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Abstract

While historically focused on local scales, modern hydrologic studies have increasingly adopted a global
perspective, recognizing water as a finite resource and the interconnection between regions. This global
perspective puts hydrology within the water cycle framework, offering a comprehensive view of water
dynamics across regions and scales. Despite this framework’s conceptual clarity, accurately quantifying the
global water cycle remains challenging due to the complexity of capturing localized and large-scale patterns,
variations in topography, climate, and land use, as well as temporal variability. These complexities hinder
comprehensive measurements, resulting in knowledge gaps around key water cycle components, including
river discharge, surface water storage, soil moisture dynamics, and subsurface water storage and flow.

Inspired by the existing knowledge gaps in the water cycle, an emerging field known as Hydrogeodesy
comes to the forefront. Hydrogeodesy is the discipline that uses terrestrial and primarily spaceborne geodetic
data, both geometric and gravimetric, to support global water cycle quantification. Utilizing technologies
such as satellite altimetry, gravimetry, imaging, InSAR, GNSS, and GNSS-Reflectometry, hydrogeodesy
offers direct or indirect measurements of key water cycle components, including terrestrial water storage,
and river discharge, significantly advancing our understanding of water dynamics. Despite advancements
in spaceborne geodetic sensors, hydrogeodesy faces challenges such as limitations in the spatiotemporal
resolution of satellite measurements, measurement uncertainties, unobserved variables, inconsistencies
in background models, and the difficulty of separating aggregated measurements. Possible solutions to
these challenges involve combining different data types, including satellite, ground-based observations, and
model outputs, to benefit from their complementary strengths. However, this presents its own challenges,
as it requires reconciling datasets with varying resolutions, accuracies, and temporal scales.

To address some of the challenges listed above, Bayesian approaches offer viable solutions by providing
probabilistic interpretations and uncertainty quantification. Bayesian approaches offer a robust framework
for updating prior knowledge with new data to yield a posterior distribution, enabling a probabilistic
interpretation and explicit uncertainty estimation of parameters. This is especially valuable in hydrogeodesy,
where parameters like river discharge, soil moisture, and groundwater storage are often estimated in-
directly and carry substantial uncertainties. This habilitation thesis provides a foundational discussion
on Bayesian modeling and statistics and demonstrates the versatility and power of Bayesian methods in
enhancing our understanding of water cycle components by presenting three distinct Bayesian applications
in hydrogeodesy.

The first study applies a Bayesian approach, specifically the Kalman filter, to estimate river discharge using
spaceborne geodetic measurements. In hydrogeodetic studies, the Kalman filter and dynamic systems are
especially valuable, as they enable the integration of multiple data sources and the continuous updating of
estimates with incoming measurements. This is particularly beneficial for river systems, which inherently
function as a dynamic system. To assess this potential, a method is introduced that uses the cyclostationary
properties of discharge as prior information, while observed altimetric discharge data provide the likelihood.
Together, these yield a posterior providing an unbiased daily discharge estimate. The method is applied to
the Niger River basin and its main tributaries and validated against in situ data from 18 gauges. Results
show a high average Correlation Coefficient (CC) of 0.9 and an average relative Root Mean Squared Error
(RMSE) and bias of 15%. This method effectively estimates daily river discharge across entire basins and
shows promise for global application, especially in data-scarce regions. With satellite altimetry data from
multiple virtual stations and historical discharge data, daily discharge estimates with an error under 20%
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could be attainable in many river basins worldwide. The growing availability of spaceborne geodetic data,
such as that provided by SWOT, further enhances this potential by delivering comprehensive measurements
of river height and width, along with global discharge estimates.

In most real-world applications, including hydrogeodesy, the Gaussianity assumption required by the
Kalman filter does not hold, limiting its applicability. Inspired by this challenge, and motivated by the
need to overcome the limitations of the poor spatial resolution of the GRACE and GRACE-FO missions, the
second study proposes a Bayesian method to downscale GRACE data, proposing a nonparametric method
to infer the posterior distribution directly, without any assumption for the likelihood or posterior. The
prior distribution is obtained based on GRACE data values using the monthly variation of GRACE data.
To model the likelihood functions, copulas are employed to capture dependencies among multivariate
distributions. Monthly empirical copulas are constructed and fitted to analytical copulas, conditioned on
specific quantile values, reflecting the dependency between GRACE and fine-scale data. A key advantage of
this copula-supported Bayesian approach is its capacity to represent uncertainties in both data and models,
even with variable input quality.

The proposed downscaling approach is applied to the Amazon Basin, utilizing four different fine-scale
datasets: WGHM, PCR-GLOBWB, SURFEX-TRIP, and the ensemble of flux data and soil moisture data
from GLEAM and ASCAT. Validation is conducted against two independent datasets: space-based Surface
Water Storage Change (SWSC) and GPS-observed Vertical Crustal Displacement Change (VCDR). In SWSC
validation, downscaled results capture spatial variations in river storage with high CC and a relative RMSE of
26%. VCDR validation involves two analyses: comparing GPS-VCDR with TWSF-based VCDR using Green’s
function convolution, where downscaled products yield RMSE values between 2.27 and 5.65 mm/month,
outperforming input fine-scale data with 14 mm/month RMSE. In terms of CC, downscaled results achieve
an average value of −0.81 versus −0.73 for the input. The proposed Bayesian framework effectively
downscales GRACE data, with performance highly dependent on input data quality. The copula-supported
Bayesian approach offers valuable uncertainty quantification even with inconsistent input data. This method
aids in understanding water storage variations in small catchments, supporting local hydrological studies,
and can be applied to other water cycle parameters as an alternative to traditional methods.

Although a direct posterior is obtained for each grid cell in the downscaling study, spatial dependencies
among neighboring grid cells are not considered. Graphical models are particularly well-suited for capturing
such spatial dependencies. To address this limitation—and inspired by the challenge of noisy water level
estimates from satellite altimetry over inland water bodies—the third study presents a Bayesian approach
that formulates a probabilistic graphical model known as a Markov Random Field (MRF), with a Maximum
A Posteriori estimation of the MRF (MRF-MAP) as the objective. There to improve inland altimetry, a
retracking method is proposed. Unlike conventional retracking methods that target a single waveform
point, a holistic approach by identifying retracking lines within 2D radargrams, treating the radargram as a
segmented image. This segmentation divides the radargram into Front and Back segments, resembling a
binary image segmentation task. The proposed MRF-MAP framework uses spatial dependencies as prior
information, with the likelihood based on the temporal evolution of pixel labels across groundtrack cycles.
Two temporal energy functions are applied: 1D, based solely on pixel intensity, and 2D, which includes
both intensity and bin values, with the posterior probability maximized using the maxflow algorithm. The
maxflow algorithm is the applied to obtain MAP solution, yielding a segmented radargram where the
retracking line is defined as the boundary between segments.

The proposed retracker method is applied to both pulse-limited and SAR altimetry datasets across nine
U.S. lakes and reservoirs with varying altimetry characteristics. Validated against in situ data, the proposed
method improves RMSE by approximately 0.25 m with the 1D temporal energy function and 0.51 m with the
2D function. The main advantage of the proposed method is its robustness against unexpected waveform
variations, making it especially valuable for complex radargrams where conventional retrackers often deliver
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outliers. By integrating both spatial and temporal information, this method offers a more comprehensive
understanding of the data and has broad applicability, such as improving the classification of SWOT pixel
cloud points by incorporating spatiotemporal detail.

Through these case studies, the thesis illustrates the advantages of Bayesian approaches in improving
the accuracy and reliability of hydrological estimates—such as river discharge, terrestrial water storage,
and water level measurements—derived from spaceborne geodetic sensors. By integrating theoretical
insights with practical applications, the thesis demonstrates how Bayesian methods can effectively improve
spatiotemporal resolution, obtain uncertainties, enhance data fusion, and accommodate the complexities
inherent in hydrological systems. This combination of foundational knowledge and real-world examples
shall establish a base for advancing the use of Bayesian approaches in hydrogeodetic research and beyond.
Moreover, by highlighting the challenges in hydrogeodesy, this thesis provides a clear direction for future
research and development in the field. It emphasizes critical areas requiring attention, such as improving
the spatial and temporal resolution of hydrological estimates, addressing inherent uncertainties in geodetic
observations, and developing more effective methods for assimilating diverse data sources. The thesis
encourages the refinement of geodetic data processing techniques and the adoption of probabilistic frame-
works, such as Bayesian modeling, in future work. Building upon the work presented here, future studies
can ultimately achieve more accurate and reliable insights into the Earth’s systems.
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Preface

After completing my PhD in 2013 on the application of spaceborne geodetic sensors in hydrology, I became
increasingly drawn to the principles and applications of Bayesian statistics and modeling. This interest was
inspired and amplified by the challenges encountered in satellite geodesy, particularly in hydrogeodesy—
the use of spaceborne geodetic sensors for quantifying water cycle components. Addressing some of
these challenges required new perspectives, and Bayesian approaches provided a powerful framework
to tackle them in this evolving field. As I started lecturing courses like satellite geodesy, hydrogeodesy,
adjustment theory, selected chapters in parameter estimation, and remote sensing for hydrology and water
resource management, in the study programs of Geodesy and Geoinformatics, GEOENGINE and Environmental
Engineering, the opportunity to incorporate Bayesian approaches into my teaching proved invaluable.
Developing materials and designing exercises for students allowed me to delve deeply into these concepts
and reflect on their practical significance in geodesy and hydrology.
Moreover, over the years, my involvement in various research projects has provided consistent opportunities
to explore Bayesian methods as a versatile and insightful approach. Each project offered a unique context
for experimentation, deepening my understanding of hydrogeodesy and the applicability of Bayesian
statistics and modeling. These combined experiences in teaching and research have culminated in a series
of publications, some of which (listed below) form the basis for the material presented in this thesis.

• Tourian, M. J., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., & Sneeuw, N. (2016).
Spatiotemporal densification of river water level time series by multimission satellite altimetry. Water
Resources Research, 52(2), 1140-1159.

• Tourian, M. J., Schwatke, C., & Sneeuw, N. (2017). River discharge estimation at daily resolution
from satellite altimetry over an entire river basin. Journal of Hydrology, 546, 230-247.

• Tourian, M. J., Saemian, P., Ferreira, V. G., Sneeuw, N., Frappart, F., & Papa, F. (2023). A copula-
supported Bayesian framework for spatial downscaling of GRACE-derived terrestrial water storage
flux. Remote Sensing of Environment, 295, 113685. Tourian et al. (2023b)

• Tourian, M. J., Elmi, O., Khalili, S., & Engels, J. (2025). Improving inland water altimetry through
Bin-Space-Time (BiST) retracking: A Bayesian approach to incorporate spatio-temporal information.
IEEE Transactions on Geoscience and Remote Sensing. Tourian et al. (2025)

The following habilitation thesis, therefore, represents not only a synthesis of my explorations within
hydrogeodesy from a Bayesian perspective but also a testament to the part of my knowledge growth
achieved in my academic pursuits since completing my PhD. It is my hope that this thesis will contribute to
furthering the understanding of Bayesian methods within the fields of hydrogeodesy and geodesy.
Tourian et al. (2017b)

Dr.-Ing. Mohammad J. Tourian

July 2025, Stuttgart
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Hydrogeodesy 1
As a pure science, hydrology deals with the natural occurrence, distribution, and circulation of water on, in,
and over the surface of the Earth. This is how the father of modern hydrology, Dr. Robert E. Horton, opened
his speech before the 12th meeting of the American Geophysical Union on May 1, 1931 (Jones et al., 1963).
This is a rather modern definition of a science with roots tracing back to ancient civilizations, which devised
methods to manage water for irrigation and drinking. While historically focused on local scales, modern
hydrologic studies have increasingly adopted a global perspective. This shift is driven by the recognition of
water as a finite resource and by the understanding that changes in one region can significantly affect water
availability elsewhere (Lettenmaier, 2006; Vörösmarty et al., 2000). With such a global perspective, the
water cycle is the framework for studying hydrology, enabling a comprehensive understanding of water
dynamics across diverse regions and scales. Although individual water droplets seldom complete the entire
water cycle, the concept itself remains vital in understanding how water is continuously recycled and
distributed across the planet (Oki et al., 1999). Essentially, exploring the global water cycle yields insights
into how climate change, land use, and other factors influence water availability at both local and global
scales (Allan et al., 2020).

While the water cycle can be conceptually defined, and we all probably learned about it in school, gaining
insight into the global water cycle requires numbers to quantify storages and fluxes and their variations.
To obtain such quantities, we need measurements across spatiotemporal scales ranging from local to
continental and from daily to decadal (Maidment, 1993). One might assume that with the advancement
of technology, achieving such measurements should be trivial, but in fact, it is not. This is challenging for
several reasons: 1) due to the complexity of the global water cycle, sophisticated measurement techniques
are required to capture both localized phenomena and large-scale patterns (Vargas Godoy et al., 2021). 2)
Topography, climate, and land use variations introduce considerable spatial heterogeneity, necessitating a
comprehensive network of observation points to adequately represent different scales (Fernández-Prieto
et al., 2012). 3) Temporal variability, ranging from diurnal fluctuations to decadal trends and the occurrence
of extreme events, demands continuous monitoring over extended periods to discern extremes, long-
term patterns, and seasonal variations accurately (Huntington, 2006). 4) Factors such as data accuracy,
consistency, and compatibility across different sensors must be carefully addressed to ensure the reliability
and comparability of the collected data (Yang et al., 2021). 5) Logistical constraints, including financial
resources, infrastructure, and accessibility to remote or inhospitable regions, further complicate the
implementation of comprehensive measurement campaigns (Pecora and Lins, 2020). Finally, 6) the
interdisciplinary nature of water cycle research necessitates collaboration across various scientific disciplines
and stakeholders to address the multifaceted challenges associated with measuring and understanding the
global water cycle comprehensively (Horne et al., 2017).

The challenges outlined above contribute to the inadequate quantification of water cycle storages, fluxes,
and their temporal variations, establishing some of them as our known unknowns, in a nod to the famous
quote (Famiglietti, 2012). Precipitation, as a key flux within the hydrological cycle, is perhaps better
monitored than other components (Huffman et al., 2009). Although the number of in situ precipitation
gauges has decreased recently (Lorenz and Kunstmann, 2012), satellite-based observation systems have
increased, providing broader coverage and a preliminary understanding of the water cycle. Nevertheless,
the aforementioned challenges give rise to knowledge gaps in other critical hydrological processes and
storage components, some of which are outlined below:

3



• Limited understanding of river discharge and its variation: River discharge gauges, essential for
monitoring freshwater transport, are becoming less available, resulting in a decline in the number of
gauges with updated measurements (Vörösmarty et al., 2000; Tourian et al., 2013; Elmi et al., 2024;
Saemian et al., 2025). This decline is compounded by changes in river discharge driven by factors such
as water management practices, climate variability (Xu and Luo, 2015), land-use transformations,
and modifications to river morphology (Gerten et al., 2008), further complicating the quantification
of freshwater transport and its dynamics within the hydrological cycle.

• Gaps in understanding surface water storage and its variation: The temporal and spatial variabil-
ity of surface water storage within lakes, reservoirs, wetlands, and rivers is not fully characterized,
indicating significant gaps in understanding the dynamics of water storage on landmasses (Crétaux
et al., 2011; Biancamaria et al., 2016). The quantification of surface water storage and its variability
is further complicated by anthropogenic activities, such as dam construction and water abstractions,
alongside the impacts of climate change (Zhou et al., 2016).

• Insufficient insights into soil moisture and its dynamics: Soil moisture serves as a crucial com-
ponent of the hydrological cycle, playing a significant role in terrestrial water storage and directly
influencing processes such as evapotranspiration, vegetation dynamics, and surface runoff (SU et al.,
2014). However, soil moisture’s spatial and temporal variability remains poorly understood, particu-
larly across diverse land use types and ecological systems (Wilson et al., 2004).

• Uncertainties in subsurface water storage and flow: The evaluation of subsurface water storage
and its dynamic behavior predominantly relies on monitoring fluctuations in groundwater levels and
variations in soil water saturation. This leads to a considerably uncertain estimate, primarily due to
the insufficiently known storage coefficients essential for converting groundwater level measurements
into accurate storage quantities (Scanlon et al., 2002; Alley et al., 2002; Strassberg et al., 2007; Rodell
et al., 2006; Riegger et al., 2012). Moreover, subsurface water’s flow paths and timescales are often
poorly understood, leading to gaps in understanding groundwater recharge and depletion (Huyakorn,
2012).

• Complexities in assessing human impacts on the water cycle: Anthropogenic activities, including
irrigation, land-use changes, urbanization, and dam construction, significantly alter natural hydrologi-
cal fluxes and storages (Vörösmarty and Sahagian, 2000). Quantifying these impacts at global or
regional scales presents considerable challenges due to data limitations and the intricate interactions
between natural processes and human-induced modifications (Chiang et al., 2021). As argued by
Gleason and Brown (2025), a foundational step toward addressing these complexities is to explicitly
recognize humans not as external drivers but as integral components of the hydrological system itself.

• Limited insights into extreme events and their effects: The impact of extreme weather events,
including droughts, floods, and cyclones, on the dynamics of the water cycle, as well as their
modifications under changing climate conditions, are not yet fully understood (Allan et al., 2020).
Moreover, the ability to accurately predict the frequency, duration, and intensity of these events within
the framework of hydrological processes remains a critical and ongoing challenge (Farazmand and
Sapsis, 2019).

• Uncertainties in the contribution of snow and glacier melt to the water cycle: The contribution
of snow and glacier melt to the water cycle, especially in mountainous regions, is not fully quanti-
fied (Radić and Hock, 2014). Climate-induced changes in temperature and precipitation are altering
melt patterns, but significant uncertainty persists regarding the implications for water availability in
glacier- and snow-fed river basins (Pomeroy et al., 2004).

• Challenges in accurately quantifying evapotranspiration: Evapotranspiration is a critical compo-
nent of the water cycle, yet accurate quantification at large scales remains challenging (Pereira et al.,
1999). Remote sensing techniques often rely on models that introduce uncertainty, while ground-based
measurements are limited, resulting in significant gaps in understanding evapotranspiration dynamics
across various climatic conditions and ecosystems (Chen and Liu, 2020).
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To address these knowledge gaps, global hydrological modeling can be a valuable approach, integrating
diverse data with process knowledge to estimate water fluxes and storage across various compartments.
However, while global hydrological modeling has been refined and extended in terms of modeled processes
over the last decade, uncertainties in modeling have not necessarily decreased, but are likely better
understood (Döll and Fiedler, 2008; Schulze et al., 2024). The wide variability in hydrological model
outputs is, in fact, a reflection of the existing knowledge gaps that hinder a holistic understanding of the
hydrological system, ultimately limiting our capacity to effectively manage water resources, anticipate
floods, and sustainably meet the water needs of ecosystems and communities (Gleick, 2003; Kundzewicz
et al., 2007).

1.1 Definition, techniques and their contributions

Inspired by the challenge of limited data in effectively monitoring the intricate global water cycle, spaceborne
techniques, particularly spaceborne geodetic sensors, have played a pivotal role over the past three
decades (Alsdorf et al., 2007). These sensors provide accurate measurements and insights into fundamental
Earth properties such as its geometric shape, gravitational field, and orientation parameters, including
their variations over time (Rummel, 2010). With such contributions, their value extends to the thorough
observation of the water cycle as well (Alsdorf et al., 2007; Humphrey et al., 2023). They have greatly
enhanced our understanding of water availability and have significantly improved our knowledge of water
depth, storage volume, and, in general, mass redistribution driven by water (Jaramillo et al., 2024).

As the need for comprehensive hydrological data intensified, the capabilities of spaceborne geodetic sensors,
with their expansive coverage and consistent synoptic measurements, have emerged as a promising avenue
to address the existing gaps in comprehending hydrological processes (Jaramillo et al., 2024). Through
the continuous evolution of new geodetic concepts and the subsequent enhancement of spatiotemporal
sampling within the global water cycle, an emerging field typically referred to as Hydrogeodesy has recently
come to the forefront.

Hydrogeodesy is the discipline that uses terrestrial and foremost spaceborne geodetic data, both ge-
ometric and gravimetric, in support of global water cycle quantification. By integrating these data
sources, hydrogeodesy can offer a holistic perspective on water cycle dynamics, facilitating a better un-
derstanding of its intricate processes and aiding in more accurate predictions. As schematically illustrated
in Figure 1.1, the key technologies associated with hydrogeodesy are 1) satellite altimetry, 2) satellite
gravimetry, 3) satellite imaging, 4) Interferometric Synthetic Aperture Radar (InSAR), 5) Global Navigation
Satellite System (GNSS), and 6) GNSS-Reflectometry (GNSS-R), with their various implementations detailed
in Table 1.1.

1. Satellite altimetry: Over the past three decades, satellite altimetry has been instrumental in mon-
itoring Earth’s system, proving effective not only over oceans but also over coastal zones as well
as inland water surfaces (Alsdorf and Lettenmaier, 2003; Alsdorf et al., 2007; Calmant and Seyler,
2006; Papa et al., 2006b, 2010a; Crétaux and Birkett, 2006; Calmant and Seyler, 2006; Tourian
et al., 2013). Table 1.1 lists all satellite altimetry missions, both laser and radar-based, from 1978
to the present. The satellite altimeter transmits a short pulse with known power toward the water
surface along the satellite nadir. The pulse hits the water surface and is reflected to the satellite.
Accordingly, the distance between the satellite and the water surface is estimated by measuring the
travel time between emission and reception of the pulse (Chelton et al., 1989; Escudier et al., 2017)
(See Figure 1.1). The returned signal power can be represented as a time series, referred to as the
waveform, comprising three primary stages: thermal noise, leading edge, and trailing edge (Brown,
1977). The waveform is sampled in bins with a specific time interval (typically 3.125 ns), which
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Fig. 1.1: The key technologies associated with hydrogeodesy, including satellite altimetry, both nadir and swath, satellite
gravimetry, satellite imaging, Interferometric Synthetic Aperture Radar (InSAR), GNSS, GNSS-Reflectometry
(GNSS-R), GNSS-Interferometric Reflectometry (GNSS-IR)

corresponds to a certain distance interval (typically 46.84 cm). The traveling time of the pulse is
calculated by defining the midpoint of the leading edge in the waveform as a reference point for
the moment that the pulse hits the middle of the water surface (Frappart et al., 1999; Stammer
and Cazenave, 2017). This can be properly estimated only if the onboard tracker precisely times the
deramping chirp1 to synchronize with the return signal from the nadir water surface (Chelton et al.,
1989). While this synchronization is usually successful over the ocean, it may not be as consistent
over coastal zones and inland waters (Rodríguez, 1988). Despite this challenge, satellite altimetry has
emerged as a remarkable tool with the capacity to function as virtual gauges for lakes and rivers (Berry
et al., 2005; Alsdorf et al., 2007; Papa et al., 2010a).

1A chirp signal is a signal in which the frequency continuously increases or decreases over time. In the case of an altimeter, it typically
decreases over time. Deramping refers to the process of analyzing or processing the received chirp signal to determine the time
delay or phase shift caused by the reflection of a target (in this case, the ground or surface below the altimeter)
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Tab. 1.1: Satellite missions and systems that can be potentially used within hydrogeodesy

Satellite altimetry

Seasat NASA 1978 1st satellite dedicated to oceanography
GEOSAT US Navy 1985–1990 Geodetic mission
ERS-1 ESA 1991–2000 Included radar altimeter
TOPEX/Poseidon NASA/CNES 1992–2006 Joint US-French mission
ERS-2 ESA 1995–2011 Successor to ERS-1
GFO (Geosat Follow-On) US Navy 1998–2008 Successor to GEOSAT
Jason-1 NASA/CNES 2001–2013 Successor to TOPEX/Poseidon
Envisat (RA2) ESA 2002–2012 Multi-instrument platform
ICESat NASA 2003–2010 Focus on ice sheet elevation
Jason-2 NASA/CNES/NOAA/EUMETSAT 2008–2019 Continuation of Jason series
CryoSat-2 ESA 2010–Present Focus on ice thickness
SARAL/AltiKa ISRO/CNES 2013–Present Joint mission with Ka-band altimeter
Sentinel-3A ESA 2016–Present Part of Copernicus program, operational
Sentinel-3B ESA 2018–Present Part of Copernicus program, operational
ICESat-2 NASA 2018–Present Follow-on to ICESat
Jason-3 NASA/CNES/NOAA/EUMETSAT 2016–Present Continuation of Jason series
Sentinel-6 Michael Freilich ESA/NASA/NOAA/EUMETSAT 2020–Present Part of Copernicus program, operational
SWOT NASA/CNES/CSA/UKSA 2022–Present nadir and swath altimetry

Satellite gravimetry

CHAMP DLR 2000–2010 High-Low Satellite to Satellite Tracking
GRACE NASA, DLR 2002–2017 Low-Low Satellite to Satellite Tracking
GOCE ESA 2009–2013 satellite gradiometry
GRACE-FO NASA, DLR 2018–ongoing Low-Low Satellite to Satellite Tracking

Satellite imaging (optical imaging)

Landsat NASA/USGS 1972–Present Multiple generations
SPOT CNES 1986–Present Multiple satellites
QuickBird DigitalGlobe 2001–2015 Commercial high-resolution satellite
WorldView Maxar Technologies 2007–Present Commercial high-resolution satellite constellation
Sentinel ESA 2014–Present Part of Copernicus program, multiple missions
Pleiades CNES 2011–Present Dual-satellite constellation, Optical imaging
GOES NOAA 1975–Present Geostationary weather satellites, multiple generations
MODIS NASA 1999–Present Optical and thermal imaging
Suomi NPP NASA/NOAA 2011–Present Joint polar-orbiting satellite mission
Himawari JMA 1977–Present Geostationary weather satellites, multiple generations
CBERS CNSA/INPE 1999–Present Joint Chinese-Multiple generations

SAR imaging and Interferometric Synthetic Aperture Radar (InSAR)

ERS-1 ESA 1991–2000 Early InSAR mission
ERS-2 ESA 1995–2011 Successor to ERS-1
JERS-1 JAXA 1992–1998 Early Japanese InSAR mission
RADARSAT-1 CSA 1995–2013 First Canadian SAR satellite
RADARSAT-2 CSA 2007–Present Advanced capabilities, operational
Envisat (ASAR) ESA 2002–2012 Multi-instrument platform
TerraSAR-X DLR 2007–Present High-resolution, operational
TanDEM-X DLR 2010–Present Tandem mission with TerraSAR-X, operational
ALOS (Daichi) JAXA 2006–2011 First ALOS series satellite
ALOS-2 JAXA 2014–Present Enhanced capabilities, operational
Sentinel-1A ESA 2014–Present Part of Copernicus program, operational
Sentinel-1B ESA 2016–2021 Part of Copernicus program, stopped transmitting data
RADARSAT Constell. CSA 2019–Present Constellation for increased coverage, operational
NISAR NASA/ISRO 2025–Present Joint NASA-ISRO mission, upcoming
BIOMASS ESA Expected 2024 Focus on global forest biomass, upcoming
SAOCOM 1A CONAE 2018–Present Part of the SAOCOM constellation, operational
SAOCOM 1B CONAE 2020–Present Part of the SAOCOM constellation, operational
COSMO-SkyMed (1st Gen) ASI 2007–Present Constellation of four satellites, first-generation
COSMO-SkyMed (2nd Gen) ASI 2019–Present Updated constellation, operational

Global Navigation Satellite System (GNSS)

GPS USAF 1978–Present Original and most widely used GNSS
GLONASS RFSA 1982–Present Russian GNSS
Galileo ESA 2011–Present European GNSS
BeiDou CNSA 2000–Present Chinese GNSS
QZSS JAXA 2010–Present Regional GNSS for Japan
IRNSS/NavIC ISRO 2013–Present Regional GNSS for India

Spaceborne GNSS-Reflectometry (GNSS-R)

TechDemoSat-1 UKSA 2014–Present Technology demonstration satellite
CYGNSS NASA 2016–Present Cyclone Global Navigation Satellite System
AltiKa CNES/ISRO 2013–Present Altimetry mission, includes GNSS reflectometry
ARGOS NRL 2019–Present Autonomous Remote Global Observing System, includes GNSS re-

flectometry
PRETTY ESA 2023–Present Passive REflectomeTry and dosimeTrY mission to study various Earth

surface properties
HydroGNSS ESA Expected 2025– GNSS Reflectometry mission for hydrological applications, upcoming

The use of satellite altimetry for hydrogeodetic applications has been facilitated by the advent of
two recent developments: 1) Open-Loop Tracking Command (OLTC), and 2) Operation in Synthetic
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Aperture Radar (SAR) mode. The OLTC was first implemented on the Poseidon-3 altimeter onboard
the Jason-2 satellite to improve the onboard tracker through properly setting the reception window
of the return echoes. This can be realized by OLTC tables consisting of the overflown surface
elevation (Le Gac et al., 2021). The altimeter reads the elevation onboard and uses it together with a
navigation bulletin provided by DORIS/DIODE to adjust its tracking window. Such an adjustment
helps the altimeter successfully track inland water bodies, especially within rough topography. After
the successful experience with Jason-2, OLTC was also implemented in SARAL/AltiKa, Jason-3, and
Sentinel-3. On the other hand, inland water monitoring using satellite altimetry has benefited greatly
from the Delay Doppler technique or the concept of Synthetic Aperture Radar (SAR), first used
in CryoSat-2. The Delay Doppler technique, implemented in two ways—closed-burst and open-
burst configurations (Dinardo et al., 2024)—utilizes a wide antenna aperture to accumulate more
looks than a conventional altimeter and a relatively small along-track footprint (ca. 250 m) (Raney,
1998). Sentinel-3A was the first mission to operate both in SAR mode (closed-burst) and OLTC. This
approach continued in Sentinel-3B, and with the modification of the SAR mode to open-burst, it was
implemented in Sentinel-6MF (Dinardo et al., 2024).
Swath altimetry is another emerging technology advancing the use of satellite altimetry for monitoring
the water cycle. With its swath altimetry capabilities, the Surface Water and Ocean Topography
(SWOT) satellite represents a revolutionary advancement in the field of altimetric satellite mis-
sions (Rodriguez et al., 2017; Fu et al., 2024). In addition to its nadir altimeter, SWOT is designed to
provide high-resolution measurements of surface water elevations using a Ka-band Radar Interferom-
eter (KaRIn) (Biancamaria et al., 2016). This technology allows SWOT to capture two-dimensional
water surface elevations with unprecedented accuracy and spatial resolution. In the future, this
capability will be further advanced by the Sentinel-3NG mission (Cretaux et al., 2023).

2. Satellite gravimetry: With the help of satellite gravimetry, variations in Earth’s gravity field caused
by the redistribution of water masses can be monitored. Before 2000, Satellite Laser Ranging (SLR)
was the only system available for measuring the time-variable gravity field at global scales. SLR data
initially provided observations of the seasonal variations of the low-degree gravity field (up to degree
and order 4) (Nerem et al., 2000). However, the spatial resolution of SLR is not appropriate for
capturing water storage changes at the catchment scale.
High-low satellite-to-satellite tracking (hlSST) provides the 3-dimensional coordinates of the position
of low Earth orbiting (LEO) satellites using onboard GNSS receivers (Sneeuw et al., 2005). The
hlSST technique was employed in the Challenging Minisatellite Payload (CHAMP) mission. Despite
the overall success of the CHAMP mission, the quality of the GPS observations and processing
standards were insufficient to derive proper time-variable gravity field estimation, and hence, use it
for hydrological studies (Reigber et al., 2006). Only on a very large scale of about 2000 km, through a
specific processing scheme, meaningful annual signals and long-term trends could be obtained using
CHAMP measurements (Weigelt et al., 2013).
The launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002 (Tapley et al., 2004a)
allowed for the recovery of the time-variable gravity field at catchment scales using low-low satellite-
to-satellite tracking (llSST). GRACE was the first satellite mission that allowed us to determine
continental water storage on short time scales, which was the ambition of hydrologists for a long
time (Lettenmaier and Famiglietti, 2006). GRACE has provided a direct measure of the monthly
gravity field variations by observing the relative motion of the center-of-mass of the two satellites,
measured with a highly precise inter-satellite K-band microwave link (Tapley et al., 2004a). The
monthly gravity variations are used to track mass changes in the hydrosphere, cryosphere, and oceans,
quantifying Total Water Storage Anomaly (TWSA). GRACE observations paved the way to monitor
continental water storage, including deep soil water, for the first time. It contributed to various
applications, including determining the natural and anthropogenic footprints in global and regional
water changes, ice-sheet mass balance (Chen et al., 2009), ocean circulation, sea-level rise (Chen
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et al., 2013; Jacob et al., 2012), atmospheric circulation patterns, drought monitoring (Long et al.,
2013; Solander et al., 2017; Saemian et al., 2024), and flood forecasting (Reager et al., 2014).
GRACE Follow-On (GRACE-FO), launched in May 2018, continues GRACE’s legacy of monitoring
Earth’s temporal gravity field using the same constellation as GRACE while additionally being equipped
with an experimental Laser Ranging Interferometer (LRI). These missions have enabled the monitoring
of shifts in both the global hydrological cycle and oceanic systems (Kusche et al., 2009). Recent
achievements highlight the importance of GRACE in better understanding of water storage variability
(see, e.g., Sun et al., 2012; Voss et al., 2013; Joodaki et al., 2014; Lorenz et al., 2015; Saemian
et al., 2022; Frappart and Ramillien, 2018; Saemian et al., 2020) and even the understanding of
the absolute amount of drainable water storage, for which GRACE and GRACE-FO are theoretically
blind (cf. Tourian et al., 2018, 2023a).
The success of GRACE and GRACE-FO has created a new demand for scientists and decision-makers
for sustained observation of the water storage variations (Pail et al., 2015). In addition, after many
successful years of monitoring and investigation, developing near-real-time services and early warning
systems is now conceivable and has actually begun (Jäggi et al., 2019). The scope of such services,
however, is limited to the coarse spatial resolution of the GRACE and GRACE-FO missions.

3. Satellite imaging: Thanks to its ability to cover large and remote areas with high temporal frequency,
satellite imaging plays an important role in hydrogeodesy by providing detailed spatiotemporal
information about surface water extent (Alsdorf and Lettenmaier, 2003; Papa et al., 2006a; Elmi,
2015). Monitoring surface water extent is crucial for understanding hydrological processes, managing
water resources, and assessing environmental changes (Papa et al., 2010b). More specifically, in
hydrogeodetic studies, surface water extent is necessary to obtain a holistic view of water volume
variation when water level data from altimetry is used and when the derived volume is interpreted
together with satellite gravimetry-derived water storage variation.
Optical satellite sensors, such as those on Landsat and Sentinel-2 satellites, have been widely used
for mapping surface water extent, i.e., deriving river width and lake surface area. These sensors
capture images in multiple spectral bands, enabling the differentiation of water from other land cover
types based on their spectral reflectance properties (McFeeters, 2013). Synthetic Aperture Radar
(SAR) sensors, such as those on Sentinel-1 satellites, offer the advantage of all-weather, day-and-night
imaging capabilities (Soergel, 2010). SAR is particularly useful for monitoring surface water extent in
regions with frequent cloud cover (Martinis et al., 2015).
While it may seem straightforward to extract surface water extent from satellite imaging, this process
is demonstrated to be complex and demanding (Elmi, 2015) and remains an ongoing area of research
within hydrogeodesy. A classic approach to extracting water masks from optical images involves
pixel-based segmentation algorithms, which define a threshold in the pixel value histogram. While
straightforward, these algorithms often fail in complex scenes due to the sensitivity of pixel values to
factors like water quality, surface roughness, chemical properties, sediment load, vegetation canopy,
and water column depth (Elmi, 2019). This is a challenge, especially along shorelines, where the mix
of water, vegetation, and soil complicates threshold determination. On the other hand, region-based
segmentation techniques, which use spatial information and treat each pixel as part of a larger
region, improve accuracy by relying on the strong spatial correlation in satellite images. Incorporating
temporal correlations, influenced by seasonal cycles, further enhances water mask extraction (Elmi
and Tourian, 2023).
The combination of optical and SAR data has also been explored to improve the accuracy and reliability
of surface water monitoring (Twele et al., 2016). Recent advancements in hydrogeodesy have seen the
integration of satellite image-based surface water estimates with altimetry-based height measurements
to derive surface water storage (Yao et al., 2023). Beyond surface water storage, integrating these
data with satellite gravimetry measurements allows for a more comprehensive assessment of the
water cycle on regional (Tourian et al., 2015) and global scales (van Dijk et al., 2014).
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4. Interferometric Synthetic Aperture Radar (InSAR): The InSAR technique exploits the phase dif-
ference between radar signals acquired from slightly different viewing geometries to detect ground
surface displacement with millimeter precision. This can be realized differently depending on the
targeted quantity. Single-Pass InSAR uses two radar antennas on the same platform to capture
simultaneous images, which can be realized either across-track to create 3D images for topographic
mapping (Zebker and Goldstein, 1986; Madsen and Zebker, 1998), or along-track to detect moving
targets and measure ice flow (Goldstein et al., 1993). Repeat-Pass InSAR captures images at different
times with the same antenna for monitoring ground deformation and tectonic movements (Massonnet
et al., 1993). Differential InSAR (D-InSAR) uses multiple images over time to measure ground
displacement, which is useful for monitoring earthquakes and volcanic activity (Massonnet and Feigl,
1998). Recently, it has also been demonstrated to be useful for monitoring water variations in small
lakes by using double bounce from nearby vegetation (Aminjafari et al., 2024). Persistent Scatterer
InSAR (PS-InSAR) analyzes multiple images to identify stable targets, effective for urban deformation
monitoring (Ferretti et al., 2001). Short Baseline Subset (SBAS) InSAR employs a series of images
with short temporal and spatial baselines for detailed deformation analysis (Berardino et al., 2002).
Wide Swath InSAR utilizes techniques like ScanSAR or TOPS to achieve wide-area coverage, suitable
for large-scale mapping and monitoring (De Zan and Monti Guarnieri, 2006).
With its capability to provide high-resolution, spatially extensive data on ground deformation and
subsurface water dynamics, the InSAR technique has emerged as a transformative tool in hydro-
geodesy (Jaramillo et al., 2024). It has been effectively applied in various applications, such as
monitoring subsidence in urban areas due to groundwater extraction and agricultural activities (Er-
ban et al., 2014; Haghshenas Haghighi and Motagh, 2024), tracking glacier dynamics (Auriac et al.,
2014), monitoring soil moisture (Eshqi Molan and Lu, 2020), groundwater changes (Castellazzi et al.,
2016), water mass changes in lakes or reservoirs (Darvishi et al., 2021), and ice flow (Palmer et al.,
2010). Actually, the InSAR technique implemented in the SWOT mission allows direct measurement
of open surface water elevation and surface water extent. In the Ka-band, water (with a certain degree
of surface roughness) acts almost as a specular reflector. The KaRIn sensor’s near-vertical incidence
angles (unlike the more slanted angles used by some other InSAR sensors) enable the backscatter
from water to be directed more toward the satellite’s nadir. This makes the water appear brighter
and easier to distinguish from land (Biancamaria et al., 2016; Rodriguez et al., 2017). This design
enables measurement of surface water elevation without the double bounce assistance from nearby
vegetation.

5. Global Navigation Satellite System (GNSS): GNSS, including Global Positioning System (GPS),
Global Navigation Satellite System (GLONASS), Galileo, BeiDou Navigation Satellite System (Beidou),
Quasi-Zenith Satellite System (QZSS), and Indian Regional Navigation Satellite System (IRNSS) (see
Table 1.1), enables precise positioning. GNSS plays a crucial role in hydrogeodesy by providing precise
measurements of ground displacement, which are essential for understanding water storage and
movement in the Earth’s crust (van Dam et al., 2001). GNSS networks, such as those maintained by
the International GNSS Service (IGS), offer continuous, high-precision positioning data that can detect
even minute ground movements caused by changes in groundwater levels, soil moisture, and surface
water (Argus et al., 2014; Borsa et al., 2014; van Dam et al., 2001). Through GNSS measurements,
water levels in rivers and lakes can be sensed, land subsidence can be monitored, and the movement
of glaciers and ice sheets can be tracked (Xue et al., 2021).
While GNSS network deformation provides insights into effects arising from hydrological, cryospheric,
and atmospheric changes, GNSS-based atmospheric sounding has also become a reliable means to
monitor water vapor content in the troposphere. Moreover, GNSS-derived vertical displacements
have been used to validate and improve hydrological models and GRACE-derived water storage
variation (Ferreira et al., 2021). On top of that, within hydrogeodesy, GNSS is instrumental when
combined with other geodetic and remote sensing techniques. For example, GNSS data can be
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integrated with data from GRACE, allowing for the separation of different components of the water
cycle, such as distinguishing between groundwater and surface water contributions to total water
storage changes (Carlson et al., 2022).

6. GNSS-Reflectometry (GNSS-R): Radio signals are constantly broadcast to the Earth from GNSS
satellites. These signals are partially reflected from the Earth’s surface. While surface multipath is one
of the main error sources for navigation and positioning, the multipath delay from the Earth’s surface
can be used to sense the Earth’s surface environment (Jin and Komjathy, 2010). Specifically, the delay
can be used to produce surface roughness parameters and determine surface characteristics (Ruffini
et al., 2004). For instance, the measurements of reflected signals from the ocean surface contain
information on the ocean surface height, wind speed, wind direction, and even sea ice conditions
(Rodriguez-Alvarez et al., 2023). Given that GNSS signals are continually transmitted and reflected
off river basins and water surfaces, including lakes and rivers, placing a receiver on platforms
such as ground stations, aircraft, or LEO satellites allows for the measurement of surface water
levels, soil moisture, and snow depth. This method offers a cost-effective solution for hydrological
monitoring (Larson et al., 2008; Rius et al., 2017; Wang et al., 2021).
One of the main advantages of the GNSS-R technique is its unprecedented spatiotemporal resolution,
which achieves optimal performance when deployed on a spaceborne platform (see Figure 1.3).
This high-resolution capability enables detailed observation and monitoring of various hydrological
parameters that are not captured by other sensors, positioning it as potentially the most favorable
mission for future hydrological studies. The utilization of spaceborne platforms for GNSS-R has
advanced significantly over the past decade. One notable mission is TechDemoSat-1, launched
by the UK Space Agency (UKSA) in 2014, which served as a technology demonstration satellite
showcasing the potential of GNSS-R (Foti et al., 2015). NASA’s Cyclone Global Navigation Satellite
System (CYGNSS), operational since 2016, employs GNSS-R to study tropical cyclones and improve
hurricane forecasting (Ruf and et al., 2016). Additionally, ESA’s PRETTY mission, launched in
October 2023, aimed to study various Earth surface properties through passive reflectometry and
dosimetry (Dielacher et al., 2019). Looking ahead, the European Space Agency (ESA) plans to launch
the HydroGNSS mission in 2025, specifically designed for hydrological applications using GNSS
reflectometry (Unwin et al., 2021).
Recently, GNSS-Interferometric Reflectometry (GNSS-IR), a variant of GNSS-R that utilizes interference
patterns created by direct and reflected GNSS signals, has been gaining attention. By analyzing these
interference patterns, valuable information about the Earth’s surface properties can be extracted. One
of the primary applications of GNSS-IR is measuring surface water levels, including those of lakes,
rivers, and reservoirs. By placing GNSS receivers near water bodies, the interferometric signals can be
used to monitor changes in water levels with high precision (Larson, 2016). Moreover, GNSS-IR allows
for the measurement of soil moisture content by capturing the phase variation of reflected GNSS
signals from the ground surface, which varies depending on the moisture content in the soil (Larson,
2016; Zhang et al., 2021). Additionally, GNSS-IR is used to measure snow depth (Nievinski and
Larson, 2014), snowmelt runoff (Altuntas et al., 2022), and shallow sediment compaction (Karegar
et al., 2020). This technique offers significant potential in hydrogeodesy by enabling continuous
monitoring, allowing for real-time data collection, and even serving as a validation tool for satellite
altimetry (Karegar et al., 2022).

The above-mentioned spaceborne geodetic techniques contribute significantly to monitoring the water cycle
in various ways. Table 1.2 provides a detailed list of the most geodetically important components of the
water cycle, along with the corresponding geodetic techniques for either directly measuring or indirectly
estimating each component.
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Tab. 1.2: The potential of spaceborne geodetic techniques in monitoring water cycle components

geodetic quantities of water cycle observed? by estimated? through

river discharge Q no yes SWOT (e.g., Durand et al., 2014, 2023;
Andreadis et al., 2025)
satellite altimetry (e.g., Tourian et al.,
2013; Paris et al., 2016; Saemian et al.,
2025)
satellite imaging (e.g., Smith and Pavel-
sky, 2008; Pavelsky, 2014; Tarpanelli et al.,
2013b; Elmi et al., 2021; Scherer et al.,
2024)

river surface water height h yes satellite altimetry (Papa et al., 2010a;
Tourian et al., 2016)
SWOT (e.g., Biancamaria et al., 2016; Fu
et al., 2024)

river surface slope ∂h/∂x yes radar altimetry (e.g., Schwatke et al.,
2024)
laser altimetry (e.g., Scherer et al., 2023)
SWOT (e.g., Biancamaria et al., 2016)
GNSS-IR (e.g., Karegar et al., 2022)

river flow velocity v no yes satellite imaging (e.g., Everard et al.,
2023)

river depth D partially Laser altimetry (e.g., Wang, 2024) yes SWOT (e.g., Durand et al., 2009; Yoon
et al., 2012)
satellite altimetry+imaging (e.g., Tourian
et al., 2017a)

river width W yes satellite imaging (e.g., Elmi et al., 2015;
Allen and Pavelsky, 2018; Feng et al.,
2022)
SWOT (e.g., Biancamaria et al., 2016)

groundwater discharge QG no no

absolute total water storage S no no
Total Drainable Water Storage SD no yes satellite gravimetry (e.g., Tourian et al.,

2018, 2023a)
total water storage anomaly ∆S yes satellite gravimetry (e.g., Wahr et al.,

1998)
snow water storage SS no yes GNSS (e.g., Capelli et al., 2022; Steiner,

2019)
glacial water storage anomaly SS no yes GNSS-R (e.g., Steiner et al., 2023)
absolute surface water storage SW no yes SWOT (+DEM) (e.g., Lee et al., 2010)
surface water storage anomaly ∆SW no yes SWOT (e.g., Lee et al., 2010)

Satellite altimetry+imaging (+DEM) (e.g.,
Vanthof and Kelly, 2019)

surface water area A yes satellite imaging (e.g., Pekel et al., 2016;
Pham-Duc et al., 2017; Elmi and Ahrari,
2025)
SWOT (e.g., Fu et al., 2024)

surface water depth (lakes) DS partially laser altimetry (e.g., Ranndal et al., 2021)
surface water level change ∂h/∂t yes satellite altimetry (e.g., Birkett, 1995; Cré-

taux and Birkett, 2006)
soil moisture depth (top soil) St

M no yes GNSS-R (e.g., Rodriguez-Alvarez et al.,
2009)

soil moisture anomaly (top soil) ∆St
M no yes GNSS-R (e.g., Wu et al., 2021)

GNSS-IR (e.g., Larson, 2016)
SAR imaging (e.g., Dubois et al., 1995)
InSAR (e.g., Karamvasis and Karathanassi,
2023)
satellite altimetry (e.g., Uebbing et al.,
2017)

soil moisture depth (root zone) Sr
M no no

soil moisture anomaly (root zone) ∆Sr
M no no

absolute groundwater storage SG no no
groundwater storage anomaly ∆SG no yes satellite gravimetry+imaging+altimetry

(+models) (e.g., Voss et al., 2013)

Hydrological loading effects

vertical displacement du yes GNSS (e.g., Fu et al., 2022) yes satellite gravimetry (e.g., Argus et al.,
2017)

horizontal displacement dn, de yes GNSS (e.g., Fu et al., 2022) yes InSAR (e.g., Hong and Liu, 2021)

Although many components are observed, some remain unobserved due to the limitations of electromagnetic
signals (Alsdorf et al., 2007; Jaramillo et al., 2024; Trenberth and Asrar, 2014). One main limitation
is that these signals cannot penetrate water bodies to the required depths, hindering the measurement
of many components, such as river discharge (Gleason et al., 2017; Gleason and Durand, 2020). River
discharge, however, can be estimated by combining river surface height (h), slope (∂h/∂x), width (W ), and
cross-sectional area (Durand et al., 2014); by forming a rating curve using any of these variables (Pavelsky,
2014; Tourian et al., 2013); or by exploiting the spectral contrast between water and land in satellite
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imagery to derive a reflectance ratio that correlates with discharge (Tarpanelli et al., 2013b). The river
surface water height is directly measured by satellite altimetry, both nadir and the SWOT mission (Birkett,
1995; Papa et al., 2010a; Biancamaria et al., 2016). The river surface slope (∂h/∂x) can be obtained using
SWOT and also nadir altimetry, both radar altimetry (Schwatke et al., 2024) and laser altimetry (Scherer
et al., 2023). And the river width W can be determined through satellite images (Elmi et al., 2015). With
these surface variables, river discharge can be estimated, albeit with some degree of uncertainty (Durand
et al., 2014, 2023; Andreadis et al., 2025). The precision of such estimates would be significantly improved
if river depth could also be observed. Efforts to achieve this have been made using the SWOT mission, as
well as a combination of satellite altimetry and imaging (Yoon et al., 2012; Tourian et al., 2017a).

Another challenge in monitoring hydrological fluxes is that some processes occur in deeper soil layers,
making direct measurements nearly impossible. For instance, sub-surface fluxes like groundwater discharge
cannot be detected by current spaceborne sensors. However, groundwater models, when calibrated with
available surface observations and integrated with remote sensing data, can provide valuable insights into
sub-surface hydrological processes (Li et al., 2019).

Spaceborne geodetic sensors are generally more effective at quantifying storage components. As mentioned
before, total water storage variations can be obtained using satellite gravimetry (Wahr et al., 1998). Its
components, including snow water storage, glacial water storage, surface water storage, soil moisture,
and groundwater storage, can also be partially obtained by spaceborne geodetic sensors. It has been
demonstrated that snow water storage, SS, can be estimated using GNSS (Capelli et al., 2022; Steiner,
2019). Similarly, glacial water storage anomaly, SS, can be estimated using GNSS-R (Steiner et al., 2023).
Surface water storage anomaly, ∆SW, can be obtained by combining height (from altimetry or SWOT) and
area with Digital Elevation Model (DEM) (Lee et al., 2010; Vanthof and Kelly, 2019). Surface water area,
A, is directly obtained through satellite images (Pekel et al., 2016) and SWOT (Fu et al., 2024). Surface
water depth, DS, is partially observed using laser altimetry (Ranndal et al., 2021) and can be indirectly
obtained using SWOT (Yoon et al., 2012) and satellite altimetry in combination with satellite images.

Soil moisture anomaly in the topsoil, ∆St
M, is not observed, but it can indirectly be estimated using GNSS-R

(Wu et al., 2021), GNSS-IR (Larson, 2016), satellite altimetry (Uebbing et al., 2017), SAR imaging (Dubois
et al., 1995), and InSAR (Karamvasis and Karathanassi, 2023). It has also been demonstrated that soil
moisture depth in the topsoil, StM, can be estimated using GNSS-R (Rodriguez-Alvarez et al., 2009).
However, soil moisture depth in the root zone, SrM, and its anomaly, ∆Sr

M, are neither observed nor
estimated. The groundwater storage anomaly, ∆SG, however, can be obtained indirectly using satellite
gravimetry in combination with satellite imaging, altimetry, and modeled soil mositure (Voss et al., 2013).
However, the absolute groundwater storage, SG, and the absolute total water storage S are not directly
observed nor can they be indirectly obtained from any method. The only way to obtain a proxy measure
of absolute total water storage is to estimate the Total Drainable Water Storage (TDWS), which requires
analyzing the relationship between water storage anomalies from satellite gravimetry and river discharge
(Tourian et al., 2018, 2023a).

Moreover, from a geodetic perspective, understanding the impact of hydrological processes on the Earth’s
physical structure is crucial for effectively monitoring the water cycle. One significant aspect of this impact
is the deformation of the Earth’s crust due to hydrological mass redistribution. This deformation primarily
results from temporal changes in hydrological loads, either imposed by flux changes or storage changes.
The consequences of hydrological loading include both vertical and horizontal displacements, which can be
monitored using geodetic techniques. Vertical displacement, du, can be observed using GNSS (Fu et al.,
2022) and estimated using satellite gravimetry (Argus et al., 2017). Horizontal displacement, dn and de,
can also be observed using GNSS (Fu et al., 2022) and estimated using InSAR (Hu et al., 2016). These
observations provide critical data for understanding and monitoring water-related changes on Earth, thereby
enhancing our comprehension of the water cycle.
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1.2 Challenges and possible solutions

Despite the progress of spaceborne geodetic sensors and the fact that, for many water cycle components,
these sensors provide either a direct measure or an indirect estimate as listed in Table 1.2, hydrogeodesy faces
several challenges. Notable challenges include 1) limitations in spatiotemporal resolution, 2) uncertainties
in measurements, 3) unobservables, 4) inconsistencies in background models, and 5) the separability of
aggregated measurements. Additionally, a challenge of a different nature is 6) integrating diverse data
sources. While combining multiple datasets can help address some of these challenges (Kusche, 2003), it
introduces its own complexities, requiring the reconciliation of data with differing resolutions, accuracies,
and temporal scales. In the following sections, each challenge is discussed, and some avenues for possible
solutions to each challenge are described.

1.2.1 Limitation in spatiotemporal resolution

In a logarithmic representation, with the vertical axis indicating spatial resolution in degrees and the
horizontal axis indicating temporal resolution in days, Figure 1.2 illustrates the spatiotemporal resolution of
various techniques and missions. For satellite altimetry missions, due to the nadir measurement concept, the
specified spatial resolution corresponds to the ground track spacing, while the temporal resolution reflects
the mission’s repeat period. For other missions or mission concepts, including satellite gravimetry, imaging,
InSAR, GNSS, GNSS-R, and GNSS-IR, the spatial resolution refers to how finely a signal can be extracted,
and the temporal resolution typically depends on the sampling frequency, revisit time, or continuous data
availability. The spatiotemporal resolutions of these techniques are represented in Figure 1.2 either as
specific points or as approximate regions, depending on the variability across applications.

Satellite altimetry missions, which typically use a nadir-pointing measurement approach and operate with
a single satellite in orbit, face limitations in spatiotemporal resolution due to their orbital configurations
determining the ground track pattern and revisit frequency. As shown in the logarithmic representation in
Figure 1.2, these limitations are evident in the alignment of all missions along a line, indicating an inverse
relationship between spatial and temporal resolution. This means that the product of spatial and temporal
resolution tends to remain constant, such that improving one (e.g., spatial resolution) generally results in
a deterioration of the other (e.g., temporal resolution). The SWOT KaRIn sensor results, either realized
in Low Resolution (LR) or High Resolution (HR), benefit from its interferometric measurement concept
that enables observations away from the nadir track, delivering spatial resolutions from sub-kilometer
down to approximately 30 m, and a temporal resolution of at least 21 days, reaching up to 7 days in some
regions (Fu et al., 2024). Among nadir altimetry missions, CryoSat-2 offers the best spatial resolution, with
a ground track spacing of approximately 7 km, but has the poorest temporal resolution, approximately
one year (Escudier et al., 2017). Such a spatiotemporal resolution highlights that any hydrological cycle
phenomenon, such as a flood in smaller rivers, occurring in a spatiotemporal resolution that spans a region
below that line will remain unmonitored by altimetry missions.

The spatiotemporal resolution of satellite gravimetry missions, which utilize a different measurement
concept than altimetry missions, follows a different yet comparable pattern, where the spatial resolution
of GRACE and GRACE-FO is directly dependent on the provided temporal resolution. The best spatial
resolution is achieved with a monthly solution, within which the entire Earth is fully covered (Kusche,
2007). On the other hand, the best achieved temporal resolution is 1 day, which comes with a coarse spatial
resolution (Kurtenbach et al., 2009). Similarly, for the CHAMP mission, a comparable pattern could be
expected. However, given the limitations of CHAMP in terms of the accuracy of GNSS receivers, the typical
time-variable solution was a monthly solution with a spatial resolution of about 500–600 km (Weigelt et al.,

14 Chapter 1

Hydrogeodesy



s
ta

ti
c

Sentinel-2Small rivers

Large rivers

10³ km

10² km

10 km

1 km

100 m

10 m

104 km

GOCE

GNSS-IR

MODIS

CHAMP

GNSS

GNSS-R

InSAR

LandsatVery fast hydrological

processes

SWOT HR

Fig. 1.2: Spatio-temporal coverage of key satellite missions within hydrogeodesy. The figure categorizes mission
concepts such as satellite altimetry (e.g., conventional and swath-based, including SWOT HR), satellite
gravimetry (e.g., GOCE, CHAMP), Global Navigation Satellite Systems (GNSS), GNSS reflectometry (GNSS-R),
GNSS interferometric reflectometry (GNSS-IR), synthetic aperture radar interferometry (InSAR), and optical
remote sensing (e.g., MODIS, Landsat, Sentinel-2). These techniques are positioned according to their typical
spatial resolution (ranging from > 104 km to ∼ 10m) and revisit time (from decadal to sub-daily), illustrating
their suitability for capturing hydrological processes across a wide range of spatial and temporal scales—from
slow, continental-scale changes to rapid dynamics in small rivers.

2013). The GOCE mission, however, given its orbital configuration, was not suitable for time-variable
gravity field estimation and is mostly used for static gravity field determination (Hirt et al., 2011).

Compared to nadir altimetry and satellite gravimetry, satellite imaging is in a better position regarding
spatiotemporal resolution. Optical and SAR sensors in the MODIS, Landsat, and Sentinel series provide
high-resolution images with pixel sizes ranging from a few meters to tens of meters, capturing detailed
spatial information. However, their temporal resolution is often limited by revisit times, typically ranging
from days to weeks. For instance, optical satellites like Landsat and Sentinel-2 offer spatial resolutions of
10–30 m but have revisit intervals of 5–16 days, which can limit the frequency of observations needed for
continuous monitoring of dynamic processes (Klein et al., 2017; Yao et al., 2019, 2023). SAR satellites,
such as Sentinel-1, provide similar spatial resolutions and have the advantage of all-weather, day-and-night
imaging capabilities, but also face similar temporal limitations (Wulder et al., 2012). Moreover, the surface
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water area of lakes, reservoirs, and river reaches can be extracted from available global inland water
datasets such as the Global Inundation Extent from Multiple Satellites (GIEMS) (Papa et al., 2010b), or the
Global Surface Water Dataset (GSW) (Pekel et al., 2016). However, the derived surface water estimates are
constrained by the temporal and spatial limitations of the initial dataset.

In the case of InSAR, the spatial resolution is determined by the radar’s wavelength, the antenna’s size, and
the distance between successive passes of the satellite. Typically, the spatial resolution of InSAR ranges
from about 1–30 m. Temporal resolution, on the other hand, is influenced by the revisit frequency of the
satellite. For instance, Sentinel-1 typically has a revisit time of 6 to 12 days. TerraSAR-X can have revisit
times as short as 11 days, though specific modes can allow for more frequent monitoring (Karimzadeh and
Mastuoka, 2017; Milillo et al., 2017).

GNSS measurements, due to their point-wise measurement concept and relatively well-distributed global
network (see IGS stations in Figure 1.3), can offer a moderate spatiotemporal resolution for applications
such as monitoring ground displacement due to hydrological loading. However, unlike GNSS-relevant
applications that require a dense network, GNSS-R is not network-dependent and provides an unprecedented
spatiotemporal resolution. Figure 1.3 illustrates the specular points of GNSS reflections over three days in
the Amazon basin, with an elevation angle above 45◦. This scenario assumes a GNSS-R receiver on board
CryoSat-2, orbiting at an altitude of 700 km with an inclination of 92◦, and utilizing a GNSS constellation
comprising 24 GLONASS, 24 GPS, and 30 Galileo satellites. Comparing the ground track sampling of
CryoSat-2 over three days (black lines) with the GNSS-R sampling highlights the significant benefits of
GNSS-R for hydrological applications. However, the accuracy of the measurements still depends on the
footprint of the reflected signal, which can be influenced by factors like satellite altitude, elevation angle,
and receiver configuration.

Fig. 1.3: GNSS-R specular points over three days in the Amazon basin, assuming a GNSS-R receiver on board CryoSat-2
at an altitude of 700 km with an inclination of 92◦, and a GNSS constellation consisting of 24 GLONASS, 24
GPS, and 30 Galileo satellites. The specular points are filtered to exclude those with elevation angles higher
than 45◦. Black circles represent IGS stations.

On the other hand, GNSS-IR, which often depends on ground-based receivers, is limited in spatial resolution,
providing measurements primarily around the station. However, the temporal resolution of GNSS-IR can be
very high, offering measurements with sub-hourly frequency.

It is important to note that what is hidden in Figure 1.2 is the increasing level of uncertainty associated with
satellite measurements when they are provided at their highest possible spatiotemporal resolution. However,
what is clear in Figure 1.2 is that spaceborne geodetic sensors are limited in their ability to monitor fast
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hydrological processes. This limitation hinders the ability to respond properly to natural disasters such
as floods, flash droughts, and sudden shifts in water storage. This highlights the need for improvement
to effectively track and manage these fast-evolving processes. As emphasized by Cerbelaud et al. (2025),
addressing these challenges requires an awareness of the intrinsic trade-offs among spatial and temporal
resolution, uncertainty, and interpretability in spaceborne data.

A general solution to the challenge of spatiotemporal resolution involves combining various measurements.
This involves the integration of multiple data sources to obtain a more comprehensive representation of
hydrological processes. The idea is to combine various data from the same type or different types, such as
satellite observations (e.g., GRACE, altimetry), ground-based measurements (e.g., groundwater levels, soil
moisture), and model outputs. In such a setup, the goal is to benefit from the strengths of each data source
while mitigating their limitations. A classic example of pure data fusion is using multi-mission altimetry to
monitor the water level time series of lakes and reservoirs. This approach can deal with the coarse temporal
resolution of a single satellite on a water body (Crétaux et al., 2013). Another example is the so-called
densification procedure that fuses measurements from multiple altimetry along a river occurring at different
times to obtain a temporally dense time series at any given location (Tourian et al., 2016; Boergens et al.,
2019; Nielsen et al., 2022).

An alternative solution is to assimilate spaceborne geodetic measurements with hydrological data and
models, either with or without model coupling. In coupled models, geodetic data can serve as an input to
the hydrological model, allowing feedback loops between model parameters within the physical processes.
In uncoupled models, there is no dynamic interaction between the geodetic data and the model parameters;
instead, the data serves as a constraint for the modeling process. Whether coupled or uncoupled, assimilation
is perhaps the most targeted objective within hydrogeodesy. When coupled with models, data assimilation
can significantly enhance the simulation of complex hydrological or hydraulic processes by adjusting
model parameters and states to align with observed data. In dealing with the coarse spatial resolution
of GRACE, many data fusing approaches have been attempted to combine coarse-scale GRACE data with
fine-scale hydrological data by either relying on statistical methods (Vishwakarma et al., 2021), or nonlinear
machine learning (ML) techniques such as artificial neural networks (ANN) (Miro and Famiglietti, 2018),
boosted regression trees (BRT) (Seyoum et al., 2019), random forests (RF) (Jyolsna et al., 2021), and
long short-term memory (LSTM) recurrent neural networks (Gorugantula and Kambhammettu, 2022). In
such a context, the Bayesian framework also plays a vital role, providing a robust mathematical foundation
for integrating prior knowledge, observational data, and model simulations. Bayesian data assimilation
techniques, such as the Ensemble Kalman Filter (EnKF) enable the estimation of state variables and model
parameters while quantifying uncertainties (Li et al., 2019; Eicker et al., 2014; Neal et al., 2009). These
techniques can also update model states and parameters in real-time, improving the accuracy of hydrological
predictions (Zaitchik et al., 2008). The Bayesian framework is also practiced and proven to be beneficial
in data assimilation without model coupling (Lorenz et al., 2015; Zhong et al., 2021). In this approach,
the aim is to integrate observed data, both spaceborne and ground-based, directly into a computational
framework or model without explicitly linking model parameters. This method can be more straightforward
and less computationally demanding, making it an efficient tool for improving model performance and
achieving a better understanding of water cycle parameters.

1.2.2 Uncertainties in measurements

The inherent uncertainties in spaceborne geodetic measurements present significant challenges for accurately
assessing hydrological cycles. The uncertainties originate from various sources, including:

• Orbital errors: Inaccuracies in orbital data result in errors in the collected data. Nowadays, for
almost all spaceborne geodetic techniques, Precise Orbit Determination (POD) techniques are utilized,
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which involve the use of GNSS data, laser ranging, and Doppler Orbitography and Radiopositioning
Integrated by Satellite (DORIS) to refine the satellite’s position and velocity data (Scharroo and
Visser, 1998). Thanks to POD, the orbital errors in the current satellite data are typically at the
centimeter level (Rudenko et al., 2023). However, even small errors can propagate through the
data processing chain, leading to non-negligible uncertainties in measurements. This is particularly
critical in applications like sea-level change monitoring, requiring long-term data continuity and high
precision, where cumulative errors can significantly impact the reliability of the results. Therefore,
continuous advancements in POD techniques and the integration of complementary data sources are
essential to further minimize these errors (Montenbruck et al., 2021).

• Instrumental errors: These include inaccuracies and noise in the spaceborne and ground-based
sensors and instruments. Instrumental drift, thermal effects, and electronic noise can all contribute
to measurement uncertainties. For instrumental errors, calibration and validation processes are
essential to ensure the accuracy and reliability of the sensors, which often involves comparing
satellite data with high-precision ground-based observations within Calibration/Validation (Cal/Val)
activities (Bonnefond et al., 2021) or using onboard calibration systems.

• Atmospheric disturbances: Variations in the atmosphere, such as changes in temperature, pressure,
humidity, and ionospheric conditions, will affect the signals transmitted and received by the satellite,
leading to errors in measurements. To deal with atmospheric disturbances, modeling atmospheric
delay correction, including tropospheric and ionospheric corrections, is employed (Fu and Cazenave,
2001). In inland altimetry, for instance, this remains a significant challenge, and further advance-
ments are needed to improve the accuracy of these corrections (Fernandes et al., 2014). Continuous
improvements in atmospheric modeling and the integration of data from high-resolution meteoro-
logical models are vital for reducing these errors and enhancing the reliability of inland altimetry
measurements. Furthermore, the development of advanced algorithms and the use of auxiliary data,
such as from GNSS receivers, can aid in refining these corrections and addressing the challenges posed
by atmospheric disturbances in satellite-based measurements (Arabsahebi et al., 2018a; Alizadeh
et al., 2011). In satellite gravimetry, to obtain TWSA, atmospheric tidal and nontidal mass variations
must be accurately accounted for. This involves integrating data from global atmospheric models
to correct for the gravitational effects of atmospheric mass changes, which can otherwise introduce
significant errors into the measurements (Flechtner et al., 2006). For this purpose, high-resolution
atmospheric reanalysis data, such as those from the European Centre for Medium-Range Weather
Forecasts (ECMWF) or the National Centers for Environmental Prediction (NCEP), are typically
employed. These datasets, while crucial for improving accuracy, often add their own uncertainties to
TWSA (Zenner et al., 2010).

• Platform motion-related errors: Movements of the satellite platform, such as vibrations, tilting, and
thermal expansion or contraction, can introduce errors in the data. These movements can affect the
alignment and stability of the instruments. To mitigate these errors, precise attitude determination
and control systems are employed to monitor and correct the satellite’s orientation. These systems
use a combination of gyroscopes, star trackers, and reaction wheels to maintain the satellite’s stability
and ensure that the instruments remain properly aligned. However, depending on the measurement
concept, platform motion-related errors can still sometimes be a major source of error. For instance,
while pulse-limited radar altimetry is less sensitive to platform motion-related errors due to its
corresponding footprint size, laser altimetry is more sensitive to such errors (Abdalati et al., 2010).
Also in the SWOT mission, due to the interferometric measurement concept, any baseline roll error is
equivalent to a look angle error and, therefore, introduces an interferometric phase error (Peral et al.,
2024), which currently poses a challenge for obtaining accurate water levels.

• Mission constellations: The mission constellation itself can introduce measurement uncertainty,
particularly in satellite gravimetry missions (Sneeuw et al., 2005). In GRACE and GRACE-FO data,
the along-track inline formation of the two satellites in a near-polar orbit leads to uncertainty that
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predominantly manifests as north-south stripes, contributing to spatially correlated errors. To mitigate
this, data are typically filtered to reduce errors, using a destriping filter to minimize correlated errors
and either an isotropic filter, such as a Gaussian filter (Jekeli, 1981), or an anisotropic filter (Swenson
and Wahr, 2006; Kusche, 2007; Devaraju, 2016) to reduce noise in higher-order coefficients. However,
these filters cannot reliably distinguish between true signal and noise, leading to signal alteration—a
phenomenon known as leakage (Baur et al., 2009). Leakage is most significant where there is high
signal contrast in time-variable gravity signal, such as near large water bodies or along coastlines.
For example, over lakes, filtering reduces the signal within the lake itself, causing it to extend into
adjacent land areas. The leakage presents additional challenges in using GRACE and GRACE-FO data
to estimate TWSA, prompting an investigation into several de-leakage algorithms (Long et al., 2015;
Vishwakarma et al., 2017).

• Processing algorithms errors: The algorithms and models used to process level-1 and level-2 satellite
data or ground-based data into usable information can introduce significant errors. Assumptions
and approximations made in these algorithms, as well as numerical inaccuracies, can affect the final
results. This may be the main source of uncertainty in many spaceborne geodetic techniques. For
instance, in inland altimetry, the main source of uncertainty often lies in the processing algorithm to
obtain a range estimate from a waveform, the so-called retracking procedure (Brown, 1977; Roscher
et al., 2017). In the processing of GRACE and GRACE-FO data, as mentioned before, one of the
main contributors to an error in the final TWSA estimate is often related to the selected filtering and
processing techniques (Swenson et al., 2006; Kusche et al., 2009; Devaraju, 2016). For extracting
surface water extent using satellite imaging, the main source of uncertainty often lies in the method
for extracting surface water extent (Elmi et al., 2016; Elmi and Tourian, 2023). In line with ongoing
efforts to improve processing algorithms, trending Artificial Intelligence (AI)-based techniques, as
well as statistical and Bayesian approaches, are being investigated. Here, Bayesian approaches are
particularly beneficial as they offer a systematic way to update and refine estimates as new data
becomes available (Halimi et al., 2017). Additionally, they are beneficial as they can incorporate
multiple sources of uncertainty, including observational errors and model inaccuracies, into a single
coherent framework.

1.2.3 Unobservables

As indicated in Table 1.2, many water cycle components, such as river depth and discharge, absolute total
water storage, TDWS, and groundwater storage, cannot be observed directly. Instead, these components can
often be derived indirectly through surface measurements (Tourian et al., 2017a, 2018). For unobservable
variables like groundwater storage, combining different datasets often provides a viable solution. For
example, integrating data from GRACE with soil moisture products and altimetry- and images-based surface
water storage estimates has proven effective (Voss et al., 2013). However, such an integration poses a
challenge due to the differing spatial and temporal resolutions, measurement uncertainties, and processing
methodologies of the datasets involved, which will be discussed in Section 1.2.6.

In most cases, obtaining unobservables necessitates solving an inverse problem, which poses a significant
challenge due to the nonlinearity and ill-posed nature of the underlying equations, leading to non-unique
and unstable solutions (Tarantola, 2005). It is evident that when these variables are derived indirectly, the
uncertainties inherent in the measurements and the assumptions within the models propagate through
the processing, impacting the final estimates. Consequently, even small errors in the observed data or
inaccuracies in the model assumptions can result in significant variations in the derived results.

In deriving unobservable variables, Bayesian approaches are particularly effective, offering a robust frame-
work to incorporate uncertainty and prior information into the estimation process. This probabilistic
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framework is especially valuable in handling the non-linearity and ill-posed nature of inverse problems,
as it can incorporate various sources of uncertainty and provide a range of plausible solutions rather than
a single, potentially unstable estimate (Mariethoz et al., 2010). More specifically, Bayesian approaches
are particularly effective for estimating river discharge using data from the SWOT mission. Within reach-
scale inverse algorithms, the prior knowledge of river discharge characteristics is combined with observed
data from SWOT, resulting in a posterior distribution that fairly represents discharge values and their
uncertainties (Durand et al., 2014, 2016; Larnier et al., 2021; Durand et al., 2023).

1.2.4 Inconsistencies of background models

Inconsistencies in background models used in satellite data processing are a major challenge in hydrogeodesy.
Background models, such as those for atmospheric delay and pressure, ocean tides, and non-tidal oceanic
and atmospheric mass variations, are crucial for obtaining geodetic measurements. Discrepancies among
these models can lead to significant variations in derived hydrological parameters (Seo et al., 2008). For
instance, GRACE and GRACE-FO require background models to account for atmospheric and oceanic mass
variations, both tidal and non-tidal. Inconsistencies in these models can introduce errors in the gravity
field solutions, affecting the estimation of TWSA (Tapley et al., 2004b). The challenge lies in the fact
that these background models are typically partial, describing individual components of the Earth system
without being coupled with other components. Moreover, they are developed using different datasets,
methodologies, and assumptions. For example, atmospheric mass changes are modeled using various
meteorological data sources and numerical weather prediction models, which may have different spatial
and temporal resolutions (Flechtner et al., 2006). Ocean tide models are developed using a combination
of satellite altimetry, tide gauge data, and hydrodynamic modeling, each with its inherent limitations and
uncertainties (Lyard et al., 2006).

It is necessary to continuously update and improve the models by developing standardized processing
schemes and integrating the latest observational data. Specifically, inconsistencies in background models
require efforts to harmonize them by coupling different compartments at relevant temporal and spatial
scales (Dobslaw et al., 2017). Additionally, validation and intercomparison studies are essential, comparing
the outputs of different models against independent observational data to identify and quantify discrepancies
(Ray et al., 2011; Seo et al., 2008; Fernandes et al., 2014). Although many efforts have been made, this
challenge is not fully resolved and probably will never be tackled. The complexity and variability inherent in
the development of background models, combined with the ever-changing nature of the Earth’s atmospheric
and oceanic systems, indicate that some level of inconsistency will always persist.

1.2.5 Separability of aggregated measurements

The challenge of separating aggregated signals vertically and horizontally is a key obstacle to accurately
quantifying different water cycle components. While horizontal separability is rather related to spatial
resolution, discussed in Section 1.2.1, vertical separability is primarily attributed to distinguishing between
different storage compartments, such as surface water, soil moisture, groundwater, snow, and glaciers.
Specifically, GRACE and GRACE-FO, in their estimates of storage variations, are unable to resolve how
much of the change comes from different layers of the hydrological system without additional modeling or
complementary data (Schmidt et al., 2008). The challenge of vertical separability is further complicated
by the fact that different water storage components often have varying temporal and spatial scales. For
example, changes in surface water (e.g., lakes and rivers) may occur over shorter periods and more localized
regions, whereas groundwater storage variations tend to happen over longer timescales and larger spatial

20 Chapter 1

Hydrogeodesy



extents. Soil moisture and snow storage also exhibit distinct temporal dynamics and spatial heterogeneity,
making it difficult to differentiate their contributions to the gravimetry-derived signals (Yin et al., 2020).

Combining their data with in-situ measurements, hydrological model outputs, or other spaceborne geodetic
sensors (e.g., from altimetry and satellite images) can lead to the separation of some of these compo-
nents (Voss et al., 2013). Additionally, data assimilation with hydrological models, that describe physical
processes between different compartments, provides a solution for estimating the contributions of various
compartments (Girotto et al., 2016; Mehrnegar et al., 2023).

The measurement principle of satellite altimetry also presents the challenge of separating aggregated
measurements. While the ground track-driven spatial resolution, its consequent limitations, and potential
solutions are discussed in Section 1.2.1, the large along-track footprint of altimetry remains a significant
challenge. The pulse-limited footprint diameter of altimetry missions is typically between 2–3 km (Raney
and Phalippou, 2011), propagating to even more than 10 km in its trailing edge. This leads to the integration
of signals from land and water and sometimes even from various water bodies. This complicates the isolation
of specific water bodies, especially in regions with complex topography or closely spaced hydrological
features. Such issues are typically addressed using a retracking algorithm, as discussed in Section 1.2.2.
Another possible solution is to use the Fully Focused Synthetic Aperture Radar (FF-SAR) method, which
is an ongoing research area within hydrogeodesy. FF-SAR enhances the spatial resolution of altimetry
measurements along the track for SAR altimetry missions, including CryoSat-2, Sentinel-3, and Sentinel-
6MF. Unlike the conventional unfocused SAR (UF-SAR) method, FF-SAR can effectively manage different
bursts by providing precise delay and phase compensation. This reduces the integration time from about
2 s to 3 ms, resulting in a significant enhancement in along-track resolution (Egido and Smith, 2017). The
maximum theoretical resolution achievable is half the length of the antenna, improving the along-track
resolution to about 0.5 m compared to 300 m for UF-SAR. The cross-track resolution remains unchanged, as
it is controlled by radar bandwidth rather than processing (Egido and Smith, 2017)

1.2.6 Integration of diverse data sources

The integration of diverse data sources, which is a solution to many of the aforementioned challenges, is a
challenge in itself. Given the fact that different satellites provide different components of the hydrological
cycle, it is essential to combine various datasets for a better understanding of the hydrological cycle (van
Dijk et al., 2014). As discussed before, spaceborne geodetic sensors vary in terms of observation type,
spatiotemporal resolution, temporal coverage, and measurement techniques (Alsdorf and Lettenmaier,
2003). The challenge is even more prominent when it comes to integrating ground-based observations, such
as those from GNSS stations and in-situ hydrological measurements (Tang et al., 2010). Combining these
diverse data sources requires sophisticated data fusion techniques that can reconcile differences in resolution,
coverage, and measurement methodologies (Zhang, 2010), some of which are discussed in Section 1.2.1.
Additionally, the integration of diverse data sources must account for the inherent uncertainties in each
dataset, which is a challenge in itself. This challenge is further exacerbated when the uncertainties for
several observables (both satellite and in situ) are incompletely known or entirely unknown. To this
end, robust and flexible methods with uncertainty quantification frameworks are necessary to assess and
propagate these uncertainties through data fusion.

Bayesian data fusion techniques offer a powerful approach for integrating diverse data sources by updating
prior knowledge with new observations, resulting in refined estimates incorporating data and model
uncertainties. This is especially beneficial in hydrogeodesy, where measurements from various sensors and
techniques often have differing levels of uncertainty (Weise and Woger, 1993). In this context, particular
attention has been given to the use of EnKF for the assimilation of satellite gravimetry data with other
datasets and models (Zaitchik et al., 2010; Eicker et al., 2014; Tangdamrongsub et al., 2020; Khaki
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et al., 2020). Despite significant progress in this area, data assimilation approaches face notable challenges.
Assimilation in observation space can suffer from numerical instability due to ill-conditioned error covariance
matrices, a result of the limited spatial resolution of satellite-based data. In model space, applying coarse
satellite gravimetry observations to finer model grids can lead to smoothed spatial details, misallocated
mass changes, and suppressed dynamic ranges in complex terrains. Additionally, hydrological processes
often exhibit non-Gaussian behaviors—such as skewed soil moisture distributions, log-normal snow water
equivalent errors, and non-linear groundwater dynamics—which violate fundamental assumptions of
Kalman filtering techniques and introduce biases. These biases can propagate into flux estimates, such
as discharge and baseflow, potentially leading to erroneous hydrological assessments. Furthermore, the
absence of key physical processes, including those influenced by anthropogenic activities, can exacerbate
these biases, complicating the improvement of fluxes like river discharge that depend on temporal storage
changes. Consequently, advancing data assimilation and integration methodologies will likely remain a
central focus of future research in hydrogeodesy.

Like many other disciplines, hydrogeodesy is witnessing an emerging trend of utilizing AI techniques to
integrate diverse datasets and address various challenges (Reichstein et al., 2019; Gou and Soja, 2024). It
has been demonstrated that applying AI can uncover patterns and trends previously hidden in complex
hydrological datasets (Karpatne et al., 2017). Among the AI techniques employed, ML and, more specifically,
Deep Learning (DL) stand out for their remarkable capabilities in extracting meaningful insights from vast
amounts of data. ML algorithms, such as Random Forests and Gradient Boosting Machines, are widely
used for classification, regression, and clustering tasks in hydrology, enabling predictions of streamflow,
groundwater levels, and precipitation patterns with improved accuracy (Zounemat-Kermani et al., 2021).
These techniques often serve as a precursor to more advanced DL approaches, where neural networks with
multiple layers can automatically extract intricate features from raw data, significantly reducing the need
for manual intervention (Janiesch et al., 2021). Within DL, Convolutional Neural Networks (CNNs) are
particularly effective in processing spatial data from satellite data, enhancing the monitoring of changes
in water bodies, ice caps, and land moisture with unprecedented accuracy (Merchant, 2020). On the
other hand, Recurrent Neural Networks (RNNs), including their advanced forms like Long Short-Term
Memory (LSTM) networks, excel at analyzing temporal sequences, making them suitable for studying
time series data, such as reconstructing pre-satellite records, forecasting river discharge, and detecting
long-term trends in water storage (Yu et al., 2021). Additionally, Generative Adversarial Networks (GANs)
offer innovative applications in simulating hydrological scenarios and generating high-resolution data from
sparse observations (Gu et al., 2024). These capabilities are particularly valuable for addressing data gaps
in remote or under-monitored regions, where sparse observations often limit the accuracy of traditional
models. They also align with a growing call for empirical, data-driven hydrology at scale, where machine
learning serves as a tool for discovery rather than an end in itself, as favored by Gleason and Brown (Gleason
and Brown, 2025).

1.3 Rationale and structure of this habilitation thesis

While AI techniques receive significant attention these days, it can be argued that the potential of Bayesian
techniques remains underutilized. The extensive data available from different sensors can serve as prior
information on the water cycle. These prior insights can be encoded within the Bayesian framework,
allowing quantification of water cycle components, even in data-sparse regions or periods (Beven, 2009;
Vrugt et al., 2008; Smith, 2010). Bayesian approaches offer a robust framework for handling the vast
amounts of data available from different satellites, facilitating the estimation of various hydrological cycle
parameters and their associated uncertainties.
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Moreover, while AI methods excel in finding unexplored dependencies and predictive modeling, they often
struggle with uncertainty quantification (Begoli et al., 2019). Bayesian methods provide a clear advantage in
this regard by offering a probabilistic interpretation of results (McMillan et al., 2011). Bayesian techniques
can explicitly obtain an uncertainty estimate for parameters. This is particularly important in hydrogeodesy,
where the parameters of the hydrological cycle, such as river discharge, soil moisture, and groundwater
storage, are often estimated indirectly and are subject to significant uncertainties. Integrating Bayesian
techniques with AI-based methods has shown promise in improving the accuracy and efficiency of water
cycle modeling and data assimilation processes (Li and Liu, 2025). Bayesian deep learning methods, such as
Bayesian neural networks (BNNs), variational autoencoders (VAEs), Bayesian convolutional neural networks
(BCNNs), and Bayesian recurrent neural networks (BRNNs), combine the strengths of deep learning with
the probabilistic reasoning of Bayesian inference (Wang and Yeung, 2016). BNNs introduce uncertainty
estimates into the predictions, providing a measure of confidence in model outputs, which is particularly
valuable for hydrogeodesy. VAEs enable efficient encoding and generation of complex hydrological data,
facilitating the identification of latent structures and patterns within the data. BCNNs extend Bayesian
inference to convolutional neural networks, enhancing uncertainty estimation in image classification and
segmentation tasks, while BRNNs apply Bayesian principles to sequential data, improving robustness in
time-series predictions (Mo et al., 2022). Therefore, the potential of Bayesian techniques can be explored
alongside AI methods or independently, offering enhanced interpretability and reliability in hydrogeodesy.

Inspired by the potential of Bayesian approaches, this habilitation thesis aims to highlight the versatility and
power of Bayesian methods in advancing hydrogeodesy, particularly in enhancing water cycle parameters.
To this end, first, a fundamental description of Bayesian statistics and modeling is provided, establishing a
connection to the classical frequentist approaches typically used in geodesy. Then, the following chapters
will discuss three specific studies that utilize Bayesian approaches in different ways. The first study focuses
on the use of dynamic models to tackle the challenge of spatiotemporal resolution, demonstrating how
Bayesian methods allow for estimating river discharge over a river network. The second study explores
downscaling GRACE data using a dedicated Bayesian framework, addressing the issue of coarse spatial
resolution and improving the utility of GRACE observations for local-scale hydrological studies. The third
study investigates the use of graphical models within a Bayesian framework to improve the estimation of
water levels from satellite altimetry.

It is important to note that this thesis does not aim to provide a comprehensive description of all existing
Bayesian techniques, nor an overview of all Bayesian techniques in hydrogeodesy, nor a demonstration
of all the potential of Bayesian approaches for hydrogeodesy. Instead, along with providing foundational
knowledge, it seeks to emphasize the benefit of Bayesian approaches for some of the challenges in
hydrogeodesy. These approaches are applicable to many parameters and challenges within hydrogeodesy
and demonstrate the effectiveness and versatility of Bayesian methods in improving certain key parameters
of the hydrological cycle.
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Bayesian statistics and modeling 2
B ayesian statistics presents an approach to analyzing data by relying on the Bayes theorem. In a simple

word, this method involves updating initial knowledge about parameters in a statistical model with
information obtained from observations (van de Schoot et al., 2021). The initial knowledge is represented
as a prior distribution, which is then combined with the observed data using a likelihood function, resulting
in the determination of the posterior distribution (Bishop, 2006; Koch, 2007; Aldrich, 2008).

The history of Bayesian statistics can be traced back to the 18th century when mathematicians began to
develop methods for estimating the parameters of probability distributions. Thomas Bayes (1701–1761), an
English mathematician and theologian, laid the groundwork for Bayesian statistics with his seminal work
on probability theory. In his posthumously published essay, Essay towards solving a problem in the doctrine of
chances in 1764, Bayes introduced what is now known as the Bayes theorem. The solution proposed by
Thomas Bayes for the case of a uniform prior was later generalized by Pierre-Simon Laplace (1749–1827),
who recognized the broader applicability of Bayesian reasoning. Laplace extended and formalized Bayes’
ideas, applying them to various scientific disciplines, including astronomy and biology. His contributions
solidified Bayesian statistics as a powerful tool for statistical inference (Aldrich, 2008).

While frequentist statistics received more attention in the early 20th century, Bayesian methods remained
relatively obscure until the mid-20th century. Advancements in computational power and the work of
statisticians such as Harold Jeffreys and Leonard J. Savage revived interest in Bayesian inference (Jeffreys,
1961; Savage, 1954). The late 20th and early 21st centuries saw a significant increase in the application of
Bayesian methods. Today, both frequentist and Bayesian approaches are widely practiced, each providing
unique advantages depending on the analysis context and the nature of the data.

2.1 The Bayes theorem and Bayesian probability

Let us consider a pair of random variables, denoted as A and B, with a joint probability distribution P(A,B),
we can write the so-called sum rule and the product rule as:

sum rule P(A) =
∑
B

P(A,B) (2.1)

product rule P(A,B) = P(A|B)P(B) (2.2)

The sum rule states that the marginal probability of A is the sum of the joint probabilities of A and B over
all possible values of B. And the product rule states that the joint probability of A and B is the product of
the probability of B and the conditional probability of A given B. In other words, to find the probability of
both A and B occurring simultaneously, we multiply the probability of B by the probability of A occurring
given that B has occurred.

By combining the product rule of probability with the symmetry rule P(A,B) = P(B,A), we obtain the
following relationship between conditional probabilities (Bishop, 2006):
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P(A|B) = P(A,B)
P(B) = P(B,A)

P(B) = P(B|A)P(A)
P(B) , (2.3)

which is called the Bayes theorem. By applying the sum rule, it becomes possible to represent the denominator
using the variables present in the numerator.

P(B) =
∑
A

P(B|A)P(A) , (2.4)

which implies that the denominator serves as a normalization factor, guaranteeing that the summation of
the conditional probability on the left side of Equation (2.3) across all A values equals one.

The Bayes theorem becomes handy in dealing with obtaining the probability for events that are repeated,
and a probability estimate is available. Let us delve into it using a straightforward example. Let’s assume
we have historical data that tells us the probability of heavy rainfall given that a flood has occurred in the
past P(Rain|Flood). We also have data on the overall probability of heavy rainfall P(Rain) regardless of
whether a flood happens or not, and the overall probability of a flood P(Flood). Using the Bayes rule, we
can calculate the probability of a flood occurring given the presence of heavy rainfall as:

P(Flood|Rain) = P(Rain|Flood)P(Flood)
P(Rain) . (2.5)

Let us add some numbers to make it more sensible:

• P(Flood): Suppose that the probability of a flood occurring in a given year P(Flood) is 0.1 (10%).
• P(Rain|Flood): Suppose that the probability of heavy rainfall given a flood is 0.8 (80%). The

probability of heavy rainfall without a flood P(Rain|¬Flood) is 0.2 (20%).

Using the Bayes theorem, we can calculate the probability that a flood occurs given that there has been
heavy rainfall. First, we calculate P(Rain):

P(Rain) = P(Rain|Flood)P(Flood) +P(Rain|¬Flood)P(¬Flood) (2.6)

P(Rain) = (0.8×0.1) + (0.2×0.9) = 0.08 + 0.18 = 0.26 (2.7)

Then,

P(Flood|Rain) = 0.8×0.1
0.26 ≈ 0.3077 . (2.8)

This result shows that given the occurrence of heavy rainfall, the probability of a flood occurring increases
to approximately 30.8%, reflecting the impact of both the prior probability and the likelihood of heavy
rainfall given a flood.

2.2 Bayesian inference

In the previous example, the exploration of probabilities lies in the concept of frequencies of repeatable
random events, which is a classical or frequentist interpretation of probability. Let us shift our focus to the
broader Bayesian perspective, where probabilities serve as a means to quantify uncertainty.
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Consider an event that is inherently uncertain in nature, such as whether Lake Urmia in Iran will vanish
by 2090, a time at which many climate projections indicate the lake will be severely impacted by rising
temperatures and increased evapotranspiration (Modaresi and Araghi, 2023). This event cannot be
replicated multiple times to establish a probability, as we did with the heavy rain and flood example.
However, we often possess some understanding about the rate of Lake Urmia’s water loss. And then,
when new evidence emerges, such as data from satellite altimetry, satellite imaging, and the GRACE
mission (Tourian et al., 2015), our stance on lake water loss might change. In such instances, the ability to
precisely gauge uncertainty and recalibrate it based on new measurements becomes crucial, followed by
making optimal choices. This can be achieved through the Bayesian interpretation of probability, which
provides a framework for updating the probability of a hypothesis as more evidence or information becomes
available. This process of updating is known as Bayesian inference.

Bayesian inference is the method of deducing properties about a phenomenon from data using the Bayes
theorem. The core of Bayesian inference is the likelihood function, which combines prior knowledge with
new evidence to form a posterior probability distribution. Given a hypothesis H and observed data D, the
Bayes theorem allows us to update the probability of the hypothesis:

P(H|D) = P(D|H)P(H)
P(D) . (2.9)

Here, P(H|D) is the posterior probability, P(H) is the prior probability, P(D|H) is the likelihood, and P(D)
is the evidence or marginal likelihood.

The process of Bayesian inference involves the following steps:

• Specifying the prior: This involves defining a prior probability distribution P(H) that encapsulates our
beliefs about the hypothesis before observing any data.

• Calculating the likelihood: Determine the likelihood P(D|H), which represents the probability of
observing the data given the hypothesis.

• Applying the Bayes theorem to update the prior distribution based on the obtained likelihood, resulting
in the posterior distribution P(H|D).

According to Equation (2.9), obtaining the posterior distribution involves multiplying the likelihood by the
prior distribution and then normalizing the result (see Figure 2.1). While the prior distribution must be a
valid probability distribution (with its integral equal to one), the likelihood function does not have to be a
probability distribution. Multiplying the prior by the likelihood yields an unnormalized posterior, which
becomes a proper posterior distribution once it is normalized by the denominator.

-30 -20 -10 0 10 20 30
0

0.1

0.2

0.3
prior
likelihood
posterior

Maximum A posteriori (MAP) solution

Fig. 2.1: Obtaining the posterior distribution involves multiplying the likelihood by the prior distribution and then
normalizing the result. The Maximum A Posteriori (MAP) solution refers to the value of x at which the
posterior probability is maximized.
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Let us return to the example of Lake Urmia and the question of whether it will vanish by 2090. In this
context, the hypothesis H is that the lake will disappear by 2090, meaning that its water level will reach
the lowest bathymetry level 1265 m (see the bathymetry of the Lake in Figure 2.2). The observed data D is
the measured water level up to 2020 (see Figure 2.2 right). The best way to determine whether the lake
will vanish by 2090 is to analyze the water level variations and their long-term behavior. When analyzing
the long-term behavior, H refers to the trend parameters of water level variations, and P(H) is the prior
belief about these parameters.

Fig. 2.2: Left) The bathymetry of Lake Urmia varying between 1265 and 1274m, together with the surface water
extent of January 2002, 2008, and 2014. Right) Lake Urmia in situ water level time series from 1966 to 2020

We have a set of data with m measurements of the water level, y = [y1, . . . ,ym]>, where t= [t1, . . . , tm]>

represents the time of the measurements. To analyze the long-term behavior, one common approach is to
fit a line to the water level time series f(t,x) = a+ bt, with x being the unknown parameters x= [a,b]>.
By fitting such a line and extending it to 2090, within an uncertainty range, we can predict whether the
water level will reach the lowest possible water level 1265 m. To obtain such an estimate and its uncertainty,
the measurements’ uncertainty should first be considered. To do this, let us express the uncertainty of
observation y using a probability distribution. We assume that, given the value of t, the corresponding
value of y follows a certain distribution. For simplicity, we assume a normal distribution with a constant
variance σ2

y for all measurements:

P(y|t,x,σ−2
y ) =N (y|f(t,x),σ2

y). (2.10)

This means that at any measurement epoch ti, we assume a normal distribution with the mean being the
target function f(t,x) to be fitted and standard deviation σy. We can use the water level values y measured
at t to determine the unknown parameters x using a maximum likelihood estimation. The likelihood
function is given by the product of probability distributions of all m measurements:

P(y|t,x,σ−1
y ) =

m∏
i=1
N (yi|f(ti,x),σ2

y) (2.11)

=
m∏
i=1

1√
2πσy

exp
{
− 1

2σ2
y

(yi−f(ti,x))2
}
. (2.12)

To maximize this likelihood function, it is convenient to maximize its logarithm:
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lnP(y|t,x,σ−2
y ) =−

σ−2
y

2

m∑
i=1

(f(ti,x)−yi)2 + m

2 lnσ2
y−

m

2 ln(2π). (2.13)

The solution for the parameter x̂ is then obtained by maximizing Equation (2.13) for x. For this, we note
that the last two terms can be neglected since they do not depend on x. Further, it becomes clear that in

the first term
σ−2
y

2 is a positive scalar value and does not influence the choice of x, therefore replacing
σ−1
y

2
by 1

2 does not influence the choice of x. So maximizing Equation (2.13) corresponds to maximizing the first
term only. In fact, instead of maximizing the log-likelihood, we can minimize the negative log-likelihood:

1
2

m∑
i=1

(f(ti,x)−yi)2→minimum (2.14)

It becomes immediately evident that maximizing the likelihood is equivalent to minimizing the sum of
squared errors, as targeted within least squares estimation.

In a matrix representation of this line fitting exercise, we can write the model as y =Ax+e, with A being
a matrix (design matrix) of size m×n (here in this example the number of unknowns n = 2) with t in

its second column and the first column being 1m =
[
1 1 · · · 1

]>
. With such a formulation, the cost

function in Equation (2.14) can be written as

C(x) = 1
2e
>e ,

for which the minimization means

x̂= min
x
C(x) = min

x̂

1
2(y−Ax)>(y−Ax) = min

x

(
1
2y
>y−y>Ax+ 1

2x
>A>Ax

)
.

The term 1
2y
>y is just a constant that doesn’t play a role in the minimization. The minimum occurs at the

location where the derivative of C is zero:

∂C
∂x

(x̂) =−A>y+A>Ax̂= 0 .

The solution is then
x̂= (A>A)−1A>y , (2.15)

with a covariance matrix of Qx̂ =
(
σ−2
y ATA

)−1
. and the corrected observation ŷ

ŷ =Ax̂ , (2.16)

for which the covariance can be obtained through the error propagation

Qŷ =AQx̂A> , (2.17)

which does not represent the model’s goodness of fit, as long as the original σy is considered for the weight
and no a posteriori variance of unit weight (discussed in Section 2.3) is included (Niemeier, 2008). With
the help of the likelihood function, we can provide an estimate of uncertainty σ̂2

y by minimizing the negative
of Equation (2.13) for σ−2

y :

∂
(
− lnP(y|t,x,σ−2

y )
)

∂
(
σ−2
y

) = 1
2

m∑
i=1
{f(ti,x)−yi}2−

m

2 σ
2
y = 0 ,
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which leads to

σ̂2
yML = 1

m

m∑
i=1
{yi−f(ti, x̂)}2 = e>e

m
,

which is nothing other than the variance of the residuals.

For the Lake Urmia example, a constant uncertainty of 10cm (σy = 10cm) is assumed for the in
situ water level time series. This value of σy indicates that an individual likelihood function for the
parameters a and b is associated with each measurement. In this example m= 19667. Below is the
individual likelihood function of six randomly selected points. Each likelihood function is obtained
by considering a single point for fitting the model y = a+ bt.

1273 1275
a [m]

-0.2

0

0.2

b 
[m

/y
r]

1273 1275 1273 1275 1273 1275 1273 1275 1273 1275 1272 1274
a [m]

Multiplying all of the likelihood functions for 19,667 daily measurements leads to the following
likelihood function:
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with its maximum being:

x̂=
[
â

b̂

]
=
[

1277.289m
−0.099m/yr

]
and its dispersion being:

Qx̂ =
[

2.03×10−6 m2 −1.55×10−10 m2/yr
−1.55×10−10 m2/yr 1.57×10−14 m2/yr2

]

It should be noted that, from the Equation (2.15), it is clear that choosing σy as a constant
uncertainty for all observations does not affect the fitted line of the Maximum Likelihood or Least
Squares estimate. However, the covariance estimate is influenced by the choice of σy.
To evaluate the likelihood of complete desiccation of the lake by 2090, we need to extend the trend
line to 2090 using equations (2.16) and (2.17). This results in:

ŷ2090 = 1264.975±0.005

Assuming a normal distribution with the mean 1264.975 m and standard deviation 0.005 m, we can
predict that there is a 99% probability that Lake Urmia will reach its lowest water level of 1265 m in
2090:

N (1265|1264.975,0.005) = 99% .

30 Chapter 2

Bayesian statistics and modeling



Let us now move to Bayesian inference by introducing a prior distribution over the unknown vector x.
For simplicity, we consider a normal distribution with a constant variance σ2

x. We believe a priori that the
unknown parameters have a mean value of zero:

P(x|σ−2
x ) =N (x|0,σ2

xI) =
(
σ−2
x

2π

)n/2
exp

(
−σ
−2
x

2 x>x

)
.

Using Bayesian inference, we can obtain the posterior distribution for x through the product of the prior
distribution and the likelihood function defined in (2.10):

P(x|t,y,σ−2
x ,σ−2

y )∝ P(y|t,x,σ−2
y )×P(x|σ−2

x ) (2.18)

Posterior∝ Likelihood×Prior. (2.19)

To determine x, we find the value of x that maximizes the posterior probability, known as the Maximum
A Posteriori (MAP) estimate (see Figure 2.1). This can be achieved by maximizing the logarithm of
Equation (2.19) or, equivalently, minimizing its negative. Considering the earlier treatment of the likelihood
function, the MAP estimate, x̂MAP, is given by minimizing the following cost function:

x̂MAP = min
x
CMAP(x) =

σ−2
y

2

m∑
i=1

(f(ti,x)−yi)2 + σ−2
x

2 x>x. (2.20)

Comparing Equation (2.20) with the cost function of a classical regularization problem:

Creg(x) = 1
2

m∑
i=1

(f(ti,x)−yi)2 + λ

2x
>x, (2.21)

we see that maximizing the posterior distribution when both the prior and the likelihood are normally
distributed is equivalent to a regularization problem with the regularization parameter given by:

λ= σ−2
x

σ−2
y

=
σ2
y

σ2
x

. (2.22)

Since the normal distribution is a conjugate prior, multiplying it by the likelihood results in a posterior
density function that belongs to the same family of distributions as the prior density function (Koch, 2007).
Therefore, the posterior distribution will also be normally distributed, given by:

P(x|t,y)∼N (x|x̂MAP,Q
−1
x̂MAP

), (2.23)

where

x̂MAP = (A>A+ σ−2
x

σ−2
y

I)−1A>y. (2.24)

The MAP estimate is the value of x that maximizes the posterior distribution. In the case of a normal
distribution, this corresponds to the mean of the posterior distribution, with the dispersion being represented
by the covariance matrix:

Qx̂MAP =
(
σ−2
y A>A+σ−2

x I
)−1

. (2.25)
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For the Lake Urmia example, we again assume a constant uncertainty of 10cm (σy = 10cm) for the
in situ water level time series. For the sake of experimentation, we deliberately chose an incorrect
prior (see figure below). Specifically, mean values of zero are assumed for both a and b, with a
constant uncertainty of σx = 0.1 for each, which is intentionally inaccurate. In particular, we assign
an uncertainty of 0.1m to the unknown parameter a and an uncertainty of 0.1m/yr to the unknown
parameter b. This prior implies a belief that the trend is zero and the water level remains constant.
Since a and b have different units, applying a constant uncertainty is even more inappropriate.
Applying Equation (2.24) using these numbers, we obtain:

x̂MAP =
[
âMAP

b̂MAP

]
=
[

1277.030m
−0.091m/yr

]
We see that the prior shifts the MAP solution toward zero. In other words, from the estimated trend
of −0.099m/yr obtained using the least squares method on page 30, the MAP estimate is adjusted
to −0.091m/yr. The covariance matrix is given as:

Qx̂MAP =
[

2.03×10−6 m2 −5.7×10−8 m2/yr
−5.7×10−8 m2/yr 2.10×10−9 m2/yr2

]
Comparing these numbers with those on page 30, we observe that such an inaccurate prior not only
alters the estimates of â and b̂, but also increases the uncertainty. However, this increase cannot be
visually observed in the plots below. Note that in the plots below, the x-axis of the prior distribution
is different than the likelihood and the posterior to show the zero mean for a.
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Extending the estimated trend to 2090, we obtain:

ŷ2090 = 1265.613±0.004

Assuming a normal distribution with a mean of 1265.613 m and a standard deviation of 0.004 m, we
can predict that there is a 0% probability that Lake Urmia will reach its lowest water level of 1265 m
in 2090.

N (1265|1265.613,0.004) = 0%

Comparing these results with those on page 30, we observe that the prediction is influenced by the

inaccurate prior. Although the selected σy and σx result in a regularization parameter of λ= σ2
y

σ2
x

= 1,
and the likelihood plays a major role in obtaining the posterior, the prior assumption of a zero mean
for a and b implies a belief that there is no trend in the lake. This assumption drastically reduces the
probability of complete desiccation from 99% to zero.
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Now let us consider a more general case where the prior follows a multivariate normal distribution with
mean µ and covariance matrix Σx:

P(x|Σ−1
x ) =N (x|µ,Σx) ,

and the likelihood function also follows a multivariate normal distribution, where the model represents
the mean and the dispersion is represented by Σy. Combining the prior and the likelihood, the posterior
distribution becomes:

P(x|y)∝ exp
(
−1

2(y−Ax)>Σ−1
y (y−Ax)− 1

2(x−µ)>Σ−1
x (x−µ)

)
.

Expanding the terms in the exponent, for the likelihood term, we have

(y−Ax)>Σ−1
y (y−Ax) = y>Σ−1

y y−2y>Σ−1
y Ax+x>A>Σ−1

y Ax,

and for the prior term: (x−µ)>Σ−1
x (x−µ) = µ>Σ−1

x µ−2µ>Σ−1
x x+x>Σ−1

x x.

By grouping the quadratic, linear, and constant terms, we have:

P(x|y)∝ exp
(
−1

2x
>(A>Σ−1

y A+ Σ−1
x )x+x>(A>Σ−1

y y+ Σ−1
x µ) + constants

)
.

The MAP estimate x̂MAP maximizes the posterior. Ignoring constants, this is equivalent to minimizing the
negative quadratic form: −1

2x
>(A>Σ−1

y A+ Σ−1
x )x+x>(A>Σ−1

y y+ Σ−1
x µ).

Taking the gradient with respect to x and setting it to zero:

(A>Σ−1
y A+ Σ−1

x )x̂MAP =A>Σ−1
y y+ Σ−1

x µ,

which leads to the MAP solution:

x̂MAP = (A>Σ−1
y A+Σ−1

x )−1(A>Σ−1
y y+Σ−1

x µ) , (2.26)

with the dispersion being:
D(x|y) =Qx̂MAP = (A>Σ−1

y A+Σ−1
x )−1 . (2.27)

In essence, this Bayesian estimation is analogous to adding the prior information as an additional constraint
in a classical least squares adjustment:

Ā=
[
A

I

]
, ȳ =

[
y

µ

]
, P̄ =

[
P 0
0 Σ−1

x

]
.

The system of equations can be written as: {
y =Ax+e

µ= x+v

The solution to the system is:
x̂= (Ā>P̄ Ā)−1Ā

>
P̄ ȳ .

Substituting back, we obtain:

x̂= (A>Σ−1
y A+ Σ−1

x )−1(A>Σ−1
y y+ Σ−1

x µ) .
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Now let’s define a realistic prior for the Lake Urmia example. Let’s assume from a climate projection
that there is an estimate of -0.14 m/yr for b and a we take 1277 m:

µ=
[

1277m
−0.14m/yr

]

with

Σx =
[

0.42 m2 0
0 0.0362 m2/yr2

]
For the observation, for simplicity we assume a constant uncertainty of 10 cm (σy = 10cm) for the in
situ water level time series, leading to

Σy =


0.12 0 · · · 0

0 0.12 · · · 0
...

...
. . .

...
0 0 · · · 0.12


In this case, following (2.26), we obtain:

x̂MAP =
[
âMAP

b̂MAP

]
=
[

1277.290m
−0.099m/yr

]
,

with the covariance matrix:

Qx̂MAP =
[

2.03×10−6 m2 −5.65×10−8 m2/yr
−5.65×10−8 m2/yr 2.10×10−9 m2/yr2

]
,

which indicates that the maximum likelihood estimate (box on page 30) remains unchanged (as
seen in the blots below). This outcome is understandable, as the prior does not deviate significantly
from the likelihood, and since the uncertainty of the likelihood function is smaller, it predominantly
dictates the estimation of the posterior.

Prior Distribution

1276 1276.5 1277 1277.5
a [m]

-0.14

-0.12

-0.1

-0.08

b 
[m

/y
r]

Posterior Distribution

1276 1276.5 1277 1277.5
a [m]

-0.14

-0.12

-0.1

-0.08

b 
[m

/y
r]

Likelihood Distribution

1276 1276.5 1277 1277.5
a [m]

-0.14

-0.12

-0.1

-0.08

b 
[m

/y
r]

Extending the estimated trend to 2090, we obtain:

ŷ2090 = 1264.975±0.004

leading to a prediction of 99% probability that Lake Urmia will reach its lowest water level of 1265 m
in 2090:

N (1265|1264.975,0.004) = 99%

Comparing the results with µ equal to zero (previous box on page 32), we see that having a prior
of −0.14 m/yr for the trend with a precision of 0.0362 m2/yr2 suggests a larger estimated trend,
increasing the probability that the lake will disappear by 2090.
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2.3 A posteriori variance factor (unit weight variance) in Bayesian inference

In least squares adjustment, the a posteriori variance factor (often denoted as σ̂2
0) plays a crucial role in

scaling the covariance matrix of the observations to reflect the actual dispersion observed in the data:

σ̂2
0 =

e>Σ−1
y e

m−n
.

The adjusted covariance matrix Q̂x̂ for the estimated parameters x̂ can then be scaled by this a posteriori
variance factor to reflect the true variability observed:

Q̂x̂ = σ̂2
0(A>Σ−1

y A)−1 .

The variance of unit weight σ̂2
0 helps assessing the quality of observations, the model’s overall fit, and the

choice of Σy. If σ̂2
0 ≈ 1, the model fits the observations well, and Σy accurately represents the observation

uncertainty. If σ̂2
0 is much greater than 1, the observations are more dispersed than expected, indicating

potential issues with the data or the model. If there are no issues with the model or observations, σ̂2
0 > 1

suggests an overly optimistic choice of Σy. Conversely, if σ̂2
0 < 1, it suggests an overly pessimistic choice of

Σy.

For the Lake Urmia example, with

Σy =


0.12 0 · · · 0

0 0.12 · · · 0
...

...
. . .

...
0 0 · · · 0.12


we obtain the variance of unit weight as

σ̂2
0 = 254.04

Such a large σ̂2
0 is primarily due to mismodeling and fitting a line to data with seasonal variation.

With this σ̂2
0 the covariance matrix will be updated

Q̂x̂ = σ̂2
0(A>Σ−1

y A)−1 =
[

5.16×10−4 −3.94×10−8

−3.94×10−8 4.01×10−12

]
m2

which leads to

ŷ2090 = 1264.975±0.072

and unlike the results without considering the variance of unit weight on page 30, the estimate with
an uncertainty 7 cm leads to a probability of 63% that Lake Urmia will disappear in 2090:

N (1265|1274.975,0.072) = 63% .
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2.3.1 Case 1: Known variance of unit weight

To bring the variance of unit weight into a Bayesian context, consider a parametric model:

y =Ax+e .

Assume that our inference of dispersion for the prior and the likelihood function is well-established, and we
know the variance factor σ2:

D(y) = σ2Σy ,

with the likelihood function given by:

P(y|x,σ−2Σy)∼N (Ax,σ2Σy) .

The prior distribution is:
x∼N (µ0,σ

2Σx) .

The posterior distribution, which also follows a normal distribution, takes the form:

P(x|y)∼N (µ,σ2(A>Σ−1
y A+Σ−1

x )−1) ,

with the Maximum A Posteriori (MAP) estimate of x:

x̂MAP = (A>Σ−1
y A+Σ−1

x )−1(A>Σ−1
y y+Σ−1

x µ) , (2.28)

with the dispersion being:

D(x|y) =Qx̂MAP = σ2(A>Σ−1
y A+Σ−1

x )−1 .

Like the least squares adjustment, the variance factor σ2 does not affect the estimation itself but influences
its uncertainty.

2.3.2 Case 2: Unknown variance of unit weight

Let the variance factor σ2 be a random variable and unknown. To obtain a conjugate prior for our unknown
parameters x and σ2, we first define τ as the reciprocal of σ2:

τ = 1
σ2 . (2.29)

We assume an a priori expected value for σ2 as follows:

E(σ2) = σ2
p . (2.30)

Given τ , we consider the prior distribution of x under the condition that a value for τ is known. The prior
distribution for x, with mean µ and covariance τ−1V , follows a normal distribution:

P(x|µ, τV −1) =N (µ, τ−1V ) . (2.31)
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Next, we assume that τ itself is Gamma distributed, denoted as τ ∼ G(b,p), where b is the shape parameter
and p is an inverse scale parameter (Koch, 2007). Thus, the joint density function P(x, τ |µ,V −1, b,p) for x
and τ follows a Normal-Gamma distribution:

P(x, τ |µ,V −1, b,p) = P(x|µ, τ−1V )P(τ |b,p) = NG(µ,V , b,p) . (2.32)

This joint density function can be explicitly written as:

P(x, τ |µ,V −1, b,p) =(2π)−n/2(detV )−1/2bp(Γ(p))−1

τn/2+p−1 exp
{
−τ2

[
2b+ (x−µ)TV −1(x−µ)

]}
, (2.33)

for b > 0, p > 0, 0< τ <∞, and −∞< xi <∞. Furthermore, if x and τ have a Normal-Gamma distribution,
then x has a marginal distribution of a multivariate t-distribution:

P(x)∼ t(µ, bV /p,2p) , (2.34)

where the dispersion of x is determined by the scale matrix bV
p , but because the multivariate t-distribution

has heavier tails than the normal distribution, its actual covariance matrix (when it exists) is:

D(x) = 2p
2p−2 ·

bV

p
= bV

p−1 , for p > 1 . (2.35)

On the other hand, the marginal distribution of τ is a Gamma distribution:

P(τ)∼ G(b,p) . (2.36)

The Gamma distribution can be expressed as:

P(τ |b,p) = G(b,p) = bp

Γ(p)τ
p−1e−bτ , (2.37)

with the Gamma function Γ(p) defined for integer p as:

Γ(p) = (p−1)! p ∈N , (2.38)

and for half-integer values as:

Γ(p+ 1
2) = (2p−1)(2p−3) · · ·5×3×1

2p
√
π . (2.39)

The expected value and variance of τ are given by:

E(τ) = p

b
, Var(τ) = p

b2
. (2.40)

Prior distribution: Now with the setup defined above, for the prior distribution, we choose the Normal-
Gamma distribution with µ0 as the mean of the prior and Σx as its uncertainty, together with the shape b0
and the inverse scale p0 for τ

P(x, τ)∼ NG(µ0,Σx, b0,p0) . (2.41)

Following the property of the Normal-Gamma distribution, the marginal distribution of x follows the
t-distribution
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x∼ t(µ0, b0Σx/p0,2p0) (2.42)

with E(x) = µ0 and following Equation (2.35)

D(x) = b0
p0−1Σx = σ2

pΣx . (2.43)

This implies:
b0

p0−1 = σ2
p ⇒ b0 = σ2

p(p0−1) . (2.44)

On the other hand the prior marginal distribution of τ ∼ G(b0,p0), which implies an inverse Gamma prior
on the variance σ2 ∼ IG(b0,p0).

with
E(σ2) = b0

p0−1 = σ2
p (2.45)

Var(σ2) = b20
(p0−1)2(p0−2) = Vσ2 (2.46)

Substitute b0 from Equation (2.44) in the above equation, we have:

Vσ2 =
[
σ2
p(p0−1)

]2
(p0−1)2(p0−2) =

(σ2
p)2

p0−2 (2.47)

Solving for p0:

p0 =
(σ2
p)2

Vσ2
+ 2 (2.48)

Substitute into b0:

b0 =
(

(σ2
p)2

Vσ2
+ 1
)
σ2
p (2.49)

Likelihood function: The above choice of prior, which combines a normal distribution for x with a Gamma
distribution for τ , constitutes a conjugate prior that simplifies the derivation of the posterior when combined
with a normally distributed likelihood:

P(y|ŷ,σ−2Σy−1) = 1
(2π)m/2(det(σ2Σy))1/2 exp

{
−1

2(y− ŷ)Tσ−2Σy−1(y− ŷ)
}
, (2.50)

where ŷ =Aµ =Ax̂MAP. Using the property of the determinant, we can transform the likelihood as
follows:

(det(σ2Σy))−1/2 = (det(τ−1Σy))−1/2

= (det(Σy−1))1/2τm/2, (2.51)

thus the likelihood becomes:
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P(y|x, τ) = (2π)−m/2(det(Σy−1))1/2τm/2 exp
[
−τ2 (y− ŷ)TΣy−1(y− ŷ)

]
. (2.52)

Posterior distribution: Since the prior is conjugate, the posterior distribution will also follow a Normal-
Gamma distribution:

P(x, τ |y)∼ NG(µ,Λ, b,p) . (2.53)

This posterior distribution is derived from the product of the prior and likelihood:

p(x, τ |y)∝ τn/2+p0−1exp{−τ2 [2b0 + (x−µ0)TΛ−1(x−µ0)]}

τm/2exp{−τ2 (y− ŷ)TΣ−1
y (y− ŷ)}

∝ τm/2+n/2+p0−1exp{−τ2 [2b0 + (x−µ0)TΛ−1(x−µ0)

+ (y− ŷ)TΣ−1
y (y− ŷ)]} . (2.54)

with
µ= x̂MAP = (ATΣy−1A+Σx−1)−1(ATΣy−1y+Σx−1µ0) , (2.55)

and the covariance matrix with the a posteriori σ̂B:

Λ =Qx̂MAP = σ̂2
B(ATΣy−1A+Σx−1)−1 , (2.56)

To obtain the a posteriori variance of unit weight σ̂2
B, the parameters p and b in Equation (2.33) must be

derived. By comparing Equation (2.54) with Equation (2.33), we find that p= p0 +m/2, and consequently
according to Equation (2.48):

p=
m+ 2(σ2

p)2/Vσ2 + 4
2 . (2.57)

Further by comparing equations (2.54) and (2.33), we can derive b as:

b= 1
2

{
2
[

(σ2
p)2

Vσ2
+ 1
]
σ2
p + (x−µ0)TΣx−1(x−µ0) + (y− ŷ)TΣy−1(y− ŷ)

}
. (2.58)

As mentioned above, the posterior marginal distribution for x is the multivariate t-distribution:

P(x|y)∼ t(µ, bΛ
p
,2p) , (2.59)

with the expected value vector:
E(x|y) = µ . (2.60)

The marginal posterior distribution of τ is a Gamma distribution:

P(τ |b,p) = G(b,p) . (2.61)
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Since σ2 = τ−1, the posterior distribution of σ2 is an Inverse Gamma distribution P(σ2|y)∼ IG(b,p) with
expectation of σ2 as

E(σ2|y) = b

p−1 . (2.62)

Using equations (2.57) and (2.58) , the expectation of σ2 can be explicitly written as:

E(σ2|y) = σ̂2
B =

(
m+ 2

(σ2
p)2

Vσ2
+ 2
)−1{

2
[

(σ2
p)2

Vσ2
+ 1
]
σ2
p

+ (µ−µ0)TΣx−1(µ−µ0) + (y− ŷ)TΣy−1(y− ŷ)
}
, (2.63)

with the variance:

Var(σ2|y) =
2(σ̂2

B)2

1 + 2 (σ2
p)2

V
σ2

. (2.64)

Therefore, the updated covariance matrix is:

Q̂x̂MAP = σ̂2
B(ATΣy−1A+Σx−1)−1 . (2.65)

Prior

P(x|σ−2
p Σx−1) =N (µ0,σ

2
pΣx) (2.66)

Likelihood

P(y|x,σ−2
p Σy−1) =N (ŷ,σ2

pΣy) (2.67)

Posterior

P(x|y, σ̂−2
B Σx−1, σ̂−2

B Σy−1)∼N (µ,Λ) (2.68)

x̂MAP = µ= (ATΣy−1A+Σx−1)−1(ATΣy−1y+Σx−1µ0) (2.69)

Q̂x̂MAP = σ̂2
B(ATΣy−1A+Σx−1)−1 (2.70)

σ̂2
B =

(
m+ 2

(σ2
p)2

Vσ2
+ 2
)−1{

2
[

(σ2
p)2

Vσ2
+ 1
]
σ2
p

+ (µ−µ0)TΣx−1(µ−µ0) + (y− ŷ)TΣy−1(y− ŷ)
}

(2.71)
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For the Lake Urmia example, with Σy, µ, and Σx defined on page 34, assuming σ2
p = 1 and Vσ2 = 0.01,

according to Equation (2.3.2), σ̂2
B will be 230.64, which is comparable to σ̂2

0 = 254.04 on page 35.
The difference, however, is that in this case, the prior values µ and their uncertainty Σx, together
with the variance considered for the a priori factor Vσ2 , also play a role and will be gauged.
With σ̂2

B the covariance is then will be

Q̂x̂MAP =
[

4.68×10−4 m2 −1.31×10−5 m2/yr
−1.31×10−5 m2/yr 4.8×10−7 m2/yr2

]
Extending the estimated trend to 2090, we obtain:

ŷ2090 = 1264.975±0.068

leading to a prediction of 64% probability that Lake Urmia will reach its lowest water level of 1265 m
in 2090:

N (1265|1264.97,0.068) = 64%

Comparing the results with those on page 34, where a 99% probability of the lake disappearing by
2090 was obtained, the inclusion of the variance of unit weight leads to an uncertainty estimate of
approximately 7 cm, which results in a probability of 64% that Lake Urmia will disappear by 2090.

The main benefit of σ̂2
B would be observed in cases where the prior and the likelihood deviate

significantly from each other, as in the example on page 32, where the prior values of a and b are
defined as 0. In this case, σ̂2

B = 7758.15, leading to:

Q̂x̂MAP =
[

0.015m2 −1.20×10−6 m2/yr
−1.20×10−6 m2/yr 1.22×10−10 m2/yr2

]

making the posterior as shown below, which represents a realistic estimate given such an inaccurate
prior. To better understand the effect, compare the posterior below with the one on page 32.

Prior Distribution

-0.5 0 0.5
a [m]

-0.15

-0.1

-0.05

0

b 
[m

/y
r]

Likelihood Distribution

1277 1277.4 1277.8
a [m]

-0.15

-0.1

-0.05

0

b 
[m

/y
r]

Posterior Distribution

1277 1277.4 1277.8
a [m]

-0.15

-0.1

-0.05

0

b 
[m

/y
r]

ŷ2090 = 1265.613±0.39

leading to a prediction of 6% probability that Lake Urmia will reach its lowest water level of 1265 m
in 2090:

N (1265|1265.613,0.39) = 6%
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2.4 Dynamic system within Bayesian inference

In the discussion in Section 2.2, the unknown parameters of the linear models are assumed to remain
constant over time. We will now introduce parameters for dynamical systems, which vary with time.
Building on the formulation derived in the previous section, we will explore how the Bayesian framework,
specifically the derivation of the MAP solution, can be applied to a dynamic system.

Let us consider that xt is the n×1 random vector of unknown parameters at time t. A matrix Φn×n is the
transition matrix from t→ t+ 1:

xt+1 = Φxt .

Now, let us add a random vector et of size n×1 as disturbances. et is independent of xt:

xt+1 = Φxt+et .

Let E(et) = 0 and D(et) =Qt, where Qt is the covariance matrix of size n×n. Let us assume Qt is known.
If N different moments are considered, the linear dynamic system is:

xt+1 = Φ(t+ 1, t)xt+et ,

with E(et) = 0 and D(et) = Qt, for t ∈ {1, . . . ,N − 1}. Now, we bring the observations yt that contain
information on the unknown state vectors. The relations between m observations of yt and xt are given
by:

yt =Htxt+vt ,

where vt is the observation noise, which is normally distributed:

vt ∼N (0,σ2Σy) ,

and Ht is a matrix of size m×n with:
Htxt = E(yt|xt) .

yt is the vector of observations of sizem×1, and Σy is the positive definite covariance matrix of observations
of size m×m.

Now, let et and yt be independent and normally distributed:

et ∼N (0,Qt) ,

and the likelihood function being
P(yt|xt)∼N (Htxt,σ

2Σy) .

Based on this likelihood function and following Bayesian inference discussed in Section 2.2, the posterior
density function of the unknown random vector xt shall be determined. Since we are dealing with a
dynamic scenario, the prior information at epoch t can be defined as the posterior distribution at epoch
t−1 denoted as x̂t,t−1.

Within such a formulation, the Bayes theorem can be applied recursively. Since the prior is normally
distributed and the likelihood is also normally distributed, the posterior is also normally distributed. In
general, we can write the prior density function as:

P(xt|y1, . . . ,yt−1)∼N (x̂t,t−1,σ
2Σxt,t−1)
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which leads to a posterior:
P(xt|y1, . . . ,yt)∼N (µ,σ2Λ) .

Following Equation (2.26), given the defined prior and likelihood, the MAP solution will be

µ= (H>t Σ−1
yt
Ht+Σ−1

xt,t−1)−1(H>t Σ−1
yt
yt+Σ−1

xt,t−1 x̂t,t−1)

and according to Equation (2.27)

Λ = (H>t Σ−1
yt
Ht+Σ−1

xt,t−1)−1

Therefore, we can write

x̂t,t = (H>t Σ−1
yt
Ht+Σ−1

xt,t−1)−1(H>t Σ−1
yt
yt+Σ−1

xt,t−1 x̂t,t−1) (2.72)

and
D(xt|y1, . . . ,yt) = σ2Σxt,t

where
Σxt,t = (H>t ΣytHt+Σxt,t−1)−1 .

The above formulation can be simplified by using the identities:

(A−BD−1C)−1 =A−1 +A−1B(D−CA−1B)−1CA−1

D−1C(A−BD−1C)−1 = (D−CA−1B)−1CA−1

which allows us to write

(H>Σ−1
y H+Σ−1

x )−1 = Σx−ΣxH>(HΣxH>+Σy)−1HΣx

(H>Σ−1
y H+Σ−1

x )−1H>Σy = ΣxH>(HΣxH>+Σy)−1 .

By replacing them into (2.72), we have:

x̂t,t = (H>t Σ−1
yt
Ht+Σ−1

xt,t−1)−1H>t Σ−1
yt
yt+ (H>t Σ−1

yt
Ht+Σ−1

xt,t−1)−1Σ−1
xt,t−1 x̂t,t−1

= Σxt,t−1H
>
t (HtΣxt,t−1H

>
t +Σyt)

−1yt+ (H>t Σ−1
yt
Ht+Σ−1

xt,t−1)−1Σ−1
xt,t−1 x̂t,t−1 .

With
J = Σxt,t−1H

>
t (HtΣxt,t−1H

>
t +Σyt)

−1yt ,

we have
x̂t,t = J + x̂t,t−1−Σxt,t−1H

>
t (HtΣxt,t−1H

>
t +Σyt)

−1HtΣxt,t−1Σ−1
xt,t−1 x̂t,t−1

= x̂t,t−1 +Σxt,t−1H
>
t (HtΣxt,t−1H

>
t +Σyt)

−1(yt−Htx̂t,t−1) .

Finally, we can write
x̂t,t = x̂t,t−1 +F t(yt−Htx̂t,t−1) ,

where
F t = Σxt,t−1H

>
t (HtΣxt,t−1H

>
t +Σyt)

−1 ,

and
Σxt,t = (I−F tHt)Σxt,t−1 . (2.73)
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Thus, the estimation of x̂t,t and Σxt,t is recursively computed from x̂t,t−1 and Σxt,t−1 . In fact, with such a
setup, the prior is always obtained from the previous posterior:

P(xt−1|y1, . . . ,yt−1)∼N (x̂t−1,t−1,Σxt−1,t−1) ,

and by the linear dynamic system, the state vector xt−1 is transformed to xt. The prior distribution for xt
can therefore be obtained since xt−1 and et−1 are independent.

P(xt|y1, . . . ,yt−1)∼N (x̂t,t−1,Σxt,t−1) ,

with
x̂t,t−1 = Φt,t−1x̂t−1,t−1 ,

and
σ2Σxt,t−1 = σ2Φt,t−1Σxt−1,t−1Φ>t,t−1 +Qt−1 ,

and finally obtaining σ̂2
tΣxt,t using Equation (2.73), where σ̂2

t is obatained based equations (2.63)
and (2.64) as

σ̂2
t =

(
m+ 2

(σ̂2
t−1)2

vσ̂2
t−1

+ 2
)−1{

2
[

(σ̂2
t−1)2

vσ̂2
t−1

+ 1
]
σ̂2
t−1 + (x̂t,t− x̂t,t−1)>Σ−1

xt,t(x̂t,t− x̂t,t−1)

+(ŷt−Htx̂t,t)>Σ−1
yt

(ŷt−Htx̂t,t)
}
,

vσ̂2
t

= 2(σ̂2
t )2

m+ 2(σ̂2
t−1)2/vσ̂2

t−1

. (2.74)

The linear state-space representation is:{
xt = Φxt−1 +et
yt =Htxt+vt

(2.75)

with
D(et) =Qt

D(vt) = σ2Σyt (σ2
p1 = 1)

E(etv>t ) = 0

Prediction Step
x̂t,t−1 = Φt,t−1x̂t−1,t−1 (2.76)

σ2Σxt,t−1 = σ2Φt,t−1Σxt−1,t−1Φ>t,t−1 +Qt−1 (2.77)

For the initial state, we can assume Σx0,0 as the identity matrix.

Estimation Step
x̂t,t = x̂t,t−1 +F t(yt−Htx̂t,t−1) (2.78)

F t = Σxt,t−1H
>
t (HtΣxt,t−1H

>
t +Σyt)

−1 (2.79)

Σxt,t = (I−F tHt)Σxt,t−1 (2.80)

with
D(xt|y1, . . . ,yt) = σ̂2

tΣxt,t
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σ̂2
t =

(
m+ 2

(σ̂2
t−1)2

vσ̂2
t−1

+ 2
)−1{

2
[

(σ̂2
t−1)2

vσ̂2
t−1

+ 1
]
σ̂2
t−1 + (x̂t,t− x̂t,t−1)>Σ−1

xt,t(x̂t,t− x̂t,t−1)

+(ŷt−Htx̂t,t)>Σ−1
yt

(ŷt−Htx̂t,t)
}

vσ̂2
t

= 2(σ̂2
t )2

m+ 2(σ̂2
t−1)2/vσ̂2

t−1

(2.81)

The MAP solution we derived above is known as the Kalman filter, a recursive algorithm that provides
efficient solutions to linear estimation problems (Kalman, 1960; Welch and Bishop, 1995; Koch, 2007).
The Kalman filter has been widely applied across various disciplines, including engineering, economics,
and environmental sciences. Within hydrogeodetic studies, the Kalman filter is particularly valuable for its
ability to assimilate real-time data and update predictions of dynamic systems. It is frequently employed
in the monitoring and forecasting of hydrological variables, such as groundwater levels, streamflows, and
precipitation patterns (Ghil and Malanotte-Rizzoli, 1991).

For systems with non-linear models, the linearized version of the Kalman filter, namely the Extended
Kalman Filter (EKF), offers a potential solution. However, while EKF is computationally efficient, it may
introduce errors due to the linearization required to handle non-linear dynamics, particularly in systems
with pronounced non-linearity (Brown and Hwang, 1997). To address the limitations of EKF, the Ensemble
Kalman Filter (EnKF) has emerged as a widely adopted alternative, particularly in hydrogeodetic studies.
Unlike EKF, EnKF uses a Monte Carlo-based approach to represent the probability distribution of the system
state through an ensemble of model simulations. This ensemble-based methodology avoids the need for
linearization, making it better suited for systems with complex, non-linear dynamics. Additionally, EnKF
inherently provides uncertainty estimates by analyzing the spread of the ensemble, offering valuable insights
into the reliability of the predictions (Evensen, 2003).

In addition to EnKF, alternative approaches such as the Unscented Kalman Filter (UKF) and Cubature
Kalman Filter (CKF) have been developed to address the limitations of linearization inherent in the Extended
Kalman Filter. The UKF uses a deterministic sampling technique, known as the unscented transform, to
approximate the mean and covariance of the system state. By selecting a set of carefully chosen points (sigma
points) around the current state estimate, the UKF captures the effects of non-linear transformations more
accurately than the EKF without requiring explicit linearization (Wan and Van Der Merwe, 2000). Similarly,
the Cubature Kalman Filter (CKF) offers an alternative approach for handling nonlinear systems. It is based
on cubature rules for numerical integration, which provide a third-order accurate approximation of the mean
and covariance propagation in Gaussian filtering. The CKF improves upon the UKF by ensuring symmetry
and reducing potential numerical instabilities associated with higher-order approximations (Arasaratnam
and Haykin, 2009). This method is particularly advantageous in systems where accurate representation of
non-linear dynamics is critical, and it has been successfully applied in various geophysical and hydrological
contexts (Sun et al., 2023).

While both the UKF and CKF offer improvements over the EKF in handling non-linear systems, their higher
computational demands compared to the EKF and EnKF can be a limiting factor, particularly in real-time
or large-scale applications. The EKF and EnKF have recently attracted significant attention for their use
in data assimilation involving GRACE and GRACE-FO data. The EnKF, in particular, has demonstrated its
effectiveness in various applications, such as improving soil moisture estimates through the joint assimilation
of GRACE/-FO water storage and soil moisture observations (Girotto et al., 2019; Tangdamrongsub et al.,
2020; Khaki et al., 2020) and refining estimates of water balance components (Lorenz et al., 2015; Wu
et al., 2022) using GRACE and GRACE-FO data.
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It is worth noting that in the implemented Kalman filters, calculating the variance of unit weight, σ̂t2,
and evaluating its impact has not been a primary focus in hydrogeodetic studies to date. The emphasis
is typically on state estimation and updating processes, with the variance of unit weight often assumed
or derived from a priori information rather than recalculated at each step. This indicates a potential area
for further research, particularly in improving the accuracy and reliability of state estimates in dynamic
systems.

2.5 Sampling techniques

So far, we have explored linear models and assumed normal distributions for both the prior and likelihood,
for which analytical solutions can be obtained. However, in most cases, in the Bayesian framework, obtaining
an analytical solution is not feasible, and one must indirectly obtain the posterior distribution. In real-world
applications, the posterior distributions usually do not have closed-form solutions and are computationally
challenging, especially in high-dimensional parameter spaces. Consequently, performing Bayesian inference
in many practical scenarios would be nearly impossible. In such cases, sampling techniques are required to
approximate posterior distributions (Bishop, 2006).

In obtaining the posterior distribution, the key issue is how to compute the expectation of a function f(x)
given a probability distribution P(x)

E(f) =
∫
f(x)P(x)dx . (2.82)

Sampling methods aim to generate a set of samples xi (for i = 1, . . . ,N) independently drawn from the
distribution P(x), such that it allows to approximate the expectation in (2.82) by

f̂ = 1
N

N∑
i=1

f(xi) .

As long as the samples xi come from the distribution P(x), then E(f̂) = E(f), ensuring that f̂ is an unbiased
estimator. Notably, the estimator’s accuracy does not depend on the dimensionality of x, and a relatively
small number of samples, typically ten or twenty, might suffice to achieve accurate estimates. However,
samples xi might not always be independent, reducing the effective sample size. Additionally, if f(x)
is small in regions where P(x) is large and vice versa, larger sample sizes may be needed for sufficient
accuracy.

Table 2.1 presents an overview of some prominent sampling techniques, including Markov Chain Monte
Carlo (MCMC), Sequential Monte Carlo (SMC), and Variational Inference (VI). MCMC methods are a class
of algorithms designed to generate random samples from a probability distribution by constructing a Markov
chain that has the desired distribution. In the recent past, different versions of MCMC have been developed
and used, including:

• Metropolis-Hastings algorithm: The Metropolis-Hastings algorithm generates random samples using
a general proposal distribution and includes an acceptance/rejection step for the proposed parameter
values (van de Schoot et al., 2021; Metropolis et al., 1953).

• Gibbs Sampling: is particularly useful when the joint distribution is challenging to sample from, but
the conditional distributions are easier to sample from (Geman and Geman, 1984).

• Hamiltonian Monte Carlo (HMC): leverages gradient information from the log-posterior to propose
new samples more efficiently than traditional MCMC methods (Neal, 2011).
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• The No-U-Turn Sampler (NUTS): is an adaptive version of HMC that automatically tunes the algo-
rithm parameters, enhancing efficiency and performance (Hoffman and Gelman, 2014).

Sequential Monte Carlo (SMC) methods, such as particle filters, are another class of algorithms where
particles are propagated over time and weighted based on their likelihood, providing a powerful framework
for dynamic models (Doucet et al., 2000).

Tab. 2.1: Sampling Techniques in Bayesian Statistics

Technique Description

Markov Chain Monte Carlo (MCMC) Methods
Metropolis-Hastings Algorithm An algorithm designed to generate random samples from a probability distribu-

tion that utilizes a general proposal distribution and includes an acceptance/re-
jection step for the proposed parameter values (van de Schoot et al., 2021;
Metropolis et al., 1953).

Gibbs Sampling MCMC method useful when the joint distribution is difficult to sample from
directly, but the conditional distributions are easier to sample from (Geman and
Geman, 1984).

Hamiltonian Monte Carlo (HMC) MCMC method that uses gradient information from the log-posterior to propose
new samples efficiently (Neal, 2011).

No-U-Turn Sampler (NUTS) Adaptive version of HMC that automatically tunes the algorithm parameters
(Hoffman and Gelman, 2014).

Sequential Monte Carlo (SMC)
Particle Filters SMC method where particles are propagated over time and weighted based on

their likelihood (Doucet et al., 2000).

Variational Inference (VI)
Mean-Field Variational Inference Approximates the posterior by factorizing it into independent distributions and

optimizing a lower bound on the marginal likelihood (Jordan et al., 1999).
Stochastic Variational Inference Extension of VI that uses stochastic optimization for large datasets (Hoffman

et al., 2013).

Other Techniques
Rejection Sampling Samples are generated from a proposal distribution and accepted or rejected

based on a criterion involving the target distribution (Smith and Gelfand, 1992).
Importance Sampling Samples are drawn from a proposal distribution and weighted to approximate

the target distribution (Rubinstein, 1981).
Nested Sampling Estimates the evidence (marginal likelihood) in Bayesian statistics, useful for

model comparison (Skilling, 2006).
Approximate Bayesian Computation (ABC) Used when the likelihood function is intractable; approximates the posterior by

simulating data and comparing it to observed data (Beaumont, 2010).
Slice Sampling MCMC method that samples uniformly from the region under the graph of the

target distribution (Neal, 2003).
Langevin Dynamics MCMC method using gradient information with added Gaussian noise to propose

new samples (Roberts and Tweedie, 1996).
Bayesian Bootstrap Non-parametric Bayesian method that resamples data to create a posterior distri-

bution of an estimator (Rubin, 1981).

Variational Inference (VI) techniques offer deterministic alternatives to MCMC by approximating the
posterior distribution through optimization. Mean-Field Variational Inference approximates the posterior
by factorizing it into independent distributions and optimizing a lower bound on the marginal likelihood
(Jordan et al., 1999). Stochastic Variational Inference, an extension of VI, employs stochastic optimization
to handle large datasets efficiently (Hoffman et al., 2013).

Several other sampling techniques are also noteworthy. Rejection Sampling generates samples from a
proposal distribution and accepts or rejects them based on a criterion involving the target distribution
(Smith and Gelfand, 1992). Importance Sampling draws samples from a proposal distribution and weights
them to approximate the target distribution (Rubinstein, 1981). Nested Sampling is useful for estimating
the evidence (marginal likelihood) in Bayesian statistics, aiding in model comparison (Skilling, 2006).
Approximate Bayesian Computation (ABC) is employed when the likelihood function is intractable; ABC
approximates the posterior by simulating data and comparing it to observed data (Beaumont, 2010). Slice
Sampling is an MCMC method that samples uniformly from the region under the graph of the target
distribution (Neal, 2003). Langevin Dynamics uses gradient information with added Gaussian noise to
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propose new samples in an MCMC framework (Roberts and Tweedie, 1996). Finally, the Bayesian Bootstrap
is a non-parametric Bayesian method that resamples data to create a posterior distribution of an estimator
(Rubin, 1981).

Within hydrogeodesy, different sampling methods have been practiced for various applications. For instance,
in estimating river discharge MCMC was utilized by Paris et al. (2016) to obtain nonlinear stage-discharge
rating curves based on satellite altimetry and modeled discharge. The Metropolis-Manning (MetroMan)
algorithm, which is one of the standard river discharge algorithms of SWOT data, uses the Metropolis-
Hastings algorithm to obtain flow law parameters from the nonlinear Strickler-Manning equation (Durand
et al., 2014). The Bayesian At-many-stations hydraulic geometry-Manning’s (BAM) algorithm and its
successor geoBAM, also standard river discharge algorithms of the SWOT mission, make use of the
HMC sampling scheme to estimate river discharge (Hagemann et al., 2017; Brinkerhoff et al., 2020). In
downscaling GRACE water storage change, Mehrnegar et al. (2021) used MCMC to generate groundwater
and soil water storage changes at approximately 12.5 km resolution. In reconstructing GRACE mass change
time series, Rateb et al. (2022) utilized MCMC to sample posterior distributions, based on which TWSA
and its uncertainty are obtained. Additionally, a variant of MCMC was used by Forootan et al. (2024) to
merge TWSA from GRACE and GRACE-FO with water storage estimations derived from a water balance
model. These examples, while representing only a subset of many applications, illustrate the use of sampling
methods in estimating water cycle parameters from complex, nonlinear, non-Gaussian models.

2.6 Graphical models

In Bayesian statistics, the above-described sampling techniques are frequently utilized to approximate
complex posterior distributions. However, as the probabilistic model’s complexity increases—particularly in
the context of high-dimensional data—these methods can become computationally demanding and difficult
to implement. A primary challenge lies in efficiently capturing and representing the intricate dependencies
among a large number of random variables within these sophisticated models.

This is where graphical models come into play. Graphical models provide a powerful framework, offering a
visual and mathematical way to represent and analyze the dependencies among random variables. They can
significantly simplify the complexity of the probabilistic structures, allowing for more efficient computation
of posterior distributions, even in high-dimensional spaces. By encoding dependencies graphically, these
models enable more tractable forms of sampling and inference, reducing computational burdens that might
otherwise hinder the application of Bayesian techniques (Bishop, 2006).

Based on their structure and the types of dependencies they capture, graphical models can be categorized
into 1) Bayesian Networks, 2) Markov Random Fields (MRFs), 3) Conditional Random Fields (CRFs), 4)
Factor Graphs, 5) Chain Graphs, 6) Dynamic Graphical Models, and 7) Relational Models. Each type of
graphical model brings its strengths suitable for different applications, which are listed Table 2.2.

This section discusses two types of graphical models listed in Table 2.2 that are frequently used in hydro-
geodesy and could benefit from Bayesian inference (Bishop, 2006), namely 1) Bayesian networks and 2)
Markov random fields (MRFs).

2.6.1 Bayesian Networks

Bayesian networks, also known as belief networks or directed acyclic graphs (DAGs), are a class of graphical
models where nodes represent random variables, and edges denote conditional dependencies. Each node in
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Tab. 2.2: Summary of different types of graphical models

Type of graphical model Description Key feature

Bayesian Networks (DAGs) Directed graphs where nodes represent ran-
dom variables and edges denote conditional
dependencies (Pearl, 1988).

Factorization of joint probability into a prod-
uct of conditional probabilities.

Markov Random Fields
(MRFs)

Undirected graphs where nodes represent ran-
dom variables and edges denote symmetric
dependencies (Kindermann and Snell, 1980).

Factorization of joint probability into a prod-
uct of potential functions.

Conditional Random Fields
(CRFs)

Undirected models for structured prediction,
directly modeling conditional distributions
(Lafferty et al., 2001).

Incorporates complex features without assum-
ing independence among observations.

Factor Graphs Bipartite graphs with variable and factor
nodes, connecting variables to the factors that
involve them (Kschischang et al., 2001).

Unifies directed and undirected graphical
models.

Chain Graphs Graphs that contain both directed and undi-
rected edges (Lauritzen, 1996).

Represents both causal and associative rela-
tionships.

Dynamic Graphical Models Models with nodes indexed by time, represent-
ing time-evolving processes (Murphy, 2002).

Captures temporal dependencies.

Relational Models Graphs that represent entities and the rela-
tionships between them (Getoor and Taskar,
2007).

Handles structured data with multiple types
of entities and relationships.

a Bayesian network is associated with a conditional probability distribution, specifying how the variable
depends on its parents in the graph.

The power of Bayesian networks lies in their ability to model joint probability distributions concisely. The
joint distribution of a set of variables X = {X1,X2, . . . ,Xn} in a Bayesian network is given by

P(X) =
n∏
i=1

P(Xi | Pa(Xi)) , (2.83)

where Pa(Xi) denotes the parents of Xi in the network. This factorization simplifies the computation of
the joint distribution and makes Bayesian networks suitable for tasks such as inference and learning. Let us
consider an example involving Heavy Rain (H), Rain (R), Soil Moisture (S), Groundwater Recharge (G),
and Flood (F):

• Heavy Rain (H): Whether there is heavy rain or not. H ∈ {True, False}
• Rain (R): Whether it rains or not. R ∈ {True, False}
• Soil Moisture (S): The moisture level in the soil. S ∈ {High, Low}
• Groundwater Recharge (G): Whether there is groundwater recharge or not. G ∈ {True, False}
• Flood (F): Whether there is a flood or not. F ∈ {True, False}

In such an example the dependencies can be defined as

• Heavy rain can cause rain.
• Rain affects soil moisture.
• Soil moisture affects groundwater recharge.
• Heavy rain can also directly influence groundwater recharge.
• Heavy rain can directly influence floods.
• Soil moisture and groundwater recharge influence the likelihood of a flood.

Based on the above dependencies, the structure of the Bayesian network will be:

• Heavy Rain (H) influences Rain (R).
• Rain (R) influences Soil Moisture (S).
• Soil Moisture (S) influences Groundwater Recharge (G).
• Heavy Rain (H) directly influences Groundwater Recharge (G).
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• Heavy Rain (H) directly influences Flood (F).
• Soil Moisture (S) and Groundwater Recharge (G) influence Flood (F).

This can be visualized in a DAG with 5 nodes as shown in Figure 2.3. With such a graph, the joint probability

R
F

S

H

G

Fig. 2.3: Example of a directed acyclic graph describing the joint distribution over 5 variables Heavy Rain (H), Rain
(R), Soil Moisture (S), Groundwater Recharge (G), and Flood (F)

distribution can easily be written in terms of the product of a set of conditional distributions, one for each
node in the graph

P(H,R,S,G,F) = P(H) ·P(R|H) ·P(S|R) ·P(G|S,H) ·P(F|S,G,H)

Now suppose we want to calculate the probability of flood (F) given that we know there is heavy rain (H).
We need to obtain:

P(F|H) =
∑

R,S,G
P(F,R,S,G|H) ,

which can be expanded using the chain rule for Bayesian networks:

P(F|H) =
∑

R,S,G
P(F|S,G,H) ·P(G|S,H) ·P(S|R) ·P(R|H)

Or consider a more complex scenario where we have evidence about soil moisture (S) and we want to
update our belief about the likelihood of a flood (F). Suppose we know the soil moisture is high (S = High).
In this case, we want to compute:

P(F|S = High) .

Using the Bayes theorem, we can write this as:

P(F|S = High) = P(S = High|F) ·P(F)
P(S = High) ,

we can obtain P(S = High|F) using the dependencies in the network:

P(S = High|F) =
∑

H,R,G
P(S = High|R) ·P(R|H) ·P(H) ·P(G|S,H) .

Apart from the above examples, the line fitting example over the Lake Urmia water level can also be
represented using DAGs. For the unknown variables x and observed data y = [y1, . . . ,ym]>, we can
construct a DAG as shown in Figure 2.4. The joint distribution P(x,y) is given by:

P(x,y) = P(x)
m∏
i=1

P(yi|x) .
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Fig. 2.4: DAG of the line fitting example with random variables x and y = [y1, . . . ,ym]>

By applying the Bayes theorem, this can be transformed into:

P(x|y)∝ P(x)
m∏
i=1

P(yi|x) .

This formulation is similar to what we had before in (2.19), where we find the posterior distribution P(x|y)
by multiplying the prior distribution P(x) with the likelihood function.

In addition, the Bayesian network eases the procedure of indirectly sampling the posterior, discussed in 2.5.
For directed graphs without observed variables, sampling from the joint distribution is straightforward if
conditional distributions can be sampled at each node. This is done using ancestral sampling using (2.83). To
sample from the joint distribution, one can iterate through variables X1, . . . ,XM , sampling from P(Xi | Pai).
When some nodes in a directed graph have observed values, this approach can be extended to logic sampling
(Henrion, 1988), a special case of importance sampling. If a sampled value for Xi matches its observed
value, the sample is retained; otherwise, the sample is discarded, and the process restarts. This ensures
correct posterior sampling, but becomes inefficient with a large number of observed variables.

2.6.2 Markov Random Fields

Markov random fields (MRFs), or undirected graphical models, represent variables as nodes and use
undirected edges to denote dependencies. Unlike Bayesian networks, MRFs do not imply a directional
relationship but instead indicate that variables are conditionally independent of all others given their
neighbors. The Gibbs-Boltzmann distribution provides a way to represent the joint probability distribution
of an MRF using clique-based potential functions. A clique is a subset of nodes in the graph such that an
edge directly connects every pair of nodes within the subset. Specifically, the joint probability distribution
of a set of random variables X in an MRF can be expressed as

P(X) = 1
Z

∏
C∈C

ψC(XC) , (2.84)

where C is the set of all cliques in the graph, ψC is a potential function over the clique C. This means that
all variables are mutually dependent within a clique, forming a fully connected subgraph. Z is the partition
function ensuring the distribution sums to one.

Z =
∑
x

∏
C∈C

ψC(XC) .

Unlike Bayesian networks, MRFs are not inherently Bayesian but can be used within a Bayesian framework
when spatial or contextual dependencies are modeled using prior distributions. The distinction lies in
whether the Bayes theorem and prior/posterior distributions are utilized, which is not necessarily a
requirement for MRFs (Besag, 1974; Geman and Geman, 1984).
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In the formulation of an MRF, observations can be incorporated through the use of observed variables in
conjunction with the hidden (or latent) variables. This is commonly done by defining a joint probability
distribution that includes both the hidden variables X and the observed variables Y (see Figure 2.5):

P(X,Y ) = 1
Z

exp
(
−
∑
C∈C

ψC(XC ,Y C)
)
,

with

Z =
∑
X,Y

exp
(
−
∑
C∈C

ψC(XC ,Y C)
)
.

In practice, the potentials ψC(XC ,YC) often decompose into terms involving individual variables and pairs
of variables (or higher-order cliques). For instance:

ψC(XC ,YC) =
∑
i

φi(Xi,Yi) +
∑

(i,j)∈E
φij(Xi,Xj ,Yi,Yj) .

Here, φi(Xi,Yi) is a unary potential function that incorporates the influence of the observation Yi on the
hidden variable Xi, and φij(Xi,Xj ,Yi,Yj) is a pairwise potential function that can incorporate both the
dependencies between hidden variables and their relationships with the observations (see Figure 2.5).

𝑋

𝑌

𝜙𝑖

𝜙𝑖𝑗

Fig. 2.5: A schematic illustration of MRF with the hidden variables X and the observed variables Y . The unary
potential function φi(Xi,Yi) incorporates the influence of the observation Yi on the hidden variable Xi,
and the pairwise potential function φij(Xi,Xj ,Yi,Yj) incorporates both the dependencies between hidden
variables and their relationships with the observations.

By incorporating the observed variables Y into the potential functions, the MRF can model the joint
distribution of the hidden and observed variables, allowing for inference and learning to be performed with
respect to the observed data.

The MAP-MRF Framework

The Maximum A Posteriori estimation in the Markov Random Fields (MAP-MRF) framework is a specific
inference task aimed at finding the most probable configuration of the hidden variables X given the
observed data Y . This approach seeks to maximize the posterior distribution P(X|Y ), which is expressed
using the Bayes theorem as:
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P(X|Y ) = P(X,Y )
P(Y ) ,

where P(Y ) is the marginal likelihood of the observations, acting as a normalizing constant. The goal in
MAP estimation is to find the configuration X̂ that maximizes this posterior probability:

X̂ = argmax
X

P(X|Y ) .

Substituting the joint probability into this equation gives:

X̂ = argmax
X

P(X,Y )
P(Y ) = argmax

X
P(X,Y ) = argmax

X

1
Z

exp
(
−
∑
C∈C

ψC(XC ,Y C)
)
.

Since P(Y ) is constant with respect to X, and Z is the partition function which does not affect the location
of the maximum, the MAP estimate simplifies to:

X̂ = argmax
X

exp
(
−
∑
C∈C

ψC(XC ,Y C)
)
,

or equivalently,

X̂ = argmin
X

∑
C∈C

ψC(XC ,Y C) .

Solving the MAP-MRF problem involves finding the configuration of hidden variables X that minimizes the
sum of the potential functions over all cliques, conditioned on the observed data Y . To better understand
the hidden layer X, and observation Y , and the MAP-MRF framework, let’s consider an example that will
be explored in more detail in Chapter 5. There, a MAP-MRF problem is formulated to retrack altimetry
waveforms and enhance water level estimation from satellite altimetry. Rather than identifying a retracking
point in a single waveform, the objective is to identify a retracking line within an image, generated by
aligning all consecutive waveforms within a virtual station, known as a radargram. This retracking line
divides the radargram into two segments: the left (Front) and the right (Back) of the retracking line. This
segmentation approach can be interpreted as a binary image segmentation problem. There, in the defined
MAP-MRF, X represents the labels Front and Back, which are indeed hidden states and must be sought. Y
represents the pixel intensities of the radargram, corresponding to the measured reflected power of the
waveforms from satellite altimetry.

The Bayesian aspect of the MAP-MRF framework involves incorporating prior knowledge and using the
Bayes theorem to update beliefs about the hidden variables based on observed data. Prior beliefs about
the hidden variables X are encoded in a prior distribution P(X), and the likelihood function P(Y |X)
quantifies how probable the observed data Y is given a particular configuration of the hidden variables X.
Inference in the Bayesian MAP-MRF framework involves finding the configuration X̂ that maximizes the
posterior probability, which is equivalent to minimizing the energy function given by the sum of potential
functions. Practically, solving the MAP-MRF problem involves finding the configuration of hidden variables
X that minimizes the sum of the potential functions over all cliques, conditioned on the observed data Y .
Several optimization techniques can be employed to solve the MAP-MRF problem, including:
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• Graph Cuts: This method is particularly effective for binary and multi-label problems in computer
vision, where the problem can be transformed into a minimum cut problem on a graph. The graph
cuts method is utilized to obtain the solution for the MRF-MAP problem defined in Chapter 5.

• Belief Propagation: An iterative algorithm that computes marginal distributions of the nodes, which
can be adapted to find the most probable configuration.

• Simulated Annealing: A probabilistic technique that explores the solution space by accepting worse
solutions with a certain probability to escape local minima.

• Iterated Conditional Modes (ICM): An iterative algorithm that updates each variable to minimize
the local energy function, assuming other variables are fixed.

Within hydrogeodesy, MRF-MAP has been practiced mostly when classification or denoising is targeted. For
instance, it has been employed to solve the height estimation problem in InSAR imaging (Ferraiuolo et al.,
2004). Additionally, it has been utilized to obtain surface water extent from optical images (Elmi et al.,
2016; Elmi, 2019) and in retrieving time series of river water extent from global inland water datasets
(Elmi and Tourian, 2023). Moreover, it has also been used to detect water in SWOT HR images (Lobry
et al., 2019). In general, as spaceborne data continue to evolve, especially SWOT-type data, the role of
probabilistic methods like MRF-MAP is expected to grow, contributing to more refined insights into Earth’s
water systems.
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A Bayesian approach to estimating
daily river discharge from space

3

R iver discharge is one of the most crucial hydrological parameters, serving as a major link in the
global hydrologic cycle and as a critical climate component (Dingman and Bjerklie, 2006). Accurate

measurements of river discharge are essential for flood hazard management, water resource planning,
climate and ecological studies, and adherence to transboundary water agreements (Smith and Pavelsky,
2008). However, the global publicly available discharge database is declining steadily over the past few
years (Fekete and Vörösmarty, 2007; Fekete et al., 2012; Tourian et al., 2013; Sneeuw et al., 2014; Elmi
et al., 2024; Saemian et al., 2025). To address this issue, there has been a growing interest in using
spaceborne methods to estimate discharge (Alsdorf et al., 2007; McCabe et al., 2017; Tourian et al., 2017a;
Gleason and Durand, 2020; Tarpanelli et al., 2018, 2021; Domeneghetti et al., 2021; Elmi et al., 2021).

Recent studies show that altimetric water height or image-based river width over rivers can sensibly be
used to deal with the growing lack of discharge (da Silva et al., 2010; Calmant et al., 2012; Getirana and
Peters-Lidard, 2012; Tourian et al., 2013; Tarpanelli et al., 2013a; Maillard et al., 2015; Elmi et al., 2015,
2024). These studies estimated river discharge through a one-on-one functional relationship of discharge
and altimetric water level time series or image-based river width, the so-called rating curve. This model is
typically derived from a non-linear regression of simultaneous discharge vs. river width or water level at the
crossing of altimetry groundtrack and river, the so-called virtual station. However, the onset of the decline
of the Global Runoff Data Center (GRDC) database around the 70ies coincides with the beginning of the
satellite era (Elmi et al., 2024). Hence, synchronous time series of sufficient duration are only available for
a limited set of discharge gauges. This limitation was alleviated to a great extent by Tourian et al. (2013),
who estimate discharge through quantile function mapping. Thus, the statistics of pre-altimetry discharge
data can be employed for discharge prediction in the satellite altimetry or satellite imaging time frame under
a weak assumption of stationarity for discharge. The method is further improved by Elmi et al. (2021) to
infer a nonparametric model for estimating the river discharge and its uncertainty. The algorithm employs a
stochastic quantile mapping function scheme by iteratively generating realizations of river discharge and
height (width) time series using a Monte Carlo simulation, obtaining a collection of quantile mapping
functions by matching all possible permutations of simulated river discharge and height (width) quantile
functions and adjusting the measurement uncertainties according to the point cloud scatter.

However, a general problem of all estimated altimetric and image-based discharge is their coarse temporal
resolution, which is dictated by the repeat period of the satellite orbit. Moreover, the original time series
from individual missions carries noise and data outages, predominantly due to the neighboring topography
and heterogeneity of the reflecting surface. Such limitations inhibit the operational use of altimetric water
level time series in hydrological and hydrodynamic models. Recently, in terms of qualitative and quantitative
improvement of altimetry for rivers, Tourian et al. (2016); Boergens et al. (2019); Nielsen et al. (2022)
developed methods, by which the altimetric water level time series along a river are connected hydraulically
and statistically to improve the temporal resolution of water level time series. Such methods can be used to
generate dense water level time series at any given location along the river and consequently generate a
dense discharge time series through corresponding one-on-one rating curves.
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Apart from direct discharge modeling approaches, various assimilation methods have been employed to
estimate river discharge, especially for ungauged basins. For instance, Andreadis et al. (2007) used synthetic
surface water elevation data integrated into a raster-based river hydrodynamic model with an ensemble
Kalman filter to estimate river discharge. Similarly, Yoon et al. (2012) applied a data assimilation algorithm,
which also utilized an ensemble Kalman filter and a hydrodynamic model, to derive river bathymetry and
discharge from the SWOT satellite mission. Neal et al. (2009) combined water level information from
fused satellite SAR images and a digital terrain model (DTM) with simulations from a coupled hydrological
and hydrodynamic model to estimate discharge, assuming substantial channel information is available.
Additionally, Emery et al. (2018) developed a platform that calibrates a hydrological model of river storage
and discharge using satellite altimetry-based discharge data. Moreover, Ishitsuka et al. (2021) employed
the Mass-conserved Flow Law Inversion (McFLI) method, derived from satellite imaging and combined with
hydrological models in a global data assimilation framework, to estimate discharge in ungauged basins.
Gejadze et al. (2022) devised a robust discharge estimation method using Variational Data Assimilation
based on the complete Saint-Venant hydraulic model. Paiva et al. (2013) proposed a data assimilation
framework for both gauged and radar altimetry-based discharge and water levels, applied to a large-scale
hydrologic-hydrodynamic model for forecasting streamflow in the Amazon River basin. Huang et al. (2018)
demonstrated the use of satellite imaging and altimetry data combined with sparse gauge data on the
Tibetan plateau to estimate river discharge using power function equations. Lastly, Emery et al. (2020)
utilized a hydrodynamic model, based on the work of David et al. (2011), to assimilate daily averaged in
situ discharge measurements and correct daily averaged runoff using a classical Kalman filter, tested over a
four-year case study of two rivers in Texas.

The launch of the SWOT satellite on December 16, 2022, shall lead to a significant improvement in obtaining
the first global estimates of river discharge (Durand et al., 2023). SWOT delivers consistent data on the
spatial distribution of river storage and discharge (Biancamaria et al., 2016). The satellite observes most
mid-latitude locations twice during its 21-day repeat cycle, resulting in around 35 observations per year,
with a higher frequency at higher latitudes (Biancamaria et al., 2016; Durand et al., 2023). While this
frequency is adequate for monitoring the global water cycle, it may not sufficiently capture the temporal
dynamics required for local-scale river studies (Durand et al., 2016). Therefore, even with SWOT, it seems
necessary to make efforts to improve temporal resolution.

3.1 A Kalman Filter based method to estimate river discharge

As discussed in Section 2.4, the use of Bayesian approaches in dynamic systems, particularly the Kalman
Filter, is a well-established methodology that has been used in many disciplines for various purposes, such
as navigation, control systems, and signal processing. It has also been applied in hydrogeodetic studies. In
hydrogeodetic studies, the use of the Kalman Filter and dynamic systems is particularly beneficial when
representing a river system. The Kalman Filter allows for the integration of multiple data sources and the
continuous updating of estimates as new measurements become available. This is crucial for accurately
modeling and predicting the behaviour of river systems, which are dynamic and influenced by numerous
factors such as rainfall, evaporation, and human activities. By using a dynamic system approach, we can
create a more accurate representation of the river’s state over time. The Kalman Filter helps in this by
combining geodetic measurements, such as water surface elevation and river width obtained from satellites,
with hydrological models that describe the river’s flow and discharge. This integration allows for real-time
updating and correction of the model based on new observations, leading to more reliable predictions of
river discharge and other hydrological parameters (Lorenz and Kunstmann, 2012).

Inspired by the existing challenge of monitoring river discharge from space and the opportunity offered by
the Kalman Filter, a method is proposed here that goes beyond the conventional one-on-one relationship
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and single-reach approach, estimating daily river discharge using a multitude of altimetric time series. A
linear dynamic system is implemented to (1) provide a scheme for data assimilation of multiple altimetric
discharges along a river, (2) estimate daily discharge, (3) deal with data outages in altimetric discharge,
and (4) smooth the discharge estimation. As discussed in Section 2.4, the linear dynamic system consists of
a stochastic process model that benefits from the cyclostationary behaviour of the discharge. The covariance
and cross-covariance information of river discharge along the river stream are included within the process
model. Multiple altimetric discharge time series are combined with the process model to form a linear
dynamic system. The linear dynamic system is solved using the Kalman filter and a smoother. Such a
methodology is flexible to integrate all kinds of satellite altimetry data as well as SWOT data.

The starting point of developing a stochastic process model is to define the time series of residual daily
discharge rt by

rt =Qt− Q̃t , (3.1)

with Qt as the daily discharge time series and Q̃ as the mean daily discharge (Figure 3.2). Both Qt and Q̃
can represent time series of several stations/locations along the river. The Q̃ represents the cyclostationary
behaviour of daily river discharge, which is computed as

Q̃k = 1
T/365

T/365∑
i

Qi,k , (3.2)

in which k is the day of the year, varying from 1 to 365. After removing the cyclostationary behaviour from
the daily discharge time series, one can assume that the remaining residual does not change drastically
from time t−1 to t. Given such an assumption, a linear process model can be formed by

rt =Art−1 +e , (3.3)

where,
E{rt}= 0 . (3.4)

In the above process model (3.3), the process dynamics A is unknown and it should be estimated by
minimizing the process error e. An approximation of process dynamic Â is then a linear estimator of the
state rt given rt−1 (Gelb, 1974; Kurtenbach, 2011)

r̂t = Ârt−1 . (3.5)

Consequently, the process error can be quantified as,

e= r̂t−rt with C{e}=ΣP = E{eeT} . (3.6)

With the above formulation, the minimum error variance occurs when

tr[C{e}] = min . (3.7)

Since the equation (3.4) is valid for all A, the expectation can be justified (Moritz, 1989; Kurtenbach,
2011)

E{r̂t}= E{Ârt−1}= ÂE{rt−1}= 0 = E{rt} . (3.8)

To determine the minimum variance estimator, first, the outer product of the error vector from equation (3.6)
is calculated

eeT = (r̂t−rt)(r̂t−rt)T . (3.9)
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Then by substituting r̂t from (3.5) and multiplying the terms:

eeT = (Ârt−1−rt)(Ârt−1−rt)T (3.10)

= Ârt−1r
T
t−1Â

T−rtrT
t−1− Ârt−1r

T
t +rtrT

t . (3.11)

The auto-covariance and cross-covariance are then defined as

Auto-covariance: Σ = C{rt}= E{rtrT
t } (3.12)

Cross-covariance: Σ∆ = C{rt,rt−1}= E{rtrT
t−1} (3.13)

Then the error covariance matrix of the process model is

C{e}= E{eeT}=AΣAT−Σ∆A
T−AΣT

∆ +Σ , (3.14)

which can be rearranged into

C{e}=Σ−Σ∆Σ
−1ΣT

∆ + (A−Σ∆Σ−1)Σ(A−Σ∆Σ−1)T. (3.15)

The first term is independent of A
Σ−Σ∆Σ

−1ΣT
∆ = c. (3.16)

Therefore, the trace of the error covariance matrix is minimum if the second term disappears, leading to the
definition

Â=Σ∆Σ
−1, (3.17)

and a covariance matrix
C{e}=Σ−Σ∆Σ

−1ΣT
∆ . (3.18)

In the common Kalman notation this is referred to as the covariance matrix of the prediction noise.

The process dynamics Â is a matrix that acts in the time and spatial domain at the same time. Since it is
derived from the statistics of residual daily time series, it transfers the information about random errors,
climatic variability, and extreme events from t−1 to t and from any given station to other stations.

Since the true auto- and cross-covariances between the residuals of daily river discharge are unknown, they
are approximated by the empirical sample covariance matrices using legacy discharge data available at
gauging stations

Σ = C{rt}= E{rtrT
t }= 1

T

T∑
t=1

rT
t rt (3.19)

Σ∆ = C{rt,rt−1}= E{rtrT
t−1}= 1

T −1

T∑
t=2

rT
t−1rt (3.20)

Such an approximation for the auto- and cross-covariance matrices means that the residual of daily river
discharge is considered as a stationary stochastic process. In essence, this implies that the residual daily
discharge does not change its statistical properties with time and that its statistical properties can be
deduced from a single, sufficiently long realization of the process. In this case, this is not necessarily true,
and it might lead to uncertainty for the process model. However, since the process model can be combined
with available in situ or spaceborne discharge measurements, such limitations will have a weak influence
on our final solutions.
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Now by combining (3.3) and (3.1) the stochastic process model for daily discharge is obtained

(Qt− Q̃t) = Â(Qt−1− Q̃t−1) +e

(Qt− Q̃t) = ÂQt−1− ÂQ̃t−1 +e

Qt = ÂQt−1− ÂQ̃t−1 + Q̃t+e (3.21)

which can be rewritten in the form of

Qt = ÂQt−1 +GUt−1 +e, (3.22)

where,

G=
[
−Â I

]
& Ut−1 =

[
Q̃t−1

Q̃t

]
. (3.23)

The form obtained in (3.22) is the stochastic process model of discharge that estimates at Qt by having the
discharge at t−1 relying on information provided by auto-covariance, cross-covariance, and daily mean of
discharge.

The process model can benefit from available observations of the process occurring at discrete points in
time, which allows for controlling and improving the discharge estimation of the stochastic process model.
For this, one can use estimated discharge from satellite altimetry or in situ discharge measurements. The
linear observation equation reads

Zt =OQt+vt with vt ∼N (0,Qxt), (3.24)

where Zt denotes all available discharge measurements. Here, O is an identity matrix. The observation
equation setup will be explained in detail in Section 3.2.3.

The process model (3.22) and observation model (3.24) are independent. Together they form a linear
dynamic system. The state Qt will be estimated using the prior information from the process model and the
likelihood function obtained from available discharge estimation from altimetry. The formulation described
in Chapter 2 will be used to obtain a posterior and the MAP solution, which is summarized in Table 3.1.

Tab. 3.1: Overview of the Kalman filter and the smoothing procedure

Parameter Equation

Prediction step Q−
t = ÂQ+

t−1 +GUt−1 +e
with e∼N (0,ΣΣ)

State prediction covariance Σ−
t = ÂΣ−

t−1Â
T +ΣP

Observation innovations Vt = Zt−OtQ
−
t +νt,d

with νt ∼N (0,Qx,t)

Measurement prediction covariance St = OtP
−
t O

T
t +Qxt

Kalman gain Kt = Σ−
t O

T
tS

−1
t

Correction step Q+
t = Q−

t +KtVt

Updated state covariance Σ+
t = Σ−

t −KtStK
T
t

Smoothing gain K∗
t = Σ+

t Â
(
Σ−

t+1

)−1

Smoothing step Qt = Q+
t +K∗

t

(
Qt+1−Q−

t+1

)
Smoothed covariance Σ∗

t = Σ+
t +K∗

t

(
Σ∗

t+1−Σ
−
t

)
K∗T

t

3.1 A Kalman Filter based method to estimate river discharge 59



3.2 Implementation

The algorithm is employed over the Niger Basin, located in western Africa, which covers 7.5% of the
continent and spans ten countries (Figure 3.1). The Niger River flows in a crescent through Mali and
Niger, along the border with Benin, and then through Nigeria, discharging through the massive Niger
Delta into the Gulf of Guinea in the Atlantic Ocean. Additionally, two tributaries, the Bani and Benue
rivers, are considered. The Benue River, located in Nigeria, is the most important tributary of the Niger,
merging with the river at Lokoja in Nigeria (Figure 3.1). The Bani River, the principal tributary of the
Niger River in Mali, merges with the Niger near Mopti (Gleick, 2000). The Niger River runs with relatively
high flow velocity until it reaches the Inner Niger Delta, where the river’s gradient suddenly decreases
(Figure 3.2). Consequently, a vast region of braided streams, marshes, and lakes is formed, resulting in
a loss of the river’s potential flow due to seepage and evaporation (Figure 3.1). To better represent the
river dynamics, two dams, Kainji and Jebba, which are used to generate hydropower in Nigeria, are also
considered (Figure 3.1).
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Figure 1: The Niger River flowing through 5 countries: Guinea, Mali, Niger, Benin, Nigeria and
its two major tributaries Bani and Benue. Red and blue lines and dots represent the groundtrack
and the selected virtual stations from Jason-2 and ENVISAT, SARAL/AltiKa, respectively.

along the river 3) different flow dynamics up- and downstream of the Delta 4) a112

changing flow pattern after the confluence point with the Benue. With such chal-113

lenges, the success of our method over the Niger would guarantee its success for114

many other major river basins around the world to a great extent.115

3. Data116

3.1. In situ river discharge117

In this study, we use in situ data of daily discharge from the Global Runoff118

Data Center (GRDC) both for training and validation purposes (http://www.bafg.de/GRDC).119

Table 1 lists the data sorted according to the river’s flow direction. The location of120

these stations is indicated in Figure 1, yellow squares. Koulikoro, Dire, Niamey121

7

Fig. 3.1: The Niger River flows through 5 countries: Guinea, Mali, Niger, Benin, Nigeria, and its two major tributaries,
Bani and Benue. Red and blue lines and dots represent the groundtrack and the selected virtual stations from
Jason-2 and ENVISAT, SARAL/AltiKa, respectively.

3.2.1 In situ river discharge over the Niger River

Table 3.2 lists the in situ data, sorted according to river streamflow, taken from GRDC, with the locations of
these stations along the Niger River indicated in Figure 3.1. The Koulikoro, Dire, Niamey, and Lokoja are
the only gauging stations for which the data is available after 2002. To represent the magnitude of river
discharge at the different gauging stations, the mean daily discharge of different stations is plotted in a
Hovmöller diagram (Figure 3.2). This diagram indicates a clear seasonal behaviour of discharge with a
time lag pattern along the streamflow. The river flows with high velocity from August to October between
the longitudes of −9◦ and −4◦, which is slowed down when the river reaches the Inner Niger Delta. The
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Tab. 3.2: Available in situ river discharge stations over the Niger basin from the Global Runoff Data Center (GRDC)

station country lat long area station No. start end

Faranah Guinea 10.03 −10.75 71054 1634200 1955 2001
Kouroussa Guinea 10.65 −9.87 596423 1634400 1923 2002
Tiguibery Guinea 11.25 −9.17 118415 1634650 1952 1979
Dialakoro Guinea 11.42 −8.91 2069197 1634700 1954 1980
Banankoro Mali 11.68 −8.67 1542735 1134030 1967 2001
Koulikoro Mali 12.87 −7.55 667686 1134100 1907 2006
Kirango Aval Mali 13.72 −6.05 3209 1134250 1925 2001
Ke-Macina Nali 13.95 −5.37 715793 1134400 1953 1992
Tilembeya Mali 14.15 −4.98 132864 1134460 1922 1992
Nantaka (Mopti) Mali 14.53 −4.22 16756 1134500 1922 2001
Akka Mali 15.4 −4.23 133668 1134600 1987 1990
Tonka Mali 16.13 −3.75 134465 1134630 1954 1992
Dire Mali 16.27 −3.38 275389 1134700 1924 2003
Koryoume Mali 16.67 −3.03 1266556 1134730 1963 2001
Tossaye Mali 16.93 −0.58 301846 1134850 1954 1992
Ansongo Mali 15.67 0.50 340103 1134900 1950 2001
Kandadji Niger 14.62 0.98 68078 1234090 1975 2002
Niamey Niger 13.52 2.08 68809 1234150 1929 2006
W Niger 12.58 2.62 362037 1234201 1985 2002
Malanville Benin 11.87 3.38 378835 1734500 1952 2000
Yidere Bode Nigeria 11.38 4.13 416723 1834110 1984 2002
Lokoja Nigeria 7.80 6.77 529977 1834101 1970 2006

increase in mean daily discharge at Lokoja station happens due to the inflow contribution of the Benue
River.
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Fig. 3.2: Hovmöller diagram of mean daily discharge of 22 gauging stations along the Niger River

The discharge values are converted to runoff quantities in mm/day by dividing them by the corresponding
basin area and multiplying by 86,400 (Table 3.2). Figure 3.3 illustrates the available time series of in situ
discharge, expressed in mm/day, from 1970 to 2016.
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Fig. 3.3: Available in situ discharge time series from GRDC along the Niger River. The time period with a gray
background indicates the training period.

3.2.2 Altimetric water level time series over the Niger River

Water level time series for 68 virtual stations along the Niger River, Bani River, and Banue River are
obtained using the satellite altimeter mission ENVISAT (ENV) (ESA, 2007), Jason-2 (JA2) (CNES, 2011),
and SARAL/AltiKa (SAR) (CNES, 2013). Table 3.3 lists all 68 virtual stations along the Niger, Bani, and
Benue rivers.
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Tab. 3.3: Available water level time series from altimetry

km ID Lon Lat Avg. Height Amp. Points ENV. JA2 SAR Quality

Niger River

50 1560 −10.67 9.87 426.49 5.40 100 + — + 0.93
113 1559 −10.77 10.31 404.74 3.94 100 + — + 0.86
233 1557 −10.16 10.47 371.21 4.14 171 — + — 0.85
244 1556 −10.10 10.53 363.58 5.47 96 + — + 0.85
310 1555 −9.71 10.62 358.24 5.82 94 + — + 0.87
358 1554 −9.47 10.92 349.71 5.62 102 + — + 0.90
476 1553 −8.87 11.46 335.18 6.35 96 + — + 0.82
579 1489 −8.30 12.11 326.62 5.65 93 + — + 0.89
691 1487 −7.73 12.73 299.64 8.06 107 + — + 0.89
781 1486 −7.11 13.18 287.63 6.45 104 + — + 0.84
809 1485 −6.94 13.33 286.04 5.20 103 + — + 0.87
863 1484 −6.43 13.36 282.84 4.35 108 + — + 0.81
2514 1482 −5.79 13.72 275.20 6.79 107 + — + 0.87
2520 1510 −5.73 13.75 275.09 6.45 271 — + — 0.88
2575 1481 −5.36 13.95 271.84 5.88 108 + — + 0.89
2600 1480 −5.16 14.08 270.54 6.32 108 + — + 0.84
2671 1479 −4.57 14.27 267.03 5.38 96 + — + 0.90
2941 1495 −4.14 15.89 260.68 5.15 108 + — + 0.93
3151 1492 −2.88 16.67 258.52 4.86 107 + — + 0.97
3189 1491 −2.56 16.73 258.06 4.80 98 + — + 0.89
3236 1490 −2.20 16.83 257.26 4.91 109 + — + 0.96
3287 1475 −1.80 16.92 256.79 4.71 108 + — + 0.93
3318 1474 −1.52 17.01 256.28 4.36 104 + — + 0.97
3337 1404 −1.35 17.01 256.65 3.12 216 — + — 0.95
3373 1403 −1.06 17.01 254.93 3.09 103 + — + 0.96
3401 1405 −0.81 17.00 253.16 3.95 102 + — + 0.94
3458 1406 −0.36 16.94 251.21 4.66 82 + — — 0.91
3580 1407 0.13 15.97 245.75 3.97 108 + — + 0.97
3682 1408 0.72 15.42 236.59 4.10 103 + + + 0.91
3716 1409 0.66 15.15 232.75 3.16 106 + — + 0.93
3832 1410 1.19 14.35 204.12 4.21 104 + — + 0.93
3836 1411 1.25 14.31 203.54 3.52 101 + — + 0.92
3937 1496 1.76 13.66 184.24 3.79 75 + — + 0.89
4183 1515 2.89 12.33 163.18 2.94 102 + — + 0.78
4227 1516 3.20 12.07 159.78 5.12 102 + — + 0.79
4363 1517 4.12 11.40 148.25 7.34 102 + — + 0.78
4459 1519 4.72 10.90 137.99 7.48 109 + — + 0.91
4711 1520 5.06 9.17 70.14 6.32 109 + — + 0.59
4749 1521 5.33 8.99 65.25 3.87 90 + — + 0.57
4798 1283 5.69 8.83 59.27 5.44 102 + — + 0.52
4845 1522 6.10 8.76 54.14 4.66 102 + — + 0.70
4883 1523 6.37 8.65 49.97 6.36 107 + — + 0.66
5130 1571 6.65 6.65 22.38 8.45 110 + — + 0.84
5205 1524 6.72 6.01 15.23 7.89 108 + — + 0.89
5352 1528 6.23 4.92 2.85 5.84 106 + — + 0.84

Benue River

278 1586 12.44 9.31 153.04 5.09 84 + — + 0.72
377 1585 11.69 9.49 132.71 5.34 108 + — + 0.85
392 1584 11.57 9.41 129.50 6.67 83 + — + 0.85
458 1280 11.06 9.13 117.04 6.58 109 + — + 0.87
522 1583 10.69 8.72 107.14 7.09 100 + — + 0.87
557 1582 10.43 8.69 102.29 7.72 108 + — + 0.87
567 1581 10.33 8.68 101.69 7.83 263 — + — 0.87
644 1580 9.89 8.28 89.30 6.67 112 + — + 0.92
654 1279 9.81 8.23 87.85 6.85 109 + — + 0.91
735 1578 9.16 7.91 75.21 9.57 76 + — + 0.87
821 1278 8.481 7.76 63.66 7.02 105 + — + 0.92
835 1277 8.341 7.81 61.09 7.12 110 + — + 0.92
906 1576 7.742 8.01 51.41 8.51 258 — + — 0.92
909 1575 7.702 8.012 50.96 7.47 95 + — + 0.92
912 1574 7.672 8.022 49.85 6.86 106 + — + 0.93
990 1573 7.01 7.92 39.72 8.56 82 + — + 0.89
1000 1572 6.92 7.86 38.97 8.12 52 + — + 0.90

Bani River

72 1497 −4.99 13.37 268.68 7.22 105 + — + 0.85
178 1509 −4.41 13.94 266.22 6.38 106 + — + 0.89
611 1504 −6.35 12.78 276.91 6.68 90 + — + 0.87
616 1503 −6.30 12.79 276.43 5.73 93 + — + 0.90
638 1501 −6.34 12.95 275.81 7.68 106 + — + 0.83
644 1500 −6.29 13.01 275.58 7.06 101 + — + 0.89

3.2.3 Altimetric discharge as observation

To estimate altimetric discharge at 22 gauging stations and incorporate them into the linear dynamic system,
a dense time series of water levels at the gauging stations is first generated by merging the water level
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time series of individual Virtual Stations (VSs), i.e., by densifying (Tourian et al., 2016). The water level
time series and legacy discharge measurements at the gauges are then turned into quantile functions, from
which the corresponding rating curves are obtained using the quantile matching approach (Tourian et al.,
2013). To achieve a proper estimation of uncertainty for the estimated discharge, the Gauss-Helmert Model
is employed to estimate the rating curve parameters. The subsequent sections provide a detailed description
of the densification process and the discharge estimation steps.

Densification of water level time series

The individual water level time series along the Niger River and two tributaries of Benue and Bani are
densified using the method developed by Tourian et al. (2016). They suggested a geodetic approach
by which all VSs of several satellite altimeters are connected hydraulically and statistically to produce
water-level time series at any location along the river. By this, one can generate water level time series with
an improved temporal resolution of ∼ 3-5 days at any given location along the Niger River.

Densified altimetric water level time series are generated at the locations of in situ gauging stations listed
in Table 3.2 to be incorporated into the observation equation of the linear process model. Various data
selection setups are employed to obtain these densified water level time series, taking into account

• Case 1: all VSs along the Niger River (45 VSs)
• Case 2: all VSs of Niger including those over the Bani tributary (51 VSs)
• Case 3: all VSs of Niger including those over the Benue tributary (62 VSs)
• Case 4: all VSs of Niger including those over the both Bani and Benue tributaries (68 VSs)
• Case 5: similar to case 4 but with dam consideration
• Case 6: similar to case 5 but also with consideration of Niger inner delta

For Case 5, VSs located upstream of the two major dams, Kainji and Jebba, are used to densify the altimetric
water level time series for the 21 gauging stations situated upstream of these dams. Conversely, for the
gauging station at Lokoja, located downstream of the dams, corresponding VSs are utilized. In Case 6,
the densification process is differentiated based on location: 1) Upstream of the Niger inner delta, 2)
Downstream of the inner delta and upstream of the dam, and 3) Downstream of the dams. Due to the
availability of a relatively high number of VSs for these cases, the densified time series are obtained with a
temporal resolution of 1–2 days, derived from individual time series with original sampling intervals of 10
or 35 days.
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Fig. 3.4: Densified altimetric water level time series at Lokoja station, GRDC no. 1834101, using five different setups
for the selection of VS

Figure 3.4 shows the densified altimetric water level time series at Lokoja GRDC station using the afore-
mentioned six different variants for the selection of VSs. The time series of cases 1 and 2 show different
characters in comparison to those for cases 3,4, 5, and 6. This is predominantly because water level
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variation of the tributary Benue is not considered for cases 1 and 2. The tributary Benue matters for the
Lokoja station since it is located downstream of the confluence point of the Benue and Niger.

Estimation of altimetric river discharge and its uncertainty

To estimate river discharge Q from altimetric water level time series H, one has to obtain a functional
relationship, the so-called rating curve, which maps water level variation ∆H to river discharge discharge
Q (Gleason and Smith, 2014)

Q+e= a(∆H)b . (3.25)

The water level variation ∆H can be derived by defining a reference level H0: ∆H = H −H0. The
parameters a and b are estimated by minimizing the norm of model inconsistencies e in (3.25). For such
minimization, often the water level and river discharge time series are treated as noise-free data sets, which
is not the case neither for water level from altimetry nor for the measured discharge at the gauge. Such
limitation is lifted by implementing a Gauss-Helmert Model (GHM). In the GHM, two parameters of eQ

and eH are added to the equation (3.25), representing the error in discharge and error in water level time
series, respectively

Q−eQ−a(∆H−eH)b = f(a,b,eQ,eH) = 0 . (3.26)

With such formulation a functional relatinship f(.) with unknown parameters of a,b,eQ,eH is obtained. It
can be linearized by splitting up the quantities

a=a0 + ∆a, b= b0 + ∆b

eQ =eQ + ∆eQ, eH = eH + ∆eH
(3.27)

and choose a Taylor point related to both parameters and uncertainties: a0, b0, eQ and eH.

After linearizing Equation (3.26) using a Taylor series expansion and minimizing the objective function,
the rating curve parameters a and b are estimated. The covariance matrix is then used to estimate the
uncertainties for these parameters, denoted as σâ and σb̂. A detailed description of the Gauss-Helmert
Model is provided in Appendix A. For the implementation of the Gauss-Helmert Model, 10% of the measured
discharge is used as the error for discharge (eQ), and the estimated error from the altimetry processing is
used for eH.

Uncertainty estimation

By solving the Gauss-Helmert model and deriving the covariance matrix, the parameters a and b are
obtained along with their uncertainties. These uncertainties are then used to propagate errors, allowing for
the estimation of the error in the estimated discharge.

σ2
Q̂,t =∆Ht

2b̂σ2
â + (âb̂∆Ht

b̂−1)2σ2
∆Ht

+ [âH b̂ log(∆Ht)]2σ2
b̂ (3.28)

Figure 3.5 shows the estimated uncertainty of discharge using water level time series from all cases of
densification for the outlet gauge of the Niger basin at Lokoja. Similar to this gauge, the estimated errors
σ2

Q̂ for all other gauges are also proportional to the estimated discharge and vary on average 10–20% of
discharge.
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Fig. 3.5: Estimated uncertainty of discharge using water level time series from all cases of densification for the outlet
gauge of Niger basin at Lokoja

Dealing with non-simultaneous measurements of discharge and water level

Above all the aforementioned formulation, one has to form rating curve model using corresponding
measurements of water level and discharge. However, synchronous time series of sufficient duration
are only available for a limited set of discharge gauges. This limitation was dealt with to a great extent
by Tourian et al. (2013) who predicted discharge through quantile function mapping. By their method,
the statistics of pre-altimetry discharge data can in principle be employed for discharge prediction in the
altimetry time frame. This means the rating curve parameters can be derived from the corresponding
quantile functions of water level measurements qH and legacy discharge qQ, rather than from their time
series. In other words, in equation (3.29), H can be replaced with qH and Q can be replaced with qQ

qQ + i= a(qH−H0)b . (3.29)

Figure 3.6 shows obtained rating curves from quantile matching, all cases shown in gray, and fitted
rating curve models with consideration of Gauss-Helmert using water level time series from all cases of
densification for six selected gauges. As can be seen in the figure, quantile matching-driven rating curves of
some gauges show peculiar behaviour with a bulge in the middle for some of the cases. This is because of
densifying, inconsistent altimetric time series at the selected gauge. For instance, for the gauges of 1134700
and 1234150, which are located between the Inner Niger Delta and dams, only water level time series from
case 6 of densification lead to a meaningful rating curve.
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Fig. 3.6: Obtained rating curves from quantile matching for all cases (gray) and fitted rating curve models using
Gauss-Helmert consideration using water level time series from all cases of densification for six selected
gauges

3.2.4 Forming observation equations

In general the observation vector Zt, formulated in equation (3.24), can contain in situ measurements of
discharge Qins,t together with the estimated altimetric discharge Qalt,t:

Zt =
[
Qalt,t

Qins,t

]
, (3.30)

So that the design matrix is populated with unit matrices

O =
[
I

I

]
. (3.31)

The estimated error, estimated in (3.28), can then be assigned to the Σx,t matrix, which contains the
covariance information of observations at each time t

Σx,t =
[
σ2

Q̂,t 0
0 σ2

ins,t

]
(3.32)
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Fig. 3.7: Flow diagram of the proposed methodology to estimate daily discharge time series over an entire river basin

σins,t refers to uncertainties of available in situ measurements of discharge, and the observations from
different sources can be assumed to be uncorrelated.

Here, since the in situ data are used solely for validation purposes, they are not incorporated into the
observation equation. Therefore, the observation vector is defined as:

Zt =
[
Qalt,t

]
, (3.33)

and covariance matrix consists of
Σx,t =

[
σ2

Q̂,t

]
, (3.34)

The matrix O in the equation (3.24) is then an identity matrix with the size of the observation vector.

Figure 3.7 summarizes the proposed algorithm to estimate daily discharge time series over an entire river
basin.

3.3 Results and validation

To estimate daily river discharge along the Niger River and implement the proposed methodology, a
training period between 1970–1990 and a validation period from 1990–2016 are defined (Figure 3.3). The
available in situ daily discharge is utilized to train the stochastic process model, forming the linear dynamic
system with the help of altimetric discharge. Since only one year of discharge data is available during the
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training period for two gauging stations (1134460 and 1134600), these stations are excluded from the
investigations.

To build the stochastic process model described in Section 3.1, the time series of residual daily discharge rt
is first derived, for which mean daily discharge is removed from daily values. Using equation (3.2), mean
daily values are estimated from all available data until the end of the training period (until the end of 1989).
From the obtained residual time series of 20 gauging stations, Â and ΣP are derived by estimating Σ
and Σ∆ (3.17). Figure 3.8 shows the estimated process model Â, representing both spatial and temporal
covariance of residual daily discharge along the Niger River. In other words, the matrix indicates how
the residual daily river discharge at different stations along the Niger at time t can be estimated from the
residual daily river discharge at t−1.
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Fig. 3.8: Estimated process model Â of residual daily river discharge for 20 gauging stations along the Niger River

To generate the prior, the stochastic process model evolves with the help of its predictor Â (Figure 3.8)
under the control of GUt−1. The control input GUt−1 adds the mean daily discharge at time t minus
ÂQ̃t−1 to the process model, which leads to adding a prediction for residual discharge to the legacy mean
daily discharge Q̃t−1 (see equation (3.21)). In essence, the process model is allowed to estimate discharge
within the range of process noise ΣP. Figure 3.9 shows the process noise ΣP, estimated from residual daily
river discharge of 20 gauging stations along the Niger River. In this matrix, the diagonal elements refer to
the variance of process noise for river discharge estimation. After obtaining the initial prediction, the state
prediction covariance is computed by adding the process noise to the propagated error of the process model
(see Table 3.1).

By bringing the observation equation with corresponding covariance information Σx,t into the dynamic
system, the predicted discharge by the prior is updated through the estimation of prediction covariance
St and Kalman gains Kt, which essentially generate the likelihood function. The prediction covariance
St is formed by adding the covariance matrix of observation Σx,t to the propagated covariance matrix
of the observation equation, considering the state prediction covariance P−t for discharge (Table 3.1).
The estimated discharge is then corrected by adding the multiplication of Kalman gain and observation
innovations. Since the Kalman filtering is used in this study for assimilation purposes and not for prediction

3.3 Results and validation 69



16
34

20
0

16
34

40
0

16
34

65
0

16
34

70
0

11
34

03
0

11
34

10
0

11
34

25
0

11
34

40
0

11
34

50
0

11
34

63
0

11
34

70
0

11
34

73
0

11
34

85
0

11
34

90
0

12
34

09
0

12
34

15
0

12
34

20
1

17
34

50
0

18
34

11
0

18
34

10
1

 

 
1634200

1634400

1634650

1634700

1134030

1134100

1134250

1134400

1134500

1134630

1134700

1134730

1134850

1134900

1234090

1234150

1234201

1734500

1834110

1834101

[m
m

/d
ay

] 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−3

Fig. 3.9: Estimated state prediction covariance ΣP of residual daily river discharge for 20 gauging stations along the
Niger River

purposes, the discharge estimation is smoothed by the backward estimation of smoothing gain K∗t as
indicated in Table 3.1.

Figure 3.10 shows the estimated daily river discharge from Kalman filtering and consecutive smoothing. For
the results in Figure 3.10, the observation from case 6 of densification is used. Obviously, with the choice
of ENVISAT, Jason 2, and SARAL/AltiKa for altimetry, the estimated altimetric discharge time series are
only available after 2002. Since the in situ data were excluded from observation for validation purposes,
the Kalman filtering and smoothing results before 2002 primarily relied on the process model itself. This
is evident from the left panel of Figure 3.11. This figure provides a zoomed-in version of 6 stations of
Figure 3.10. By comparing the smoothed discharge (red curve) with the mean daily discharge (gray curve),
it becomes evident that when altimetric discharge data is not available, the estimated discharge largely
depends on the control input (mean daily discharge) combined with an additional term derived from the
spatial correlation of residual daily discharge.

The estimated discharge for stations 1134400 and 1734500 emphasizes the fact that even a process model
that considers the spatiotemporal covariance information along an entire river system cannot properly
capture the daily river discharge in the absence of altimetry. In the right panel of Figure 3.11, three
examples illustrate the impact of assimilating altimetric discharge with the stochastic process model. For
gauge 1134100, the estimated discharge demonstrates a clear improvement over the mean daily discharge
from legacy data due to the incorporation of altimetric discharge. This enhancement is evident when
comparing the estimated discharge with in situ measurements and the mean daily discharge. For gauge
1234150, shown in a zoomed-in view before and after the availability of altimetric discharge, the effect is
even more noticeable. A systematic time delay between the estimated and in situ discharge is apparent until
October 2002. This discrepancy is partially addressed by incorporating altimetric discharge data. However,
discrepancies persist, primarily due to complex reaches with abrupt changes in slope or morphology between
consecutive VSs in the densification scheme.
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Further findings from the results of gauge 12345150 include the importance of performing a smoothing
procedure after the Kalman filtering. The undesirable outcome of Kalman filtering for March to April
2003 was resolved after applying the smoothing procedure. This is also the case for stations that are
located downstream of the Inner Niger Delta and upstream of dams in winter 2012. Such noisy estimation
happens due to a significant difference between the control input (mean daily discharge) and the altimetric
discharge.

To validate the estimated time series Q of river discharge against in situ data Qins, the following metrics
are used:

• Correlation Coefficient (CC), which represents the agreement of time series in terms of temporal
behaviour

• Relative Root Mean Squared Error (Rel. RMSE)

Rel.RMSE = RMSE
RMS(Qins)

(3.35)

• Relative bias

Rel.bias = (Q−Qins)
RMS(Qins)

(3.36)

• Nash-Sutcliffe Efficiency (NSE) coefficient

NSEmean = 1−
∑

(Qins−Q)2∑
(Qins−Qins)2

• An alternative formulation of the NSE coefficient, which takes the legacy mean daily cycle of a variable
into account. This metric is introduced to evaluate the estimated discharge against available mean
daily values of old data Q̃ins

NSEcycle = 1−
∑

(Qins−Q)2∑
(Qins− Q̃ins)2

(3.37)

A positive NSEcycle indicates that the estimated discharge Q outperforms the mean daily values of
old data Q̃ins.

Using these performance metrics, the estimated discharge (smoothed version) is validated against in situ
data. For the validation, two gauges, Tiguibery (1634650) and Dialakoro (1634700), are excluded since
the discharge was not measured between 1990–2016. Figure 3.12 shows different performance metrics
along the Niger River for different cases of densification of time series from satellite altimetry. Overall, the
validation results show an average CC of 0.9, an average relative RMSE and relative bias of 15%, NSEmean

greater than 0.5 for 15 gauges, and almost NSEcycle above 0 for all gauges.

The high NSEmean coefficients (around 0.8) for many gauges indicate that the method provides an
acceptable daily discharge time series. However, for three gauges—1134400, 1134630, and 1134850—the
NSEmean values are not as favorable, which aligns with the observed relative bias values for these gauges.
Such large relative biases can be explained by a biased control input (mean daily discharge) in the process
model for these gauges, which can be described by the non-stationary behaviour of discharge. Since
these stations are located around the Inner Niger Delta, regime changes upstream or downstream due to
possible river management are highly expected. On the other hand, for these stations, the available daily
discharge time series during the validation period is scant and discontinuous, which hinders us from further
interpretations.

From an operational standpoint, the estimated discharge must surpass the mean daily discharge derived
from historical data. The metric NSEcycle is specifically designed to evaluate this performance by comparing
the estimated discharge with the mean daily values of older data. Although NSEcycle and NSEmean share
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similar names, they are interpreted differently. A NSEcycle value greater than 0 indicates that the estimated
discharge exceeds the performance of the mean daily discharge, whereas a NSEmean value greater than
0.5 suggests acceptable performance. Among all the metrics used, only NSEcycle effectively captures the
performance of different densification approaches. When using the results from case 1 in the observation
equation, contributions from the Bani and Benue rivers, as well as the effects of dams and the Niger Inner
Delta, are not considered. This case involves densifying 45 VSs along the Niger River, leading to a negative
NSEcycle at Lokoja (1834101). This negative value arises because the Benue River, which significantly
influences the discharge at Lokoja, is not included. Similarly, including only the Bani River in case 2 does
not yield a positive NSEcycle. A positive NSEcycle for this gauge is achieved only when incorporating the
Benue River’s contribution, which merges with the Niger River at Lokoja.

For the three problematic gauges—1134400, 1134630, and 1134850—positive NSEcycle values indicate
that the estimated daily discharge surpasses the legacy mean daily data. Despite this, as illustrated for
gauge 1134400 in Figure 3.11, the improvement is minimal. Given the limited in situ data available
for these stations during the validation period, caution should be exercised in interpreting these modest
improvements.

Overall, better performance metrics are received with case 6, which distinguishes between VSs of different
river reaches with different flow characteristics. In case 6, even the Inner Niger Delta is considered,
distinguishing between VSs located upstream and downstream of it, differentiating it from case 5. This
consideration significantly influences the NSEcycle values of 1634400, 1134100, 11346700, 1234090, and
1234150. This emphasizes the need for a careful analysis and understanding of the river system for a
successful densification process. Compared to the densification setup implemented by Tourian et al. (2016),
an additional step is taken here by considering the effect of tributaries along the Niger River. However, as
discussed by Tourian et al. (2016), proper densification is realized when a time-variable flow velocity is
estimated instead of average flow velocity and when the channel geometry is properly characterized.
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Fig. 3.12: Performance metrics of estimated discharge time series at 18 gauging stations along the Niger River for
different cases of densification of altimetry
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All in all, the validation results demonstrate that the algorithm can be confidently used to estimate daily
discharge time series for an entire river basin. The validation results show that this method can even be
used for operational purposes, as it delivers better estimates than the legacy mean daily data. Furthermore,
within the developed methodology, an ensemble of SWOT discharge values from various existing estimation
algorithms (Durand et al., 2023), along with altimetry-based and image-based discharge data of different
river locations, can be ingested into the observation equation. This leads to an assimilated (combined)
estimation of daily river discharge out of SWOT measurements at the full catchment scale.
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A Bayesian framework for spatial
downscaling of GRACE-derived
terrestrial water storage data

4

The Gravity Recovery and Climate Experiment (GRACE) and its successor, the GRACE Follow-On (GRACE-
FO), have significantly advanced our ability to measure Earth’s gravity field variations and monitor

large-scale water storage changes. However, these missions face inherent limitations related to spatial
resolution. As discussed in Section 1.2.1, the highest spatial resolution achieved with GRACE and GRACE-FO
is approximately 300–400 km, obtained with a monthly solution (Vishwakarma et al., 2018). Despite their
valuable contribution to understanding large-scale hydrological processes, the spatial resolution of GRACE
and GRACE-FO data constrains their utility primarily to large river basins and catchments (Lorenz et al.,
2014; Tourian et al., 2015; Yi et al., 2017; Springer, 2019). The observed gravity signal from GRACE
integrates mass changes over relatively large areas, making it difficult to detect localized variations, like
river systems (see Figure 4.1).
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Fig. 4.1: Terrestrial Water Storage Anomaly (TWSA) over the Amazon Basin as obtained by GRACE after filtering (left)
and by the WaterGAP Global Hydrology Model (WGHM) (right) for January 2005.

The resolution challenge is particularly significant in areas where water storage changes are influenced
by smaller-scale hydrological processes, such as in small catchments, mountainous regions, or coastal
aquifers. These regions often exhibit critical variations in water storage that are crucial for local ecosystems,
agricultural activities, and human water consumption. The current spatial resolution limits the utility of
GRACE-derived Terrestrial Water Storage Anomaly (TWSA) and its time derivative Terrestrial Water Storage
Flux (TWSF) to large catchments. This limited spatial resolution also hinders a detailed understanding
of water cycle dynamics and may overlook important hydrological changes in vulnerable areas where
populations heavily depend on water resources.

To overcome the low spatial resolution of GRACE, it is required to use an additional dataset or a model with
a better resolution. Many studies have addressed this limitation by assimilating or jointly evaluating GRACE
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with a fine-scale dataset based on either statistical approaches, frequentist or Bayesian inference, or, more
recently, machine learning methods.

In a purely statistical approach to downscaling, one can rely on multi- or bivariate linear relationships
between a coarse-scale and fine-scale dataset(s) to obtain downscaled products. Following this approach,
Yin et al. (2018) relied on the linear relationship between GRACE and fine-scale evapotranspiration data to
improve the spatial resolution of GRACE-derived groundwater storage anomalies. With a similar perspective,
Vishwakarma et al. (2021) benefited from th multivariate linear regression model to downscale GRACE
water storage anomaly by relying on its linear relationship with water storage fields from the WaterGAP
Global Hydrology Model (WGHM), three precipitation datasets, evapotranspiration, and two different
runoff models. However, the linear statistical approaches usually face two problems 1) they ignore existing
nonlinear relationships between fine- and coarse-scale datasets, and 2) they determine the downscaled
products without taking the marginal or joint distribution of the datasets into account. The latter leads to
the limitation that no distribution or, more precisely, no proper uncertainty can be derived for the obtained
downscaled results.

While the first problem cannot be easily tackled, the Bayesian framework as described in Chapter 2
offers a solution to the second problem, which involves obtaining a posterior distribution for the target
variable. For instance, Bayesian Model Averaging (BMA) has been employed to assimilate diverse GRACE
products, integrating a priori knowledge, consolidating information from multiple models, and generating
an uncertainty estimate (Long et al., 2017). Within the Bayesian framework, to obtain the posterior
distribution, one possible solution is to make use of the Kalman Filter (see Chapter 3), where at each time
point, the prior is determined by a process model, and the likelihood function is defined by the observation
equation. Such a setup offers the possibility of either using coarse data within the process model to generate
a prior or using it as an observation to generate the likelihood function. The latter has been practiced in
several studies to downscale GRACE, where GRACE is assimilated with a land surface model (Zaitchik et al.,
2008) or with WGHM (Eicker et al., 2014; Schumacher et al., 2018).

While the Kalman filter provides a posterior distribution for the target variable and thus uncertainty, it is
limited by the fact that both the likelihood and the prior are assumed to be normally distributed, and being
a conjugate prior, the posterior is also normally distributed. Therefore, the estimated uncertainty may be at
most a proxy for the actual uncertainty. Indeed, in the Bayesian framework, it is possible to predetermine
the distribution in advance and to draw indirect inferences about the posterior distribution. This is typically
done by using a Markov chain to obtain a set of parameter values from the posterior distribution and using
Monte Carlo integration to obtain a distribution estimate of the posterior distribution and the associated
statistics with sampled parameters, the so-called Markov Chain Monte Carlo (MCMC)-based sampling
techniques (described in Chapter 2) (van de Schoot et al., 2021). Such a technique has recently been
employed to downscale GRACE water storage change data and generate groundwater and soil water storage
changes at approximately 12.5 km resolution (Mehrnegar et al., 2021), as well as for the purpose of
reconstructing GRACE mass changes time series to bridge the gap between GRACE and GRACE-FO (Rateb
et al., 2022).

Although the second problem is somehow tackled in the Bayesian framework, the first problem, representing
the nonlinear relationship between datasets, remains a challenge. Inspired by such a problem, various
nonlinear Machine Learning (ML) algorithms have been used to downscale GRACE data, such as Artificial
Neural Network (ANN) (Miro and Famiglietti, 2018), or Boosted Regression Trees (BRT) (Seyoum et al.,
2019) or Random Forest (RF) (Jyolsna et al., 2021) or, very recently, Long Short-Term Memory (LSTM)
recurrent neural networks (Gorugantula and Kambhammettu, 2022). The ML-based methods have even
exhibited notable efficacy in bridging the gap between GRACE and GRACE-FO measurements (Sun et al.,
2021) or even in producing water storage estimates using land surface model outputs (Yu et al., 2021).
Nevertheless, beyond the overarching issue of ML-based methodologies lacking physical interpretability in
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the derived relationships, they often fail to provide a comprehensive uncertainty estimation for the target
variable. Therefore, alternative methods should be sought.

4.1 A Bayesian approach for downscaling GRACE data

In a 0.5◦×0.5◦ grid cell, xD is sought, which represents a downscaled GRACE data. To be specific, let’s
assume that here the aim is to downscale TWSF. For downscaling xD, one can make use of fine-scale TWSF
xM and soil moisture change (SMC) xS available at 0.5◦×0.5◦. Here, soil moisture change was chosen as it
is generally a better proxy for water storage variation than individual hydrologic fluxes such as precipitation
(P ), evapotranspiration (ET ), or runoff (R), which would provide a comparable storage flux quantity only
if P −ET −R is determined. Soil moisture serves as an essential component of the hydrological cycle,
influencing various processes such as evapotranspiration, groundwater recharge, and surface runoff (Brocca
et al., 2010). Changes in soil moisture content reflect variations in the amount of water stored in the soil,
impacting the overall water balance and availability within the basin (Tromp-van Meerveld and McDonnell,
2006). Tian et al. (2017) specifically investigated the contributions of soil moisture to various water
compartments, revealing substantial influences on groundwater and terrestrial water storage (cf. Tian et al.,
2017, Fig. 2). Long et al. (2013) showed that even in the presence of extreme drought conditions, soil
moisture storage changes in Texas exert a predominant influence on the majority of water storage variations.
This justification is further substantiated over the Amazon region, given that in a shallow catchment like the
Amazon Basin, where approximately 65% of all drainable water is stored in the upper layers (Tourian et al.,
2018; Frappart et al., 2019), soil moisture serves as a representative quantity for assessing variations in
water storage.

For the methodology developments, the following data serve as the foundation: For xM, the WGHM model
ṀW, PCR-GLOBWB model ṀP, SURFEX-TRIP model ṀU, and an ensemble of water balance components
ṀF. More detail can be found in Section 4.2.1. For xS, soil moisture fluxes from ASCAT ṠA and from GLEAM
ṠL are utilized. To derive TWSF from GRACE data, spherical harmonic coefficients from ITSG-Grace2018
were used, following the processing steps outlined by Tourian et al. (2022) to obtain TWSA. Gaps in TWSA
values for each grid cell were filled with the mean monthly value for the respective grid cell and month.
Finally, the TWSA was numerically differentiated using a central difference scheme to derive TWSF ṀG.

To obtain xD, the aim is not only to use the available high-resolution data, but also the stochastic information
within the covariance structure of different datasets. Therefore, the problem is reformulated as finding the
conditional probability P(xD|xM,xS) of xD given xM and xS, which provides a measure for the likelihood
of xD given xM and xS. This formulation allows the problem to be placed within the Bayesian framework
as follows:

P(xD|xM,xS) = P(xM|xD,xS)P(xS|xD)P(xD)
P(xM,xS) . (4.1)

In the Bayesian framework P(xM|xD,xS) and P(xS|xD) are the likelihood functions representing the
likelihood of xM given xD and xS, and of xS given xD. Let’s recall that the likelihood functions are not
probability distributions over xD and xS, and their integral with respect to xD and xS does not equal one. The
P(xD) is the prior of the downscaled TWSF, which can be inferred via the prior beliefs about the TWSF. The
joint probability in the denominator P(xM,xS) acts as a normalization constant, ensuring that the posterior
P(xD|xM,xS) is a valid probability density and integrates to one. In the above-formulated framework, x̂D
can then be obtained by finding the Maximum A Posteriori (MAP) estimate (see Section 2.2)

x̂D = arg max
xD∈X

P(xM|xD,xS)P(xS|xD)P(xD), (4.2)
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where x̂D would represent a fine-scale TWSF realized at each 0.5◦×0.5◦ grid cell given the data from the
hydrological measurements and the model.

By such a formulation of the problem, the fine-scale TWSF can be determined if the likelihood functions
P(xM|xD,xS) and P(xS|xD) and the prior P(xD) are known. In other words, knowing the likelihood
functions and the prior, a posterior can be obtained whose maximum gives the solution to the problem.

In Bayesian statistics, the primary focus is on the estimation of the entire posterior distribution. Since
the mathematical equation describing the posterior distribution is usually very complicated and high-
dimensional, with the number of dimensions corresponding to the number of parameters, a direct inference
of the posterior distribution is usually not possible, requiring sampling methods such as MCMC (van de
Schoot et al., 2021). Here, however, the aim is to directly obtain the posterior distribution through non-
parametric likelihood functions and the prior defined by the data itself. In other words, x̂D is obtained by
maximizing the product of non-modeled, non-parametric likelihood functions and the prior. The challenge
then lies in obtaining a likelihood function that reliably describes how probable the data from fine-scale
TWSF and SMC are for different values of downscaled TWSF xD. Note that if the likelihood function is not
representative of the stochastics of the data, the Bayesian inference will give biased estimates (Koch, 2007).
Moreover, it is important to include an appropriate prior to the proposed Bayesian framework, which best
reflects the prior beliefs on TWSF. These are further explained in the following sub-sections.

4.1.1 Prior P(xD)

The coarse-scale TWSF from GRACE can provide the best prior for TWSF because it is the only source that
provides measurements of the TWSF without relying on modeling assumptions. Therefore, the GRACE data
ṀG itself is chosen as the prior. To this end, GRACE estimates are realized on a 0.5◦×0.5◦ grid cell, which
are overly smooth realizations of TWSF xD. Depending on the signal strength, GRACE estimates could
provide a relatively fair estimate of TWSF. To form a prior distribution, the distribution of TWSF in each
grid cell must be known. Given the seasonality of the GRACE-TWSF time series, the distribution in each
grid cell is rather platykurtic, with kurtosis larger than 3. Therefore, assuming a normal distribution for
the prior would not be adequate. Instead, the Pearson system, a flexible parametric family of distributions
that encompasses a wide range of distribution shapes, is relied upon (Johnson et al., 1995). This approach
makes it possible to find a distribution that best represents the data based on the mean, standard deviation,
skewness, and kurtosis of the data.

Therefore, for each 0.5◦×0.5◦ grid cell Ω at time t (month m Jan., Feb., Mar.,... and year y), a distribution
from the Pearson system is fitted centered around the GRACE estimate ṀG(t,Ω), with the standard deviation
σmΩ and kurtosis βmΩ of all GRACE values of the month m within the grid cell Ω. For instance, σ1

Ω and β1
Ω

are the standard deviation and kurtosis of all TWSF values in January in the grid cell Ω, respectively. Such
a choice for the prior allows us to represent the temporal characteristics of each grid cell in each specific
month m separately.

4.1.2 Likelihood functions P(xM|xD,xS) and P(xS|xD)

The likelihood function, used in both Bayesian and frequentist inference, generally quantifies the strength
of support provided by the observed data for possible values of the unknown parameter(s) (van de Schoot
et al., 2021). In general, specifying a likelihood function can be straightforward, especially in physics-based
problems where a model is assumed to connect the observation y and the unknowns x (e.g., y = Ax).
With such a model, the likelihood function P(y|x) can be obtained by assuming a certain distribution (e.g.,
normal distribution). In the context of frequentist inference, such an assumption enables the solution if
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the information about the first two moments of the likelihood function P(y|x) is available, where the first
moment is assumed to be E(y) =Ax and the second moment is assumed to be D(y) = Σy.

Here, the derivation of P(xM|xD,xS) and P(xS,xD) will be difficult since finding a suitable model for
xM = f(xD,xS) and xS = f(xD) involves a high level of uncertainty. To this end, P(xM|xD,xS) and
P(xS,xD) must be empirically determined from the datasets. This brings us to two challenges:

1. How to empirically obtain P(xM|xD,xS) and P(xS,xD)?

2. How to deal with the problem that there is no data for xD on which to determine the conditional
probabilities?

These issues are addressed in the following subsections, respectively.

How to empirically obtain P(xM|xD,xS) and P(xS,xD)?

To obtain P(xM|xD,xS) and P(xS,xD), empirical multivariate distributions P(xM,xD,xS) and P(xS,xD) are
first obtained using Copulas. Copulas C are multivariate distributions defined on the unit hypercube with
uniform marginals (Nelsen, 2007).

C : [0,1]n→ [0,1] , (4.3)

in which n is the dimension. For instance, n= 2 leads to a bivariate copula. Copulas allow us to describe the
dependence of multivariate distributions with any kind of marginal distributions (Nelsen, 2007). According
to Sklar (1973), each multivariate distribution F(x1, . . . ,xn) can be represented with the help of a copula

F(x1, . . . ,xn) = C(F1(x1), . . . ,Fn(xn)) (4.4)

in which Fi(xi) is the i-th one dimensional marginal distribution of the multivariate distribution. The
cumulative probability values of the marginal distribution U := F(x) of any variable span [0,1]. For every
u ∈ [0,1] (Czado, 2019):

P(U ≤ u) = P(F (x)≤ u) = P(x≤ F−1(u)) = F (F−1(u)) = u , (4.5)

which means that U := F(x) is uniformly distributed. Following (4.4) and knowing that the copula is
obtained from Fi(xi), one can state that a copula expresses the dependence between datasets without the
influence of their marginal distributions. For a bivariate case, one can obtain an empirical copula C̃ by first
converting x1 and x2 into their normalized rank domain, obtaining u1j and u2j . Then for each u1 ∈ [0,1]
and u2 ∈ [0,1], simply obtain a cumulative sum of the number of cases in which u1j u2j is less than u1 and
u2, respectively:

C̃(u1,u2) := 1
L+ 1

L∑
j=1

1[u1j≤u1,u2j≤u2] for all 0≤ u1,u2 ≤ 1 , (4.6)

where L is the length of the data. Assuming that C is absolutely continuous, the copula density c(u1, . . . ,un)
can be written as

c(u1, . . . ,un) = ∂nC(u1, . . . ,un)
∂u1 . . .∂un

(4.7)

A copula density represents a probability that a set of uniform variables ui i = 1, ...,n would be located
within a particular region of [0,1]n space, which corresponds to the level of dependency of variables.
Therefore, the joint probability density of xS and xD reads

P(xS,xD) = c(FS
(
xS),FD(xD)

)
P(xS)P(xD) . (4.8)
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By building CSD and CMDS, which are empirical copulas between xS, xD and xM generated by Eq. (4.6),one
can then obtain the corresponding likelihood by (Czado, 2019)

P(xS|xD) = ∂

∂uD

(
∂

∂xS
CSD(FS(xS),uD)

)∣∣∣∣
uD=FD(xD)

. (4.9)

For the trivariate case, the likelihood can be obtained by

P(xM|xD,xS) = ∂2

∂uD∂uS

(
∂

∂xM
CMDS(FS(xM),uD,uS)

)∣∣∣∣uD = FD(xD)
uS = FS(xS)

(4.10)

How to generate copulas and deal with the problem that xD is not available?

For generating both copulas CSD and CMDS, realizations of fine-scale water storage flux xD are required.
As this data is not available, it is the focus of this study to obtain it. Due to the coarse resolution of GRACE
and its inability to capture the full distribution, GRACE data at a 0.5◦×0.5◦ resolution cannot serve as a
representative basis for forming copulas CSD and CMDS. Therefore, it is essential to analyze the empirical
copula density of GRACE data alongside the selected fine-scale models. Figure 4.2 shows the empirical
copula density for all pairs of data considered here. ṀP and ṀU show the strongest dependence among all
pairs, which may be due to a similar modeling approach. As expected, given that they are two different
quantities, the TWSF and soil moisture data show less dependence and more scatter in their empirical
copulas.
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Fig. 4.2: Empirical copula density for all pairs of data considered in this study.

Some of the copula densities including, for example, ṀW-ṀP, ṀW-ṀU, ṠL-ṠA show a strong tail depen-
dency, which can be explained by the fact that stronger signals are better correlated to each other. In
essence, this is an important property of a copula that can express whether the corresponding dependence
varies for different quantiles of the variable. In the pairs with GRACE (first column), a general pattern
is observed that the copula densities are scattered, which represents less correlated behavior in different
quantiles. For the ṀG-ṠL and ṀG-ṠA data pairs, perfect correlation is not expected, as these copula
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Fig. 4.3: Monthly empirical copula of ṀW versus ṀG for all grid cells of Amazon Basin

densities involve different quantities. However, for TWSF data pairs, ideally, copula densities with the data
points aligned along the diagonal are expected, similar to the data pair ṀP-ṀU. A reason for the deviation
from an ideal case is the fact that different datasets represent TWSF differently and with different spatial
resolutions. In the case of pairs with GRACE, the main reason for the scatter in copula densities is that
GRACE generally provides a meaningful signal for lower-degree spherical harmonic coefficients, and its
estimates for higher-degree coefficients (i.e., shorter wavelengths) are overly smooth. This can be seen
in Figure 4.4, which shows the average degree variance (averaged over all months) of TWSF and SMC.
Comparing the degree variances of GRACE with those of ṀW and ṀU, it is clear that GRACE has by far the
lowest information content for the shorter wavelength (small features), due to the omission error.
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Fig. 4.4: Average of monthly degree variances for ṀG, ṀW,ṀP, ṀU, ṀF and ṠA

To obtain copula densities that are not contaminated by noise or excessive smoothness in the data, one
solution is to obtain copula densities from long wavelengths only. This would mean converting the grid data
to a spherical-harmonic representation to focus on the longer wavelengths to generate copula densities. One
important advantage of using the copula is that it is invariant to monotonic transformations of the marginal
variables. This is a major advantage compared to approaches using covariances, as those strongly depend
on the marginal distributions. Thus, by converting grid-based data into spherical harmonic coefficients, the
dependency between datasets can still be represented by generating copulas from these spherical harmonic
coefficients. This is possible since the equation (4.11), that turns the spatial data into spherical harmonic
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representation (i.e., spherical harmonic analysis) can be considered as a monotonic transformation (i.e., a
larger field f(Ω) would lead to larger spherical harmonic coefficients ∆Clm and ∆Slm).{

∆Clm
∆Slm

}
= 1

4π

∫∫
Ω
f(Ω)P̄lm(cosθ)

{
cosmλ
sinmλ

}
dΩ (4.11)

Therefore, copulas CSD and CMDS can be constructed using spherical harmonic coefficients from GRACE
TWSF and fine-scale data. By assuming that dependencies captured in lower spherical harmonic degrees
apply to higher degrees, copulas can be generated from truncated datasets. This truncation mitigates poten-
tial deterioration of dependencies caused by the imperfect resolution of 0.5◦×0.5◦ datasets, particularly for
GRACE data. Additionally, generating copulas in the spectral domain rather than the spatial domain helps
avoid undesirable field variations resulting from truncation errors.

To distinguish the truncated data from the non-truncated one, the truncated data are symbolized with
∗. An experimental analysis (not shown here) showed that the best degree for the truncation is ltr = 30.
Figure 4.5 shows bivariate empirical copulas directly generated from spherical harmonics coefficients up to
degree 30 for all pairs of data, in which the tail dependency between datasets is much more visible due to
less influence of noise from higher degrees. Here, different patterns are observed in the empirical copulas
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Fig. 4.5: Empirical bivariate copula density for all pairs of truncated data considered in this study.

for various months (Figure 4.6).

Copula models and likelihood functions

Given the tail dependencies observed in the empirical copulas, the Student’s t copula is fitted, as it allows for
effective modeling of tail dependencies between variables and is straightforward to simulate and calibrate.
To this end, CSD and CMDS are constructed using the Student’s t copula for each month, resulting in a total
of 24 copulas: 12 for CSD (Figure 4.7) and 12 for CMDS (copula densities not shown here). Figure 4.7
illustrates the copula density for CSD, demonstrating similar patterns to those observed in Figure 4.3.
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Fig. 4.6: Monthly empirical copula of ṀW∗ versus ṀG∗ for all grid cells of Amazon Basin

Jan. Feb. Mar. Apr.

May Jun. Jul. Aug.

Sep.

0 1
0

1
Oct. Nov. Dec.

Fig. 4.7: Modelled monthly copula between ṀW versus ṀG for all grid cells of Amazon Basin

With the constructed copulas, for each 0.5◦× 0.5◦ grid cell Ω at time t within month m and year y, the
required likelihood functions are obtained by taking the derivative of a given quantile:

P(xS|xD; t,Ω) = ∂

∂uD

(
∂

∂xS
CmSD(FSΩ(xS),urD)

)∣∣∣∣
urD=FGΩ (ṀG(t,Ω))

(4.12)

and

P(xM|xD,xS; t,Ω) = ∂2

∂uD∂uS

(
∂

∂xM
CmMDS(FWΩ(xM),urD,urS)

)∣∣∣∣urD = FGΩ(ṀG(t,Ω))
urS = FSΩ(ṠL,A(t,Ω))

(4.13)
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FGΩ is the empirical cumulative distribution function of GRACE data ṀG in the grid cell Ω, using which urD
(a value between 0 and 1) is obtained by ṀG(t,Ω) as a realization of xD. It should be noted that the FGΩ is
empirically derived from all monthly estimates of GRACE from 2002 to 2017 in the grid cell Ω. Similarly,
FSΩ is the empirical cumulative distribution function of SMC data ṠL or ṠA in the grid cell Ω.

4.1.3 MAP estimate and its uncertainty

Once the prior and likelihood functions are derived for each 0.5◦× 0.5◦ grid cell Ω and at time t, the
posterior is attained by

P(xD|xM,xS; t,Ω) = P(xM|xD,xS; t,Ω)P(xS|xD; t,Ω)P(xD; t,Ω)∫
P(xM|xD,xS; t,Ω)P(xS|xD; t,Ω)P(xD; t,Ω)

(4.14)

from which the MAP is estimated through

x̂D(t,Ω) = argmax
D∈D

P(xD|xM,xS; t,Ω), (4.15)

which represents TWSF value with maximum posterior probability in each month at each grid cell. The
uncertainty of TWSF is then derived as the interquartile range (IQR) of the posterior distribution

σx̂D =Q3−Q1 , (4.16)

where the lower quartile Q1 corresponds with the 25th percentile and the upper quartile Q3 corresponds
with the 75th percentile of the posterior distribution. Figure 4.8 shows the overall flowchart of the proposed
method for downscaling.
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Fig. 4.8: Flowchart of proposed copula-supported Bayesian framework
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4.1.4 Mass-conserved MAP estimate

On large scales, say over the entire Amazon, GRACE should provide the best representation of total mass
change. Because of the uncertainty of individual measurements, neither of the selected fine-scale TWSF data
can deliver a realistic representation of total mass change over a large basin. As a result, the downscaled
result, obtained from the data and statistical distribution of fine-scale TWSF and SMC in combination
with GRACE in each grid cell, is not expected to maintain the mass conservation property. Moreover, the
proposed Bayesian framework is set for each grid cell and each month individually and is not designed to
be constrained by a condition for the whole basin. A statistical approach that does not interfere with the
Bayesian framework is relied upon to fulfill the mass conservation over a large basin. To this end, a mass-
conserved downscaled field is derived by assuming that the cumulative distribution of downscaled TWSF x̂D

should obey FG (CDF from GRACE) over a large basin. Therefore, a classical CDF matching (Verhoest et al.,
2015) is applied, which transforms F(xD|xM,xS) to FG, leading to an estimate x̂MD whose distribution
follows the distribution of GRACE throughout the Amazon Basin. Through such an approach, it is ensured
that the spatial distribution pattern of the TWSF remains intact, and only the distribution of the data in
terms of their quantiles changes.

4.2 Results and validation

A portion of the Amazon Basin, upstream of Óbidos, Brazil, was selected as the study area. It has an
area of 4,702,314 km2 and contributes to draining the largest volume of liquid freshwater on land. The
Amazon Basin has the highest amount of freshwater discharge into the ocean, with about 20% of the
total water carried to the oceans by rivers. The method is applied across the nine sub-basins outlined in
Table 4.1 (Figure 4.9). The Amazon Basin was selected due to its significant recharge and water storage
variation (Figure 4.9 bottom panel). This region, characterized by extensive surface water storage and
diverse freshwater wetlands, provides an opportunity to validate the downscaled results using independent
data.

Tab. 4.1: Sub-basins of Amazon Basin used in this study with their area and climate classification.

Basin Area Climate
[106 km2]

Upper Japurá River 0.12 fully humid
Upper Solimões River 1.22 partially humid
Juruá River 0.16 partially humid
Upper Negro River 0.28 fully humid
Purus River 0.37 tropical monsoon
Upper Branco River 0.17 tropical monsoon
Lower Solimões River 0.32 fully humid
Madeira River 1.31 savanna
Manacapuru-Óbidos 0.74 fully humida

a: partially tropical monsoon

As mentioned before, the method is supported by fine-scale 1) TWSF and 2) SMC datasets from different
sources listed in Table 4.2.

4.2.1 Fine-scale Total Water Storage Flux

Fine-scale Total Water Storage Flux (TWSF) data are obtained in two different ways:
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Fig. 4.9: Top panel) Study area containing nine sub-basins of the Amazon Basin with 10 selected GPS stations
(red circles). Bottom panels: left) Mean annual precipitation over the Amazon Basin within the GRACE
period (2002–2016) from the ensemble mean of selected datasets; middle) same as before, however, for
evapotranspiration, and right) average soil moisture from GLEAM 3.5a within the GRACE period (2002–2016).
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Tab. 4.2: Summary of datasets used in this study for downscaling and validation purposes.

Data symbol

Terrestrial Water Storage Flux (TWSF)

GRACE ṀG
WGHM ṀW
PCR-GLOBWB ṀP
SURFEX-TRIP ṀU
Ensemble water flux ṀF

Soil Moisture Change (SMC)

GLEAM ṠL
ASCAT ṠA

Data for validation

Vertical Surface Displacement Change (VCDR)
Surface Water Storage Change (SWSC)

1. Using TWSF models, and

2. through water balance equation.

TWSF models

For the fine-scale TWSF models, 12 models listed in Table 4.3 were considered. To avoid erroneous models,
an evaluation of model performance was conducted by comparing the aggregated TWSF time series over
the Amazon Basin. The evaluation concluded that three models—WGHM ṀW, PCR-GLOBWB ṀP, and
SURFEX-TRIP ṀU—demonstrated superior performance, with a correlation coefficient (CC) greater than
0.82, Kling-Gupta efficiency (KGE) greater than 0.53, and root-mean-square error (RMSE) less than 8.6 cm.
Consequently, these three models were utilized for the implementation of the downscaling method.

Tab. 4.3: Summary of the models that provide TWSA over the Amazon Basin. LSM: Land Surface Model, GHM: Global
Hydrological Model; AM: Atmospheric Model.

Model Type Spatial Resolution Time period Reference

CLM5-CRUNCEP LSM 0.9425◦ × 1.25◦ 1850–2014 Lawrence et al. (2019); Oleson et al. (2019)
CLM5-GSWP3 LSM 0.9425◦ × 1.25◦ 1850–2014 Lawrence et al. (2019); Oleson et al. (2019)
ERA5 AM 0.25◦ × 0.25◦ 1979–present Hersbach et al. (2020)
HBV-SIMREG GHM 0.5◦ × 0.5◦ 1979–2012 Lindström et al. (1997)
HTESSEL LSM 0.25◦ × 0.25◦ 1980–2014 Balsamo et al. (2015)
LISFLOOD GHM 0.25◦ × 0.25◦ 1980–2014 Van Der Knijff et al. (2010)
ORCHIDEE LSM 0.25◦ × 0.25◦ 1980–2014 Polcher et al. (2011)
PCR-GLOBWB GHM 0.25◦ × 0.25◦ 1979–2014 Sutanudjaja et al. (2018); Wada et al. (2014)
SURFEX-TRIP LSM 0.5◦ × 0.5◦ 1979–2012 Decharme et al. (2013)
SWBM GHM 0.5◦ × 0.5◦ 1979–2012 Koster and Mahanama (2012); Orth and Seneviratne (2013)
W3RA GHM 0.5◦ × 0.5◦ 1979–2012 Van Dijk (2010)
WaterGap Global Hydrology Model GHM 0.5◦ × 0.5◦ 1901–2016 Müller Schmied et al. (2021)

TWSF through water balance equation over Amazon

At basin-scale, TWSF ṀF can be determined through the terrestrial water balance equation, given as:

ṀF = ¯{P}− ¯{ET}− ¯{R}. (4.17)
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In Eq. (4.17), ¯{P} is the ensemble mean of thirteen precipitation datasets, ¯{ET} is the ensemble mean of
four evapotranspiration datasets, and ¯{R} is the ensemble mean of three runoff datasets, listed in Table 4.4.
The filter [1

4
1
2

1
4 ] is then convolved with the obtained ṀF time series to enhance compatibility with the

GRACE TWSF, which is derived using the central difference scheme (Tourian, 2013).

Tab. 4.4: Summary of the datasets used in this study to compute the ensemble mean of the water balance fluxes. G:
Gauge, S: Satellite, R: Reanalysis, GHM: Global Hydrological Model.

Dataset Method/Source(s) Spatial Resolution Time period Reference

Pr
ec

ip
it

at
io

n

AgCFSR G, R 0.25◦ × 0.25◦ 1980–2010 Ruane et al. (2015)
AgMERRA G, S, R 0.25◦ × 0.25◦ 1980–2010 Ruane et al. (2015)
CHIRPS G, S, R 0.05◦ × 0.05◦ 1981–present Funk et al. (2015)
CRUv4.04 G 0.5◦ × 0.5◦ 1901–2019 Harris et al. (2020)
GPCCv2020 G 0.25◦ × 0.25◦ 1982–2019 Schneider et al. (2020)
GPCPv2.3 G, S 2.5◦ × 2.5◦ 1979–present Adler et al. (2003)
GPCP 1DD G, S 1.0◦ × 1.0◦ 1996–present Huffman et al. (2001)
GPM IMERG v6 Final G, S 0.1◦ × 0.1◦ 2000–present Huffman et al. (2019)
MSWEP v2.8 G, S, R 0.1◦ × 0.1◦ 1979–2020 Beck et al. (2019)
PERSIANN-CDR G, S 0.25◦ × 0.25◦ 1983–present Ashouri et al. (2015)
PREC/L G 0.5◦ × 0.5◦ 1948–present Chen et al. (2002)
TRMM-3B42-adj G, S 0.25◦ × 0.25◦ 1998–2019 Huffman et al. (2007)
UDELv5.01 G 0.5◦ × 0.5◦ 1900–2017 Willmott and Matsuura (1995)

ET

ERA5 R 31 km 1979–present Hersbach et al. (2020)
FluxCom G, S 0.5◦ × 0.5◦ 2001–2013 Jung et al. (2019)
P-LSH G, S 0.083◦ × 0.083◦ 1982–2013 Zhang et al. (2009, 2010)
PML-v2 G, S 0.05◦ × 0.05◦ 2002–2019 Zhang et al. (2019, 2016)

R
un

of
f G-RUN-Ensemble G, S, R 0.5◦ × 0.5◦ 1979–present Ghiggi et al. (2021)

SURFEX-TRIP GHM 0.5◦ × 0.5◦ 1979–2012 Lindström et al. (1997)
W3RA GHM 0.5◦ × 0.5◦ 1979–2012 Van Dijk (2010)

4.2.2 Soil moisture data over Amazon

Available soil moisture products can generally be categorized into three main classes: (i) satellite-based
products obtained from active- or passive-microwave satellite observations; (ii) hydrological and land
surface models without data assimilation; and (iii) hydrological and land surface models assimilated
with external satellite data, such as soil moisture or brightness temperature. Two soil moisture products
were selected: 1) the satellite-based product of the Advanced Scatterometer (ASCAT) for the period
2007–2016 (Wagner et al., 2013), and 2) the Global Land Evaporation Amsterdam Model (GLEAM) version
3.5a (Martens et al., 2017) for the period 2002–2016, which is a model assimilated with satellite data
including SMOS L3 and ESA CCI SM v2.3. ASCAT represents the liquid water content in a surface soil layer
as a percentage of total saturation at a 25 km resolution (Wagner et al., 2013), while GLEAM represents the
volumetric soil moisture in the root-zone layer (0–10 cm).

These datasets were chosen based on the recent study by Beck et al. (2021), which evaluated the perfor-
mance of 18 satellite- and model-based soil moisture products using 826 ground stations. In their study,
AMSR2 and SMAPL3E slightly outperformed ASCAT. However, these products only cover a few years of
the GRACE period (AMSR2 covers 2012–2016, and SMAPL3E covers 2015–2016). Additionally, they (ibid)
demonstrated that among assimilated products, ESA-CCI SM V04.4 COMBINED delivered comparable
performance to GLEAM. However, due to a significant number of missing values over the Amazon Basin,
this dataset was not included in the analysis.

To obtain a flux-like variable, the soil moisture data from the two selected sources were then converted into
Soil Moisture Change (SMC) by applying numerical differentiation to each grid cell.
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4.2.3 The downscaled TWSF fields

Based on the proposed methodology and using fine-scale TWSF and SMC datasets, monthly downscaled
TWSF xD and mass-conserved downscaled TWSF xMD on a 0.5◦× 0.5◦ grid are obtained. Within the
proposed Bayesian framework, GRACE data is always relied upon for the prior, as described in Sub-
section 5.2.1. The likelihood functions were determined by generating copula densities using four different
TWSF and two different SMC datasets. As a result, eight realizations of downscaled TWSF were obtained
(Table 4.5).

Tab. 4.5: Input datasets of fine-scale TWSF and SMC for 8 realizations of downscaling

fine-scale SMC

fine-scale TWSF GLEAM ASCAT
ṠL ṠA

WGHM ṀW 1 2
PCR-GLOBWB ṀP 3 4
SURFEX-TRIP ṀU 5 6
ensemble flux ṀF 7 8

Figure 4.10 shows empirical CDFs of GRACE monthly TWSF ṀG (bottom) and fine-scale input TWSF ṀW,
ṀF, ṀP, ṀU along with empirical CDFs of the downscaled TWSF x̂D (light coral) and the mass-conserved
downscaled TWSF x̂MD (turquoise) of the 8 realizations. Larger tails in CDFs of fine-scale TWSF reveal
that they contain more details in comparison to GRACE, which generally shows a smooth transition to the
tails. There, all fine-scale datasets have a relatively symmetric distribution, with the exception of the flux
ensemble dataset ṀF exhibiting a rather skewed distribution.

The downscaled TWSF’s CDF shows less heavy tails and, in general, less similar behaviour to the input
fine-scale datasets in terms of their details in tails. Almost all realizations cover a different range of TWSFs
from what is represented by their input fine-scale data. This is the result of the counteraction of the prior
and the likelihood functions P(xS|xD) and P(xM|xD,xS), which potentially helps to reduce the effect of
over- and underestimation by models. This can also be seen in the time series of downscaled TWSF for the
first realization (Figures 4.11) that, in terms of dynamics, it is a trade-off between GRACE, WGHM, and the
dynamics of SMC.

The mass-conserved downscaled TWSF x̂MD is the result of the CDF matching of the downscaled data with
the GRACE CDF, thus yielding the same CDFs as GRACE (Figure 4.10). Such a CDF matching leads to
having very similar time series with GRACE (Figures 4.11). Over the sub-basins, however, they are not
necessarily the same, since x̂MD is conditioned over the entire Amazon and not over each sub-basin. It is
important to recall that CDF matching affects only the distribution in terms of quantiles, without altering
the spatial distribution of the data. Figure 4.12 highlights this fact, where for both realizations shown,
the downscaled TWSF and mass-conserved downscaled TWSF exhibit a similar spatial pattern, with the
mass-conserved product contrasting more (or sometimes less) to ensure GRACE distribution. Comparing
GRACE (top row, left) and fine-scale TWSF data (realization 1: WGHM model, realization 3: PCR-GLOBWB
model) (top row, middle) for both realizations, a consistent TWSF range is observed. However, the two
fields represent different TWSF patterns in the river system of the Amazon Basin. In realization 1, while
WGHM clearly distinguishes the river system, GRACE senses it as a smoothed field centered somewhere in
the river.

At each grid cell, downscaled TWSF (Figure 4.12, bottom row, left) represents the value with maximum
posterior probability obtained within the developed Bayesian framework. In fact, it represents the most
plausible TWSF when considering SMC and fine-scale TWSF data as well as prior information from GRACE
data. Its pattern shows that it is actually much more detailed in comparison to GRACE data, where for
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Fig. 4.10: Empirical CDF of monthly fine-scale TWSF (top row) and those from GRACE (bottom row) together with
empirical CDF of monthly downscaled TWSF (light coral) and mass-conserved downscaled TWSF (turquoise)
for all 8 realizations over the entire Amazon

instance, in realization 1, the river system is recognized, and some local patterns are captured, including
those over the Andes Mountains. However, the downscaled TWSF can also be dominated by the prior
information (GRACE), leading to a positive TWSF in the presence of negative estimates by WGHM. Such a
difference in likelihood functions and the prior leads to a wider posterior distribution and, thus, to a larger
uncertainty. The uncertainty map in Figure 4.12 (second row, right) shows indeed a larger value of about 50
mm/month over grid cells where prior and fine-scale models deviate from each other. The mass-conserved
downscaled estimate provides an even more detailed TWSF in comparison to the downscaled field. For
instance, large TWSF values in the Ucayali River, seen in the WGHM data, are also partially captured in the
mass-conserved downscaled field.

To assess the relevance of the gained details, longitudinal profile lines at specific latitudes are examined
(Figure 4.13), focusing on the first realization with GLEAM as the SMC and WGHM as the fine-scale
TWSF. The high fluctuation of the WGHM model profile lines in Figure 4.13 should not be interpreted
as noise, but rather as a positive feature, as it reveals details provided in the WGHM. For instance, in
latitude −4.25 ◦ around the longitude −55 ◦–−67 ◦ strong changes in WGHM belong to the river network
in the Lower Solimões River. These changes are seamlessly represented by the filtered GRACE field. As
can be seen in figures 4.14, 4.15, and 4.16, soil moisture change data partially represent the TWSF field,
which is also visible in the profile lines. The downscaled TWSF results represent a general compromise
between input datasets, with the important characteristic that they capture relevant fluctuations and
show a general agreement with TWSF from GRACE. The results of October 2016 (last column) can be
read simultaneously with Figure 4.14, where for all selected latitudes, the downscaled TWSF seems to
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Fig. 4.11: Time series of aggregated TWSF from GRACE, WGHM, downscaled and mass-conserved downscaled products
together with SMC over the Amazon Basin

follow the pattern of WGHM model and ṠL and simultaneously follows the decay in ṀG. Examining the
corresponding likelihoods and prior distribution for longitude −63.25 ◦ in the bottom panel of Figure 4.13,
it is evident how all components contribute to the final posterior. Contributions are influenced by the
likelihood functions in some cases, while others reflect a stronger alignment with the prior or a compromise
between the two. For instance, in October 2016, when the TWSF shows stronger dynamics towards the
downstream part of the basin, especially in the Manacapuru-Óbidos sub-basin, results successfully traced
the detailed spatial variations (Figure 4.14). Moreover, results in Figure 4.14 show the recognition of
significant negative TWSF in the Upper Branco sub-basin. In case of realization 1, due to inconsistencies
between the likelihood functions and the prior data, the uncertainty estimates within the floodplain valleys
increase up to 60 mm/month. The results of realization 8, for which the ensemble flux data is used as input
for fine-scale TWSF, the river system is not represented in downscaled products, obviously, since the input
did not represent it.

Based on the above results, it can be concluded that the downscaled products reflect TWSF characteristics
derived from both GRACE and fine-scale TWSF data. However, a critical question remains: Do these
downscaled products yield meaningful results when compared to an independent dataset? Direct validation
against in situ TWSF measurements is not possible due to their absence. Instead, validation is performed
using 1) satellite-based estimates of surface water storage variations (Sub-section 4.2.5), and 2) vertical
crustal displacements derived from GPS measurements (Sub-section 4.2.6).

4.2.4 Examples of downscaled TWSA fields

To demonstrate the applicability of the proposed method, this section shows some examples where down-
scaling of the Terrestrial Water Storage Anomaly (TWSA) is targeted instead of TWSF. In such a case, the
fine-scale TWSA is used as input instead of the fine-scale TWSF model, and the fine-scale soil moisture
itself instead of the fine-scale soil moisture change (SMC). All the results shown in this section are from
Realization 1, where the fine-scale TWSA is taken from WGHM and the fine-scale SM is from GLEAM.

4.2.5 Validation against surface water storage

Surface water storage is a major component of water storage variations in the Amazon Basin (Frappart
et al., 2019; Fassoni-Andrade et al., 2021; Papa and Frappart, 2021). Surface water storage variations
from (Frappart et al., 2019) are utilized, derived by combining surface water extent estimates from the
Global Inundation Extent Multi-Satellite (GIEMS) dataset (Prigent et al., 2007) with approximately 1,000
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Fig. 4.12: Inputs and outputs of realization 1 (top panel) and realization 3 (bottom panel) for March 2012. The first
row in each panel represents the inputs: GRACE as prior, input fine-scale TWSF (WGHM for realization 1 and
PCR-GLOBWB for realization 3), and SMC from GLEAM. The second row represents the output: downscaled
TWSF, mass-conserved downscaled TWSF, and the corresponding uncertainty estimates.

altimetry-based water levels from ENVISAT, manually constructed (Da Silva et al., 2010; Normandin et al.,
2018) and available through Hydroweb (http://hydroweb.theia-land.fr/).
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Fig. 4.13: Top panel: Profile lines of TWSF from GRACE ṠG, hydrological measurements ṠSM, WGHM model ṠW
together with downscaled products for 9 selected latitudes along the Amazon Basin Bottom panel: For the
selected grid cells indicated as grey vertical lines in the top panel P(xM|xD,xS) is the likelihood function
of fine-scale TWSF given xD and xS. P(xS|xD) is the likelihood function of SMC given xD, P(xD) is the
prior distribution obtained from the distribution of GRACE TWSF in a grid cell for a certain month and the
posterior distribution is obtained by P(xD|xM,xS) = P(xM|xD,xS)P(xS|xD)P(xD). P(xM) is the fine-scale
TWSF distribution for the selected grid cell, allowing a comparison with the corresponding distribution from
GRACE P(xD).
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Fig. 4.14: Inputs and outputs of realization 1 (top panel) and realization 8 (bottom panel) for October 2016. The first
row in each panel represents the inputs: GRACE as prior, input fine-scale TWSF (WGHM for realization
1 and PCR-GLOBWB for realization 8), and SMC (GLEAM for realization 1 and ASCAT for realization 8).
The second row represents the output: downscaled TWSF, mass-conserved downscaled TWSF, and the
corresponding uncertainty estimates.

For validation purposes, the surface water storage change (SWSC) was determined as the time derivative of
SWSA. SWSC profiles were then extracted along nine river branches in the Amazon Basin and compared
with the TWSF profiles from GRACE, the fine-scale model, and downscaled products.
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Fig. 4.15: Inputs and outputs of realization 1 (top panel) and realization 4 (bottom panel) for September 2007. The
first row in each panel represents the inputs: GRACE as prior, input fine-scale TWSF (WGHM for realization
1 and PCR-GLOBWB for realization 4), and SMC (GLEAM for realization 1 and ASCAT for realization 4).
The second row represents the output: downscaled TWSF, mass-conserved downscaled TWSF, and the
corresponding uncertainty estimates.

SWSC profiles for nine river branches within the Amazon Basin were extracted for the period 2003–2010.
Assuming that the contribution of other storage components in the river is negligible, the SWSC profiles
are then compared to the TWSF profiles from GRACE, the fine-scale model, and the downscaled products.
Figure 4.19 shows SWSC and TWSF profiles of some randomly selected months along the main stem of
the Amazon River out of realization 1, showing generally good agreement of the GRACE and downscaled
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Fig. 4.16: Inputs and outputs of realization 6 (top panel) and realization 7 (bottom panel) for September 2007. The
first row in each panel represents the inputs: GRACE as prior, input fine-scale TWSF (SURFEX-TRIP for
realization 6 and FluxEn for realization 7), and SMC (ASCAT for realization 6 and GLEAM for realization
7). The second row represents the output: downscaled TWSF, mass-conserved downscaled TWSF, and the
corresponding uncertainty estimates.

products with the SWSC profiles. Visual inspection reveals that the downscaled products follow variation
details in the river system, which are not represented by GRACE. (That is, GRACE shows a relatively smooth
variation along the profiles, omitting high-frequency information.) On the other hand, WGHM TWSF shows
both overestimated and underestimated values with different behavior, resulting in lower CCs. Putting
all CCs obtained for each month together and representing them in the form of CDF (Figure 4.20) it is
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Fig. 4.17: Inputs and outputs of realization 1 for January 2005 (top panel) and March 2012 (bottom panel). The
first row in each panel represents the inputs: GRACE TWSA as prior, input fine-scale TWSA (SURFEX-TRIP
for realization 6 and FluxEn for realization 7), and soil moisture from GLEAM. The second row represents
the output: downscaled TWSA, mass-conserved downscaled TWSA, and the corresponding uncertainty
estimates.

clear that GRACE always outperforms the input fine-scale TWSF and also SMC. GRACE is closely followed
by the downscaled TWSF and downscaled mass-conserved TWSF for all realizations. The downscaled
products, which are fed by fine-scale TWSF and SMC outperform both of them in all realizations over the
Amazon main stem. However, such a conclusion on CC of the Amazon River cannot be generalized for all
rivers. Examining the median of monthly spatial correlations (Figure 4.21, top, for all nine rivers and all
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Fig. 4.18: Inputs and outputs of realization 1 for June 2014 (top panel) and October 2014 (bottom panel). The first
row in each panel represents the inputs: GRACE TWSA as prior, input fine-scale TWSA (SURFEX-TRIP for
realization 6 and FluxEn for realization 7), and soil moisture from GLEAM. The second row represents
the output: downscaled TWSA, mass-conserved downscaled TWSA, and the corresponding uncertainty
estimates.

realizations), it is observed that the downscaled product for the Madeira River does not outperform the
fine-scale TWSF, except for realization 7. However, in terms of relative RMSE (Figure 4.21 bottom), as also
evident from Figure 4.19, the input fine-scale TWSF profiles exhibit a large error in capturing variations
in river storage. For instance, the WGHM model shows a large relative RMSE of up to 100% over rivers
like Amazon, Japura, Madeira, Putamayo, and Ucayali. The downscaled products, on the other hand,
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Fig. 4.19: SWSC and TWSF profiles of some randomly selected months along the main stem of the Amazon River for
GRACE, WGHM, and downscaled products from the realization 1. Note that the y-axis was chosen to better
show the fluctuations, resulting in the overestimated or underestimated WGHM TWSF profiles not being
fully displayed.

provide a similar relative RMSE to GRACE despite being so much more detailed in the variations of river
storage change. Overall, the median relative RMSE across all rivers and all realizations results in 24% for
GRACE, 70% for the input fine-scale TWSF, 26% for the downscaled TWSF, and 28% for the mass-conserved
downscaled result.

Overall, from Figures 4.20 and 4.21, it can be concluded that realizations 7 and 8, which use ensemble
flux data as the input fine-scale TWSF, exhibit the lowest performance in capturing the details of river
storage variation. This is due to the inherent error in the water balance elements preventing the acquisition
of a meaningful spatial pattern in TWSF, which can also be identified in Figures 4.14 and 4.16. Overall,
realization 5 with SURFEX-TRIP as input TWSF and GLEAM as input SMC shows the best performance with
a mean CC of 0.44 (mean across all rivers), followed by realizations 6 and 1 with a similar CC of 0.41.

4.2.6 Validation against GPS data

For comparison purposes, 10 GPS sites (Figure 4.9, top panel) within the spatial and temporal domains
of the downscaled TWSF were selected. The dataset consists of monthly vertical crustal displacements
covering the period from January 2009 to December 2015. The daily GPS raw dataset, processed by the
Nevada Geodetic Laboratory (NGL) at the University of Nevada, was utilized. This dataset is publicly
available at http://geodesy.unr.edu/, with further information and caveats provided by Blewitt et al.
(2018). The GPS data consists of daily precise point positioning solutions, and the contribution of the ocean
loading to the stations’ motion was considered during the processing. Therefore, the daily GPS series is still
contaminated with geophysical signals such as the tidal and nontidal atmospheric loadings and the nontidal
ocean loadings. Thus, the atmospheric (tidal and nontidal) and oceanic (nontidal) loads provided by the
Global Geophysical Fluids Center of the German Research Centre for Geosciences (Dill and Dobslaw, 2013)
were used to remove such contributions from the respective GPS stations. Furthermore, the “trajectory
model” proposed by Bevis and Brown (2014) was applied to detect and remove the contributions due to
potential jumps (e.g., antenna changes) and co/post-seismic. At this stage, the 10 GPS station series for

4.2 Results and validation 101

http://geodesy.unr.edu/


0 0.5 1
0

0.2

0.4

0.6

0.8

1
Realization 1

0 0.5 1

Realization 2

0 0.5 1

Realization 3

0 0.5 1

Realization 4

0 0.5 1
Spatial correlation [ ]

0

0.2

0.4

0.6

0.8

1

C
D

F

Realization 5

0 0.5 1

Realization 6

0 0.5 1

Realization 7

0 0.5 1

Realization 8

GRACE fine-scale TWSF Downscaled TWSF Mass-conserved downscaled TWSF SMC

Fig. 4.20: CDF of monthly spatial CCs of Amazon River profiles from SWSC with those from GRACE, fine-scale TWSF,
downscaled products, and SMC for all realizations

Vertical Crustal Displacements (VCD) primarily reflect the hydrological loadings. The time derivative of
the VCD series is then computed using the central difference scheme, resulting in VCD changes (VCDR)
expressed in mm/month.

The VCDR time series are used for validation in two ways: 1) comparing them with TWSF based vertical
displacement, which is obtained by convolving the TWSF loading (mm/month) with the Green function,
and 2) direct comparison with the TWSF of the grid cell where the GPS station is located.

The downscaled TWSF fields based on the eight realizations (cf. Table 4.5) were convolved with Green’s
function to estimate the respective Vertical Crustal Displacements (VCD) changes (VCDR), which are
equivalent to the temporal derivative of VCD. Using Green’s function to compute the VCDR from the
different TWSF realizations would require estimating the deformation field considering all water masses of
the world (excluding the oceans and atmosphere). Overall, the impact reduces with increasing distances
due to the reciprocal distance appearing in Newton’s integral. However, the downscaled fields only cover
the Amazon Basin (Figure 4.9). Since the comparisons are relative to the datasets (TWSF based on eight
realizations) covering the same spatial domain, the omission of the far zone fields would impact all data
products in the same way when compared to GPS-based results. Hence, the assessment performed here
may indicate internal validation and is valid only among the evaluated products. That said, the estimated
VCDR series were then compared with the GPS observed VCDR throughout the period Jan 2009 to Dec
2015, and the results are summarized in Figure 4.22 in terms of RMSE values.

Overall, the RMSE values range from approximately 2 to 14 mm/month for all realizations for all GPS
sites (Figure 4.22). Within the respective realizations, the exception is the estimated VCDR based on
input fine-scale TWSF, which underperforms the VCDR for almost all GPS stations. For the other solutions
(GRACE, downscaled TWSF, and mass-conserved downscaled TWSF), these figures are between 2.27–
5.65 mm/month. Considering this maximum range for the RMSE values seen in Figure 4.22, it would be
equivalent to approximately 4 mm, if VCD would be considered instead of VCDR. Consequently, given the
overall root-mean-square (RMS) of the GPS series, this figure would be equivalent to an RMS reduction (cf.
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Fig. 4.21: Top: median of spatial CCs of SWSC river profiles with SMC and different TWSF estimates (GRACE, input
fine-scale, downscaled, and mass-conserved downscaled) for 9 rivers in the Amazon Basin. Bottom: median
of relative RMSE of SWSC river profiles with respect to different TWSF estimates
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Fig. 4.22: RMSE values of the respective realizations of TWSF-based VCDR and GPS-based VCDR for the 10 GPS sites
within the Amazon Basin.

Moreira et al., 2016) of VCD of approximately 63%, which agrees with previous studies (e.g., Moreira et al.,
2016; Ferreira et al., 2019).

Specifically for the different realizations, the summary of the RMSE values as the median for all GPS sites
(10) through the different downscaled products, realization 4 with PCR-GLOBWB and ASCAT performs the
best overall. However, this is closely followed by realizations 3, 6, and 5, respectively. Specifically for the
four solutions (i.e., GRACE, fine-scale TWSF, downscaled TWSF, and mass-conserved downscaled TWSF)
over the 10 GPS sites, the best performance is for downscaled TWSF followed by GRACE. (The difference
between their RMSE values is approximately 7.6%.) Generally, if the downscaled results outperform those
from GRACE and the fine-scale TWSF, it is an indication of the advantages brought by SMC data. Overall,
the fine-scale TWSF (see Table 4.5 for the input datasets) provides the worst performance in terms of RMSE
through the different realizations (Figure 4.22). The highest RMSE value for the fine-scale TWSF for the 10
GPS sites is seen for the NAUS station (evident in realizations 5 to 8). It is located in the city of Manaus,
Brazil, at the confluence of the Solimões (the upper Amazon River) and the Negro (Figure 4.9). Regarding
the RMSE for the NAUS station, it indicates that realizations 7 and 8, based on the ensemble flux data (cf.
Table 4.5), might not capture the river water level changes adequately. This agrees with the assessment
presented in Sub-section 4.2.5 based on surface water storage.

A direct comparison between GPS-VCDR and TWSF at a given cell where the GPS site lies allows us to
quantify the overall relationship between the loading and displacement. For instance, Birhanu and Bendick
(2015) reported that the reciprocal correlation between the GRACE-derived TWSA and GPS-observed VCD
(VCDR) could be explored in such a way that one could estimate absolute changes in the TWSA (TWSF)
from vertical surface displacements (their time derivative) and vice versa. Likewise, Chew and Small (2014)
pointed out that GPS-based VCD data could be used to monitor drought induced by the variations in TWSA.
Hence, Figure 4.23 shows the CC between the GPS-VCDR and the respective TWSF products over the 10
GPS locations throughout the different realizations. Averaging all CCs over all 10 GPS stations leads to
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Fig. 4.23: Correlation coefficients between the respective realizations of TWSF and GPS-based VCDR for the 10 GPS
sites.

−0.80 for GRACE, −0.81 for downscaling products, and −0.73 for input fine-scale TWSF. Overall, the
fine-scale TWSF presents the lowest correlation (anti-correlation) over the GPS sites through all realizations
(Figure 4.23). These agree with the results presented in the previous sub-section as well as the RMSE values
presented in Figure 4.22. Among the different realizations, realization 4 shows the strongest anti-correlation
with an average CC of −0.82, closely followed by realizations 3, 5, and 6 with an average CC of −0.81,
which is a similar result to the RMSE analysis.

4.3 Discussion

As mentioned in the introduction to this chapter, linear statistical approaches typically encounter two main
issues: 1) they overlook the nonlinear relationships between fine- and coarse-scale datasets, and 2) they
generate downscaled products without considering the marginal or joint distribution of the datasets. As a
result, the second issue limits these methods, as they do not allow for the derivation of a distribution or,
more specifically, proper uncertainty estimates for the downscaled results. Here, both of these problems are
addressed by proposing a copula-supported Bayesian framework. To this end, a copula-based method is
used, enabling the modeling of dependencies, both linear and nonlinear, between random variables without
information about the marginal distributions. This approach allows the direct obtaining of a posterior
probability of the downscaled Terrestrial Water Storage Flux (TWSF) (the time derivative of TWSA) in the
context of fine-scale data of available TWSF and Soil Moisture Change (SMC) fields. The downscaled TWSF
is estimated by taking the maximum of the posterior distribution, and more importantly, the uncertainty for
the estimate is determined by relying on the extent of the posterior. The Bayesian ingredients, including the
likelihood functions and the prior, are obtained from the data itself. For the likelihood functions, conditional
probability functions are derived from the joint distribution function defined by the copula.

The proposed copula-supported Bayesian framework was evaluated using fine-scale data for TWSF and
SMC from various sources not previously combined in such studies. Therefore, a direct comparison of
results for a comparative assessment of the proposed methodology against previous studies is not possible.
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Despite numerous studies devoted to the downscaling of GRACE data, the literature is rather scant with
respect to the validation of outcome products (see, e.g., Zaitchik et al., 2008; Eicker et al., 2014; Reager
et al., 2015; Schumacher et al., 2018; Yin et al., 2018; Miro and Famiglietti, 2018; Seyoum et al., 2019;
Jyolsna et al., 2021; Vishwakarma et al., 2021; Mehrnegar et al., 2021; Gorugantula and Kambhammettu,
2022). In most studies, either no independent validation was performed, or validation was performed using
storage compartment data such as groundwater (Jyolsna et al., 2021), for which surface water storage and
soil moisture must first be modeled and removed, adding uncertainty to the validation results.

The two independent validation datasets presented here can be leveraged to capture corner cases of the
proposed methodology, allowing us not only to validate the performance of the downscaling results but
also to assess the performance of the input data. It should be noted, however, that validation against the
SWSC should be interpreted with a degree of caution, as the SWSC is also space-based and subject to
uncertainties. Both validations arrive at more or less similar conclusions despite the fact that they are based
on fundamentally different variables. As expected, the performance of the downscaling products depends
on the quality of the input data. The two TWSF input models, PCR-GLOBWB and SURFEX-TRIP, used
in realizations 3–4 and 5–6, respectively, generally appear to produce slightly better-downscaled results
compared to the widely used WGHM model. These datasets are also used in (Tangdamrongsub et al., 2017)
and (Mehrnegar et al., 2020), which also report their good performance in many river basins investigated.

In interpreting the results, it is important to remember that the likelihood functions are obtained by
conditioning on the joint probability distribution functions, as defined by the copula of the spherical
harmonic coefficients of the GRACE TWSF and the fine-scale data generated from field data. To derive
copulas that best represent the dependencies between the datasets and are not affected by mismodeling or
noise in the data, copulas are generated using lower-degree spherical harmonic coefficients with l < 30.
This, in general, makes less noisy and less scattered copula densities, as can be seen in Figure 4.6 compared
to Figure 4.3. Since the likelihood functions are obtained directly from the copula densities by sampling
certain quantiles (reading a certain row from the copula density), a less scattered and less noisy copula
would automatically lead to more informed likelihood functions with less dispersion. Such a truncation
is acceptable only if it can be assumed that the dependencies captured in the lower spherical harmonic
degrees would also hold for the higher degrees. Although it is not easy to prove such an assumption, since
coefficients of higher degree are less representative of reality, results (figures 4.12,4.14, 4.15 and 4.16)
and validations indicate that the river system is correctly captured. In the spatial domain, this approach
involves reconstructing short wavelengths (higher degrees of spherical harmonic coefficients). This allows
the argument that dependencies extracted from long wavelengths can generally be transferred to shorter
wavelengths. However, it is acknowledged that if the dependence between short and long wavelengths
differs significantly, this assumption might lead to inaccurate downscaled values and/or overly optimistic
uncertainty estimates.

Finally, it should be emphasized that, given the nature of the downscaling problem, the downscaled results
are not necessarily the best possible representation of the ground truth. Despite a careful analysis of the
available fine-scale data and efforts to use the most suitable models, it is acknowledged that the results
would improve with better models and could be less accurate with inferior ones. For example, in regions
with very local human interventions that are not properly captured by GARCE, and where hydrologic models
often fail to model storage properly, the chance of obtaining accurate downscaled estimates is indeed low.
The proposed methodology is also applicable for downscaling other datasets with stochastic properties, as
demonstrated in Section 4.2.4 for TWSA. The proposed method is also applicable to other regions. Note,
however, that in regions where the GRACE data have lower signal-to-noise ratios and less obvious seasonal
characteristics, e.g., arid and semiarid regions, the obtained prior from GRACE will be either diffuse or
weakly informative with very large uncertainty, so the downscaled values will automatically rely more
heavily on the likelihood functions.
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Using a graphical model to improve
inland water altimetry

5

Over the past 30 years, satellite altimetry has become a crucial tool for studying the Earth system.
Initially developed for applications in oceanography and geodesy, it has demonstrated significant

value in monitoring water level variations in lakes and rivers (Berry et al., 2005). Most applications of
inland water altimetry demand accuracies on the order of a few centimeters. For lakes and reservoirs,
achieving water level measurement accuracy below a decimeter is critical for precise estimation of changes
in water volume. Similarly, sub-decimeter accuracy over rivers enables a better understanding of river
dynamics and obtaining accurate estimates of river discharge (Tourian et al., 2013).

For inland water altimetry, the primary source of uncertainty typically lies in the range estimation between
the altimeter and the water surface (Calmant et al., 2016). As discussed in Section 1.2.2, addressing this
uncertainty has led to the development of various algorithms over the past two decades. These algorithms
aim to improve the accuracy of range estimates by post-processing the corresponding waveforms to identify
the water height representative point of the leading edge, determine its deviation from the predefined
tracking point, and apply corrections to the resulting water level estimates. This process is known as the
retracking procedure (Calmant and Seyler, 2006). The fundamental concept underlying various retracking
algorithms, some of which are listed in Table 5.1, is to refine the range measurement either by fitting
a physical or non-physical model to the waveform to extract the range or by identifying a point in the
waveform that is considered representative of the height measurement. The latter involves either analyzing
the entire waveform or isolating the region in the waveforms that most accurately represents the water
surface.

Tab. 5.1: Overview of some of the most relevant retracking algorithms for inland altimetry.

Retracker Description Reference

Ocean Developed for ocean surface measurements but can also be used for inland waters Brown (1977)
5β parameter Uses a five-parameter model for retracking. Martin et al. (1983)
Ice-1 Defines the waveform peak and sets a threshold. Wingham et al. (1986)
Ice-2 Fits an error function only the first part of the waveform Legresy et al. (2005)
OCOG Determines the Offset Center Of Gravity of a waveform. Wingham et al. (1986)
MLE3 Uses the maximum likelihood to estimate the range, backscatter coefficient, and significant wave height Thibaut et al. (2010)
MLE4 Estimates the range, significant wave height, backscatter coefficient, and square of the mispointing angle. Thibaut et al. (2010)
Subwaveform Identifies sub-waveform segments for retracking. Idris and Deng (2012)
TFMRA Sets a threshold on the first maxima of the waveform to define the retracking point. Ricker et al. (2014)
SAMOSA Based on theoretical modeling of radar altimeter waveforms over open water. Ray et al. (2014)
Improved threshold threshold retracker that benefits from adjacent waveforms. Villadsen et al. (2016)
STAR Uses information from neighboring waveforms within a Conditional Random Field (CRF). Roscher et al. (2017)
IP method Identifies the Inflection Point (IP) in a waveform. Arabsahebi et al. (2018b)
ALES Uses Adaptive Leading Edge Subwaveform retracking. Passaro et al. (2014)
ALES+ Adapts the signal fitting based on sea state and trailing edge slope. Passaro et al. (2018)
SAMOSA+ Modified SAMOSA algorithm for coastal zones (also relevant for inland waters). Dinardo (2020)
SAMOSA++ Utilizes Range Integrated Power (RIP). Dinardo et al. (2021)
INPPTR method Uses the Improved Narrow Primary Peak Threshold Retracking algorithm. Chen et al. (2022)
ALES+ SAR Applies an empirical retracking strategy with dedicated sea state bias correction. Passaro et al. (2022)
Multipeak Designed for complex ice surfaces, addressing areas with significant ice mass imbalance. Huang et al. (2024)

Among the methods listed in Table 5.1, those that focus solely on a waveform i.e., the evolution of reflected
power along the bin coordinate—referred to here as 1-D waveform retracking methods—are affected by
noise in the waveform and may face the following limitations:
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1. Sensitivity to waveform variations: The performance of all 1-D waveform retracking methods can be
significantly affected by variations in the waveform. These methods can be misled by peaks that do
not correspond to the water surface.

2. Dependency on specific waveform types: The efficacy of these methods is assured only for specific
waveform types. Such dependency often necessitates dedicated pre-processing steps, such as waveform
classification, to ensure reliable results (Tourian, 2012).

3. Neglecting spatiotemporal information: A significant limitation arises from neglecting spatiotemporal
information. Conventional 1-D retracking methods independently estimate retracking offsets for each
waveform within the Virtual Station (VS), leading to a lack of continuity.

• Spatial information: Since each waveform is retracked individually, the along-track evolution of
the waveform is ignored. In many cases, the evolution of the waveform shape contains useful
information that can help to avoid peaks in the waveform that do not represent the water surface.

• Temporal information: Altimetry satellites typically follow a repeat orbit, with a revisit period of
10 days for the Jason-series and 27 days for Sentinel-3A and -3B. The water level change within
these 10 or 27 days often reflects the water level dynamics, with a strong correlation over time.
However, 1-D retracking algorithms disregard this temporal information.

5.1 Incorporation of spatiotemporal information

To address the limitations mentioned above, utilizing the spatial correlation among successive along-track
waveforms offers a promising approach for accommodating the evolving characteristics of waveforms along
the track. This, in principle, involves instead of retracking a waveform applying the retracking algorithm on
all consecutive waveforms within a VS, referred to as a radargram (see Figure 5.1). Since the waveform is
represented in bins, a radargram can be considered an image defined in the bin-space domain (Figure 5.1),
where space here refers to the along-track dimension. In a radargram, the bin-axis represents the variation
of each waveform, while the space-axis is defined by the succession of along-track measurements. The
horizontal width of each pixel (width in the bin-axis) corresponds to one bin, while the vertical axes (width
in the space-axis) represent two successive measurements along the track. This means in the case of a
20 Hz sampling rate (when all measurements are available), the size of a pixel in the vertical direction
(space-axis) corresponds to about 300 m. A radargram typically depicts an image with high intensity in its
central region and carries useful information about water level variation, the neighboring area, and the
along-track evolution of reflected power.

The key idea of incorporating spatial correlation is to utilize spatial information under the assumption that
the water level within a VS remains constant. This approach allows for the effective handling of noise and
the mitigation of unwanted patterns. Roscher et al. (2017); Boy et al. (2021); Villadsen et al. (2016) has
followed such a philosophy and indeed achieved results that are less sensitive to outliers compared to other
retracking methods. However, none of these methods benefited from temporal information acquired in
different cycles.

In addition to spatial dependencies, temporal variations in radargrams over different cycles, where cycles
refer to repeated groundtracks, also provide valuable information on water level changes, which can be
useful for retracking. While spatial information refers to data in both the bin-domain and the space-domain,
temporal information pertains to data acquired across different cycles, as illustrated in Figure 5.1. It should
be noted that essentially, the quantity of all these axes is time, but with different sampling intervals: a bin
corresponds to an interval of typically 3.125 ns, the space domain has an interval of 50 ms in the case of
20 Hz data, and the time domain has an interval of 10 days (in the case of Jason-series) or 27 days (in
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the case of Sentinel-3 missions). However, for clarity’s sake, these terms are maintained throughout this
chapter.
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Fig. 5.1: From a waveform stack to a radargram and a radargram stack defined in the bin-space-time domain. The bin
refers to the range bin of a waveform, space refers to the along-track dimension, and time refers to cycles,
in the sense of repeated groundtracks. Consecutive retracking points of successive waveforms generate a
retracking line in the radargram, segmenting it into two regions: Front indicated by F and Back indicated by
B.

To optimally incorporate spatiotemporal information within the radargram, all waveforms within a stack of
radargrams must share a consistent origin in bin-dimension over time. To achieve this, a process of shifting
the waveforms in the bin domain is needed. To this end, over all cycles, the epoch tm that yields the median
value of satellite altitude is first selected. Subsequently, an arbitrary fixed raw water level h0 is obtained
by:

h0 =H(tm)−ρ(tm) (5.1)

where H(tm) denotes the satellite altitude on the selected epoch, and ρ(tm) represents the tracker range on
that specific epoch. Following this, for each measurement, a bin shift value ∆b0i is calculated by:

∆b0i = 2(Hi−ρi−h0)
τ × c

(5.2)

where Hi and ρi refer to all individual satellite altitudes and the tracker range of measurements of each
cycle, respectively. So the index i refers to the number of waveforms in the VS in one cycle. τ is the bin
width or sampling interval of a waveform in the bin domain (3.125 ns) and c is the light speed.

The calculated ∆b0i is then applied to all waveforms within the VS, ensuring the alignment of radargrams
to a fixed location (Figure 5.2). Through this process, all radargrams become anchored to a consistent
benchmark, enabling the extraction of information in both spatial and temporal dimensions.
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Fig. 5.2: Schematic representation of the bin-alignment procedure with its corresponding radargram before and after
the bin-alignment procedure

5.2 Using a graphical model to incorporate spatiotemporal information for retracking
altimetry waveforms

If the retracking procedure is targeted at an image (radargram), the search for a retracking line corresponds
to a division of the image into two segments: Front and Back of the retracking line. This means that
after retracking, each pixel in a radargram receives a label of either Front (F) or Back (B) (Figure 5.1).
To achieve this, a Bayesian approach is proposed to formulate a probabilistic graphical model known as
a Markov Random Field (MRF). As discussed in Chapter 2, the MRF provides a suitable framework for
modeling spatial and contextual interrelations between pixels, and has been widely employed for various
types of image problems, e.g. image segmentation (Boykov and Veksler, 2006; Kolmogorov and Zabin,
2004), multi-camera scene reconstruction (Kolmogorov and Zabih, 2002), denoising (Raj and Zabih, 2005),
surface water extraction from satellite images (Elmi et al., 2016; Elmi, 2019) and also recently in retrieving
time series of river water extent from global inland water data sets (Elmi and Tourian, 2023).

Here, the MRF is setup based on the fact that in a radargram with m pixels, outcome labels for all pixels
L = {L1,L2, ...,Lm} will be either F or B and are to be identified from the observed pixel intensities
I = {I1, I2, ..., Im}. To this end, a radargram can be represented as a graph shown in Figure 5.3 with nodes
representing the labels of each pixel and links connecting a pair of nodes. Within such a probabilistic
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graphical model with a graph shown in Figure 5.3, the goal of the segmentation will be maximizing the
conditional probability P(L|I).

P(L|I)→maximum (5.3)

Fig. 5.3: Representation of the radargram as a graph with nodes representing the labels of each pixel Li and links
connecting a pair of nodes. Here, the pixel intensity Ii is considered as an observation for the sought labels.
ϕ(Li, Ii) is a single-node (unary) potential capturing the likelihood of Li given Ii, and ψ(Li,Lj) represents
joint potentials characterizing the relationships between labels in the bin-space domain.

In other words, the aim is to find a set of labels L which features the maximum likelihood, given the
observed pixel intensities I. Following the Bayesian rule, we may represent P(L|I) as a posterior probability
by means of the likelihood function P(I|L) and the prior P(L):

P(L|I) = P(I|L)P(L)
P(I) (5.4)

Since P(I) acts as a normalization factor only, it can be omitted in the maximization process of the posterior
distribution

P(L|I)∝ P(I|L)P(L)→maximum (5.5)

So in principle, if we select from all possible binary images L the one that maximizes the posterior, we
achieve the desired segmentation and consequently the retracking line. The question remains how to obtain
the likelihood and the prior, so as to achieve the posterior. A suitable model for the posterior is the so-called
Gibbs-Boltzmann distribution; here the probability that a thermodynamic system assumes a certain state is
a function of the energy of that state (Li, 2009) :

P(L|I) = 1
Z

∏
i∈K

ϕ(Li, Ii)
∏
i,j∈C

ψ(Li,Lj) = 1
Z
e−Ete−Ebs (5.6)

In this context, with Z as a constant term, the posterior probability is formulated as a composite of single-
node (unary) potentials ϕ(Li, Ii) and joint potentials ψ(Li,Lj) (See Figure 5.3). The product ϕ(Li, Ii)
extends over all pixels in the set K; it can be likewise represented by the exponential of the negative energy
term Et. Each factor in this product captures the likelihood of Ii for a given label Li in pixel i. Conversely,
the product ψ(Li,Lj) extends over all pairs of neighbouring pixels (i, j) which feature different labels (set
C); it is likewise represented by the exponential of the negative energy term Ebs. Each factor ψ(Li,Lj) in
this latter product characterizes the prior probability that the pixel pair (i, j) is separated by the retracking
line.

5.2 Using a graphical model to incorporate spatiotemporal information for retracking
altimetry waveforms
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Comparing (5.5) with (5.6), it becomes evident that the term exp(−Et) corresponds to the likelihood
function P(I|L) as it captures the agreement between the observed pixel intensities I and the hypothesized
label configuration L. Essentially, it quantifies how well the observed data fits the proposed labels. On the
other hand, exp(−Ebs) represents the prior P(L) as it encapsulates our prior knowledge or assumptions
about the distribution of labels L. It represents the inherent constraints or preferences regarding label
configurations, such as smoothness or consistency assumptions.

With the above formulation, by obtaining the negative logarithm of Equation (5.6), the maximization of
P(L|I) can also be regarded as the minimization of Ebs +Et (Geman and Geman, 1984; Szeliski et al.,
2008). By adding a hyperparameter λ between these two energy terms, obtaining the retracking line
corresponds to minimizing the energy function (E):

E = Ebs +λEt , (5.7)

Here, Ebs is the bin-space energy term, Et is the temporal energy function, and the hyperparameter
λ acts as a weight that controls the relative impact of the two energy terms. With this setup, one can
incorporate spatial information by defining the cost function Ebs and temporal information by defining
the cost function Et. In principle, defining the retracking line in a radargram involves determining a
retracker line that minimizes the total cost/energy E. The term Ebs should ensure the identification of a
retracking line that accounts for the behavior of all consecutive waveforms, thereby avoiding the selection
of a non-representative peak in a waveform as the retracking point by assigning a high penalty in such
cases. Moreover, Et should impose a high penalty on peaks in the waveform that would lead to non-feasible
results in terms of water level variation in time.

From the set of all possible labeling vectors L for a certain radargram, the search is conducted for the
one that yields the minimal total energy E; this vector corresponds to the desired segmentation and
consequently to the retracking line. This is a classical optimization problem. A possible solver, which has
been demonstrated to be effective in dealing with similar problems, is the graph-cuts technique (Greig
et al., 1989). This technique, as a powerful optimization algorithm, has been proven to be highly effective
in addressing various vision problems, encompassing areas such as stereo vision, motion analysis, image
restoration, and segmentation (Boykov and Jolly, 2001; Boykov et al., 2001; Ishikawa, 2003; Kolmogorov
and Zabin, 2004). The essence of the graph-cuts technique is to represent the radargram as an undirected
graph G = 〈Ω,E〉 that consists of a set of nodes (Ω) (shown in Figure 5.3) and a set of weighted edges E
connecting the graph nodes (n-links). Besides the pixels, the graph receives two additional nodes, the
so-called terminals, corresponding to possible labels (responding to possible labels (Front and Back) that are
to be assigned to each pixel of a radargram (Figure 5.4). Initially, all nodes are connected to both terminals
by edges, the so-called t-links (Figure 5.4). The weight of each n-link is identical with a constituent of the
energy function Ebs; the weight of each t-link is identical with a constituent of the energy function Et.

Segmenting the radargram corresponds to cutting the graph. A cut (C) in a graph is a subset of graph
edges (C ⊂ E) such that the terminals would be disconnected if they were removed from the graph
(G′ = 〈Ω,E −C〉) (Veksler, 1999). In G′, each pixel node is connected to exactly one terminal directly by a
t-link and, possibly, in addition, indirectly through other nodes via n-links. The cost of a cut equals the sum
of its edge weights. The aim of the minimum cut algorithm in a graph is to find a cut that has the minimum
cost among all possible cuts, which implicitly means to minimize E = Ebs +λEt.

Here, the minimum cut is determined using the maxflow algorithm introduced by Boykov and Kolmogorov
(2004), implemented via the Matlab function maxflow (Rubinstein, 2020). This algorithm efficiently
identifies a set of labels that minimizes total energy, thereby segmenting the radargram. In the subsequent
sections, the approach for modeling the energy terms of Ebs and Et is elaborated.
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Fig. 5.4: A schematic representation of a 4-neighbour graph with n-link weights determined by energy functions in the
bin-space domain and two terminals linked to all nodes via t-links, with weights derived from the temporal
energy terms (equations (5.18) to (5.21)).

5.2.1 Prior: the energy term in the bin-space domain

Following Equation (5.6), the prior should represent all possible joint potentials that characterize the
relationships between labels in the bin-space domain. To obtain the prior, the Markovian properties
are relied upon, which assert that the label assigned to any pixel correlates solely with the labels of its
neighbors. In other words, the label field is assumed to be independent overall, with interdependence
confined to neighboring regions. For the sake of simplicity, a four-neighbor system is assumed, implying
that each pixel’s label correlates with the labels of pixels on the 1) left, 2) right, 3) top, and 4) bottom. In
such a configuration, diagonal neighbors among the eight possible neighboring pixels are not taken into
consideration. The right and left neighbors are in the bin domain, and the top and bottom neighbors are
in the space domain. The bin-space energy term is defined for all pairs of neighboring pixels located on
different sides of the border between Front and Back regions (subset N or the cut), i.e., for all pixel pairs
across the retracking line (Figure 5.5):

Ebs =Eb +Es (5.8)

=
∑

{pF
b
,qB
b
∈N}

eb(IpF
b
, IqB

b
) +

∑
{pF
s ,q

B
s ∈N}

es(IpF
s
, IqB

s
) .

Ebs is the sum of the energy between all pairs of pixels around the cut separated by the border, i.e,
retracking line (subset N ) (Figure 5.5). So the penalty for a change of the label from Front to Back or vice
versa between a pixel pb or ps and its neighboring pixels in bin qb and space qs is comprised in the term
Ebs. Ebs is represented by two sums, because the penalty for a pair of pixels neighbouring in bin direction
may differ from the penalty of a pair in neighbouring in space direction. For instance, the illustrated N in
Figure 5.5 includes 20 pairs of neighboring pixels in the bin direction, where Eb is defined, and 7 pairs of
neighboring pixels in the space direction, where Es is defined.

Let us first define d as the intensity difference between two adjacent pixels, regardless of whether the pixels
are adjacent in bin or space direction:

d= IpF − IqB =
[
1 −1

][IpF

IqB

]
(5.9)

The variance of d is therefore

5.2 Using a graphical model to incorporate spatiotemporal information for retracking
altimetry waveforms

113



 

B 

F 

bin 

sp
ac

e 

Fig. 5.5: A schematic representation of a radargram with pixels labeled as Front indicated by F and Back indicated by
B. N is a set of all pairs of pixels around the border i.e. retracking line, for which Ebs is defined. Note that
the illustrated N includes 20 pairs of neighboring pixels in the bin direction, where Eb is defined, and 7 pairs
of neighboring pixels in the space direction, where Es is defined.
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(5.10)

Under the Markovian assumption stated above, which permits a dependency of pixel intensities on their
neighbours, the covariance σI

pFIqB
may be non-zero. If we presume equal variances for pixel intensities

labeled as Back and Front, denoted by σ2
I , the covariance simplifies to

σ2
d = 2

(
σ2
I −σIpFIqB

)
; (5.11)

The term σI
pFIqB

always refers to the covariance of two neighboring pixel intensities, which in the bin
domain would always be one bin apart from each other. In the space domain, however, the rows in a
radargram depict successive altimeter measurements during an overflight above a water body. Under typical
circumstances, with an output sampling rate of 20 Hz, the inter-measurement distance is approximately
300 m. However, in scenarios common to inland altimetry and coastal zones, certain measurements may
be flagged as erroneous, necessitating their exclusion from the database. Consequently, in such cases, the
inter-measurement intervals are not uniformly equal. So in the space domain

σsd =
√

2(Cs(0)−Cs(δs)) (5.12)

where Cs(0) represents the variance of pixel intensities and Cs(δs) represents the covariance of intensities
for pixels neighbouring in space direction with time difference δs. On the other hand, in the bin axes, δb is
always equal 1, since the bin interval is always equally spaced:

σbd =
√

2(Cb(0)−Cb(δb)) =
√

2(Cb(0)−Cb(1)) (5.13)

In essence, the bin-space energy is designed to penalize similarity between adjacent pixels. This implies
that both Eb and Es attribute high energy values to pairs of pixels featuring similar intensity levels while
assigning lower energy values to those exhibiting strongly different power characteristics within a radargram.
To this end, a function of the argument d/σd is selected as the penalty function. This ratio represents the
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normalized difference d, normalized with respect to the overall variation of the radargram. Therefore, in
instances where a radargram exhibits substantial variation, a small or large d will be effectively normalized
by this ratio. Consequently, when the ratio is small, we prescribe high energy, and conversely, when the ratio
is large, low energy is stipulated. Various functions may represent such relationships; a simple approach
consists of the use of the exponential function. So the spatial energy between two neighbors ps and qs in
the space direction (vertical direction in a radargram) with a distance of δs is:

es(IpF
s
, IqB

s
) =exp

(
−
∣∣∣∣ dsσsd

∣∣∣∣)= exp

−
∣∣∣IpF

s
− IqB

s

∣∣∣
σsd

 (5.14)

=exp

−
∣∣∣IpF

s
− IqB

s

∣∣∣√
2(Cs(0)−Cs(δs))

 ,

The modulus operator ensures that when two neighbors have the highest similarity, the energy is maximal.

For the energy function in the bin direction, the ratio db/σbd can be used, but a special modification
needs to be implemented. Here, it is necessary not only to penalize similarity but also to penalize the
possible placement of the retracking line in the trailing edge regions of radargrams. This region is typically
characterized by decreasing pixel intensities from left to right. Therefore, a high penalty is also implemented
if the left pixel intensity is higher than the right one. To this end, here the absolute operator is not needed
anymore.

eb(IpF
b
, IqB

b
) =exp

(
− d

b

σsd
(BinF

p −BinB
q )
)

(5.15)

=exp
(
−

(IpF
b
− IqB

b
)

σbd
(BinF

p −BinB
q )
)
,

In this context, BinF
p and BinB

q represent the bin numbers of two neighboring pixels, with their difference
constrained to either 1 or −1. This additional factor, which is given by the difference of the bins, ensures
that the same energy is obtained for swapped neighbors. In other words, regardless of how the order of p
and q (whether left-right or right-left) is chosen, the result remains consistent.

It should be noted that using d/σd as the foundational metric for computing both Eb and Es eliminates the
need for a separate hyperparameter to balance these two energy terms. Since both Eb and Es represent
cost functions of comparable scale and weighting, introducing an additional hyperparameter to adjust their
relative influence becomes unnecessary, unlike the approach taken in Roscher et al. (2017).

5.2.2 Likelihood: the energy term in the time domain

According to Equation (5.6), the likelihood is represented by all single-node (unary) potentials ϕ(Li, Ii).
To establish this likelihood, temporal information can be incorporated by considering the probability of a
pixel receiving either a Back or Front label over time. That is why this energy term is denoted as Et, with
the index t representing the temporal domain. This energy term can represent the penalty of a pixel being
segmented as Front F or Back B based on its pixel intensity alone (denoted as E1D

t ), or based on both pixel
intensity and bin location (denoted as E2D

t ).:

E1D
t =

∑
p∈F

eF
p (Ip) +

∑
p∈B

eB
p (Ip) , (5.16)
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E2D
t =

∑
p∈F

eF
p (Ip,Binp) +

∑
p∈B

eB
p (Ip,Binp) . (5.17)

Higher energy is assigned to pixels when the probability of Ii given Li is low, and vice versa. To achieve
this, the energy and probability measures are swapped, such that the energy for a pixel intensity value to be
segmented as Back is proportional to the probability of that pixel intensity receiving a Front label, and vice
versa:

eF
p (Ip) = P(Ip

∣∣p ∈B) (5.18)

eB
p (Ip) = P(Ip

∣∣p ∈ F ) (5.19)

eF
p (Ip,Binp) = P(Ip,Binp

∣∣p ∈B) (5.20)

eB
p (Ip,Binp) = P(Ip,Binp

∣∣p ∈ F ) (5.21)

in which P(Ip
∣∣p∈ F ) and P(Ip

∣∣p∈B) are the probabilities of a certain pixel intensity Ip given the label front
or back, respectively. Similarly P(Ip,Binp

∣∣p ∈ F ) and P(Ip,Binp
∣∣p ∈ B) are the probabilities of a certain

pixel intensity Ip at Binp given the label front or back and the bin Binp.

These probabilities are obtained by relying on the results of a 1D reatracking method and the resulting
segmented radargrams. For this purpose, a simple 50% threshold retracker, hereafter referred to as the
initial retracker, can be used. This involves finding the retracking point in each waveform associated with
50% of its maximum peak, providing a preliminary delineation that helps to define the initial boundary
line.

To obtain the probabilities, the labels from the initial retracker are utilized. Intensity histograms for the
two labels are computed separately. From these histograms, the probability of a certain intensity, given a
certain label, is derived (Figure 5.6). In the case of E1D

t , the penalty assigned to a pixel for being labeled
as, for instance, Back, is solely determined by its pixel intensity. Naturally, when the pixel intensity is
low—indicative of the thermal noise in the waveform, theoretically associated with Front—the penalty
for being labeled as Back is notably high. On the other hand, E2D

t imposes a high penalty on assigning
Back to low pixel intensities only if the thermal noise region is present. This characteristic makes E2D

t
more informed by the bin and generally more suitable for radargrams, in contrast to E1D

t , which is solely
influenced by pixel intensity.

5.2.3 Water height determination

Once the retracking line is defined in each radargram, a retracker offset δbi is determined for each waveform
in a bin-aligned radargram. Subsequently, to correct the tracker range ρi, the bin shift value ∆b0i , introduced
during the bin-alignment procedure, is first subtracted from the estimated δbi. The range correction δρi is
then estimated as follows:

δρi = (δbi−∆b0i )× τ × c
2 , (5.22)

Depending on the size of the selected VS, a radargram contains several waveforms, each of which has a
specified range ρi+ δρi. The estimated range ρ̂i = ρi+ δρi is then further corrected for geophysical effects
of solid earth tide δρsolid

i and pole tide δρpole
i and also path delays caused by the atmosphere including wet

tropospheric δρwet
i , dry tropospheric δρdry

i , and ionospheric corrections δρiono
i . The corrected range and the
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Fig. 5.6: An example of the temporal energy term (likelihood) is given for both cases: E1D
t with eBp(Ip) and eFp(Ip),

and E2D
t with eBp (Ip,Binp) and eFp(Ip,Binp). This example belongs to Waubesa Lake for the Jason-2 dataset

spanning from 2008 to 2016, where the waveforms were initially retracked by a 50% threshold retracker

geoid height N are then subtracted from satellite altitude hi to obtain an orthometric surface water height
Hi:

Hi = hi− (ρ̂i+ δρdry
i + δρwet

i + δρiono
i + δρsolid

i + δρpole
i )−N (5.23)

To obtain the geoid height N , the static gravity field model XGM2019e (Pail et al., 2018) is utilized.

In principle, for every M measurement within a VS, there is a height estimate Hi, which can be considered
the final height value. To obtain a representative water height estimate for comparison with the in situ data,
the median of all M estimated height values Hi within the VS is taken as the representative surface water
height for each VS, as follows:

Ĥ = median
i∈1,..M

(Hi) , (5.24)

with the uncertainty estimate obtained by calculating Median Absolute Deviation (MAD):

σĤ = median(|Hi− Ĥ|) (5.25)

In an ideal situation, all estimated water height values Hi within the VS should be the same, and conse-
quently, σĤ should be close to zero. However, this is not the case due to the inherent noise of altimetry,
imperfect retracking, or inaccurate modeling of geophysical corrections.

5.2 Using a graphical model to incorporate spatiotemporal information for retracking
altimetry waveforms
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5.2.4 Defining an optimal hyperparameter parameter λ

To find the Maximum A-Posteriori solution, the hyperparameter λ, a parameter crucial in determining the
retracking, should be set in advance (see the flowchart in Figure 5.8). This means the proposed methodology
described in Sections 5.2 works with any λ values, and similar to other hyperparameter scenarios, the
resulting retracking line may vary based on the defined λ. Therefore, it is important to define the optimal
λ, with which the best water height is estimated. This can be done within the validation step, where all
the results are compared to the in situ data. However, since generally in situ data are very limited, it is
important to find the optimal λ without relying on the in situ data.

To find the optimal λ, the selection can be based on an analysis of the available energy estimates Ebs and
Et, as well as an analysis of the estimated water height, specifically the variation of estimated water height
within a radargram. It is important to recall that Ebs and Et are not normalized functions. Therefore, a
value of λ larger or smaller than 1 does not necessarily indicate whether Ebs or Et is dominant. However,
by increasing λ, the influence of neighboring information, i.e., the prior, decreases, leading to larger Ebs.
Conversely, as λ increases, the temporal information, i.e., the likelihood function, gains more weight, which
automatically implies a reduction of Et in the total energy. This relationship is illustrated in Figure 5.7,
where increasing λ leads to smaller E2D

t and larger Ebs. In the combined energy E2D
t +Ebs shown in

Figure 5.7 (and also in Ebs), a sudden increase is observed (for instance, in the example above, from λ= 9
to λ= 10, and in the example below, from λ= 10 to λ= 11). Such changes in energy levels suggest that
with the alteration of the target function, the retracking line shifts to a region associated with higher Ebs.

In the example shown below in Figure 5.7, the elevated energy level appears consistent even for very small
λ = 0.01, as indicated by the cyan retracking line in Figure 5.7(right). Interestingly, in the example of
10.11.2011 (bottom example in Figure 5.7) for λ> 11, the maxflow algorithm seems to define the retracking
line in a region similar to that of λ= 0.01, as depicted by the blue retracking line. This heightened energy
level, primarily stemming from Ebs, indicates that the defined retracking line does not pass directly through
the leading edge but instead encounters a minor peak before the main leading edge. Such a pattern exists
in BiST results for almost all radargrams. Therefore, to determine the optimal λ,

• Firstly, drops and jumps in E2D/1D
t +Ebs are identified, and the focus is placed on λ values where the

energy E2D/1D
t +Ebs is relatively low, specifically those lying between significant drops and jumps.

• Among the λ values exhibiting low total energy E2D/1D
t +Ebs, the one that results in the smallest σĥ,

as calculated in Equation (5.25), is selected.

Given the setup above, for each epoch in the automated procedure detailed in Figure 5.9, the selected
λ and its corresponding retracking line yield low energy based on the specified energy functions, while
also providing a water level estimate with reduced uncertainty. Furthermore, this configuration indirectly
ensures a balance between Ebs and Et, preventing either term from being significantly larger than the other
(as indicated by the optimal λ marked with ∗ in the bottom-left panel of each example in Figure 5.7).

Figure 5.8 shows the flowchart of the proposed methodology.

5.3 Results and validation

The proposed methodology is implemented on both pulse-limited and Synthetic Aperture Radar (SAR)
altimetry datasets across nine lakes and reservoirs in the United States (Table 5.2): Boca Reservoir, Lake
Mohave, Abiquiu Reservoir, Lake Mendota, Lake Waubesa, Lake Kegonsa, Lake Michigan, Rathbun Lake,
and Lake Maumelle. They vary in size and exhibit distinct altimetry characteristics (Figure 5.10).

118 Chapter 5

Using a graphical model to improve inland water altimetry



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

9.5 10 10.5 11 11.5 12
0

2

4

6

-2

-1.5

-1

-0.5

0

0.5

1

30 35 40 45 50
bin

1

2

3

4

5

6

7

8

sp
ac

e 
[#

]

optimal 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

-2

-1.5

-1

-0.5

0

0.5

1

30 35 40 45 50
bin

2

4

6

8

sp
ac

e 
[#

]

optimal 

Fig. 5.7: Two examples over the Lake Waubesa for 13.10.2010 (top) and 10.11.2011 (bottom). Left-top of each
example: A-posteriori values for the temporal energy E2D

t , the bin-space energy function Ebs, and the total
energy without the hyperparameter E2D

t +Ebs obtained for different λ. Left-bottom of each example: Ebs
vs. E2D

t color-coded with the log10(λ). Right of each example) Corresponding radargram with the obtained
retracking line using the initial retracker (green), optimal λ (black) and those for λ= 0.01 (cyan) and λ= 0.20
(blue)

For each case study, first, a VS is defined by setting a center point and a search radius, within which
altimetry measurements are collected. The center point is located at the midpoint of the satellite track
over the lake, as specified in Table 5.2, while the search radius is adjusted according to the size of the lake,
also detailed in Table 5.2. The Global Surface Water (GSW) dataset (Pekel et al., 2016) occurrence map
is then applied to filter out measurements with water occurrence values below 75%, ensuring that only
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Fig. 5.8: Flowchart of the proposed methodology including the preprocessing step and the Bin-Space-Time retracking
step. White rectangles represent inputs, rounded rectangles represent processes, and gray rectangles show
the outputs. The blue dashed region is further detailed in Figure 5.9.
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Fig. 5.9: Flowchart of finding optimal hyperparameter λ. White rectangles represent inputs, rounded rectangles
represent processes, and gray rectangles show the outputs.

data corresponding to water bodies within the VS are considered, while excluding measurements from
surrounding areas and non-water surfaces. This approach allows for effective data collection even over
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Fig. 5.10: Selected case studies including nine lakes and reservoirs in the United States: (a) Boca Reservoir, (b) Lake
Mohave, (c) Abiquiu Reservoir, (d) Lake Mendota, (e) Lake Waubesa, (f) Lake Kegonsa, (g) Lake Michigan,
(h) Rathbun Lake, and (I) Lake Maumelle. For each case study a sample radargram is shown.

small lakes and reservoirs, such as Boca Reservoir, and lakes where altimetry overpasses are near offshore
regions, such as Lake Maumelle (see Figure 5.10). Within the defined VS, radargrams are generated using
consecutive waveforms, and a radargram stack is constructed by aggregating radargrams from successive
overpasses.

Afterward, an initial retracking line is defined, based on which the a priori energy estimates are obtained.
The Bayesian approach aims to find a retracking line that minimizes the total energy based on the defined
energies in both the bin, space ,and time domains, which implicitly means finding a posterior based on the
defined prior and likelihood. To achieve this, the maxflow algorithm is employed with a set of predefined
hyperparameters λ. The maxflow algorithm separates the radargram into two segments by cutting through
edges, minimizing the total cost. The outcome is a binary segmented radargram, with a retracking line at
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Tab. 5.2: Selected case studies including nine lakes and reservoirs in the United States, including information on
topography and data from the United States Geological Survey (USGS) for each lake and reservoir. The table
includes details on surrounding terrain type and average elevation, as well as satellite missions and in situ
measurement stations.

Topography Virtual Station In Situ Station
Case study Size Surrounding Avg. elev. Mission(s) Track Lat Lon Radius Station Lat. Lon.

[km2] terrain [m] # [◦] [◦] [km] [◦] [◦]

Boca Reservoir 4 Mountainous 2 100 Sentinel 3B 409 39.41 −120.09 2 near Truckee 39.38 −120.09
Lake Mohave 114 Desert basin 200 Sentinel 3A 95 35.42 −114.63 6 Davis Dam 35.19 −114.57
Abiquiu Reservoir 21 Hilly plateau 1,880 Sentinel 3A 351 36.27 −106.47 4 near Abiquiu 36.24 −106.43
Lake Mendota 39 Flat to gently rolling 259 Jason-2, -3 178 43.09 −89.38 2 Madison 43.09 −89.37
Lake Waubesa 8 Flat to gently rolling 260 Jason-2, -3 178 43.01 −89.32 4 McFarland 43.01 −89.31
Lake Kegonsa 13 Flat 259 Jason-2, -3 178 42.95 −89.27 4 Barber Drive 42.95 −89.28
Lake Michigan 58030 Flat to rolling coastal 176 Jason-2, -3, -6MF 41 42.45 −86.88 10 Chicago Lock at Chicago 41.89 −87.61
Rathbun Lake 45 Gently rolling 296 Sentinel 3A 635 40.86 −92.98 2 near Rathbun, IA 40.82 −92.89
Lake Maumelle 36 Rolling hills 99 Sentinel 3B 521 34.86 −92.49 2 Mouth of Pigeon Roost 34.87 −92.63

the boundary between the Back and Front regions. As described in Section 5.2.4, λ is varied in each epoch
from 0.01 to 20, resulting in different retracking lines. The optimal λ is then obtained using the proposed
method in Section 5.2.4. Figures 5.11 and 5.12(second rows) show the obtained optimal hyperparameter,
λ, for each epoch over Lake Waubesa, Jason-2 mission, and Rathbun Lake, Sentinel-3A. The optimal λ
varies unsystematically between 0.06 and 11 for Lake Waubesa and between 0.06 and 15 for Rathbun Lake.
Such unsystematic variation is expected, as the radargrams of different cycles vary in shape, causing the
algorithm to place more or less weight on the temporal energy terms. For instance, when the radargram
shows a complex pattern, such as the one on 2016-06-24, more weight should be placed on Ebs and less on
E

2D/1D
t , leading to a smaller λ.
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Fig. 5.11: Results over Lake Waubesa, depicted in four rows for each case: 1) The first row shows a priori and a
posteriori energies. 2) The second row displays the optimal λ obtained in each epoch. 3) The third row
exhibits water height anomaly time series from in situ measurements alongside those obtained by the BiST
retracker and those from the initial retracker and one of the available retrackers in the geophysical data
records. 4) The fourth row shows six selected radargrams for the epochs highlighted in the first three rows
with gray lines, depicting retracking lines from BiST (black), initial retracker (dark green), and Ice retracker
(magenta).

The minimized total energy E corresponding to the selected optimal λ is depicted in Figure 5.11 (first
row), along with the a priori total energy derived from the initial retracking. As expected, this comparison
illustrates the energy reduction, indicating that the BiST retracking line is located within the radargram
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Fig. 5.12: Results over Rathbun Lake, depicted in four rows for each case: 1) The first row shows a priori and a
posteriori energies. 2) The second row displays the optimal λ obtained in each epoch. 3) The third row
exhibits water height anomaly time series from in situ measurements alongside those obtained by the BiST
retracker and those from the initial retracker and one of the available retrackers in the geophysical data
records. 4) The fourth row shows six selected radargrams for the epochs highlighted in the first three rows
with gray lines, depicting retracking lines from BiST (black), initial retracker (dark green), and OCOG (light
green).

where less energy is produced. For example, in Rathbun Lake on 2017-06-10 (second radargram in bottom
row), for the second waveform, the initial retracker selects the leading edge of the peak around bin 47,
whereas the BiST retracker follows the second peak, consistent with the peak of the first and third waveforms
of that radargram. In this particular case, the retracking line by the initial retracker results in an elevated
Ebs, as it passes through a region in the radargram with numerous pixel pairs on the right and left of the
line with similar intensity. In other words, in this case, N (introduced in Section 5.2.1) contains many pairs
of pixels with very similar intensity, which, according to the definition of Ebs, results in a high energy due
to the calculation of the exponential of the negative intensity difference.

Based on the retracked radargrams, the water height ĥ for each epoch is estimated. It is important to note
that to ensure consistency among all water height time series, similar correction values for all retrackers
are employed. Consequently, differences observed when comparing water height time series from different
retrackers are primarily due to the retracking process’s performance. This is evident in the water height
time series in Figure 5.11, particularly in the first highlighted epoch (2009-08-09) of Lake Waubesa. There,
the outlier in the Ice retracker’s water height anomaly results from selecting the first (insignificant) peaks
of each waveform as the retracking point. In contrast, the BiST retracker avoids selecting the first peak,
as it would have led to high energy values for both E2D

t and Ebs. E2D
t becomes high if the first peak is

chosen, given the relatively low intensity around bin 35, which reduces the probability of having a leading
edge there. Additionally, in the case of E2D

t compared to E1D
t , the bin location also plays a role, which

further reduces the probability. On the other hand, Ebs will increase around the first peak in comparison
with the BiST result due to the high energy required to define a retracking line in a region where pixel
intensity differences are minimal. Therefore, the BiST retracker, with an optimal λ= 3, selects the black
line as the retracking line, reducing the total energy from an initial value of about 140 to around 60. Such
a consistently stable retracking line, one that remains unchanged across different waveforms within a
radargram, is evident in all highlighted epochs, including the second one (2010-08-21) and the fifth one
(2014-08-27) over Lake Waubesa and the fifth one over Rathbun Lake (2019-11-18). In these epochs, some
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Fig. 5.13: Results over Lake Waubesa, Jason-3 1) The first row shows a priori and a posteriori energies. 2) The second
row displays the optimal λ obtained in each epoch. 3) The third row exhibits water height anomaly time
series from in situ measurements alongside those obtained by the BiST retracker and those from the initial
retracker and one of the available retrackers in the geophysical data records. 4) The fourth-seven rows show
20 selected radargrams for the epochs highlighted in the first three rows with gray lines, depicting retracking
lines from BiST, the initial retracker, and the selected conventional retracker.
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Fig. 5.14: Results over Lake Michigan, Sentinel-6MF 1) The first row shows a priori and a posteriori energies. 2) The
second row displays the optimal λ obtained in each epoch. 3) The third row exhibits water height anomaly
time series from in situ measurements alongside those obtained by the BiST retracker and those from the
initial retracker and one of the available retrackers in the geophysical data records. 4) The fourth-seven rows
show 20 selected radargrams for the epochs highlighted in the first three rows with gray lines, depicting
retracking lines from BiST, the initial retracker, and the selected conventional retracker.
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waveforms exhibit a sharp peak in the trailing edge region. The Ice retracker in Waubesa and the OCOG
retracker in Rathbun, which analyze waveforms individually, appear insensitive to waveforms before and
after selecting a peak in the trailing edge region. Similarly, the initial retracker selects those peaks, resulting
in a high a priori total energy value.

In general, the findings indicate that considering both temporal and spatial information for retracking
reduces sensitivity to irregular behavior in individual waveforms. This leads to improved water height
time series and closer alignment with in situ data. As depicted in Figure 5.11 and 5.12, this improvement
is evident in both Lake Waubesa and Rathbun Lake, one with pulse-limited altimetry and one with SAR
altimetry. In the case of Lake Waubesa, the water height data from the Ice retracker displays numerous
outliers that are not present in the BiST results. Similarly, for Rathbun Lake, aside from the absence of a
blunder in mid-2019 in the BiST retracker, it generally demonstrates better alignment with in situ data
compared to other retracking methods. Similar findings can be drawn from the results of the Jason-3
mission over Lake Waubesa (Figure 5.13), and Sentinel-6MF over Lake Michigan (Figure 5.14).

While figures 5.11– 5.14 provide a focused examination of specific instances with a single selected retracker,
Figure 5.15 presents the water height anomaly obtained from the BiST retracker alongside results from
all other available retracking methods in their geophysical data records. In this case, BiST results refer
to those for which the 2D temporal energy function E2D

t is used. Notably, Figure 5.15 shows that over
small challenging lakes of Mendota, Waubesa, and Kegonsa, MLE3 and Ice retrackers produce highly
noisy time series. In contrast, the BiST retracker demonstrates a closer alignment with the in situ data.
What can be visually captured in figures like 5.11 and 5.15 is numerically abstracted in two metrics: the
Correlation Coefficient (CC) and root mean square error (RMSE), which are listed in Table 5.3 and shown
in Figure 5.16. There, CC and RMSE values for all available retrackers, including the BiST retracker, are
shown. Over Mendota, Waubesa, and Kegonsa for both Jason-2 and Jason-3, the available conventional
retrackers struggle with low CC and high RMSE. The BiST retracker outperforms all other retrackers in these
challenging cases, with results obtained using the 2D temporal energy function E2D

t delivering even better
outcomes. This underscores the robustness and accuracy of the BiST retracker, particularly in complex lake
environments.

Over Boca Reservoir, Sentinel-3B passes a part where the reservoir often lacks water for the majority of
the year, with water occurrence frequencies fluctuating between 40 and 90 percent (See Figure 5.10). The
acquired water level time series fails to accurately depict the in situ water level dynamics, exhibiting an
RMSE exceeding 2 m (see Figure 5.16). This observation indicates that in challenging conditions, BiST
cannot produce miraculous results and delivers comparably bad results like other methods, highlighting the
inherent limitations in such scenarios.

Over Lake Mohave, Abiquiu Reservoir, Rathbun Lake, and Lake Maumelle, with SAR altimetry conventional
retrackers generally exhibit better performance compared to those over Lake Mendota, Waubesa, and
Kegonsa. However, even in these cases, BiST results surpass them both in terms of CC and RMSE. Over Lake
Mohave, where Sentinel-3A passes along the lake’s extent (Figure 5.10), presenting a potentially challenging
scenario for SAR altimetry due to a near-zero crossing angle leading to neighboring contamination in the
cross-track direction, the Ocean retracker appears to encounter challenges and generates some outliers.
There, the BiST retracker closely aligns with the in situ data, yielding similar results to OCOG and Ice
retrackers, achieving a CC of 0.99 and RMSE of 10 cm. Over Rathbun Lake, the BiST retracker closely
mirrors the behavior observed in the in situ data, achieving CC of 0.92 and RMSE of 0.25 cm. In contrast,
the other retrackers, including Ocean, Ice, Ice Sheet, and Sea-ice, show notable discrepancies and outliers
in their estimations, failing to achieve a CC better than 0.79 and with an RMSE of 0.52 cm.

Figure 5.17 compares BiST validation results using E2D
t against other retrackers across all lakes for both CC

and RMSE. The improvement is evident, as most points lie above the diagonal in the CC plots, indicating
higher correlation, and below the diagonal in the RMSE plots, indicating reduced error.
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The only water body in the case studies where BiST results do not notably outperform other retracking
methods and demonstrate comparable performance to one of the retracker is Lake Michigan. Due to its
large size, its waveforms exhibit lower levels of noise, as illustrated in Figure 5.10 and Figure 5.14, thereby
presenting less challenge for the conventional retracker. Specifically, in the case of Jason-3 MLE3, it even
surpasses the performance of the BiST results. For Jason-2 and Sentinel-6MF (see Figure 5.14), BiST results
align closely with those from Ice and MLE3, respectively. This suggests that for larger water bodies with less
noisy waveforms, the use of a conventional retracker is sufficient. Unlike other cases, over Lake Michigan
and Lake Mohave, the BiST results with E1D

t outperform E2D
t . This can again be attributed to the less noisy

nature of the radargrams, where it is sufficient to define the temporal energy function based solely on pixel
intensity, without considering bin location.

Tab. 5.3: Validation results of the obtained water height time series from the BiST retracker and other available
retrackers, presented in terms of Correlation Coefficient (CC) and Root Mean Squared Error (RMSE) in meter,
across all case studies listed in Table 5.2. The numbers are reported in the format CC/RMSE. In case of BiST
retracker results are shown for both cases of using 1D temporal energy function E1D

t or 2D temporal energy
function E2D

t . Those results represented by NaN indicates that the corresponding retracker failed to deliver
a time series. Bolded numbers in each category of "existing retrackers" or "BiST" represent the best of that
category.

existing retrackers BiST
Lake Mission Ocean OCOG MLE3 MLE4 Ice Ice sheet Sea-ice w. E1D

t w. E2D
t

Boca Reservoir Sentinel-3B NaN 0.48/2.64 – – −0.36/2.51 0.10/2.87 0.52/4.47 0.57/4.32 0.54/3.51
Lake Mohave Sentinel-3A −0.11/3.56 0.99/0.05 – – 0.97/0.21 0.46/1.31 −0.30/13.16 0.99/0.10 0.98/0.13
Abiquiu Reservoir Sentinel-3A NaN 0.99/0.10 – – 0.99/0.14 0.99/0.38 0.99/0.15 0.99/0.21 0.99/0.08
Lake Mendota Jason-2 – – 0.05/1.85 −0.01/0.77 0.18/1.86 – – 0.22/1.10 0.33/0.39

Jason-3 – – 0.06/1.54 −0.83/6.15 0.12/1.80 – – 0.16/1.04 0.36/0.50
Lake Waubesa Jason-2 – – 0.13/2.38 0.07/1.51 0.24/0.69 – – 0.55/0.24 0.71/0.15

Jason-3 – – 0.20/2.58 0.27/1.22 0.47/0.43 – – 0.70/0.27 0.73/0.20
Lake Kegonsa Jason-2 – – −0.38/3.70 0.08/3.59 0.11/3.02 – – 0.13/2.11 0.34/0.28

Jason-3 – – 0.47/1.25 −0.08/3.91 0.05/3.22 – – 0.14/0.78 0.34/0.42
Lake Michigan Jason-2 – – 0.77/0.27 0.79/0.23 0.94/0.10 – – 0.93/0.12 0.90/0.15

Jason-3 – – 0.82/0.19 0.92/0.11 0.81/0.19 – – 0.80/0.21 0.73/0.22
Sentinel-6MF 0.74/0.11 0.41/0.16 0.86/0.07 – – – – 0.82/0.08 0.84/0.07

Rathbun Lake Sentinel-3A −0.07/5.02 0.79/0.52 – – 0.64/0.65 0.57/0.90 0.77/0.55 0.89/0.31 0.92/0.25
Lake Maumelle Sentinel-3B −0.41/1.54 0.95/0.09 – – 0.78/0.25 0.26/0.62 0.93/0.12 0.97/0.08 0.97/0.07

Overall, the validation results (Table 5.3 and Figure 5.16) show that the BiST retracker is a robust
and effective retracking method for both pulse-limited and SAR altimetry applications and show that
BiST consistently outperforms conventional retracking methods, such as Ocean, OCOG, MLE3, and Ice,
particularly in challenging environments like small lakes with noisy waveforms, which is confirmed by
its closer alignment with in situ data, as indicated by higher CC and lower RMSE. On average, the BiST
retracker improves the RMSE by approximately 0.25 m with the 1D temporal energy function and 0.51 m
with the 2D temporal energy function compared to the best existing retracker (Figure 5.17). Perhaps, the
main benefit of the BiST retracker is its robustness against unexpected waveform variations, which cannot
be easily abstracted with a statistical metric.

5.4 Outlook

Here, the effectiveness of incorporating both spatial and temporal information in the retracking process is
highlighted. However, despite the promising performance of the BiST retracker, there are certain limitations
to consider. One limitation is the computational complexity associated with the Bayesian approach and the
optimization procedure, particularly when processing large datasets. Although the graph cut optimization
algorithm in this study finds the MAP solution more efficient than similar algorithms according to the
comparison study by Szeliski et al. (2008), it is quite time-consuming compared to the conventional
retrackers. Currently, with a standard desktop with Core(TM) i5-8500 (CPU @3.00 GHz) utilizing the
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maxflow configuration without any additional optimization strategies, the process of retracking the entire
data of for instance Waubesa Lake, Jason-2 with 299 radargrams (299 epochs) takes 44 seconds, which
means about 0.14 seconds for each radargram. While this is not excessively demanding computationally,
it is still more resource-intensive compared to a 1D retracking approach. Addressing this limitation may
require optimization strategies or parallel computing techniques to expedite the retracking process.

Furthermore, since temporal information is incorporated in constructing the temporal energy function, it is
important to evaluate the performance of the proposed method for real-time or near-real-time applications.
Practically, this means developing an empirical temporal energy function derived from past data and
using it in near-real-time scenarios. While minimal influence on performance is expected based on
experience, it remains crucial to analyze the applicability of the BiST retracker for real-time or near-real-
time applications.

Another issue that needs careful consideration for the BiST retracker is its application over rivers. There,
it is important to recognize that consecutive waveforms from a river surface, depending on the crossing
angle, may correspond to different parts of the river with varying heights and varying geometry. Therefore,
even after performing the absolute bin-aligning step, the assumption that all waveforms represent similar
heights may not hold. Consequently, before applying the BiST retracker, at least an additional step of
slope correction is necessary (Da Silva et al., 2023). However, it is expected that after the slope correction
step, the results should be superior to the conventional retracking method. This expectation arises mainly
because a river typically generates a specific pattern in a radargram, for which the proposed method is fully
prepared.

By simultaneously considering both spatial and temporal information, the method achieves a more nuanced
and comprehensive understanding of the underlying characteristics within the data, capturing patterns
that may be overlooked when analyzed in isolation. This approach leverages the interconnected nature of
spatial and temporal data, allowing for more accurate interpretations and potentially revealing relationships
that would otherwise remain hidden. The versatility of this method allows it to be applied across various
datasets beyond the scope presented in this chapter. For example, in the case of SWOT pixel cloud products,
data points are generally categorized into classes such as open water, land, and dark water based on InSAR
measurement characteristics. However, these classifications can be ambiguous, especially in areas with
mixed or transitional surfaces, such as wetlands or seasonal water bodies. By incorporating spatiotemporal
information, the proposed method enhances classification accuracy, enabling a clearer distinction between
water and land. This improvement could lead to more precise environmental monitoring, as the method
better captures temporal changes and spatial dynamics in the pixel cloud data.
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Fig. 5.15: Water height anomaly obtained from the BiST retracker together with in situ data and results from all other
available retracking methods in geophysical data records over all case studies listed in Table 5.2.
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Fig. 5.16: Validation results of the obtained water height time series from the BiST retracker and other available
retrackers, presented in terms of correlation coefficient and Root Mean Squared Error (RMSE), across all
case studies listed in Table 5.2. In case of the BiST retracker results are shown for both cases with 1D
temporal energy function E1D

t and 2D temporal energy function E2D
t .
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Fig. 5.17: Comparison of BiST validation results with E2D
t against other retrackers for all lakes: (left) correlation

coefficient, (right) RMSE.
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Summary and conclusion 6
Hydrology, traditionally concerned with the natural occurrence, distribution, and circulation of water,

has evolved from local studies to a global perspective, recognizing water as a finite resource. To
this end, the global water cycle framework has become essential for understanding water dynamics across
different regions and scales. Despite its conceptual clarity, the global water cycle’s quantification requires
sophisticated measurements across various spatiotemporal scales. Achieving this remains challenging due
to the complexity of capturing localized and large-scale patterns, variations in topography, climate, and
land use, as well as temporal variability. Additionally, issues such as data accuracy, logistical constraints,
and the need for interdisciplinary collaboration further complicate comprehensive measurement efforts,
leaving significant knowledge gaps in understanding various components of the water cycle, including river
discharge, surface water storage, soil moisture dynamics, and subsurface water storage and flow.

Inspired by the existing knowledge gap, an emerging field referred to as Hydrogeodesy has recently come
to the forefront. Hydrogeodesy is the discipline that uses terrestrial and foremost spaceborne geodetic
data, both geometric and gravimetric, in support of global water cycle quantification. The key technologies
in hydrogeodesy are satellite altimetry, satellite gravimetry, satellite imaging, Interferometric Synthetic
Aperture Radar (InSAR), Global Navigation Satellite System (GNSS), and GNSS-Reflectometry (GNSS-
R). These technologies provide either direct or indirect measurements of many water cycle components,
including surface water storage, snow water storage, glacial water storage, soil moisture, total water
storage, and river discharge. Moreover, geodetic methods reveal how hydrological processes affect Earth’s
physical structure, particularly through crustal deformation caused by hydrological mass redistribution.
This deformation, driven by temporal changes in hydrological loads, results in both vertical and horizontal
displacements that are monitored using geodetic techniques.

Despite advancements in spaceborne geodetic sensors, which provide direct or indirect measurements of
many water cycle components, hydrogeodesy faces significant challenges. Key issues include limitations in
spatiotemporal resolution, measurement uncertainties, unobserved variables, inconsistencies in background
models, and the difficulty of separating aggregated measurements. Possible solutions to these challenges
involve combining different data types, including satellite, ground-based observations, and model outputs,
to benefit from their complementary strengths. However, this presents its own challenges, as it requires
reconciling datasets with varying resolutions, accuracies, and temporal scales.

While AI techniques have gained attention for addressing some of the challenges listed above, Bayesian
approaches offer a complementary advantage by providing probabilistic interpretations and uncertainty
quantification. Rooted in the Bayes theorem, Bayesian approaches provide a robust framework for updating
initial knowledge about parameters with new data, resulting in a posterior distribution. The initial
knowledge is represented as a prior distribution, which is then combined with the observed data using a
likelihood function, resulting in the determination of the posterior distribution. Bayesian methods offer
a clear advantage by providing a probabilistic interpretation of results, allowing for explicit parameter
uncertainty estimates. This is particularly important in hydrogeodesy, where hydrological cycle parameters,
such as river discharge, soil moisture, and groundwater storage, are often indirectly estimated and subject
to significant uncertainties.

This habilitation thesis explores the potential of Bayesian methods to advance hydrogeodesy by dealing
with the outlined challenges and improving estimates of water cycle parameters. To this end, first, a
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foundational overview of Bayesian statistics and modeling is provided, linking these approaches to classical
frequentist methods commonly used in geodesy. Three distinct variants of Bayesian statistics and modeling
are then presented to demonstrate Bayesian applications in hydrogeodesy. These variants target some of the
challenges in hydrogeodesy, including estimating daily river discharge from space, downscaling GRACE data,
and retracking altimetry radargrams, as summarized in terms of their Bayesian components in Table 6.1.

Tab. 6.1: Summary of different Bayesian studies discussed in this thesis.

Goal Prior Likelihood MAP solution How the posterior is
obtained?

estimating daily river
discharge from space

cyclostationary behavior of dis-
charge represented by covariance
and cross-covariance of discharge
across gauges

Observed altimetric discharge unbiased daily river discharge
and its uncertainty

through Kalman filter
and smoother

downscaling GRACE
data

distribution of GRACE data over
grid cells

conditional probability obtained
from joint copula derived joint dis-
tribution of GRACE and fine-scale
data

downscaled GRACE data and
its uncertainty

by direct multiplica-
tion of prior and likeli-
hood

retracking altimetry
radargrams

derived from the spatial depen-
dency in a radargram

temporal evolution of initial seg-
mentations labels (Front and Back)
for each pixel in radargram

a segmented radargram with
the border being the retrack-
ing line

optimization, via
maxflow algorithm

The first study uses a Bayesian approach in dynamic systems, particularly the Kalman filter, to estimate
daily river discharge using measurements from spaceborne geodetic sensors. In hydrogeodetic studies, the
Kalman filter and dynamic systems are especially valuable, as they enable the integration of multiple data
sources and continuously update estimates with incoming measurements. This is particularly beneficial for
river systems, which inherently function as dynamic systems. By combining altimetric water height and
imaging-based river width with hydrological models or empirical state-space representation of the river
system, the Kalman filter allows for real-time model updates and corrections based on new observations,
leading to more reliable predictions of river discharge and other hydrological parameters. To explore this
potential, a method is proposed to use the cyclostationary behavior of discharge—represented by covariance
and cross-covariance relationships across river gauges—as prior information. The observed altimetric
discharge data provide the likelihood and yield an unbiased daily discharge estimate when combined with
the prior. The posterior distribution is obtained through the Kalman filter formulation, which is essentially
derived by multiplying the conjugate normally distributed prior and likelihood function.

The method is employed over the Niger River basin, including its two main tributaries. The unbiased
solutions derived from the Kalman filter and smoother for the six variants of the observation equation are
validated against in situ data at 18 gauges along the Niger River. Validation reveals an average Correlation
Coefficient (CC) of 0.9, an average relative Root Mean Squared Error (RMSE) and relative bias of 15%,
a Nash–Sutcliffe Efficiency (NSE) coefficient with respect to the long-term mean (NSEmean) greater than
0.5 for 15 gauges, and an NSE coefficient concerning the monthly mean (NSEcycle) above 0 for all gauges.
These results demonstrate that the method effectively estimates daily river discharge across the entire river
basin. Results for a previously gauged basin like Niger are especially promising, as numerous river basins
globally experience similarly limited discharge availability. This suggests that, with satellite altimetry at
multiple virtual stations along a river and the availability of historical discharge data, daily river discharge
estimates can be achieved with an expected error below 20% for many basins worldwide. This method,
which enhances discharge estimation accuracy compared to legacy mean daily discharge, offers substantial
value for hydrological studies and hydraulic model calibration. This potential is further underscored by
the increasing availability of spaceborne geodetic data, including SWOT, which provides simultaneous
measurements of height, width, and discharge for nearly all rivers worldwide with a temporal resolution of
no more than 21 days, following its placement into its science orbit in July 2023.

While in the Kalman filter, both the prior and likelihood are considered to be normally distributed, allowing
the normally distributed posterior to be obtained analytically, in most real-world applications—including
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those in hydrogeodesy—the Gaussianity assumption does not hold for many parameters, limiting the use
of the Kalman filter. Inspired by this challenge and motivated by the need to overcome the limitations of
the poor spatial resolution of the GRACE and GRACE-FO missions, the second study discussed in Chapter
4 presents a method to infer the posterior directly, without any assumptions about the distribution of the
likelihood and the posterior. So, a kind of empirically driven solution within the Bayesian framework. There,
nonparametric likelihood functions are obtained from the data itself, from which the entire posterior is
directly derived through the multiplication of the prior and likelihood. For the prior, the GRACE values
realized on a 0.5◦ by 0.5◦ grid cell are taken into account since they truly provide a prior estimate for the
downscaled data. To obtain the prior distribution, the standard deviation and kurtosis of GRACE estimates
in each grid cell are used for each specific month, resulting in 12 priors for each grid cell from January
to December. For the likelihood functions, the copula is used to describe the dependence of multivariate
distributions on any kind of marginal distribution. Copulas are built based on the dependency between
GRACE and fine-scale data. The likelihood functions are obtained by constructing empirical copulas on data
for each month and fitting an appropriate analytical copula, conditioning on the respective quantile value.
Since GRACE data is coarse and its statistical dependency on fine-scale data can be deteriorated by its
imperfect estimates of GRACE data, the grid-based data is transformed into spherical harmonic coefficients,
the data is truncated, and the desired copulas are built based on the low-degree (long wavelength)
spherical harmonic coefficients. Here, it is assumed that the dependencies between long wavelengths would
represent the dependencies at short wavelengths as well. The truncation helps avoid the deterioration of the
dependencies among the datasets in copulas. A copula model built from spherical harmonic coefficients can
also be used for grid-based data since copulas are invariant to monotonic transformations of the marginal
variables. This is a significant advantage compared to approaches using covariances, as covariances depend
strongly on the marginal distributions.

The proposed downscaling approach is applied to the Amazon Basin, utilizing four different fine-scale
datasets: WGHM, PCR-GLOBWB, SURFEX-TRIP, and the ensemble of flux data and soil moisture data from
GLEAM and ASCAT. All permutations of the selected data are considered, obtaining eight realizations for
downscaling Terrestrial Water Storage Anomaly (TWSA) and its time derivative Terrestrial Water Storage
Flux (TWSF). In each realization, for each grid cell and each monthly value, the corresponding prior and
likelihood functions are taken to calculate a posterior distribution based on the month of data. From the
obtained posterior distribution, the downscaled result is then obtained by finding the Maximum A Posteriori
(MAP) solution. Additionally, over larger basins, a mass-conserved downscaled product is introduced by
matching the CDF of TWSF or TWSA with that of GRACE. This ensures that the downscaled results conserve
the mass over a large basin, as GRACE should provide the best representation of the total mass of a large
basin.

The downscaling results are validated against two independent datasets: 1) space-based Surface Water
Storage Change (SWSC) in the river system of the Amazon and 2) Vertical Crustal Displacements Change
(VCDR) observed by the Global Positioning System (GPS). In the first validation, SWSC profiles of nine
river branches in the Amazon Basin from 2003 to 2010 are compared with TWSF profiles from GRACE,
the fine-scale model, and the downscaled products. The validation shows that the downscaled results
capture the spatial details of the variations in water storage in the rivers, resulting in high CC. Furthermore,
this validation shows that a downscaled product with a relative RMSE of 26% with SWSC is obtained
while the input fine-scale TWSF showed a relative RMSE of 70%. In the second validation, the results are
validated against the VCDR time series in two ways: 1) by comparison with the TWSF-based VCDR obtained
by convolving the TWSF load with the Green’s function, and 2) by direct comparison with the TWSF of
the grid cell where the GPS station is located. In the first analysis, RMSE values between GPS-VCDR and
TWSF-based VCDR series are calculated. The downscaled products result in RMSE values between 2.27 and
5.65 mm/month, a significant improvement compared to the input fine-scale TWSF with RMSE values of up
to 14 mm/month. In the second analysis, CC between the GPS-VCDR and the respective TWSF products
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over the 10 GPS locations throughout the different realizations is calculated. On average, the downscaling
products are well anti-correlated, exhibiting a CC of −0.81, while the input fine-scale TWSF yields a CC of
−0.73.

The downscaling results highlight that the proposed Bayesian framework can successfully downscale
GRACE data. However, the performance of the results seems to depend strongly on the quality of the
input data. Even when the input data comes with high inconsistencies, the main benefit of the proposed
copula-supported Bayesian approach is presenting the uncertainties associated with data and models. The
present study supports understanding the variation in water storage fluxes in many small catchments, thus
instrumental for local hydrological studies. The method can be implemented to downscale other water
cycle parameters different from TWSF and TWSA and, as such, is an alternative to traditional methods such
as those based on machine learning.

In the downscaling study presented in Chapter 4, the proposed method allows for obtaining the posterior
directly without any assumptions about the distribution of the data. However, although in many cases an
assumption about the distribution can be made, obtaining an analytical posterior distribution is not feasible,
especially in high-dimensional parameter spaces, making Bayesian inference computationally challenging.
In such cases, sampling techniques such as Markov Chain Monte Carlo (MCMC) are required to approximate
posterior distributions. Despite the general effectiveness of sampling techniques, as the complexity of
probabilistic models increases—particularly in high-dimensional data contexts—these methods can become
computationally demanding and difficult to implement. A primary challenge lies in efficiently capturing and
representing the intricate dependencies among a large number of random variables within these complex
models. Graphical models address this challenge by visually and mathematically representing dependencies
among random variables, simplifying probabilistic structures, and enabling more efficient computation of
posterior distributions, making Bayesian inference more feasible in high-dimensional spaces. Furthermore,
in the downscaling study, although a direct posterior was obtained for each grid cell, spatial dependencies
among neighboring grid cells are not considered. Also in such contexts, graphical models are well-suited to
capture spatial dependencies or covariances within the Bayesian framework. To explore this potential, and
inspired by the challenge of noisy water level estimates from satellite altimetry over inland water bodies,
Chapter 5 presents a Bayesian approach to retrack altimetry waveforms by formulating a probabilistic
graphical model known as a Markov Random Field (MRF), where a Maximum A Posteriori estimation of the
MRF (MRF-MAP) is sought. The Bayesian aspect of the MAP-MRF framework involves incorporating prior
knowledge and using the Bayes theorem to update beliefs about hidden variables based on observed data.
In such a formulation, inference involves finding the configuration that maximizes the posterior probability,
effectively minimizing an energy function defined by the sum of potential functions.

Unlike conventional retracking methods that focus solely on identifying a single point in a waveform, the
method presented in Chapter 5 adopts a holistic approach by seeking retracking lines within 2D radargrams.
Treating a satellite altimetry radargram as an image, a retracking line divides the radargram into two
segments: the left (Front) and the right (Back) side of the retracking line. This segmentation approach can
be interpreted as a binary image segmentation problem. In the proposed MRF-MAP framework, spatial
dependencies within radargrams are used as prior information. For the likelihood function, the temporal
evolution of each pixel’s label (Front and Back) across different groundtrack cycles is used. Two types
of temporal energy functions are suggested: one that depends solely on pixel intensity (1D temporal
energy) and another that relies on both pixel intensity and bin values (2D temporal energy). The MAP
solution is then a segmented radargram that minimizes labeling costs, achieved by maximizing the posterior
probability using the maxflow algorithm. By incorporating spatiotemporal information—specifically in the
bin, time, and space domains—this algorithm identifies a labeling set that maximizes the posterior function
or minimizes the posterior energy/cost function. The retracking line is then defined as the boundary
between the two segments from the segmented radargram.
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The methodology, abbreviated as the BiST (Bin-Space-Time) retracker is applied to both pulse-limited
and SAR altimetry datasets across nine lakes and reservoirs in the United States, encompassing diverse
altimetry characteristics: Boca Reservoir, Lake Mohave, Abiquiu Reservoir, Lake Mendota, Lake Waubesa,
Lake Kegonsa, Lake Michigan, Rathbun Lake, and Lake Maumelle. The resulting water level time series are
then validated against in situ data. Overall validation results show that the BiST retracker is a robust and
effective method for both pulse-limited and SAR altimetry applications and show that BiST consistently
outperforms conventional retracking methods, such as Ocean, OCOG, MLE3, and Ice, particularly in
challenging environments like small lakes with noisy waveforms. On average, the BiST retracker improves
the RMSE by approximately 0.25 m with the 1D temporal energy function and 0.51 m with the 2D temporal
energy function compared to the best existing retracker.

The main benefit of the BiST retracker is its robustness against unexpected waveform variations, which
cannot be easily abstracted with a statistical metric. However, the results show that for larger water bodies
with less noisy waveforms (e.g., Lake Michigan), using a conventional retracker may suffice. It is also
observed that generally, BiST results with the 2D temporal energy likelihood functions outperform those
with the 1D temporal energy, except for case studies with less noisy waveforms. This difference is attributed
to the less noisy nature of the radargrams, where it is adequate to define the temporal energy function
based solely on pixel intensity, without considering bin location. Overall, by simultaneously considering
both spatial and temporal information, the method achieves a more comprehensive understanding of the
underlying characteristics within the data. The proposed method can be applied to many other datasets. For
instance, SWOT pixel cloud products are typically classified into different categories—such as open water,
land, and dark water—based on the characteristics of InSAR measurements. The proposed method can
improve the classification of SWOT pixel cloud points by incorporating spatiotemporal information.

As a final word, this thesis not only highlights the challenges in hydrogeodesy and provides a foundational
discussion on Bayesian modeling and statistics but also demonstrates the versatility and power of Bayesian
methods in enhancing our understanding of water cycle components. It shows specifically how Bayesian
methods can effectively improve spatiotemporal resolution, quantify uncertainties, enhance data fusion,
and address the complexities inherent in hydrological systems. Each chapter exemplifies the transformative
potential of Bayesian approaches in tackling specific hydrological challenges. The proposed methodologies,
with their applicability to other parameters and challenges, collectively advance the precision and reliability
of hydrological parameters observed by spaceborne geodetic sensors. Moreover, by highlighting the
challenges in hydrogeodesy, this thesis provides a clear direction for future research and development in
the field. It emphasizes critical areas that require further attention, such as improving the spatial and
temporal resolution of hydrological estimates, addressing uncertainties inherent in geodetic observations,
and developing more effective methods for assimilating diverse data sources. The thesis encourages the
refinement of geodetic data processing techniques and the broader adoption of probabilistic frameworks,
such as Bayesian modeling, in future work. Building upon the insights presented here, future studies have
the potential to achieve more accurate and reliable understandings of Earth’s systems.
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