ ∈ Zn | (ẑ − z̆)TQ−1
ẑẑ (ẑ − z̆) ≤ χ2

}
. (2.59)

Once the integer ambiguities are identified in the transformed space, a back transformation
into the original space is computed.

Other Integer Ambiguity Resolution Methods

There are a number of other well-known IAR methods in the literature, which differ mainly
in the definition of the ambiguity search space. A summary of other IAR methods, including
references, is given in Tab. 2.2. Only Three Carrier Ambiguity Resolution (TCAR) and
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Table 2.2: Overview of ambiguity resolution methods (modified from Verhagen (2005)).

Method Name References
Least-Squares Ambiguity Search Technique LSAST Hatch (1991)
Fast Ambiguity Resolution Approach FARA Frei and Beutler (1990)
SIGMA-Method SIGMA Dach et al. (2015)
Quasi Ionosphere-Free algorithm QIF Dach et al. (2015)
Modified Cholesky decomposition Euler and Landau (1992)
Least-squares AMBiguity
Decorrelation Adjustment LAMBDA Teunissen (1993)
Null method Martin-Neira et al. (1995)

Fernàndez-Plazaola et al. (2004)
Fast Ambiguity Search Filter FASF Chen and Lachapelle (1995)
Three Carrier Ambiguity Resolution TCAR Harris (1997)
Integrated TCAR ITCAR Vollath et al. (1998)
Optimal Method for Estimating
GPS Ambiguities OMEGA Kim and Langley (1999)
Cascade Integer Resolution CIR Jung et al. (2000)
Best Integer Equivariant Estimator BIE Teunissen (2003)

Cascade Integer Resolution (CIR) are based on the bootstrapping estimator, all other methods
are based on the ILS principle of minimizing the squared norm of the residuals (Verhagen,
2005). In Kim and Langley (2000) a conceptual comparison of some of the methods presented is
made, while in Joosten and Tiberius (2002) and Verhagen (2004) a comparison of LAMBDA
with CIR, TCAR, Integrated Three Carrier Ambiguity Resolution (ITCAR) and the null
method is made. Another method of determining a set of integer ambiguities is the Best Integer
Equivariant (BIE) estimator proposed by Teunissen (2003), where no separate ambiguity
validation step is needed.

2.5 Robust Statistics

Whenever the distribution of measurements exactly fulfill the Gaussianity requirements with
perfectly known covariance matrix, a Maximum Likelihood Estimator (MLE) for the normal
model provides an optimal solution (Kim and Shevlyakov, 2008). In reality, the underlying
assumptions on the probability distribution of observations are not perfectly met and thus,
even for minor deviations from the assumed model (e.g., due to outliers or contaminated
observations), optimality is not guaranteed. Many areas of engineering show that measure-
ments contain outliers, resulting in heavy-tailed distributions, e.g. presented in Blankenship
et al. (1997), Abramovich and Turcaj (1999), Middleton (1999) and Etter (2003), causing
the estimator to be biased or even break down (Zoubir et al., 2012). The same applies for
GNSS-based applications, where exact Gaussianity cannot be guaranteed and the assumption
of the normal model is violated – especially in multipath and NLOS contaminated situations
(Medina, 2021). Contrary to the MLE, Robust Statistics addresses the development of esti-
mators that are able to provide nearly optimal solutions for Gaussian data distributions as
well as for deviations from the model (Huber and Ronchetti, 2009). Its theory was derived in
the work of Tukey (1960), Huber (1964) and Hampel (1971), which established the framework
for the application of robust statistics to various applications in the field of technology and
engineering.
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Figure 2.6: Bias and breakdown point of three traditional estimators for a one-dimensional estimation and
different number of outliers. The true value is given in green, sample mean estimator is shown in blue, sample

median is shown in red and the α-trimmed mean (α = 0.25) is shown in yellow.

The simplified example for a one-dimensional location estimation in Fig. 2.6 is emphasizing the
need of robust statistics. The solution of three traditional estimators are compared, namely the
sample mean estimator (corresponds to minimizing the l2-norm), the sample median estimator
(corresponds to minimizing the l1-norm) and the α-trimmed mean estimator (the largest and
smallest 25 % of the measurements are trimmed from the estimation for α = 0.25). Due to the
influence of an outlier, the MLE at the normal distribution (sample mean estimator) results
in a significant impact on the estimation of location. This bias can be characterized as a
systematic deviation from the true value of the location parameter. In the scenario involving
a single outlier, the sample median estimator and the α-trimmed mean estimator exhibit a
high degree of proximity to the true value, effectively nullifying the influence of the outlier.
Conversely, when confronted with six inliers and four outlying measurements, the α-trimmed
mean estimation solution demonstrates a bias, while the sample median estimator continues
to attain a solution that is nearly optimal. However, when the number of outliers exceeds half
of the total measurements, the sample median estimator breaks down, resulting in a biased
location estimation.

Breakdown Point

The breakdown point is a metric used to quantify the robustness of an estimator. As illus-
trated in Fig. 2.6, the performance of different estimators varies with increasing proportions
of outliers. The breakdown point indicates the maximum proportion of outliers that an es-
timator can handle without producing a biased solution. The MLE for the normal model
encounters failure when one outlier is present, thereby establishing a breakdown point of zero
for the estimator. In contrast, the sample median estimator demonstrates a breakdown point
of 50 %. When the fraction of outliers exceeds 50 %, the distinction between nominal and
contaminated observations becomes indistinguishable. Consequently, the maximum attainable
breakdown point for an estimator founded on robust statistics is also 50 %.

Maximum Likelihood Estimation for One-dimensional Data

Recalling the one-dimensional location estimation, we have a vector of measurements available,
which are distributed around the location µ with noise vi:

yi = µ+ vi, (2.60)
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with the vector of nmeasurements yT =
[
y1, . . . , yn

]
and independent and identical distributed

noise vi following a distribution F0. The likelihood function of the observations is defined as

L(y|µ) =
n∏
i=1

f(yi − µ), (2.61)

where f(·) is the Probability Distribution Function (pdf). By maximization of the likelihood,
the MLE yields an estimate µ̂ for the location µ:

µ̂(y) = arg max
µ

L(y1, . . . , yn|µ). (2.62)

In the case the distribution of the measurements is F0 = N (µ, σ2), i.e. the Gaussian model,
the pdf for the measurements is given by

f(yi|µ, σ2) = 1√
2πσ2

exp
(

−(yi − µ)2

2σ2

)
. (2.63)

Since L(y|µ) is positive in all cases, the maximization problem outlined in Eq. 2.61 for the
Gaussian model can be expressed equivalently as the following minimization

µ̂mean = arg min
µ

n∑
i=1

(ri)2, (2.64)

where the ith residual ri = yi − µ is the difference between the ith observation and the esti-
mate. Equation 2.64 describes the minimization of the l2 norm corresponding to a LSA and
it is obvious that the sample mean aligns with the MLE for the normal model.
Alternatively, if the measurements follow the Laplace distribution, the pdf for the measure-
ments is given by

f(yi|µ, σ2) = 1√
2σ

exp
(

−
√

2|yi − µ|
σ2

)
(2.65)

and the corresponding MLE solves the following minimization

µ̂median = arg min
µ

n∑
i=1

|ri|. (2.66)

Equation. 2.66 describes the minimization of the l1 norm or the Least Absolute Deviation
(LAD) adjustment and it is obvious that the sample median aligns with the MLE for the
Laplace distribution.

M-estimator

M-estimators are a generalization of MLE introduced by Huber (1964) and can resist outliers
by solving following minimization:

µ̂M = min
µ

n∑
i=1

ρ

(
ri
σ

)
, (2.67)

where ρ(·) denotes the loss function. For symmetric and differentiable loss functions, its score
function is defined as the loss functions derivative

ψ(x) = dρ(x)
dx

, (2.68)
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which can be solved as
n∑
i=1

ψ

(
yi − µ

σ

)
= 0. (2.69)

Intuitively, M-estimators for one-dimensional location estimation can also be interpreted as a
weighted average with weights given by the weighting function

w(x) =
{
ψ(x)
x , if x ̸= 0

1, if x = 0
. (2.70)

Typically, for robust M-estimators, the weights are one (or close to one) for the inliers, while
the outliers are down-weighted according to the score function. Many score functions ψ(x)
exist in order to penalize outliers in the measurements, achieving high efficiency under the
nominal model as well as robustness against outlying observations and a high breakdown
point. It is typically distinguished between monotone and redescending M-estimators, where
the latter are useful especially for data with extreme outliers.

The loss functions ρ(x), score functions ψ(x) and weighting functions w(x) of one typical
monotone M-estimator based on the Huber’s family of functions (Huber, 1964) and of one
common redescending M-estimator based on the Tukey’s bisquare family of functions (Tukey,
1960) are displayed together with the functions of the MLE in Tab. 2.3. The parameters cH
and cT are set to control the robustness and efficiency of the M-estimators. If they are set
to cH , cT −→ ∞ or cH , cT −→ 0, the M-estimator corresponds to the sample mean or sample
median, respectively. Typically, the parameters are chosen to meet 95 % relative efficiency at
the normal model, which yield the values cH = 1.345 and cT = 4.685. Another robust family
of functions – originally defined for image analysis – is based on the Geman-McClure loss
(Geman and McClure, 1985; Barron, 2019), which is also a redescending type of estimator but
is damping large values even more using continuous functions without residual-based decisions.
The tuning parameter of the Geman-McClure function is typically set to 1. Close to zero, it
behaves similar to the MLE loss and outside it is significantly bounded being robust to large
outliers.

It is evident that monotone and redescending M-estimators possess distinct traits: the former
results in convex optimization problems for Eq. 2.67, ensuring solution uniqueness, whereas
the latter are entirely bounded, providing enhanced quantitative robustness albeit with a
non-convex optimization for Eq. 2.67 and reduced efficiency within the nominal model. The
Huber, Tukey and Geman-McClure functions, as well as the MLE at the normal model, are

Table 2.3: Loss functions ρ(x), score functions ψ(x) and weighting functions w(x) of the MLE at the normal
model, the Huber-based monotone M-estimator and the redescending Tukey bisquare M-estimator.

Estimator ρ(x) ψ(x) w(x)

MLE x2

2 x 1

Huber
{

|x| ≤ cH

|x| > cH


x2

2
cH |x| − c2

H
2

{
x

cHsign(x)

{
1
cH
|x|

Tukey
{

|x| ≤ cT

|x| > cT


c2

T
6

(
1 −

(
1 − x2

c2
T

)3
)

c2
T
6

x
(

1 − x2

c2
T

)2

0


(

1 − x2

c2
T

)2

0

Geman-McClure
2 x2

c2
G

x2
c2
G

+4
16c2

Gx

(4c2
G+x2)2

16c2
G

(4c2
G+x2)2
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visualized in Fig. 2.7. In terms of inliers, the Huber-based M-estimator is anticipated to
exhibit greater efficiency in the normal model compared to the redescending counterparts
due to the alignment of their loss, score, and weighting functions with the MLE for nominal
measurements. The example in Fig. 2.6 shows that the presence of one single sufficiently
large outlier can lead to a breakdown of the MLE at the normal model. The impact of large
residuals is demonstrated in the score and weighting functions, where the monotone Huber-
based M-estimator would mitigate the influence of such outliers, while the redescending Tukey-
based M-estimator would nullify their effect on the solution and the Geman-McClure-based
M-estimator is largely reducing the impact by weights close to zero.

The computation of robust M-estimators is typically performed in an Iteratively Reweighted
Least-squares (IRLS) adjustment with an initially computed robust scale estimate using the
Median Absolute Deviation (MAD):

σ̂(x) = 1.4826 · median (|x − median(x)|) . (2.71)

Thereby, the normalization factor 1.4826 corresponds to the standard deviation at the normal
model. The procedure of the IRLS adjustment is displayed in Alg. 1. Given a set of measure-
ments y and predictors A, the first step is to compute an initial solution µ̂ and scale σ̂ using
a LSA. In the initialization step, the weighting matrix W is typically configured to assign
unit weights to the measurements. Subsequently, the weighting matrix is adapted through
the use of robust weighting functions until the convergence criterion is met. Robust weighting
functions are utilized, such as those based on the Huber family of functions, as outlined in
Tab. 2.3. Concurrently, the location parameter µ̂ is estimated iteratively.

If M-estimation is extended from the one-dimensional location estimation to, e.g. linear re-
gression (i.e., Generalized M (GM)-estimation), the limitation of the generalized M-estimators
is that they typically show a low breakdown point of at most 1/(p + 1) (p is the number of
parameters to be estimated) and - depending on the particular situation - do not necessarily
reach this upper bound (Maronna et al., 1979).

S-estimator

The class of S-estimators is designed to have a high breakdown point and is based on the
Least Median of Squares (LMS)

µ̂LMS = arg min
µ

median(r) (2.72)

(a) (b) (c)

Figure 2.7: Loss functions ρ(x) (a), score functions ψ(x) (b), and weighting functions w(x) (c) of the MLE at
the normal model and M-estimators based on the Huber’s, Tukey’s and Geman-McClure’s family of functions.
The control parameters are set to cH = 1.345, cT = 4.685 for 95 % relative efficiency at the normal model and

to cG = 1.
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Algorithm 1 IRLS adjustment using M-estimators.
Estimate initial σ̂ and µ̂

while µ̂(t+1)−µ̂(t)

σ̂ ≥ ϵ do
Compute weighting matrix according to the weighting function:

W = diag(w1, . . . , wn) with wi = w

(
r

(t)
i
σ̂

)
Perform weighted LSA:

µ̂(t+1) = (ATWA)−1ATWy
end while

and the Least Trimmed Squares (LTS)

µ̂LTS = arg min
µ

h∑
i=1

(ri)2, (2.73)

where the residuals in LTS are sorted in ascending order such that r2
1 ≤ . . . r2

n and h is chosen
to attain a high breakdown point, e.g., h = n/2 yields a breakdown point of 50 % (Rousseeuw,
1984). The S-estimator, i.e. the minimization of a robust scale estimate for the residuals, is
then defined as

µ̂S = arg min
µ
σ̂(r) (2.74)

and the scale estimate is the solution of

1
n

n∑
i=1

ρ

(
ri
σ̂

)
= δ, (2.75)

where δ balances the consistency at a particular distribution and the breakdown point, e.g.,
for maximum breakdown point δ = 0.5(1 − n/p). The S-estimator typically considers the use
of redescending score functions. A high breakdown point of up to 50 % can be achieved while
the drawback is a relatively low efficiency at the normal model.

MM-estimator

The MM-estimator proposed by Yohai (1987) is a two-step approach to achieve both a high
breakdown point and high relative efficiency. First, an initial estimate µ̂ = µ̂S and its scale
σ̂1 is computed via S-estimation using a redescending function ρ1 tuned for a high breakdown
point. The MM-estimator is then computed using a IRLS adjustment by minimizing the
following equation using a second redescending function such that ρ2 ≤ ρ1:

µ̂MM = arg min
µ

n∑
i=1

ρ2

(
ri(µ̂S)
σ̂1

)
. (2.76)

2.6 GNSS Positioning in Urban Environments

GNSS signals provide information about the absolute position of a user on a global scale with
accuracy in the centimeter range, depending on the positioning method (see Sec. 2.3). In
urban environments, nearby objects (e.g., buildings, trees or vehicles) block the direct LOS
between the transmitting satellite and the receiving antenna and signal reflections resulting
in numerous NLOS and multipath signal receptions. These effects are the dominant source of
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GNSS positioning errors in dense urban environments (McGraw et al., 2021). Both types of
errors are visualized in Fig. 2.8. NLOS and multipath errors – often synonymously referred
to as multipath in the GNSS community – are influenced by the geometric signal path of the
direct and indirect signals, which are defined by the local environment and satellite positions.
Additionally, these errors are affected by the complex signal-antenna-receiver interaction. Al-
though these two effects are often grouped, their error characteristics are different. When
considering a signal reflection, the reflected signal is always longer than the direct signal.
Therefore, NLOS reception always results in a positive ranging error, while the coherent na-
ture of multipath interference produces both positive and negative ranging errors, which also
vary with signal and receiver design (Groves, 2013a). NLOS delays can reach up to twice the
orthogonal distance to the reflector plane (e.g., tens of meters for smaller urban trenches in
European inner cities (Betaille et al., 2013; Icking et al., 2020) and up to hundreds of meters
for urban canyons in metropolitan cities (Hsu, 2017a; Icking et al., 2022). The delay caused
by multipath depends on the extra path delay and the receiver settings. Its assessment is typ-
ically conducted by the multipath envelope function for pseudorange observations, yielding
delays ranging from 30 to 50 meters. For the carrier phase measurement, the impact ranges
from millimeters to a maximum of a quarter of the wavelength (Braasch, 2017).

Several multipath and NLOS error mitigation strategies have been researched to improve
GNSS-based localization in urban environments, as accurate positioning plays a crucial role
in many applications and emerging technologies, such as autonomous driving or pedestrian
navigation. The demand for high accuracy and high integrity positioning models is increasing
and, due to the fact that the GNSS sensor is the only one that provides absolute positioning
information, the advancement of research into GNSS positioning is ongoing. In order to
achieve an adequate level of accuracy, it is essential to employ not only carrier phase-based
positioning techniques but also to integrate multipath and NLOS error mitigation strategies.
The details of application requirements are outlined in Sec. 2.7.

Signal reflected 
by building

LOS signal

Signal reflected 
off the ground

(a)

Signal reflected 
by building

LOS signal 
blocked

(b)

Figure 2.8: Main GNSS error sources in urban environments: (a) multipath and (b) NLOS signal reception.

2.6.1 3D Mapping Aided GNSS

The availability of 3D city models in the standardized City Geography Markup Language
(CityGML) format (Gröger et al., 2012), e.g. provided by the city of Hannover (Landeshaupt-
stadt Hannover, FB Planen und Stadtentwicklung, Bereich Geoinformation, 2017) and other
cities around the world (Berlin (Business Location Center, 2022), Amsterdam (van den Brink
et al., 2013), New York (Department of Information Technology and Telecommunications
(DoITT), 2022), Hongkong (Land Information Centre (LIC), Survey and Mapping Office
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(SMO), Lands Department, 2021)) is increasing. Google has deployed 3DMA-GNSS in An-
droid phones for almost 4,000 cities, covering major cities in North America and Europe,
Japan, Taiwan, Brazil, Argentina, Australia, New Zealand, and South Africa (van Diggelen,
2021). A 3D city model, combined with knowledge of satellite positions, enables prediction of
which signals will be affected and where.

Ray Tracing

Once an accurate 3D city model is at hand, the satellite positions are available and an ap-
proximate user location is known, ray tracing can be performed. When these conditions are
met, ray tracing is a powerful tool for distinguishing between LOS and NLOS satellite ray
conditions and for characterizing multipath error in an urban environment. The observation
error is dependent on the satellite-reflector-antenna geometry and thus, ray tracing simula-
tions were used to characterize and estimate multipath errors in different static environments,
e.g. using a steel reflector in a controlled environment (Lau and Cross, 2007), ship and air-
craft environments (Weiss et al., 2007), ground reflections (Smyrnaios et al., 2012) or complex
urban scenarios using a virtual city model (Bradbury et al., 2007).

Besides the multipath and NLOS receptions, the diffraction effect frequently occurs in urban
canyons, which will severely attenuate the signal strength when the satellite LOS transmitting
path is close to the building edge. The impact of diffraction effects on the GNSS signal is
studied, e.g. in Zimmermann et al. (2019), Zhang and Hsu (2021), Schaper et al. (2022) and
Zhang et al. (2023).

In recent years, the significance of the GNSS sensor in the domain of automotive applications
and emerging technologies has grown. Consequently, research involving ray tracing is being
expanded to include the integration into positioning algorithms, with the objective of either
eliminating or rectifying GNSS observations. A comprehensive review of the latest litera-
ture on GNSS positioning algorithms, with a particular focus on the incorporation of NLOS
exclusion or observation rectification strategies, is given in Tab. 2.4.

In addition to the necessity for an accurate city model and the typical absence of knowledge
regarding the user position, the most significant constraint of ray tracing for GNSS positioning
is its high computational complexity. Figure 2.9 depicts an illustrative example in the city of
San Francisco, USA. The scenario on the left appears relatively straightforward, with direct
rays from the satellites to the user. However, the scenario on the right, which is a zoomed-
in plot, provides a more accurate representation of the actual situation. In scenarios with
multiple reflecting surfaces, scattering and diffraction situations, the number of candidate

Table 2.4: State of the art literature summary for GNSS positioning algorithms including NLOS exclusion or
observation rectification strategies.

NLOS exclusion strategies Observation rectification strategies

Obst et al. (2012) Betaille et al. (2013)
Peyraud et al. (2013) Suzuki and Kubo (2013)
Betaille et al. (2013) Miura et al. (2015)

Hsu et al. (2015) Hsu et al. (2015)
Zimmermann et al. (2019) Hsu et al. (2016)

Icking et al. (2020) Icking et al. (2020)
Ruwisch and Schön (2022b) Ruwisch and Schön (2022a)

O’Connor et al. (2024) Lyu and Gao (2023)
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Figure 2.9: Exemplary situation of ray tracing for a given situation in San Francisco, USA. The right image
is a zoom-in plot of the left image. Source: van Diggelen (2021).

rays becomes enormous, which is, e.g., more than a phone can handle (van Diggelen, 2021).
Therefore, special techniques are required in order to maintain the real-time applicability
(O’Connor et al., 2021).

Ray Tracing Software

The software utilized for ray tracing in the context of this thesis is developed by Icking et al.
(2020) and subsequently refined by Baasch et al. (2023). In order to assess satellite visibility,
a 3D CityGML model provided by the City of Hannover is employed. This model contains
all buildings within the city, stored across multiple files in the CityGML, a format based
on Extensible Markup Language (XML) designed for geographic data representation. The
selected Level of Detail (LoD) 2 includes building models that capture roof geometries, eaves,
and ridges, with a vertical accuracy of ± 1 meter.

Once a specific area within the city is selected and the user coordinates are set, the satellite
visibility analysis is conducted. The two core components of the algorithm are as follows (see
Fig. 2.10):

1. Dividing the building model into smaller bounding boxes.

2. Decomposing each polygon into triangles to simplify the intersection test.

It is imperative to subdivide the selected portion of the building model in order to reduce the
computational run-time. Accordingly, a reasonable area of interest is identified prior to each
data analysis, determining the amount of building information considered for the computation
steps. Once the LOS between the antenna and the satellite has been established, a ray-box
intersection test based on Williams et al. (2005) is performed to determine which boxes are
intersected by the LOS ray. Subsequently, only these boxes are subjected to analysis, as the
ray intersects only a minor subset of all the boxes within the area. This approach results in a
notable reduction in computational run-time. Once the boxes that have been intersected have
been identified, the subsequent step is to ascertain which of the building polygons that are
within these boxes impede the LOS. To streamline the computation and minimize processing
time, each polygon is triangulated. A triangle-ray intersection test, as outlined in Möller and
Trumbore (2005), is then performed. If an intersection with any triangle is detected, the
satellite is considered not visible (NLOS). If no intersection occurs, the satellite is marked as
visible (LOS).
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Figure 2.10: LOS/NLOS determination algorithm. Source: Icking et al. (2020).

To ascertain whether a signal is susceptible to multipath or reflections from building surfaces,
i.e. two-dimensional planes, it is first necessary to identify the reflection points. This, in turn,
requires that the ray vector between the antenna and the satellite, as well as the nearby build-
ing surfaces, be expressed in a common coordinate frame (Baasch et al., 2023). Figure 2.11
shows the geometry of the reflection calculation. To calculate the reflection point R on the
reflecting surface P, the antenna position A is mirrored with respect to this plane:

K = A + (P0 − A) · n′

n · n′ n. (2.77)

The projection of the antenna onto the reflecting surface K is computed using the normalized
outer normal vector n of the reflecting plane and any point P0 on the plane. The point P0
can be any vertex and n can be calculated from three vertices of the surface. Next, the virtual
antenna point A′ is calculated:

A′ = A + 2(K − A). (2.78)

The intersection between the ray from the mirrored antenna point A′ to the satellite S will
give the reflection point R:

R = A′ + (K − A′)n
(S − A′)n (S − A′). (2.79)

Finally, the satellite ray is classified into one of the four categories:

1. LOS: Satellite ray is not obstructed and no possible reflection point exists

2. Multipath: Satellite ray is not obstructed but a signal reflection with reflection point is
calculated
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Figure 2.11: Satellite ray reflection on a building surface P at the reflection point R. The user position is
denoted by A, its projection with respect to P as A′ . The extra path delay is represented by the difference
between the satellite S and the mirrored antenna point A′, as well as the satellite S and antenna A. Source:

Baasch et al. (2023).

3. NLOS: the direct LOS is obstructed by a building and the signal can be received via
single reflection on a buildings surface

4. Blocked: the direct LOS is obstructed by a building and no possible reflection point
exists

The integration of the ray tracing software into the developed positioning algorithm is de-
scribed in Sec. 3.3.

Shadow Matching

GNSS shadow matching is a positioning technique used in urban environments to enhance
accuracy by comparing predicted and observed satellite signal availability through the use of
predicted and measured C/N0. As demonstrated in Groves (2011) and Groves et al. (2015),
this technique employs 3D models of the environment to predict regions of shadow, i.e., areas
where satellite signals are impeded by buildings or other structures, as well as the GNSS signals
that are visible with a direct LOS path. The principle of shadow matching is illustrated in
Fig. 2.12. A user is assumed to be in one of the shadowed areas if the measured C/N0
is low or the signal is not received at all. If the observed C/N0 is high, shadow matching
assumes that the user is in a region with direct LOS to the respective satellite. The basis
of the LOS/NLOS decision criterion is an empirically determined function of the direct LOS
probability as a function of C/N0. As the characteristics of antenna-receiver combinations are
inherently different, a function tailored to the respective equipment in use is required. This
function can be derived from C/N0 data collected at a known location under ideal conditions
(Wang et al., 2015).

In order to determine an initial approximate GNSS position and a search space, it is necessary
to compute match probabilities for each signal for a number of candidate positions within that
search space (McGraw et al., 2021):

Pij = p(LOS|C/N0)jp(LOS|map)ij + (1 − p(LOS|C/N0)j) (1 − p(LOS|map)ij) ,
= 1 − p(LOS|C/N0)j − p(LOS|map)ij + 2p(LOS|C/N0)jp(LOS|map)ij , (2.80)

where p(LOS|C/N0) is the observed direct LOS probability, p(LOS|map) is the predicted direct
LOS probability, j is the satellite and i is the candidate position. A probability score for each
candidate position is computed by multiplying the match probabilities for each signal by

Λi =
∏
j

Pij . (2.81)
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(a) (b)

Figure 2.12: Principle of shadow matching. Source: Groves et al. (2015).

The position solution is then determined by a weighted average of the candidate positions:

x̂pos =
∑
i Λixpos,i∑

i Λi
, (2.82)

where xpos,i is the position of the i-th candidate and Λi is a positive weighting factor.

It has been demonstrated by several research groups that shadow matching is an effective
method for determining the user’s cross-street position with greater accuracy, particularly in
areas with significant signal obstructions. This approach yields positioning accuracies of better
than 3 m, as evidenced by the findings of several studies, including those by Suzuki and Kubo
(2012), Wang et al. (2012), Isaacs et al. (2014), Yozevitch and Moshe (2015), and Strandjord
et al. (2020). Further research demonstrates that the signal strength of a diffracted GNSS
signal may be attenuated depending on the percentage of blockage of the signal’s Fresnel
ellipsoid (Liso Nicolas et al., 2012; Zhang and Hsu, 2021; Schaper et al., 2022). Consequently,
the incorporation of diffraction information into a shadow matching algorithm is advantageous
(Zhang et al., 2023).

2.6.2 Consistency Checking

Consistency checking is a strategy that makes use of redundant measurement information in a
navigation filter or least-squares estimation (Teunissen, 1990). The quality of an estimator di-
rectly depends on the assumptions that the measurements align with the mathematical model.
Model misspecifications, such as outliers and sensor failures, can invalidate estimation results
and any conclusions drawn from them. It is therefore essential to implement quality control
procedures to ensure the integrity of the mathematical model. The quality of the measure-
ments is evaluated with the prior stochastic assumptions, whereby an individual observation
is assigned a specific uncertainty (for further details on GNSS variance models, please refer to
Sec. 2.1.3). Consequently, an accurate stochastic model is essential for precisely determining
measurements that deviate from these assumptions.

In other words, within the context of urban GNSS positioning, this implies that signals affected
by multipath and NLOS are inconsistent with other nominal observations and can therefore
be identified through the consistency check (Groves and Jiang, 2013). The same principle
is applied in Receiver Autonomous Integrity Monitoring (RAIM), where the integrity of a
GNSS receiver is monitored (Brown, 1992; Walter and Enge, 1995; Pervan et al., 1998). The
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effectiveness and performance of consistency checking algorithms for multipath and NLOS
error detection and exclusion in vehicle applications have been investigated in various studies
(Iwase et al., 2012; El-Mowafy, 2020; Elsayed et al., 2023). Further improvement potential is
also explored by combining RAIM methodology with 3D city model information (El-Mowafy
et al., 2020). Considering a dense urban environment, a large number of measurements are
contaminated by multipath and NLOS and therefore, a consistency checking strategy for
excluding multiple faults is required (Hsu et al., 2017).

The limitations of conventional consistency checking are discussed in Sec. 2.5. The consistency
checking methodology, which is implemented in the scope of this thesis, is described in Sec. 3.2.

2.6.3 Multi-Sensor Combination

Since GNSS measurements tend to be biased in urban environments, another strategy to
overcome the limitations of GNSS-only positioning is to incorporate other sensors, such as
Inertial Navigation System (INS), odometer or Light Detection and Ranging (LiDAR), into
a multi-sensor system. The integration of the GNSS sensor with an INS assists in providing
continuous navigation through situations where GNSS signal outages occur, e.g. in deep
urban canyons. The integration of the INS and GNSS in a tightly coupled navigation filter
enhances positioning accuracy in urban environments, particularly when compared to GNSS-
only positioning, as demonstrated in Groves (2013b) and Falco et al. (2017). In the event
of GNSS signal failure, the INS serves to bridge the navigation output, while the GNSS
sensor is able to calibrate the drifting INS error. This allows the sensor combination to
have a complementary characteristic, which helps to maintain centimeter-level accuracy. The
utilization of high-quality navigation-grade inertial sensors has the potential to attenuate the
propagation of errors. However, their cost is not aligned with the financial constraints of
automotive vehicle applications (Brown and Hwang, 2012).

The use of an Inertial Measurement Unit (IMU) based on a Micro-electromechanical Sys-
tem (MEMS) (lightweight, small size and low cost) allows for the implementation of an INS
at a reduced cost, making it a suitable solution for navigation applications. The use of a
GNSS/MEMS INS has been shown to mitigate GNSS signal disturbances, as evidenced, e.g.,
by the findings of Godha and Cannon (2007) and Yang et al. (2013). When carrier phase
observations are utilized, for example, through PPP-RTK/INS integration, such a navigation
system provides decimeter-level accuracy in GNSS-challenged environments (Li et al., 2021).
Moreover, the GNSS/INS integration enhances the availability of a navigation system.

The incorporation of additional sensors, such as LiDAR sensors or wheel speed sensors, fur-
ther improves the system’s performance. The introduction of zero velocity updates and non-
holonomic or holonomic constraints also enhances the system’s capabilities, as demonstrated,
e.g. in Nagai et al. (2024). The LiDAR sensor is capable of providing additional assistance to
the navigation solution, e.g., through relative positioning with respect to landmarks (Nagai
et al., 2024). Furthermore, a 3D map can be constructed from LiDAR point clouds, and sub-
sequently, NLOS satellite signals can be identified and rectified within the estimation process
(Wen, 2020; Wen and Hsu, 2021).

2.6.4 Machine Learning-based Approaches

In the modern digital age, data is generated at a constant and exponential rate in different
field of applications. In response to this situation, technologies have been developed that take
advantage of this characteristic. These technologies enable not only the measurement and
understanding of their origin, but also the collection, quantification, decoding, and analysis
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of data to identify behaviors and trends, formulate strategies, and gain insights. Artificial
Intelligence (AI) has already become a significant contributor to the fields of big data, image
processing, and signal processing (França et al., 2021). Consequently, it is also playing a
prominent role in the development of specific applications for ITS and autonomous driving,
e.g. in scene understanding, motion planning, decision making, vehicle control, social behavior,
and communication (Elallid et al., 2022).

In recent years, there has been a notable increase in the utilization of AI, particularly Machine
Learning (ML) algorithms, for GNSS positioning. The capacity of these models to describe
complex phenomena and relationships between parameters is a promising approach for multi-
path and NLOS detection, characterization, and mitigation in urban environments (Crespillo
et al., 2023). ML methods for urban GNSS positioning can be distinguished by the specific
purpose for which they are employed. This may be either the LOS/NLOS classification, as
demonstrated by a binary decision tree (Yozevitch et al., 2016), an adaptive neuro fuzzy in-
terference system (Sun et al., 2019), a gradient boosting decision tree (Sun et al., 2020) or
a support vector machine classifier (Ozeki and Kubo, 2022). The other purpose is to use
ML methods for multipath and NLOS detection for mitigation with or without a distinction
between the two states of reception (Hsu, 2017b; Suzuki et al., 2017). Multipath errors were
successfully mitigated at the receiver level by focusing on the auto-correlation function com-
puted in the receiver (Orabi et al., 2020) and at the pseudorange error level by considering
signal strength, satellite elevation angle and pseudorange residuals (Sun et al., 2020). A more
comprehensive review of ML techniques for urban GNSS positioning is beyond the scope of
this thesis. For further details, including an exploration of current challenges and limitations
of these methods, the reader is directed to, e.g., Crespillo et al. (2023).

2.6.5 Robust Estimation

In general, robust estimators are capable of providing solutions that are nearly optimal in the
presence of outliers. This is achieved by identifying the outliers and reducing their impact on
the estimation process. The mathematical foundation of robust estimators was addressed in
Sec. 2.5. In this section, recent contributions to the field of robust estimation in the context
of GNSS positioning in challenging environments are discussed. The necessity for such ro-
bust estimators for GNSS positioning is becoming increasingly apparent as the probability of
multiple outliers rises due to the growing number of satellites with multiple fully operational
satellite systems and the GNSS sensor’s role in automotive applications in challenging envi-
ronments, e.g. urban areas. Robust methods retain all observations but either down-weight
suspect observations or minimize alternatives to the sum of the squared residuals. The latest
contributions to this field of research can be classified into two distinct categories: firstly, the
pure performance simulation of various methods utilising solely simulated observations; and
secondly, the evaluation based on real data measurements for inland waterborne or urban
vehicular applications. A collection of the most notable research is presented in Tab. 2.5.
Simulation studies have demonstrated the ability of robust least-squares estimators, includ-
ing the LMS, LTS, Modified Least Trimmed Squares (MLTS), Greedy Search (GS), Position
and Time Variation (PTV), R-estimator, M-estimator, GM-estimator, S-estimator and MM-
estimator to effectively detect the error-induced observations and to mitigate their impact
with respect to standard weighted LSA (Knight and Wang, 2009; Medina et al., 2019; Wen-
del, 2022).

Further simulation studies indicate that robust estimation theory can be employed to mod-
ify the Kalman filter update step. This approach is effective for integrating the GNSS/INS
coupled EKF using pseudorange observations with the M-estimator (Crespillo et al., 2018)
and the variational inference method (Variational Bayesian Kalman Filter (VB-KF)) for RTK
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Table 2.5: Literature review for robust GNSS positioning. Estimators: LMS, LTS, MLTS, GS, PTV, R-,
M-, GM, S-, MM-estimator, EKF+M-estimator, CQKF, VB-KF, GM-KF, RIF, I-VKF, S-VKF, CAR-EKF.

Observations: Pseudorange (PR), Carrier Phase (CP), INS.

Application Estimator Observations Reference

Performance
Simulation

LMS, LTS, R, M,
GM, S, MM

Simulated PR Knight and Wang (2009)

Inland Waterborne LMS, M, S, Ransac,
CQKF

Measured PR, INS Medina et al. (2016)

Inland Waterborne S Measured PR Pozo-Pérez et al. (2017)
Urban Vehicular M, LTS Measured PR Gaglione et al. (2017)
Urban Vehicular MM Simulated/Measured

PR
Akram et al. (2018)

Performance
Simulation

EKF+M Simulated PR, INS Crespillo et al. (2018)

Performance
Simulation

M, S, MM Simulated PR Medina et al. (2019)

Performance
Simulation

VB-KF Simulated PR, CP Li et al. (2019)

Urban Vehicular M Measured PR Crespillo et al. (2020)
Inland Waterborne GM-KF, RIF, I-

VKF, S-VKF
Simulated/Measured
PR, CP

Medina et al. (2021)

Performance
Simulation

GS, M, LTS, MLTS,
PTV

Simulated PR Wendel (2022)

Urban Vehicular EKF+M, CAR-EKF Measured PR Ding et al. (2023)
Urban Vehicular EKF+M Simulated/Measured

PR, CP
Wang et al. (2023)

positioning as described by Li et al. (2019). The influence of heavy-tailed measurement dis-
tributions on position distortion can be reduced, as demonstrated by Medina et al. (2021).

The simulation results are highly promising for robust GNSS positioning. Consequently, re-
search is ongoing to apply robust estimation theory to real measurements in GNSS-challenged
environments. Many studies have demonstrated that the application of robust estimation
techniques to pseudorange-based GNSS positioning can enhance the accuracy in both inland
waterborne scenarios (Medina et al., 2016; Pozo-Pérez et al., 2017) and urban vehicular ap-
plications (Gaglione et al., 2017; Akram et al., 2018; Crespillo et al., 2020; Ding et al., 2023).
Conversely, there is a paucity of analyses for evaluating the performance of robust carrier
phase-based GNSS positioning techniques using real measurements in challenging environ-
ments. In a recent study, Medina et al. (2021) extended the investigation of robust filtering
techniques for RTK positioning. The performance of four algorithms, namely Generalized
M-estimator Kalman Filter (GM-KF), Robust Information Filter (RIF), Independent indi-
cator Variational Bayesian Kalman Filter (I-VKF), and Scalar Variational Bayesian Kalman
Filter (S-VKF), has been evaluated in a challenging waterborne scenario. Robust filtering
techniques are capable of effectively mitigating the majority of significant positioning errors.
Wang et al. (2023) have demonstrated that the integration of an EKF with M-estimation
theory can significantly enhance the ambiguity fixing ratio for RTK positioning in an urban
vehicular context.

The common limitation of the aforementioned algorithms is that the effectiveness of these ro-
bust estimation theories is only guaranteed until the respective breakdown point is reached (see



38 2 Basics

Sec. 2.5). In the event that the number of measurement errors exceeds the number of available
nominal observations, it becomes impossible to compute an optimal solution. Consequently,
the following sections of this thesis present a method that ensures a near-optimal GNSS po-
sitioning solution in harsh propagation conditions, where the breakdown point is exceeded.

2.7 Performance Parameters

The performance of a navigation system is evaluated by several statistical parameters, with
variations in their definitions based on the specific application and type of navigation system
used. Typically, these parameters are not individually specified, but are correlated to each
other. In European Comission (2003), the relationship of the typical performance parameters
accuracy, integrity, continuity and availability are illustrated by depicting a pyramid, where
accuracy serves as the basis (see Fig. 2.13). Integrity, continuity and availability are – in this
ordering – solely a function of accuracy. The definitions of the performance parameters are
given in the following subsections and are based on the standard textbooks Hofmann-Wellenhof
et al. (2008), Farnworth (2017) and Pullen and Joerger (2021).

Figure 2.13: Hierarchy of GNSS performance parameters.

2.7.1 Accuracy

Accuracy refers to the systems ability to provide reliable and precise location information
and is a quantitative measure of the error, that will be experienced by a user with a certain
probability, between the estimated state (e.g., position and/or velocity) and the true value. In
real-time applications, true state values are typically unknown, however, the accuracy of an
operation can be evaluated under controlled conditions or in post-processing. In literature, it
is further distinguished between the above described (absolute) accuracy and the repeatable
accuracy – also called precision – which does not account for the true position but evaluates
the scattering around a mean value. A typical mathematical measure of the accuracy is the
Root Mean Square (RMS) which is defined as

RMS =

√√√√ 1
n

n∑
i=1

x2
i . (2.83)
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The scattering is typically described by the empirical Standard Deviation (STD)

STD =

√√√√ 1
n− 1

n∑
i=1

(x̄− xi)2. (2.84)

Both measures are computed from a finite number of n data points xi with i = {1, 2, . . . , n} ∈ N
and their corresponding mean value x̄.

2.7.2 Integrity

Integrity is an important measure that determines the trustworthiness of a navigation system
under a defined integrity risk. Integrity further describes the ability to provide timely warnings
to a user when the navigation system is unavailable. Integrity risk is the probability of
providing incorrect information without warning the user within a time period. In practice,
it is the probability of a large error being undetected which – in safety-critical applications –
could cause collision or accidents. Therefore, the integrity risk is required to be very low with
a probability of typically less than 10−5 per operation. In order to evaluate the integrity of a
particular application, the Alert Limit (AL), which is the boundary of unsafe errors, has to
be defined based on the respective specifications. In addition, the Protection Level (PL) is
computed by the user, which is defined as the error bound and typically represented as Vertical
Protection Level (VPL) and Horizontal Protection Level (HPL). The integrity methods applied
in GNSS are evolving, and several protection level computations have been defined (Zhu et al.,
2018; Zabalegui et al., 2020). In this thesis, the method from ICAO (2006) is implemented, as
it is a rather simple method suitable for comparing different positioning estimation strategies.
The computation is straightforward when a zero-mean Gaussian fault-free error distribution
is assumed and the equations are formulated as

VPL = κVPLσ0
√
quu, (2.85)

HPL = κHPLσ0

√√√√qnn + qee
2 +

√(
qnn − qee

2

)2
+ q2

ne = κHPLσ0
√
λmax, (2.86)

where λmax is the maximum eigenvalue of the covariance sub-matrix of horizontal positions,
qnn, qee, quu and qne are elements of the rotated covariance matrix of the estimated parameters
in the local frame

Qx = RQXRT =

qnn qne qnu
qen qee qeu
qnu qeu quu

 (2.87)

and R is the rotation matrix from the global to the local coordinate system. The a priori
variance factor σ0 and κ factors scale the PL, which is the position domain variance, to a level
compatible with the integrity requirement of the particular application.

According to the International Civil Aviation Organization (ICAO) (ICAO, 2006) and Reid
et al. (2019, 2023), the κ factors can be computed using the inverse complementary error
function. Its relation with respect to the normal inverse cumulative distribution function is
defined as

norminv(1 − p) = −
√

2 erfcinv (2 (1 − p)) , (2.88)

where p is the probability of failure. The κ factor for the horizontal case is correspondingly
computed using the Rayleigh distribution. An overview of κ factor values for different proba-
bility of failures is given in Fig. 2.14 and significant values are summarized in Tab. 2.6.
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Figure 2.14: Values for the κ factor using the Rayleigh and normal distribution for the horizontal and vertical
case with respect to different probability requirements.

Table 2.6: Overview of κ factors for different probabilities and the Rayleigh and normal distribution.

Distribution
Probability 10−3 10−4 10−5 10−6 10−7 0.5 · 10−8

Rayleigh (horizontal) 3.72 4.29 4.80 5.26 5.68 6.18
Normal (vertical) 3.09 3.72 4.26 4.75 5.20 5.73

The relation between Position Error (PE), PL and AL is depicted in Fig. 2.15 with six different
conditions depending on the magnitude of the respective parameters and whether the PE is
bounded by the PL. The definition of the conditions is given in Tab. 2.7. The figure, where the
PE is plotted versus the PL is commonly denoted as Stanford diagram (Toissant et al., 2006).
In an optimal case, the PE is bounded by the PL and both values are below the AL chosen
for the particular application, which means the system is in Nominal Operation (NO) mode.
The system is unavailable if the protection levels are too conservative, hence, the condition
PE < PL holds true but the AL is exceeded. In this condition, safety can still be maintained
if an alert is transmitted to the user indicating that the system is no longer safe to use within
a specified Time to Alert (TTA). The most critical condition, which should be avoided in any
case, is Hazardous Misleading Information (HMI), where the system thinks it is safe to use
(PL < AL) but in fact it is not (PE > AL) and hence, the user is unable to be warned.

Figure 2.15: Relation between position error (PE), protection level (PL) and alert limit (AL). Adapted from
Hofmann-Wellenhof et al. (2008).

2.7.3 Availability and Continuity

Availability serves as an indicator of the system’s capability to provide functional service, i.e.
required levels of accuracy, integrity and continuity are met within a specified coverage area.
The availability itself can be measured by the percentage of time during which the system is
available for the intended operation. A particular value of requirement in terms of availability
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Table 2.7: Stanford diagram conditions.

I PE < PL < AL nominal operation
II PE < AL < PL system unavailable (too conservative)
III AL < PE < PL system unavailable
IV PL < PE < AL misleading information (too optimistic)
V PL < AL < PE hazardous misleading information
VI AL < PL < PE system unavailable and misleading information

needs to be selected for a specific operation depending on various factors described in ICAO
(2006).

Assuming that the system is available at the beginning of an intended operation, continuity
describes the ability of the system to maintain the functional service without nonscheduled
interruptions. It is furthermore defined as the probability that the specified accuracy and
integrity requirements are continuously ensured over the time interval of the intended opera-
tion. Typically, the probability of continuity is defined by the so-called continuity risk, which
should be balanced with the integrity risk requirement.

2.7.4 Performance Specifications for Intelligent Transportation Systems

The definitions of the above described GNSS performance parameter are mainly based on avi-
ation applications and defined by the ICAO (ICAO, 2006). Since GNSS-based navigation is
becoming of increasing interest also in ITS, these performance parameters have to be adapted
and new specifications for road transportation applications need to be defined. Currently,
there are no standardized or generally-accepted specifications for ITS (Du et al., 2021). How-
ever, the European Cooperation in Science and Technology (COST) action Satellite Position-
ing Performance Assessment for Road Transport (SaPPART) was launched working towards
standardized road scenarios. In an accepted European norm (EN 16803-1), the methodology
and guidelines for the terminal performance assessment are provided. A quantitative overview
of the performance requirements for road applications is given in Tab. 2.8 with impact scoring
H (high), M (medium) and L (low) based on European GNSS Agency (2015) and Stern and
Kos (2018).

In EN 16803-1, the performance metrics for accuracy and integrity are characterized by Cu-
mulative Distribution Function (CDF) percentiles (50th, 75th and 95th) since the distribution
of positioning errors – especially in challenging urban environments – suffer from heavy tails
(Stern and Kos, 2018). That is why taking just one value, e.g. the mean RMS error, is not

Table 2.8: Quantitative evaluation of performance requirements for road applications.

Road applications Accuracy Availability Integrity Continuity

Autonomous driving H M H H
Advanced navigation M/H M H H
Fleet management L/M H H L/M
Road charging L/M H H L
Insurance telematics L M H L/M
eCall services M H M L
Road navigation M H M L
Vehicle tracking L M M/H L
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robust enough. Since requirements are highly dependent on the respective application type,
e.g. Advanced Driver Assistance Systems (ADAS), collision avoidance, and different levels
of autonomous driving, detailed specifications for various ITS applications are mandatory
(Zhu et al., 2018). The accuracy classification boundaries of different ITS applications – also
standardized in EN 16803-1 (Stern and Kos, 2018) – are summarized in Tab. 2.9.

In Reid et al. (2019) and Reid et al. (2023), preliminary statements of localization require-
ments are derived – especially considering specifications for autonomously driving vehicles
and different levels of autonomy. The three different levels of autonomy are defined as road
determination, lane determination (if there are at least two lanes) and lane keeping, which
requires the highest accuracy. Requirement specifications are derived based on the geometry
dimensions of U.S. freeways and local roads and divided into lateral, longitudinal and verti-
cal components. The latter are summarized in Tab. 2.10 for a given probability of failure of
10−6/h. U.S. local roads are assumed to have a minimum lane width of 3 m with a minimum
curvature of 20 m or a minimum lane width of 3.3 m with a minimum curvature of 10 m.
The derivation of the localization alert limits is based on a bounding box selection, which is
a function of the road geometry, the vehicles dimensions and the desired level of autonomy.
The bounding box geometry for the three levels of autonomy are shown in Fig. 2.16. Whereas

Table 2.9: Accuracy classification boundaries from the application perspective.

Application type P = 50th percentile P = 75th percentile P = 95th percentile

In-lane P ≤ 0.1 m P ≤ 0.15 m P ≤ 0.25 m
Lane 0.1 m < P ≤ 0.4 m 0.15 m < P ≤ 0.6 m 0.25 m < P ≤ 1.0 m
Carriageway 0.4 m < P ≤ 4.0 m 0.6 m < P ≤ 6.0 m 1.0 m < P ≤ 10.0 m
Area 4.0 m < P ≤ 40 m 6.0 m < P ≤ 60 m 10.0 m < P ≤ 100 m
No specific P > 40 m P > 60 m P > 100 m

Table 2.10: Combined localization and map error budget for U.S. local roads with probability of failure
10−6/h.

Accuracy (95 %) Alert limit
Lat. [m] Long. [m] Vert. [m] Lat. [m] Long. [m] Vert. [m]

Road determination 1.09 1.24 0.56 2.73 3.10 1.40(two lanes)
Lane determination 0.50 1.26 0.56 1.26 3.15 1.40

Lane keeping 0.12 0.12 0.56 0.29 0.29 1.40

Figure 2.16: Comparison of bounding box geometry for different levels of autonomy: lane keeping, lane
determination and road determination. Source: Reid et al. (2023).
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other shapes have the characteristics of relaxing the alert limits (Feng et al., 2018; Kigotho
and Rife, 2021), the bounding box has a more conservative nature. The location requirement
specifications for U.S. local roads when further taking the vehicle dimension into account and
using 10−8/h as probability of failure are summarized in Tab. 2.11. The desired level of au-
tonomy for these specifications is lane keeping. The differences in comparison to Tab. 2.8
can come from the difference in the derivation, the additional consideration of the vehicle
dimension and the fact that Tab. 2.11 is representing the allowable bounds from the combined
position, attitude and map errors of the collective system. However, the general order of mag-
nitude is similar when taking into account that Tab. 2.8 describes the 2D horizontal accuracy
classification boundaries.

Table 2.11: Localization requirements for U.S. local roads for different vehicle sizes and lane keeping application
with probability of failure 10−8/h. The dimensions of the vehicle type can be found in Reid et al. (2019).

Vehicle type Accuracy (95 %) Alert limit
Lat. [m] Long. [m] Vert. [m] Lat. [m] Long. [m] Vert. [m]

Mid-Size 0.15 0.15 0.48 0.44 0.44 1.40
Full-Size 0.13 0.13 0.48 0.38 0.38 1.40

Standard Pickup 0.12 0.12 0.48 0.34 0.34 1.40
Passenger Vehicle 0.10 0.10 0.48 0.29 0.29 1.40





3
An Extended Kalman Filter Framework for

Urban Navigation

This chapter outlines the mathematical foundations of an EKF framework for estimating
position and velocity using GNSS pseudorange and carrier phase measurements. It includes
a detailed description of the functional and stochastic models, the corresponding Kalman
filter equations for measurement and time updates, and the equations for state estimation.
Additionally, the chapter describes integrated algorithms within the framework for outlier
detection and the detection and exclusion of erroneous observations using 3D building models,
alongside the entire computational procedure. The framework was independently developed,
though it is based on state of the art methods. This algorithm serves as the basis for developing
innovative methods in chapter 4 to improve accuracy and integrity, and for comparing the
performance of the developed techniques in chapter 5.

3.1 State Estimation

A multi-GNSS, multi-frequency RTK positioning algorithm has been developed in an EKF to
evaluate the positioning performance in terms of availability, accuracy, and integrity in urban
environments. Although RTK positioning is real-time capable, the evaluation of collected
raw-data will be conducted in post-processing. Using an EKF, the state vector x can be
estimated with DD carrier phase, DD pseudorange, and DD Doppler measurements. Forming
DD observation equations eliminates the receiver and satellite clock biases. For short distances
between the rover and the reference station, atmospheric errors are assumed to be negligible.
Thus, the DD observation equations (see Sec. 2.1.2) can be written as follows:

Φij
rb = ϱijrb + λN ij

rb + ϵijrb,Φ, (3.1)

ρijrb = ϱijrb + ϵijrb,ρ, (3.2)

ρ̇ijrb = ϱ̇ijrb + ϵijrb,ρ̇, (3.3)

consisting of the rover (r) and base station (b), rover (i) and reference satellite (j), the pro-
jection of the baseline vector onto the LOS ϱijrb, carrier phase wavelength (λ) and ambiguity
(N ij

rb) and the respective carrier phase (ϵijrb,Φ), pseudorange (ϵijrb,ρ), and Doppler noise (ϵijrb,ρ̇).
In order to obtain DD observations, the satellite-to-satellite SD computation is performed by
selecting a reference satellite with maximum elevation angle in each epoch. The SD computa-
tion for different GNSS is independent, so no combination of measurements is formed between
e.g., GPS and Galileo, even if they have the same carrier frequency.

The following equations and matrix definitions are based on a multi-GNSS, single-frequency
solution for the sake of clarity. In order to extend the model to the multi-frequency solution,
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additional measurements per frequency are attached as sub-vectors to the observation vector
and the covariance and measurement matrices are extended into block-diagonal structures
using sub-matrices per frequency.

The state vector x consists of the rover coordinates and velocities represented in the 3D
Cartesian coordinate system (ECEF) and the SD carrier phase float ambiguities of all GNSS:

x =
[
xr, yr, zr, vxr , vyr , vzr ,NG

rb,NR
rb,NE

rb,NC
rb

]T
, (3.4)

where NG
rb,NR

rb,NE
rb,NC

rb denote the SD float ambiguity vector of the respective GNSS. As-
suming m available GPS satellites, the SD float ambiguity vector can be defined as

NG
rb =

[
NG

1,rb, N
G
2,rb, · · · , NG

m,rb

]T
. (3.5)

The use of SD float ambiguities as state estimates instead of DD float ambiguities avoids the
hand-over handling of reference satellites (Takasu and Yasuda, 2010).

Measurement Update of EKF

The measurement vector at time k consists of DD carrier phase, pseudorange, and Doppler
observation vectors:

lk =
[
ΦG
rb,ΦR

rb,ΦE
rb,ΦC

rb,ρ
G
rb,ρ

R
rb,ρ

E
rb,ρ

C
rb, ρ̇

G
rb, ρ̇

R
rb, ρ̇

E
rb, ρ̇

C
rb

]T
. (3.6)

Assuming m available GPS satellites, the GPS observation vectors can be defined as

ΦG
rb =

[
Φi1
rb,Φi2

rb, . . . ,Φim
rb

]T
, (3.7)

ρGrb =
[
ρi1rb, ρ

i2
rb, . . . , ρ

im
rb

]T
, (3.8)

ρ̇Grb =
[
ρ̇i1rb, ρ̇

i2
rb, . . . , ρ̇

im
rb

]T
. (3.9)

The observation model, which maps the true state space into the observed space, is obtained
by linearizing the mathematical relation between observations and parameters of the state
vector around the latest state estimates:

Hk =



AG
k 0 λGDG

k

AR
k 0 λRDR

k

AE
k 0 λEDE

k

AC
k 0 λCDC

k

AG
k 0 0

AR
k 0 0

AE
k 0 0

AC
k 0 0

0 AG
k 0

0 AR
k 0

0 AE
k 0

0 AC
k 0



, (3.10)

where A represents the geometry part and D the one of the SD ambiguities.
Assuming m available GPS satellites, the partial derivatives w.r.t. the rover position – which
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is the difference of the LOS vectors from the rover position r at time k to the satellites 1 to m
and reference satellite i – read

AG
k =



x1−xr
ρ1

r
− xi−xr

ρi
r

y1−yr

ρ1
r

− yi−yr

ρi
r

z1−zr
ρ1

r
− zi−zr

ρi
r

x2−xr
ρ2

r
− xi−xr

ρi
r

y2−yr

ρ2
r

− yi−yr

ρi
r

z2−zr
ρ2

r
− zi−zr

ρi
r...

...
...

xm−xr
ρm

r
− xi−xr

ρi
r

ym−yr

ρm
r

− yi−yr

ρi
r

zm−zr
ρm

r
− zi−zr

ρi
r

 , (3.11)

and the partial derivatives w.r.t. the SD float ambiguity consists of the respective wavelength
of the used signal λG and the DD matrix DG

k which transforms the SD model into the DD
model at epoch k:

DG
k =


1 −1

1 −1

. . .
... . . .

−1 1
−1 1


(m−1)×m

(3.12)

The column containing −1 indicates the column of the epoch-wise chosen reference satellite.
This DD matrix is also used to transform the stochastic model of SD into the covariance matrix
of DD measurements which includes the mathematical correlations between measurements of
one GNSS:

QlΦ,k =


DG
k RG

ΦDG
k
T

DR
k RR

ΦDR
k
T

DE
k RE

ΦDE
k
T

DC
k RC

ΦDC
k
T

 (3.13)

Qlρ,k =


DG
k RG

ρ DG
k
T

DR
k RR

ρ DR
k
T

DE
k RE

ρ DE
k
T

DC
k RC

ρ DC
k
T

 (3.14)

Qlρ̇,k =


DG
k RG

ρ̇ DG
k
T

DR
k RR

ρ̇ DR
k
T

DE
k RE

ρ̇ DE
k
T

DC
k RC

ρ̇ DC
k
T

 (3.15)

Ql,k =

QlΦ,k 0 0
0 Qlρ,k 0
0 0 Qlρ̇,k

 (3.16)

The measurement noise matrices RΦ, Rρ and Rρ̇ are diagonal matrices containing the weighted
variances of the SD carrier phase, pseudorange and Doppler measurements of the different
GNSS, respectively. Assuming m available GPS satellites, the GPS measurement noise ma-
trices are expressed as

RG
Φ = 2σ2

ΦG
0

· diag
(
w−1

1 , w−1
2 , . . . , w−1

m

)
, (3.17)

RG
ρ = 2σ2

ρG
0

· diag
(
w−1

1 , w−1
2 , . . . , w−1

m

)
, (3.18)

RG
ρ̇ = 2σ2

ρ̇G
0

· diag
(
w−1

1 , w−1
2 , . . . , w−1

m

)
, (3.19)
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where σ2
ΦG

0
, σ2

ρG
0

and σ2
ρ̇G

0
are the a priori variances of the GPS carrier phase, pseudorange and

Doppler measurement noise and wm is the respective weight of each satellite depending on
the chosen weighting model.

Time Update of EKF

In the time update step of the EKF, the state estimates of the current epoch are propagated
to the next epoch using the state transition matrix Fk,k+1 using a constant velocity motion
model and the process noise covariance matrix Qk,k+1:

Fk,k+1 =

1 ∆t 0
0 1 0
0 0 1

 , (3.20)

Qk,k+1 =


diag

(
qpos∆t+ 1

3∆t3qvel
)

diag
(

1
2∆t2qvel

)
0

diag
(

1
2∆t2qvel

)
diag (qvel∆t) 0

0 0 diag (qamb∆t)

 , (3.21)

where qpos and qamb are the spectral noise densities of the rover position, velocity and ambi-
guities and ∆t is the time interval. The rover position and velocity is typically modelled as
random walk process while the rover ambiguities are modelled as random constants.

EKF Formulation

The Kalman gain matrix, the estimated unknown state vector and its covariance matrix at
time k reads

Kk = Q−
x,kH

T
k

(
HkQ−

x,kH
T
k + Ql,k

)−1
, (3.22)

Q+
x,k = (I − KkHk) Q−

x,k (I − KkHk)T + KkQl,kKT
k , (3.23)

x+
k = x−

k + Kk

(
lk − Hk · x−

k

)
. (3.24)

Finally, the linear time update of the state vector and its covariance matrix is expressed as:

x−
k+1 = Fk,k+1 · x+

k , (3.25)
Q−
x,k+1 = Fk,k+1Q+

x,kF
T
k,k+1 + Qk,k+1. (3.26)

In Eq. 3.22 to Eq. 3.26, (·)− and (·)+ indicate the specific vectors and matrices before and
after the measurement update of the EKF, respectively.

3.2 Outlier Detection

The global detection and local identification technique (Teunissen, 1990) is implemented as
a quality control of the filter solution. Therefore, the predicted residuals or innovations and
their covariance matrix are computed:

dk = lk − Hkx−
k , Qd,k = Ql,k + HkQ−

x,kH
T
k . (3.27)

The predicted residuals are assumed to be Gaussian distributed with zero mean and known
covariance matrix forming the null hypothesis H0 and alternative hypothesis Ha

H0 : dk ∼ N (0,Qd,k) , Ha : dk ∼ N (∇dk,Qd,k) . (3.28)
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Based on the predicted residuals dk and its covariance matrix Qd,k, it is tested whether
the measurements are consistent with the system model. The test statistic Tk for detecting
unspecified model errors in the null hypothesis H0 with the degrees of freedom ζ reads

Tk =
dTk Q−1

d,kdk
ζ

. (3.29)

The global detection is performed using the Fisher distribution F and a certain significance
level αG, The global test is failed if

Tk ≥ Fζ,∞,1−αG
. (3.30)

If a local model error is present at time k, the global detection is followed by the identification
of the most likely alternative hypothesis. The local slippage test statistic is

tk =
cTk Q−1

d,kdk√
cTk Q−1

d,kck
(3.31)

where the test statistic tk is computed ζ-times. The vector ck has the form [0, . . . , 0, 1, 0, . . . , 0]T
with the 1 corresponding to the suspect measurement. After computing the test statistic for
each of the measurements, the likelihood of the most likely model error can be tested by
comparing it with the critical value of the corresponding normal distribution N . If

|tk| ≥ N1−αL/2, (3.32)

then a significant error occurred and is successfully identified. The identified model error is
removed from the measurement model and an updated filter solution is computed resulting
in an updated predicted residual vector. This updated predicted residual vector is then used
for the detection of possible remaining model errors and the procedure is repeated until all
detected model errors are removed. The type I error probability of the local identification αL
and the probability of the global detection αG are adjusted based on a fixed non-centrality
parameter (Caspary, 2000).

3.3 3D-Mapping-Aided Fault Detection and Exclusion

The main error source for GNSS positioning in urban environment is the reception of reflected
or blocked signals (see Fig. 3.1(a)). NLOS reception causes delays of up to several hundreds of
meters, depending on the local environment (McGraw et al., 2021). Therefore, the exclusion
of NLOS signals – the so-called 3D-Mapping-Aided Fault Detection and Exclusion (3DMA-
FDE) – is a powerful method to mitigate large errors in urban GNSS positioning applications.
The 3DMA-FDE approach is integrated into the developed RTK positioning algorithm based
on epoch-wise ray tracing computation (see Fig. 3.1(b)) as described in Sec. 2.6.1. Required
information are GNSS satellite positions, 3D building model data provided by the city of Han-
nover and the user location. In this thesis, the user location is available from pre-processed
reference solutions leading to optimal ray tracing results. However, in real world scenarios,
the user location input can be taken from either an a priori estimation or pre-defined routing
information. By combining the available information, satellites are classified as LOS, mul-
tipath, NLOS and blocked. In this way, all NLOS and blocked satellites are identified and
provided in a satellite exclusion list which is applied to the measurement processing step and
consequently faulty satellites are excluded from the positioning solution.
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NLOS

Multipath

Blocked

(a) (b)

Figure 3.1: Erroneous signal reception in urban areas (a) and its mitigation in positioning algorithms (b).

3.4 Computation Procedure

The implementation of the proposed approach is shown in Fig. 3.2 and will be explained in
the following. Multi-GNSS carrier phase, pseudorange, and Doppler measurements from four
systems (GPS, GLONASS, Galileo, BDS) and multiple frequencies serve as input data for the
measurement processing.

Measurement Processing

In the measurement processing step, an elevation mask is applied, DD measurements are
calculated based on raw carrier phase, pseudorange, and Doppler observations and epoch-wise
selected reference satellites and the weight matrix is set up accordingly. The rising of new
satellites and the setting or loss of satellites due to blockages is handled.

Pre-processing and Matrices Set-up

In this step, the SD covariance matrix and SD ambiguities are updated based on the mea-
surement processing step and information from the previous epoch. The ambiguities of new
satellites are initialized using the SD Code-Minus-Carrier (CMC) combination. For rising
satellites, the corresponding diagonal element in the covariance matrix should be initialized
with a user-defined large value so that the imprecise initialization has no impact on the other
estimated parameters.

State Estimation

Having the DD measurements, the weight matrix, updated SD covariance matrix, SD ambi-
guity approximations and user-defined process noise and measurement noise parameters, the
EKF framework produces state estimates of the coordinates and estimated SD float ambigu-
ities. The SD float ambiguities and their covariance matrix are transformed into DD float
ambiguities and DD covariance matrix, respectively.
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Figure 3.2: Flowchart of the developed EKF framework for GNSS RTK positioning.

Ambiguity Fixing

The DD float ambiguities and their covariance matrix serve as input parameters for the
LAMBDA algorithm (Teunissen, 1995a). A common method to overcome the frequency-
dependency of GLONASS signals is to keep GLONASS ambiguities as float values while
fixing the ambiguities of all other systems (Ma et al., 2020). However, when using the same
receiver types at both the rover and reference station, the inter-frequency bias remains con-
stant (Wanninger, 2011). Although adding GLONASS data can deteriorate the ambiguity
resolution performance in multi-GNSS solutions, the satellite geometry is strengthened and
thus will improve the positioning performance (Brack et al., 2020). In this thesis, PAR is ap-
plied – which also can overcome the weakness of GLONASS ambiguity resolution (Teunissen,
2019) – in order to fix subsets of ambiguities if fixing the full set of ambiguities is not possible
(Teunissen and Verhagen, 2009).

If the ambiguity fixing is successful, the rover position is updated by Eq. 2.43 or by performing
a LSA using the vector of successfully fixed (or partially fixed and float) ambiguities. Conse-
quently, the DD carrier phase observations are corrected by the estimated (integer) ambiguities
N̆ resulting in the shortened observation vector ∆l̆. Additionally, the number of parameters
in the normal equation system is reduced to three, since only the three-dimensional rover
position is estimated. In the following equations the time-dependent indices k are neglected
for reasons of clarity:

∆l̆ = lΦ − λN̆ (3.33)

x̆ =
(
ATPA

)−1
ATP∆l̆ (3.34)

If the ambiguity fixing failed, only the float estimates of the filter solution are output.





4
GNSS Feature Map-Aided Robust EKF

This chapter describes the newly developed GNSS Feature Map-aided robust EKF approach,
starting with the motivation why adapted robust estimation is necessary for urban naviga-
tion applications. Subsequently, the general principle of adapted robust estimation is de-
scribed, including the methods GNSS Feature Map-Aided NLOS Exclusion (GNSS FMA-NE)
and GNSS Feature Map-Aided Weighting (GNSS FMA-W). Furthermore, a newly developed,
adapted loss function with its mathematical relationships is presented and its performance is
compared with state-of-the-art loss functions. Another focus of this chapter is the GNSS Fea-
ture Map, its concept, the detailed description of the map generation, the map resolution, the
similarity of GNSS ranging errors summarized in the map, and last but not least the provision
of a complete GNSS Feature Map for automotive applications. The positioning strategies de-
veloped in this chapter are tested in Chap. 5 using real kinematic data and evaluated against
state-of-the-art methods.

4.1 Motivation

Optimality of estimators is only guaranteed if the distribution of the measurements exactly
fulfill the Gaussianity requirements with perfectly known covariance. In order to consider
the varying uncertainty of GNSS measurements from different satellites, empirical weighting
models are introduced in Sec. 2.1.3. Another method of mitigating gross errors is to make use
of loss functions derived from robust statistics. However, the main drawback of these family
of functions is the reduced efficiency for fractions of outliers close to 50 % and a failure of
the estimator for fractions of outliers exceeding 50 %, because the robust estimator cannot
distinguish between nominal and contaminated observations.

In dense urban environments, the availability of nominal distributed measurements is largely
reduced due to high buildings in the vicinity of the antenna resulting in numerous multipath
and NLOS signal receptions. An exemplary multi-GNSS satellite availability for a kinematic
trajectory in a typical urban area in the city of Hannover is shown in Fig. 4.1. Using city
model information and ray tracing, the respective satellites are classified as LOS, multipath
(MP), NLOS and blocked (Blk), represented in each row of the figure. Depending on the local
situation and the satellite geometry, the resulting LOS signal reception ratio is often close
to or even below 50 %, which would cause the standard robust estimators to be inefficient or
break down.

In order to further illustrate the need of an adapted robust estimator, the performance of
state of the art robust estimators for SPP is compared to that of an optimal MLE using a
simulation study. A real multi-GNSS satellite constellation (GPS, GLONASS, Galileo, BDS)
is determined for a given location at a given time using final satellite orbit products provided
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Figure 4.1: Multi-GNSS (GPS, GLONASS, Galileo, BDS) satellite availability for a kinematic trajectory in a
typical urban area in the city of Hannover. The road width is ≈ 3 m surrounded by four-to-five storey buildings.

by the Center for Orbit Determination in Europe (CODE). The nominal observation errors are
generated based on the normal distribution with zero mean and standard deviation σ = 1 m
while the contaminated observations are uniformly distributed, i.e. the bias is randomly
drawn from values between 20 m and 100 m. In total, 36 satellites are available in the multi-
constellation case. All configuration parameters are summarized in Tab. 4.1. The multi-GNSS
satellite constellation of the simulation configuration is shown in Fig. 4.2, where the left skyplot
shows the observation errors for the 50 % contamination proportion case and the right skyplot
represents the observation errors for the 70 % contamination proportion case. The observation
errors are categorized into two classes: the nominal observations with magnitudes around 1 m
and the contaminated observations with magnitudes larger than 20 m.

The loss functions of the MLE at the normal model (first column), Huber (cH = 1.345, second
column) and Geman-McClure (cG = 1, third column) estimators for the SPP formulation pro-
jected in the North-East position domain using the simulated observation errors are depicted
in Fig. 4.3.

The upper two rows represents the loss function as a surface and contour plot for a con-
tamination proportion of 50 % and bottom two rows for a contamination proportion of 70 %,
respectively. The global minimum is marked with a red cross and the ground truth is marked
with a green diamond, respectively.

Table 4.1: Simulation configuration.

GPS time 2022/8/23 9:34:55
Location Hannover, Germany

Cartesian coordinates X: 3844924.5145 m, Y: 658244.2505 m, Z: 5029382.9620 m
Geodetic datum ITRF2014, epoch 2023/235

Satellite orbits Final CODE products
PDOP 0.74

Observation distribution lin ∼ N (0, 1), lout ∼ U (20, 100)
Contamination proportion nout,1 = 50 %, nout,2 = 70 %
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Figure 4.2: Multi-GNSS satellite constellation of the simulation configuration for 50 % (left) and 70 % (right)
outliers. The measurement distribution is shown in blue (normal distribution) and red (uniform distribution).

As expected, the MLE and Huber estimators present a typical convex optimization with a
single minimum and a guarantee for uniqueness and stability. However, the minimum is not
characterized by a distinct peak, but rather by the shape of a flattened cone, especially for
the 70 % contamination proportion case. The minimization of the loss function for the MLE
results in a bias in the position domain for both simulated contamination proportions as
already a single outlier could lead to a loss of the optimality characteristics. When applying
the Huber estimator to the same observation errors, the minimization of the loss function
leads to a position result close to zero for the 50 % contamination proportion case, while the
breakdown point of 50 % is exceeded for the 70 % contamination proportion case and thus,
the minimization leads to a bias in the position domain.

The results for the Geman-McClure estimator clearly represent the characteristics of non-
convex optimization with a sharp peak at the global minimum but also an almost infinite
number of possible solutions due to local minima. The higher the contamination proportion,
the more important is the initialization of the non-convex solver, since the probability that
the redescending solver could end up at a local minimum is increasing and thus, it would lead
to a bias in the position domain. However, if the initial guess is close to the ground truth,
the Geman-McClure estimator would still converge to a global minimum yielding a solution
close to zero. This leads to the conclusion that a redescending type of robust estimator is very
useful to mitigate the impact of outliers, especially when a large percentage of observations is
contaminated.

4.2 Adapted Robust Estimation

A number of strategies are frequently used in current GNSS-based navigation solutions to miti-
gate gross errors due to faulty satellite signal receptions, including different (robust) weighting
schemes (Sec. 2.1.3 and Sec. 2.5), 3DMA GNSS (Sec. 2.6.1) or outlier detection (Sec. 3.2).
All these methods suffer from an overly conservative down-weighting of observations, lack of
robustness for highly contaminated data, the need of additional 3D city model information
or computationally intensive algorithms. To overcome these weaknesses, in this section two
new strategies are defined which are utilizing prior information through the so-called GNSS
Feature Map (Ruwisch and Schön, 2022a,b, 2023): i) GNSS FMA-NE uses map information
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.3: Loss functions of the MLE at the normal model (first column), Huber (cH = 1.345, second
column) and Geman-McClure (cG = 1, third column) estimators for the SPP formulation using the simulated
observation errors depicted in Fig. 4.2. Upper two rows represents the loss function as a surface and contour
plot for a contamination proportion of 50 % and bottom two rows for a contamination proportion of 70 %,
respectively. Thereby, the green diamond represents the ground truth at [0, 0] m and the red cross depicts the

respective minimum of the loss functions.

containing satellite visibility classification results and ii) GNSS FMA-W uses map informa-
tion containing GNSS pseudorange residuals. The detailed process of the GNSS Feature Map
generation is explained in Sec. 4.3.2.
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In Fig. 4.4, the basic principle of utilizing GNSS Feature Map information for localization of
autonomous vehicles is depicted. Vehicles driving through an urban trench are able to retrieve
information from stored map data whenever the vehicle is located within a certain distance
to the respective map point. The provided map information can be either satellite visibility
classification information (left) or predicted pseudorange residual information (right), which
are then processed by the user to enhance the vehicles localization accuracy.

The integration of the two proposed adaptive robust estimation strategies into the EKF frame-
work for urban navigation is shown in Fig. 4.5, where the new and innovative part is high-
lighted compared to the EKF framework that has been described in Chap. 3. Definitions and
implementation details of the algorithms are explained in the following subsections.
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Figure 4.4: Conceptual application of GNSS Feature Maps for localization of autonomous vehicles.

Figure 4.5: EKF framework integration of adapted robust estimation approaches (orange parts).
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4.2.1 GNSS Feature Map-Aided NLOS Exclusion

The GNSS FMA-NE algorithm is an alternative to 3D city model-based ray tracing. Instead,
it utilizes information from offline computed ray tracing results. Each grid of the map pro-
vides an obstruction mask for the center point of the box. As soon as the predicted vehicle
position is located within one of these map grids, the provided obstruction mask is taken as
an approximation of the vehicle’s obstruction mask. If any of the received satellite signals
are classified by the map as NLOS, the respective satellites are excluded from the estimation
process. Conversely, if signals from potential LOS satellites are received, no action is required
and all satellites in view are used in the estimation process.

The processing flow of the GNSS FMA-NE is displayed in Alg. 2. This approach ensures the
rejection of NLOS satellites by leveraging 3D building model data and ray tracing computation
results, thereby avoiding the necessity of epoch-wise ray tracing computations at the vehicle
site.

Algorithm 2 GNSS Feature Map-Aided NLOS Exclusion
for every epoch do

Calculate predicted user position
Calculate satellite positions
if Predicted position is inside any box polygon then

Retrieve Feature Map classification information
if any satellite is NLOS then

Reject satellites from estimation
else

Use all satellites
end if

end if
Update user position

end for

4.2.2 GNSS Feature Map-Aided Robust Weighting

Generated maps, which provide information on the spatial distribution of pseudorange residu-
als and thus, information on the potential received magnitude of ranging errors, can be used to
modify existing robust weighting schemes. The general processing procedure is similar to the
GNSS FMA-NE algorithm. The GNSS FMA-W is initiated subsequent to the computation
of the predicted user position. Subsequently, the predicted user position is compared to the
generated box polygons present on the map. If the aforementioned condition is found to be
true, meaning that the predicted position is assigned to a map grid, the pseudorange residual
information of the GNSS Feature Map is retrieved for the specific box in question. Then, the
respective predicted residuals are normalized by the a priori pseudorange measurement noise
σρ0 as follows

v̄FM = vFM

σρ0
, (4.1)

where vFM is the vector of predicted pseudorange residuals retrieved from map information,
which is used for computing robust weights based on a defined robust loss function. Consid-
ering the minimization formulation in Eq. 2.67, it can be reformulated as minimization of the
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predicted pseudorange residuals

µ̂FM = min
µ

n∑
i=1

ρ

(
vFM
i

σρ0

)
(4.2)

with ρ(·) denoting one of the robust loss functions and i = 1, . . . , n is the number of observa-
tions.

The algorithmic realization within an estimator is depicted in Alg. 3. Please note that no
iteration of the estimation is required, since the obtained predicted residuals are taken as true
values and thus, expected to solve the minimization in Eq. 4.2, which yields an efficient and
costly inexpensive robust estimator.

Algorithm 3 GNSS Feature Map-Aided Weighting
for every epoch do

Calculate predicted user position
Calculate satellite positions
if Predicted position is inside any box polygon then

Retrieve Feature Map residual information vFM

Normalize vFM to v̄FM = vFM

σρ0
Adapt weights based on robust loss function ρ(·)

else
Use conventional weighting

end if
Update user position

end for

4.2.3 The HG-estimator – An Adapted Robust Weight Model

In the preceding section, the Huber loss and Geman-McClure loss are assessed in terms of en-
hancing the robustness of GNSS based localization in the presence of contaminated data. The
two methods of different weighting for large observation errors are based on the mathematical
foundations described in Sec. 2.5. The review of the literature in Sec. 2.6.1 of urban GNSS
positioning reveals that, when a sufficient number of healthy satellites are received, the exclu-
sion of biased observations based on building models and ray tracing computations leads to a
significant enhancement in the accuracy. Reformulating the NLOS exclusion strategy in terms
of a weight model would entail maintaining the LOS satellites and assigning weights close to
zero to the NLOS satellites (i.e., the observations with the larger residuals). Revisiting the
aforementioned robust functions, it becomes evident that both the Huber loss and the Geman-
McClure loss exhibit a significant limitation. The Huber function assigns weights of one for
a range of smaller residuals (typically between -1.345 and +1.345), but only slightly dampens
large residuals. In contrast, the Geman-McClure loss exhibits a pronounced dampening effect
on increasing residuals, which aligns well with the NLOS exclusion strategy. However, the
weights are already significantly reduced for residuals that are still relatively small.

Consequently, a new adapted robust weight model – the HG-estimator – is proposed, which
incorporates the advantages of both robust functions and eliminates the drawbacks of both
models. The new model demonstrates a high level of impact from observations with rela-
tively small residuals, while strongly dampening the impact of observations with larger resid-
uals. Thus, the combination of the Huber loss and the Geman-McClure loss yields a robust
model that is comparable to a NLOS exclusion strategy. The corresponding equations for the
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loss function (ρ(x)), score function (ψ(x)) and weighting function (w(x)) are summarized in
Tab. 4.2. A graphical representation is provided in Fig. 4.6. To illustrate the novel approach
more effectively, the graphs presented in Fig. 2.7 have been included. It can be seen that for
residuals between ±1.345 the HG function adheres to the Huber definition. Conversely, for
residuals exceeding this value, the HG function aligns with the Geman-McClure loss, score
and weighting function, respectively.

The discontinuity of the HG loss function gives rise to convergence problems and, under
circumstances where the initial approximation values are not accurate, it is highly probable
that the estimator will converge at the local minimum. In this study, the developed estimator
is based on the assumption that feature map information is highly accurate and serves as a
reliable initial estimate. This eliminates the need for iteration of the HG estimator, thereby
ensuring that the disadvantages of discontinuity are negligible. As can be seen in Chap. 5, the
HG loss improves the performance of carrier phase-based positioning compared to the existing
robust functions.

In order to evaluate the applicability of the HG-estimator, the SPP performance is analyzed
by depicting the loss function (see Fig. 4.7) for the same scenario as in the previous section,
for the 70% contamination case. The global minimum of the loss function leads to a very
small deviation from the ground truth, comparable to the outcome for the Geman-McClure
loss function. Consequently, the HG-estimator is a robust estimator that effectively mitigates
the impact of outliers at a high data contamination proportion. It is also evident that the
redescending characteristic of the estimator results in the occurrence of numerous local minima
of the loss function. That in turn requires accurate initial estimates in order for the algorithm
to converge to the global minimum.

Table 4.2: Loss function ρ(x), score function ψ(x) and weighting function w(x) of the proposed adapted robust
HG-estimator. The parameters are set to cH = 1.345 and cG = 1.

Estimator ρ(x) ψ(x) w(x)

HG
{

|x| ≤ cH

|x| > cH


x2

2
2 x2

c2
G

x2
c2
G

+4

x 16c2
Gx

(4c2
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16c2

G

(4c2
G+x2)2

(a) (b) (c)

Figure 4.6: Loss function ρ(x) (a), score function ψ(x) (b), and weighting function w(x) (c) of the proposed
adapted robust HG-estimator. In addition, the MLE at the normal model and M-estimators based on the
Huber’s, Tukey’s and Geman-McClure’s family of functions are illustrated. The control parameters are set to

cH = 1.345, cT = 4.685 for 95 % relative efficiency at the normal model and to cG = 1.
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(a) (b)

Figure 4.7: Loss functions of the HG estimator for the SPP formulation using the simulated observation
errors depicted in Fig. 4.2. (a) represents the loss function as a surface and (b) illustrates the loss function as a
contour plot for a contamination proportion of 70 %, respectively. Thereby, the green diamond represents the

ground truth at [0, 0] m and the red cross depicts the minimum of the loss function.

4.2.4 Performance Simulation of Robust Estimators

The idea of GNSS FMA-W is to keep the satellite geometry while increasing the robustness
of an estimator even in situations with sets of measurements containing more than 50 %
outliers. A simulation study is conducted to compare the performance of pseudorange-based
GNSS positioning using robust estimators to that of an optimal MLE. When performing
multi-GNSS SPP, one independent clock offset per constellation has to be considered yielding
in total seven parameters to be estimated. The basic simulation configuration of Sec. 4.1
is kept and thus, using four satellite systems, a total number of 36 satellites is available.
The respective observations are simulated in a Monte-Carlo experimentation with 104 runs.
Nominal observations follow a Gaussian distribution with zero mean and standard deviation
σin = 1 m while outliers are simulated with varying standard deviations:

l =
[
lTin, lTout

]
, lin ∼ N (0, σ2

in), lout ∼ N (0, σ2
out). (4.3)

Nominal observations and outlying observations are randomly assigned to the respective satel-
lites during the Monte-Carlo simulation. The impact on the performance is studied for both
the proportion of contaminated observations ϵ and the magnitude of biases σout, respectively.
The parameters configuration for the Monte-Carlo simulation are summarized in Tab. 4.3. In
addition to the MLE for the normal model, robust estimators with different loss functions are
compared: (i) M-estimator based on Huber loss, (ii) M-estimator based on Tukey loss, (iii)
M-estimator based on Geman-McClure loss, (iv) M-estimator based on HG loss. The perfor-
mance of GNSS FMA-W is simulated by assuming the true range bias of the measurements
to be known and thus, using the true range bias of the measurements for determining the
respective weights of the robust estimators.

The resulting RMS errors of the different estimators for the 104 Monte-Carlo runs are vi-
sualized in Fig. 4.8. Each figure represents a percentage of outliers (30 %, 50 %, 70 % from

Table 4.3: Parameters configuration for the Monte-Carlo simulation.

Percentage of outliers ϵ ∈ {30, 50, 70} %
Observation uncertainties σin = 1 m, σout ∈ {1, 3, 6, 10, 30, 60, 100} m
Robust parameters cH = 1.345, cT = 4.6851, cG = 1
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(a) (b) (c)

Figure 4.8: RMS errors of the 3D position obtained by different estimators for (a) 30 %, (b) 50 % and (c) 70 %
contamination proportion.

left to right), respectively. Smaller contamination proportions are omitted, since it is proven
that standard robust estimators are providing reliable results for data with a small amount of
outliers. According to the rule of thumb in Langley et al. (2017), under nominal conditions,
a three-dimensional position error of σin · PDOP ≈ 0.74 m is expected. Among the three
cases, it is clear that the MLE suffers the most from a lack of robustness. The RMS errors
are drastically influenced by the magnitude of outliers yielding to a failure of the estimator
even for smaller standard deviations of the outlying measurements. The M-Huber, M-Tukey,
M-Geman-McClure and M-HG estimators are improving the robustness of the solution for
the case ϵ = 30 % whereas the former showcases the best performance for the normal model
(σout = 1 m) and latter two showcases the highest robustness due to its characteristics of the
loss function. Even though the theoretical breakdown points of these estimators is 50 % and
for the redescending type of estimators a global minimum would also exist for the case of
ϵ = 70 %, all four estimators already break down for the case of ϵ = 50 % being characterized
by a lack of robustness for highly contaminated data. On the other hand, when assuming
the magnitude of the observation error to be known, the GNSS FMA-W based estimators
provide the most accurate results. For the first two cases, the RMS errors barely increase
despite the increasing magnitude of the biases. Even when only a small proportion of nominal
observations is available (ϵ = 70 %), reliable results can be computed. When comparing the
GNSS FMA-W based estimators among each other, the more large outliers are damped by
the respective weight function, the better the position performance and thus, FMA-Geman-
McClure and FMA-HG show the best performance and FMA-Tukey performs better than
FMA-Huber.

The two dotted lines in each figure represent the case when the true range bias of the respective
measurement is not exactly known. When determining the weights using the Geman-McClure
and HG loss function, respectively, the residuals are halved with respect to their true range
bias, which simulates a α = 50 % error in the predicted residuals. Since both specific loss
functions are highly damping large residuals, the impact of the introduced uncertainty on
the computed position is rather low. For all three evaluated measurement contamination
proportions, the RMS error behaves similarly to the FM-Tukey estimator without introduced
uncertainties. That means, even if 70 % of the available measurements are contaminated with
a standard deviation of σout = 100 m, the resulting average RMS error is still below 2 m,
yielding a very robust solution.
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4.3 GNSS Feature Map

Characteristics of GNSS signals depend on both the antenna location and the satellite posi-
tions. In static multipath environments, a common method is to consider the ground-track
repeatability of reflection-based errors to elaborate on algorithms that mitigate errors induced
by the local environment (Braasch, 2017). Methods that have been developed for static scenar-
ios are multipath stacking maps (Fuhrmann et al., 2014) and multipath hemispherical maps
(Dong et al., 2015), which are both generated based on pseudorange or carrier phase residuals,
or the multipath impact is mapped by using the C/N0 value (Bilich and Larson, 2007).

In kinematic urban scenarios, signal propagation characteristics exhibit a complex spatiotem-
poral behavior, i.e., they are dependent upon the location of the moving user antenna, changing
satellite positions, and surrounding buildings. In order to derive potential mitigation strate-
gies for kinematic urban scenarios, a representation of these spatiotemporal dependencies is
needed. To meet this research gap, the GNSS Feature Map (Ruwisch and Schön, 2022a) has
been developed.

The proposed GNSS Feature Map is not limited to the representation of spatiotemporal depen-
dencies, but, in addition, can also aid and thus enhance urban navigation (Ruwisch and Schön,
2022b, 2023). This is realized through the provision of a map that stores spatiotemporal-
dependent features in a fully spatial-dependent tool. In terms of multi-sensor systems, one
could think of storing any feature which is characterized by such dependencies and not lim-
ited to GNSS, e.g., based on fish-eye cameras providing visibility information or LiDAR sensor
data, which provides building wall information. This thesis focuses on improving GNSS-based
navigation in urban environments and thus, the storage and analysis of GNSS-related features
is of utmost interest and is therefore addressed in the following sections.

4.3.1 Concept

The initial aim of the GNSS Feature Map has been to combine skyplots at each location of a
moving user antenna into one common map to improve the understanding of spatiotemporal
behaviours of GNSS signal propagation and to predict the signal characteristics when passing
along a trajectory at any time. Environmental structures are highlighted by this type of map,
e.g. by means of satellite ray classification, which allows the user to identify rapid changes of
the geometry in addition to challenging reception properties of satellites which can deteriorate
the positioning solution.

GNSS signal propagation-related features depend on both the varying user antenna location
and satellite position. The GNSS Feature Map shows these dependencies in one common map.
This map is two-dimensional, rectangular and constructed in the following way: At each along
track position a skyplot is computed in the vehicle body frame and mapped onto one of the axes
by appending each strip of constant azimuth below each other (see Fig. 4.9(a)). A 1◦ ×1◦ grid
resolution in azimuth and elevation, respectively, is proposed resulting in 360 azimuth bins
containing 90 elevation bins each. The second axis (see Fig. 4.9(b)) represents the distance
traveled by a vehicle. In the context of simulation data, features are generated intuitively
at specific vehicle locations. Repeatedly driven trajectories, based on real measurements, are
bounded longitudinally and laterally. However, these trajectories vary due to the inherent
impossibility of reproducing an exact repeat of the trajectory. To account for these coordinate
deviations, the user locations from the driven trajectory are perpendicularly projected onto a
reference path. This reference path can be defined, e.g., from path planning or using available
lane models. The perpendicularly projected coordinates result in the distance along track.
The maximum orthogonal distances are contingent on the width of the streets.
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Figure 4.9: GNSS Feature Map design. (a) Structure of the first axis where the upper antenna hemisphere is
represented by a 360◦ × 90◦ grid. (b) Approach for representing the user antenna location on the second axis.

Exemplary GNSS Feature Maps are shown in Fig. 4.10. The x-axis represents the azimuth
bins including elevation bins of the satellites and the y-axis represents the distance along
track, e.g., from a moving vehicle. Features located in the direction of travel can be found
parallel to the y-axis (constant azimuth and elevation, moving vehicle location). An azimuth
angle of 0◦ corresponds to the driving direction considering a south-to-north oriented street.
Features at a specific vehicle location can be found at lines parallel to the x-axis (constant
vehicle location, changing satellite positions).

The exemplary GNSS Feature Maps are generated from kinematic GNSS data collected in the
city of Hannover using both GPS L1 C/N0 values and DD pseudorange residuals as features
of interest. The black lines indicate respective sections of the trajectory each of them marking
a approximately 90◦ turn in the heading angle of the vehicle. The heading of the vehicle
is not taken into account in order to better detect dissimilarities due to the change of the
environment. One GNSS-related characteristic is common for all four street segments, which
is the north hole of northern hemisphere locations between azimuth angles of approximately
-30◦ and 30◦. However, some high-elevating satellites pass the zenith and thus have a strong
variation in the azimuth which is also visible in the respective figures. Using the GNSS Feature
Map, differences in the signal reception characteristics caused by the changing geometry or
the street orientation is highlighted. The transitions between the specific street segments are
sharp. The magnitude of both the C/N0 values and DD residuals is subject to rapid variation
for similar satellite positions, but this variation is accompanied by a changing geometry of the
surrounding buildings. In this way, the signal propagation conditions in urban environments is
represented in a comprehensive way. As previously discussed, a valuable GNSS Feature Map
application is not only the visualization and path planning, but especially the aiding of urban
navigation. The subsequent sections provide a comprehensive explanation of the generation
of such a map that is designed to facilitate GNSS-based navigation in urban environments.

4.3.2 Map Generation

In this section, the location information extraction from Open Street Map (OSM) data is
described, followed by the generation of simulated and real data GNSS Feature Maps based
on OSM location information.
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(a)

(b)

Figure 4.10: GNSS Feature Maps based on real data from a kinematic experiment in the city of Hannover.
The black lines indicate respective sections of the trajectory each of them marking a approximately 90◦ turn in
the heading angle of the vehicle. (a) shows the generated map using GPS L1 C/N0 values as feature of interest

while in (b) GPS L1 C/A code double difference residuals are depicted in a map.

Open Street Map

OSM is a free and open-source mapping project, licensed under the Open Data Commons
Open Database License by the OSM Foundation (OpenStreetMap copyright, 2024). It allows
users to create, edit, and use geographic data from around the world (Haklay and Weber,
2008), which has also attracted the attention of the scientific community, which makes use
of the availability of the huge amounts of geographic data, e.g., for the autonomous robot
navigation based on OSM data (Hentschel and Wagner, 2010).

OSM provides location information through XML files which can be extracted from the
project’s website (OpenStreetMap project homepage, 2024) and contain information about
the various elements that make up a map, such as nodes, ways, and relations. The location
information of streets can be found in the way elements, each of which represents a sequence
of nodes that make up a line or shape on the map. Way nodes thereby are defining a line,
which approximates the center of the road. For more details on the structure of OSM data, it
is referred to the OSM map feature documentation (OpenStreetMap map features, 2024) or
text books, e.g. Ramm et al. (2010).

An exemplary way element is depicted in Fig. 4.11. In this example the way element has an ID
of 232160982 and is visible on the map. It contains a sequence of nd elements, each of which
references a node element that defines a point in the street. The exemplary street contains 6
points. Another important information is the attribute with key name and value Kniestraße
which defines the name of the street. By parsing all way elements in an OSM file, all available
location information of specific streets can be extracted. These OSM location information
is collected by volunteers, who contribute to the mapping project by performing systematic
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Figure 4.11: Exemplary way element in an OSM file containing 6 nodes each referencing a node element that
defines a point on the street.

ground surveys with handheld GPS receivers. Thereby, geographic coordinates, i.e. latitude
and longitude, are provided referring to the World Geodetic System 84 (WGS84) ellipsoid
and are specified in degrees with a precision of seven decimal places, which corresponds to a
resolution of ± 1 cm. However, uncertainty information on the given data is not defined due
to its nature of a collaborative project by volunteers. Typically, additional height information
is not provided by maps, but can be complemented by digital terrain models.

An exemplary extracted OSM lane model in the city of Hannover is shown in Fig. 4.12(a).
Different streets have different number of points forming the line which is dependent on the
shape of the streets. Obviously, more points exist at street crossings where curves need to be
modeled.
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Figure 4.12: OSM lane model and its interpolation. (a) Exemplary extracted OSM lane model in the city
of Hannover. The markers depict the lane model points which are connected to a lane. (b) OSM waypoints

interpolated with a resolution of 5 m.



4.3 GNSS Feature Map 67

Satellite Visibility Classification Map

In order to apply the strategy of GNSS FMA-NE, satellite visibility classification results for
selected locations are required for building such a map. Therefore, the OSM road coordinates
are extracted for the streets of interest, a resolution of the distance between map points (details
about this waypoint resolution are explained in the next section) is chosen and the OSM road
coordinates are interpolated using this defined grid size. The resulting waypoints are shown
in Fig. 4.12(b) with an exemplary resolution of 5 m. For each of the waypoints, ray tracing
computation is performed for synthetic satellite positions, which cover the full sky in a 360◦

azimuth × 90◦ elevation grid with a resolution of 1◦. This fine resolution allows for accurately
determining the obstruction mask for each waypoint. The result is the classification whether
a satellite is in LOS condition or blocked by a building for all possible satellite ray reception
angles at these locations.

As illustrated in Fig. 4.13, the satellite visibility classification results for ten map waypoints
along the trajectory are depicted in skyplots. Signals received from satellite positions inside
the polygon, which represents the obstruction boundary, are labeled as LOS, while signals
received from satellite positions below the obstruction boundary elevation angle are labeled as
NLOS, indicating that they are blocked by a building. It is evident that the satellite visibility
condition is subject to variation along the trajectory, particularly for waypoints that are in
closer proximity to the street corner. The satellite ray classification conditions are related
to the respective waypoint of the GNSS Feature Map. In this way, information on potential
critical reception characteristics is provided by the GNSS Feature Map without the need of
performing computational intensive ray tracing at the rover in real-time.

Pseudorange Residuals Map

Prior information on the observation’s error magnitude, e.g., provided by the GNSS Feature
Map containing pseudorange residuals, is integrated in GNSS FMA-W in order to improve
and enhance the robustness of GNSS-based urban navigation. By utilizing such a pseudorange
residuals map, the user becomes completely independent of city model information. Compared
to the described satellite visibility classification map, this map is not generated by simulating
waypoints and performing ray tracing, but a real GNSS measurement campaign is required
to produce features based on GNSS pseudorange residuals. Therefore, multi-GNSS, multi-
frequency training data is collected in a kinematic measurement campaign. Four antennas are
mounted on the roof of the institute’s test vehicle (see Fig. 4.14(a) and Fig. 4.14(b)). Three
Tallysman TW7972 patch antennas are each connected to a Septentrio PolaRx5e receiver. A
geodetic antenna of type NovAtel NOV850 is connected to a iMAR iNAT system (RQT-4003 )
which consists of a navigation-grade IMU (Inertial Measurement Unit) and a geodetic GNSS
receiver. The institute’s continuously operating reference station EE01, which is located at the
Einstein-elevator tower close to the driven trajectory (< 1 km), serves as reference, where a
Leica antenna (LEIAR20 LEIM ) is connected to a Septentrio PolaRx5TR receiver. A precise
reference trajectory is computed in post-processing in a tightly-coupled GNSS/IMU relative
positioning solution using the commercial software TerraPOS (Kjørsvik et al., 2009).

In order to reliably derive a fully populated GNSS Feature Map (i.e. full sky coverage), the
experiment is conducted during two days (Day of Year (DOY) 94 and 95, 2023) at different
day times with a total driving time of ≈ 5.5 h periodically passing the same streets. In this
way, data is collected during significant changes in the satellite constellations. The driven
trajectory is shown in Fig. 4.14(c). Different routes in the city of Hannover were covered
in order to generate maps for different local situations, i.e. different building height, streets
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Figure 4.13: Skyplots for ten exemplary map waypoints of a satellite visibility classification map. (a) and (g)
show the location of the boxes, (b)-(f) (left to right) and (h)-(l) (top to bottom) show the obstruction masks.

orientation and street width, and to be capable of testing the performance of the proposed
algorithms in different environments and situations.

All necessary steps of the map generation work flow are depicted in Fig. 4.15. The first
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Figure 4.14: Training data experiment setup. (a) test vehicle with antenna mounts, (b) antenna and receiver
connections (the distance between the lateral antennas is 103 cm and the distance between the longitudinal

antennas is 195 cm), (c) driven trajectory in the city of Hannover.
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Figure 4.15: General concept of the data aggregation and GNSS Feature Map generation represented in a
flow chart.

step in the direction of feature generation is to aggregate the huge amount of collected data.
Therefore, box polygons need to be derived from the interpolated waypoints based on a user-
defined width in longitudinal (driving direction) and lateral direction (cross street direction).
The box sizes are set to dLongitudinal = 5 m and dLateral = 4 m. A detailed study on
the waypoint resolution and how the box size is selected can be found in the next section
(Section 4.3.3).

In Fig. 4.16, the generated boxes in conjunction with the reference trajectory data points are
shown. Based on the coordinates obtained from the computed reference trajectory, all data
points of the trajectory are assigned to a respective box polygon. Since the speed limit in
the chosen area is 30 km/h, the measurement frequency is set to 10 Hz so that the distance
between two measurement locations is smaller than the longitudinal box dimension and thus,
data availability is increased. Due to the usage of three antennas and the repeatedly driven
trajectory, each of the boxes contains many trajectory points leading to a large data pool for
generating features. In parallel to the box assignment, the collected data is further processed
to obtain pseudorange residuals from GNSS raw observations. Epoch-wise corrections are
computed with respect to the reference trajectory and final satellite orbits provided by the
CODE (Dach et al., 2024). The collected raw data is then rectified by applying these cor-
rection values, which include the geometry (Euclidean distance from satellite to the receiving
antenna), relativistic effects, satellite clock errors and ionospheric and tropospheric effects by
utilizing the Ionosphere Exchange Total Electron Content (IONEX TEC) map provided by
the IGS and Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm, 2018), respectively.
Using these Observed-Minus-Computed (OMC) values, also known as pre-fit residuals, the DD
pseudorange residuals are computed, as outlined in Ruwisch et al. (2020), by forming a short
baseline to the reference station EE01 and differencing with respect to a high-elevating LOS
reference satellite.

In the next step, all computed DD pseudorange residuals of each box polygon are assigned
to a 360◦ azimuth × 90◦ elevation grid, corresponding to a resolution of 1◦, which is also
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(a) (b)

Figure 4.16: GNSS Feature Map box polygon assignment. (a) trajectory sample with generated boxes in blue
and trajectory points in red, (b) zoom-in for depicting the large data pool.

proposed for stacking residuals at static GNSS stations in Fuhrmann et al. (2014) and Dong
et al. (2015). In this way, each of the satellite grids in a box contains several data points
due to the multi-antenna setup and repetitions of driven trajectories. In order to provide one
distinct value per satellite position and box polygon, the final pseudorange residuals feature
is generated by calculating the mean values of each grid, respectively. In the end, the GNSS
Feature Map consists of a skyplot for each of the box polygons containing pseudorange residual
information with a resolution of 1◦.

4.3.3 Waypoint Resolution

The density of the interpolated waypoints determines the resolution of the resulting map.
The denser the interpolated points, the higher the resolution of the map. However, the
complexity and computational costs also increase. The most significant variation in observed
GNSS pseudorange errors arises when satellite visibility transitions from LOS to NLOS or
vice versa. Therefore, it is important to study the changes in LOS and NLOS classification
conditions and its transitions between waypoints with different distances to each other. The
objective is to identify the similarities and differences caused by changes in the environmental
situation in the longitudinal and lateral directions, as well as in height.

For this waypoint resolution study, three scenarios are simulated: i) points with a point
distance of 20 cm each are simulated along the OSM road coordinates, ii) points with a point
distance of 20 cm each are simulated perpendicular to the OSM line, iii) points are simulated
by varying only the height component with a difference of 5 cm each. The location of the
scenarios is depicted in Fig. 4.17, characterized by buildings on both sides of the street, which
are 16 m to 18 m high, representing a typical urban trench in the city of Hannover. For each of
these simulated points, ray tracing is performed for all satellite positions with a map resolution
of 1◦ as described above, i.e. in a 360◦ azimuth × 90◦ elevation grid. In order to determine
similarities and differences between signal propagation conditions of waypoints with different
distances to each other, the LOS/NLOS classification results are compared. There are three
possible outcomes: either the classification at the waypoints is the same, LOS satellite ray
conditions turn into NLOS or NLOS satellite ray conditions transition to LOS.

Longitudinal Resolution

The results of the longitudinal waypoint resolution study are depicted in Fig. 4.18(a). In
a perfect symmetric scenario, where the buildings have the same height and the distance of
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(a) (b)

Figure 4.17: Waypoint resolution simulation setup. (a) simulated waypoints displayed using OSM, (b)
GoogleStreetView of the simulation environment.

the user to the surrounding buildings is not changing, no change in the satellite visibility
would be expected. In a real-world scenario characterized by unequal heights of buildings
and an absence of assurance regarding equivalent distances to those buildings, a change in
the satellite visibility arises. As expected, the percentages of the same classifications decrease
with increasing waypoint distance, as the local environment is more likely to vary. However,
the similarities are substantial, with a percentage of up to 96 %, even for distances of up to
20 m. Consequently, there are only a limited number of satellite positions where the LOS-
classified signals become NLOS or vice versa. Therefore, the more critical scenario is the
classification of a true NLOS signal as an LOS signal, which would result in the decision to
retain the satellite, e.g., in GNSS FMA-NE. For subsequent map generations, analyses, and
applications, a longitudinal waypoint distance of 5 m is selected, which potentially leads to
the same classification of > 96 % of the time.

As illustrated in Fig. 4.18(b), a visual aid is employed to ascertain the geometrical variations
that give rise to the observed discrepancies. This figure demonstrates the shifting boundaries
of the obstacles. The obstruction masks, which are computed for all simulated user locations,
are presented in the skyplot and are color-coded according to their distance from the initial
user location. The substantial similarity in the satellite classification outcomes is substantiated
by the analogous structure of the obstruction masks. The minor discrepancies observed can
be attributed to variations in the local building structures.

(a) (b)

Figure 4.18: Changes in ray classification conditions with longitudinally distant waypoints.



72 4 GNSS Feature Map-Aided Robust EKF

Lateral Resolution

The results of the analysis of the lateral waypoint resolution are shown in Fig. 4.19(a). As
the user moves laterally in a street, the differences in the LOS/NLOS classification results are
larger because the field of view varies more with slight changes in the user’s location. This is
confirmed by more deviations between the classification results of waypoints that have been
laterally shifted. This variation is attributed to the change in the local environment, as the
user moves closer to buildings on one side of the street while the buildings on the other side
of the street are farther away from the simulated antenna location.The obstruction masks re-
main generally similar in shape, but they are shifted more as the distance between waypoints
increases (see Fig. 4.19(b)). Consequently, the percentages of the same classifications decrease
with increasing waypoint distance. When considering the potential user locations from curb
to curb, the disparities reach up to 27 % for maximum distances of 5.7 m. However, given
that the drive-able street width is less than 4 meters due to the presence of cars parked at the
roadside, the number of instances falling into the same classification remains above 80 %. The
uneven rise in LOS signals to NLOS and vice versa can be attributed to the imperfect real-
world scenario, where buildings of varying heights result in changing visibility as one moves
laterally along the street.

(a) (b)

Figure 4.19: Changes in ray classification conditions with laterally distant waypoints.

Height Resolution

The resolution of the map’s height necessitates evaluation to ascertain whether cars with
varying dimensions, such as sports vehicles or camper vans, can utilize the same map or if
separate maps for different vehicle heights are required. Even in a perfectly symmetric re-
flection surface scenario, the visibility would vary when the height of the reception point is
different. This study should determine the magnitude of the change in the LOS/NLOS classi-
fication of satellite signals. To this end, the findings of the classification analysis presented in
Fig. 4.20(a) are supplemented with graphical representations depicting the varied dimensions
of different vehicle types. The one extreme is the Lamborghini Aventador with only 1.13 m
height above ground (Lamborghini Webpage, 2023). Many medium cars have dimensions
around 1.50 m height above ground exemplary shown by a Volkswagen Golf Variant (Auto-
mobile Dimensions, 2023). The other extreme is a Volkswagen Grand California which is a
van supplemented with a camper high roof leading to a total height above ground of 2.97 m
(Automobile Dimensions, 2023).
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(a) (b)

Figure 4.20: Changes in ray classification conditions with varying height of the waypoints.

Since the field of view increases as the height of the vehicle is increasing, it is evident that the
number of LOS satellite rays transitioning to NLOS condition is zero. Conversely, a subset
NLOS satellite rays transition to LOS condition as the height of the vehicle is increasing, which
is illustrated in Fig. 4.20(b). The obstruction mask for the sports vehicle defines the inner
data points, while the mask for the camper van forms the outer frame in the skyplot. However,
the number of changed classification conditions is marginal (less than 5 %) when comparing
the sports vehicle with the camper van. The findings suggest that the incorporation of an
additional map layer for vehicles exhibiting substantial variations in height is not necessary,
given the minimal alterations in satellite ray classification conditions. Furthermore, when
considering the three-dimensional scenario, the uncertainty is predicted to be predominantly
influenced by the lateral resolution.

4.3.4 On the Similarity of GNSS Ranging Errors

For the validity of the GNSS Feature Map, it is necessary to ensure that observations re-
ceived in a common box at the same satellite positions have similar error characteristics. The
measurement campaign described in Sec. 4.3.2 provides several ways to test the error char-
acteristics: i) Spatially distributed antennas on the roof of the test vehicle simultaneously
collecting GNSS data provide information on the stochastic distribution of errors with respect
to the changing antenna location. ii) Multi-GNSS data is available, providing information on
the potential combination of different systems in a common map.

Antenna Combination

The DD code residuals computed for the front left and front right antennas (see Fig. 4.14(b))
are compared with respect to their error distribution. Each signal of the left and right antenna
is analyzed individually for the entire training data, resulting in about one million residuals
per signal. To compare the error distributions, Gaussian Mixture Model (GMM) with one,
two, three, and four components are fitted to the extracted residuals of each signal.

The resulting fitted GMM curves together with the histogram of the respective data are shown
in Fig. 4.21. The left column shows the results of the left antenna, the middle column shows
the results of the right antenna, and the right column shows the results of the epoch-by-epoch
residual differences between the two antennas. It is clearly visible that the undifferenced
residuals of all signals show a non-normal distributed behaviour, because the environmentally
caused ranging errors lead to positive ranging biases. Therefore, the single-component GMM



74 4 GNSS Feature Map-Aided Robust EKF

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.21: Fitted GMM curves in conjunction with the histogram of the respective data. The left column
shows the results of the left antenna, center column shows the results of the right antenna and the right column
shows the results of the residual differences between these antennas. In each row, a different GNSS is evaluated.

does not fit to the residual data at all. Since different types of error sources (multipath, NLOS,
diffraction) have different characteristics in terms of magnitude and noise, the best fitting
GMM is the one with four components. For the residuals of the left and right antennas, the
green curves smoothly follow the histogram data. The characteristics of the four-component
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GMM estimation, i.e., the proportion, mean, and standard deviation, are shown in Tab. 4.4.
The error distribution between the two antennas of the signals GC1C, RC1C, EC1C and CC2I
is very similar, which is expressed by the proportions of the four components differing by a
maximum of 6 %. Besides the GLONASS signal, the other signals also show a strong agreement
in the mean values and standard deviations of the respective components. The component
with the highest fraction always has a mean close to zero with a standard deviation around
0.2 m. The second largest component has a mean shift of about 7 m and a large standard
deviation of more than 20 m. The third component still has a large influence (proportion
values around 15 %). There is a small mean shift of less than 1 m and the standard deviation
is around 2 m. The component with the least influence has a large mean of about 20 m and a
standard deviation of 15 m to 25 m. Summing up the different components results in a GMM
that represents the error distribution of the residuals.

To further check the agreement of the residual distributions, the differences between the
residuals of the left and right antennas are analyzed. In the figures in the right column of
Fig. 4.21 it can be seen that the positive tail of the histograms is eliminated by calculating
the differences of the residuals. The residual differences have a zero mean, but the slope is
too steep and the tails are too long to fit a normal distribution. Therefore, a GMM is still the
best fit to the actual distribution of the residuals. Since there is almost no difference between
a GMM with three or four components, the characteristics of the three component estimation
are shown in Tab. 4.5. Again, all signals show similar proportions of the three components.
The mean values of all components are close to zero after differencing, indicating the removal
of any biases. The GMM is composed of a very low noise component (about 0.2 m), a moderate
noise component (2 m to 3 m), and the least influential component has the highest noise (20 m
to 30 m), representing the long tails. This is true for the signals GC1C, EC1C and CC2I,
while the noise is approximately doubled for the signal RC1C.

Table 4.4: GMM parameters (mixing proportion, mean value µ and standard deviation σ) for the four com-
ponent estimation.

Left antenna Right antenna
Signal Component Proportion µ [m] σ [m] Proportion µ [m] σ [m]

GC1C

1 0.43 0.07 0.20 0.48 0.13 0.26
2 0.31 7.48 31.05 0.32 8.22 36.34
3 0.17 0.82 1.81 0.14 1.32 1.83
4 0.08 21.39 24.78 0.06 23.99 24.30

RC1C

1 0.56 0.01 0.57 0.54 0.002 0.57
2 0.20 11.97 76.35 0.20 13.94 95.30
3 0.20 3.79 13.38 0.16 2.04 6.48
4 0.04 18.76 66.99 0.10 8.51 14.69

EC1C

1 0.45 0.06 0.17 0.49 0.11 0.22
2 0.30 6.38 21.80 0.31 6.93 25.99
3 0.17 0.59 1.50 0.13 0.92 1.51
4 0.09 18.95 16.81 0.07 20.26 17.24

CC2I

1 0.44 0.06 0.19 0.50 0.09 0.23
2 0.29 6.67 24.65 0.29 7.60 26.96
3 0.18 0.62 1.80 0.14 1.15 2.31
4 0.09 19.17 17.04 0.07 20.79 16.98



76 4 GNSS Feature Map-Aided Robust EKF

Table 4.5: GMM parameters (mixing proportion, mean value µ and standard deviation σ) for the components
1 to 3 of the four component estimation using DD residual differences between right and left antenna.

Signal Component Proportion µ [m] σ [m]

GC1C
1 0.43 0.03 0.19
2 0.36 0.04 2.99
3 0.21 0.10 31.24

RC1C
1 0.48 -0.003 0.43
2 0.37 0.04 6.18
3 0.15 0.45 67.99

EC1C
1 0.43 0.03 0.16
2 0.35 0.02 2.45
3 0.22 0.004 26.37

CC2I
1 0.40 0.02 0.15
2 0.36 0.01 2.18
3 0.24 0.06 23.75

GNSS Signal Combination

The above analyses demonstrate that observations from spatially distributed antennas can be
aggregated and also provide insight into the characteristics of signals from different GNSS.
While direct comparison of observation errors is not possible due to the transmission of mea-
surements from different satellites, an evaluation of the overall distribution of observation
errors can be made. Examining the estimated GMM parameters presented in Table 4.4, it
was observed that the values of the four components for the different signals (GC1C, RC1C,
EC1C and CC2I ) are largely consistent, regardless of whether the observations were received
on the left or right antenna. This means that the ranging errors received are similar, so the
data can be used together to generate the map. Similarities are achieved in the respective
proportions, with a large part of the first component having an approximate zero mean and
a standard deviation below 1 m. Except for the GLONASS signal, the proportions of all
components differ only between 1 % and 2 % and the means vary in a range below 2 m.
Although the standard deviations of the RC1C signal differ from those of the other signals,
the mean values remain consistent, with a maximum difference of less than 5 m. As shown,
a basic understanding of the observation error is sufficient to mitigate the influence of er-
roneous satellites on position estimation (see Sec. 4.2.2). Consequently, the incorporation of
GLONASS observations during the aggregation step of map generation remains advantageous.
The following section provides a more comprehensive analysis, with illustrative examples, of
the need to integrate all four systems in map generation.

4.3.5 Fully Populated Map Provision

To guarantee the consistent and reliable functionality of the map in subsequent applications,
it is essential to ensure that it is fully completed, i.e. containing information for all elevation-
azimuth combinations. This includes the provision of information on possible observation
errors from all available satellites at a given location. As the foundation of the map generation
in this thesis is the training data experiment (see Sec. 4.3.2), the number of observations in
this training data set is finite. Consequently, it is necessary to ascertain whether the number
of available measurements is sufficient for the generation of a reliable and fully populated map.
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The most straightforward method of providing maps would be to generate a map for each
signal, as this would ensure the lowest possible level of uncertainty in the data aggregation,
given that only data from a single system and frequency are combined. To evaluate this pos-
sibility, two boxes from the map were selected for analysis in terms of GPS L1 measurement
availability. Figure 4.22(a) and Figure 4.22(b) give an overview of the respective locations
while Fig. 4.22(c) to Fig. 4.22(d) show the skyplots of the aggregated data from the afore-
mentioned experiment and the interpolation results for the first location and Fig. 4.22(e) to
Fig. 4.22(f) correspond to the second location. The interpolation, i.e. an eight-neighbor aver-

(a)

(b)

(c) (d) (e) (f)

Figure 4.22: GPS L1 pseudorange error map for two exemplary locations. (a) and (b) provide an overview of
the respective locations with the green markers representing the center points of the boxes, (c) - (f) depict the

skyplots of the aggregated data and interpolation results, respectively.
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age interpolation, is necessary to ensure that features for all observed satellites are available in
the later application. This specific interpolation method was selected because the behavior of
multipath errors is not necessarily linear. Therefore, changes in all directions are considered
by applying the eight-neighbor average interpolation. As illustrated by the figures, the data is
interpolated through the north hole, a practice that yields no usable information, but also does
not impact subsequent data. The data points are color-coded according to the mean pseu-
dorange measurement error in each satellite bin. In addition, the theoretically available GPS
satellite positions, computed for the center point of the box using IGS final orbit information,
are shown in gray. An obstruction mask computed by ray tracing, is utilized to complete the
figures. Given the impracticality of having hundreds of stationary stations transmitting GNSS
measurements for data aggregation, and given that the data basis is a kinematic experiment,
the map is always a generalization of the true situation. It is therefore to be expected that not
each of the satellite bins is covered. However, the areas with gray satellite arcs and no map
information are extensive for both locations. The interpolation guarantees full sky coverage
of the generated maps, even in areas where training data availability was previously lacking.
However, the larger the areas with no information, the higher the probability of providing in-
correct information. To illustrate, in the region between 240 and 260 degrees of azimuth (see
Fig. 4.22(c)), the aggregated data exhibits a significant gap in that area, and it is uncertain if
the interpolation accurately represents the actual measurement error situation. A comparable
case can be observed in Fig. 4.22(e) between 240 and 270 degrees of azimuth, where large
measurement errors are expected due to the interpolation process, although the supporting
data is lacking in that area.

In order to fulfill the reliability criterion of the map provision, it is necessary to evaluate
an alternative method of providing maps. In the previous section, the similarity of GNSS
pseudorange observation errors of different systems using the same frequency was derived.
Consequently, another method of providing maps would be to generate a map using GPS,
GLONASS, Galileo and BDS L1 measurements for data aggregation. The same locations
were used for the evaluation, and the resulting skyplots of the aggregated data and the inter-
polation results are presented in Fig. 4.23. In comparison to the GPS L1 map generation, the
skyplots show three times as many satellite bins covered. In particular, the regions situated
beyond the obstruction border exhibit higher density,reducing the uncertainty associated with
the interpolation process. The interpolation result provides a more detailed representation of
pseudorange measurement error changes than the generalized pattern observed in Fig. 4.22.
Additionally, notable discrepancies in magnitude are apparent. The aforementioned lack of
data in Fig. 4.22(e) between 240 and 270 degrees of azimuth results in interpolated measure-
ment errors of approximately 10 to 20 m. However, incorporating additional observations from
other GNSS sources yields interpolated measurement errors of less than 3 m in that specific
region.

(a) (b) (c) (d)

Figure 4.23: Multi-GNSS L1 pseudorange error map for two exemplary locations.
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Figure 4.24: Skyplots for ten exemplary map waypoints of a pseudorange residuals map generated by ag-
gregating multi-GNSS L1 pseudorange data. First and third row show the location of the boxes, second and

fourth row show the resulting skyplots containing interpolated pseudorange residual information.
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Figure 4.25: Skyplots for ten exemplary map waypoints of a pseudorange residuals map generated by ag-
gregating multi-GNSS L1 pseudorange data. First and third row show the location of the boxes, second and

fourth row show the resulting skyplots containing interpolated pseudorange residual information.
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It can be concluded that the incorporation of multiple systems into a single map increases the
availability of measurement error, thereby reducing the uncertainty associated with interpola-
tion. Furthermore, the map is less generalized and provides more detailed information on the
error distribution, particularly in areas beyond the obstruction border. For utilization in the
following sections, a map is generated based on the available L1-band frequencies (Receiver
Indeptendent Exchange Format (RINEX) observation codes: GPS GC1C, GLONASS RC1C,
Galileo EC1C, BDS CC2I ). The final product is a GNSS Feature Map consisting of pseudor-
ange residuals for all satellite positions at all boxes along the selected trajectory. Exemplary
map sections of that trajectory are depicted in Fig. 4.24 and Fig. 4.25.





5
Application Examples and Case Studies

This chapter is dedicated to the practical evaluation of the proposed methods. The core of
the analyses are several vehicle test drives, where the impact of the proposed observation
exclusion and weighting strategies is investigated with respect to the performance parameters
introduced in Sec. 2.7 and with respect to GNSS receiver internal solutions. These kinematic
case studies are further distinguished by their environmental situation, which encompasses
two distinct scenarios: moderate signal reception conditions in a medium urban trench and
harsh signal reception conditions in a deep urban trench. Note that parts of these application
examples are based on the author’s contributions Ruwisch and Schön (2022b), Ruwisch and
Schön (2023) and Ruwisch and Schön (2025).

5.1 Kalman Filter Settings

The Kalman filter is a mathematical algorithm that is employed for the estimation of the state
of a dynamic system from a series of measurements that are susceptible to noise and other
forms of inaccuracy (see Sec. 2.2). It is of significant importance to ensure that the Kalman

Table 5.1: GNSS RTK EKF Settings.

Satellite Orbit/Clock Final CODE MGEX Products (Montenbruck et al.,
2013)

Observation Data Multi-GNSS Multi-Frequency
Elevation Cutoff 10◦

Standard weight model C/N0-dependent (see Eq. 2.23)
Ambiguity Resolution Partial Ambiguity Resolution using LAMBDA (Teu-

nissen, 1995a)
Probability of false alert 1 · 10−2

Probability of missed detection 1 · 10−3

σΦ0 0.005 m
σρ0 0.5 m
σρ̇0 0.1 m

s
σpos 10 m
σvel 10 m

s
σamb 10 cycles
qpos 100 m2/s
qvel 100 m2

s /s
qamb 10−4 cycles2/s
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filter is correctly configured, as this has a considerable impact on its overall performance
and the precision of the estimation. These settings encompass the selection of process and
measurement noise covariance, initial state estimates, and the state transition model. The
process noise covariance matrix represents the uncertainty inherent to the model’s dynamics,
whereas the measurement noise covariance reflects the uncertainty inherent to the sensor
measurements. Accurate tuning of these matrices is of vital importance, as overly optimistic
settings may result in filter divergence, whereas overly conservative settings may result in
a failure to respond adequately to changes in the system state. The correct configuration
of these settings determines the Kalman filter’s ability to provide optimal state estimates,
influencing the accuracy and reliability of the navigation solution.

In the context of applying the proposed Kalman filter to automotive experiments, where the
environment is subject to rapid change and the dynamics of the vehicle are neither constant nor
known in advance, it is evident that a single set of parameters cannot yield optimal results for
a range of data sets. The objective of this thesis is to evaluate the relative performance of the
proposed algorithms in comparison to established navigation solutions. Therefore, the focus
is not on achieving the optimal tuning of Kalman filter parameters, but rather on utilizing
the same set of parameters for all approaches. The set of parameters employed to generate
the results presented in the following sections is illustrated in Tab. 5.1.

5.2 Automotive Experiment in Medium Urban Trench

5.2.1 Setup

In order to evaluate the performance of the proposed approaches for urban GNSS navigation,
a kinematic experiment was carried out in a residential area in the city of Hannover, Germany,
on DOY 235 in 2023 (23rd August 2023). The test drive was planned and conducted within
the framework of the KOMET project (Ruwisch et al., 2024).

The ground truth of the trajectory together with the institute’s reference station EE01 is
depicted in Fig. 5.1(a). The trajectory starts and ends with a static phase on a parking space
with only few obstructions and in between, the rectangular shaped part was repeatedly driven
(ten times). The kinematic part of the route passes through a residential area in the city of
Hannover, where the streets are about 5 m wide and the surrounding houses are about 20 m
high. A typical situation of this trajectory is shown in Fig. 5.1(b), where additionally the
projected grids of the generated map are displayed with white boxes.

The measurement configuration depicted in Fig. 5.1(c) consisted of one Septentrio PolaRx5e
receiver connected to a Tallysman TW7972 patch antenna mounted on the roof of the test
vehicle. The receiver collected raw multi-GNSS data at a sampling rate of 1 Hz. The used
observation data, given in the RINEX notation, is depicted in Tab. 5.2. In addition, a high
quality inertial navigation system (iMAR iNAT-RQT-4003 ) was connected to a NavXperience
NAX3G+C antenna collecting multi-GNSS data at a sampling rate of 1 Hz and IMU data
at a sampling rate of 400 Hz. To this end, the ground truth of the trajectories is computed
by combining the GNSS carrier phase and Doppler observations with the IMU data in a
tightly coupled relative positioning that was computed in post-processing using the commercial
software TerraPOS (Kjørsvik et al., 2009).

In post-processing, the data is further evaluated with regards to the multi-GNSS satellite
visibility condition by investigating ray tracing classification results. All observed satellite
signals are classified as LOS, MP, NLOS and blocked. The number of available satellites per
ray condition is illustrated in Fig. 5.1(d) (upper row), together with the percentage of LOS
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(a) (b)

(c) (d)

Figure 5.1: Kinematic experiment setup of the automotive experiment in medium urban trench. (a) ground
truth of the ten times repeatedly driven trajectory, (b) typical environmental situation with map grids depicted
as white polygons, (c) measurement configuration, (d) multi-GNSS satellite visibility information based on ray

tracing results.

Table 5.2: Observation data recorded by the Septentrio PolaRx5e receiver, given in RINEX notation.

Observation Data GL1C, GL2L, GL2W, GL5Q, RL1C, RL1P, RL2C, RL2P, EL1C,
EL5Q, EL7Q, EL8Q, CL1P, CL5P, CL2I, CL6I, CL7I

satellites (bottom row). The data set is classified as a medium urban trench, given that in a
majority of the trajectory, the LOS satellite availability is below 50 % (minimum 20 % LOS
satellites), yet there is a recovery in availability between these parts, reaching up to 70 %.
This provides a foundation for evaluating the performance of existing state-of-the-art GNSS
RTK algorithms and for assessing the effectiveness of our proposed approaches.

5.2.2 Accuracy Performance

At first, the position solution of the GNSS RTK EKF with respect to the reference trajectory
is shown in Fig. 5.2. Two approaches from existing literature, i.e., C/N0 weighting and 3DMA
NLOS exclusion (3DMA-NE) are compared with the developed GNSS Feature Map-aided
approaches, i.e., GNSS FMA-NE, GNSS FMA-W using Huber loss function, GNSS FMA-
W using Geman-McClure loss function, and GNSS FMA-W using HG loss function.
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The horizontal and vertical PE with respect to the ground truth are illustrated in Fig. 5.2
versus time and as a cumulative distribution. Thereby, the static phases at the parking space
have been excluded from the analyses, as for this non-dynamic, nearly open-sky scenario, all
methods provide deviations of a few centimeters, which can be considered typical for an RTK
solution. During the drive through the medium urban trench, the horizontal deviations varied
between centimeters and decimeters. However, notable discrepancies between the various
estimation methods are evident. Both NLOS exclusion strategies (3DMA-NE and GNSS FMA-
NE) transition from an RTK fix solution to a DGNSS solution at 9.83 h and 9.86 h, respectively,
due to the absence of LOS carrier phase availability. This results in a maximum horizontal

(a)

(b)

(c) (d)

Figure 5.2: Horizontal and vertical position errors of the different approaches versus time ((a) and (b)) and as
cumulative frequency diagrams ((c) and (d)). Note the different axis limits for horizontal and vertical errors.
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PE of approximately 8 m. All the remaining strategies are capable of maintaining centimeter-
to-decimeter accuracy throughout the entire trajectory, even in scenarios with only 20 % LOS
observation availability. The GNSS FMA-W methods demonstrate a comparable performance,
exhibiting a notable reduction in horizontal PE at epochs where the C/N0 weighting solution
reaches deviations that exceed 40 cm. The similarity is further emphasized by the cumulative
distribution, in which the yellow, purple and green graphs are superimposed. They follow
the 3DMA-NE graph at small deviations but show a steeper slope as soon as the deviations
increase, indicating a reduction in larger errors.

The relative performance of the aforementioned approaches is similar when investigating the
vertical PE. However, since the vertical component is less precisely determinable, the magni-
tude of the error is increased to the meter-level in challenging situations. In particular, the
NLOS exclusion strategies and the C/N0 weighting approach demonstrate repeatable meter-
level deviations from the ground truth. Conversely, all GNSS FMA-W approaches are capable
of mitigating larger errors while still providing solutions within the centimeter to decimeter
range.

Table 5.3 provides an overview of the characteristic values of the different approaches for hor-
izontal and vertical position accuracy. As expected, the proposed GNSS FMA-NE method
shows comparable performance to the 3DMA-NE method, given that the similar principle of
excluding faulty satellites is employed. Furthermore, the similarity in performance of the three
GNSS FMA-W approaches is evidenced by the minor differences in position errors observed
for specific percentiles. In consideration of the performance specifications for automotive ap-
plications outlined in Section 2.7.4, Tab. 2.10, it can be seen that the C/N0 weighting and the
GNSS FMA-NE methods are unable to meet the lane keeping application requirements for
95 % accuracy in both the horizontal and vertical directions. On the other hand, 3DMA-NE,
GNSS FMA-W Huber, GNSS FMA-W Geman McClure and GNSS FMA-W HG methods pro-
vide a 95 % accuracy of the horizontal and vertical component, which meets the specified lane
keeping requirement. A comparison of the overall RMS reveals that the GNSS FMA-W meth-
ods enhance accuracy in comparison to C/N0 weighting. The utilization of map information
and the Huber, Geman-McClure and HG loss functions has resulted in an improvement of the
RMS of the horizontal PE by 58 %, 54 % and 54 %, respectively, and an improvement of the

Table 5.3: Horizontal and vertical position accuracy of the different approaches given in percentiles.

Horizontal position accuracy [m]
50 % 75 % 95 % 99 % RMS Ratio [%]

C/N0 0.029 0.046 0.222 0.536 0.101 -
3DMA-NE 0.027 0.039 0.067 2.295 0.466 -362

GNSS FMA-NE 0.027 0.041 0.172 2.080 0.482 -379
GNSS FMA-W Huber 0.026 0.037 0.069 0.146 0.043 58

GNSS FMA-W Geman-McClure 0.027 0.038 0.086 0.176 0.047 54
GNSS FMA-W HG 0.026 0.037 0.068 0.146 0.046 54

Vertical position accuracy [m]
50 % 75 % 95 % 99 % RMS Ratio [%]

C/N0 0.025 0.055 1.519 2.229 0.557 -
3DMA-NE 0.023 0.043 0.148 2.751 1.068 -92

GNSS FMA-NE 0.024 0.047 1.214 3.994 1.276 -129
GNSS FMA-W Huber 0.020 0.039 0.155 1.126 0.209 62

GNSS FMA-W Geman-McClure 0.021 0.041 0.290 1.829 0.272 51
GNSS FMA-W HG 0.020 0.037 0.120 0.533 0.116 79
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RMS of the vertical PE by 62 %, 51 % and 79 %, respectively. Conversely, the 3DMA-NE and
GNSS FMA-NE methods have an adverse impact on the overall result due to the transition
from an RTK fix solution to a DGNSS solution at specific epochs.

5.2.3 Attainable Integrity

The integrity of the different position solutions is evaluated by Stanford diagrams for the
horizontal and vertical components, respectively. The corresponding protection levels of the
solutions were computed using Eq. 2.85 and Eq. 2.86 based on a probability of failure of 10−8.
The corresponding alert limits are HAL =

√
0.442 + 0.442 = 0.622 [m] and VPL = 1.40 [m]

(see Tab. 2.11), although values for German roads have recently been defined (Kulemann and
Schön, 2025; Schön et al., 2025).

The resulting Stanford diagrams are illustrated in Fig. 5.3 for the horizontal component and
in Fig. 5.4 for the vertical component. Again, the static phases at the parking space have been
excluded from the analyses, as for this non-dynamic, nearly open-sky scenario, all methods
provide an accuracy better than the alert limits and the position errors are well bounded.
Therefore, the presented integrity evaluation is an accurate reflection of the actual situation
and have not been embellished by the static part of the experiment. The attainable integrity
is assessed on the basis of a probability of failure of 10−8. In this regard, the test data (1211
epochs) provide a good estimate of integrity. However, more test data must be evaluated in
order to assess the defined probability of failure.

(a) C/N0 (b) 3DMA-NE (c) GNSS FMA-NE

(d) GNSS FMA-W Huber (e) GNSS FMA-W GMC (f) GNSS FMA-W HG

Figure 5.3: Integrity evaluation of the horizontal component for the different methods.
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(a) C/N0 (b) 3DMA-NE (c) GNSS FMA-NE

(d) GNSS FMA-W Huber (e) GNSS FMA-W GMC (f) GNSS FMA-W HG

Figure 5.4: Integrity evaluation of the vertical component for the different methods.

Horizontal Component

In 88.2 % of cases, the system operates in nominal mode when using the C/N0 weighting
method. Nevertheless, 10.2 % of the epochs are misleading information, as the protection level
is smaller than the position error, thereby bounding the error inadequately. Additionally, a
small number of hazardous misleading information epochs (1.6 %) are present, representing
the most critical condition. When applying 3DMA-NE, these instances are reduced to a single
epoch (0.1 %), although this reduction comes at the cost of an increase in the number of system
unavailability instances and a slight decrease in the proportion of nominal operation epochs,
which account for 87.2 % of the total. The result for GNSS FMA-NE is similar to 3DMA-NE,
with the difference that a few data points moved from nominal operation mode to misleading
information condition. All three feature map-aided robust estimation methods improve the
overall integrity of the system, with only slight differences in the proportion of nominal oper-
ation epochs. Among the GNSS FMA-W Huber, GNSS FMA-W Geman-McClure and GNSS
FMA-W HG methods, the latter demonstrates the most extensive improvement (97.4 %) in
nominal operations, while there are no instances where the system is unavailable. On only
2.5 % of instances is misleading information present, and just one epoch yields hazardous
misleading information.

Vertical Component

In comparison to horizontal PE, vertical PE is of a greater magnitude, given that the vertical
component is less precisely determinable using the GNSS sensor. Conversely, the vertical alert
limit for automotive applications is less stringent, resulting in overall proportions of Stanford
diagram conditions that are comparable. A comparison of the six estimation methods reveals
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that the C/N0 weighting exhibits the lowest number of nominal operations (82.4 %), followed
by the GNSS FMA-NE approach (87.6 %). Due to the less stringent alert limit, the num-
ber of system unavailability for the 3DMA-NE method is decreased, resulting in the same
proportion of nominal operations as for the GNSS FMA-W Geman-McClure method. The
largest nominal operation proportions are achieved by the GNSS FMA-W Huber (95.8 %)
and GNSS FMA-W HG (96.9 %) methods. Consequently, the proposed GNSS FMA-W HG
method shows the best overall integrity, having only a few (3.0 %) misleading information
instances and only one hazardous misleading information epoch.

5.2.4 Ambiguity Resolution

Using GNSS RTK positioning technology, the ambiguity resolution is an important mea-
sure that helps to understand the occurrence of position error magnitudes as well as the
correct observation uncertainty assignment. Figure 5.5 illustrates the 3D position error of
the float (yellow) and fixed (green) solution along with the ambiguity success rate (gray) for
C/N0 weighting, 3DMA-NE, GNSS FMA-NE, GNSS FMA-W Huber, GNSS FMA-W Geman-
McClure and GNSS FMA-W HG method. It is evident that the more robust the estimation
method, the smaller the error of the float solution will be. Consequently, there is a greater
probability of achieving an accurate fixed solution, as superior float estimates typically re-
sult in more precise fixed estimates. As illustrated by the time series, the 3D position error
of the fixed solution frequently reaches deviations in the meter-level at instances where the
float solution already shows deviations in the meter range. This phenomenon is particularly
evident when employing the C/N0 weighting method. In numerous epochs, the fixed solution
is demonstrably inferior to the float solution, which is indicative of an erroneous fixed set of
ambiguities despite the ambiguity success rate being 100 %.

In contrast, all three feature map-aided robust estimation methods yield a more precise float
solution, with only a small number of data points in the fixed solution exhibiting significant
deviations. It is noteworthy that the ambiguity success rate exhibits a significant drop, partic-
ularly for the GNSS FMA-W German-McClure and GNSS FMA-W HG methods, which are

Figure 5.5: 3D position error of the float (yellow) and fixed (green) solution along with the ambiguity success
rate (gray) for C/N0 weighting, 3DMA-NE, GNSS FMA-NE, GNSS FMA-W Huber, GNSS FMA-W Geman-

McClure and GNSS FMA-W HG.
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known to be highly damping larger observation errors. However, these drops are not directly
linked to large observation errors; rather, the opposite is true. Despite a decline in the ambi-
guity success rate, the position error remains low. The drop in success rate can be attributed
to erroneous observations, which are correctly identified with considerable uncertainties. This
results in a larger ambiguity search space, ultimately leading to a reduction in the success rate.
During the same epochs, the C/N0 weighting method exhibits a 100 % ambiguity success rate,
yet the position error increases. This phenomenon can be attributed to the low uncertainty
associated with erroneous observations, which subsequently impairs the ambiguity resolution
and results in a false fix.

In order to substantiate these theses, Figure 5.6 illustrates the percentage of fixed ambiguities
versus time, as cumulative distribution, and as the relation between the percentage of fixed
ambiguities with the 3D position error. Figure 5.6(a) and Figure 5.6(b) illustrate the impact of
the applied weight model on the number of fixed ambiguities. In the case of C/N0 weighting, a
minimum of 70 % of the ambiguities were fixed per epoch. The percentage of fixed ambiguities
per epoch is inversely proportional to the effectiveness of the weight model in dampening
larger observation errors. This is because erroneous observations with large uncertainties are
no longer able to contribute to the fixed set of ambiguities. Consequently, the GNSS FMA-
W Geman-McClure and HG methods exhibit a lower fixed ambiguity proportion than the
GNSS FMA-W Huber and C/N0 weighting methods. Figure 5.6(c) links the fixed ambiguity
rate with the corresponding 3D position error. The aforementioned methods, particularly the

(a) (b)

(c)

Figure 5.6: Percentage of fixed ambiguities versus time (a), as cumulative distribution (b), and versus the
3D position error (c) for C/N0 weighting, 3DMA-NE, GNSS FMA-NE, GNSS FMA-W Huber, GNSS FMA-

W Geman-McClure and GNSS FMA-W HG.
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C/N0 weighting method, can be successfully identified and located with ease when falsely
fixed ambiguities are present. In the case of the C/N0 weighting method, a cluster of data
points is observed at a location where the 3D position error is approximately 1 m, while the
fixed ambiguities exceed 80 %. This kind of cluster is not observed for the feature map-aided
robust estimation methods. Instead, a very clear pattern is observed: if the proportion of
fixed ambiguities is high, the 3D position error is low, and larger position errors are observed
when the proportion of fixed ambiguities is low, indicating a low number of qualitatively good
observations.

Overall, the combination of feature map information and robust loss functions into a GNSS
FMA-W method has been demonstrated to improve the ambiguity resolution. While the
percentage of ambiguities fixed in a single epoch may be lower, the overall number of correctly
fixed ambiguities is higher. Furthermore, the robust GNSS FMA-W estimation methods have
been shown to reduce the number of erroneous ambiguity fixes, which in turn mitigates the
occurrence of larger position errors.

5.3 Automotive Experiment in Deep Urban Trench

5.3.1 Setup

Another kinematic experiment was carried out in a similar residential area in the city of
Hannover, Germany, on DOY 44 in 2024 (13th February 2024). The ground truth of the
trajectory together with the institute’s reference station EE01 is depicted in Fig. 5.7(a). The
trajectory starts and ends with a static phase on a parking space with only few obstructions
and in between, the triangular shaped part was repeatedly driven (eight times). The kinematic
part of the route passes through a residential area in the city of Hannover, where the streets
are about 5 m wide and the surrounding houses are about 22 m high. A typical situation of
this trajectory is shown in Fig. 5.7(b), where the projected grids of the generated map are
displayed with white boxes. The measurement configuration depicted in Fig. 5.7(d) consisted
of one Septentrio PolaRx5e receiver, one Septentrio mosaicX5 receiver and one u-blox F9P
(L1/L5) receiver. Each of the receivers were connected via an active GNSS signal splitter
(i.e., all receivers recording virtually the same observations) to a Tallysman TW7972 patch
antenna mounted on the roof of the test vehicle. The receivers were set to collect raw multi-
GNSS data at a sampling rate of 1 Hz and to compute an internal RTK positioning solution
based on the SAPOS® Satellite Positioning Service of the Official German Surveying and
Mapping (2024), which provides GNSS correction data in the standardized RTCM format in
real time via NTRIP. The used observation data, given in the RINEX notation, is depicted in
Tab. 5.4. In addition, a high quality inertial navigation system (iMAR iNAT-RQT-4003 ) was
connected to the same antenna collecting multi-GNSS data at a sampling rate of 1 Hz and
IMU data at a sampling rate of 400 Hz. In the same way as in the previous experiment, the
ground truth of the trajectory is computed by combining the GNSS carrier phase and Doppler
observations with the IMU data in a tightly coupled relative positioning that was computed
in post-processing using the commercial software TerraPOS (Kjørsvik et al., 2009).

Figure 5.7(f) indicates that this data set is classified as a deep urban trench. This categorization
is based on the received GNSS satellite signals classified by ray tracing, which reveals that in
some cases, the number of blocked signals received is even greater than that of received LOS
signals. This is also reflected in the percentage availability of LOS signals, which is below
50 % for almost the entire kinematic phase (13.43 h to 13.65 h). In some cases, data from less
than 15 % of LOS satellites are available in one epoch. In contrast to the previous data set,
the maximum percentage of LOS satellite availability in this period is only about 50 %. These
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reception characteristics present significant challenges for any positioning algorithm, which
is why this deep urban trench data set is an ideal test case for evaluating the effectiveness
of the presented approaches under extremely challenging conditions on the one hand and for
identifying their limitations on the other.

Please note that, unless otherwise stated, all subsequent results are processed using the
recorded raw observations from the Septentrio PolaRx5e receiver. The results obtained from
the other two receivers’ data will be evaluated in Sec. 5.3.5.

(a) (b)

(c) (d) (e)

(f)

Figure 5.7: Kinematic experiment setup of the automotive experiment in a deep urban trench. (a) ground truth
of the eight times repeatedly driven trajectory, (b) typical environmental situation with map grids depicted as
white polygons, (c), test vehicle, (d) measurement configuration, (e) equipment installed inside the test vehicle,

(f) multi-GNSS satellite visibility information based on ray tracing results.
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Table 5.4: Observation data recorded by the three receivers, given in RINEX notation.

Septentrio PolaRx5e GL1C, GL2L, GL2W, GL5Q, RL1C, RL1P, RL2C, RL2P, EL1C,
EL5Q, EL7Q, EL8Q, CL1P, CL5P, CL2I, CL6I, CL7I

Septentrio mosaicX5 GL1C, GL2L, GL2W, RL1C, RL2C, EL1C, EL5Q, EL7Q, CL2I,
CL6I, CL7I

u-blox F9P (L1/L5) GL1C, GL5Q, RL1C, EL1C, EL5Q, CL5P, CL2I

5.3.2 Accuracy Performance

At first, the accuracy of the position solution computed by the GNSS RTK EKF with different
error mitigation strategies is evaluated. The GNSS FMA-NE method was not employed for
the deep urban trench data set, as it did not yield any enhancements in accuracy, integrity and
ambiguity resolution measures when compared to 3DMA-NE. Therefore, C/N0 weighting and
3DMA-NE will be evaluated in comparison with the developed GNSS FMA-W approaches,
specifically the GNSS FMA-W utilizing the Huber, Geman-McClure and HG loss functions.
The analysis is divided into four sections, (i) presentation of general measures, (ii) evaluation
by the measurement contamination proportion, (iii) location-dependency of errors, and (iv)
a residual analysis. Again, the static phases at the parking space have been excluded from
all further analyses, as for this non-dynamic, nearly open-sky scenario, all methods provide
deviations of a few centimeters, which can be considered typical for an RTK solution. Con-
sequently, the results are an accurate reflection of the actual situation and have not been
embellished by the static part of the experiment.

General Measures

Figure 5.8 illustrates the horizontal and vertical PE with respect to the time, as well as a
cumulative distribution diagram. Please note that the y-axis of the time series figures has
been truncated for improved visual clarity. For the sake of completeness, the maximum
errors, indicated by the respective diamond marker, can be ascertained from the cumulative
distribution diagram. Considering both time series, it is obvious that the solution using C/N0
weighting exhibits a degraded performance, particularly between 13.46 h and 13.57 h. During
this time period, the centimeter-level deviations from the start of the trajectory could not be
maintained, resulting in horizontal PE of 1 m to 4 m and vertical PE of up to 16 m.

The 3DMA-NE solution indicates that the availability of LOS carrier phase measurements was
not consistently present, leading to numerous DGNSS epochs due to NLOS satellite exclusion.
In these epochs, the horizontal PE increases to 10 m and the vertical PE reaches values of up
to 37 m. However, when more than four LOS carrier phase measurements are tracked, the
estimation strategy rapidly provides a solution with centimeter deviations.

The GNSS FMA-W Huber method has been providing very robust results for the medium
urban trench data set. However, its improvement with respect to C/N0 weighting under very
harsh signal reception conditions is comparatively limited. Both, the horizontal and vertical
PE time series show similar deviations, despite the incorporation of supplementary feature
map information in the estimation process. The limitation is likely due to the fact that
erroneous observations are not sufficiently attenuated by the Huber loss function during the
estimation process.

The GNSS FMA-W Geman-McClure method provides stable results in between the repeated
most challenging part of the trajectory. A similar performance is achieved through the uti-
lization of the GNSS FMA-W HG method. Following the abrupt rise of position deviations
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(a)

(b)

(c) (d)

Figure 5.8: Horizontal and vertical position errors of the different approaches versus time ((a) and (b)) and
as cumulative distribution diagram ((c) and (d)). Note the different axis limits.

at instances where the 3DMA-NE method transitioned from RTK fix mode to DGNSS mode,
both estimation strategies demonstrate the capacity to rapidly attain deviations within a cen-
timeter range. A comparative analysis of the two methods reveals that the HG loss function
is more effective in reducing gross errors and provides more stable results in less challenging
scenarios.

The cumulative distribution diagrams underline the aforementioned findings of the perfor-
mance with respect to the position accuracy. The illustrated graphs of the different approaches
are superimposed upon one another for small horizontal and vertical position errors. As the
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position errors increase, the curves for C/N0 weighting and GNSS FMA-W Huber are char-
acterized by a relatively shallow slope, which results in the worst overall performance. The
curves of the 3DMA-NE and GNSS FMA-W HG methods are well aligned until a horizontal
PE of 15 cm and a vertical PE of 25 cm, which is reached at a proportion of 80 % of the
values. As position errors continue to increase, the curve of the 3DMA-NE approach becomes
increasingly shallow, resulting in the highest maximum error of all methods. In contrast,
the curve of the GNSS FMA-W HG method remains relatively steep, demonstrating the best
performance with respect to horizontal and vertical PE among all approaches.

The characteristic values presented in Tab. 5.5 further substantiate the preceding results of the
horizontal and vertical position accuracy. For the 50 % and 75 % values of the horizontal and
vertical position accuracy, the 3DMA-NE and GNSS FMA-W HG method yield comparable
results. For higher percentiles, the GNSS FMA-W HG estimation strategy performs the
best among all methods. In consideration of the performance specifications for automotive
applications outlined in Section 2.7.4, Tab. 2.10, it can be seen that all approaches are unable
to meet the lane keeping application requirements for 95 % accuracy in both the horizontal
and vertical directions due to the harsh signal propagation conditions in the deep urban trench
situation.

In order to evaluate the lane determination capability, the horizontal PE is further distin-
guished as longitudinal and lateral PE, which are illustrated as a cumulative distribution
diagram in Fig. 5.9. The diamond markers represent the respective 95 % value of the differ-
ent estimation strategies, while the black dashed line marks the lane determination accuracy
requirement with respect to the same percentile. It is evident that the GNSS FMA-W HG
approach is the only one capable of providing satisfactory accuracy values in order to meet
the specified lane determination requirements in both the longitudinal and lateral directions.
The horizontal position accuracy (95 %) is 0.91 m in longitudinal direction and 0.28 m in
lateral direction.

A comparison of the overall RMS reveals that all three GNSS FMA-W methods improve the
accuracy in comparison to C/N0 weighting. The combination of map information with the
Huber, Geman-McClure and HG loss functions has resulted in an improvement of the RMS
of the horizontal PE by 17 %, 17 % and 60 %, respectively, and an improvement of the RMS
of the vertical PE by 11 %, 17 % and 64 %, respectively. Conversely, the 3DMA-NE method

Table 5.5: Horizontal and vertical position accuracy of the different approaches given in percentiles.

Horizontal position accuracy [m]
50 % 75 % 95 % 99 % RMS Ratio [%]

C/N0 0.046 0.889 2.450 3.924 1.091 -
3DMA-NE 0.032 0.057 7.132 9.835 2.400 -120

GNSS FMA-W Huber 0.047 0.878 1.811 3.261 0.907 17
GNSS FMA-W Geman-McClure 0.036 0.085 1.544 5.468 0.901 17

GNSS FMA-W HG 0.034 0.063 1.170 2.130 0.432 60

Vertical position accuracy [m]
50 % 75 % 95 % 99 % RMS Ratio [%]

C/N0 0.060 2.613 11.039 16.070 4.409 -
3DMA-NE 0.030 0.067 25.101 36.883 8.938 -103

GNSS FMA-W Huber 0.063 2.773 8.052 15.260 3.922 11
GNSS FMA-W Geman-McClure 0.033 0.104 6.584 22.143 3.644 17

GNSS FMA-W HG 0.029 0.074 4.461 7.115 1.593 64
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(a) (b)

Figure 5.9: Longitudinal and lateral position errors of the different approaches as cumulative distribution
diagram. The black dashed line depicts the 95 % accuracy requirement for lane determination applications

according to Tab. 2.10.

has an adverse impact on the overall result due to the transition from an RTK fix solution to
a DGNSS solution at specific epochs.

Evaluation by Measurement Contamination Proportion

Given the expectation that the introduced estimators will behave differently under varying
measurement contamination proportions, the performance with respect to the LOS ratio is
illustrated in Fig. 5.10. The LOS ratio is determined using ray tracing computation at the
ground truth positions. As expected, the largest position errors are observed at the lowest LOS
ratios (indicated by the red ellipses). This is due to the low number of nominal observations
in comparison to number of faulty satellites in NLOS conditions. Thereby, the GNSS FMA-
W HG method is the most effective in reducing the overall magnitude of errors.

(a) (b)

Figure 5.10: Horizontal (a) and vertical (b) position error with respect to the LOS ratio obtained from ray
tracing computation. The red and black ellipses depict areas of special interest.
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The second remarkable characteristic of this type of figure, indicated by the black ellipses,
is observed for LOS ratios between 25 % and 60 %. At these instances, the C/N0 weighting
and the GNSS FMA-W Huber method exhibit significant position deviations. In contrast, the
combination of map information with a more robust loss function (i.e., Geman-McClure and
HG) results in the disappearance of such a cluster of data points. Instead, the magnitude of
position errors remains at the same level as for higher LOS ratios, which depicts a significant
improvement.

Location-dependency of Errors

As a result of the aforementioned analyses, a pattern of repeatable position errors was iden-
tified. This section therefore addresses the investigation of the location-dependency of these
errors. The design of the driven trajectory, i.e. a small triangular section that is passed repeat-
edly in a counterclockwise direction, allows for an evaluation of whether conclusions can be
drawn with respect to the location. Figure. 5.11(a) depicts the LOS ratio at the ground truth
in a geographical plot, thereby recalling the prevailing reception conditions of the trajectory.
The north-south oriented section of the triangular shaped trajectory is the most challenging
one with LOS ratios of approximately 15 %. The remaining two streets, which complement
the triangle, show similar reception characteristics with LOS ratios of approximately 40 % to
50 %.

Figure 5.11(b) to 5.11(f) illustrate the horizontal PE at the estimated positions in a geograph-
ical plot for C/N0 weighting, 3DMA-NE, GNSS FMA-W Huber, GNSS FMA-W Geman-
McClure (GMC) and GNSS FMA-W HG, respectively. The majority of the larger position
errors are consistently identified at the north-south oriented section of the trajectory, where
the LOS ratio is relatively low. It is notable that the 3DMA-NE method exhibits a greater
degree of scatter in the estimated positions within the section displaying the largest position
errors. During the drive through the remaining two streets, where a sufficient number of LOS
carrier phases are available, the position error rapidly decreases to a very low level. The C/N0
weighting and GNSS FMA-W Huber methods also demonstrates the largest errors in the
north-south oriented section. However, in many following epochs, the estimators were unable
to recover from the gross errors, resulting in the deviations remaining large. The GNSS FMA-
W Geman-McClure and GNSS FMA-W HG methods exhibit comparable location-dependent
characteristics. The largest errors are observed in the north-south oriented section of the
trajectory, yet both estimators were capable to recover, providing low position errors in the
two remaining streets. A comprehensive comparison of both estimators reveals that the GNSS
FMA-W HG method demonstrates superior performance in mitigating errors exceeding 2 m.

Residual Analysis

In order to gain a deeper insight into the underlying principles of the GNSS FMA-W methods
and their ability to yield accurate and robust position solutions, an in-depth analysis of the
residuals is conducted. Therefore, the DD pre-fit residuals are computed using the OMC
values, which are based on the ground truth of the trajectory and indicate the true ranging
error of the observed pseudorange observations. Figure 5.12 depicts a comparison of DD pre-
fit residuals and GNSS Feature Map residuals for typical individual satellites. The time series
for a single satellite for each L1 signal from the four GNSS together with the corresponding
received signal strength is shown in Fig. 5.12(a) to 5.12(d), while Fig. 5.12(e) shows an overview
of the residuals by summarizing all satellites and all signals in one histogram, and Fig. 5.12(f)
illustrates the result when subtracting the pre-fit residuals from the feature map residuals.
Please note that the beginning and end of the time series correspond to locations where no
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(a) LOS ratio (b) C/N0

(c) 3DMA-NE (d) GNSS FMA-W Huber

(e) GNSS FMA-W GMC (f) GNSS FMA-W HG

Figure 5.11: Analysis of the location-dependency of errors. (a) shows the color-coded LOS ratio at the ground
truth, and (b) to (f) shows the color-coded horizontal PE at the estimated positions for C/N0 weighting, 3DMA-
NE, GNSS FMA-W Huber, GNSS FMA-W Geman-McClure (GMC) and GNSS FMA-W HG, respectively. The

driving direction is counterclockwise.

feature map data is available. The feature map residuals provide a fairly accurate description
of the actual received ranging error. In situations where the DD pre-fit residuals are relatively
small, the obtained feature map residual is likewise small and vice versa, thereby providing
an approximate estimation of the observations’ variance. In detail, the feature map residuals
are larger than the DD pre-fit residuals in the majority of the cases. This results in a more
conservative variance model, which safely mitigates faulty observations. As illustrated in
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(a) GC1C (b) RC1C

(c) EC1C (d) CC1P

(e) (f)

Figure 5.12: Comparison of DD pre-fit residuals and GNSS Feature Map residuals. (a) to (d) show the time
series for a single satellite for each L1 signal from the four GNSS, and (e) to (f) show an overview of all satellites

and all signals in a histogram.

the histograms, there are instances where the actual observation error exceeds the obtained
feature map residual (indicated by negative values in Fig. 5.12(f)). As demonstrated by the
simulation in Sec. 4.2.2, the robust loss functions effectively mitigate these outliers, ensuring
that the overall performance remains within an acceptable range. Conversely, the C/N0
weighting may be overly optimistic in situations where large ranging errors of up to 30 m are
encountered. That is attributable to the received C/N0 value at these epochs, representing a
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relatively high value (> 30 dB Hz) in comparison to the maximum of approximately 50 dB Hz.
This information substantiates the findings of the preceding sections, which indicate that the
incorporation of feature map data leads to a reduction in gross errors and an enhancement in
the stability of the solution.

5.3.3 Attainable Integrity

The integrity of the different position solutions is evaluated by Stanford diagrams for the
horizontal and vertical components, respectively. The corresponding protection levels of the
solutions were computed using Eq. 2.85 and Eq. 2.86 based on a probability of failure of
10−8. In the analyses of the accuracy for the deep urban trench data, it has been shown
that the requirements for lane keeping applications are not met. However, to investigate how
far the provided solutions are from these requirements, the integrity will be evaluated based
on the corresponding alert limits HAL =

√
0.442 + 0.442 = 0.622 [m] and VPL = 1.40 [m]

(see Tab. 2.11), although values for German roads have recently been defined (Kulemann and
Schön, 2025; Schön et al., 2025). The resulting Stanford diagrams are illustrated in Fig. 5.13
for the horizontal component and in Fig. 5.14 for the vertical component. Please note that
data points that exceed the axis limits of the position error or protection level, are displayed
at the respective border of the figure. Again, the static phases at the parking space have been
excluded from the analyses, as for this non-dynamic, nearly open-sky scenario, all methods
provide an accuracy better than the alert limits and the position errors are well bounded. The
attainable integrity is assessed on the basis of a probability of failure of 10−8. In this regard,
the test data (942 epochs) provide a good estimate of integrity. However, more test data must
be evaluated in order to assess the defined probability of failure.

(a) C/N0 (b) 3DMA-NE

(c) GNSS FMA-W Huber (d) GNSS FMA-W GMC (e) GNSS FMA-W HG

Figure 5.13: Integrity evaluation of the horizontal component for the different methods.
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Horizontal Component

In 50.1 % of the cases, the system operates in nominal mode when using the C/N0 weight-
ing method. However, a large number of hazardous misleading information epochs (29.4 %)
are present, representing the most critical condition. Additionally, 10.2 % of the epochs are
misleading information, as the protection level is smaller than the position error, thereby
bounding the error inadequately. When applying 3DMA-NE, the most critical instances of
hazardous misleading information are reduced to 0.5 %, although this reduction comes at the
cost of an increase in the number of system unavailability instances (29.3 %) and a slight
decrease in the proportion of nominal operation epochs, which account for 48.8 % of the total.
This indicates that, despite the method’s capacity to accurately overbound the position er-
rors, the increased protection level values result in the system no longer operating within the
nominal mode with the given specifications. As already stated before, the GNSS FMA-W Hu-
ber method does not enhance the solution. In terms of integrity measures, the characteristic
values are comparable to that of the C/N0 weighting solution, yielding a large number of haz-
ardous misleading information instances (28.5 %). The GNSS FMA-W Geman-McClure and
GNSS FMA-W HG approaches improve the overall integrity of the system, demonstrating an
extensive improvement in nominal operations (64.1 % and 69.7 %). Thereby, the combination
of map information with the HG loss function results in the best performance compared to
the Geman-McClure loss function, showing less system unavailability, misleading information
and hazardous misleading information epochs.

(a) C/N0 (b) 3DMA-NE

(c) GNSS FMA-W Huber (d) GNSS FMA-W GMC (e) GNSS FMA-W HG

Figure 5.14: Integrity evaluation of the vertical component for the different methods.
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Vertical Component

In comparison to horizontal PE, vertical PE is of a greater magnitude, given that the vertical
component is less precisely determinable using the GNSS sensor. Conversely, the vertical alert
limit for automotive applications is less stringent, resulting in overall proportions of Stanford
diagram conditions that are comparable. A comparison of the five estimation methods reveals
that the GNSS FMA-W Huber approach exhibits the lowest number of nominal operations
(54.9 %) together with the C/N0 weighting (55.1 %). Due to the less stringent alert limit, the
number of system unavailability for the 3DMA-NE method is decreased to 10.4 %, resulting in
a similar number of nominal operations (71.1 %) as for the GNSS FMA-W Geman-McClure
method (72.8 %). The proportion of hazardous misleading information is 0.2 %, which is
the lowest among the five methods. However, the largest nominal operation proportions are
achieved by the GNSS FMA-W HG (76.5 %) method. Consequently, the proposed GNSS
FMA-W HG method shows the best overall integrity, having only a few (2.9 %) misleading
information instances and only a few hazardous misleading information epochs (3.4 %).

5.3.4 Ambiguity Resolution

Using GNSS RTK positioning technology, the ambiguity resolution is an important measure
that helps to understand the occurrence of position error magnitudes as well as the correct
observation uncertainty assignment. Figure 5.15 illustrates the 3D position error of the float
(yellow) and fixed (green) solution along with the ambiguity success rate (gray) for C/N0
weighting, 3DMA-NE, GNSS FMA-W Huber, GNSS FMA-W Geman-McClure and GNSS
FMA-W HG method. It is evident that the more robust the estimation method, the smaller
the error of the float solution will be. Consequently, there is a greater probability of achieving
an accurate fixed solution, as superior float estimates typically result in more precise fixed
estimates. The findings of the deep urban trench trajectory are analogous to those of the
medium urban trench data set. By investigating the time series for the C/N0 weighting and
GNSS FMA-W Huber methods, the 3D position error of the fixed solution frequently reaches

Figure 5.15: 3D position error of the float (yellow) and fixed (green) solution along with the ambiguity success
rate (gray) for the different methods.
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deviations in the meter-level and even exceeds the 5 m axis limit of the figure. Although
the float solution show relatively large deviations, the fixed solution is, in numerous epochs,
demonstrably inferior to the float solution. This is indicative of an erroneous fixed set of
ambiguities despite the ambiguity success rate being 100 %.

In contrast, the GNSS FMA-W Geman-McClure and GNSS FMA-W HG method yield a
more precise float solution, with only a small number of data points in the fixed solution
exhibiting significant deviations and exceeding the float deviation. It is noteworthy that the
ambiguity success rate exhibits a significant drop at specific time instances where the C/N0
weighting and GNSS FMA-W Huber approaches are unable to provide an accurate solution
despite the ambiguity success rate being 100 % and the 3DMA-NE transitions to a DGNSS
solution. However, these drops are not directly linked to large observation errors; rather, the
opposite is true. Despite a decline in the ambiguity success rate, the position error remains
comparably lower. The drop in success rate can be attributed to erroneous observations, which
are correctly identified with considerable uncertainties. This results in a larger ambiguity
search space, ultimately leading to a reduction in the success rate and thereby drastically
reducing the number of falsely fixed ambiguities.

In order to substantiate these hypotheses, Figure 5.16 illustrates the percentage of fixed am-
biguities versus time as well as the connection between the percentage of fixed ambiguities
with the 3D position error. Figures 5.16(a) and 5.16(b) illustrate the impact of the applied

(a) (b)

(c)

Figure 5.16: Percentage of fixed ambiguities versus time (a), as cumulative distribution (b), and versus the
3D position error (c) for C/N0 weighting, 3DMA-NE, GNSS FMA-W Huber, GNSS FMA-W Geman-McClure

and GNSS FMA-W HG.
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estimation strategy on the number of fixed ambiguities. In the case of C/N0 weighting, a
minimum of 50 % of the ambiguities were fixed per epoch. The percentage of fixed ambigui-
ties per epoch is inversely proportional to the effectiveness of the weight model in dampening
larger observation errors. This is because erroneous observations with large uncertainties are
no longer able to contribute to the fixed set of ambiguities. It can be seen that the GNSS
FMA-W Geman-McClure and GNSS FMA-W HG methods result in a lower fixed ambigu-
ity rate than the GNSS FMA-W Huber and C/N0 weighting methods. The former methods
exhibit a fixed ambiguity rate of approximately 30 % at a few challenging epochs.

Figure 5.16(c) links the fixed ambiguity rate with the corresponding 3D position error. The
aforementioned methods, particularly the C/N0 weighting and the GNSS FMA-W Huber
method, can be successfully identified and located with ease when falsely fixed ambiguities
are present. In the case of these two methods, a cluster of data points is observed at a
location where the 3D position error is approximately 3 m to 20 m, while the number of
fixed ambiguities exceeds 80 %. This kind of cluster is not observed in the case of the more
robust GNSS FMA-W methods, specifically those utilizing the Geman-McClure and HG loss
functions. Instead, a very clear pattern is observed: if the proportion of fixed ambiguities
is high (> 80 %), the 3D position error is low, and larger position errors are observed when
the proportion of fixed ambiguities is lower, indicating a low number of qualitatively good
observations.

Overall, the combination of feature map information and robust loss functions into a GNSS
FMA-W method has been demonstrated to enhance the ambiguity resolution. While the
percentage of ambiguities fixed in a single epoch may be lower, the overall number of correctly
fixed ambiguities is higher. Furthermore, the robust GNSS FMA-W Geman-McClure and
GNSS FMA-W HG estimation methods have been shown to reduce the number of erroneous
ambiguity fixes, which in turn mitigates the occurrence of larger position errors.

5.3.5 Evaluation of Hardware-dependency

As the GNSS Feature Maps containing pseudorange residuals are generated using a Septentrio
PolaRx5e receiver, the objective of this section is to evaluate the applicability of the map to
other hardware. The results obtained from the Septentrio mosaicX5 receiver and the u-blox
F9P (L1/L5) receiver will therefore be subjected to analysis. As the receivers are of a different
grade and recorded a different number of observation types (see Tab. 5.4), direct comparison of
their solutions is not possible. As illustrated in Fig. 5.17, the number of available observations
is greater for the Septentrio PolaRx5e receiver than for the Septentrio mosaicX5 receiver and

Figure 5.17: Number of carrier phase observations available for the Septentrio PolaRx5e, Septentrio mosaicX5
and u-blox F9P (L1/L5) receivers.
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the u-blox F9P (L1/L5) receiver. Instead, the objective is to assess the potential of the GNSS
FMA-W approaches to enhance existing estimation strategies, specifically the C/N0 weighting
and 3DMA-NE. This section will focus on a comparison between the existing methods, C/N0
weighting and 3DMA-NE, and the GNSS FMA-W HG method, which demonstrated the most
promising results in the previous section. For purposes of completeness, the results of the
GNSS FMA-W Huber and GNSS FMA-W Geman-McClure methods will also be included.

Septentrio mosaicX5 Receiver

Figure 5.18 illustrates the horizontal and vertical PE with respect to the time, as well as
a cumulative distribution diagram. Please note that the y-axis of the time series figures has
been truncated for improved visual clarity. For the sake of completeness, the maximum errors,
indicated by the respective diamond marker, can be ascertained from the cumulative distribu-
tion diagram. In general, the overall behavior of the Septentrio mosaicX5 receivers’ position
errors is quite similar to those of the Septentrio PolaRx5e receiver, exhibiting repetitive larger
position errors that can be attributed to the most challenging segment of the trajectory. In
consideration of the different estimation strategies, it is evident that the GNSS FMA-W HG
method improves both the horizontal and vertical PE in comparison to C/N0 weighting and
3DMA-NE. In particular, between 13.48 h and 13.55 h, the larger position errors are mitigated,
and instead, deviations in the centimeter to decimeter range are achieved.

In the cumulative distribution diagrams, the green curve of the GNSS FMA-W HG method
is well aligned with the red curve of the 3DMA-NE method at small position errors. As
the position errors increase, the slope of the green curve becomes the steepest. However, the
maximum error that is above 6 m horizontally and above 18 m vertically for all methods, could
not be reduced. Tab. 5.6 provides an overview of the characteristic values for the horizontal
and vertical position accuracy, which further substantiates the preceding results. For the
50th and 75th percentiles, the corresponding position accuracy is comparable to that of the
3DMA-NE method. The greatest improvement by the GNSS FMA-W HG method is achieved
until the 95th percentile, where the estimation strategy performs the best among all other
methods. A comparison of the overall RMS reveals that the robust GNSS FMA-W exhibits a

Table 5.6: Septentrio mosaicX5 receiver: Horizontal and vertical position accuracy of the different approaches
given in percentiles.

Horizontal position accuracy [m]
50 % 75 % 95 % 99 % RMS Ratio [%]

C/N0 0.037 0.472 2.872 3.818 1.024 -
3DMA-NE 0.033 0.059 6.932 9.545 2.424 -137

GNSS FMA-W Huber 0.034 0.078 3.156 4.924 1.246 -22
GNSS FMA-W Geman-McClure 0.038 0.263 2.995 4.614 1.119 -9

GNSS FMA-W HG 0.035 0.066 1.334 6.911 1.280 -25

Vertical position accuracy [m]
50 % 75 % 95 % 99 % RMS Ratio [%]

C/N0 0.031 1.772 7.123 13.629 3.140 -
3DMA-NE 0.024 0.054 25.338 37.108 9.154 -192

GNSS FMA-W Huber 0.026 0.088 11.131 15.802 4.049 -29
GNSS FMA-W Geman-McClure 0.029 0.763 7.098 13.317 3.015 4

GNSS FMA-W HG 0.026 0.060 4.227 19.328 3.536 -13
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slight decrease in performance, which is attributed to a few larger position errors that have a
deteriorating effect on the overall RMS.

Similar to the preceding section, an in-depth analysis of the residuals is conducted by com-
paring the DD pre-fit residuals, which are based on the ground truth of the trajectory and
indicate the true ranging error of the observed pseudorange observations, with the obtained
information from the GNSS Feature Map. Figure 5.19 illustrates the comparison of DD pre-fit
residuals and GNSS Feature Map residuals. The time series for a single satellite for each L1
signal from the four GNSS together with the corresponding received signal strength is shown
in Fig. 5.19(a) to 5.19(d). Please note that the beginning and end of the time series correspond
to locations where no feature map data is available.

(a)

(b)

(c) (d)

Figure 5.18: Septentrio mosaicX5 receiver: Horizontal and vertical position errors of the different approaches
versus time ((a) and (b)) and as cumulative distribution diagram ((c) and (d)). Note the different axis limits.
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The feature map residuals provide a fairly accurate description of the actual received ranging
error, although the utilized hardware is different. In situations where the DD pre-fit residuals
are relatively small, the obtained feature map residual is likewise small and vice versa, thereby
providing an approximate estimation of the observations’ variance. In detail, the feature map
residuals of the GPS L1 signal are larger than the DD pre-fit residuals in the majority of
the cases. This results in a more conservative variance model, which safely mitigates faulty
observations. With regard to the other three GNSS, the feature map residuals do not exceed
the true ranging error, yet the overall magnitude is within the same range.

As the robust loss functions are able to effectively mitigate outliers when a rough estimation
of the received error is available, the overall performance remains within an acceptable range.
Conversely, the C/N0 weighting may be overly optimistic in situations where large ranging
errors of up to 30 m are encountered. That is attributable to the received C/N0 value at these
epochs, representing a relatively high value (> 30 dB Hz) in comparison to the maximum of
approximately 50 dB Hz. This information substantiates the findings of the preceding sections,
which indicate that the incorporation of feature map data leads to a reduction in gross errors
and an improvement in the position solution in the majority of the situations.

(a) GC1C (b) RC1C

(c) EC1C (d) CC2I

Figure 5.19: Septentrio mosaicX5 receiver: Comparison of DD pre-fit residuals and GNSS Feature Map
residuals. (a) to (d) show the time series for a single satellite for each L1 signal from the four GNSS.
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u-blox F9P (L1/L5) Receiver

The most significant variation in performance is anticipated for the u-blox F9P (L1/L5) re-
ceiver, as this receiver type can be classified as a high-sensitivity consumer-grade receiver,
distinguished by elevated observation noise levels (Ruwisch et al., 2020; Kersten and Paf-
fenholz, 2020). Furthermore, it has a limited number of channels, consequently limiting the
available observation types from 17 (Septentrio PolaRx5e receiver) and 11 (Septentrio mo-
saicX5 receiver) to a reduced set of 7 carrier frequencies. This limitation is further expressed
by the total number of observations per epoch, as depicted in Fig. 5.17.

(a)

(b)

(c) (d)

Figure 5.20: u-blox F9P (L1/L5) receiver: Horizontal and vertical position errors of the different approaches
versus time ((a) and (b)) including the position mode (DGNSS: 2, RTK fix: 4, RTK float: 5) and as cumulative

distribution diagram ((c) and (d)). Note the different axis limits.
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Figure 5.20 illustrates the horizontal and vertical PE along with the corresponding position
mode (DGNSS: 2, RTK fix: 4, RTK float: 5), exemplary included for the GNSS FMA-W HG
method, with respect to the time, as well as a cumulative distribution diagram. Please note
that the y-axis of the time series figures has been truncated for improved visual clarity. The
results demonstrate a distinct difference compared to the characteristics of the other receivers.
Due to the limited number of available observations, the position mode frequently transitions
to DGNSS mode, resulting in horizontal and vertical position deviations of over 10 m and
30 m, respectively. The reduced availability of nominal observations leads to a longer time
until the solution converges from RTK float to RTK fix. Thereby, it is not guaranteed that the
solution is in the centimeter to decimeter range when the solution is in RTK fix mode, which is
attributable to wrong ambiguity fixing. The aforementioned characteristics are observed in all
five estimation strategies. Irrespective of the exclusion of NLOS satellites from the estimation
process or the down-weighting of potential faulty satellites by the combination of feature map
information with robust loss functions, the resulting position deviations are comparable. This
behavior is clearly observed in the cumulative frequency diagrams, where all five curves are
superimposed on each other.

To further illustrate the similarity of the horizontal and vertical position accuracy among
the different estimation strategies, the RMS errors are depicted in Tab. 5.7. The horizontal
PE varies between approximately 2.5 m and 2.8 m, whereas the vertical position error varies
between approximately 7.7 m and 9 m among the different approaches. These variations
are considered to be negligible when viewed in comparison to the overall magnitude of the
respective RMS error.

To evaluate the applicability of the proposed GNSS FMA-W methods with different hardware,
residuals are analyzed by comparing GNSS Feature Map residuals to DD pre-fit residuals
derived from the ground truth, reflecting true ranging errors. The comparison is depicted in
Figure 5.21, featuring time series data for a single satellite across each L1 signal of the four
GNSS, along with corresponding signal strength. Note that the time series begins and ends
where no feature map data is available. Despite differing hardware, feature map residuals
offer a reliable estimate of the actual ranging error, closely matching DD pre-fit residuals
for smaller errors and aligning variances for larger errors accordingly. Conversely, significant
ranging errors can lead to overly optimistic C/N0 weightings due to relatively high C/N0 (>
30 dB Hz) compared to a maximum of about 50 dB Hz. For u-blox F9P (L1/L5) receiver
data, the use of feature map data does not markedly reduce gross errors or enhance solution
stability; however, the predicted and actual errors remain consistent, supporting the method’s
applicability.

The aforementioned analysis revealed that the robust feature map-aided variance model not
being aligned with the actual observation errors, could be excluded as the cause of the esti-
mation providing less accurate results compared to the other receivers. The potential reasons
for this discrepancy are more likely attributable to the overall low observation availability

Table 5.7: u-blox F9P (L1/L5) receiver: RMS of the horizontal and vertical position error for the different
approaches.

RMS of horizontal PE [m] RMS of vertical PE [m]
C/N0 2.827 8.502

3DMA-NE 2.525 8.991
GNSS FMA-W Huber 2.564 8.356

GNSS FMA-W Geman-McClure 2.782 8.245
GNSS FMA-W HG 2.802 7.744
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(a) GC1C (b) RC1C

(c) EC1C (d) CC2I

Figure 5.21: u-blox F9P (L1/L5) receiver: Comparison of DD pre-fit residuals and GNSS Feature Map
residuals. (a) to (d) show the time series for a single satellite for each L1 signal from the four GNSS.

and comparable poor observation quality. It has previously been demonstrated that due to
the limited number of observation types, the carrier phase availability is reduced and conse-
quently, the solution more frequently transitions to DGNSS mode. As illustrated in Tab. 5.8,
the u-blox F9P (L1/L5) receiver exhibits 4.7 % DGNSS epochs, while the proportion is 0.2 %
for the Septentrio mosaicX5 receiver and 0 % for the Septentrio PolaRx5e receiver. Table 5.8
further depicts the number of observations in addition to the number of carrier phase inter-
ruptions, which is another indicator of the observation quality. It is important to note that an
interruption includes all cases where the gap between two data points is less than 10 seconds.
As expected, the number of available observations is the lowest for the u-blox F9P (L1/L5)
receiver compared to the other receivers. In consideration of the observation quality, the u-

Table 5.8: Proportion of DGNSS modes, number of carrier phase observations, and number of carrier phase
interruptions (data gap below 10 epochs) for the different receiver types. Please note that the number of carrier

phase frequencies varies for the different receivers.

Septentrio PolaRx5e Septentrio mosaicX5 u-blox F9P
Proportion of DGNSS epochs 0 % 0.2 % 4.7 %

Number of observations 59,220 33,938 23,439
Number of interruptions 1,253 893 2,048
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blox F9P (L1/L5) receiver demonstrates the highest number of signal interruptions, yielding
the highest interruption-to-observation proportion (approximately 9 % compared to approx-
imately 2 % for the Septentrio PolaRx5e and Septentrio mosaicX5 receivers). Therefore, it
is concluded that the primary factors hindering the efficiency of the GNSS FMA-W meth-
ods in enhancing the positioning solutions are the low observation availability and the poor
observation quality.

5.3.6 Comparison with Receiver-internal RTK Solution

This section presents a comprehensive comparison of the receivers’ internal RTK performance
with the results obtained from the preceding sections. For the sake of clarity, only the 3DMA-
NE and GNSS FMA-W HG methods are subjected to analysis. It is evident that a direct
comparison between the solutions is not feasible, given that the receiver provides a real-time
position, whereas the other solutions are computed in post-processing, thereby eliminating
latency errors. Nevertheless, the comparison provides an overview of the potential of the
different approaches.

Septentrio PolaRx5e Receiver

Figure 5.22 illustrates the 3D position error as a function of time, as a cumulative distribution,
and color-coded by the respective solution type for the Septentrio PolaRx5e receiver. It should
be noted that the y-axes are scaled differently. In this instance, Fig. 5.22(b) and Fig. 5.22(c)
include the static phases at the parking space with nearly open-sky conditions. It can be
observed that the receiver-internal RTK solution and the two post-processed solutions yield
comparable results, with an accuracy of a few centimeters, for the static parking space periods.
Consequently, all methods are in RTK fix mode.

Upon entering the deep urban trench, the receiver-internal solution transitions from RTK fix
to RTK float and subsequently to pseudorange-based DGNSS and SPP modes. Consequently,
the 3D PE increases to approximately 5 m to 20 m until the vehicle was moving back to the
parking lot at approximately 13.65 h. This behavior is similarly reflected in the cumulative
distribution diagram, which depicts two distinctly separate clusters of deviations. One cluster
is below 10 cm, while the other is above 2.5 m, with only a few values in between. In contrast,
as stated in the preceding sections, the 3DMA-NE and GNSS FMA-W HG methods provide a
substantial number of RTK fix epochs even in deep urban trench situations. The GNSS FMA-
W HG method is capable of effectively mitigating larger position errors due to a continuous
carrier phase-based solution. In contrast, the 3DMA-NE method transitions to DGNSS mode
in between, resulting in a 3D PE of up to 50 m.

Septentrio mosaicX5 Receiver

The 3D position error as a function of time, as cumulative distribution and color-coded by
the respective solution type obtained from Septentrio mosaicX5 receiver data is depicted
in Fig. 5.23. It should be noted that the y-axes are scaled differently. In this instance,
Fig. 5.23(b) and Fig. 5.23(c) include the static phases at the parking space with nearly open-
sky conditions. During the static phases, the receiver-internal RTK solution and the two
post-processed solutions yield comparable results with an accuracy of a few centimeters. The
position mode of the receiver-internal solution alternates between RTK fix and pseudorange-
based DGNSS, despite the fact that it provides centimeter-level deviations. Upon entering
the deep urban trench, the receiver-internal solution exhibited an increased scattering of the
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(a) (b)

(c)

Figure 5.22: Septentrio PolaRx5e receiver: Positioning accuracy of the 3DMA-NE and GNSS FMA-W HG
methods compared to the receiver-internal RTK solution. (a) shows the 3D PE over time, (b) shows the
cumulative distribution of the 3D PE, and (c) shows the 3D PE over time color-coded by the solution type.

3D PE, yielding deviations of up to 10 m during DGNSS mode. However, the receiver is
able to recover and transition back to RTK float and RTK fix mode, respectively, thereby
providing centimeter-level deviations. This behavior is similarly reflected in the cumulative
distribution diagram, which depicts a substantial number of values below 10 cm. These values
can be assigned to the RTK fix epochs, which are primarily associated with the static phase.
Afterwards, the curve show a relatively shallow slope, indicating the scattering in the range of
decimeters to several meters. In contrast, as stated in the preceding sections, the 3DMA-NE
and GNSS FMA-W HG methods provide a substantial number of RTK fix epochs even in deep
urban trench situations. Despite two short time periods, where the position mode transitions
to DGNSS, the GNSS FMA-W HG method is capable of effectively mitigating larger position
errors due to a continuous carrier phase-based solution. In contrast, the 3DMA-NE method
frequently transitions to DGNSS mode in between, resulting in a 3D PE frequently increasing
to 50 m.

u-blox F9P (L1/L5) Receiver

Figure 5.24 illustrates the 3D position error as a function of time, as a cumulative distribution,
and color-coded by the respective solution type for the u-blox F9P (L1/L5) receiver. It should
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(a) (b)

(c)

Figure 5.23: Septentrio mosaicX5 receiver: Positioning accuracy of the 3DMA-NE and GNSS FMA-W HG
methods compared to the receiver-internal RTK solution. (a) shows the 3D PE over time, (b) shows the
cumulative distribution of the 3D PE, and (c) shows the 3D PE over time color-coded by the solution type.

be noted that the y-axes are scaled differently. In this instance, Fig. 5.24(b) and Fig. 5.24(c)
include the static phases at the parking space with nearly open-sky conditions. As a con-
sequence of the transition from RTK fix to pseudorange-based DGNSS position mode at
approximately 13.42 h and 13.62 h, the number of centimeter-level deviations is reduced for
the receiver-internal solution. This is indicated by a relatively shallow slope in the cumulative
distribution, whereas the slope for the two post-processed methods is rather steep. However,
upon entering the deep urban trench, the u-blox F9P (L1/L5) receiver provides a way more
stable solution. Only a small number of epochs are classified as DGNSS, with the 3D PE still
being below 2 m. The position mode alternates primarily between an RTK fix and RTK float,
yielding deviations that are in the centimeter to decimeter range and occasionally reaching
up to 2 m. In contrast, the 3DMA-NE and GNSS FMA-W HG methods yield results that
are comparable to one another, yet neither is able to match the performance of the receiver-
internal solution. Both methods frequently transition to DGNSS mode and subsequently are
unable to rapidly recover from the significant deviations. Although the RTK fix solution
is provided, the resulting deviations are in the meter-level, indicating a significant number
of erroneous ambiguity fixes, as stated in the preceding section. The u-blox F9P (L1/L5)
receivers’ internal RTK solution performance is enhanced due to a more advanced motion
model in the filter implementation, which effectively mitigates larger position errors during
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the pseudorange-based position modes. This facilitates the receivers’ capability to recover
from these epochs.

(a) (b)

(c)

Figure 5.24: u-blox F9P (L1/L5) receiver: Positioning accuracy of the 3DMA-NE (red) and GNSS FMA-
W HG (green) methods compared to the receiver-internal RTK solution (gray). (a) shows the 3D PE over
time, (b) shows the cumulative distribution of the 3D PE, and (c) shows the 3D PE over time color-coded by

the solution type.





6
Conclusions

6.1 Summary

Many ITS applications, such as autonomous driving, rely on an accurate localization from the
GNSS sensor as the only source of absolute positioning information. The main error source
for vehicle localization in urban environments is the reception of signals that are reflected on
the surfaces of buildings, resulting in significant errors in the vehicle position estimation. The
primary objective of this thesis is to leverage the ground-track repeatability of reflection-based
GNSS errors in a GNSS Feature Map and its application to urban vehicle navigation. The
scope of this thesis is subdivided into four main parts, that is (i) the theoretical derivation of
the need for an adaption of existing robust estimation strategies for urban GNSS navigation,
(ii) the definition of two innovative position estimation strategies, i.e., GNSS FMA-NE and
GNSS FMA-W, and the performance simulation of the latter method compared to existing
robust estimators, (iii) the generation of GNSS Feature Maps, and (iv) the practical validation
of the proposed GNSS Feature Map-aided robust EKF. The most important investigations and
findings are summarized in the following.

Conventional robust estimators are able to provide nearly optimal results in the presence of
multiple outliers upon a particular breakdown point. As the proportion of contaminated ob-
servations reaches 50 %, nominal and contaminated observations cannot be separated. This,
in turn, leads to a biased estimation. The signal reception environment of a vehicle mov-
ing through urban trenches presents significant challenges, as the field of view for receiving
LOS signals is limited by the surrounding buildings. Typical signal reception characteristics
have been illustrated for an exemplary trajectory in a residential area with four-to-five-story
buildings on both sides of the road, demonstrating that the LOS ratio frequently drops below
50 %. That in turn demonstrates the need for the adaptation of existing robust estimation
techniques.

Existing strategies (e.g., the utilization of different (robust) weighting models, 3DMA GNSS,
data snooping) are susceptible to several limitations, i.e., an overly conservative down-weighting
of observations, lack of robustness for highly contaminated data, the need of additional 3D city
model information or computationally intensive algorithms. To overcome these weaknesses,
two innovative strategies have been proposed for improving GNSS-based navigation in urban
trenches. These strategies make use of additional information made available through the
GNSS Feature Map. The GNSS FMA-NE method employs map information containing satel-
lite visibility classification results, while the GNSS FMA-W method utilizes map information
containing pseudorange residuals. Both adapted estimation strategies have been incorporated
into the GNSS RTK EKF framework. The performance of the proposed GNSS FMA-W
method, employing various robust loss functions for computing the observation weights, is
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theoretically evaluated through a Monte-Carlo simulation. Thereby, the HG-estimator, an
adapted robust estimator, is introduced. The HG-estimator incorporates the presented advan-
tages and mitigates the particular drawback of the Huber and Geman-McClure loss functions.
The simulation results of the multi-GNSS SPP demonstrate that when the ranging errors of
the received GNSS signals are known prior to and utilized for the observation weights com-
putation, the use of robust loss functions yields localization results close to the ground truth.
The 3D position error is approximately 2 m even though 70 % of the observations have a
standard deviation of 100 m.

As the GNSS Feature Map constitutes a fundamental part of the developed estimation strate-
gies, its generation has been described in detail. This detailed description initially starts
with the conceptualization of extending the existing multipath mitigation strategies for sin-
gle, static stations (i.e., utilizing the ground-track repeatability of ranging errors) with the
objective of generating a map tailored for automotive applications. The generation of the
map is comprised of a series of steps, with the OSM coordinate information serving as the
foundation of the map. The generation of boxes is based on OSM road information, with
alignment in a regular grid. These boxes are containing either satellite visibility information
from offline ray tracing computations or pseudorange residual information obtained from a
real-data measurement campaign. The resolution of the waypoints (i.e., the center point of
the boxes) have been analyzed by a detailed simulation study, revealing that the number of
transitions in the LOS/NLOS classification of satellite signals is only marginal when moving
the users’ location longitudinally and laterally in an urban trench. The maps’ required height
resolution, as demonstrated by heights above ground for the most extreme vehicle dimensions,
leads to the conclusion that incorporating additional map layers for different vehicle types is
not necessary. To generate maps containing pseudorange residual information, the data of a
measurement campaign must be aggregated in the respective boxes of the map. Therefore,
the similarity of GNSS ranging errors have been investigated with respect to a lateral shift of
an GNSS antenna on the roof of a vehicle and with respect to signals from different systems.
The GMMs have been computed from the pseudorange residuals of the two antennas, and
the GMM with four components exhibited the strongest alignment with the observed ranging
error distribution. The overall distribution consists of four components, which account for
the varying magnitude of the different types of error sources, including multipath, NLOS, and
diffraction. The main findings of these analyses are that, for both the lateral antenna shift and
the analysis of signals from different systems, the characteristic values of the GMM component
estimation are comparable and within the range for the expected pseudorange measurement
noise.

As the foundation of the map generation in this thesis is a training data experiment, the num-
ber of observations in this training data set is finite. Consequently, the number of available
measurements have been evaluated with regard to the possibility of generating a reliable and
fully populated map. Despite the fact that the generation of one map for each signal would
ensure the lowest possible level of uncertainty in the data aggregation, the utilized pseudor-
ange residuals map in this thesis utilizes the L1 measurements of all available GNSS (GPS,
GLONASS, Galileo, BDS). This is due to the available data density in each of the boxes. To
guarantee the consistent and reliable functionality of the map in subsequent applications, it
is essential to ensure that it is fully completed, i.e., containing information for all elevation-
azimuth combinations. The reliability of interpolation of the GPS L1-only map is found to
be unsatisfactory due to the substantial size of areas lacking available information, resulting
in a highly generalized interpolation pattern. Conversely, when utilizing data from the four
GNSS, the regions situated beyond the obstruction border particularly exhibit a higher de-
gree of density, thereby reducing the uncertainty associated with the interpolation process.
The interpolation result provides a more detailed representation of pseudorange measurement
errors.
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The practical evaluation and validation of the proposed models have been carried out by two
kinematic automotive experiments in different urban environments, classified as medium urban
trench and deep urban trench. The ground truth of both trajectories has been computed in
post-processing by combining GNSS carrier phase and Doppler observations with raw mea-
surements from a high quality INS in a tightly coupled relative positioning with respect to the
institute’s reference station. The proposed GNSS Feature Map-aided methods have been inte-
grated into the GNSS RTK EKF framework using multi-GNSS multi-frequency observations.
The benefits of the adapted robust estimation have been quantified in terms of the impact
on the accuracy and integrity of the coordinate estimates, and on the ambiguity resolution,
respectively.

The medium urban trench trajectory is characterized by predetermined measurement contam-
ination proportions between 30 % and 80 %. Due to the relatively moderate signal reception
conditions, all methods provide coordinate estimates deviating from the ground truth in the
centimeter to decimeter range. In consideration of the performance specifications for auto-
motive applications it was found that the 3DMA-NE, GNSS FMA-W Huber, GNSS FMA-W
Geman-McClure, and GNSS FMA-W HG methods provide a 95 % accuracy of the horizon-
tal and vertical component, which meets the specified lane keeping requirement. Among all
methods, the adapted robust HG-estimator yields the most accurate results, resulting in an
improvement of the overall RMS error compared to the C/N0 weighting by 54 % horizon-
tally and 79 % vertically. Consequently, the integrity is further improved due to the reduced
position error and better observation uncertainty assignment, yielding the largest number of
nominal operation epochs and the lowest number of hazardous misleading instances. As in-
dicated by the ambiguity resolution analyses, the reasons for the aforementioned findings can
be understood as follows: while the percentage of fixed ambiguities is the lowest for the GNSS
FMA-W approaches, the position error remains low as well due to the mitigation of false fixes,
which would lead to larger position errors.

The deep urban trench trajectory presents a particularly challenging scenario, as the prede-
termined measurement contamination proportion for this data fluctuates within the range of
50 % to 85 %, which is a contamination level where all conventional estimators are expected
to break down. Due to the limited number of available LOS carrier phase measurements, the
3DMA-NE method frequently provides DGNSS solutions, resulting in position deviations at
the meter level. Among all estimation strategies, the GNSS FMA-W HG method provides
the most accurate solution, reducing the overall RMS error compared to the C/N0 weighting
by 60 % horizontally and 64 % vertically. The adapted robust estimation thereby primarily
mitigates gross errors in the most challenging situations. For the deep urban trench trajectory,
lane keeping accuracy requirements have not been achieved. However, the GNSS FMA-W HG
method is the only one capable of providing satisfactory accuracy values in order to meet the
specified lane determination requirements in both the longitudinal and lateral directions. It
was found that the combination of map information with a more robust loss function (i.e.,
Geman-McClure and HG) significantly reduces the position error for LOS ratios between 25 %
and 60 %. This enhancement is achieved by the utilization of a map that contains pseudor-
ange residual information, which corresponds to the observed ranging errors, thereby leading
to a reliable approximation of the observations’ uncertainty. Consequently, the integrity of
the system is improved by increasing the number of nominal operations and reducing the
number of hazardous misleading information, similar to the medium urban trench trajectory.
Furthermore, the ambiguity resolution has been enhanced, as evidenced by the observation
that a significant proportion of fixed ambiguities result in accurate coordinate estimates when
more robust loss functions are employed, and larger errors are observed at low fixing propor-
tions. In contrast, C/N0 weighting and the less robust GNSS FMA-W Huber methods do not
necessarily exhibit accurate position solutions at high ambiguity fixing proportions.
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The hardware dependency of the proposed methods has been investigated by evaluating the
performance of the adapted robust estimation with data from different GNSS receivers. The
performance comparison indicates that the pseudorange residual information, obtained from
the maps, still provides a fairly accurate description of the actual received ranging error, even
though the map was generated by a different grade of receiver. The observed discrepancy
in performance is attributable to variations in measurement availability across different re-
ceivers, which is primarily influenced by the tracking capability of the receivers. It has been
determined that the presence of more GNSS signals serves to reduce the likelihood of the so-
lution transitioning to DGNSS mode. Beyond the reduced number of available observations,
the second limiting factor identified is the observation quality. The presence of a substantial
number of interruptions has been demonstrated to negatively impact the position solution.

Lastly, the achieved performance of the 3DMA-NE and GNSS FMA-W HG methods has been
compared to the respective receiver-internal RTK solutions. The internal solutions of the
Septentrio PolaRx5e and Septentrio mosaicX5 receivers exhibit deviations in the centimeter
range for the static parts of the trajectory. Upon entering the deep urban trench, the receiver-
internal solution transitions from RTK fix to RTK float and subsequently to pseudorange-based
DGNSS and SPP modes. Consequently, for the majority of the trajectory, both receivers
provide a position accuracy at the meter level. In contrast, the 3DMA-NE and GNSS FMA-
W HG methods are capable of providing centimeter-to-decimeter level deviations in the deep
urban trench. Thereby, the utilization of the GNSS FMA-W HG method results in the best
overall performance due to a continuous carrier phase-based solution. The u-blox F9P (L1/L5)
receivers’ internal RTK solution performance is enhanced due to a more advanced motion
model in the filter implementation, which effectively mitigates larger position errors during
the pseudorange-based position modes. This facilitates the receivers’ capability to recover
from these epochs. Therefore, the proposed methods are not able to achieve the performance
of the receiver-internal solution.

In conclusion, the generation of the GNSS Feature Map has been introduced and its general-
ization of GNSS signal propagation-related features has been investigated. The combination
of map information with robust estimation strategies, both existing and newly defined, has
been theoretically and practically evaluated in various experiments including simulated obser-
vation data and true kinematic experiments. The findings of these studies demonstrate that
the proposed methodology significantly improves the accuracy and integrity of the naviga-
tion system compared to existing strategies. This ensures increased availability of automotive
GNSS-based navigation applications, such as lane keeping and lane determination, for vehicles
navigating through urban trenches.

6.2 Outlook

Despite the evident advances in GNSS navigation in urban trenches that have been demon-
strated by combining GNSS Feature Map information with robust estimation strategies, there
are still multiple open questions that emerged during the course of the presented investiga-
tions. These open questions give room for further research, some of which will be addressed
in the following.

The analyses in this thesis have been carried out in post-processing, despite the fact that the
RTK algorithm was originally designed for real-time applications. In order for the presented
methodology to be integrated into automotive applications, it must be real-time capable, a
feature that has yet to be tested and must be investigated in the future. Therefore, the GNSS
FMA-W must be implemented into a GNSS receiver. However, this is virtually impossible
for a conventional user since there is no straightforward way to access the firmware of a
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typical commercial receiver. The implementation necessitates even more advanced low-level
programming skills. A potential way of still being able to test the real-time capability would be
the utilization of a Software-defined Radio (SDR), which is more flexible in terms of different
or new signal processing algorithms.

This thesis presents the generation of GNSS Feature Maps for a selected area in the city of
Hannover. The size of the grid has been studied based on exemplary situations in that area,
yielding fixed characteristic values of the generated map. In order to apply these maps in
practice, they must to be valid for larger areas covering entire cities with varying road charac-
teristics and environmental conditions. Therefore, two possible topics or research questions,
respectively, come to mind. First, can the grid size of the map be optimized when the envi-
ronmental situation changes and/or can environmental context detection techniques (Groves
et al., 2013) help for a dynamic grid size computation? The second possible research direction
is on the maps’ coordinate basis. It is obvious that the performance depends on the accuracy
of the available lane/road model. In situations with more than one lane, OSM might not be
best choice as typically only one coordinate per street is available. Therefore, the generation
and/or investigation of a more accurate lane model is of particular interest.

Another important topic is that of feature computation, which is the content that the map
provides to the user. Due to the relatively slow movement of the GNSS satellites, it is chal-
lenging to collect a high density of training data using a single vehicle. However, the hard-
ware independence affords the opportunity to leverage crowd-sourced data for the purpose of
map generation. The vast majority of modern automobiles are equipped with GNSS sensors,
thereby enabling the collection of a substantial volume of data, provided that data security and
privacy concerns are addressed. This abundance of data has the potential to further ensure
the continuous updating of maps. A primary research direction should involve the assessment
of whether post-processed GNSS-only ground truth solutions are adequate for feature compu-
tation. The generalization of the map demonstrates significant potential for leveraging these
data. Another promising avenue for the collection of training data that is less time-consuming
is the utilization of Low Earth Orbit (LEO) satellite data, as the orbital repeat time is much
shorter. This would result in larger areas being covered in less time. However, the initial
step should involve the investigation of the ranging errors received from LEO satellites, as the
efficiency of this approach hinges on the ability to compare these errors with those of GNSS
ranging.

In this thesis, the provision of pseudorange residual information is solely used for an improved
observation uncertainty assignment. Existing 3DMA GNSS methods are separated into NLOS
exclusion and observation rectification strategies. One potential research direction could be
the development of a more advanced observation exclusion strategy based on the magnitude
of the expected ranging error or, the utilization of the provided information for correcting the
observed NLOS observations. However, the implementation of an observation rectification
strategy within carrier phase-based positioning necessitates a detailed investigation of the
carrier phase NLOS error.

So far, the enhancement of GNSS navigation has been presented based on a rather simple
Kalman filter algorithm with no specific parameter tuning and a simple process noise model,
as the focus has been on the pure relative improvement among the different methods. To
further enhance the accuracy of the navigation solution, one option could be the tuning of
filter parameters, e.g., different variances per frequency and GNSS, potentially achieved by
variance component estimation. Alternatively, the implementation of a more advanced and
powerful estimation technique, such as particle filters or factor graph optimization, has the
potential to further improve the overall performance.
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