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Abstract

The Gravity Recovery and Climate Experiment (GRACE, 2002-2017) was the first satellite mission to
utilize low-low Satellite-to-Satellite Tracking (11-SST'), and the first mission able to monitor mass variations
on Earth. Since 2018, the successor mission GRACE Follow-On (GRACE-FO) has been in orbit. The 1I-SST
concept involves two identical co-orbiting satellites separated by a distance of approximately 220 km. The
distance between the satellites is precisely tracked by a K/Ka-band ranging system and serves as the main
observable for the derivation of monthly gravity field solutions. These gravity field products are of major
importance for studying mass variations within the Earth’s system. The process of computing the monthly
gravity field solutions involves satellite orbit modeling and parameter estimation as central components.
Since the precise distance measurements provided by the K/Ka-band ranging system contain information
on all influences affecting satellite dynamics, various background models are employed during satellite orbit
modeling. These models are used to separate the signals that should conventionally be part of the gravity
field solutions from disturbances related, for example, to tides, gravitational attraction from celestial bodies,
and rapid mass variations in the atmosphere and oceans. Imperfections of ocean tide models are considered
among the primary factors limiting the quality of GRACE and GRACE-FO gravity field products. Ocean
tide models are known to exhibit significant inaccuracies, especially in polar regions where precise satellite
altimetry observations are lacking, and in shallow water regions where ocean tide dynamics are more complex
than those in open ocean areas.

As part of this work, a spectral analysis was conducted for the first time to examine ocean tide sig-
natures in the 11-SST post-fit residuals. Monthly gravity field solutions and the corresponding range-rate
post-fit residuals for the period from April 2002 to September 2023 were computed. The obtained range-
rate post-fit residuals were low-pass filtered, numerically differentiated, and assigned to a global 5°x5° grid.
Lomb—Scargle periodograms were computed for the time series in each grid, and then analyzed for frequen-
cies with significant amplitudes occurring on a global scale. In total, over 30 prominent tidal frequencies
were identified, which correspond not only to the major gravitationally excited tidal constituents but also
to minor degree-2 tides, degree-3 tides, non-linear tides, and radiational tides. With the exception of a few
tidal constituents, the corresponding amplitude maps almost exclusively show increased amplitudes in polar
regions, along coastlines and confined to some regions of the open ocean. The most complex region where
a large number of tidal frequencies show increased amplitudes is the Weddell Sea. Although most of the
identified tidal frequencies were considered during orbit modeling, meaning that the amplitudes in the peri-
odograms represent residual signal relative to the ocean tide model used, several unmodeled frequencies were
identified. These include degree-3 tides 3M;, ®Lo, 3Ng, 3M3, the compound tides 2SMy and 2MK3/MO3,
and the radiational triple Ss, T3, R3, with the latter two sharing their frequencies with the compound tides
SP3 and SK3, respectively. All of these unmodeled tides have been scarcely studied or not studied at all thus
far. A global altimetry-constrained ocean tide model for M3 was just recently published. At the moment,
for 3M,, 3Ly, 3Ny altimetry-based solutions are only available for the latitudes from —66° to +66°, but
not for the polar regions, where according to the performed spectral analysis large tidal variations exist.
Data-constrained ocean tide solutions do not exist for the other frequencies. It was shown that purely hydro-
dynamic solutions can explain a large part of the degree-3 and radiational signal in the post-fit residuals. For
the identified compound tides at the moment not even hydrodynamic models have been published yet. An
analysis of altimetry data reveals a qualitative agreement with the 25My and 2MK3/MOj3 patterns observed
in the post-fit residuals. The findings presented suggest that the analysis of 1I-SST post-fit residuals offers
significant potential for validating ocean tide models. Future research should also explore the potential for

assimilating 1I-SST measurements into hydrodynamic models.

Keywords: Gravity field recovery, K-band post-fit residuals, Ocean tides






Kurzfassung

Das Gravity Recovery And Climate Experiment (GRACE, 2002-2017) war die erste Satellitenmission, die
das Low-Low-Satellite-To-Satellite-Tracking (LL-SST) einsetzte, und die erste Mission, die in der Lage war,
Massenvariationen auf der Erde zu verfolgen. Seit 2018 befindet sich die Nachfolgemission GRACE Follow-
On (GRACE-FO) im Orbit. Das LL-SST-Konzept besteht aus zwei identischen Satelliten, die die Erde in
einem gemeinsamen Orbit hintereinander umkreisen und durch einen Abstand von etwa 220 km getrennt sind.
Dabei wird der Abstand zwischen den Satelliten prézise von einem K/Ka-Band-Ranging-System erfasst und
dient als Hauptbeobachtung fiir die Berechnug monatlicher Schwerefeldlésungen. Diese Schwerefeldprodukte
sind von zentraler Bedeutung fiir die Untersuchung von Massenvariationen im Erdsystem. Der Prozess der
Berechnung monatlicher Schwerefeldlésungen umfasst die Satellitenorbitmodellierung und die Parameter-
schitzung als zentrale Komponenten. Da die prizisen Distanzmessungen des K/Ka-Band-Ranging-Systems
Informationen iiber alle auf die Satellitendynamik wirkenden Einfliisse enthalten, werden wéhrend der Satel-
litenorbitmodellierung verschiedene Hintergrundmodelle eingesetzt, um die Signale, die konventionell Teil
der Schwerefeldlésungen sein sollten, von Storbeitrdgen zu trennen, die beispielsweise mit Gezeiten, gravita-
tiver Anziehung durch Himmelskérper und schnellen Massenvariationen in der Atmosphére und den Ozea-
nen zusammenhéngen. Ungenauigkeiten der Ozeangezeitenmodelle gelten als wesentliche Faktoren, welche
die Qualitit der GRACE- und GRACE-FO-Schwerefeldprodukte beeintrichtigen. Ozeangezeitenmodelle
weisen insbesondere in Polargebieten erhebliche Ungenauigkeiten auf, da dort prézise Satellitenaltimetrie-
Beobachtungen fehlen, sowie in Flachwasserbereichen, wo die Dynamik der Ozeangezeiten komplexer ist als
in offenen Ozeangebieten.

Im Rahmen dieser Arbeit wurde erstmals eine Spektralanalyse durchgefiihrt, um Ozeangezeiten-Signaturen
in den LL-SST-Post-Fit-Residuen zu untersuchen. Monatliche Schwerefeldlésungen und die dazugehorigen
K-Band-Range-Rate-Post-Fit-Residuen fiir den Zeitraum von April 2002 bis September 2023 wurden berech-
net. Die erhaltenen Range-Rate-Post-Fit-Residuen wurden einer Tiefpassfilterung unterzogen, numerisch
differenziert und einem globalen 5°x5°-Gitter zugewiesen. Lomb—Scargle-Periodogramme wurden fiir die
Zeitreihen in jedem Raster berechnet und anschlieftend auf Frequenzen mit signifikanten Amplituden auf
globaler Ebene analysiert. Insgesamt wurden {iber 30 auffillige Gezeitenfrequenzen identifiziert, die nicht nur
den wichtigsten gravitationsbedingt angeregten Gezeitenkonstituenten entsprechen, sondern auch kleineren
Grad-2-Gezeiten, Grad-3-Gezeiten, nichtlinearen Gezeiten und Strahlungsgezeiten. Mit Ausnahme einiger
weniger Gezeitenkomponenten zeigen die entsprechenden Amplitudenkarten fast ausschlieflich erh6hte Am-
plituden in Polarregionen, entlang von Kiistenlinien und in einigen begrenzten Regionen des offenen Ozeans.
Die komplexeste Region, in der eine grofe Anzahl von Gezeitenfrequenzen erhéhte Amplituden aufweist,
ist das Weddellmeer. Obwohl die meisten der identifizierten Gezeitenfrequenzen wihrend der Orbitmodel-
lierung berticksichtigt wurden, was bedeutet, dass die Amplituden in den Periodogrammen ein Residualsig-
nal gegeniiber dem verwendeten Ozeangezeitenmodell darstellen, wurden mehrere unmodellierte Frequenzen
identifiziert. Dazu gehoren die Grad-3-Gezeiten M, 3Ly, 3Ny, 3Mj, die zusammengesetzten Gezeiten 25M,
und 2MKj3/MOs, sowie die Strahlungsgezeiten Sz, T3, R3, wobei die beiden letzteren ihre Frequenzen jeweils
mit den zusammengesetzten Gezeiten SP3 und SKj teilen. Alle diese unmodellierten Gezeiten sind bisher
kaum oder gar nicht untersucht worden. Ein globales Ozeangezeitenmodell fiir *M3, das Altimetriedaten
verwendet, wurde erst kiirzlich veroffentlicht. Zurzeit sind fiir 3My, 3Lg, 3Ny altimetriebasierte Losun-
gen nur flir die Breitengrade von —66° bis 4+66° verfiigbar, nicht jedoch fiir die Polarregionen, wo gemafs
der durchgefiihrten Spektralanalyse grofse Gezeitenvariationen existieren. Messdatenbasierte Ozeangezeiten-
16sungen sind fiir die anderen Frequenzen nicht vorhanden. Es wurde gezeigt, dass rein hydrodynamische
Lésungen einen groften Teil des Grad-3- und des Strahlungssignals in den Post-Fit-Residuen erkldren kénnen.
Fiir die identifizierten zusammengesetzten Gezeiten gibt es derzeit noch keine veréffentlichten hydrodynamis-
chen Modelle. Eine Analyse von Altimetriedaten zeigt eine qualitative Ubereinstimmung mit den 25Ms- und
2MK3/MOs-Mustern in den Post-Fit-Residuen.



iv

Die vorgestellten Ergebnisse deuten darauf hin, dass die Analyse von LL-SST-Post-Fit-Residuen, ein er-
hebliches Potenzial zur Validierung von Ozeangezeitenmodellen bietet. Zukiinftige Untersuchungen sollten

auch das Potenzial der Assimilation von LL-SST-Messungen in hydrodynamische Modelle untersuchen.

Schlagwérter: Schwerefeldbestimmung, K-Band-Post-Fit-Residuen, Ozeangezeiten
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Chapter 1

Introduction

1.1 GRACE(-FO) and 1-SST

The motion of artificial satellites is primarily affected by the gravitation of the Earth. When the orbit of a
satellite—for example, represented as a set of positions and the corresponding time—is known, parameters
describing the gravitation of the Earth, e.g., in terms of a potential field, can be inferred by linking the
observed orbit to the theory of satellite dynamics through a functional model (e.g., Seeber, 2003). The
specific parameters that can be inferred largely depend on general orbit characteristics, such as altitude
and inclination, as well as the methods employed to observe the orbits (e.g., Nerem et al., 1995). The
concept of studying Earth’s gravitational potential and its variations by observing the relative positional
changes of two identical satellites in the same orbit caused by gravitational and non-gravitational forces—also
known as low-low Satellite-to-Satellite Tracking (11-SST)—was proposed in the late 1960s (Wolff, 1969).
Despite being included in various satellite gravimetry mission proposals over the next three decades, it
was not until 1997 that the Gravity Recovery And Climate Experiment (GRACE) was proposed by the
Center for Space Research (CSR, Austin), the German Research Center for Geosciences (GFZ, Deutsches
GeoForschungsZentrum Potsdam) and the Jet Propulsion Laboratory (JPL, Pasadena), and then approved as
part of the Earth System Science Pathfinder program of the National Aeronautics and Space Administration
(NASA) as a joint mission with the German Aerospace Center (DLR, Deutsches Zentrum fiir Luft- und
Raumfahrt) (Flechtner et al., 2021). The GRACE mission (Tapley et al., 2004), with a nominal lifetime
of five years, remained operational for over 15 years following its launch in March 2002. In January 2018,
after a brief gap of about one year, GRACE Follow-On (GRACE-FO) successfully continued the GRACE
time series of Earth’s gravitational potential measurements (Landerer et al., 2020). During the period from
December 2011 to December 2012, 11-SST was employed in the NASA /JPL-operated Gravity Recovery and
Interior Laboratory (GRAIL) mission to study the Moon’s gravitational field (Zuber et al., 2013).

The 1I-SST principle as implemented by GRACE and GRACE-FO, hereafter abbreviated as GRACE(-
FO), involves the two identical co-orbiting satellites in an almost polar orbit separated by a distance of
approximately 220 km at an initial low altitude of about 500 km (see Figure 1.1). The orbital variations are
tracked continuously by a K/Ka-Band Ranging (KBR) assembly with micrometer precision (Bertiger et al.,
2002; Dunn et al., 2003). Additionally, GRACE-FO is equipped with a nanometer-precise Laser Ranging
Interferometer (LRI) for the purpose of technology demonstration for next generation satellite gravimetry
and space-based gravitational wave detection missions (Abich et al., 2019). With ancillary information on
the absolute position of the satellites measured by the onboard Global Navigation Satellite Systems (GNSS)
receivers, the orientation of the satellite platforms in space from star cameras, and non-gravitational forces
acting on the satellites sensed by the electrostatic accelerometers, it is possible to infer information about
Earth’s gravitation. The data from the onboard instruments is used for gravity field recovery, i.e., the
derivation of products describing Earth’s gravitational potential. The most common of these products are
the so-called gravity field solutions, which represent the potential via a set of spherical harmonic coefficients,
and are produced by various GRACE(-FO) analysis centers in Europe (e.g., Dahle et al., 2019b; Kvas et al.,
2019a; Lemoine and Bourgogne, 2020; Koch et al., 2021; Lasser et al., 2023), the United States (e.g., Save,
2019a; Yuan, 2019) and China (e.g., Wang et al., 2015; Chen et al., 2019; Yu et al., 2021; Su et al., 2022;
Zhong et al., 2022; Zhou et al., 2024). The temporal resolution of these solutions is typically one month,

since after this period the ground track coverage is generally sufficiently dense to invert a stable solution
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FIGURE 1.1: Artist’s impression of the two satellites of the GRACE mision in orbit.! The GRACE(-FO)

satellites were manufactured by Astrium (since 2014 part of Airbus Defense and Space) in Immenstaad

am Bodensee (Germany) on behalf of JPL. The spacecraft design is based on Astrium’s Flexbus platform

(Zaglauer and Pitz, 2003). Dimensions of the GRACE and GRACE-FO satellites (lengthxheight x width
at bottom) are 3.1x0.7x1.9 m and 3.1x0.8x1.9 m, respectively (NASA, 2002, 2018).

without applying constraints. The monthly gravity field solutions from selected individual analysis centers
are utilized by the Combination Service for Time-Variable Gravity Fields (COST-G) to produce combined
solutions with improved noise characteristics (Jaggi et al., 2020; Meyer et al., 2023). The second most
prevalent type of product, typically employing regularization in contrast to the commonly unconstrained
spherical harmonic coefficient solutions, is known as a mass concentration (mascon) solution (e.g., Luthcke
et al., 2013; Watkins et al., 2015; Save et al., 2016; Tregoning et al., 2022). Since GRACE(-FO) are the only
satellite missions capable of tracking mass variations within the Earth’s system with a relatively high spatial
and temporal resolution, the gravity field products derived from their sensor data are crucial for numerous
applications in Earth system sciences, as they form the data foundation, for example, for quantifying both
natural variations and anthropogenic changes in terrestrial water storage, observing ice sheet melting, and
evaluating the consequent impacts on sea-level rise (see, for example, the review articles by Wouters et al.,
2014; Tapley et al., 2019; Chen et al., 2022; Rodell and Reager, 2023).

Insights from the analysis of the GRACE(-FO) sensor data, updated and newly developed geophysical
background models, and the acquired know-how at the analysis centers over the past 20 years, have led
to several reprocessing campaigns and the continuous enhancement of the monthly gravity field solutions.
Currently, the quality of the derived gravity field products is largely limited by accelerometer noise, i.e.,
an inherent characteristic of the sensor, and by the imperfect models for ocean tides and high-frequency
non-tidal mass variations in the Earth’s system (e.g., Loomis et al., 2012; Flechtner et al., 2016). These
models, forming part of a broader set of gravitational effects, are incorporated into the equation of motion
during gravity field recovery to reduce the perturbing effects on the 1I-SST measurements and to ensure that
the final gravity field products primarily reflect signals related to continental hydrology, the cryosphere, and
non-tidal solid Earth-related effects. Imperfections present in the models not only affect the overall orbit
modeling accuracy and increase the noise level of the gravity field products but in special cases can also
introduce undesirable gravity variations with periods ranging from several days to years into the gravity field
solutions through the aliasing effect, i.e., the absorption of model errors by the gravity field product (e.g.,
Han et al., 2004; Ray and Luthcke, 2006; Seo et al., 2008; Visser et al., 2010).

mage credit NASA: https://sealevel.nasa.gov/missions/grace (last accessed on 2025-02-28).
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1.2 Ocean Tides and Ocean Tide Models

Ocean tides are periodic fluctuations of the sea level, primarily driven by the gravitational forces of the
Moon and the Sun acting on the Earth (e.g., Pugh and Woodworth, 2014). The difference between the
gravitational acceleration exerted by celestial bodies at a specific position and the gravitational acceleration
at the Earth’s center defines the theoretical tidal acceleration (e.g., Wenzel, 1997). With the ephemerides of
the celestial bodies, the corresponding tidal potential can be expressed in terms of a harmonic decomposition
into a set of hundreds to thousands of frequencies and amplitudes, forming the so-called Tide-Generating
Potential (TGP) catalogues (e.g., Cartwright and Tayler, 1971; Hartmann and Wenzel, 1995). Components
of this decomposition with particularly dominant amplitudes were given special alphanumeric designations,
such as Ms, So, Kj, O1 (see e.g., Melchior, 1966; Pugh and Woodworth, 2014), with the subscripts denoting
the approximate frequency in times per day of the so-called tidal constituents. The real-world reaction to
these individual components of astronomical tidal forcing creates tides in the Earth’s system, including the
larger part of the tidal variations in the oceans.

Ocean tide models consist of amplitudes and phases of a small set of tidal constituents, typically ranging
from less than 10 to a few dozen, which aim to approximate the larger part of the tidal variation in the
oceans. Ocean tide models can be classified into three categories (e.g., Stammer et al., 2014): a hydrodynamic
model, a hydrodynamic model with assimilated data, and an empirical adjustment to an a priori model. A
hydrodynamic model can be understood as a solution to the hydrodynamic equation (see e.g., Marchuk
and Kagan, 1989; Zahel, 1997). Important variables and assumptions of a hydrodynamic model include
information on the TGP, bottom friction, and bathymetry, among others. While observations from tide
gauges can only contribute to an ocean tide model to a limited extent due to their uneven distribution and
very localized nature, Sea Surface Height (SSH) observations from dedicated satellite radar altimetry missions
play the primary role in constraining the hydrodynamic solutions by adjusting the model to assimilated real-
world observations. In the empirical modeling approach, residual SSH signal derived from altimetry is used to
estimate adjustments to an a priori (data-assimilated) hydrodynamic ocean tide model. TOPEX/Poseidon
(1992-2006) (Fu et al., 1994) and its follow-on missions, Jason-1 (2001-2015), Jason-2 (2008-2019), and
Jason-3 (since 2016), are satellite altimetry missions with sampling characteristics that are particularly
well-suited for observing ocean tides. Due to the continuity of the time series, with now over 30 years of
measurements, the information from these missions serves as a primary source for altimetry-based ocean tide
models. However, since the primary mission objective was to study circulations in the ice-free ocean, an orbit
inclination of 66° was selected. As a result, no data from these missions is available for data assimilation
at latitudes beyond +66°, consequently leading to larger ocean tide model uncertainties at higher latitudes
(e.g., Stammer et al., 2014). While the higher latitudes are covered by other altimetry missions—here,
ERS-1 and its successor missions, ERS-2 and Envisat, are particularly noteworthy—the seasonal and non-
seasonal presence of ice in polar and near-polar regions makes the altimetry measurements only partially
useful for data assimilation (e.g., Lyard et al., 2021). Furthermore, ocean tide models generally exhibit
greater uncertainties near coasts and in shallow water regions. In these regions, tidal amplitudes are larger
and wavelengths are shorter compared to those in the open ocean, so the effectiveness of satellite altimetry
as a constraint diminishes (e.g., Ray et al., 2011; Stammer et al., 2014).

Ocean tide models that incorporate altimetry-derived SSHs are of greater importance for orbit modeling,
compared to hydrodynamic models, as they provide more accurate solutions for the large amplitude tides
(major tides) driven by lunisolar gravitational attraction and dominating the ocean tide spectrum. The
major tides include several constituents with frequencies of approximately once and twice per day. These
constituents refer to the degree 2 of the lunisolar TGP. In orbit modeling, the influence of minor gravitation-
ally excited tides of degree 2 is typically inferred from the solutions of major constituents provided by the

ocean tide model by assuming linear admittance. The concept of linear admittance relies on the assumption
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that the ocean’s tidal response is nearly linear with respect to the amplitude of the lunisolar forcing poten-
tial and varies smoothly with the excitation frequency (e.g., Munk and Cartwright, 1966; IERS Conventions,
2010). Consequently, the ocean’s response to degree-2 tides with nearby frequencies is comparable and can be
approximated to change linearly with the forcing frequency. Until recently, tides associated with the degree-3
component of the TGP played an insignificant role because of their small astronomical amplitudes and the
difficulty in separating them from nearby, larger degree-2 tides. On a global scale the largest degree-3 tides
were observed just a few years ago for the first time (Ray, 2020b, see also next section). In addition to these
major and minor gravitationally excited tides, several other excitation mechanisms contribute to the total
amplitude of the ocean tides. Non-linear effects in coastal and shallow water areas, for example, due to the
friction of water with the ocean bottom topography, can generate overtides and compound tides when two
or more gravitationally excited tides interact (e.g., Le Provost, 1991; Parker, 2007; Pugh and Woodworth,
2014). Periodic variations at tidal frequencies in atmospheric surface pressure caused by solar radiation lead
to the formation of radiational ocean tides (e.g., Munk and Cartwright, 1966; Dobslaw and Thomas, 2005;
Ray et al., 2023). The influence of solar radiation on the Earth system over seasonal timescales, for example
affecting ice coverage and stratification, results in seasonal tidal modulations (e.g., Miiller et al., 2014; Ray,
2022). All of these tides, which arise from more complex mechanisms rather than directly from the lunisolar
gravitational forces, cannot be considered through linear admittance. The inference of minor gravitationally
excited constituents can be distorted by these tides, as it is common for two or more ocean tide constituents

with different origins to have the same frequency.

1.3 Research Related to 1I-SST and Ocean Tides

The ability of the 11-SST technique to detect residual ocean tide signal, particularly in the polar regions where
high-quality altimeter observations for ocean tide model assimilation are lacking, was recognized quite early
on. One of the earliest studies related to ocean tide model errors detectable in GRACE data was carried out
by Han et al. (2005c), just a few years after the start of the mission. The authors estimated 5-day gravity
field models for the Antarctic region, covering the period from August 2002 to June 2004. The method used
to compute the regional models is conceptually different from the processing scheme utilized for estimating
monthly gravity field solutions in terms of spherical harmonic coeflicients and instead relies on the estimation
of along-track geopotential differences (Jekeli, 1999; Han et al., 2005b), which are then inverted to obtain
the corresponding mass variations in terms of Equivalent Water Height (EWH) (Han et al., 2005a). The
periodograms of the EWH time series indicated relatively large Power Spectral Density (PSD) values in the
period bands 140-230 and 12-15 days, in which the GRACE aliasing periods of the constituents So (161
days) and Ms (=13.6 days) are located, as had been predicted earlier, e.g., by Knudsen (2003) and Ray et
al. (2003). The spatial features of sinusoidal amplitudes with periods of 161 and 13.6 days, fitted alongside
a bias, linear trend, and an annual component to the 5-day EWH time series of each grid cell, revealed
increased amplitudes beneath the Filchner—-Ronne and Larsen Ice Shelves, suggesting residual ocean tide
signal relative to the utilized CSR4.0 model (Eanes and Bettadpur, 1995, updated).

Later, the major ocean tide constituents My, O; and Sy were directly estimated for the Antarctic region
from 3 years of 11-SST observations (Han et al., 2007, 2008). The large amplitude constituent K; was not
included due to the limited duration of the GRACE time series, while the respective aliasing period exceeds
7 years. In a manner similar to Han et al. (2005c), these estimates were parameterized as tidal sinusoids,
co-estimated alongside the trend, bias, and seasonal component. A qualitative comparison with in situ
measurements (King and Padman, 2005) indicated an agreement between the tidal variations observed by
GRACE and the localized, sparse in situ measurements at several locations in Antarctica.

The mass anomalies from Han et al. (2007, updated) were later exploited by Egbert et al. (2009) to improve
constituents My, So, O; of a hydrodynamic model through data assimilation. In an evaluation against

independent data (tide gauges, ICESat laser altimeter crossover differences), the GRACE-constrained model
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demonstrated a better performance relative to the prior ocean tide models TPXO7.1 (Egbert and Erofeeva,
2002, updated) and FES2004 (Lyard et al., 2006).

Killett et al. (2011) utilized 7 years of GRACE range-accelerations to derive ocean tide corrections ex-
pressed as point-mass mascons for the primary constituents My, So, O; and K; in the Arctic region relative
to the ocean tide model FES2004, estimated simultaneously with an offset, trend, annual and semiannual
variations. A similar methodology, with major modifications, was employed by Wiese et al. (2016) to esti-
mate residual ocean tide signal in the Antarctic region from 11 years of GRACE data relative to the model
GOT4.7 (Ray, 1999, updated).

Studies that extended their analysis beyond the polar regions, and particularly focused on improving gravity
field recovery results, are outlined next. In the study by Bosch et al. (2009), a global assessment of residual
ocean tide signal was performed by analyzing multi-mission satellite altimetry data relative to FES2004,
as well as 4.5 years of monthly GRACE gravity field models (Schmidt et al., 2007) and range-rate ob-
servations (Mayer-Giirr et al., 2010). The authors found that GRACE observes tidal error signal at the
So and Ms frequencies in regions similar to those identified in the residual altimetry data. While global
EWH values derived from the monthly solutions were used to analyze the Sy residual signal in GRACE
data, the My constituent, characterized by a submonthly aliasing period, was examined through a harmonic
analysis of gridded along-track residual range-accelerations to determine the corresponding tidal amplitude
and phase. Furthermore, the authors demonstrated that using the empirical ocean tide model EOT08a
(Savcenko and Bosch, 2008)—which incorporates FES2004 as the a priori model along with corrections es-
timated from altimetry—instead of FES2004 as the background model for calculating the GRACE residual
range-accelerations, led to a significant reduction of the residual ocean tide signal in the along-track data.
Building on the findings of the previous study, Mayer-Giirr et al. (2012) developed an empirical ocean
tide model by combining GRACE data with EOTO08a. The tidal constituents My, O;, Ny and Qi from
GRACE were estimated together with the monthly gravity field solutions. The relative weighting of the
normal matrices was determined using Variance Component Estimation (VCE) (Koch and Kusche, 2002).
The evaluation of the combined model against EOT08a showed that the combined model slightly outperforms
EOTO08a in terms of smaller range-rate post-fit residuals and better performance across several other metrics.
Motivated by the goal of improving the quality of monthly gravity field solutions, Kvas et al. (2019a)
estimated constrained tidal corrections relative to FES2014b (Lyard et al., 2021) for diurnal (O, Py, Si,
K1), semidiurnal (Ms, N3, So) and long-periodic constituents (Mm, Mf, Mmtm) from 15 years of GRACE
1I-SST data, together with the static gravity, constrained daily solutions, annual gravity parameters, and a
trend. These corrections are used as a background model correction for their GRACE(-FO) gravity field

solutions.

Several studies outlined next utilized GRACE 1I-SST data primary for the validation and intercompari-
son of ocean tide models. In a study by Ray et al. (2009), an assessment of the four ocean tide models
FES2004, TPXO07.1, and GOT00.2, GOT4.7 (both Ray, 1999, updated), was made utilizing 4 years of
GRACE 1I-SST data. The method employed is similar to the assessment of residual ocean tide signal in
range-rate residuals as performed by Bosch et al. (2009), and involves binning the residual 1I-SST data to
specific grid cells, followed by a harmonic analysis at selected tidal frequencies. Ray et al. (2009) refer to this
method as qualitative since the analyzed in-orbit residuals remain in 1I-SST measurement units, and unlike
in the studies discussed earlier, no estimation of tidal amplitudes and phases, spherical harmonic coefficients,
or EWH is carried out (quantitative approach). In addition to the usual background model effects used in
gravity field recovery, the authors also reduced the contribution from land hydrology (Rodell et al., 2004)
and Glacial Isostatic Adjustment (GIA) (Peltier, 2004) from the range-rate measurements. Compared to
the related studies discussed earlier, a greater number of tidal constituents were assessed (each of the four

ocean tide models consists of 8 or more major constituents), including 16 minor tides inferred from the model
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constituents using an admittance approach (Munk and Cartwright, 1966; Desai and Yuan, 2006). However,
the authors explicitly only present residual tidal signal maps for a few selected constituents. Based on the
regional similarities and differences among the four models highlighted by the qualitative comparison, they
conclude that none of the four ocean tide models is flawless. In addition to oceanic tidal signal, the maps
of selected constituents revealed indications of unmodeled atmospheric tides and /or hydrological effects (Sq,
So, and the annual side lines of So). For the gravitationally excited constituent s, the authors observed
increased amplitudes in several shallow water regions, suggesting a possible non-linear contribution from the
compound tide 2MSs.

Stammer et al. (2014) employed a method similar to that of Ray et al. (2009), using GRACE data from
2004 to 2010 as one of several approaches to evaluate the quality of the four major tidal constituents Ms,
Ky, O1, and Sy across seven ocean tide models (see Stammer et al., 2014, Table 9). The authors concluded,
in line with Ray et al. (2009), that no model is perfect or significantly superior in all regions of the globe.
As a supplement to this work, Ray et al. (2019) presented results for FES2014, which was not included in

the earlier model comparison.

The qualitative approach was used in two other studies, although not with a focus on intercomparison
of ocean tide models. Line-of-sight gravity differences derived from the LRI onboard GRACE-FO were ana-
lyzed by Han et al. (2020) to examine the validity of the spherical surface and constant density assumptions,
which are commonly adopted when converting gridded ocean tide model elevations into spherical harmonic
coefficients for further use in orbit modeling. The authors concluded that these assumptions are responsible
for a substantial part of the orbit modeling errors. The issue of the constant density assumption was already
brought up by Ray et al. (2009); however, it was not as thoroughly investigated as in the work of Han et al.
(2020).

In a recent seminal study by Ray (2020b), utilizing satellite altimetry data, the spatial structures of the
four largest gravitationally excited tides of degree n = 3 (see Section 2.3.1), namely, My, 3Lo, 3Ny and 3Ms3,
are—for the first time ever—mapped (almost) globally within the latitude range between £66°. These effects
are quite minute and detecting them requires the analysis of longer observation time series to overcome the
low signal-to-noise ratio and, particularly for 3My, 3La, 3Ny, to separate them from the larger close-by tides
of degree 2. By applying the qualitative approach to 7 years of GRACE 1I-SST data, the study provides
evidence that the GRACE ranging system is also sensitive to these small tides (see as an example the map
excerpt of M3 in Figure 2 of Ray, 2020b). Earlier, Ray et al. (2009) also examined the largest degree-3
tide 3Ms; however, they were unable to detect significant anomalies at this frequency within the short 4-year

time series of GRACE ranging data.

1.4 Objective and Outline of the Thesis

As can be seen from the prior literature review, earlier research mainly addressed the inaccuracies of selected
major ocean tide constituents. The aim of this work is to provide a more comprehensive spectral and spatial
characterization of the most important ocean tide signatures in GRACE(-FO) K/Ka-band (hereafter simply
denoted as K-band) range-rate post-fit residuals, without limiting the analysis to the usually considered
tidal frequencies. To address the research objective, spectral analysis will serve as a central tool. Unlike the
harmonic or tidal analysis used in the previously discussed literature, spectral analysis does not confine the
investigation to a limited set of anticipated tidal frequencies. Instead, it provides a broader perspective on
the most critical frequency components in the data. Since the spectrum under investigation won’t be confined
to tidal frequencies, this approach allows for the assessment of the significance of ocean tide signatures in
relation to other unmodeled non-tidal effects. With more than two decades of data from the GRACE(-FO)
missions, more conclusive results can be anticipated compared to prior related studies. The data basis for

these investigations consists of 5-second K-band range rate post-fit residuals for the period from April 2002
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to September 2023 (approximately 100 million epochs), obtained as part of the operational gravity field
recovery at the Institute of Geodesy (IfE) of the Leibniz University Hannover (LUH).

A summary of this investigation was recently published by Koch et al. (2024b). Especially Chapter 4
follows in large part the structure of the original publication, but offers a more comprehensive description of

the methodology and an extended discussion of the results.

Chapter 2 provides essential information on transformations from conventional co-rotating to inertial co-
ordinate systems. It also gives important background on the gravitational and tide-generating potentials,
ocean tides, and introduces tools for spectral analysis. Chapter 3 outlines the gravity field recovery methodol-
ogy employed for the LUH series of monthly gravity field solutions from GRACE(-FO) sensor data. Chapter
4 focuses on analyzing residual and unmodeled ocean tide signal in the LUH time series of GRACE(-FO)
K-band range-rate post-fit residuals. To place the obtained results within a broader context, the discussion
incorporates an analysis of submonthly gravity field solutions, as well as satellite altimetry data. Chapter 5

provides the final conclusions and offers an outlook on future directions.






Chapter 2

Fundamentals

This chapter provides an overview of key concepts, tools, and algorithms essential for comprehending the
material and methods in the subsequent chapters of this thesis. Section 2.1 introduces the fundamental
coordinate transformation in satellite geodesy, i.e., the transformation between the body-fixed International
Terrestrial Reference System (ITRS) and the inertial Geocentric Celestial Reference System (GCRS), as
defined by the International Earth Rotation and Reference Systems Service (IERS) and the International
Astronomical Union (TAU). As the origins of both systems are situated at the Earth’s center of mass and
the systems employ the same scaling, the transformation consists exclusively of a series of rotations. The
time-dependent rotation angles reflect Earth’s rotation, precession, nutation, and polar motion. Additional
coordinate transformations are presented in the relevant sections. Section 2.2 provides an introduction to the
standard representation of the Earth’s gravitational potential using spherical harmonics. Furthermore, the
section outlines the conversions of gravitational potential to gravitational acceleration and gravity gradient,
which are particularly important for satellite orbit modeling and gravity field recovery. Additionally, the
conversion to EWH, which is of importance for the geophysical interpretation of the time-variable gravity field
signal, is presented. Section 2.3 addresses TGP, the driving mechanism behind tides in the Earth’s system,
and provides essential background information on ocean tides and ocean tide models. Finally, Section 2.4
introduces the spectral analysis tools employed in this work: the Fourier Transform and the Lomb—Scargle

periodograms.

2.1 Transformations Between ITRS and GCRS

While the satellite’s equation of motion is defined and generally solved in an Earth-centered inertial coor-
dinate system, the spherical harmonic coefficients of the gravitational potential, but also of several other
disturbing effects that will be discussed later in Chapter 3, are tied to an Earth-body fixed system. There-
fore, the transformation of position, velocity and acceleration vectors between these two types of coordinate
systems is an important aspect of orbital modeling. For this purpose, the current standard coordinate sys-
tems are the GCRS, which is an inertial system realized by a set of positions of extra-galactic radio sources
obtained from Very Long Baseline Interferometry (VLBI) observations (Fey et al., 2015), and the body-fixed
(i.e., co-rotating) ITRS, which is realized by positions of globally distributed stations estimated from space
geodetic measurements (Altamimi et al., 2011).

The transformation of a Cartesian ITRS position vector r, to its GCRS counterpart r; is described by a

combination of matrix multiplications (e.g., IERS Conventions, 2010):

r; = (Q R W) Te
, (2.1)
=R!r,
where Q is the combined precession-nutation matrix, R is the Earth’s rotation matrix, and W is the polar
motion matrix. The formation of these matrices is described in detail in Sections 2.1.2-2.1.4. Due to the
mutual origin of the two systems, which is the Earth’s center of mass including the oceans and atmosphere,
the transformation matrix R? is solely responsible for a position vector rotation, i.e., R is a rotation
matrix. This rotation matrix is comprised of several individual rotations around defined angles of the Earth

orientation model.
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With matrix R‘e being the first time derivative of R¢, e.g., obtained via numerical differentiation, the

velocity vector I, can be transformed to GCRS the following way:
=Rt +Rlr.. (2.2)
By disregarding irrelevant smaller terms, the transformation of an acceleration vector ¥, is:
¥ =R ¥ . (2.3)

A second-order tensor T, e.g., a gravity gradient or a covariance matrix, is transformed to the inertial system

as follows:
T, = RIT,(Ri)". (2.4)
) . A\T
The vice versa transformations from GCRS to ITRS are performed by using the transposed (Ré)T, (R;)

- .\l
or the inverted (R?) 1, (Rg) for the rotations.

2.1.1 Rotations Around Individual Axes

The rotation of a vector in three-dimensional space about a specific axis of the coordinate system, i.e., the
first (z), second (y) or third axis (z), by a general angle ¢ in anti-clockwise direction (right-hand rule) can

be performed using the following rotation matrices (e.g., Seeber, 2003):

1 0 0 cos¢p 0 —sing cos¢p sing 0
Ri(¢)=10 cos¢ sing|, Ra(gp)= 0 1 0 , Rs(¢)=| —sing cos¢ 0
0 —sing cos¢ sing 0 cos¢ 0 0 1

(2.5)

2.1.2 Precession-Nutation Matrix

Precession is a periodic movement of Earth’s rotational axis with respect to the inertial system with a period
of approximately 26000 years, and is caused by the lunisolar and planetary gravitational pull on the Earth’s
equatorial bulge (e.g., Munk and MacDonald, 1975). This slow movement is superimposed with a smaller
effect known as nutation, with periods ranging from a few days up to a period of 18.6 years due to the 5
degree inclination of the Moon’s orbital plane with respect to the ecliptic (e.g., Torge and Miiller, 2012).

The transformation matrix considering both of these effects, i.e., the precession-nutation matrix Q, can
be defined as a function of the Celestial Intermediate Pole (CIP) coordinates X and Y in GCRS, and the
Celestial Intermediate Origin (CIO) locator s(X,Y") in GCRS as (e.g., IERS Conventions, 2010):

1—aX? —aXY X
Q=| —aXY 1—aY? Y Ra(s) (2.6)
-X -Y 1—a(X2—|—Y2)

where quantity a can be approximated as:

1

a= % + (X2 +Y?). (2.7)

oo

The IAU 2006,/2000A developments of the CIP coordinates X, Y with amplitudes a., as, b., bs (see IERS,
2019a, Tables 5.2a,b) are defined as (Capitaine and Wallace, 2006; IERS Conventions, 2010):
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X = —0.016617" + 2004.191898" ¢ — 0.4297829" >
—0.19861834" 3 + 0.000007578" t* + 0.0000059285" ¢

4 J
+ 3> [(asy)i ¥ sin (ARG;) + (ac )i t cos (ARG;)] n; = {1306,253,36,4,1}

=0 i=1

n

Y = — 0.006951" — 0.025896" t — 22.4072747" t*

+0.00190059” #* + 0.001112526" t* + 0.0000001358" ¢5 (2.9)

nj

4
+ 3 [(bej)i t? cos (ARG;) + (bs j)i t7 sin (ARG)] n; = {962,277,30,5,1} .

=0 i=1

The time argument ¢ in Equations 2.8 and 2.9 is the number of centuries of Terrestrial Time (TT) since
epoch J2000.0:

t:

(TT — 1. January 2000, 12:00 TT) [in days] . (2.10)
36525
TT can be related to the Coordinated Universal Time (UTC) via the International Atomic Time (TAI). TT
is ahead of TAI by 32.184 seconds, i.e., TT = T AI + 32.184 s. TAI differs from UTC by a specific number
of leap seconds, which are announced in the Bulletin C of the IERS and are summarized in IERS (2024,
Leap_Second.dat).

In addition to the amplitudes, IERS also provides multipliers N; for the fundamental arguments F} of
the lunisolar and planetary nutation theory, with which the quantity ARG, can be computed as the scalar

product:
14

ARG =) N;F; . (2.11)
j=1

The 14 fundamental arguments F; contain the 5 Delaunay variables (Simon et al., 1994; IERS Conventions,
2010), i.e., the Moon’s longitude of the ascending node €2, the Moon’s mean anomaly [, the Sun’s mean
anomaly I, the difference between the mean longitude of the Moon and the Moon’s longitude of the ascending
node F'; and the mean elongation of the Moon from the Sun D; and 9 parameters of the nutation theory
consisting of the mean longitudes M of the planets (Souchay et al., 1999; IERS Conventions, 2010) and the
general precession p4 (Kinoshita and Souchay, 1990; IERS Conventions, 2010). The fundamental arguments

in terms of time-dependent developments are:

Fi:o 1 = 134.96340251° 4 1717915923.2178"t + 31.8792"t% + 0.051635"t> — 0.00024470"t*
Fy: I'  =357.52910918° 4+ 129596581.0481"t — 0.5532"t 4+ 0.000136"t> — 0.00001149"t*
Fy: F  =93.27209062° + 1739527262.8478"t — 12.7512"t> — 0.001037"t> + 0.00000417"t*
F,: D =297.85019547° + 1602961601.2090"t — 6.3706"t> + 0.006593"¢> — 0.00003169"¢*
Fs: Q  =125.04455501° — 6962890.5431"t + 7.4722"t% + 0.007702"t> — 0.00005939"t*

Fs:  Lye = 4.402608842 + 2608.7903141574 ¢
Fr: Ly =3.176146697 + 1021.3285546211 ¢
Fs: Lgp =1.753470314 4 628.3075849991 ¢
Fy: Ly = 6.203480913 + 334.0612426700 ¢
Fig: Ly =0.599546497 4 52.9690962641 ¢
Fi1: Lg, = 0.874016757 + 21.3299104960 ¢
Fio: Ly =5.481293872 4 7.4781598567 ¢
Fi3: Ly = 5311886287 4 3.8133035638 ¢
Fiy: pa = 0.02438175 ¢ 4+ 0.00000538691 ¢ .

(2.12)
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Note that the constant terms of the Delaunay variables in Equation 2.12 are in degrees, while the coefficients
are given in arcseconds ("). The fundamental arguments Fz—Fi4 are in radians. Time argument ¢ is the
number of Julian centuries of Barycentric Dynamical Time (TDB). In practice, TT (see Equation 2.10) can
be used instead.

The CIP coordinates (Equations 2.8 and 2.9) deviate from VLBI-observed values, primarily since retrograde
free core nutation, a diurnal quasi-periodic motion of the Earth’s rotation axis (e.g., Vondrak et al., 2005),
is not part of the TAU2006/2000A model. The CIP coordinates X, Y to be used in the precession-nutation
matrix are obtained by correcting the model CIP coordinates using estimated time dependent celestial pole
offsets AX, AY published by the IERS as part of the Earth Orientation Parameters (EOPs):

()0, (3) -

The numerical value of the CIO locator in Equation 2.6, expressed in micro-arcseconds and compatible with
the TAU2006,/2000A precession-nutation, can be obtained using the development (Capitaine and Wallace,
2006; IERS Conventions, 2010):

XY
s=——%+ 94 + 3808.65 t — 122.68 > — 72574.11 ¢3 + 27.98 t* + 15.62 ¢°

4 4 | (2.14)
+ Z Z [(cs,;)i t7 sin (ARG;) + (ce,;)i ! cos (ARG,)] n; = {33,3,25,4,1}

=0 i=1

in which X, Y are the CIP coordinates from Equations 2.8 and 2.9 and time argument ¢ is the number of
Julian TT centuries as defined in Equation 2.10. The amplitudes ¢, and ¢, of the development are listed in
IERS (2019a, Table 5.2d). The quantity ARG is calculated the same way as for the CIP coordinates.

2.1.3 Earth Rotation Matrix

The diurnal rotation of the Earth around its axis is considered in the matrix (IERS Conventions, 2010):
R = R3(—ERA) (2.15)
with the Earth Rotation Angle (ERA) in radians defined as (Capitaine et al., 2000):
ERA = 2m(0.7790572732640 + 1.00273781191135448T,) . (2.16)

The time argument Ty, is the number of days since epoch J2000.0 in the Universal Time 1 (UT1) system, i.e.,
T, = (Julian UT1 date — 2451545.0). UT1 and UTC are related via the relationship UT1 = UTC + dUT1.
The difference between these two time systems is always smaller than 0.9 seconds due to the introduction of

leap seconds by the IERS, and can be calculated as follows:
dUT1 = dUT1;grs + AdUT1, + AdUTY, . (2.17)

The time difference dUT1;gRrg is the value interpolated from the daily EOPs published by the IERS, which
has to be corrected for not included ocean tide effects (Ray et al., 1994) and libration (Brzezinski and
Capitaine, 2003). The ocean tide correction AdUT1,; considers the influence of 71 diurnal and semidiurnal
tidal constituents. For the libration correction AdUT1;, contributions at 11 semidiurnal frequencies have to
be taken into account. Fortran routines for the interpolation (INTERP.F) and corrections (ORTHO EOP.F,
UTLIBR.F) are available from the TERS (2019a).
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2.1.4 Polar Motion Matrix

Lunisolar and planetary gravitation and geodynamic processes are causing a complex superimposed motion
of Earth’s rotation axis with respect to the Earth-fixed system, consisting of secular, periodic and quasi-
periodic components (e.g., Munk and MacDonald, 1975; Torge and Miiller, 2012). The polar motion matrix
is defined as a function of the polar motion coordinates z,, y, and the Terrestrial Intermediate Origin (TIO)
locator s’ (IERS Conventions, 2010):

W = Rg(—S/)RQ(xp)Rl (yp) . (218)

Similar to dUT1 (see Equation 2.17), it is necessary to interpolate the IERS-provided polar motion coordi-
nates to the time of interest, and to consider the contribution of diurnal and subdiurnal ocean tides (Ray
et al., 1994) and libration (Brzezinski and Capitaine, 2003) (see IERS, 2019a, ORTHO EOP.F, PMSD-

<x1p> <x1p> <Ax1p> (Ax1p> ( )
y y IERS y ot y l.

The TIO locator s is a function of the polar motion coordinates xp, y,. Due to its sensitivity to only the
largest variations of the polar motion, i.e., the Chandlerian and annual wobbles, the value of the TIO locator

in micro-arcseconds can be approximated as:

s’ = —ATt. (2.20)

2.2 Gravitational Potential of the Earth

The gravitation of the Earth on or above its surface is usually expressed in terms of a scalar potential field
using spherical harmonics. The gravitational potential V' at a location in the exterior of the Earth, defined
by spherical longitude A, latitude ¢, and radial distance r, can be obtained through a synthesis of different
degrees n and orders m of the spherical harmonic expansion, as follows (e.g., Heiskanen and Moritz, 1967;
Torge and Miiller, 2012; Ik, 2021):

GM & (R\" <~ o
V—T (r) Z(Cnmcosm)\—i—Snmsmm)\)an(smgo) (2.21)

n=0 m=0

with GM representing the product of the gravitational constant G and the mass of the Earth M, commonly
referred to as the standard gravitational parameter of the Earth or the geocentric gravitational constant;
the semimajor axis of the Earth’s ellipsoid R; the fully normalized spherical harmonic coefficients of the
gravitational potential expansion Ch,p, Snm; and the fully normalized associated Legendre functions P,
with argument sin ¢.

In practice, the gravitational potential can only be expanded until a finite number of degrees. There-
fore, the upper limit of the first summation can be replaced with the corresponding maximum degree npax,
representing the theoretical spatial resolution of the potential. For a maximum degree of 0, where per def-
inition Cpgp = 1 and Pyy = 1, one obtains V = GM/r, i.e., the gravitational potential of an Earth with a
spherically symmetric mass distribution, or the mass being concentrated at a single point. With increasingly
higher maximum degrees, finer spatial details of the potential can be represented. The spatial resolution
corresponding to a maximum degree is given by 27 R/nmax. A set of spherical harmonic coefficients C .,

Shnm, with the corresponding scaling constants GM, R, approximating the average gravitational potential
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over a specific time period is usually referred to as a gravity field model or gravity field solution.! Global
gravity field models typically rely on observations of satellite gravimetry missions like CHAMP (Challenging
Minisatellite Payload), GRACE(-FO), GOCE (Gravity Field and Steady-State Ocean Circulation Explorer)
(see e.g., Flechtner et al., 2021), as well as Satellite Laser Ranging (SLR) missions (e.g., Pearlman et al.,
2019), but can also incorporate terrestrial, airborne and shipborne measurements (e.g., Zingerle et al., 2020).
One can distinguish between static and temporal gravity field models. A static gravity field model assumes a
time-invariant behaviour of the gravitational field, and therefore represents an average potential field over a
longer period. In the case of temporal gravity field models, the average potential refers to a relatively short
period, typically one month. An overview of various models from the very beginning of satellite gravimetry
in the late 1960s up until now can be found on the website of the International Centre for Global Earth
Models (ICGEM). The estimation of the spherical harmonic coefficients of the gravitational potential is
known as gravity field recovery. The estimation of temporal gravity field models, so-called monthly gravity
field solutions, from GRACE(-FO) data is a central part of this thesis, and will be outlined in Chapter 3.

Note that the gravitational potential V' in Equation 2.21 is defined in a coordinate system co-rotating with
the Earth. To evaluate the potential at an inertial position, a coordinate transformation to the co-rotating
system is needed (see Section 2.1). The spherical coordinates (A, ¢, ) and the three Cartesian components

(x, y, z) of a position vector in the co-rotating system are related via the following relationships:?

Y z
A = arctan (7) , p = arctan | ——— |, r=|r|. 2.22
, Vi . -
In a coordinate system co-rotating with the Earth, the gravitational potential V' and the centrifugal potential
® form the gravity potential W =V + & with the non-harmonic centrifugal potential (e.g., Heiskanen and
Moritz, 1967; Torge and Miiller, 2012; Ilk, 2021):

1
P = §w2p2 (2.23)

where w = 7.292115 x 107° rad/s is the angular velocity of Earth’s rotation and p = /22 + y? the distance

to the rotation axis.

The following subsections address important aspects related to the gravitational potential. The derivation of
the spherical harmonic representation of V starting from Newton’s law of universal gravitation, categoriza-
tion of spherical harmonics, and methods for spectral signal content and noise assessment are presented in
Section 2.2.1. The conversions from gravitational potential to gravitational acceleration and gravity gradient,
which are relevant for satellite orbit modeling and dynamic orbit determination, are described in Section
2.2.2. Recursive computation schemes for the calculating fully normalized associated Legendre functions
and its derivatives, needed for evaluating the gravitational potential, acceleration and gradient, are shown

in Section 2.2.3. The conversion from gravitational potential to EWH is topic of Section 2.2.4.

2.2.1 Spherical Harmonics Representation

The spherical harmonics representation of the gravitational potential of the Earth V presented earlier in
Equation 2.21 can be derived from Newton’s law of universal gravitation. Consider two points represented

by the Cartesian position vectors r = (z, y, 2)T and r' = (2/, 3/, 2/)T, along with their respective masses

1 As will be described below, the terms “gravitation” and “gravity” are to be distinguished from each other, although the term
“gravity field model” is used to refer to the spherical harmonic coefficients of the gravitational potential.

2\ to be computed with atan2.
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m1, ma. These two point masses are separated by the distance [ = |1] = |r — r/|. According to Newton’s law

of universal gravitation, the gravitational force F between these two point masses, with the gravitational
constant G = 6.67428 x 10711 m3/(kg s?) (Mohr et al., 2008; IERS Conventions, 2010), is given by the
formula: |
mimso
ol (2.24)

With the help of Newton’s second law of motion, i.e., the force acting on an object is the product of its

F=-G

mass and acceleration; and defining m; as the attracted and mo = m as the attracting point mass, the
gravitational force can be expressed as the gravitational acceleration vector b pointing from the attracted
point towards the source of gravitation: .
m
b= 7G1—22 . (2.25)
Equation 2.25 can be extended to apply to a complex mass system, such as the Earth. A mass system 2
can be regarded as a composition of an infinite number of differential mass elements dm. The gravitational

acceleration is then the integral over all mass elements dm:

e o0

The differential mass element dm can also be formulated as the product of the location-dependent density p
and the differential volume element dv as dm = p dv. Since gravitational acceleration is the gradient of the

gravitational potential V', i.e.:

ov oV oV

T

the gravitational potential of a mass system (2 is:

V:G///Q§dv. (2.28)

Determining the gravitational potential using Equation 2.28 is challenging because the Earth’s internal mass
distribution and, consequently, its density, are not precisely known. However, it is feasible to demonstrate
that modeling the gravitational potential in the exterior of the Earth is possible. Applying the Laplace
operator A =V -V to potential V, i.e.:

o*V 9*V 9PV
AV = (&r? + o + 822> (2.29)

gives rise to two cases:

1. If the attracted mass point is inside the Earth, i.e., |r| < [r/|, then AV is described by the Poisson
equation: AV = —4nGp,

2. If the attracted mass point is outside the Earth, i.e., p = 0 and |r| > |r'|, then AV is described by

Laplace’s differential equation of second order: AV = 0.

Since the Laplace equation is valid, the gravitational potential V' outside the attracting mass is harmonic.
Spherical harmonic functions are solutions of the Laplace equation and therefore the gravitational potential
in Earth’s exterior can be represented as a series expansion with the help of spherical harmonics.

Using polar coordinates and applying the rule of cosines, the reciprocal distance 1/I between the attracted
and attracting points can be formulated as:

2 , —1/2
(1 + (T) L cosw> (2.30)
T T

= | =
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FI1GURE 2.1: Relevant vectors and angles on the unit sphere for deriving the spherical harmonic coefficients
representation of the gravitational potential. Vectors r’ and r are the position vectors of the attracting and
attracted point masses, respectively. The point masses are separated by the distance |1| = |r — r'|.

where 1 is the angle between the position vectors r and r’; and » = |r|, ¥/ = |r/|. The reciprocal square
root term in the above equation can be expressed as a series expansion with Legendre polynomials P, (as a

function of cos), resulting in the following expression for the reciprocal distance:

r
n=0

% _ li (’;’)npn(cow) (2.31)

where the Legendre polynomials of degree n are defined as:

1 ar[(t? — 1)
~ onpl dtn '

Py (t) (2.32)

Using the spherical law of cosines and applying the addition theorem of Legendre polynomials with the angles

on the unit sphere 9, ¥, X\, X as illustrated in Figure 2.1, P, can be expressed as:

n

By (costp) = > (2= dom)

m=0

(n—m)!

(b P, ! / 9.
(ner)!( om (Cos ) cosmA - Ppp, (cos®') cosmA + (2.33)

P (cosd) sinmA Py, (cosd’) sinm))

with associated Legendre functions P,,, of degree n and order m:

2\m/2 dm
Pon () = (1= 3)™/2 2P (1) (2.34)

and the Kronecker delta:
1, n=m

Onm = (2.35)
0, n#m.
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FIGURE 2.2: Spherical harmonics Py (cos¥) cos mA normalized to range [—1, 1] in two representations. 1:

Color-coded value of the spherical harmonic on the sphere. At the solid black lines the spherical harmonic

value is zero. These nodal lines divide the spherical harmonics into three categories: zonal, when m = 0,

e.g., Pso(cos?) (a); sectoral, when n = m, e.g., Pss(cos®?) cosbA (b); and tesseral for 0 < m < n, e.g.,

Ps4(cos) cos4X (c). 2: The radial distance is distorted according to the absolute value of the spherical
harmonic.

The quantities Py, (cosd)cosmA and P, (cos?)sinmA in Equation 2.33 are called surface spherical har-

monics. Based on the specific combination of degree n and order m, they can be divided into three categories:

e Zonal spherical harmonics when m = 0: Are only represented by P, cosmA; Py, sinmA is 0. The
surface of the sphere is divided into n + 1 zones, with zero lines along parallels (see Figure 2.2a for n = 5,
m = 0).

e Sectoral spherical harmonics when n = m: The surface of the sphere is divided into 2m sectors, with zero

lines along meridians (see Figure 2.2b for n =5, m = 5).

o Tesseral spherical harmonics for 0 < m < n: The surface of the sphere is divided into 2m(n —m + 1)

cells, with zero lines along parallels and meridians (see Figure 2.2¢c for n =5, m = 4).

After 1. inserting expression of the Legendre polynomials from Equation 2.33 into Equation 2.31, 2.
substituting the resulting expression into Equation 2.28, 3. introducing a reference mass M (mass of the
Earth) and a reference radius R (semimajor axis of the Earth ellipsoid), and 4. restructuring the resulting

equation so that the distance r’ appears behind the integrals, the following expression is obtained:

Zi( ) (2 - 60m) En+:;'( P (cos 9) cosmA///( ) m (cos ') cos mN dm+

n=0m=0

(2.36)

P, (cos ) smmA///( ) m (cos ) sinmN dm) .

All quantities in Equation 2.36 related to the source of gravitation can be assigned to so-called spherical

harmonic coefficients Chy, and Sppp,:

_ cosmNdm
Cnm = _ (2= om) (n=m) / / / ( ) (cos ) (2.37)
Snm M (n+m) sinmM\dm .
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The above coefficients are also called Stokes’ coefficients. An alternative notation that can sometimes be
found in the literature is: Jy.m = —Chnp and J, = —Chyg, especially Jo for the negative main term of the
gravitational potential Co.

The lower degree spherical harmonic coefficients can be interpreted physically. Cpg is the ratio of the
total mass of mass system () to the reference mass. Since M was introduced as reference mass, Coy = 1.
Coefficients C1g, C11, S11 are the coordinates of the center of mass, i.e., geocenter coordinates, with respect
to the body-fixed reference system. For a coordinate system with an origin at the geocenter, these values
are zero. Cyg, Ca1, So1, Caa, Sa2 are related to the elements of the moment of inertia tensor (cf. e.g., Ik,
2021, p. 114f). Coeflicient Cy, the largest spherical harmonic coefficient after Cg, characterizes the polar
flattening of the Earth.

In practical use, the gravitational potential is expressed by using fully normalized spherical harmonic

coefficients, where the largest value equals 1:

(Snm> B \/(2 —bom)(2n+ 1) (n —m)! {Snm (2.38)

as well as the fully normalized associated Legendre functions (see Section 2.2.3):

Prm(t) = \/(2 — dom)(2n + 1)

(n —m)!
mpnm(t) . (2.39)
Finally, by inserting the fully normalized spherical harmonic coefficients and associated Legendre functions
into Equation 2.36, and the relations ¥ = /2 — ¢, cosd = siny, one arrives at the spherical harmonics

representation of the Earth’s gravitational potential given in Equation 2.21.

The signal content of the coefficients of a gravity field model can be visualized by arranging the coefficients

into a triangular structure with color-coded amplitudes, or by means of degree variances:

n

9 —2 —2
0= D (Crop + Sm) - (2.40)

m=0
or degree standard deviations o, = \/02. More common is to look at difference degree variances, i.e.,

utilizing spherical harmonic coefficients differences AC,,,,, AS,n that are computed with respect to a
reference model, e.g., a static gravity field model. This allows to assess time-variable signal of a temporal
gravity field solution, but also the contribution of noise at different degrees/orders. An example of both
representations for a monthly gravity field solution from GRACE-FO data is shown in Figure 2.3. The
degree variances of a gravity field model approximately follow the shape that is described by an empirical
model known as Kaula’s rule of thumb: o2 ~ 160 x 1072 /n® (Kaula, 1966, blue line in Figure 2.3 that
approximates o, of the monhtly gravity field solution labeled with “full”). In general, the signal content
diminishes as degree n increases. For the time-variable component of a gravity field solution, i.e., a temporal
gravity field model minus a reference model (in Figure 2.3a denoted as “full—static”), one can also anticipate
a decrease of o,,. Since the spherical harmonic coefficients of a GRACE(-FO) monthly gravity field solution
are dominated by noise at higher degrees, the assumption of a decreasing o, is violated. Hence, the difference
degree standard deviations can be divided into two parts: a signal dominated part for (roughly) n < 40 and a
noise-dominated part for higher degrees. To obtain mass variations from the spherical harmonic coefficients of
a temporal gravity field solutions, the noise contribution must be reduced, e.g., by applying filters (cf. Figure
2.3a where a Gaussian filter was applied, and the corresponding triangle plot in Figure 2.3d). The process
of determining mass variations from GRACE(-FO) monthly gravity field models, including the application

of filtering, is outlined in more detail in Section 2.2.4.
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FIGURE 2.3: (a): Degree standard deviations for degrees n = 2 to n = 96 of a GRACE-FO monthly gravity
field solution (January 2021); difference degree standard deviations of the monthly gravity field solution with
respect to the static gravity field model GOCOO06s; and difference degree standard deviations of the monthly
gravity field solution with respect to GOCOO06s with an additional Gaussian filtering with a 350 km half-
width radius (see Section 2.2.4). The blue line represents Kaula’s rule of thumb. (b)—(d): Corresponding
triangle plot representation with Cl.m /AC,m on the right part of the triangle, and Sy, /ASnm on the left.

2.2.2 From Gravitational Potential to Acceleration and Gravity Gradient

Although, as demonstrated in the previous section, gravitation can be elegantly expressed as a potential
field, representing gravitation as an acceleration vector is central to many applications. In the context of
this work, knowledge of the acceleration vector is necessary for the modeling of satellite dynamics, as will be
shown later in Chapter 3. Furthermore, in the estimation process of the monthly gravity field solutions using
dynamic orbit determination, also the so-called gravity gradient is required. The gravitational potential V'
and the gravitational acceleration vector b are related via the expression b = VV (Equation 2.27), i.e., the
acceleration is defined as the vector containing the partial derivatives of the gravitational potential with
respect to the three Cartesian components x, ¥y, z of a position vector r given in the co-rotating coordinate
system. The gravity gradient represents the second-order partial derivatives of the gravitational potential
with respect to x, y, z. The first-order and second-order partial derivatives can be obtained via a series of
intermediate steps (see e.g., Tscherning, 1976; Koop, 1993; Sharifi, 2004; Wu, 2016), which will be outlined
below.

The gravitational potential V' presented earlier in Equation 2.21 can also be formulated as:

Vi) = GTM Z f (%) Z p(acosmA + SsinmA) (2.41)
n=0 m=0
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TABLE 2.1: Expressions to be used in Equation 2.41.

Differentiation w.r.t. f P «@ I6]

_ 1 Pom(sing)  Chum  Sam

T _n ;r ! P (sinp) Coum  Snm

© 1 F;m (sin @) Com  Sam

A 1 mP,,(sing)  Spm —Cum
rr w Pom(sing)  Cum  Som
rp _(n :_ D F;m (sin @) Coum  Snm
rA _ —: D mPom(sing)  Spm —Cam
o 1 P! (sing) Cpm Som
oA 1 mﬁ;m (sinp)  Som  —Cum
AN -1 m2Poym(sing)  Cum  Spm

with f =1, p = Ppm(sing), a = Cpym, and B = S,m; where, as in Equation 2.21, (r, ¢, \) are the spherical
coordinates of the evaluation point, GM is the standard gravitational parameter of the Earth, R is the
semimajor axis of the Earth’s ellipsoid, C.,.,, and Sy, are the fully normalized spherical harmonic coefficients
of the gravitational potential expansion for degree n and order m; and P, are the fully normalized associated
Legendre functions. The subscripts ¢ and j refer to the first column of Table 2.1.

By replacing f, p, a and b in Equation 2.41 with the expressions provided in Table 2.1, the first-order
partial derivatives V; = 0V/0i and second-order partial derivatives V;; = 9*V/(9i0j) of the gravitational
potential with respect to the spherical coordinates i, j € {r, ¢, A} are obtained. The expressions ?;m(sin ®)
and ?Zm(sin ©) in Table 2.1, introduced here for the first time, represent the first-order and second-order
derivatives ﬁ;m = OPm(sing)/0¢ and ?Zm = 0%P . (sin ) /0p?, respectively. A recursive computation
scheme for the fully normalized associated Legendre functions and its derivatives is given in Section 2.2.3.

With these partial derivatives with respect to the spherical coordinates, the first-order and second-order
partial derivatives of the gravitational potential with respect to a local coordinate system can be formulated.
With the axes defined such that x, y, and z point from the evaluation point towards the North, East, and

upward directions, respectively, the partial derivatives with ¢,j € {z, y, 2} are defined as:

1
Ve =-V,
; e
1
VvV, =
Y rcose
sz:Vr

1 tan ¢
Viy = V. V,
W P2eosp Tz cosg (2.42)
1 1
Ve = ;VI“L,D - ﬁvgo
1 tan ¢ 1
Voy = 2V = r2 Vet r2 cos? ¢ AA
1 1
Vyz = -
T COS r2 cos
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The gravitational acceleration vector in the co-rotating coordinate system can now be obtained as follows:

5V Ve —singpcos A —sin A  cospcosA
I R [V, with R=| —sinpsinA cosA cospsinA |. (2.43)
V. cos 0 sin g

By taking the tensor structure into account, the symmetric gravity gradient can be transformed from the

local coordinate system to the global coordinate system as follows:

sz Vyz Vtzz

An alternative way for obtaining the acceleration vector and gravity gradient is presented in Ik (2021,
Equations 10.4 and 10.7).

2.2.3 Fully Normalized Associated Legendre Functions

In order to evaluate the potential V', the fully normalized associated Legendre functions P.,,, as a function
of sin ¢ are needed.? Moreover, computing the acceleration vector and the potential tensor also requires the
first-order derivatives F;m = OP,,,/9p and second-order derivatives F;im = 0?P,,/0¢%. Non-normalized
and fully normalized associated Legendre functions were already defined in Equations 2.34 and 2.39. The
computation of the Legendre functions using these explicit equations is time consuming. In practice, several
recurrence relations can be employed to compute P, and its derivatives (see e.g., Koop, 1993; Sharifi, 2004).

To start the recursive computation as shown in Equations 2.45-2.47, the following values are used:
Poo=1, Py=0, Pyy=0, Py =+3cosp, Py =—3sing, Py =—V3cosep.
The diagonal recursion for n > 2 reads:

Pnn = fl COS @Pn—l,n—l

/

— — R
P, =N (cos oP,_q 1 —sin @Pn_lm_l) (2.45)

/! /

—n _ L _
Pnn = fl (COS @Pn—lfn—l — 2sin <an—17n—1 — CO8 @Pn—l,n—l) :
Next recursion step for n > 1 is:

Pn,nfl = f2 sin SD?nfl,nfl
P

/

nn—1 — f2 (COS (Pﬁnfl,nfl + sin (ppfnfl,n71> (246)

—11 . —! -/ . 5)
Pn,n_1 = fo (sm wP, 1,1+ 2cos can_lm_l — sin <,0Pn—1,n—1) .
Next recursion step for n > m + 2 is:
?nm = f3 (f4 sin Qpﬁn—l,m - fSﬁn—Zm)
— . — — —
an = f3 (f4 S @Pn—lﬂn + f4 cos <an—17m - fSPn—Z,m> (247)

?Zm = f3 <f4 sin @ngl,m + 2f4 Cos (P?;,Lm - f4 sin @?nfl,m - f5pfr;72,m> :

3In some equations of this subsection, a comma separating n and m in Py, and its derivatives is included to ensure unambiguous
readability.
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The quantities f1—f5 in Equations 2.45-2.47 are defined as:

2n+1 2n+1
fl m 3 f2 n + ) f3 \/(nm)(n+m)7

PR, e fsz\/(n—l—m—l)(n—m—l).

(2.48)

2n —3

2.2.4 From Gravitational Potential to Equivalent Water Height

Equivalent Water Height (EWH) is a concept that plays a key role in interpreting the gravity field solutions
from satellite gravimetry missions like GRACE(-FO). Time variability of the Earth’s gravity field potential
—ref — — —ref

can be expressed by AC,,, = Cpm — C,,,,, and AS,,, = Spp — S

harmonic coefficients with respect to a reference7 e.g., a static gravity field model. It is assumed that AC,,,,,

ms 1-€., by the change in the spherical
AS . represent surficial mass variations, for example, in the hydrosphere or the cryosphere. The largest
mass changes happening not on the surface of the Earth are likely due to GIA and tidal effects (Chao,
2016). The contribution of tidal effects to the gravity field solutions is reduced by considering these effects
as background models during gravity field recovery (see Section 3.3). EWH values can be adjusted for GIA
by computing corrections from global or regional GIA models (e.g., Whitehouse et al., 2012; A et al., 2012;
Peltier et al., 2018). These corrections are mainly of importance when studying gravity changes in Canada,
Fennoscandia, Western Antarctica, and Greenland. The gravity field change AC ., AS,,, is subsequently
expressed in terms of a thin and uniform water layer on the Earth’s surface. A water layer of 1 mm, i.e.,
EWH =1 mm, on an area of 1 m? corresponds to a volume of 1 liter, or a mass of 1 kg, when assuming
1000 kg/m? as the average density of water. Time variability of the Earth’s gravity field potential can be
translated to EWH as follows (e.g., Wahr et al., 1998):

e Ly (AT _
fppw Z Z P (sing) —&——;: ' (ACnm cosmA + AS ., sin m/\) (2.49)

n=0m=0

with the average density of the Earth p, = 5517 kg/m? and water p,, = 1000 kg/m?, the load Love numbers
ky, of the solid Earth for a specific degree n (see Wahr et al., 1998, Table 1), the spherical harmonic coefficients
differences ACpm, ASynm, the Gaussian smoothing filter coefficients W,,, and the other quantities as defined
earlier (see e.g., Equation 2.21).

Not applying W, to the coefficients differences, results in EWH values being affected by noise. An optimally
chosen W,, reduces the contribution of generally noise-dominated higher degree spherical harmonic coefficients
of the monthly gravity field solution (see Figure 2.3a,d and Figure 2.4). The Gaussian smoothing filter
coefficients for a degree n can be computed recursively using the following relations (Jekeli, 1981; Wahr et
al., 1998):

1 1 (14+e2 1 on+1
Wy = — Wy=—[———-=Z Wyat = — W, + W,,_ 2.50
0T op L= or <1€2b 6)7 1 b + 1 ( )
In(2
with b= n(2)

(1 —cos(r/R))

where In() denotes the natural logarithm, R is Earth’s semimajor axis and r is the half-width radius of the
filter (larger r results in greater smoothing). The choice of a suited value for r should balance noise reduction
and signal preservation. Typical radii for smoothing the more recent releases of GRACE(-FO) gravity field
solutions are 300 and 400 km. In addition to the widely used Gaussian filter, several other advanced filtering
techniques have been developed over the years to enhance the quality of signal extraction from the gravity
field solutions. These can be applied independently or in combination with the Gaussian filter, depending
on the specific characteristics of the filtering approach. An overview and discussion of different filtering

techniques can be found in Devaraju (2015).
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FIGURE 2.4: LUH January 2021 monthly gravity field solution in terms of EWH in meters. (a): Full signal

until degree and order 96 (with Czo from SLR) minus static gravity field GOCOO06s with reference epoch at

1 January 2010. The change in gravity is dominated by noise. (b): Gaussian filter with a half-width radius
of 350 km was applied to (a).

Due to the limitations of the GRACE(-FO) satellites in observing the Cyg coefficients—primarily because
of their orbit geometry and measurement sensitivity—it is common practice to replace these coeflicients in
the monthly gravity field solutions with more reliable estimates derived from SLR when computing EWH and
mass change (e.g., Cheng and Ries, 2017; Kénig et al., 2019; Loomis et al., 2020).* The degree-1 coefficients
(Cho, C11, S11) describing the geocenter motion are not included in the GRACE(-FO) monthly gravity field
solutions but can be derived from the solutions and ocean bottom pressure data using the technique outlined
in Swenson et al. (2008) and Sun et al. (2016).

To analyze mass changes, including long-term trends and seasonal variations, the EWH time series at

a specific location of interest or at every element of a global grid, can be approximated by a suitable

2 2
T t) + fcos < T t> (2.51)
psa pSa

where Ah,, (t) represents the value of the time series at time ¢, a is the bias, b the linear trend coeflicient, ¢ and

mathematical model, for example:

2 2
Ahy,(t) = a+ bt + csin (Wt) + d cos (Wt> + esin (

Pa a

d are the coefficients for the annual sine and cosine components, e and f the coefficients for the semiannual
variation, and p, and ps, denote the annual and semiannual periods, respectively, given in units of ¢. The
equation can, for example, be extended with additional periods of interest. The unknown parameters can be
estimated using least squares adjustment (see Equation 3.40). The amplitudes for the annual and semiannual
components are then given by v/¢2 + d? and \/m , respectively.

2.3 Tide-Generating Potential and Ocean Tides

Ocean tides can be initially understood as the oceans’ reaction to the tide-generating forces, which primarily
drive the tidal oscillations in water levels and masses. Section 2.3.1 provides an introduction to the Tide-
Generating Potential (TGP). The representation of the TGP using Legendre functions divides tides into
different species, e.g., diurnal, semidiurnal, or long-periodic tides, and different degrees, e.g., degree-2 and
degree-3 tides. Section 2.3.2 delves into the dynamics of ocean tides. Section 2.3.3 addresses the application
of satellite altimetry for observing ocean tides. In Section 2.3.4, the relationship between the amplitudes and
phases of the ocean tide models and the spherical harmonic coefficients representation is given. Moreover,

an overview of relevant ocean tide models is provided.

4SLR-derived Cag coefficients for substitution recommended by the GRACE(-FO) Science Data System are provided in the Tech-
nical Note 14: ftp://isdcftp.gfz-potsdam.de/grace-fo/DOCUMENTS/TECHNICAL_NOTES/TN-14_C30_C20_SLR_GSFC.txt (last
accessed on 2025-08-04).


ftp://isdcftp.gfz-potsdam.de/grace-fo/DOCUMENTS/TECHNICAL_NOTES/TN-14_C30_C20_SLR_GSFC.txt
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(@) (b)

FIGURE 2.5: (a): Schematic view of the Earth—celestial body geometry for describing the tidal acceleration

b; in point P. 0 is the geocenter of the spherically symmetric Earth; B is the celestial body considered

as a point mass. Orbital acceleration —byg is constant and cancels with the gravitational acceleration bg

in the geocenter. (b): Symmetric tidal bulge due to degree n = 2 of the TGP (blue dashed ellipse) and
asymmetric part due to degrees n > 2 (red), primarily n = 3.

2.3.1 Tide-Generating Potential

Tidal acceleration b; = b — by due to a celestial body, e.g., the Moon, Sun or one of the planets, is the
sum of the position-dependent gravitational acceleration b and the orbital acceleration —bg, which is the
constant negative gravitational acceleration of the celestial body in the geocenter. The Moon causes by far
the largest tidal acceleration at the Earth’s surface, with a maximum value of approximately 1.37x1076
m/s? (Wenzel, 1997), followed by the Sun (~36% of Moon’s acceleration), and the planets Venus (~0.004%),
Jupiter (x0.0005%), and Mars (/~0.0001%) as the next largest contributors. Because of the much smaller
contribution of the planets, it is reasonable to refer to the total tidal acceleration and the corresponding tidal
(or tide-generating) potential as lunisolar. Nevertheless, the sensitivity of modern gravimeters also requires
these planets to be considered. Newer tidal potential catalogues, which provide tabulated amplitudes for a set
of waves (or frequencies) that can be used to synthesize the TGP for a specific location and time, therefore
also contain terms for relevant planets (e.g., Hartmann and Wenzel, 1995; Roosbeek, 1996; Kudryavtsev,
2004).

By applying Newton’s law of gravitation and using the relationship that acceleration is the gradient of the
potential (see Equation 2.27), the two separate terms of the tidal acceleration and tidal potential due the

gravitational pull of a celestial body can be written as (see e.g., Melchior, 1966; Wenzel, 1997; Agnew, 2009):

Mgl M
lB lp s B
GM GM
v=""F Vo = —52 rcostp (2.53)
lB )

where GMp is the standard gravitational parameter of the celestial body, i.e., gravitational constant times
the mass of the body; lg is the vector pointing from the point on Earth’s surface to the celestial body; rg
is the geocentric position vector of the body; g = |1g|, rg = |rp| are the respective distances; and r, ¥ g
are the geocentric distance and zenith angle of point P, respectively. Mentioned geometric quantities and
acceleration vectors are illustrated in Figure 2.5a.

/2 By reformu-

With the trigonometric rule of cosines, g can be defined as ig = (7"2 + 7"123 —2rrpg cosyp)
lating the reciprocal distance 1/lp in terms of a series expansion with Legendre polynomials P, (cosp) of

degree n (cf. Equations 2.30-2.32)5, the tidal potential V; = V — Vj for a spherically symmetric Earth can

5Variables I, v/, r, 1 in Equations 2.30-2.32 correspond to lp, 7, 75, ¥p in Equations 2.54 and 2.55. Also keep in mind that
Py(cosyp) =1 and Pi(cosyp) = cosp.
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be written as:

1 7 cosyp 1

_ GMp ;2 (;) Po(cos ) . (2.55)

Note that Equation 2.55 contains an additional term —GMp/rp that is not part of Equations 2.53, but
needs to be added so that the tidal acceleration vanishes in the geocenter, i.e., is 0 when r = 0 and rp = [3.
The TGP is encoded in the first few degrees, with about 98% of the signal being part of the degree-2 term
(Wenzel, 1997). The importance of degrees n > 2 as a contributor to V; decreases fast, since r/rp on Earth’s
surface is ~1/60 for the Moon and ~1/23000 for the Sun (Agnew, 2009; Hartmann and Wenzel, 1995, Table
1). State-of-the-art tidal potential catalogues (see later in this section) expand V; until a maximum degree
of 6 (Moon) and 4 (Sun), while for planets only degree 2 is considered.

Important properties of V; become apparent when it is expressed in terms of spherical coordinates 6, A (co-
latitude and longitude of P) and ©p, Ap (co-latitude and longitude of B), instead of zenith angle 5. With
these geographical coordinates costp can be formulated as: cos g = cosf cos ©p+sinfsin O g cos(A — Ap),
allowing to apply the addition theorem of spherical harmonics and express P, (cos¢p) in Equation 2.55 in
terms of normalized associated Legendre functions P, (cosf) (see Section 2.2.3) dependent on degree n and
order m (e.g., Wenzel, 1997):

P, (cosvyp) = ﬁ 2”: Prm(cos) Ppy(cosOp) cos (mA —mAp) . (2.56)

m=0

The two sums in Equations 2.55 and 2.56 divide the tidal potential and acceleration into terms of:

— degree n: — order m:
degree of a tidal wave; a tidal wave of degree n is species of a tidal wave; a tidal wave of order m has
referred to as degree-n tide, i.e., a frequency of about m times per day, i.e.,
n = 2 : degree-2 tide m = 0 : long-periodic tide
n = 3 : degree-3 tide m = 1 : diurnal tide
n = 4 : degree-4 tide m = 2 : semidiurnal tide

While coordinates rg, ©p vary only slowly in time, Ap is varying relatively fast due to the rotation of the
Earth. With positions of the celestial bodies from ephemerides models (e.g., Bretagnon and Francou, 1988;
Pitjeva, 2005; Folkner et al., 2014), V; can be computed directly for a rigid and oceanless Earth model. How-
ever, the common method is to express the tidal potential as the sum of a set of sinusoids. By expressing the
ephemerides of the Moon, Sun and planets in terms of harmonic functions of suitable astronomical quantities,
a spectral decomposition of the tidal potential can be performed (e.g., Melchior, 1966; Agnew, 2009; Torge
and Miiller, 2012). The outcome of such a harmonic development is known as a tidal potential catalogue,
which in combination with additional information, e.g., on Earths’ elasticity, can be used for a more realistic
modeling of Earth system’s response to the tidal forcing. The first harmonic development, although limited
to a very small number of main waves, was given by Ferrel in the 1870’s (Doodson, 1921; Melchior, 1966).
In the 1880’s, Darwin published a quasi-harmonic development of the TGP, which was widely used at that
time. The names he gave to the main waves (see e.g., Darwin, 1907, Table A), partly extended according
to his nomenclature, are still in use and are known as Darwin names. Larger discrepancies between tidal
observations and predictions from Darwin’s development, attributed to imperfect harmonic constants and

the limited amount of considered waves, led Doodson (1921) to develop a catalogue consisting of almost 400
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waves utilizing a newer analytical lunar ephemerides model. The majority of recent catalogues are based on
more precise numerical ephemerides, which, in contrast to analytical models, incorporate observational data.
One example of such a catalogue is the HW95 model by Hartmann and Wenzel (1995), comprising 12935
waves, while the most recent, the KSM03 catalogue, includes 26753 terms (Kudryavtsev, 2004). Several
other catalogues are listed in Wenzel (1997, Table 5).

The tidal potential V; from a catalogue consisting of the waves ¢ expanded until a maximum degree npax

can be represented in the HW95 format as:

Mmax 7N

vi=> 3 (%)" Pum(cos8) Y [CF™(8) cos(ay(t)) + SP™ (1) sin(ai(t))] (2.57)

n=1 m=0 7

where CI"™(t), SP™(t) are the time-dependent spherical harmonic coefficients of the tidal potential of a
wave 4 obtained from the spectral decomposition of the TGP computed from ephemerides®; R is the mean
equatorial radius of the Earth; vector k; contains the integer coefficients of the astronomical arguments
vector B; and the other quantities as defined in previous equations.

Note that Equation 2.57 starts at degree n = 1 instead of n = 2 as earlier defined in Equation 2.55.
While Equation 2.55 is a good approximation of V; and is valid for a spherically symmetric Earth, the newer
tidal potential catalogues, e.g., by Hartmann and Wenzel (1995), Roosbeek (1996), Kudryavtsev (2004),
additionally consider Earth’s flattening effects, which give rise to small degree-1 terms (see e.g., Hartmann
and Wenzel, 1995, Equation 1). Although these effects are relatively small compared to the lunisolar TGP,
the amplitude can be comparable to that of the planets (cf. numeric values in Wenzel, 1997; Hartmann and
Wenzel, 1995, Table 1).

A comparison of Equation 2.21 (gravitational potential of the Earth) with the aforementioned represen-
tation of the TGP reveals the main conceptual distinction: in contrast to the gravitational potential, the
TGP is additionally separated into different frequency components i. For the case of a purely lunisolar TGP,
the astronomical arguments vector contains six independent fundamental angles in the following sequence:
7 (mean Lunar time), s (mean longitude of the Moon), h (mean longitude of the Sun), p (longitude of
Moon’s mean perigee), N’ (negative longitude of Moon’s mean ascending node), and p; (longitude of Sun’s
mean perigee). These fundamental angles were used by Doodson (1921) for his harmonic development of the
TGP; therefore also known as Doodson arguments. The periods of variation of the six Doodson arguments
are listed in Table 2.2. Numeric values of the fundamental arguments with respect to different origin of
time can be computed directly from time-dependent developments (see e.g., Doodson, 1921; Melchior, 1966).
Conventional present-day developments usually refer to epoch J2000.0. The related numeric values of the
six fundamental arguments can be obtained with the help of Delaunay variables F, Q, D, I, I’ (see Equation
2.12) as:

T GMST +7m—s
s F+Q
g=| " |- s-D (2.58)
P s—1
N’ —Q
D1 = Ps s—D-=1V

6The HW95 model and several other catalogues in the HW95 format are available as part of the Earth tide data processing
software Eterna (Wenzel, 2022). KSMO03 in HW95 format can be obtained here: http://lnfml.sai.msu.ru/neb/ksm/tgp/
ksm03.dat (last accessed on 2025-08-08).


http://lnfm1.sai.msu.ru/neb/ksm/tgp/ksm03.dat
http://lnfm1.sai.msu.ru/neb/ksm/tgp/ksm03.dat
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TABLE 2.2: Six fundamental angles (also known as Doodson fundamental arguments), corresponding ap-
proximate periods of variation, and angular frequencies (see e.g., Melchior, 1966).

Angle  Description Period Frequency

T Mean Lunar time 24 hours 50.47 min 14.492072° /h
S Mean longitude of the Moon 27.3216 days 0.549016° /h
h Mean longitude of the Sun 365.2422 days 0.041068° /h
P Longitude of Moon’s mean perigee 8.847 years 0.004642° /h
N’ Negative longitude of Moon’s 18.613 years 0.002206° /h

mean ascending node
Ds Longitude of Sun’s mean perigee 20940 years 0.000002° /h

TABLE 2.3: Doodson number.

Doodson number 135.655 255.555

Darwin name Q1 M,

Species m = 1, i.e., diurnal tide m = 2, i.e., semidiurnal tide
Group number 13 25

Constituent number 135 255

Multipliers k,=1[1,-2,0,1,0, 0 k;, =1[2,0,0,0,0, 0]
Argument ki-3:7—2s+p k;,-3: 27

Period 1.1195 days 0.5175 days

Frequency 13.3986° /h 28.9841° /h

with the Greenwich Mean Sidereal Time (GMST), which, according to the TAU 2000 definition (Capitaine
et al., 2003), is a function of the ERA (Equation 2.16), and with time ¢ defined in centuries since epoch
J2000.0 of the TT system, can be computed the following way:

GMST = ERA + 0.01450” + 4612.156534"¢ + 1.3915817"¢2 — 0.00000044" 3

_ 14 145 (2.:59)
0.000029956"¢* — 0.0000000368"¢* .

Using Doodson’s argument number, now also simply known as Doodson number, the tidal waves can be
classified, and angle and frequency information can be represented in an elegant manner as exemplarily shown
for two waves in Table 2.3. The Doodson number consists of six positive digits. The first three elements have
a special meaning and are separated from the other three elements by a point. The first element k; is always
equal to the order m of the TGP and therefore represents the tidal species. Tidal waves with identical first
two values are part of the same tidal group; furthermore, they are considered to be part of the same tidal
constituent when the first three elements are identical. In the literature, the term “constituent” is not always
strictly used according to the above definition. Often distinct waves within the same constituent are also
simply denoted as constituents. In some places in this thesis, Doodson’s notation might also be violated.
The five multipliers ko to kg are obtained by subtracting 5 from the corresponding elements of the Doodson
number”. The scalar product of these six multipliers with the six Doodson fundamental arguments, i.e.,
k174 kys+ksh+kyp+ ks N' + kg ps, yields the astronomical or Doodson argument

0; =k - B(1) (2.60)

"While the multiplier of 7 is always positive, multipliers of the other five fundamental angles can be negative, but are only
rarely outside the range of —4...4. Therefore, by introducing the +5 offset, negative values are omitted and the multipliers can
be written neatly as a six digit number—at least for the most important waves. As can be seen, for example, from the group
number notation in Figure 2.7, this specific notation can “run-out”, e.g., after 10 or 19.
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FIGURE 2.6: TGP of the largest semidiurnal, diurnal and long-periodic constituents at J2000.0 in m? /s>

which has to be distinguished from the co-latitude 6 in Equation 2.57. The astronomical argument can
equivalently be formulated as 6; = 6;(to) + 9'it, where 0;(ty) is the astronomical argument at an initial
epoch tg, and 6, is the angular velocity of the constituent 7. In an analogous manner to Equation 2.60, the
angular velocity is obtained as the scalar product of the multipliers k; with the frequencies of the Doodson
fundamental arguments expressed in appropriate units. For the corresponding frequency in degree per hours
of the six Doodson fundamental arguments, see Table 2.2.

In the case of the consideration of planetary contribution to the TGP, the vector of astronomical argu-
ments is extended by the mean longitudes of the relevant planets. Time developments for the mean longitudes
of the planets are presented in Equation 2.12. For a planetary wave all multipliers are 0, except the rele-

vant multiplier of the specific planet’s mean longitude and the first element denoting the species of the wave 3.

Figure 2.6 shows the TGP amplitude maps for My, K; and Mf. Here the term amplitude refers to V;
of the respective wave i at the surface of the Earth (see Equation 2.57). Ignoring the minor degree-3 tides,
one can generally state that, due to the (co-)latitude dependence of the associated Legendre functions (see
Figure 2.2 and the corresponding discussion), the TGP exhibits the following characteristics: the long-
periodic tides divide the potential into three zones with maximum absolute values at the poles; diurnal tides
are characterized by four cells with maximum values at latitudes of +45° and zero at the equator; and the
potential of semidiurnal tides consists of four sectors with maximum values at the equator and zero at the
poles. Figure 2.7 shows the diurnal and semidiurnal spectrum of the TGP amplitudes, i.e., \/CZ(to) + SZ(to)
(see Equation 2.57), of the HW95 catalogue. The separation of the spectrum into individual groups is clearly
recognizable. Darwin names of the main constituents are given. The Doodson numbers of these principal
tides, their angular speeds, periods, relative amplitudes, and information on the origin are given in Table
2.4. The constituent with the largest amplitude is the lunar principal wave My with an amplitude of approx-
imately 1.2356 m?/s2. Other constituents with a relatively large TGP are K; (58% of the My amplitude),
Sa (47%), O1 (41%), P1 (19%), and No (19%). While most constituents in Table 2.4 are related either to
the motion of the Moon or the Sun, the constituents K; and Ky have both lunar and solar origins, with the
lunar contribution accounting for about two-thirds of the total amplitude. Besides the celestial bodies giving
rise to the individual constituents, the information on the origin in Table 2.4 also specifies the corresponding
astronomical variable. Elliptical waves arise due to the ellipticity of the Moon’s orbit around the Earth, and
Earth’s orbit around the Sun. Declinational waves are generated due to the fact that the orbital planes of the
celestial bodies are inclined with respect to the equatorial plane. The variational waves arise from changes
in the Sun’s perturbing force on the motion of the Moon throughout a synodic month, while the evection
terms are induced by the Sun’s gravitational attraction altering the Moon’s orbital eccentricity (e.g., Pugh
and Woodworth, 2014). Note that all the principal waves listed in Table 2.4 refer to the degree-2 potential,
with the exception of the terdiurnal degree-3 constituent Ms. From Equation 2.57, it is easy to see that
no tides of degree n = 2 can exist in the terdiurnal band. Other notable degree-3 tides have amplitudes
of around 0.6% of My and, rather than being part of the terdiurnal species, they are found in the diurnal
and semidiurnal bands, in close proximity to several larger degree-2 waves. In contrast to Ms, these waves
are part of these larger constituents (in Doodson’s definition of this term), and become apparent as distinct

components in observational data, only when a sufficiently long time series is analyzed (e.g., Ray, 2020b).
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FiGURE 2.7: Amplitudes of the diurnal and semidiurnal waves of the HW95 tidal potential catalogue
exceeding 107° m?/ s2. Some of the principal waves are labeled with the respective Darwin names.

TABLE 2.4: Principal tidal waves (see e.g., Melchior, 1966; Pugh and Woodworth, 2014). The amplitudes
refer to the HW95 catalogue and are expressed in percentage of the My TGP (x~1.2356 m?/s?). Shown are
constituents with amplitudes exceeding 1% of the Ma amplitude. M: Moon, S: Sun.

Doodson Frequency  Period Amplitude
Tide number [°/h] [d] [% of Ma] Origin
Long-periodic
Sa 056.554 0.0411 365.2596 1.10 S, ellipticity
Ssa 057.555 0.0821 182.6211 6.93 S, declination
Mm 065.455 0.5444 27.5545 7.87 M, ellipticity
Mf 075.555 1.0980 13.6608 14.90 M, declination
Diurnal
2Q1 125.755 12.8543 1.1669 1.05 M, ellipticity
o1 127.555 12.9271 1.1604 1.27 M, variation
Q1 135.655 13.3986 1.1195 7.94 M, ellipticity
p1 137.455 13.4715 1.1135 1.51 M, evection
(021 145.555 13.9430 1.0758 41.48 M, principal
M, 155.655 14.4967 1.0347 3.26 M, ellipticity
m 162.556 14.9179 1.0055 1.13 S, ellipticity
Py 163.555 14.9589 1.0027 19.30 S, principal
K; 165.555 15.0411 0.9973 58.31 MS, declination
J1 175.455 15.5854 0.9624 3.26 M, ellipticity
00, 185.555 16.1391 0.9294 1.78 M, declination
Semidiurnal
2N, 235.755 27.8953 0.5377 2.53 M, ellipticity
L2 237.555 27.9682 0.5363 3.06 M, variation
Ny 245.655 28.4397 0.5274 19.15 M, ellipticity
Vo 247.455 28.5126 0.5261 3.64 M, evection
Mo 255.555 28.9841 0.5175 100.00 M, principal
Lo 265.455 29.5285 0.5080 2.83 M, ellipticity
Ty 272.556 29.9589 0.5007 2.72 S, ellipticity
S 273.555 30.0000 0.5000 46.52 S, principal
Ks 275.555 30.0821 0.4986 12.64 MS, declination
Terdiurnal
M; 355.555 43.4761 0.3450 1.21 M, principal
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2.3.2 Ocean Tide Dynamics

The previously introduced TGP can be expressed in dimensions of elevation as a so-called equilibrium tide
(see e.g, Marchuk and Kagan, 1989; Pugh and Woodworth, 2014). The equilibrium tide theory assumes a
water-covered Earth with a depth sufficient to ensure that the ocean surface responds instantaneously to the
tide-generating forces, and the ocean surface acquires the form of an equilibrium surface. The hypothetical
ocean surface elevation to achieve equilibrium, i.e., the equilibrium tide ¢ of the tidal potential V; is then
¢ =V, /g, where g is Earth’s mean gravity. Using this equation, the Moon and the Sun generate a maximum
equilibrium tide of approximately 0.365 m and 0.165 m, respectively. These amplitudes are rather small
in comparison to the ocean tide amplitudes that can be observed in reality. The tides in the main oceans
have mean amplitudes of about 0 to 0.5 m (Pugh and Woodworth, 2014). As tides originating in the open
ocean move toward the continental shelves, their amplitudes increase significantly. In coastal regions meter
level amplitudes are not uncommon, and can even exceed 10 m in some hypertidal coastal systems (e.g.,
Archer, 2013; Pugh and Woodworth, 2014). Therefore, the real response of the oceans to the TGP cannot

be accurately described as an equilibrium tide.®

The discrepancies between elevations from the equilibrium tide theory and the observed tides can gener-
ally be attributed to the non-realistic water depth assumption. In reality, the presence of land masses makes
it necessary to consider several hydrodynamic mechanisms which affect the tidal wave characteristics (e.g.,
Parker, 2007; Pugh and Woodworth, 2014). The consideration of hydrodynamic mechanism becomes in-
creasingly important when the tidal waves generated in the open ocean are approaching the continental
shelves and coasts. The friction between the water masses and the ocean bottom topography causes energy
dissipation, reduces the amplitudes of the tidal waves, and distorts their shape as they propagate through
the shallow waters. Since the continents act as barriers, tidal waves cannot propagate as long waves, are
reflected in a complex way at the irregularly shaped coasts, and interact with other reflected and incoming
waves (e.g., Parker, 2007; Pugh and Woodworth, 2014).

Consequently, by considering hydrodynamic principles and mechanisms governing the ocean tide dynamics,
a much more realistic representation of tidal amplitudes can be achieved compared to the equilibrium theory.
The local three-dimensional ocean state at time t is described by the sea surface anomaly ¢ and the two-
dimensional depth-averaged current velocity vector v with an eastward and northward component. The
relationship between the ocean state, the TGP, as well as the relevant hydrodynamic mechanisms, can be
formulated in the framework of the two following partial differential equations (see e.g., Marchuk and Kagan,
1989; Zahel, 1997; Weis et al., 2008; Sulzbach, 2023):

(v-V)v+ [g‘t’—l—fxv:—g((—vg—csal)] —%\v|v—|—F+VVatm (2.61)
V-(Cv)—k{?ﬁ-ﬁ-V-(Hv):O}. (2.62)

The segment of the partial differential equations enclosed in the square brackets represents Laplace’s hydro-
dynamic equations of continuity (2.62) and momentum (2.61), also known as Laplace’s tidal equations, which
here describe the dynamics of a thin fluid layer on the surface of the rotating spherical Earth (e.g., Pugh
and Woodworth, 2014). The presented Laplace’s tidal equations are extended by incorporating additional

non-linear and radiational terms.

8This refers to the TGP as a whole and its broader spectrum. However, as the oscillation frequency decreases, the ocean’s
response to the influence of the TGP should approach a state of equilibrium (e.g., Proudman, 1960; Marchuk and Kagan,
1989). As will be discussed later in Section 2.3.4, there are individual long-periodic components of the tidal spectrum that are
modeled as equilibrium tides.
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FIGURE 2.8: Bathymetry of the RTopo-2 model (Schaffer et al., 2016). Units: m. Note that the deep
ocean depth can considerably exceed the lower color bar limit of —5000 m. The term “shallow water” used
in this thesis refers to depths of roughly up to 1000 m (red color).

In the above system of partial differential equations, f represents the Coriolis acceleration vector, which is
the product of the Coriolis parameter 2Q2sin ¢ and the vertically upward-oriented unit vector. The Coriolis
parameter is a function of Earth’s mean rotation velocity 2, and the latitude ¢. The surface gravity g
of a spherical Earth multiplied with the equilibrium tide ¢ results in the TGP. The TGP is transformed
into the tide-raising potential by accounting for the influence of the solid Earth’s tidal deformation on the
oceanic tidal potential with the scale factor v = (1 + k,, — h,,), which is approximately 0.69 for degree n = 2
and 0.80 for n = 3 (Wahr, 1981). Strictly, the Love numbers k,, and h,, and consequently factor v exhibit
frequency dependency, with largest deviations from the mentioned approximate values observed in the Kj
group, especially for 17, due to the perturbation of the potential by the the so-called nearly diurnal free
wobble resonance (e.g., Ray, 2017). The effect of self attraction and loading of the water masses is denoted
as height C,,;.

The bottom friction term r/H|v|v is parameterized as a function of the current velocity vector, the
quadratic bottom friction coefficient 7, and the instantaneous water depth H, which can be obtained from a
bathymetric model (e.g., Weatherall et al., 2015; Schaffer et al., 2016; see also Figure 2.8). Bottom friction
together with advection (v - V) v and wave drift —V - ({ v) are key variables creating non-linear tides (e.g.,
Le Provost, 1991; Parker, 2007; Pugh and Woodworth, 2014). These tides are generated in the shallow
waters, and therefore are also called shallow water tides. As the tidal waves approach shallow waters, their
originally sinusoidal shape becomes distorted and increasingly complex. This complexity implies that the
waves can no longer be described solely by the original sinusoidal. Instead, energy is transferred to additional
non-linear frequencies. Non-linear tides can be categorized into overtides and compound tides. Overtides
have frequencies that are integer multiples of the frequency of a primary gravitationally excited constituent.
For instance, My is an overtide with a frequency that is twice that of the main semidiurnal tide My (simplified:
M,y = 2Ms,); and similarly: Mg = 3Ms, Sy = 2S5. Compound tides represent the interaction of two or more
astronomical constituents, for example, Msf = My —So, 2MSy = 2Ms — Sy, MNS, = My + Ny —So. Important
non-linear tides are summarized in Pugh and Woodworth (2014, Table 4.4). More comprehensive lists of non-
linear tides are available in Le Provost (1991, Table 1) and Parker (2007, Table A.1). It is important to note
that compound tides of different origin can share the same frequency, e.g., MO3 and 2MKj3. Additionally,
the frequencies of non-linear tidal constituents often coincide with those of astronomical tides, e.g., 2MSs
and po. According to Parker (2007), a shallow water constituent is generally expected to be larger, relative
to other shallow water tides, when its name is composed of fewer letters and includes letters representing
some of the major astronomical constituents.

Additional frictional effects, denoted as F in Equation 2.61, include topographic wave drag, parameterized
horizontal eddy-viscosity, and ice friction, with their equations and more details provided, for example, in

Sulzbach (2023). The ice friction, a mainly seasonal variable that is of importance for the marginal seas
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at high latitudes, is another mechanism causing an attenuation of tidal wave elevations and a distortion of
tidal wave propagation (e.g., Zubov, 1963; St-Laurent et al., 2008). Ice friction, along with other seasonally
varying factors such as ocean stratification (e.g., Kang et al., 2002; Miiller et al., 2014) or meteorological
surges (e.g., Huess and Andersen, 2001), can lead to seasonal modulations of tides. In the sea level spectrum,
depending on the location, seasonal modulations of a constituent with the frequency f appear as annual
(f£1 cycle/year) and/or semiannual (f£2 cycles/year) side lines (e.g., Ray, 2022). Especially pronounced
modulations can be found for the My constituent in the Arctic region (e.g., Miiller et al., 2014; Kulikov et
al., 2018; Bij de Vaate et al., 2021).

Periodic variations at tidal frequencies in atmospheric surface pressure caused by solar radiation lead to
the formation of radiational ocean tides (e.g., Munk and Cartwright, 1966; Dobslaw and Thomas, 2005;
Ray et al., 2023). In the hydrodynamic equations, these radiationally excited variations are forced by the
acceleration term VV,,,, where the potential V., encompasses the relevant atmospheric surface pressure
potential, as well as secondary potentials due to the atmospheric attraction of the water masses and atmo-
spheric loading, but also considers wind stress (see Balidakis et al., 2022; Sulzbach, 2023). According to
Balidakis et al. (2022), 16 tidal frequencies are significant for generating an ocean response that is of rele-
vance for satellite gravimetry. The largest tidal signal in atmospheric surface pressure data can be observed
for solar constituents S; and So, which correspond to frequencies of one or two cycles per solar day, and due

to the seasonal modulation, also at their annual side lines P1, K; and Ty, Re, respectively.

Solving the hydrodynamic partial differential equations is a complex task. Readers seeking a deeper un-
derstanding are encouraged to consult the references provided prior to Equations 2.61 and 2.62 for further
details. Depending on how the hydrodynamic equations are forced, such as with only a single partial tide or
the whole potential from ephemerides (Weis et al., 2008), a harmonic analysis (see Equation 2.64) might be
necessary to extract the tidal amplitudes and phases. A set of solutions of the hydrodynamic equations is

referred to as a hydrodynamic ocean tide model.

2.3.3 Observing Ocean Dynamics with Altimetry

The fundamental operating principle of satellite altimeters involves emitting radar or lidar pulses to the
ground, which are then reflected by the sea or ice surface and registered by the satellite antenna. The range
R from the satellite to the ground can be calculated from the round-trip travel time At of the radar signal.
This range is approximately cAt/2, where ¢ represents the speed of light. The Sea Surface Height (SSH),
defined as the height of the sea surface relative to a reference ellipsoid, is a primary product of satellite
altimetry for studying ocean circulation. By subtracting a model of Mean Sea Surface Heights (MSSHs)
from the SSH obervations, Sea Level Anomalies (SLAs) are obtained.

The orbit height h of the altimeter satellite above an ellipsoid obtained from Precise Orbit Determination
(POD), altimeter range R from the measured wave forms using retracking algorithms, and SSH are related
via the following equation (e.g, Chelton et al., 2001; Seeber, 2003; Andersen and Scharroo, 2011):

SLA=h—R— Ahg — Ahge, — MSSH (2.63)

where Ahpg represents range corrections that account for the modified propagation of the radar pulse through
the ionosphere and troposphere, as well as the effect of the sea state on the reflected pulse (sea state bias);
and corrections Ahge, are applied to reduce geophysical time-variable sea-level variations from the SSH
observations. The latter corrections include the influence of tidal effects, with ocean tides representing by
far the largest contribution, alongside smaller effects from solid Earth tides, pole tides and loading tides; as
well as the contribution from atmospheric loading (inverted barometer effect). The corrections Ahge, can
also include a geoid correction, which, when applied, will reference the SSH values to the geoid rather than

the reference ellipsoid.
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TABLE 2.5: Primary satellite altimetry missions used for ocean tide modeling.*

Mission TOPEX/
Poseidon  Jason-1 Jason-2 Jason-3 ERS-1 ERS-2 Envisat
Agency NASA, NASA, NASA, NASA, ESA ESA ESA
CNES CNES CNES, CNES,
NOAA, NOAA,
EUMETSAT EUMETSAT
Operation 1992-08—  2001-12— 2008-06— 2016-01— 1991-07— 1995-04— 2002-03—
time 2006-01 2013-07  2019-10 2000-03 2011-07  2012-04
Inclination [°] 66.039 66.038 66.038 66.038 98.52 98.5 98.55
Altitude [km] 1336 1336 1336 1336 782 780 800
Repeat cycle [d]  9.9156 9.9156 9.9156 9.9156 35 35 35

nformation from EO Portal: https://www.eoportal.org (last accessed on 2025-03-03). The approximate orbit
parameters refer to the main mission phases. NOAA: National Oceanic and Atmospheric Administration, USA;
EUMETSAT: European Organisation for the Exploitation of Meteorological Satellites. In terms of orbital parameters,
the CNES/Indian Space Research Organisation mission, SARAL, can be regarded as a follow-on mission to Envisat.
However, as of now, the observations from this mission are scarcely used in ocean tide modeling (see Table 2.8).
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FIGURE 2.9: (a): TOPEX/Poseidon SLAs in meters for a cycle beginnig at 3 October 1992, 01:36 (cycle

2). SLA data obtained from OpenADB. (b): Ground tracks of TOPEX/Poseidon (blue) and ERS-1 (gray).

TOPEX/Poseidon and the Jason satellites revisited the same location every 9.9156 days. In contrast, ERS-
1, ERS-2, and Envisat offer better spatial coverage but have a longer repeat cycle of 35 days.

Satellite altimetry missions are designed as repeat track missions, where the satellite consistently follows
a designated ground track over the Earth’s surface. Throughout its cycle, the satellite collects data along
this predefined path (see Figure 2.9b). After a constant period (the repeat cycle), the satellite returns to
the same ground track, allowing for the collection of consistent and comparable data necessary for analyzing
the state of the ocean. The repeat cycle of a satellite mission is governed by the satellite altitude and orbit
inclination (e.g., Parke et al., 1987). Details of the most important satellite altimetry missions for ocean
tide modeling—mamely, TOPEX /Poseidon, Jason-1, Jason-2, Jason-3, ERS-1, ERS-2, and Envisat—are
summarized in Table 2.5.

SSH and SLA time series from various satellite altimetry missions with a certain degree of intermission
harmonization can, for example, be obtained from the Open Altimeter Database (OpenADB, Schwatke et
al., 2024)? of the Deutsches Geodiitisches Forschungsinsitut (DGFI) of the Technical University of Munich,
and the Radar Altimeter Database System (RADS, Naeije et al., 2000)!° of the Delft Institute for Earth-
Oriented Space Research (DEOS). Figure 2.9a shows, as an example, a map of one cycle of SLAs from the

9https://openadb.dgfi.tum.de (last accessed on 2025-08-04)

Onttp://rads.tudelft.nl/rads/rads.shtml (last accessed on 2025-08-04)


https://www.eoportal.org
https://openadb.dgfi.tum.de 
http://rads.tudelft.nl/rads/rads.shtml

Fundamentals 34

TOPEX/Poseidon mission, with data obtained from OpenADB. The TOPEX/Poseidon satellite revisited
the same location every 9.9156 days (see Table 2.5). With an orbit inclination of 66°, TOPEX/Poseidon
was limited to collecting data within the latitudinal range of +66° to —66°. The SLA values are given with
respect to the MSSH of the DTU15MSS model (Andersen et al., 2016), and were corrected using the EOT20

ocean tide model (Hart-Davis et al., 2021), which contains solutions of 17 constituents.

To estimate (residual) amplitudes of a set of tidal constituents and their temporal evolution at a specific
location defined by longitude A and latitude ¢, a harmonic analysis of the series of SLA observations can be
performed. The functional model involves an equation of the following type (e.g., Schrama and Ray, 1994;
Foreman et al., 2009):

N

SLA(p,\t) = c(p, A) +v(p, A\ t) + Zai(gp, M) fi(t) cos(0;(t) + ug (t))+ (2.64)

bi(p, A) fi(t) sin(0;(t) + ui(t))

with the cosine and sine coefficients a; and b; of a tidal constituent 7 out of N frequencies to be considered,
bias term ¢, time ¢ relative to reference epoch ¢y, the astronomical argument 6; (see Equation 2.60), factors
fi and w; for the amplitudes and phases of lunar constituents to account for the modulation due to the
18.6-year lunar nodal cycle, and residual signal v.

The unknowns a;, b;, ¢ can be obtained by solving the over-determined system with standard least squares
adjustment procedures (see Equation 3.40). The amplitudes and Greenwich phase lags of a tidal constituent
i are then \/a? + b7 and arctan (b;/a;), respectively.

The specific constituents to be estimated should logically focus on those with the largest TGP, from which the
spectrum of smaller gravitationally excited tides can be extended based on the linear admittance assumption
(see next section), as well as on the main non-linear constituents. In general, the longer the time series, the
better closely spaced constituents can be resolved. Additionally, since altimetry satellites pass over a certain
location only every few days, the mission-specific signal (under)sampling causes high-frequency tidal signal
to be aliased to lower frequencies, thereby affecting which tidal frequencies can be well observed and which
cannot. Given the significant climate-driven seasonal fluctuations in sea level variability, it is essential for
tidal analysis that the aliasing period of any specific constituent is not too close to the primary seasonal
periods of one year and half a year, to avoid contamination of the tidal solution by signal of non-tidal origin.
The aliasing period p4 of an ocean tide constituent with period p can be computed as (e.g., Schlax and
Chelton, 1994; Chen and Lin, 2000):

pa= bs (2.65)

bs _ [ps+0.5H
b p

where pg is the repeat cycle of the satellite, and [x] gives the greatest integer less than or equal x.

Table 2.6 presents the aliasing periods for the major constituents of the diurnal and semidiurnal bands,
corresponding to the 9.9156-day repeat cycle orbits of TOPEX /Poseidon, Jason-1, -2, -3, and the 35-day re-
peat cycle orbits of ERS-1, -2, and Envisat. For TOPEX /Poseidon and Jason missions, K; can be considered
as the most critical constituent due to its proximity to the semiannual period. In the case of ERS-1, -2, and
Envisat, P; and K; align with the annual period, while K5 coincides with the semiannual period, making
them a target for aliased non-tidal signal. Furthermore, for So and the other solar constituents S,,, e.g.,
S1, S3, the aliasing period is effectively infinite due to the Sun-synchronous orbit. These missions sample
the solar tidal signal at a constant phase, making these constituents unobservable. Figure 2.10 illustrates a
comparison of how a periodic dimensionless signal with an amplitude of 1 and the frequency of S, is sampled
by TOPEX/Poseidon, Jason-1, -2, and by ERS-1, -2, and Envisat. While TOPEX /Poseidon, Jason-1, -2

sample the entire amplitude range, ERS-1, -2, and Envisat sample the signal at nearly the same phase,
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TABLE 2.6: Aliasing periods (in days) of the main tidal constituents for TOPEX/Poseidon, Jason-1, -2, -3,
ERS-1, -2, and Envisat. Critical aliasing periods are highlighted.

Qi O P1 Ki No My S5 K»p
TOPEX/Poseidon, Jason-1, -2, -3 69 46 89 173 50 62 59 87
ERS-1, -2, Envisat 133 75 365 365 97 94 oo 183
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FIGURE 2.10: Sampling of Sa signal by TOPEX /Poseidon, Jason-1, -2 (a), and by the Sun-synchronous
orbits of ERS-1, -2, Envisat (b).

TABLE 2.7: Rayleigh periods pr in days for the constituents listed in Table 2.6 (extended by Sa and Ssa).
To compute pr, aliasing periods with more decimals were utilized. oco: period longer than 1000 years.

01 P1 K1 Ng Mg Sg K2 Sa Ssa 01 P1 K1 N2 MQ SQ KQ Sa  Ssa
Q1 | 134 316 116 173 595 384 349 86 112 | 173 209 209 365 327 133 487 209 487
04 94 62 595 173 206 97 52 61 94 94 327 365 75 127 94 127
P 183 112 206 173 3341 117 173 oo 133 127 365 366 oo 365
Ky 69 97 89 173 329 3340 133 127 365 365 oo 365
N, 244 316 116 57 68 3122 97 209 133 209
M, 1081 220 75 94 95 196 127 196
S 183 70 87 183 365 183
Ko 113 165 366 oo
Sa | TOPEX/Poseidon, Jason-1, -2, -3 365 ERS-1, -2, Envisat 365

resulting in an effective tidal frequency of 0 and the observation of constant amplitudes. Due to the “frozen”
character of the major solar constituent So, several linear and non-linear constituents cannot be separated
(e.g., Andersen, 1999; Andersen et al., 2006). For example, 2SMy, MSy, 2SMg, and Msf have the same alias-
ing periods as My; and 2MS,, My, 2MSg share the same aliasing periods. For the larger linear constituents,
e.g., My, this non-separability might not be a problem due to the large signal component; however, it makes
estimating realistic amplitudes of the smaller non-linear constituents impossible.

For the major constituents in Table 2.6 that share a similar aliasing period, the question arises whether
they can be sufficiently separated. To assess the separability of two constituents, the so-called Rayleigh
criterion is often employed, according to which two tidal constituents are considered separated when they
differ in phase by at least a full cycle over the length of the analyzed time series (e.g., Godin, 1972; Smith,
1999):

21 < prlfi — fol (2.66)
where in the context of altimetry f; and f> represent the aliasing frequencies of the two constituents, and

pr is referred to as the Rayleigh period, which is the minimum time needed to distinguish between the two

constituents. As a function of the corresponding aliasing periods p; and po, the Rayleigh period can also be
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written as (e.g., Godin, 1972; Smith, 1999):

1

1 1

P1r P2

(2.67)

PR

The approximate Rayleigh periods for the main diurnal and semidiurnal constituents, as well as for the annual
and semiannual variations (denoted with the respective tidal names Sa and Ssa), are listed in Table 2.7. For
TOPEX /Poseidon and Jason-1, -2, and -3, around 9 years of data is required to be able to distinguish K;
from semiannual variations. The same duration is also required to separate P; and Ks. To uncouple the two
largest semidiurnal constituents, My and S5, 3 years of observations are needed. For separating the other
listed constituents, a time series length ranging from a few months to one and a half years is sufficient. From
today’s perspective, with more than 30 years of observations from TOPEX /Poseidon, Jason-1, -2, and -3,
all major constituents can be uncoupled. The extraction of tides from ERS-1, -2, and Envisat data is more
problematic. According to the Rayleigh criterion, Py, K, and Sa cannot be distinguished from each other,
and the same applies for Ky and Ssa. To separate My and N, approximately 8.5 years of measurements are
needed, whereas all other constituents can be separated within a maximum of one and a half years.

Note that the Rayleigh periods presented are only valid for a tidal analysis at a specific location. At the
cost of spatial resolution, processing altimetry observations grid-wise by incorporating data from neighboring
tracks, rather than point-wise, enhances the ability to resolve specific tides when there are significant phase
differences between neighboring tracks (see e.g., Cartwright and Ray, 1990; Schrama and Ray, 1994; Smith
et al., 2000).

2.3.4 Ocean Tide Models in Orbit Modeling

Amplitudes and Greenwich phase lags for the three constituents My, K; and Mf from the EOT20 ocean tide
model are shown in Figure 2.11. Each one of these constituents is according to the TGP the largest of its
respective species. Note that at several coastal locations, the amplitudes surpass the color bar’s maximum
value. For instance, based on the model, the amplitudes of My can reach nearly 5 meters, K; can exceed 2.5
meters, and Mf can reach up to 0.25 meters.

Due to the significant amplitudes of the diurnal and semidiurnal constituents, it is clear that tidal ele-
vation changes at a given location will likely exhibit either a semidiurnal or diurnal pattern, but may also
reveal a more complex mixed character. The tidal type is often classified by examining the amplitude ratio
F = (K1 + 01)/(M3 + S3), also known as the form number, calculated from the two largest diurnal and
semidiurnal constituents (Courtier, 1938). For a ratio of F' < 0.25, the semidiurnal type with two high and
two low waters per day is predominant. The heights of the high waters and low waters are approximately
similar during the same day. A generally diurnal character with one high and one low water is indicated
when F' > 3. When the ratio is 0.25 < F' < 3, the character can be described as mixed. This category can
be further divided into the mixed semidiurnal type (0.25 < F' < 1.5), where usually two high and two low
water occur, with inequalities of the heights of the high and low waters and the intervals between them; and
the mixed diurnal type (1.5 < F' < 3), where, over the course of a month, there can be instances with one
high and one low water, as well as periods with two high and two low waters. As illustrated in Figure 2.12,
the predominant tidal type in most of the oceans can be classified as either mixed semidiurnal or purely
semidiurnal. The diurnal or mixed diurnal tidal forms are observed only in certain areas of the oceans,

primarily in shallow water regions.

The representation of the ocean tide model in terms of amplitudes and phases is quite intuitive, although
not directly applicable for use in orbit modeling and gravity field recovery. However, by expressing tidal
variations as changes in the Earth’s gravitational potential through spherical harmonics, the potential and

acceleration due to ocean tides can be evaluated at any location in Earth’s exterior. The derivation of the
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FIGURE 2.11: Amplitudes in cm (left panels) and phase lags in degrees (right panels) of the semidiurnal
constituent Mz, diurnal constituent K; and long-periodic constituent Mf from the EOT20 ocean tide model.
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FIGURE 2.12: Four types of ocean tides according to the amplitudes ratio F' = (K; + O1)/(M2 + S2).
Type 1: semidiurnal (F < 0.25), type 2: mixed semidiurnal (0.25 < F < 1.5), type 3: mixed diurnal
(1.5 < F < 3), and type 4: diurnal (F > 3).
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representation in terms of potential can be found, for example, in Lambeck (1977) and Cazenave et al.
(1977), and is outlined as next following the equations presented in Rieser et al. (2012).
The tidal height of a constituent ¢ at a position ¢, A and time ¢ can be defined as:

Gilp, A t) = &, A) cos [0:(t) + xi — Yi(ep, A)] (2.68)

with amplitude &;, phase 1);, astronomical argument 6; (see Equation 2.60), and the constituent-specific
Doodson-Warburg phase bias x; (see IERS Conventions, 2010, Table 6.6; Sulzbach, 2023, Equation 2.7); and
can also be expressed as:

Gi = & cos; cos(0; + xi) + & sinab sin(6; + x;) - (2.69)

The in-phase component &; cos 1; and quadrature component &; sin; can be expanded as:

o0 n
&icoshy = Z Z (@nm,i COS NN 4 by, 5 SINMA) Py (50 )
noom=0 (2.70)
& sin; = Z Z (Cnm,i cOSMA + dp s SINMN) Py, (sin )
n=0m=0

with spherical harmonic coeflicients anm, i, bnm,is Cnm,i, dnm,i of degree n and order m, and the Legendre
functions P,,, (see Equation 2.34). The tidal height of a constituent can now be synthesized using coefficients
CE. . St

nm,i’ ¥nm,i’

Z Z Z rom.i €08(0; + xi £mA) + Sfm ;sin(6; + x; = mA)| Py (sing), (2.71)

or amplitudes c* fm i

m,i and phases €

ZZZ o SI(0; -+ Xi £+ € ) P (sin @) (2.72)
with the relationships
+ + i 1
Cnm i Cnm 7 SIHE = 5 (an'm,’i + dnm,z)
2 (2.73)
Sim i C’fm i COS e’riLm,i = 5 (Cnm,i + b"m,i) .

Given Earth’s radius R, its mass M, the density of seawater p,,, and degree-dependent load deformation

coefficients k], to account for Earth’s elastic deformation, one can form the dimensionless coefficients

A7rR%py (1+ K
ACnm’i = d P i - [(C:er i + Cnm z) COS(ei + XZ) (Sim N + Snm 7) Sll’l(9 + XZ)]
M 2n+1 (2.74)

4tR%p, (14K, " " _ :
Asnm’i - M <2n + 1) [(Snm i Snm z) COS(QZ + Xl) (Cnm i Cnm,z) Sln(al + XZ)] .

Analogous to Equation 2.21, these coefficients can be utilized to assess the contribution of the tidal water

layer in terms of potential at any location outside the Earth:

n

M o0 n
AV, = GT (R> Z (ACpm,i cosmA 4+ ASpm i sSinm) Py, (sin ) (2.75)
n=0 m=0

where GM is the gravitational constant of the Earth and r is the radial distance from the geocenter to the

evaluation point.
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The Institute of Geodesy at the Graz University of Technology (TUG) offers coeflicients i C;’sz,
cos . §%in . for various ocean tide models (Mayer-Giirr et al., 2023).11 These coefficients can be used to

nm,i? ~nm,t

calculate the normalized form of the coefficients presented in Equation 2.74 as follows:

AC i = C% cosO; + CEm sin6;

-~ nm,t nm,l (2.76)
ASpm,i = SFpm cost + Spin sin; .

An ocean tide model will only contain the amplitudes and phases for a small number of frequencies 7, which
are mostly gravitationally excited tides of degree 2. From these, the spectrum can be augmented with minor
gravitationally excited tides of degree 2 by employing linear admittance. The concept of linear admittance
assumes that the ocean’s tidal response is nearly linear with respect to the lunisolar forcing amplitude and
varies smoothly with the excitation frequency, allowing the response to degree-2 tides with nearby frequencies
to be approximated linearly (e.g., Munk and Cartwright, 1966; IERS Conventions, 2010; Rieser et al., 2012).

To account for smaller gravitationally induced frequencies, Mayer-Giirr et al. (2023) provide linear admit-
tance matrices, which allow the total ocean tide effect—comprising the frequencies contained in the ocean tide

model and the additional inferred smaller tides—to be expressed in terms of normalized spherical harmonic

Aénm ceos ) C/sin )
= — 2_cos nm,i + iszn nim,i 277
() =2 () o () 0

nm,i nm,i

coeflicients, as follows:

where the factors f°¢ and f5" are defined as:

fi%° = A gcosby

6
4 with 05 =S Dy B (2.78)
fiszn = A’i,f Sinef ! TLZ_:l for

The elements A; s are entries of the linear admittance matrix, where the row index ¢ refers to a constituent of
the ocean tide model and the column index f represents a frequency from the spectrum that includes both the
ocean tide model constituents and the additional frequencies to be inferred. Dy ,, are the integer coefficients
corresponding to the six astronomical arguments 3, (see Equation 2.58) for each frequency f. The entries
of the linear admittance matrix are chosen in such a way that, mathematically, a linear interpolation of the
waves to be inferred is performed. In the most straightforward scenario this is an interpolation between two
constituents of the ocean tide model (see also IERS Conventions, 2010; Sulzbach et al., 2022):

Ccos/sin _ 9f - 9:1 &Ccos/sin é? - 9f &Ccos/sin
nm, f 92 . 91 A2 nm,2 92 . 01 Al nm,1

w0 — 0y Ay eoyein G2 — 05 Ap oosi
Scos/szn — .f ’ chos sin + 2 . chos sin
nm, f 92 _ Hl A2 nm,2 92 _ 91 Al nm,1

(2.79)

where the subscript f refers to the wave that should be inferred, subscripts 1 and 2 refer to the neighboring
ocean tide model waves, where 1 has a smaller frequency than wave 2; 6 is the angular frequency of the
corresponding wave, and A is the amplitude of the TGP. Alternatively, the tide-raising potential can be
used in place of the TGP for A, which additionally considers the back-action of the solid Earth tides on
the oceans, and results in minor modifications to components of the admittance matrix (Sulzbach et al.,
2022). A linear interpolation scheme can also be derived using more than two primary waves. Furthermore,

it should be noted that the linear relationship only applies to gravitationally excited tides of the same degree

Uhttp://ftp.tugraz.at/outgoing/ITSG/oceanAndAtmosphericTides/models/ (last accessed on 2025-03-11)
https://ifg.tugraz.at/downloads/ocean-tides (last accessed on 2025-03-11)


http://ftp.tugraz.at/outgoing/ITSG/oceanAndAtmosphericTides/models/
https://ifg.tugraz.at/downloads/ocean-tides

Fundamentals 40

d78 5 Y43 dr2 d 1= Msqm Mtm Mf  Mm Ssa  Sa 0
L L1 L 1 ‘ L L L1l ‘ L L L1 ‘ L L L1l
107 10° 10" 102 103 10*
K2, Ra, A N
Ji Ki,S,Pr 01 Q So, T 202 My v, e f2, 2N e
d ‘ dr2 | ‘
0.9 1 1.1 1.2 0.48 0.5 0.52 0.54 0.56
period [d] period [d]

FIGURE 2.13: Considered ocean tide waves in the upper panel with zoom views on the diurnal and semid-
iurnal bands in the two bottom panels. Blue lines: included in the model FES2014b, gray: from linear
admittance, black: equilibrium tide. d: diurnal, d/2: semidiurnal,..., d/8: 8th-diurnal, 1: long-periodic.

and order. Main waves of a different type, for example, with a large radiational contribution should not be
used in this process.

For the computation of gravity field results in this thesis, the FES2014b ocean tide model (Lyard et al.,
2021) in the TUG spherical harmonics representation including the respective linear admittance matrix,
was employed. Figure 2.13 illustrates the frequency spectrum of the ocean tide waves considered during
orbit modeling. A total of 361 frequencies are accounted for, ranging from the long-periodic band to the
8th-diurnal band. Additional waves derived using admittance are included only for the long-periodic, di-
urnal, and semidiurnal bands. Owing to the lack of the minimum required two gravitational constituents
of the same degree and order needed for an interpolation, applying linear admittance is not feasible in the
other bands. In Figure 2.13, gray lines can also be recognized in the periphery of the individual bands. For
these frequencies, the admittance is extrapolated rather than interpolated between two ocean tide model
constituents. The two black lines at the periods corresponding to the constituents with the longest period,
Q1 (period of 18.6 years) and Qo (9.3 years), indicate that these tides were modeled using the equilibrium
assumption. While in Section 2.3.2 it was discussed that the total ocean’s response to the TGP does not
take the form of an equilibrium tide, this is generally not the case for constituents within the long-periodic
band with a period longer than that of Mm (approximately one month) (e.g., Proudman, 1960; Carton,
1983). Significant discrepancies between satellite altimetry observations and the equilibrium form are known
for the fortnightly tide Mf, yet these deviations can be accurately predicted using purely hydrodynamic
modeling (Egbert and Ray, 2003). Note that Mf is the largest of the long-periodic tides with maximum
amplitudes of a few cm (see Figure 2.11). Due to their relatively small amplitudes and the resulting unfavor-
able signal-to-noise ratio, observing the other long-periodic tides with satellite altimetry is more challenging.
However, some ocean tide models also include altimetry-constrained solutions for Mm and Msf tides (see
later in Table 2.8). In the case of the FES2014b ocean tide model, there are 6 long-periodic purely hydro-
dynamic solutions available (see Figure 2.13). The solutions for ; and Qs are not part of the FES2014b
ocean tide model, but they are included in the spherical harmonics representation of the model from TUG.
These are modeled as self-consistent equilibrium tides, incorporating the Earth’s elastic response as well as
the effect of self-attraction (see e.g. also, Agnew and Farrell, 1978; Ray and Erofeeva, 2014; Sulzbach, 2023).

An overview of various ocean tide models, specifying the assimilated data and the constituents included
in each model, is provided in Table 2.8. This table features those models currently used by the GRACE(-

FO) analysis centers, some of the more recent models that may be important for upcoming time series
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TABLE 2.8: Ocean tide models currently used by the GRACE(-FO) analysis centers, some of the more

recent models, and models that are particularly relevant to this thesis.

Model

Data and Constituents

(primarily)

Data-assimilated

FES2004 [1]
(1/8)°

FES2014b [2]
(1/16)°

FES2022b [3]!
(1/30)°

TPXO10 [4]?
(1/6)°

TOPEX/Poseidon, ERS-1, -2, tide gauges
K17 017 Pla Qh MQ» N27 827 K27 2N2
(Mf, Mm, Msqm, Mtm, My) no assimilation

TOPEX/Poseidon, Jason-1, -2, ERS-1, -2, Envisat, tide gauges
K17 017 Pla Q17 M27 N2> 827 K23 2N27 £2, L27 )\2’ M2, V2, M4

(MSf, Mf, Mm, qum, th, Sa, Ssa, Sl, Jl, Tg, RQ, M3, MG, MS, MKSQ, MN4,...
MS4, Ny, S4) no assimilation

TOPEX /Poseidon, Jason-1, -2, -3, ERS-1, -2, Envisat, SARAL
same as FES2014 but with data-constrained J;

TOPEX /Poseidon, Jason, CryoSat-2

Mf, Mm, Msf, Ky, Oy, Py, Q1, S1, 2Qq, J1, OO, My, My, Sp, Ny, Ky, 2Ns, Lo,...
H2, V2, T27 M47 MS47 MN43 3M3

Empirical
EOT11a [5]3
(1/8)°

TOPEX /Poseidon, Jason-1, -2, ERS-2, Envisat
Mf, Mm, Ky, O1, Q1, P1, S1, Ma, S2, Na, Ky, 2Ny, My

EOT20 [6]? TOPEX /Poseidon, Jason-1, -2, -3, ERS-1, -2, Envisat
(1/8)° same as EOT11, additionally J;, Ts, and Sa, Ssa containing the full signal
GOT4.8 [7]* TOPEX /Poseidon, ERS-1, -2, Geosat Follow-On (GFO), ICESat
(1/2)° Ky, O1, P1, Q1, S1, Kz, M2, Na, S, My
GOT5.6 [8]* TOPEX/Poseidon, Jason, GFO, Envisat, SARAL, Sentinel-3A, -3B, CryoSat-2
(1/8)0 le Klv Ola Oolv Plv Ql; Sl; 01, 2N27 KQ; MZ) H2, NQ; SQ; M4a MS4
3My, ®La, 3Ny, 3M3 (for latitudes between +66°)
DTU23 [9] details not documented
(1/16)0 K17 017 Plu Q17 Sl> K27 M27 N27 827 M4
Hydrodynamic
TiME22 [10] not data-constrained
(1/12)° 57 major and minor linear partial tides

3My, 3Ls, 3Ny, M3 and other smaller degree-3 tides
R3, S3, T3 and other radiational tides

[1] Lyard et al. (2006), [2] Lyard et al. (2021), [3] Aviso+ Altimetry (2024), [4] Egbert and Erofeeva (2002, updated),
[5] Savcenko and Bosch (2012), [6] Hart-Davis et al. (2021), [7] Schrama and Ray (1994, updated), Ray (1999,
updated), [8] Ray (2025), [9] Andersen (2023), [10] Sulzbach et al. (2022)
"https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html
’https://www.tpxo.net/global/tpxo10

3https://www.dgfi.tum.de/en/science-data-products/eot/
‘https://earth.gsfc.nasa.gov/geo/data/ocean-tide-models

All above links last accessed on 2025-03-03.


https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html
https://www.tpxo.net/global/tpxo10
https://www.dgfi.tum.de/en/science-data-products/eot/
https://earth.gsfc.nasa.gov/geo/data/ocean-tide-models
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reprocessing, and models that are particularly relevant to this thesis. Many of these models are available
in the spherical harmonic representation of TUG.!? For a detailed description and intercomparison of ocean
tide models starting from the 1980s to the more recent developments of the 2010s, refer to the publications
by Andersen et al. (1995), Shum et al. (1997) and Stammer et al. (2014).

The Finite Element Solution FES2014b developed by the Laboratoire d’Etudes en Géophysique et Océano-
graphie Spatiales (LEGOS), NOVELTIS and Collecte Localisation Satellites (CLS) is at the moment the most
widely used model among the analysis centers and, for example, has been adopted by GFZ, TUG, AIUB,
CNES/GRGS, ARM-SYSU, and LUH.'® DGFI's Empirical Ocean Tide model EOT11a is, for example,
utilized in the current releases of HUST, SWJTU, Tongji, WHU; and was widely used by several analysis
centers for their preceding releases. CSR utilizes NASA’s Goddard Ocean Tide model GOT4.8 for the diurnal
and subdiurnal constituents, supplementing it with empirical estimates of the long-periodic tides Mm and
Mf from TOPEX/Poseidon (Egbert and Ray, 2003) and hydrodynamic solutions of Mtm and Msm from
FES2004b. In contrast, JPL employs the convolution formalism of Desai and Yuan (2006) for their ocean
tide modeling, incorporating convolution weights from FES2014 and the empirical estimates of Mm and Mf
from Egbert and Ray (2003).

2.4 Spectral Analysis

Spectral analysis is an integral part of time series analysis, which allows to examine—sometimes obvious,
sometimes not apparent—ifrequency domain characteristics of a time series, by transforming the time do-
main signal to a spectrum of frequencies and corresponding amplitudes or related quantities such as power,
density and energy. A common objective of a frequency domain characterization is the detection of relevant
periodicities in the input data. Different methods exist to switch from time to frequency domain. The most
well-known and widely-used method for the spectral analysis of an equally spaced time series is the Fourier
transform (see Section 2.4.1). For the spectral analysis of a non-equidistant time series, least squares spectral

analysis methods, e.g., the Lomb-Scargle periodogram can be used (see Section 2.4.2).

2.4.1 Fourier Transform

The complex Discrete Fourier Transform (DFT) output X,,, of a complex time series z,, consisting of N
equally spaced samples is defined as (e.g., Lyons, 2004; Vetterli et al., 2014):

N—1 12rnm
Xm=Y ane N (2.80)
n=0

or equivalently with the relationship e = cosy + isiny (Euler’s formula):

X, = Nz_:la:n [cos <27T]$m) —isin (%ﬁm)} (2.81)

n=0

where i2 = —1, n =0,1,2,..., N — 1 is the index of the time series, and m is the corresponding index of the

discrete Fourier transform output X, which also goes from 0 to N — 1.

2http://ftp.tugraz.at/outgoing/ITSG/oceanAndAtmosphericTides/models/ (last accessed on 2025-03-11)

13 Abbreviations of the analysis centers in this paragraph: GFZ: German Research Center for Geosciences; TUG: Graz Uni-
versity of Technology; ATUB: Astronomical Institute of the University of Bern; CNES/GRGS: Centre National d’Etudes
Spatiales, Groupe de Recherche de Géodésie Spatiale; ARM-SYSU: Innovation Academy for Precision Measurement Science
and Technology of the Chinese Academy of Science, Sun Yat-Sen University; LUH: Leibniz University Hannover; HUST:
Huazhong University of Science and Technology; SWJTU: Southwest Jiaotong University; Tongji: Tongji University; WHU:
‘Wuhan University; CSR: Center for Space Research; JPL: Jet Propulsion Laboratory.


http://ftp.tugraz.at/outgoing/ITSG/oceanAndAtmosphericTides/models/
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The number of samples N and the frequency at which the original time series was sampled, i.e., the

sampling frequency f,, define the DFT analysis frequencies f,:

mfs
m = 2.82
fm =" (2:82)
The magnitude |X,,| of the complex DFT output is defined with its real and imaginary parts as:
|Xm‘ = \/an,real + XS’L,imag (283)
and is related to the amplitude A,, of a complex input sinusoid as follows:
1
Ay = N | X - (2.84)

The classical (Schuster) periodogram, i.e., an estimate of the Power Spectrum (PS), can be computed from
the DFT output as:
1
PS,, = w3 | Xm|? . (2.85)

The periodogram can also be expressed in terms of Power Spectral Density (PSD) by dividing the PS with
the equivalent noise bandwidth, i.e., f;/N:

1 2
PSDp = - X (2.86)

or as Amplitude Spectral Density (ASD) by taking the square root of the PSD:

ASD,, = \/PSD,, . (2.87)

For the usual case of a real input time series x,,, only the information stored in the complex DFT output
for m = 0,...,(N/2) is independent. Information for indices m > (N/2) is redundant in the sense that
the magnitudes for m and N — m are the same, while their phases only differ in the sign. For a so-called
single-sided spectrum the redundant second half can be disregarded. To obtain a correctly scaled amplitude,
PS and PSD, Equations 2.84, 2.85 and 2.86 have to be multiplied with the factor 2. The aforementioned
does not apply to m = 0 and m = N/2 (even length time series).

The time series x, can be reconstructed from its frequency domain representation X,, using the inverse

DFT:
1= 2nm 2nm
T =+ mE:O X [cos ( N ) + isin ( N )] . (2.88)

In practice, to compute a DFT sequence or its inverse efficiently, Fast Fourier Transform (FFT) algorithms

are employed (e.g., Cooley and Tukey, 1965; Bluestein, 1970; Winograd, 1978). By reducing the number of
necessary arithmetic operations, FFT algorithms can solve the original O(NN?) task in a computation time
of about O(N log N).

The here presented Fourier techniques are only valid for uniformly sampled time series; therefore, non-
equidistant time series have to be manipulated prior to use, e.g., by applying techniques such as interpo-
lation, downsampling, zero padding. Nevertheless, depending on the characteristics of the time series, the
Fourier techniques may also be employed to non-equidistant time series, to obtain results comparable to

those attained via the application of dedicated methods (see e.g., VanderPlas, 2018).
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2.4.2 Lomb—Scargle Periodogram

One of the most common methods for the spectral analysis of not uniformly spaced time series is the
Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982)—a technique partly based on the least squares
fitting approach by Barning (1963); Vanitek (1969). The unnormalized Lomb—Scargle periodogram of an
equidistant or non-equidistant time series with N mean-centered observations x,, at times ¢, can be defined

as:
2

) 5 cos (2 (1 ~ T))} : [; @ sin (270 f (tn — 7))

P = + 2.89
(%) S cos? 2 f(t, — 7)) S sin? (27 f (t, — 7)) (2.89)
n n
with frequency f and frequency-dependent time offset 7:
> sin(4r ft,,)
=—tan ' | &—F— 2.90
’ dr f an > cos(4r fty,) (2:90)

For a so-called normalized periodogram, P(f) has to be divided by two times the variance of the time
series. To obtain P(f), the algorithm by Press and Rybicki (1989) can be employed, which reduces the
computationally intensive task from an original O(N?) complexity to O(N log N).



Chapter 3

Gravity Field Recovery

The orbit data of the GRACE(-FO) satellites as an approximation of their true motion in space contain
information about Earth’s gravitation since it exerts the main force affecting the motion of the satellites. The
task of gravity field recovery is to calculate the gravitational field parameters C,,,,, and Sy, (see Equation
2.21). These parameters can be obtained from a method known as dynamic orbit determination, which
utilizes orbit modeling, numerical integration, and parameter estimation to solve the satellites’ equations of
motion (e.g., Seeber, 2003; Montenbruck and Gill, 2005):

.. GM i .. .. .. ..
r=- r3 r+Revv+r"g + ry + T + Tre (31)

Tp

where ¥ and r are the acceleration and position vectors of the satellite in an inertial system, r = |r|, and GM
is the standard gravitational parameter of the Earth. The first term represents the central body acceleration
described by the constant Coy = 1 coefficient of the gravitational potential V. The remaining terms of
Equation 3.1, denoted as ¥, form the sum of additional accelerations affecting the satellite motion. Herein,
VV is the acceleration due to the gravitational potential of the Earth excluding Cgoo (see Section 2.2.2),
which is transformed to an inertial coordinate system by applying the rotation matrix R? (see Section 2.1).
Furthermore, ¥, comprises the non-gravitational acceleration ¥,4, which, in the case of GRACE(-FO), is
derived from onboard accelerometers, gravitational tidal and non-tidal accelerations ¥; and ¥,,;, respectively,
as well as a correction for general relativity ¥,.¢;.

Equation 3.1 is a vector form of an Ordinary Differential Equation (ODE) of second order, which can be
reformulated as two first order ODEs (e.g., Seeber, 2003; Montenbruck and Gill, 2005):

r=v

) . (3.2)

vV = —r—:,)r +rp.
The numerical integration of these ODEs results in the satellite state vector y containing the position and
velocity vectors. The six elements of an approximately known initial state vector yo = y(tp) at time tg can
be introduced as integration constants. A dynamically modeled (or propagated) orbit at epochs tg, t1, ta,...
consisting of consecutive states yo, y(t1), y(t2),... is obtained through the step-wise numerical integration

of the two aforementioned ODEs, as shown schematically below:

y(t) =yo + / (bt + / “y(t)dt + - (3.3)

to t1
—_——

y(t1)

y(t2)

Even when the integration constants are known highly accurately, the numerically propagated orbit will
diverge from a true orbit in the course of time, primarily due to the insufficiently known forces acting on the
satellite, including the contribution of the time-variable part of Earth’s gravitation. The concept of dynamic
orbit determination involves adjusting the dynamically modeled orbit to observations. Fundamentally, in
the most basic case, this involves determining optimal values for the initial state, resulting in a propagated

orbit that aligns with the observations as accurately as possible, usually in terms of least squares adjustment.

45
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GNSS

Ficure 3.1: Tracking of the GRACE(-FO) satellites by 1I-SST and GNSS. The primary observable is
the distance between the two satellites from 1I-SST (K-band/laser ranging). The absolute positions of the
satellites (altitude of approx. 400 km) are determined from GNSS constellations (approx. 20000 km).*

In the case of gravity field recovery the spherical harmonic coefficients of the gravitational potential C,,
and S,,,,, are introduced as parameters to be estimated along with the orbit. In principle, any parameter
affecting the satellite motion, or for which a viable functional relationship between orbit observations and
the equation of motion can be established, can also be co-estimated. Therefore, dynamic orbit determination
provides a crucial framework for various applications in satellite geodesy. Besides orbits and the gravitational
potential, it enables the estimation of various variables, including, for example, Earth orientation parameters,
ocean and body tide parameters, station coordinates, geocenter motion, and the geocentric gravitational
constant (see e.g., Seeber, 2003; Pearlman et al., 2019). For satellites equipped with accelerometers, a
co-estimation of calibration parameters is necessary, as the accelerometer measurements are not absolute.
Various types of empirical parameters, which are not directly related to specific parts of the satellite’s equation
of motion, are often introduced as additional unknowns in the dynamic orbit determination process, which
helps to compensate for model deficiencies and achieve a better fit to observational data. Examples of
these additional parameters are empirical low-frequency accelerations (e.g., Colombo, 1986; Montenbruck
and Gill, 2005, Equation 3.149), as well as instantaneous velocity changes (pulses), piece-wise linear and
constant accelerations (e.g., Jaggi et al., 2006). Incorporating these additional parameters transitions the
orbit from being purely dynamic to reduced-dynamic. Similarly, geometric empirical parameters can be
introduced at the observation level to address modeling deficiencies (see e.g., Kim, 2000, Equation 3.16).
The GRACE(-FO) orbits are observed by two techniques, as shown in Figure 3.1. The satellites, or-
biting at a low altitude of roughly 400 km and equipped with GNSS receivers, enable precise tracking of
their absolute positions by the GNSS constellations (e.g., Hofmann-Wellenhof et al., 2007; Teunissen and
Montenbruck, 2017). Analogous to the term “lI-SST”, the tracking of the lower-altitude spacecraft by the

LGRACE model from: https://nasa3d.arc.nasa.gov/detail/grace (last accessed on 2025-04-14).
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GNSS satellites can also be referred to as high-low satellite-to-satellite tracking. The cm-accurate positions
of the satellites are determined by means of kinematic orbit determination using GNSS code and phase
measurements (see e.g., Svehla and Rothacher, 2003; Zehentner and Mayer-Giirr, 2016; Svehla, 2017). In
contrast to the (reduced-)dynamic orbits, kinematic orbits are purely geometric and are independent of the
dynamics of the tracked satellites. Due to the continuous tracking, they can be obtained directly for any
epoch of interest without requiring state propagation. Usually, rather than using the original GNSS ob-
servations in the gravity field recovery process, kinematic orbits are estimated before gravity field recovery,
and are introduced into the estimation as pseudo-observations. Although reduced-dynamic orbits generally
have superior quality compared to kinematic orbits, the dynamic information they contain makes them less
suitable as pseudo-observations for gravity field recovery, due to the risk of the gravity field solution being
biased towards the a priori dynamic information inherent in the pseudo-observations (e.g., Gerlach et al.,
2003; Jéggi et al., 2008). Even more sensitive to orbital changes are the 11-SST measurements, making them
the primary observables for gravity field determination. The biased range between the two satellites can
be measured with micrometer-precision by the K-band ranging system and nanometer-precision by the LRI
instrument on GRACE-FO. The determination of the monthly gravity fields by the different analysis centers
almost exclusively relies on range-rates. These are obtained by numerically differentiating the biased ranges
using a filter (e.g., Thomas, 1999).

The adjustment of the numerically integrated satellite orbit arc to observational data is typically accom-
plished using least squares adjustment. For the two types of tracking data involved, the linearized observation

equations of the originally non-linear problem can be expressed in a simplified form as follows:

- . n 8 .
p—p= Z S Ak
- ~ Ovec(ra)
vec(Tg —T4) = Z Aqy, (3.4)
P oqx
- i Ovec(rpg)
vec(Tgp —rp) = ZiAqk.
el oqx

On the left side of the equations, one can find the reduced observation vectors. These vectors, commonly
known as observed minus computed, are formed as the differences between the kinematic (pseudo-observed)
positions T4, Tp of the two satellites indicated by the subscripts, or the measured range-rates p, and the
corresponding quantities r 4, rg, p obtained from the numerically integrated dynamic orbits. The vectoriza-
tion operator vec() converts the position matrix differences to a column vector, i.e., stacks the epoch-wise
Cartesian vectors on top of each other. The right side of the equations is composed of the partial derivatives
of the dynamically modeled orbits and range-rates with respect to a set of n unknown parameters q. The
partial derivatives serve as input elements for the design matrices. These are, in turn, necessary, for setting
up the system of normal equations that have to be solved to obtain the parameter corrections Aq. Due to the
non-linear nature of dynamic orbit determination, the final parameters are derived by iteratively improving
the a priori parameters.

Note that the GRACE(-FO) satellites complete one orbital revolution in approximately 94 minutes, re-
sulting in about 15 revolutions per day (see Figure 3.2a). The nearly polar orbit of the satellites, with an
inclination of 89°, combined with Earth’s rotation, allows for a global ground track coverage in approxi-
mately one month (see Figure 3.2b). Therefore, the “classical” outcome of the gravity field recovery from
GRACE(-FO) data is a sequence of (unconstrained) monthly gravity field solutions. With the accumulation
of observations, the solution quality progressively converges towards that of the final monthly solution. This
is illustrated in terms of difference degree standard deviations in Figure 3.2c,d for the accumulation of 3-hour
orbital arcs of March 2006. An unconstrained solution with higher temporal resolution can only be obtained

at the expense of increased noise.
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Figure 3.2: (a): GRACE(-FO) 1-day ground track. (b): Typical GRACE(-FO) ground track coverage

after one month. (c): Successive stacking of 3-hour arcs and corresponding difference degree standard

deviations with respect to static field GIF48 for March 2006. (d): Zoom view of (c). Panels (¢) and (d) are
taken from Koch et al. (2020, Figure 2) and were slightly modified.

While the very general idea of the gravity field recovery using dynamic orbit determination was outlined
above, the aim of the following sections is to present the gravity field recovery strategy utilized for the
LUH-GRACE-2020 and LUH-GRACE-FO-2020 time series of monthly gravity field solutions. First, Section
3.1 introduces the relevant GRACE(-FO) instruments, along with their corresponding data products. Sec-
tion 3.2 provides an overview of the general processing details of the LUH gravity field solutions. While
Earth’s time-variable gravitation and the ocean tides were already introduced in the previous chapter, the
computation schemes for further effects of relevance for orbit modeling are presented in Section 3.3. Numer-
ical integration as an essential component of dynamic orbit determination is described in Section 3.4. The
parameter estimation framework is topic of Section 3.5. This chapter concludes with a comparison of the
obtained monthly gravity field solutions with the products of CSR, GFZ, JPL and TUG in terms of noise

and signal content in Section 3.6.

3.1 Instruments and Data Products

For the purpose of precise satellite gravimetry, the satellites carry several scientific instruments: GNSS
receivers for measuring the absolute position, K/Ka-band and laser ranging systems for the intersatellite
link, electrostatic accelerometers for measuring the influence of non-gravitational forces, and star cameras
for determining the orientation of the satellites with respect to inertial space. These gravity field recovery
relevant instruments are explained in detail in the next subsections. Related products derived from the
measurements of these instruments are listed in Section 3.1.2. Figure 3.3 schematically shows the spacecraft

platform positions of the instruments.
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FIGURE 3.3: Placement of main instruments on the GRACE satellite. GNSS: GNSS antenna, SCA: star
camera, ACC: accelerometer, KBR: K-band horn. Image credit (NASA, 2002), modified.

3.1.1 Relevant Instruments

GNSS Receiver

The GRACE(-FO) satellites were equipped with geodetic quality space GNSS receivers developed at and
provided by JPL/NASA. BlackJack GPS receivers were used onboard GRACE. Since 2000 this receiver was
flown on dozens of Earth observation satellites (e.g, Bertiger et al., 2000; Reichert et al., 2002; Haines et
al., 2004), among them on the gravimetry mission CHAMP (Montenbruck and Kroes, 2003). The receiver
onboard GRACE can track up to 14 GPS satellites (Dunn et al., 2003). In the case of GRACE-FO, the
TriG GNSS receiver—an enhanced version of the BlackJack receiver design—is used, which additionally is
capable of tracking the European Galileo and Russian GLONASS constellations (Tien et al., 2012). The
receivers feature 3 antennas on each spacecraft: a zenith antenna on the top panel that collects positioning
data for POD, a back-up positioning antenna on the aft panel, and an antenna specifically for the purpose
of atmospheric radio occultation (Wickert et al., 2005, 2009) mounted on the rear panels of the satellites. In
addition, the GNSS measurements provide 0.1 nanosecond-precise time tagging of the onboard measurements
(Dunn et al., 2003). The bottom panels of the satellites are equipped with laser corner-cube retro-reflectors,
allowing an independent quality validation of the GNSS-derived kinematic positions through the use of SLR
(e.g., Combrinck, 2010). The radial accuracy of the GNSS-derived positions in terms of SLR residuals is on
the level of a few centimeters (e.g, Kang et al., 2003, 2020; Jaggi et al., 2007; Arnold et al., 2019)

K/Ka-Band and Laser Ranging Systems

The 1I-SST principle between the two twin satellites separated by a distance of approximately 220 km, is real-
ized by the microwave KBR instrument supplied by JPL/NASA. The precise measuring of the inter-satellite
distance is based on the Dual One-Way Ranging (DOWR, e.g., MacArthur and Posner, 1985; Thomas, 1999).
The KBR horns mounted on the front panels of the spacecraft transmit and receive signals modulated on
the two frequencies ~24 GHz (K-band) and ~32 GHz (Ka-band) (e.g, Bertiger et al., 2002). To enable an
inter-satellite link, the front panel of the leading satellite is directed towards the trailing spacecraft. A phase
shift measurement is obtained by combining the received signal with a reference signal utilizing a phase-
locked loop algorithm. The DOWR approach allows minimizing the influence of ionosphere and oscillator
frequency instability on the inter-satellite range (e.g, MacArthur and Posner, 1985; Thomas, 1999). While
the medium and long period oscillator noise cancels, measurements are still affected by high-frequency noise

with a period of less than 1 ms (Kim, 2000). The precision of the KBR instrument is on the micron-level
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(e.g, Dunn et al., 2003; Bertiger et al., 2002). For the purpose of technology demonstration for future
satellite gravimetry missions and space-based gravitational wave detection missions, in addition to the KBR
instrument, a nanometer-precise LRI was placed onboard GRACE-FO (Sheard et al., 2012; Abich et al.,
2019).

Electrostatic Accelerometer

To precisely measure the influence caused by non-gravitational effects such as atmospheric drag, direct and
indirect solar radiation pressure, but also caused by thruster activations during manoeuvres, each GRACE(-
FO) spacecraft was equipped with the Super-STAR electrostatic space accelerometer (Touboul et al., 1999,
2012) developed by Office National d’Etudes et de Recherches Aérospatiales (ONERA, French national
aerospace research centre). The Super-STAR accelerometer is a further development of the Space Three-axis
Accelerometer for Research (STAR) used onboard CHAMP. Accelerometers are placed in the center of mass
of the satellites, therefore experiencing only non-gravitational forces. The response of the satellites to these
forces in terms of (biased and not correctly scaled) linear and angular acceleration along the three axes of the
satellite body-fixed frame, is derived from the measured electrostatic force that is required to maintain the
instrument’s proof mass motionless with respect to the sensor cage (Touboul et al., 1999). Since the space
accelerometers do not provide absolute accelerations, optimal scale factors and biases are usually estimated
during orbit determination and gravity field recovery. The noise level of these instruments is in the order of
10~1° m/s?/v/Hz (Touboul et al., 1999; Flury et al., 2008).

In the final months of the GRACE mission, the accelerometer on GRACE-B was deactivated because of
battery issues. A data processing method known as accelerometer data transplant was developed, which uses
linear accelerations from GRACE-A to reconstruct the missing GRACE-B accelerometer data (Bandikova et
al., 2019). Since 21 June 2018, the accelerometer measurements on GRACE-D have been adversely affected
by bias jumps and noise that are strongly correlated across all accelerometer axes (Landerer et al., 2020).
Similar to the late phase of GRACE, the accelerometer data used by the analysis centers for gravity field
recovery rely on a transplantation of accelerometer measurements from GRACE-C to GRACE-D (Landerer
et al., 2020; Behzadpour et al., 2021; Harvey et al., 2024).

Star Cameras

In order to relate the instrument measurements to an inertial coordinate system, but also for attitude
and orbit control, the orientation of the spacecraft platforms should be known. For this purpose, each
GRACE(-FO) spacecraft was equipped with Advanced Stellar Compass (ASC) star cameras (Jorgensen and
Liebe, 1996; Jgrgensen, 2000) developed and provided by the Technical University of Denmark (DTU). The
ASC star cameras were flight-proven on dozens of missions including CHAMP and GOCE. Two star cameras
with a field of view of 18°x16° were mounted on the accelerometer frame, oriented towards the port and
starboard sides with a zenith direction offset of 45° (GFZ, 2024). To increase star camera data availability
during Sun and Moon blinding—a lessons learned from GRACE (see e.g., Bandikova and Flury, 2014)—the
GRACE-FO satellites were additionally equipped with a third star camera pointing towards the upper panel
and observing the stars in zenith direction. The ASC star cameras, consisting of Charge-Coupled Device
(CCD) image sensors and associated optics, are taking digital images of the stars in their field of view. The
starlight reaches the CCD image sensor through the camera baffles. The orientation of a satellite in terms
of quaternions is then obtained by relating the CCD coordinates of the stars to a larger catalog of known
star positions via image analysis and pattern matching (see e.g., Liebe, 1993; Eisenman et al., 1997). The

orientation of the satellites is measured with a precision of about 25 arcseconds (Dunn et al., 2003).
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TaABLE 3.1: Data used for gravity field recovery in this study. G: GRACE, GFO: GRACE-FO.

Product Release Data Description
SDS [1] G GFO
KBR1B RLO03 RL0O4 5 s K-band range-rates

5 s light-time and phase center offset corrections
GNV1B RLO2 RLO4 1 s reduced-dynamic positions and velocities
SCA1B RLO3 RL0O4 1 s normalized quaternions
ACCI1B RL02 — 1 s linear accelerometer measurements
ACT1B! - RL04 1 s linear accelerometer (transplant) data
ACH1B! — RL0O4 1 s linear accelerometer transplant data
Ancillary
ATUB kin. orbits [2] RLO1 RL02 10 s kinematic positions

10 s cofactor matrices
TUG ACT! [3] 1 s linear accelerometer transplant data

[1] Case et al. (2010), Wen et al. (2019), [2] Arnold and Jaggi (2020b,a), [3] Behzadpour et al. (2021).

'The ACT products for GRACE-FO contain accelerometer measurements for the nominally working instrument on
GRACE-C, and transplant data for GRACE-D. ACH is part of the data bundles ACX and ACX2. For GRACE-D,
the following products were used: ACT for 2018-06, TUG ACT for 2018-07 to 2024-01, except for 2022-02, 2022-03,
2023-09 where ACH from ACX was utilized; and since 2024-02 ACH from ACX2.

3.1.2 Data Products

For the computation of the gravity field solutions, GRACE(-FO) Level-1B (L1B) data products are used
(Case et al., 2010; Wen et al., 2019). These products are generated by the GRACE(-FO) Science Data
System (SDS) and can be obtained from NASA’s Physical Oceanography Distributed Active Archive Center
(PO.DAAC, 2019) and from GFZ’s Information System and Data Center (ISDC, 2023).

The SDS is divided into three consecutive processing levels. The satellite’s downlinked telemetry data
received at DLR in Neustrelitz/Germany is decommutated to Level-0 data products. These Level-0 data
products form the input for the generation of so called non-destructive Level-1A data products, meaning that
Level-1A data products are in general reversible to Level-0 data products. Then the Level-1A data products
are used to produce L1B data products. In contrast to the previous processing step, L1B data products may
not be reversed to Level-1A data products. The processing of Level-1A as well as of L1B data products is
realized at JPL and is backed up at GFZ. The L1B data products contain all the necessary satellite sensor
measurements and ancillary products needed to generate Level-2 products, i.e., the monthly gravity field
solutions.

In addition to the SDS data products, kinematic orbits from ATUB (Arnold and Jéggi, 2020a) were utilized,
along with alternative accelerometer transplant products from TUG (Behzadpour et al., 2021) for GRACE-D
(July 2018 to January 2024). Table 3.1 lists the products and the specific data extracted from these products

that are used for gravity field recovery in this study.

3.2 Overview of the LUH Gravity Field Recovery Approach

This section provides an overview of the gravity field recovery approach employed for the LUH-GRACE-2020
and LUH-GRACE-FO-2020 time series, using the GRACE-SIGMA (GRACE-Satellite orbit Integration and
Gravity field analysis in MAtlab) software (Naeimi et al., 2018; Koch et al., 2020, 2021) developed at LUH’s
IfE. For reasons of computational efficiency, the processing is divided into two main steps. After a sensor
data pre-processing, an orbit pre-adjustment is performed in which the initial states and accelerometer bias
parameters are iteratively estimated without determining the gravity field parameters. The arc-wise param-
eters estimated from this step are used as a priori values for the local parameters in the second adjustment

step. In this main adjustment, the gravity field parameters are estimated simultaneously alongside the orbit
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and accelerometer parameters without additional iterations. The steps are outlined in more detail in the

following subsections.

3.2.1 Pre-Processing

Daily GNV1B, SCA1B, ACC1B/ACT1B/ACH1B, KBRIB files (see Table 3.1) are imported. The epochs
are synchronized to ensure that the sensor data time series begin and end at the same points in time.
Apart from the KBR time series, minor gaps in the sensor data consisting of a single missing value are
filled using linear interpolation. Larger gaps in the quaternion data of the SCA1B products, which are
relatively smooth compared to other products, are interpolated using piece-wise cubic splines. All sensor
data time series are downsampled to match the 5-second intervals of the KBR1B products. The light-time
and antenna phase center offset corrections given in the KBR1B products are applied to the K-band range-
rates of these products. The position and velocity vectors of the GNV1B reduced-dynamic orbits given in
ITRS are transformed to GCRS. Disturbing accelerations, excluding those caused by Earth’s gravitational
field and due to non-gravitational effects, are evaluated along the GNV1B orbit. Later, during the orbit
integration, instead of evaluating the accelerations at intermediate positions during every iteration of orbit

determination, these pre-computed accelerations are employed.

3.2.2 Pre-Adjustment

The aim of this step is not to achieve the best possible orbit fit, but to estimate suitable initial values for the
next phase of the gravity recovery procedure. The daily sensor data files are segmented into 6-hour intervals
for GRACE and 3-hour intervals for GRACE-FO. The pre-adjustment process involves two steps, beginning
with an initial coarse adjustment conducted separately for each satellite. In this step, dynamically modeled
orbits are fitted to the the 5-second inertial GNV1B positions until the correction norm to the initial state’s
position is less than 100 meters. Here, but also in the subsequent steps, the numerical integration of the
orbit, state transition, and sensitivity matrices is carried out using a modified Gauss—Jackson integration
technique (Naeimi, 2018, see Section 3.4 for more details). At this stage, only the arc-wise initial states and
the accelerometer bias parameters are determined. The accelerometer scale factors are kept at 1, and the
off-diagonal elements are set to 0.

Once convergence is achieved, the newly determined initial states and refined accelerometer bias parameters
are utilized as a priori values in the fine pre-adjustment phase, where the numerically propagated orbits of
both satellites are simultaneously adjusted to fit the K-band range-rate observations and the GNSS-based
kinematic positions that serve as pseudo-observations. While the range-rates are utilized at their original
5-second sampling interval, the kinematic orbits are downsampled from 10 seconds to 30 seconds. Given the
typically noisy nature of kinematic orbits compared to the smoother reduced-dynamic orbits, a screening
process is applied whereby epochs with position differences exceeding 8 cm relative to the reduced-dynamic
GNV1B orbits are excluded from the parameter estimation process. To construct the corresponding weight
matrices, an initial standard deviation of 0.2 pum/s is applied for the range rates, while a standard deviation
of 0.02 m is used for the position components. The technique-specific weights are refined after each iteration
of the orbit determination process using VCE (Koch and Kusche, 2002). Also in this step only the arc-wise
initial states and the accelerometer bias parameters are estimated. The accelerometer scale matrix elements
are not solved for, as the scale is parametrized as constant over the course of a month. The a priori values
of the unknowns are iteratively adjusted using the estimated corrections until convergence is achieved, here
defined as the point where the mean of the absolute range-rate reduced observation differences between two

consecutive iterations is less than 0.1 ym/s.
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TABLE 3.2: Number of estimated parameters for a 30-day month. G: GRACE, GFO: GRACE-FO.

Parameter Number of Parameters Number of Parameters per Month
Local (per arc) G (6 h) GFO (3 h) G (6 h) GFO (3 h)
Initial state 6 per sat 6 per sat 1440 2880
Accelerometer bias 3 per sat 3 per sat 720 1440

Kinematic empiricals 12 6 or 8! 1440 1440 or 1920*
Global (per 30 d)

Potential? 9405 9405 9405 9405
Accelerometer scale 9 per sat 9 per sat 18 18

Total 13023 15183 or 15663!

'First value: until the end of 2022, second value: starting from 2023.
2The gravitational potential is estimated from degree 2 until degree and order 96.

3.2.3 Main Adjustment

The arc-wise initial states and accelerometer biases derived from the pre-adjustment are employed as new a
priori values for dynamic orbit modeling and the computation of the state and parameter sensitivity matrices.
Here too, a standard deviation of 0.2 pum/s is used to set up the weight matrices for the K-band range-rate
observations. For kinematic positions, the inertial orbit covariance information is utilized to create diagonal
weight matrices. In line with the approaches used by other analysis centers (e.g., Meyer et al., 2016; Dahle
et al., 2019b), a downweighting is applied to the GNSS-based positions to achieve more accurate gravity
field solutions. For this purpose, the elements of the kinematic position weight matrices are divided with
empirically determined factors of 500 for GRACE and 25 for GRACE-FO.

In this step, the local parameters, including the initial states and accelerometer biases, are re-estimated.
Additionally, the set of local parameters is expanded to include kinematic empirical range-rate parameters
(Kim, 2000), which help mitigate the effects of potential mis-modeling of disturbing forces.? For GRACE
and GRACE-FO missions up until the end of 2022, 90-minute biases and bias-rates, along with 180-minute
periodic biases and bias-rates, are co-estimated. Starting from the first 2023 solution, the length of the
periodic terms has also been set to 90 minutes. A few months deviate from this parametrization of the
kinematic empirical range-rate parameters. The spherical harmonic coefficients representing the monthly
mean of Earth’s gravitational potential are considered from degree 2 up to degree and order 96. In addition,
accelerometer scale factors and rotation and shear parameters (see Klinger and Mayer-Giirr, 2016), are
introduced as global unknowns. After a pre-elimination of the local parameters, the normal matrices of the
global parameters from the individual arcs of the month are stacked, and the accumulated normal matrix is
inverted to obtain the final global parameters. An overview of the number of parameters estimated in the

main adjustment is provided in Table 3.2.

3.3 Perturbation of the Satellite Motion

The motion of a satellite around the Earth is constantly subject to so-called perturbations or disturbing
effects. As a result, a satellite orbit will always deviate from a Keplerian ellipse, i.e., a perfectly elliptical

orbit that would exist if the satellite’s motion were influenced only by the central body term of Earth’s

2The relation between the empirical parameters a, b,...f, the observed range-rate p and the computed range-rate p is: p — p =
a+ bt + (e + ft)cosu + (g + ht) sinu, where u is the argument of latitude of the midpoint between the two satellites (Kim,
2000, Equation 3.16). The argument of latitude is the geocentric angle measured between the ascending node of the satellite
orbit and the position of the satellite (see e.g., Seeber, 2003), and is 0° or 180° at the equator, 90° at the North Pole and 270°
at the South Pole.



Gravity Field Recovery 54

gravitational potential. The perturbations can be divided into gravitational effects, which act on the center
of mass of the satellite, and non-gravitational effects, which depend not only on the satellite’s ephemerides
but also on its geometry and surface properties. The gravitational disturbing effects include the influence of
Earth’s non-uniform and time-varying gravitational potential described by the unknown spherical harmonic
coefficients to be determined during gravity field recovery, the influence of tidal effects as a reaction of the
Earth system to the TGP (see Section 2.3.1), the direct attraction of the satellites by other celestial bodies
(primarily the Moon and Sun), perturbations due to rapid non-tidal mass variations, as well as effects to
be considered in the framework of relativity. The effects and corresponding models considered in satellite
orbit modeling are also referred to as background models. Conventional definitions and computation schemes,
which are updated every few years, exist for most of the perturbing effects, and are published by the TERS.
The more recent conventional definitions are given in the IERS Conventions (2010).

While the inertial gravitational acceleration resulting from the direct attraction of celestial bodies and
from relativistic effects can be obtained straightforward, most of the gravitational effects are expressed in
terms of corrections ACh,, and AS,,,, to the normalized spherical harmonic coefficients of the geopotential
(Equation 2.21), consequently requiring two additional steps to determine the inertial acceleration. First,
the Nabla operator has to be applied to these corrections to obtain the corresponding acceleration in the
co-rotating coordinate system (see Section 2.2.2). After transforming these accelerations to the inertial
coordinate system with Equation 2.3, they can be used in the equation of motion as defined in Equation 3.1.
The corrections AC,,,, and AS,,,, of the individual effects can first be added up and converted to acceleration
in one step; however, it is important to ensure that the corrections refer to the same (or sufficiently similar)
scaling constants GM and R.

The non-gravitational perturbations acting on a satellite in a low Earth orbit, such as in the case of
GRACE(-FO), include atmospheric drag, as well as direct and indirect solar radiation pressure. The direct
radiation pressure is caused by photons emitted by the Sun, whereas the indirect solar radiation pressure
arises from sunlight reflected by the Earth (albedo), as well as thermal radiation emitted in the infrared
spectrum. The general modeling approach of these perturbation effects can, for example, be found in Seeber,
2003, Vallado, 2004, and Montenbruck and Gill, 2005. Since the non-gravitational part of the accelerations,
including the contribution from thruster firings, is measured by onboard electrostatic accelerometers (see
Section 3.1.1), the modeling of the individual effects is not relevant for the GRACE(-FO) orbit modeling.?
However, the accelerometer measurements must be corrected by applying calibration parameters that are
usually estimated during dynamic orbit determination and gravity field recovery.

A list of perturbing effects generally considered for GRACE(-FO) orbit modeling is given in Table 3.3.
This table also contains information on the specific models used and the main model parameters. Figure
3.4 shows the corresponding magnitude of the acceleration effects for an one day orbit of GRACE-C. In
general, the magnitudes of the individual effects primarily vary with the altitude of the satellites (see e.g.,
Seeber, 2003, Figure 3.20). The background models used by the various GRACE(-FO) analysis centers are
very similar, with differences primarily concerning the choice of ocean tide and atmospheric models, as well
as the gravity field model. The latter is of little significance, as the gravity model is only used as an a priori
model to which the spherical harmonic coefficients corrections are determined.

The following subsections present the computation procedures for the individual effects listed in Table 3.3.
The computation procedures for the acceleration due to Earth’s gravitational field and ocean tides are not

included below, as they have already been covered in detail in Sections 2.2 and 2.3.4.

3This refers to the classical gravity field recovery performed by the analysis centers utilizing L1B data products. Due to a
malfunctioning of the accelerometer on GRACE-D immediately at the beginning of the science phase in June 2018, accelerom-
eter data from the working accelerometer on GRACE-C has to be “transplanted” to GRACE-D. Depending on the method to
generate these transplant products from L1A data, a modeling of the non-gravitational accelerations might be required (see
e.g., Behzadpour et al., 2021; Harvey et al., 2024).
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TaBLE 3.3: Utilized background modeling standards. d/o: indicates the applied maximum degree/order

of the spherical harmonic coefficients.

Acceleration

Model Details

Gravity field

Third-body effect

Solid Earth tides

Ocean tides
Relativistic effects

Solid earth pole tides

Ocean pole tides

Atmospheric tides
De-aliasing

Non-gravitational

GOCOO06s (Kvas et al., 2021, 2019b) as a priori gravity field
Static part (d/o: 300), time-variable part (d/o: 200)

Celestial bodies: Moon, Sun, Mercury, Venus, Mars, Jupiter, Saturn
Ephemerides: JPL DE430! (Folkner et al., 2014)
Jo effect considered for the Moon

Moon and Sun (d/o: 4) (IERS Conventions, 2010)
Nominal Love numbers: anelastic Earth model

FES2014b (Lyard et al., 2021) (d/o: 180)
IERS Conventions (2010)

IERS Conventions (2010)
Secular polar motion (IERS Conventions 2010, 01 Feb. 2018 update)

IERS Conventions, 2010 (d/o: 180) (Desai, 2002)
Secular polar motion (IERS Conventions 2010, 01 Feb. 2018 update)

AOD1B RL06 (d/o: 180) (Dobslaw et al., 2017b)
AOD1B RL06 (d/o: 180) (Dobslaw et al., 2017b)

ACCI1B, ACTI1B, ACHIB, TUG ACT (see Table 3.1)
Full scale matrix (Klinger and Mayer-Giirr, 2016)

LJPL DE430 ephemerides are also used for solid Earth tides and the de-Sitter precession.
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FIGURE 3.4: Magnitude of background model accelerations from Table 3.3 considered for orbit modeling.

The values refer to the orbit of the GRACE-C satellite on 1 January 2021. 3B: third-body effect., SET:

solid Earth tides, OT: ocean tides, NG: non-gravitational, AOD: atmosphere and ocean de-aliasing, REL:

relativistic, SEPT: solid Earth pole tides, AT: atmospheric tides, OPT: ocean pole tides. Not shown is

the acceleration caused by the gravitational potential with a magnitude of around 8.44+0.025 m/s>. For
benchmark data see Lasser et al. (2020).
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3.3.1 Third-Body Effect

The direct influence of celestial bodies in terms of acceleration ¥ pg results from the attraction of masses. In
general, the celestial bodies can be considered as point masses due to their large distances from the Earth-
orbiting satellites. The total direct attraction of celestial bodies B is obtained by summing the individual

acceleration contributions (e.g., Montenbruck and Gill, 2005):

, rg—r  rp
= GM, — = |- 3.5
for = 32y (10 5 ~ ) @9

The satellite position r, as well as the position rp of the celestial body B refer to the inertial system.
Positions of celestial bodies can be derived from different models. Notable examples include the Development
Ephemeris (DE) from JPL (e.g., Folkner et al., 2014)*, Ephemeris of Planets and the Moon (EPM) from the
Institute of Applied Astronomy of the Russian Academy of Sciences (e.g., Pitjeva, 2005)°, and the Intégrateur
Numérique Planétaire de I’Observatoire de Paris (INPOP) from the French Institute for Celestial Mechanics
and Computation of Ephemerides (e.g., Fienga et al., 2021)5.

In this work, the positions of the Moon, Sun and planets are obtained from JPL’s DE430 model (Folkner
et al., 2014). The standard gravitational parameters GMp to be used with this model are listed in the
corresponding reference. The JPL ephemerides are provided in the form of piece-wise Chebyshev polynomial
approximations typically valid for 32-day segments. By interpolating these segments the positions of the
desired celestial bodies can be obtained.

While the direct accelerations caused by the Moon and Sun are the most significant after those caused by
Earth’s gravitational field, the contribution from planets is relatively small, and can generally be considered
negligible (see Figure 3.4). Also the acceleration from the interaction of Earth’s flattening (J2) and the point
mass Moon is several orders of magnitude smaller than the other effects, so the corresponding equation for

this effect is omitted here.

3.3.2 Solid Earth Tides

The solid Earth tides are caused by the direct lunisolar attraction that is deforming the Earth’s crust. Re-
sulting variations of the geopotential are affecting the movement of satellites. The conventional computation
of this effect in terms of normalized spherical harmonic coefficients AC,,, and AS,,., consists of two parts
(IERS Conventions, 2010). In a first step, the frequency-independent components Aé,llm and Ag,llm are

computed by considering the contributions of degrees 2 and 3:

ATy, \ _ (Wi AT, + K AS,, (3.6)
with nominal Love numbers kZ | kI = for degree n and order m, and:
ACT 1 M n+l coS M
L 3 GMp (R) P (sin @ p5) o (3.7)
ASnm 2n+1 3 GM rep sin m)\B

where R is the Earth’s equatorial radius; rp the distance from the geocenter to the center of celestial body
B; GM, GMp are the standard gravitational parameters of the Earth or celestial body B; @5, Ap are the

4https://ssd.jpl.nasa.gov/planets/eph_export.html (last accessed on 2025-04-25)
Shttps://iaaras.ru/en/dept/ephemeris/epm/ (last accessed on 2025-04-25)

Shttps://www.imcce.fr/inpop/ (last accessed on 2025-04-25)


https://ssd.jpl.nasa.gov/planets/eph_export.html
https://iaaras.ru/en/dept/ephemeris/epm/
https://www.imcce.fr/inpop/
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TABLE 3.4: Nominal love numbers.

kR kL kGH)

n o om

2 0 0.30190 -0.00000 -0.00089
2 1 0.29830 -0.00144 -0.00080
2 2 0.30102 -0.00130 -0.00057
3 0 0.09300 0 —

3 1 0.09300 0 -

3 2 0.09300 0 -

3 3 0.09300 0 -

geographical latitude and longitude of the celestial body B; and P,,, are normalized associated Legendre
polynomials (see Section 2.2.3). Note that only the Moon and Sun have to be considered here.

Additionally, the influence of degree 2 on degree 4 has to be computed as part of the first step:
—1 —%
AC4m (+) ACQm
—1 == ka — (38)
ASy, AS,,.,

s K kSH) of the utilized anelastic Earth model are given in
Table 3.4. The values for the elastic Earth model can be found in IERS Conventions (2010). The deviations

from the nominal Love numbers have to be considered in a second step, in which frequency-dependent

The conventional nominal Love numbers k% . kI

corrections to potential coefficients A@;O, Aé;l, Agél, Aé;, A?;Q are calculated. These corrections
consider 21 long-periodic, 48 diurnal and 2 semidiurnal tidal frequencies f. The frequency-dependent in-
phase (ip) and out-of-phase (op) amplitudes A’}p , A'J’f’ and the corresponding multipliers of the Doodson
arguments are listed in IERS Conventions (2010, Tables 6.5a,b,c).

With the astronomical argument 6 as defined earlier in Equation 2.60, the corrections can be obtained

as follows:

Aé;o = Z (A?’ cosfy — A} sin 9f>

f(long)

ACH, = Z (A;p sin 6y + A%’ cos 9f> ASS, = Z (Ajfp cosfy — A% sin Gf) (3.9)
f(diurnal) f(diurnal)

ATp= Y (A}P cos ef) ASp= Y (—Aj? sin ef) .
f(semidiurnal) f(semidiurnal)

3.3.3 Solid Earth Pole Tides

Polar motion induces a variation in Earth’s centrifugal force, which causes a re-distribution of masses in the
solid Earth and consequently a deformation of the gravitational potential. The potential variation caused by
the solid Earth pole tides can be described in terms of normalized spherical harmonic coefficients of degree
2 and order 1 as (IERS Conventions, 2010):

AC. mi + 0.0115 m
O} _ a3 ni00d ™ 2) (3.10)
ASa (mg — 0.0115m;)

where the wobble parameters m and msy are defined in arcseconds and can be obtained from polar motion

coordinates x,, y, (see equation 2.19) and secular polar motion coordinates x, ys:

(3.11)
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The secular pole coordiantes in milli-arcseconds obtained from a least squares fit to polar motion observations
from 1900 to 2017 are defined as (IERS Conventions, 2010, 01 February 2018 update):

r, =55.0+1.677¢

(3.12)
Ys = 320.50 + 3.460 ¢ .
Time argument ¢ is the number of Julian years between the current epoch and epoch J2000.0:
. (TT — 1. January 2000, 12:00 TT) [in days] ' (3.13)

365.25

3.3.4 Ocean Pole Tides

The variation of Earth’s centrifugal force due to polar motion also causes a re-distribution of ocean masses,
and leads to a deformation of Earth’s gravitational potential. Conventionally this effect is considered with
the self-consistent equilibrium model of Desai (2002) as a perturbation to the normalized spherical harmonic

coefficients of the geopotential with degree n and order m as follows:

_ —R I
Aonm An"n An"n
( > =R, KBR ) (m1yst + mand) + (BI > (m27§+m17§)1 : (3.14)

AS”"” nm nm

R ER ZI

gree/order n/m = 360 and can be obtained from (IERS, 2019b); m; and mg are the wobble parameters (see
equation 3.11); v = 0.6870, 4 = 0.0036; and the quantitiy R,, being defined as:

. - -1 . . .
In the above equation, A,,,., Boms Anms Bnm are the coeflicients of the self-consistent model until de-

(3.15)

R ~ Q%a}, AnGp, (1+K,
" GM g on + 1

where GM, ag and 2 are the standard gravitational parameter, equatorial radius and nominal mean angular
velocity of the Earth, respectively; g. is the mean equatorial gravity; G the gravitational constant; p,, the
density of sea water; and k!, are the degree-dependent load deformation coefficients. Numeric values of the

relevant constants can be found in IERS Conventions (2010).

3.3.5 Non-Tidal Rapid Mass Variations

To consider the influence of non-tidal short-term variations in the atmosphere and oceans, Atmosphere and
Ocean De-Aliasing L1B (AOD1B) RL06 (Dobslaw et al., 2017b) products provided by GFZ (ISDC, 2023) are
used. The model is given in terms of normalized spherical harmonic coefficients with a temporal resolution
of 3 hours. To compute the effect for a specific epoch, linear interpolation of the coefficients between
two consecutive time steps, as recommended by Dobslaw et al. (2017a), is used. The atmospheric part of
AOD1B RLO06 is based on European Centre for Medium-Range Weather Forecasts (ECMWF) data (Dee et
al., 2011), while the effect of rapid mass variations over the oceans is simulated with the Max-Planck-Institute
for Meteorology Ocean Model (MPIOM) (Jungclaus et al., 2013) with ECMWF atmospheric forcing.

3.3.6 Atmospheric Tides

Atmospheric tides are periodic mass movements in the atmosphere excited gravitationally by the Moon
and Sun, or thermally by the absorption of radiation (e.g., Lindzen and Chapman, 1969). As part of the
computation of the time series of non-tidal rapid mass variation products (Dobslaw et al., 2017b), the
atmospheric contribution at the frequencies of four main tidal constituents, i.e., the solar tides Si, S, S3
and the lunar tide My, is estimated from the ECMWF surface pressure data covering the period 2007-2014.

For each of the four constituents, the two corresponding annual side lines are additionally estimated, to
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take into account seasonal modulations. Fully normalized prograde coefficients C77° ¢, SI0°  and retrograde

coefficients Cfli:;f, Sflimnj of the 12 constituents f until degree and order n/m = 180 are provided (ISDC,
2023) as a supplementary part to the AOD1B products. The effect of the atmospheric tides in terms of
a correction to the normalized spherical harmonic coefficients of the geopotential can be evaluated with
Equation 2.76. Note that a phase bias x; has to be added to the Doodson arguments to comply with the

Doodson-Warburg convention (see IERS Conventions, 2010).

3.3.7 Relativistic Effects

In the framework of general relativity, the motion of satellites near the Earth is conventionally corrected by
taking into account the three relativistic effects: the Schwarzschild term due to the spherically symmetrical
part of Earth’s gravitational field, Lense—Thirring precession (or frame dragging) caused by the rotation of
the Earth, and the de-Sitter precession (or geodetic precession) due to the presence of the Earth as a central
mass (Brumberg and Kopejkin, 1989; IERS Conventions, 2010):

fREchfﬁllS{[z(ﬁﬂw)i{W—w-f} r+2(1+7)(r-f)f}

H1+ ) o [t 2) 4 6 9)

. -GMs R
1+29) |RX | ———5— || XT 3.16
o o (S o} 310
where GM and G M, are the standard gravitational parameters of the Earth and the Sun, respectively; c is
the speed of light; r and 1 the inertial geocentric position and velocity vectors of the satellite, respectively;

R and R are the position and velocity vectors of the Earth with respect to the Sun, respectively; J is the

Earth’s angular momentum per unit mass; and 8 = 1, v = 1 the parameterized post-Newtonian parameters.

3.3.8 Non-Gravitational Acceleration

The non-gravitational components of the accelerations are measured by onboard electrostatic accelerometers
(see Section 3.1.1). Positioned at the center of mass of the spacecraft, these instruments measure the total
non-gravitational contribution. In addition to atmospheric drag and both direct and indirect solar radiation
pressure, they also record accelerations caused by thruster firings. Calibration of the measurements is
necessary to obtain accurate values for the magnitude and amplitude of the non-gravitational acceleration.
The calibrated acceleration is given by:

f.=S¥,+b (3.17)

where ¥, is the measured acceleration by the accelerometer, . is the calibrated acceleration vector, both
given in the GRACE(-FO) Science Reference Frame (SRF); and a bias vector b and scale matrix S:

by Se a+( B-e
b=1b, S=|a-¢C s, ~+9 (3.18)
b B+e v—6 s,

where b, by, b, and s, sy, s, are the three components for the bias and the scaling of the three axes of the
SRF, respectively; «, 3, v are symmetric shear parameters that geometrically should account for a possible
cross-talk among the axes resulting from the non-orthogonality of the accelerometer axes, and (, €, § are
skew-symmetric rotation parameters that geometrically reflect the misalignment between the SRF and the
accelerometer frame (see Klinger and Mayer-Giirr, 2016). All of these bias vector and scale matrix elements

are estimated during gravity field recovery (see Table 3.2).
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The inertial non-gravitational acceleration vector ¥ can be obtained by the rotation:
. T
fyvg =R P, (3.19)

with the rotation matrix formed from the quaternion elements qo, 1, g2, g3 of the SCA1B product (Wu et
al., 2006):
B+ -6 -G 2(0ge +q043) 2(q193 — 9092)
R=1| 2(qe—-2wap) @-d+6-4¢ 2@e+on) |- (3.20)
2(q1q3 + 9092) 2(q2q3 — qoq1) @3 — 4t — @3 + @3

3.4 Numerical Integration

To obtain a dynamically modeled orbit, the equations of motion of the satellites in the form of the first
order ODEs (Equation 3.2) must be solved. Moreover, to adjust the obtained dynamically modeled orbit to
observational data, state transition matrices and sensitivity matrices are required. The complexity of the
multitude of forces acting on a satellite at low altitude makes analytical integration of the ODEs infeasible,
and therefore necessitates the employment of numerical integrators, i.e., approximative numerical integration
techniques. Consequently, numerical integration is a key aspect of gravity field recovery using dynamic orbit
determination. Over the past few centuries, numerous methods for the numerical integration of ODEs have
been developed and refined. The most popular integrators by far used for solving the equations of motion
of satellites belong to the categories of Runge—Kutta (RK) methods and multi-step methods. Due to their
relevance for the generation of the gravity field recovery results, they will be briefly addressed in this section.
In addition to numerical integrators from these two categories, ODEs can also be numerically solved using
extrapolation, Taylor series, and collocation methods. For a comprehensive overview of different integration
techniques, readers can refer to Fox (1984), Beutler (2004), Montenbruck and Gill (2005), and Hairer et al.
(2008), which besides the underlying mathematical formulations also address, to a certain degree, the topics
of computational efficiency and accuracy.

As will be seen later, RK methods are based on a straightforward concept, making them easy to apply
to tasks in celestial mechanics as well as in various other fields. The accuracy of RK methods typically
depends on their order, with higher-order integrators generally providing more accurate solutions, although
this comes at the cost of computational efficiency. RK methods can also be denoted as single-step methods
because they rely solely on information from the current epoch. In contrast to single-step techniques, multi-
step methods utilize data from previous epochs. To be able to start a multi-step method, acceleration from
prior epochs must be provided. The integration starting procedure can, for example, be initiated by a
RK integrator. Due to the storing of the values from previous epochs, multi-step methods generally offer
higher computational efficiency, compared to RK methods. While in RK methods, the number of function
evaluations required to obtain the state for the next epoch is equal to or greater than the order of the
integrator, in the case of multi-step methods generally only one or two function evaluations per epoch are
required, independent of the degree of the integrator. Here, “function evaluation” refers to the computation of
all disturbing accelerations (Table 3.4) for one specific epoch. The evaluation of the disturbing accelerations
can be considered as the most time-consuming aspect of orbit propagation and gravity field recovery overall.
In particular, the computation of the Legendre functions and their derivatives is computationally intensive.
While the number of function evaluations may not pose a problem for certain applications, it is a critical
factor for the numerical integration in the framework of gravity field recovery from GRACE(-FO) sensor
data because the set of disturbing forces cannot be significantly simplified, and an integration with a small
step size of 5 seconds is required to be able to process the KBR measurements at their original L1B sampling
frequency.

The integration technique utilized in the GRACE-SIGMA software is a Gauss—Jackson integrator, which
has been modified to enable computationally efficient numerical integration of GRACE(-FO)-like orbits, as
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well as state transition and sensitivity matrices (Naeimi, 2018). To generate the starting values for this
multi-step technique, the 4th-order RK integrator is employed. Both techniques are presented in the next

two subsections.

3.4.1 Modified Gauss—Jackson Integrator

The classical scheme of a mth-order Gauss—Jackson integrator (see e.g., Montenbruck and Gill, 2005) to
obtain the inertial position r;;; and velocity vector I;11 at epoch i + 1, i.e., t + h, where h is the fixed

integration step size, consists of a predictor step:

m+1
ri=h> 5V, (3.21)
=0
P =hYy 1V (3.22)
j=0

followed by a corrector step using the updated acceleration calculated with the earlier predicted state:

m—+1
riy1 = h2 Z (5;Vj_2'fi+1 (323)
7=0
i‘i-l—l = hz’y;vj_li:i-l-l . (324)
7=0

The quantities v;, 77, and (0, 6]*) are identified as the Adams—Bashforth, Adams—Moulton, and Stoermer
and Cowell coefficients, respectively. Numeric values of these coefficients until an order of m = 8, as well
as the relations for calculating values for higher orders can be found, for example, in Montenbruck and Gill
(2005). Furtheremore, V*¥; denotes kth acceleration backward differences if k& > 0, or the first or second
sums V™! and V~2, respectively. The backward differences are defined recursively as follows (e.g., Berry
and Healy, 2004; Montenbruck and Gill, 2005):

V% =¥
Vi, = Vi =¥ — 1

V3, = VV§; = V(¥ — 1) = — 281 +Fio (3.25)

k—1s k—2s2 k—2s2
\Y r, = Vv r;, — Vv r,_1.

For the first and second sums the following relationship is valid (e.g., Berry and Healy, 2004; Montenbruck
and Gill, 2005):

Vo = VO + VT

, ; ) (3.26)
V2 = VU VR

As can be recognized, the Gauss—Jackson integrator as a multi-step technique, in addition to the acceleration
at epoch i, also requires the acceleration from m — 1 previous epochs.

When the integration step size is appropriately selected and the orbit is (near-)circular, the corrector
step becomes unnecessary (e.g., Fox, 1984; Berry and Healy, 2004). Naeimi (2018) quantified the position
differences between the corrector and predictor steps, i.e., Equation 3.23 minus 3.21, for a GRACE-like orbit.
For the standard GRACE(-FO) integration step size of 5 seconds, the corrector step can be ignored when
using an integration order of 8 or higher (see Figure 3.5). However, as shown by Naeimi (2018), the corrector

formulas enable a derivation of closed forms for the first and second sums. This is achieved through a series
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FiGure 3.5: Difference between the corrector and predictor steps of the Gauss—Jackson integrator for
different step sizes h and order of integration. Figure taken from Naeimi (2018); slightly modified.

TABLE 3.5: Parameters p; and g; for the numerical integration with the modified Gauss—Jackson integrator.

j 0 1 2 3 4 ) 6 7 8 9 10 11
. r 1 1 19 3 863 275 33953 8183 3250433 4671

Pi 2 6 8 180 32 10080 3456 453600 115200 47900160 71680
01 1 5 3 251 665 19087 110397 1070017 137461698 26842253

e 2 12 8 720 2016 60480 362880 3628800 479001600 95800320

TABLE 3.6: Entries of the matrix B for the vectorized computation of backward differences.

rz 'I:ifl .I:i72 .I:i73 i:i74 i:i75 i:i76 .1:147 i:i78 .1:1;9 i:2'710
Fo1 0 0 0 0 0 0 0 0 0 0
Vi; 1 -1 0 0 0 0 0 0 0 0 0
Vi, 1 -2 1 0 0 0 0 0 0 0 0
V3 1 -3 3 -1 0 0 0 0 0 0 0
V4 1 -4 6 -4 1 0 0 0 0 0 0
VoF; 1 -5 10 -10 5 -1 0 0 0 0 0
Vo, 1 -6 15 -20 15 -6 1 0 0 0 0
V# 1 -7 21 -35 35 -21 7 -1 0 0 0
Ve, 1 -8 28 -56 70 -56 28 -8 1 0 0
V% 1 -9 36 -84 126 -126 84 -36 9 -1 0
V%, 1 -10 45  -120 210 -252 210 -120 45 -10 1
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of arithmetic calculations and substitutions—the details of which are omitted here for brevity—ultimately

leading to the following expressions:

vV = % — Z’ijj_lrl
j=1
. om (3.27)
9. r; r; * * 1
\Y% QI‘i = ﬁ + E - Z(’Yj + 6j+1)V7 1I‘i .

Jj=1

By substituting these newly derived expressions into the predictor equations (3.21 and 3.22) and defining

new coefficients

* *
Pj =041 =7 — 0541

i (3.28)
a5 =7 =75

whose numeric values are listed in Table 3.5, one arrives at the modified version of the Gauss—Jackson

integrator:

m
ri1 =r; + hi; + h? ijvjil.f’i

o (3.29)
I..i-l—l = I.'l + hz qujfli‘i .
j=1
The modified Gauss—Jackson integrator can be used particularly efficient in its vectorized form:
riy 1 =1r; + hI.'l + h2pBA
" (3.30)

where row vectors p and q contain coefficients p; and g;, respectively; matrix A contains row-wise the
acceleration vector at the current epoch ¢ as well as the acceleration of m — 1 prior epochs in the order of
most recent (first row) to least recent; and matrix B, which multiplied with A gives the backward differences,
is made of elements listed in Table 3.6. The number of elements in the mentioned vectors and matrices should
be adjusted to match the desired order of the integrator. For the computation of the gravity field recovery

results the summation was carried out over indices j = (1,11).

3.4.2 Runge-Kutta Integrator

In order to use the modified Gauss—Jackson integrator for orbit propagation, the acceleration of prior epochs
is needed. If m is the order of the multi-step integrator, then in addition to the acceleration at epoch i,
the acceleration values of m — 1 prior epochs should be known. These can, for example, be obtained with
the help of a RK integrator. To compute the propagated state vector y;;1 at time ¢ + h, starting from an
initial state y; at time ¢ with a given integration step size h, the general RK integrator is defined as (e.g.,
Montenbruck and Gill, 2005):

Yit1 =yi t h®. (3.31)

Here, the classical RK integrator, i.e., the 4th-order RK integrator, is employed. The increment function for
this method is: )
b = E(kl + 2ks + 2ks + k4) (332)
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with four recursively defined function evaluations:

kl - f(t17yl)

ky = f(t; + 1/2,yi + hky/2) (3.33)
ks = f(ti +h/2,yi + hka/2)

ky = f(ti + h,yi + hks) .

3.5 Parameter Estimation

The subsequent numerical integration of the equations of motion of the satellites in terms of the ODEs, will
result in a numerically propagated orbit. This orbit will deviate from an observed orbit, e.g., a kinematic
orbit, in the course of time. This is not unexpected, given the discrepancy between the initially only
approximately known dynamics from background models and the actual forces acting on the satellites. The
objective of gravity field recovery is to estimate the mean monthly parameters of Earth’s gravitational field,
as well as additional parameters, by adjusting the modeled orbit to satellite observations. Therefore, the
parameter estimation using least squares adjustment is an integral part of dynamic orbit determination and
gravity field recovery.

The following subsections provide slightly extended versions of the equations that were previously sum-
marized and presented in Koch et al. (2021, Appendix A). For further details on the topic of gravity field
parameter estimation, readers are also encouraged to consult the lecture notes on Global Gravity Field
Modeling from Satellite-to-Satellite Tracking Data (Naeimi and Flury, 2017). First, in Section 3.5.1, the
relationship between the modeled satellite states and range-rates is shown. Section 3.5.2 outlines the least
squares adjustment process, beginning with the general and well-known equations and progressing to aspects
specifically relevant for gravity field recovery and this thesis, such as parameter pre-elimination, the com-
bination of normal matrices, and the mathematical definition of range-rate post-fit residuals. The weight
matrices used for kinematic positions and K-band range-rates are presented in Section 3.5.3. Section 3.5.4

focuses on the linearization of observation equations and the definition of the relevant design matrices.

3.5.1 Model for Computed Observations

The range vector pointing from one satellite to another is defined as the vector difference between the inertial
position vectors:

raAp =Trp —TI4g. (334)

The range between these two satellites is then the Euclidean norm:
p=rag|. (3.35)

By differentiating the above expression with respect to time one obtains the range-rate:

p= w, (3.36)

where the relative velocity vector is defined as the difference:
rap =Tp—T4. (3.37)
With the unit vector along the range vector, i.e., the line-of-sight vector:

ean = r“%, (3.38)
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the range and range-rate can also be formulated as projections onto the line-of-sight vector (e.g., Rummel
et al., 1978; Seeber, 2003):

=TrAB - €aB
P (3.39)
Pp=TAB * €AB .

3.5.2 Least Squares Adjustment

Least squares adjustment is an algorithm for the estimation of “optimal” values for unknown parameters
from a set of observations, and is applied when the number of observations mn; exceeds the number of
unknowns n,. Although, from a mathematical point of view, all unknown parameters can be uniquely
determined when n; = n,, in this case, no quality assessment can be made, and potential outliers may not
be identified. The foundation for the parameter estimation is an appropriate functional model f that defines
the relationship between the observations 1 = (I1,...,l,,)T and the parameters x = (z1,...,2,,)T. With
this functional model, the observations can be expressed as functions of the parameters, i.e., in vectorized
form as 1+ v = f(x), where vector v = (vq,...,v,,)T contains errors or residuals that arise due to the
stochastic nature of observations and discrepancies between the underlying model and reality. In linear
form, the relationship between observations and parameters can be expressed as 14+ v = Ax, where A is the
so-called design matriz (Jacobian) containing the partial derivatives of the functional model with respect
to the unknowns. In the method of least squares adjustment the optimal parameter estimates are found by
the minimization of the residuals squares sum: vIv — min, or in the case of weighted observations, by the
minimization of the weighted residuals squares sum: vI Pv — min, where P is the weight matrix containing
the stochastic information of the observations.

The fundamental equation for obtaining optimal parameter estimates X using weighted least squares ad-
justment is (e.g., Koch, 1999; Niemeier, 2008):

%= (ATPA)"PATPI. (3.40)
Equation 3.40 can be formulated more compact with the normal matrix N and right hand side vector b:
x=N"'b. (3.41)

Dynamic orbit determination falls under the category of non-linear problems, requiring Equation 3.40 to be

rewritten as:
Ax = (ATPA)"' ATPAL. (3.42)

For these kind of problems, the vector xy containing a priori values of the unknown parameters is introduced.
The functional model f can be evaluated with these a priori values, i.e., f(xp), resulting in a set of computed
observations. The vector Al represents the “observed minus computed” observations, i.e., the difference
between observations 1 and f(xg). The vector A% contains corrections to the a priori parameters. With

these, the parameter vector is defined as:

% = xo + A% . (3.43)

Typically, the process of computing X involves an iterative approach until convergence, where x( is updated
to X after each iteration.
Owing to the distinction between parameters that are only valid for a specific arc (local parameters, ~) and

parameters that remain constant over one month (global parameters, &), the parameter correction vector
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can be divided into two parts:

A% = (AR, A%E)T. (3.44)

Taking into account the individual arcs i = (1,2,..., j), the parameter correction vector can be further
extended to:

A% = (ARL,, ARD, ..., ARD ARL)T (3.45)

Referring to Equation 3.41, with the separation of the parameter correction vector as shown above, and

the assumption of j uncorrelated observation groups, the following system of normal equations is obtained:

Noi 0 -+ 0 Nog\ (A% bs
0 N -+ 0 Neosl [A% bos
: : . : : : = : (3.46)
0 0 -+ N Nog| |2a%. b.;

NT., NI, - NI Ng A%kg be

where O represent zero matrices of appropriate size.

The final estimate of the global parameter corrections AXg can be obtained by an arc-wise pre-elimination
of the local parameter corrections (3.48) and the stacking (3.47) of the individual arcs (e.g., Kusche and
Springer, 2017):

J
Akg = ARq;, (3.47)
i=1
with
1
Axg; = (N@i ~Neogi’ N} N~®i) (bai — NI, N2 bo) - (3.48)

The normal matrices N.;, Ng;, Nog;, and the right hand side vectors b..;, bg; are formulated as weighted
combinations of the K-band observations (denoted by subscript K) and kinematic positions of the two
satellites (subscripts A, B):

N, = AIAi Pai Aoa; AEBi Pp; A<p;
NN@i = AZAi PAi A@,M AZBi PBi A@Bi

+ AT Pr Ak
+

Noi= Az PaiAoai + Alg PpiAgs
+
+

AL Pr Ask;
ALk Pr Ack; (3.49)
AT Py Alg;
Al P Alg;

b.; = AIAi Pa; Aly; A’EBi Pg; Alpg;
béBz’ = AgAz Pa; Aly; A’QI;BL Pp; Alp;

+ + + + +

with design matrices A a;, Avpi, Avki, Agai, Agpi and Agk; (see Section 3.5.4); weight matrices
P4;, Pp; and Pk representing the stochastic model of the observations (see Section 3.5.3); and reduced
observation vectors Aly;, Alg; and Alg;.

In the case of position components, the reduced observation vectors of the two satellites are:

Aly; = VeC(fAi — rAi) (3 50)
Alpg; = vec(FBi - I'Bi) . '

The matrices T 44, Tp; contain the inertial kinematic positions of an arc ¢, while matrices ra;, rp; the
corresponding dynamically modeled positions, i.e., the outcome of the numerically integrated equation of

motion (see Equation 3.2).
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The reduced range-rate observation vector of an arc i is accordingly defined as:
Alg; = p; — pi - (3.51)

The vector p, comprises the L1B range-rate measurements, incorporating light-time and antenna phase
center offset corrections. The counterpart p; is calculated from the dynamically modeled positions r4;, rp;
and velocities T 4;, I'g;, as outlined in Section 3.5.1.

Once the final global parameter corrections A%Xg, have been estimated with Equation 3.47, the corrections

to the local parameters of an arc i can be obtained (e.g., Kusche and Springer, 2017):
A%.; =N_lb.i— N} Nog; Akg . (3.52)

Finally, with the known local and global parameter corrections, the K-band range-rate post-fit residuals v ;

for each of the involved arcs 7 can be calculated:
Vi = Aok AXw; + A@Ki A}A(@ — Alg; . (353)

3.5.3 Weights

The accuracy information of the observations 1 = (Iy,...,l,,)T can be described by the covariance matrix
(see e.g., Koch, 1999; Niemeier, 2008):

2
01 g12 .. O1p,
2
g921 g5 ... O2p,
Xu=| . . ] (3.54)
2
Onil Ong2 - - ag

ng

The covariance matrix consists of variances o2 of the individual observations I; along its diagonal, while the
off-diagonal elements represent the corresponding covariances, i.e., provide information on correlations. It
is often assumed that there are no correlations between individual observations. With this assumption, the

covariance matrix simplifies to a diagonal matrix:

S = diag(o3, 03,..., 02)) . (3.55)

If one further assumes that all observations have the same accuracy, i.e., 0% = -+ = g2 L= o2, the covariance
matrix simplifies to:

¥ =01 (3.56)

where I is the identity matrix. If only the accuracy relationships between the observations are known,

meaning o2 is unknown, the covariance matrix can be expressed as follows:
2
Xu=05Qu (3.57)

where Q; is the cofactor matrix that describes the accuracy relations between the individual observations,
and o3 is the unknown variance of the unit weight. For the estimation process, knowing o3 is not necessary,

as it can be estimated during the adjustment. This parameter is often assumed to be 1.
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However, for the least squares adjustment, the weight matrix P must be known, which is defined as the

inverse of the cofactor matrix:

P=Q;'
1 -1 (3.58)
( 2”> |
o
In the case of a diagonal covariance matrix, the weight matrix is given by:
od/o} 0 e 0
0 od/o3 ... 0
P— . 0. 2 ' . . (3.59)
0 0 e 0(2)/0,2”

Within the scope of this thesis, for the main adjustment, a diagonal weight matrix was used for K-band
range-rate observations with 03 = 1 and the constant standard deviation ¢ = 0.2 um/s. For the kinematic
position weight matrices, epoch-wise covariance information from the GNSS-based orbit products was used to
construct diagonal weight matrices. Additionally, the relative weighting of K-band range-rates and kinematic
positions was adjusted by dividing the elements of the kinematic position weight matrices by empirically
derived factors of 500 for GRACE and 25 for GRACE-FO. In the pre-adjustment, a slightly different weighting

procedure was applied (see Section 3.2.2).

3.5.4 Partial Derivatives

Since the functional model f for dynamic orbit determination is non-linear with respect to the unknowns,
it is necessary to linearize f(x) in order to be able to estimate parameter corrections Ax using Equation
3.42. The linearization is performed using a first-order Taylor series expansion, which is then evaluated

with the a priori values of the unknown parameters xo. This leads to the following relationship between the

measurements 1 = (Iy,...,l,,)T and unknown parameters x = (z1,...,2,,)" (e.g., Koch, 1999; Niemeier,
2008):
0
1+ v =f(x )—l—a—f AX. (3.60)
X=Xq

The partial derivatives of the functional model with respect to the unknowns form the design matrix:

A=kl = : : : (3.61)
0r1 0z,

Now, relating range-rate observations and kinematic positions to the unknown parameters according to the
general linearization equation (3.60) in the observed minus computed form, and omitting the residuals, results
in:

N~

. e
pi—pi= Z op: e + Z on Adgik

— anik 8(1 Bik
veo(F rai) Z Ovec(r a;) . Z ovec(r 4;) (3.62)
Ai —T4) = qrik ik .
‘ ‘ k=1 8q~1k ’ b1 aq@ik e
o roi) nz Ovec(rp;) n Z Ovec(rp;) Oveewpi) o
A\ Bi —TIBi) = qrik ik
’ ‘ h—1 6q~zk ‘ 1 3Q@z o
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where vectors q.; and qg; include local and global parameters, respectively; Aq.; and Aqg; are the cor-
responding corrections to the a priori values of parameters in vectors q~; and qgy; and n. and ng are the
number of parameters in vectors q.; and qg;, respectively.

The partial derivatives in Equation 3.62, further subdivided into individual sets of local and global pa-

rameters, can now be used to set up the design matrices A 4;, Awpi, Avki, Agai, Agp: and Agk;:

A 9pi 0p; 0pi 0pi 0pi
~ET \ Oyoai Ob4; OyoBi Obp; Oe;

Ovec(ry;) Ovec(ra;)
Ay = 0 0 0
4 ( Iyoai Ob 4
pe( 0 o Olen) owten) )
YoBi Bi (3.63)
Aes — ( 0pi pi opi )
e aCIll‘ﬂZ 6§nmi asAi 8SBi
Ans — (8vec(r,4z Ovec(ra;) Ovec(ra;) 0)
B a(Jnmz 8§nmi 8SA7;
(8vec(rm) Ovec(rp;) Ovec(rp;) )
Agpi = — — o ———-
aCjnmi aSnmi asBi

where yoai, Yop: denote the initial state vectors, b a;, bp; represent the accelerometer biases, s;, Sp; con-
tain the elements of the full accelerometer scale matrices, e; contains the geometric empirical range-rate
parameters, and the spherical harmonic coefficients of Earth’s gravitational potential to be estimated form
vectors Cpmi = (Cag, Ca1, Caa,...) and Spm; = (S21, S22, S31,-..).

The partial derivatives of the positions with respect to the corresponding initial states are part of the epoch-
wise state transition matrices ®, which contain the partial derivatives of a satellite state y = (rT, #T)T =

(2,9, z,vz,vy,v2)T at a specific time t with respect to the initial state yo = (rg, %3 ) = (70, %0, 20, vT0, VY0, v20) "
at time to (e.g., Montenbruck and Gill, 2005; Vallado, 2004):

or e
9 Oxy ~ Ovzo
Bt t) = =| : .. |. (3.64)
950 % 87.12
Oxog  Ovz

At the initial time ¢t = ¢, the state transition matrix is obviously the identity matrix I. To obtain the state

transition matrices for a time ¢ of interest, the ODE

) 03x3 I3x3
Blla)= | g g | B(t0) (3.65)
or o

has to be numerically integrated with the equations of motion of the satellites (see Section 3.4), since for
precise applications, i.e., when complex accelerations ¥ have to be considered, an analytical solution is not
feasible. Besides these partial derivatives, additional partial derivatives are required for constructing the
design matrices for gravity field recovery. These include the derivatives with respect to the other dynamic

parameters p = (p1,..., pnp)T and are part of the so-called sensitivity matrices S (e.g., Montenbruck and
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Gill, 2005; Vallado, 2004):

Ox Oz

; o o,
s=go=| ¢ (3.66)

vz vz

R o,

Similarly, the numerical values of the sensitivity matrix at a specific time ¢ can be obtained through numerical
integration. With the integration constant S(tp) = 0, the following ODE has to be solved:

03x3  Isxs 0351,
S(t) = ¢ . S(t) + o | (3.67)
or ok op

For the computation of the sensitivity matrices, the partial derivatives of the total acceleration with respect
to the dynamic parameters must be available. These are obtained by differentiating the corresponding equa-
tions presented earlier in Section 2.2 (gravitational potential) and Section 3.3.8 (accelerometer calibration
parameters).

Using the state transition and sensitivity matrices, the partial derivatives of a computed range-rate p with

respect to the initial states and dynamic parameters can be formulated as:

op _ 0p oy
dyo 0Oy Jyo (3.68)
9 _0p 0y |
op Oyop

where, according to the geometrical relationships outlined in Section 3.5.1, the partial derivatives of the

range-rate with respect to the states of satellites A and B are:

9p ( P tap > 9p 9p
—— = |eap— — —— —eunB and _— = 3.69
0y a ) p dyB y a (3.69)
The non-dynamic partial derivatives of the computed range-rates with respect to the geometric empirical
range-rate parameters can be obtained straightforward from the relationship presented in Footnote 2 of
Section 3.2.3.

3.6 Evaluation of the LUH Gravity Field Solutions

For the further investigations presented in Chapter 4, it is important to demonstrate that the quality of the
computed monthly gravity field solutions is competitive with the state-of-the-art solutions from other analysis
centers. Significant deviations in the signal content of the spherical harmonic coefficients of the obtained
unconstrained gravity field solutions, or a noticeably higher noise level, could potentially undermine the
quality of the post-fit residuals for the subsequent investigations. Therefore, in the concluding section of this
chapter, the LUH monthly gravity field recovery results are compared with the corresponding time series

from the analysis centers listed below:

e CSR: RL06 (GRACE), RL06.3 (GRACE-FO) (Bettadpur, 2019; Save, 2019a)
e GFZ: RL06 (GRACE), RL06.3 (GRACE-FO) (Dalle et al., 2019b,a)

e JPL: RL0O6 (GRACE), RL06.3 (GRACE-FO) (Yuan, 2018, 2019)

e TUG: ITSG-Grace2018 (GRACE), ITSG-Grace _op (GRACE-FO) (Mayer-Giirr et al., 2018; Kvas et al.,
2019a).
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The solutions of the reference analysis centers were downloaded from ICGEM”. First, the spectral noise level
of the five time series in terms of difference degree standard deviations (see Equation 2.40) is compared. Since
gravity field solutions might generally employ different scaling factors, all spherical harmonic coefficients are
re-scaled to a common reference radius R and Earth’s standard gravitational parameter GM (e.g., Meyer
et al., 2019, Equation 3). A reference model, to be subtracted from the the gravity field solutions to obtain
the coefficients differences AC,,,,, and AS,,,,, is derived by averaging in total 216 x5 monthly GRACE(-FO)
solutions from April 2002 to September 2023. Prior to calculating the reference model, the Cyg coefficients in
all solutions are substituted with more accurate SLR values from Technical Note 14 (Loomis et al., 2020)8.
Note that degree-1 coefficients, which cannot be observed with GRACE(-FO), are important for deriving
accurate mass changes but are not relevant for comparisons at the solution level as conducted in this section;
therefore, they have not been substituted.

The spectral noise assessment in terms of mean difference degree standard deviations is shown in Figure
3.6a, separately for the GRACE and GRACE-FO period. A strong consistency is evident in the signal-
dominated low-degree coefficients, which are crucial for estimating mass changes due to their significant
signal content. Around degree 25, deviations between the solutions of the analysis centers become noticeable,
reflecting the varying noise levels in the solutions. The spectral noise characteristics of the LUH solutions
most closely resemble those of the JPL solutions. The reduced noise levels in the CSR and TUG solutions
result from their distinct gravity field recovery approaches, setting them apart from the approaches of the
other three analysis centers. For example, the solutions from TUG incorporate the estimation of daily gravity
fields along with additional tidal corrections (Kvas et al., 2019a). The CSR processing employs a two-step
approach, which may result in reduced noise levels in the higher-degree coefficients. In the two-step approach,
the gravity field parameters are estimated separately from the other orbit parameters, which are determined
in a prior iteration (Save, 2019a).

The noise level of the solutions in the spatial domain is usually assessed by analyzing residual mass
variations in suited regions, specifically those where only relatively small mass variations are expected, for
example, oceanic areas. To assess the spatial noise but also the signal content, which will be presented
shortly, monthly 1°x1° EWH maps are calculated using Equation 2.49. The same reference model and
corrections used for the difference degree standard deviations are also applied here. In addition, a Gaussian
filter (see Equation 2.50) with a half-width radius of 400 km is applied. To the time series of each grid cell,
a model consisting of a bias, linear trend, annual and semiannual variation (see Equation 2.51) is fitted to
absorb the most substantial time-variability contained in the gravity field solutions. Remaining signal after
the subtraction of this model from the EWH time series is shown in Figure 3.6b. While the EWH values over
the continents indicate the presence of unabsorbed non-seasonal time-variable signal, residual signal over
the oceans remains relatively homogeneous, although with slightly different noise levels among the analysis
centers.

Figure 3.6¢ depicts a comparison of the monthly Root Mean Square (RMS) of the residual signal over the
oceans. To avoid the influence of a possible signal leakage from the continents, and the impact of residual
tidal signal, which is expected to be most pronounced in coastal and polar regions, this metric is derived
from the grid cells in the boundary mask indicated in white on the LUH map in Figure 3.6b. The presented
monthly RMS noise values over the ocean suggest a certain correlation with the spectral noise discussed
earlier, i.e., JPL, GFZ and LUH exhibit closer values, while the CSR, and in particular, the TUG time series
exhibit a considerably lower spatial noise level. A slight increase in both spatial and spectral noise levels can
be observed in the GFZ time series during the GRACE-FO period.

"https://icgem.gfz-potsdam.de/sl/temporal (last accessed on 2025-08-04)

8ftp://isdcftp.gfz-potsdam.de/grace-fo/DOCUMENTS/TECHNICAL_NOTES/TN-14_C30_C20_SLR_GSFC.txt (last accessed on
2025-08-04)


https://icgem.gfz-potsdam.de/sl/temporal
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FIcURE 3.6: (a): Comparison of difference degree standard deviations (see Equation 2.40). For GRACE,

143 monthly gravity fields from April 2002 to July 2016 are considered; and 73 solutions from June 2018

to September 2023 for GRACE-FO. (b): Residual EWH signal not explained by the model in Equation

2.51. (c): RMS of the noise over the oceans computed on a 1°x1° grid. The values were computed in the

boundaries shown in white in the LUH map in (b). Numeric values in (c) represent the mean of the RMS
time series.
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Figure 3.7a shows the sum of the annual and semiannual amplitudes obtained from the fitting of the model
from Equation 2.51. The regions of increased amplitudes over the continents primarily reflect seasonal
hydrological variations, such as those related to surface water, snow, and soil moisture (e.g., Rodell and
Reager, 2023). Seasonal variations of approximately 15 to 20 cm EWH are particularly pronounced in many
tropical regions, including South America, Central Africa, India, and northern Southeast Asia. As shown in
Figure 3.7b, the seasonal amplitudes derived from the time series of the five analysis centers are remarkably
similar. The differences between the seasonal amplitudes from Figure 3.7a and a mean seasonal amplitude
map are usually around 0.5 cm EWH, but tend to be slightly larger for the GFZ time series. Nevertheless,
when computing the mean annual and semiannual amplitudes for around 180 river basins (Oki and Sud,
1998)?, no significant systematic discrepancies between the individual analysis centers can be recognized (see
Figure 3.7c).

The linear trend component obtained from the fit of the model from Equation 2.51 is illustrated in Figure
3.8a. Also the trends of the individual analysis centers generally align well, with the GFZ time series
showing slightly larger deviations from the mean trend (see Figure 3.8b). A region experiencing one of the
most substantial negative mass loss trends is Greenland. The corresponding mean EWH values evaluated
within the boundaries of Greenland are shown in Figure 3.8c. A comparable negative trend, of around 5.1
to 5.2 cm per year, associated with ice mass loss, can be observed for the five time series. Note that when
converting the yearly EWH trends presented in Figure 3.8c to mass, the obtained trends will not represent
the real mass loss as presented in dedicated literature (e.g., Velicogna et al., 2020; Sasgen et al., 2020). As
the purpose of this section is simply to provide a general comparison of the signal content in the time series
from the individual analysis centers, no leakage correction (e.g., Baur et al., 2009; Chen et al., 2015) was
applied. As a result, the presented EWH trends reflect only approximately half of the full ice mass loss signal
in Greenland due to the leakage-out error.

In addition to Greenland, as shown in Figure 3.8a, pronounced negative and positive linear trends in mass
changes are also observed in various other regions: in Antarctica and Alaska due to ice loss (e.g., Velicogna
et al., 2020; Ciraci et al., 2020), in Antarctica’s Queen Maud Land owing to steady accumulation of mass
(e.g., Velicogna et al., 2020), in North America and Fennoscandia due to GIA (e.g., Riva et al., 2009; Steffen
and Wu, 2011), in the Caspian Sea as a result of the imbalance between inflow from river discharge and
precipitation versus evaporation (e.g., Chen et al., 2017b,a; Lahijani et al., 2023), in North India because of
groundwater depletion (e.g., Rodell et al., 2009; Long et al., 2016), in West Africa driven by precipitation
increase and East Africa due to water level increase of the larger lakes (e.g., Rodell et al., 2018), in the
Indian Ocean near Indonesia as a result of the December 2004 Sumatra-Andaman earthquake (e.g., Han et
al., 2006; Panet et al., 2007), and east of Japan due to the March 2011 Tohoku-Oki earthquake (e.g., Wang
et al., 2012; Panet et al., 2018).

9http://hydro.iis.u-tokyo.ac.jp/ taikan/TRIPDATA/Data/RBvect.html (last accessed on 2025-04-23)
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Chapter 4

Ocean Tide Signatures in GRACE(-FO) K-Band Range-
Rate Post-Fit Residuals

At the end of the previous chapter, the spectral and spatial noise, as well as the signal content, of the
LUH monthly gravity field solutions were assessed, and compared to the corresponding gravity field recovery
results of selected GRACE(-FO) analysis centers. As a byproduct of the estimation of the spherical harmonic
coefficients of the gravitational potential, along with other ancillary parameters (e.g., the dynamic orbits and
accelerometer calibration parameters), post-fit residuals are also obtained. The assessment of residual and
unmodeled ocean tide signal in the 20+ years of GRACE(-FO) post-fit residuals data (Koch et al., 2024a)
will be the subject of investigation in this chapter. By recalling Equation 3.51, which defines the reduced
1I-SST observation vector as the difference between the observed and modeled range-rates, it becomes evident

that the residuals must incorporate two categories of contributors:

1. Instrumental: effects associated with the sensor platform and its interaction with the environment, pos-

sibly also encompassing effects related to the conversion of low-level sensor data to L1B.

2. Geophysical: effects linked to the conversion from L1B to Level-2, including model errors of one of the
effects listed in Table 3.3, or contributions from higher frequency signal not captured by the monthly

spherical harmonic coefficients.

A specific effect that is part of the post-fit residuals might not always be clearly attributable to one of
the two categories. The main subject of this chapter, i.e., the ocean tide signal, belongs to the second
category of contributors. Taking into account the background model accelerations presented in Table 3.3 in
the equations of motion of the satellites during the estimation process of the spherical harmonic coefficients
of the gravitational potential, it is expected that the contribution of these specific effects would be reduced
from the observations, in the case of error-free models, leading to a monthly solution containing only the
conventionally defined contributions to the gravitational potential, i.e., mainly surface mass variations related
to the hydrosphere and cryosphere, as well as the impact of non-tidal solid Earth mass variations. In such
a case, besides sensor platform related contributions, the post-fit residuals might primarily contain the
corresponding higher frequency signal components, e.g., submonthly hydrology. Yet, models inevitably
include some inaccuracies due to their inherent limitations. In a rather theoretical best-case scenario, the
model inaccuracies would manifest themselves solely as part of the post-fit residuals. More likely, however, is
the complex case where a larger part of the inaccuracies is propagating to the post-fit residuals, and a smaller
part is absorbed by specific parameters that are solved for during gravity field recovery, possibly including
the spherical harmonic coefficients of the gravitational potential. The corresponding proportion between
residuals and parameters will change if, for example, dedicated ocean tide parameters or empirical parameters
with a high temporal resolution are co-estimated along with the gravitational potential and the secondary
parameters. However, a complete absorption by the involved parameters, even when dedicated ocean tide
parameters are co-estimated, appears unrealistic, simply due to the complexity of certain background model
effects that need to be considered.

In terms of magnitude, ocean tides are not the most significant acceleration effects in orbit modeling,
neither are they the most significant tidal effects, as can be clearly seen in Figure 3.4. The specific challenges
in modeling ocean tides—particularly the rather complex dependence on various parameters in addition to
the TGP, as well as the lack of globally available, accurate observations—were already discussed in Section

2.3. In comparison to the oceans, modeling the solid Earth’s response to tidal forces is considerably simpler

7
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(e.g., Agnew, 2009). While the disturbing potential due to solid Earth tides, where conventionally only
degrees 2—4 need to be considered (see Section 3.3.2), has a rather global character, ocean tides have a
distinctly more local spatial nature. This can also be seen very clearly in the acceleration magnitude time
series presented in Figure 3.4, where the solid Earth tides have a highly periodic appearance along the orbit,
with one cycle every half a revolution (/245 min), whereas the ocean tides exhibit a much more complex
pattern. Similarly complex patterns with relatively large magnitudes can only be observed in the time series
of the non-gravitational acceleration, and non-tidal acceleration due to rapid mass variations in the oceans
and atmosphere. Other tidal effects are one or several orders of magnitude smaller than the ocean tides.
Based on this and considering that the more periodic an effect is, the more likely it is to be absorbed by the
estimated dynamic or empirical parameters, one can hypothesize that ocean tides are the main contributor
to the post-fit residuals at tidal frequencies.

The most significant residual signals from ocean tides are anticipated at frequencies of roughly one to two
cycles per day (compare Table 2.4). These high-frequency errors are affecting the orbit modeling quality
and therefore also the quality of the derived GRACE(-FO) gravity field products; however, the gravity field
solutions are not suitable for detecting these kind of high-frequency errors due to the monthly sampling
of the solutions. Theoretically, only a limited number of tidal constituents with known aliasing periods
(see e.g., Ray and Luthcke, 2006; Seo et al., 2008)—according to the Nyquist—-Shannon sampling theorem,
those with periods >60 days—might be detectable in the monthly gravity field solutions if the tidal signal is
absorbed by the spherical harmonic coefficients of the gravitational potential during gravity field recovery. An
analysis of the post-fit residuals or similar quantities derived from the high-frequency ranging measurements
of GRACE(-FO) is more suitable for analyzing ocean tide signal.

Section 4.1 describes the procedures used to derive the Lomb—Scargle periodograms, which will be used
later to assess the residual and unmodeled ocean tide signals in the GRACE(-FO) K-band range-rate post-
fit residuals. In Section 4.2, a general sampling scheme of periodic signal by the GRACE(-FO) satellites
is derived, which will later be useful to interpret the obtained Lomb—Scargle periodograms. To get a more
global view on the most important periods in the Lomb—Scargle periodograms of the 1I-SST post-fit residuals,
criteria for the extraction of “important” periods from the periodograms are introduced in Section 4.3. In
Section 4.4, the spectral alignment of the extracted information from the periodograms with known ocean

tide periods is assessed. Spatial characteristics of the identified tidal information are studied in Section 4.5.

4.1 Lomb—Scargle Periodograms of 1I-SST Post-Fit Residuals

To derive the Lomb—Scargle periodograms, which will be used in subsequent sections as input to assess
residual and unmodeled ocean tide signal in the GRACE(-FO) 1I-SST data, the following steps are applied:

1. Low-pass filtering of the range-rate post-fit residuals to suppress the K-band system noise

2. Numerical differentiation of the low-pass filtered range-rate post-fit residuals to obtain residual range-

acceleration, which is better suited for localizing mass variations

3. Assigning of the residual range-acceleration to a global grid based on the geographical coordinates of the

satellites
4. Spectral analysis of the times series of each grid cell using Lomb—Scargle periodograms.

The following three subsections provide details on these steps and present illustrative periodograms.

4.1.1 Low-Pass Filtering Range-Rate Post-Fit Residuals

Range-rate post-fit residuals can be regarded as a complex superposition of effects reflecting the discrepancies

between the measured satellite-to-satellite tracking quantities and the dynamically modeled counterparts.
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FIGURE 4.1: (a): Periodogram amplitude spectral density estimate of two monthly batches of range-rate
post-fit residuals. Gray: GRACE (January 2008), black: GRACE-FO (January 2021). The frequencies
from 1 to 50 mHz are highlighted in yellow. (b): Moving average filter smoothed periodogram showing the
frequency range from 0.1 mHz to 0.1 Hz. Yellow lines represent the frequencies of 1 to 10 cycles per orbital
revolution (cpr). (c): Monthly low-pass filter cut-off frequencies f.. Mean f. is 8.4 mHz (GRACE, blue)
and 11.8 mHz (GRACE-FO, red). The mean f. are also indicated in the other panels. (d): Cumulative
percentage of signal as a function of cpr frequency. 100% are assumed at the respective cut-off frequencies.
Panels (a) and (c) taken from Koch et al. (2024b, Figure 1).

On the one hand, there are effects of an instrumental nature, e.g., reflecting expected characteristics of
the individual sensors (instrumental noise), or systematic effects related to varying orbit characteristics and
the interaction of the sensor platform with the environment. As mentioned above, on the other hand, the
range-rate post-fit residuals will contain contributions of geophysical nature, e.g., because the geophysical
background models are not free of modeling errors, and because higher frequency gravity signal cannot be
sampled by the estimated monthly gravity field solutions. In the range-rate post-fit residuals of a monthly
gravity field solution, these two categories of effects are observed to dominate different frequency ranges.
Figure 4.1a depicts typical periodogram ASD estimates (see Equation 2.87) of two monthly range-rate
post-fit residuals batches (GRACE: January 2008, gray; GRACE-FO: January 2021, black). A drop in
power for the frequencies of approximately 0.18 mHz (one cycle per orbital revolution, 1 cpr) and smaller
can be observed, which is the result of the co-estimation of empirical kinematic range-rate parameters, that
absorb a large part of the orbit modeling error (including contributions from background model inaccuracies)
and therefore contribute to the quality of the monthly gravity field estimates. Geophysically meaningful
signal, such as residual tidal and non-tidal mass variations, is anticipated to be the dominant feature in
the somewhat higher frequencies, especially around 2-8 cpr where the largest spectral amplitudes are to be

found (see Figure 4.1b). However, at a frequency of approximately 10 mHz, the KBR system noise becomes
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FIGURE 4.2: Location of range-rate post-fit residuals larger than three times the standard deviation with

respect to the mean of full (F) and low-pass (LP) filtered signal. Left: GRACE (January 2008), right:

GRACE-FO (January 2021). Continuous arcs, where the time difference between two consecutive epochs

is 5 seconds, were reduced to midpoints, with the size of the midpoint set to be proportional to the arc
length, as schematically shown in panel (c).

increasingly dominant. As previously mentioned, to separate geophysically meaningful signal from the KBR
system noise and other known systematic effects, the range-rate post-fit residuals have to be low-pass filtered.
A suitable cut-off frequency f. is close to 10 mHz and can be approximated as the frequency of the smallest
spectral amplitude of a monthly data set of residuals in the frequency band from 1 to 50 mHz (frequency range
is highlighted in yellow in Figure 4.1a). A time series of corresponding monthly cut-off frequencies, which
range between 6 and 18 mHz, is shown in Figure 4.1c. Before determining the minimum amplitude frequency,
the rather noisy periodogram spectral amplitudes were smoothed with a moving average filter (cf. Figures
4.1a and 4.1b) to ensure a more reliable minimum estimation. The average f. value for the GRACE period
is 8.4 mHz, while a slightly larger value of 11.8 mHz is observed for the GRACE-FO period, demonstrating a
less noisy KBR system performance on the follow-on mission (e.g., Landerer et al., 2020; Koch et al., 2021).
As the contribution to the total amplitude of the geophysically meaningful signal decreases with increasing
frequency (see Figure 4.1d), these mission-specific cut-off frequencies are taken for the further analysis.
Figure 4.2 demonstrates the impact of low-pass filtering in extracting geophysically meaningful signal.
The blue dots in the two upper maps display the locations of the epoch-wise residuals with amplitudes that
exceed the mean value of the monthly time series by more than three standard deviations. Continuous arcs
with a 5-second interval between consecutive epochs were reduced to their geographical midpoints, and the
dot size was adjusted to be proportional to the arc’s length. For residuals that solely reflect the K-band
system ranging noise, one would expect to see small points relatively uniformly distributed across the globe,
similar to what is depicted in Figure 4.2b. In fact, Figure 4.2b additionally reveals subtle clusters of small
points, particularly over the Amazon Basin and the Arctic, suggesting that the noise of the KBR system
on GRACE-FO does not entirely dominate the post-fit residuals, thereby allowing geophysical effects to
become apparent. In contrast, the map of the GRACE range-rate post-fit residuals time series in Figure
4.2a displays a more homogeneous global distribution of points, suggesting that the post-fit residuals are
primarily influenced by instrumental effects. However, the points are larger than those in Figure 4.2b, which
indicates that the KBR system noise is not the most dominant effect in the time series. Indeed, in the

examined month, the values that exceed the threshold of three sigma are related to instrument systematics
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according to the procedure described in Chapter 3. The zoom view in (b) depicts the unfiltered post-fit
residuals for January 2008 exceeding three times the standard deviation.

(more context in next paragraph). The two maps in Figure 4.2¢,d refer to the low-pass filtered range-rate
post-fit residuals. Clusters, which are heterogeneously distributed across the globe, can be identified in
regions where unmodeled geophysical effects can be expected. The larger size of the points is also evident,
which aligns with expectations for unmodeled geophysical effects distorting the satellite motion significantly
over several dozens of seconds. The maps in Figure 4.2 indicate that the post-fit residuals contain extractable
information about geophysical effects. Depending on the highlighted region, unmodeled hydrology, ocean
tide errors, or other effects might be the cause, although this cannot be readily inferred from the maps. To
gain a more detailed understanding of the potential causes, it is necessary to examine longer time series

using more suitable tools, as will be presented in the following sections.

Figure 4.3 depicts several effects of instrumental kind in diagrams that plot time against the argument
of latitude, using data from three months of band-pass filtered (5-20 mHz) range-rate post-fit residuals.
The argument of latitude is the geocentric angle measured between the ascending node of the satellite orbit
and the position of the satellite (see e.g., Seeber, 2003), and is 0° or 180° at the equator, 90° at the North
Pole and 270° at the South Pole. While the post-fit residuals in Figure 4.3b refer to the gravity field re-
covery processing scheme outlined in Chapter 3, panel (a) shows the post-fit residuals that correspond to
the LUH-GRACE2018 time series, i.e., a previous release of solutions (Koch et al., 2020). The following
systematic effects are highlighted with numbers in Figure 4.3a: (1) increased residuals at transitions of the
satellites from light into Earth shadow and vice versa, the origin of which has not been fully clarified (see
e.g., Behzadpour et al., 2019); increased residuals at frequency-related (2) and star camera baffle-related (3)
signal-to-noise ratio drops of the KBR system (see Harvey et al., 2017; Goswami et al., 2018; Behzadpour
et al., 2019); increased residuals (4) possibly related to the star camera assembly (Koch et al., 2021); and
(5) increased residuals related to bad sensor data affecting the whole involved arc.

The time vs. argument of latitude diagram of the post-fit residuals computed with the presented updated
procedure, including more recent background models, as well as KBR system and star camera data, shows
overall smaller amplitudes. The earlier mentioned systematic effects remain in the post-fit residuals of the
reprocessed gravity field solutions time series, with the exception of effect (4). It can be assumed that this
systematic effect no longer appears due to the use of the improved sensor data (L1B RLO03 instead of RL02).
The RLO03 sensor data products (PO.DAAC, 2018) were corrected for the stellar aberration error, and the

star camera quaternion combination was revised (Bandikova and Flury, 2014). The improved star camera
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FIGURE 4.4: Exemplary time series of residual range-accelerations for a grid cell in the Weddell Sea.

products led also to a reprocessing of the KBR products. While the light-shadow transition effects are
masked by the KBR system noise in the unfiltered post-fit residuals, the effects related to the signal-to-noise
ratio drops of the ranging system (effects 2 and 3) are evident, displaying generally higher amplitudes than
the typical noise level. This is illustrated in the zoomed view of Figure 4.3b and accounts for the previously
mentioned pattern in Figure 4.2a.

Apart from the patterns related to eclipse transitions, GRACE-FO K-band range-rate post-fit residuals
in the 5 to 20 mHz frequency band do not show any of the previously mentioned systematic errors (cf.
Koch et al., 2021, Figure 4d). Duwe et al. (2024) studied band-pass filtered GRACE-FO LRI range-rate
post-fit residuals and found the presence of the eclipse patterns also in the LRI post-fit residuals. Despite
this, several other previously unknown effects were detected, which are not accessible in the K-band post-fit

residuals due to the larger noise level.

4.1.2 Residual Range-Accelerations

Compared to range-rates, range-acceleration is more suitable for the further analysis of geophysical effects
in the residual 1I-SST data. This is because range-acceleration shows peak amplitudes directly over the
causative mass anomalies, even though it may exhibit small sidelobes, as shown, for example, in Figure 1
of Ray et al. (2009). Since acceleration is the rate of change of the velocity with respect to time, residual
range-acceleration can be obtained by numerically differentiating the previously filtered range-rate post-
fit residuals. It is preferable to perform the low-pass filtering before numerical differentiation, since the
differentiation process will amplify the high-frequency components of the input signal, i.e., will increase the
high-frequency noise. An overview of various numerical differentiation techniques can, for example, be found
in Hoffman (2001). The numerical derivative of a discrete time series can be obtained by approximating the
data with a suitable function, followed by an analytical differentiation of that function.

A suitable approximating function is, for example, the polynomial function. In this thesis, the numerical
differentiation of the residual 1I-SST data is performed by fitting polynomials of degree 6 to short pieces
counsisting of 7 filtered range-rate post-fit residuals (evaluation point in the center £3 epochs). Polynomial
functions of even degrees 4 through 10 were evaluated, and all exhibited a similar fitting quality. The unknown
polynomial coefficients describing the shape of the approximating function can be obtained using unweighted
least squares adjustment (see Equation 3.40). A smoothing effect can be achieved by incorporating a few
additional epochs into the estimation process. The estimated polynomial function is then differentiated with
respect to time to get the residual range-acceleration of an evaluation point.

The obtained residual range-acceleration time series is then examined for large amplitude spikes, which
may occur due to discontinuities in the approximated segment or poor sensor data quality. Typically, the
range-acceleration values vary between +5x107Y m/s?, as shown in Figure 4.4 for an exemplary time series.

Absolute values exceeding 1.5x10~% m/s? were excluded from the further analysis.
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Grid Cell Size Mean N Min. p [d]

1°x1° 1542 10.78
2°%2° 6169 2.54
3°%x3° 13881 1.13
4.5°x4.5° 31233 0.50
5°x5° 38559 0.41
7.5°x7.5° 86758 0.18
10°x10° 154237 0.10

TABLE 4.1: Mean N: aver-
age number of observations for
approximately 21.5 years of 5-
seconds sampled 11-SST data;
Min. p: approximate resolvable
minimum period.

FIGURE 4.5: Global 5°x5° grid. Exemplary Lomb—Scargle peri-
odograms of the four highlighted grid cells are shown in Figure 4.6.

4.1.3 Periodograms of Gridded Residual Range-Accelerations

In order to perform a spatio-spectral analysis, the residual range-acceleration data, which is nominally
sampled every 5 seconds, can be grouped into grid cells of suitable size. The midpoint between the two
satellites is considered as the location of the measurement, and the corresponding geographical longitude
and latitude is used to assign the data to a specific grid cell. The number of observations within a grid cell
depends on several factors, with the most significant being the chosen grid cell size (see Table 4.1). Other

important factors are:

e The latitudinal location of the grid cell: The actual area covered by a cell decreases as its longitudinal
distance from the equator increases. Consequently, satellites are able to gather more data over a cell

located near the equator compared to one near the poles.

e The actual ground tracks, which are determined by the characteristics of the satellite orbit and satellite
dynamics: The nearly polar inclination of the satellite orbits results in measurements that cover nearly all
latitudes. Since the ground tracks of the GRACE(-FO) satellites converge in the polar regions, polar cells
show a higher frequency of overflights; however, since the satellites pass over these cells much faster, the
number of assigned measurements is lower compared to those near the equator. Furthermore, resonant
orbit periods (e.g., Wagner et al., 2006; Kloko¢nik et al., 2015) can significantly reduce the ground track

coverage. This causes longitude dependent variations in observation availability.

e Sensor data availability: Although smaller gaps in the accelerometer or star camera data can be filled
through interpolation, allowing for the calculation of a gravity field solution and corresponding range-rate
post-fit residuals, larger gaps—sometimes lasting several days—prevent the calculation of the residuals,
even when the 1I-SST data remains uninterrupted. However, larger gaps in the KBR data are also not
uncommon. Additionally, in order to obtain a good gravity field product, a screening process is employed
during the generation of the monthly gravity field solutions to exclude poor-quality sensor data from the

calculations.

Since the assumption of a uniform time sampling does not hold true for the gridded time series of resid-
ual range-accelerations, the classical FFT-based periodogram method (see Section 2.4.1) is unsuitable for a
following spectral analysis without preceding data manipulations. To address the irregularly sampled time
series without necessitating prior interpolation, the periodogram P(f) is computed using the Lomb-Scargle
method (Equation 2.89). In principle, the periodogram can be evaluated at any specified frequency f. More
common is to evaluate the periodogram at frequencies f = n/(oNTs), where m = {1,...,0N/2} is the fre-
quency number, which is dependent on the number of observations IV of the time series and the oversampling

factor 0; and Ty = T/(N — 1), where T is the total time interval (approximately 21.5 years). In general,
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FI1GURE 4.6: Exemplary Lomb—Scargle periodograms of the residual range-acceleration time series in the
four grid cells highlighted in Figure 4.5. Due to the applied oversampling factor the largest periods exceed
the length of the analyzed time series (21.5 years).
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the periodogram at these frequencies can be computed much more efficiently than at frequencies of a self-
arranged frequency array (Press and Rybicki, 1989). Using the oversampling factor enhances the frequency
resolution of the periodogram, without introducing any new information into the frequency spectrum. In
this study, an oversampling factor of 4 was selected.

With the chosen set of frequencies, the smallest resolvable period depends on the number of observations
N within a specific grid cell and the time interval T' of the corresponding time series. Table 4.1 provides an
overview of the approximate minimum resolvable period for different grid cell sizes. Largest tidal contribution
can be expected in the diurnal and semidiurnal bands. To resolve these important bands in the periodograms,
at least a 5°x5° grid cell size is required. As will be demonstrated in the next section, despite the limit of
0.41 days, signal with a shorter period can still be assessed indirectly in the diurnal and semidiurnal bands
via spectral replication.

Exemplary periodograms (\/1:T , Equation 2.89) for grid cells in the Weddell Sea, the Amazon basin, the
Pacific Ocean and central Asia are shown in Figure 4.6. The exact location of these grid cells is depicted in

Figure 4.5. The following can be recognized in these exemplary periodograms:

e The magnitudes of the spectral amplitudes vary significantly across the exemplary regions. Please note
the different upper limits of the y-axes. Largest peaks are present in the periodogram of the Amazon
basin grid cell. The Amazon river basin is known for having one of the largest seasonal mass variations
related to hydrology among all river basins. Relatively large are also the peaks in the periodogram of
the Weddell Sea grid cell. The Weddell Sea is a challenging region for ocean tide modeling due to several
factors, including scarce observations, shallow waters, complex coastlines, and the presence of ice. Smaller
spectral amplitudes are observed in the other two regions, which appears to be realistic, as much weaker

mass variations are expected there.

e The peaks are located in the diurnal and/or semidiurnal bands, i.e., in bands where mass variations due

to tidal phenomena are expected; but also peaks at longer periods can be observed.

e A symmetric arrangement of the peaks with slightly different amplitude values can be recognized in the
diurnal and semidiurnal bands. The aforementioned axial symmetry (the dashed blue lines in Figure 4.5
represent the apparent reflection axes) is caused by the presence of additional peaks, so-called spectral

replicas due to the irregular signal sampling by the satellites.

4.2 Irregular Sampling of Periodic Signal by GRACE(-FO)

In the previous section, periodograms of four grid cells were presented, highlighting a symmetric arrangement
of peaks in the diurnal and/or semidiurnal bands. Although tidal effects also exhibit symmetries (see the
arrangement of peaks of the TGP in Figure 2.7), the observed symmetric pattern in the periodograms is
related to a different effect: the presence of spectral replicas caused by the irregular sampling of geophysical
signal by the GRACE(-FO) satellites. Figure 4.7 shows how the satellites sample simulated sinusoidal signal
with periods of the Ky (/0.9973 d), Sy (=0.5000 d), R3 (~0.3330 d) and My (~0.2588 d) constituents at
time of overflights in two 5°x5° grid cells. One grid cell is situated near the equator (upper panel), while the
other near the South Pole (bottom panel). Lomb-Scargle periodograms corresponding to the individual time
series illustrated in Figure 4.7 are presented in Figure 4.8. For the diurnal and semidiurnal constituents, the
periodograms reveal peaks not only at the periods of the two constituents but also multiple peaks throughout
the spectrum. In the periodograms of R3 and My, the original periods of the constituents cannot be observed
since the smallest resolvable period is around 0.41 days (see Table 4.1); nevertheless, the sampling of these
higher frequency signals results in multiple peaks appearing at various periods within the periodogram.
The sampling of the sinusoidal time series by the satellites results in a frequency ambiguity. The orig-
inally unambiguously defined signal (one frequency and amplitude) can be approximated by sine waves of

different—but not random—frequencies, which leads to additional peaks being visible in the periodograms.
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F1GURE 4.8: Lomb-Scargle periodograms of the time series from Figure 4.7. Blue vertical lines represent

the spectral replica periods computed with Equation 4.1 and the sampling frequency as defined in Equation

4.2. Numbers next to the peaks depict the corresponding integer multiples n (gray box). The peak at the

original period of the constituent is highlighted with a 0 (red box). d: diurnal band, d/2: semidiurnal band.
Spectral amplitudes have been normalized such that the maximum value is 1.
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Some of the additional longer periods can be easily identified in the equator grid cell time series without any
spectral analysis, e.g., a 7.15 years (K;), 160.5 days (S2) and 150.5 days (Rs) period (see Figure 4.7). In
general, these additional peaks of a frequency f can be expected at frequencies:

fA:|nfs_f|7

n € 7,

n#0 (4.1)

where f, is the signal sampling frequency and n an integer multiple (see e.g., Lyons, 2004; Vetterli et al.,

2014; Liu, 2019).1 For the case n = 0, f4 has the same value as the original frequency f.

4.2.1 Sampling Frequency

The orbital planes of the GRACE(-FO) satellites sample the surface of the Earth with a time-varying
frequency (e.g., Ray and Luthcke, 2006; Liu and Sneeuw, 2021):

fo=w—0 (4.2)
where w = 360.9856 °/d (IERS Conventions, 2010) is the sidereal rotation rate of the Earth, i.e., the angular
speed at which the Earth rotates with respect to the inertial space; and € denotes the eastward nodal
precession rate of the orbital planes, resulting from the Earth’s non-uniform mass distribution, which can
The nodal

precession rate due to the flattening term is dependent on the orbit inclination 4, orbit eccentricity e, orbital

be approximated by the primary gravity field term, i.e., the degree-2 zonal Csyy coefficient.

plane semimajor axis a, Earth’s semimajor axis R, and angular velocity of satellite’s motion n (e.g., Seeber,
2003):

2
Q= Czozcﬂ(ln—ReQ)Q cosi . (4.3)

The mean nodal rate of GRACE(-FO) is il-
lustrated in Figure 4.9. Precession occurs -0.13
in the direction opposite to that of the or-
bital revolution. Because of the prograde 0135¢ \%\_“_,____\ ]
orbits of the satellites, the precession of the = .
node is westwards, i.e., ) is negative. The Og 014y \\ |
values are approx. —0.135 °/d at the begin- 0145
ning of the GRACE and GRACE-FO op-
eration time and, due to the decreasing al- 0.5 — | | | | |
titude, reach a value of —0.145 °/d at the 2002 2006 2010 2014 2018 2022

year

end of the GRACE mission. The average
nodal precession rate is approx. —0.136 °/d
(GRACE) and —0.135 °/d (GRACE-FO).

FIGURE 4.9: Nodal precession rate 2 of GRACE(-FO).

Accordingly, the signal sampling frequency fs is approximately 361.126 °/d, which corresponds to a pe-
riod of 0.996882 days.

reflection axes around which the peaks in the earlier shown periodograms are symmetrically arranged to the

The period of this sampling frequency, along with the period of 2f,, act as the

left and right (see Figure 4.8). However, this symmetry is slightly distorted by the latitudinal dependence
of the GRACE(-FO) sampling characteristics (as discussed in the next section) and the phase shift between

missions in the orbital plane movement. This distortion is evident in the periodograms as a double peak at

1With the mission-specific sampling frequencies, the altimetry aliasing periods (Equation 2.65) can also be computed with
Equation 4.1 as 1/max(fa).
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FI1GURE 4.10: Spectral amplitudes at the aliasing periods of K; and Rs at different latitudes. See Figure
4.8 for context.

n # 0, consisting of a primary peak and a nearby smaller peak. It can be best seen in the zoom views of K;

in Figure 4.8, but is also present at other frequencies.

4.2.2 General Sampling Scheme

The specific integer multiples n in Equation 4.1 at which spectral replicas occur depend on the signal
frequency and how it is sampled by the GRACE(-FO) satellites. In the periodograms of the sinusoidal signal
in Figure 4.8, spectral replicas emerge for n = {—1,1,2,3,4,5,6}. A special case is when n = m, where m is
the tidal species (see Section 2.3.1). For this case, fa has the smallest value for any n € Z, and the equation
represents the GRACE(-FO) aliasing periods (e.g., Ray and Luthcke, 2006; Liu and Sneeuw, 2021).

By systematically repeating the experiment shown in Figures 4.7 and 4.8 across all grid cells for any
diurnal or semidiurnal constituent, it can be demonstrated that the majority of periodograms will exhibit a
similar peak distribution as seen in the equator panels of Figure 4.8. The integer multiples n of the signal
sampling frequency are even. Semidiurnal signal is characterized by notable peaks that occur at n = 2
(aliasing period) and n = 4. For diurnal waves, peaks typically do not appear at the aliasing periods, i.e.,
when n = 1. This is attributed to an approximately 180° phase offset in the sampling of the diurnal signal
during the satellites’ ascending and descending tracks; in contrast, the semidiurnal signal is sampled in phase
(e.g., Ray and Luthcke, 2006). These characteristics can be recognized clearly in the equator panels of K;
and Ss in Figure 4.7. Owing to the near-polar orbits of the GRACE(-FO) satellites, this phase sampling rule
is applicable to nearly all latitudes; however, its validity diminishes with increasing proximity to the poles
(see Ray and Luthcke, 2006; Han et al., 2010, Figure 1). Figure 4.10 offers a more detailed illustration of
the latitude dependence on the emergence of aliasing peaks at the poles.

To gain further insights into the spectral replication scheme in the sub-semidiurnal bands (the Lomb—Scargle
periodograms in Figure 4.8 do not provide any information for periods below 0.41 days), time series of sinu-
soidal signals sampled at the time of GRACE(-FO) overflights over 10°x 10° grids were additionally generated,

and the corresponding periodograms were analyzed.

TABLE 4.2: Scheme for the sampling of a

periodic signal by the GRACE(-FO) satel- Waves | / Replicas— 1 d d/2 d/3 d/4
lites. How to read (for the 2nd row as an

example): sampling of a diurnal wave by

the satellites will create spectral replicas Long-periodic (1) o X o x

in diurnal and terdiurnal bands, indepen- Diurnal (d) o B o < o

dent (x) of signal’s latitudinal location; and

in long-periodic, semidiurnal and fourth- Semidiurnal (d/2) X o X o X

diurnal bands if the signal is sampled at Terdiurnal (d/3) o I o x o

a high-latitude (o) region. Entries can be N . BB o 3

4th-diurnal (d/4)

extended according to the same scheme for
higher frequencies.
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As a summary, Table 4.2 provides an overview over the general spectral replication scheme for different
bands. In general one can say that signal from an uneven band (e.g., diurnal or terdiurnal) will create
spectral replicas in its own and other uneven bands; in contrast, signal from an even band (e.g., semidiurnal
or 4th-diurnal) will create spectral replicas in its own band, other even bands, and the long-periodic band.
The irregular sampling of a long-periodic signal (i.e., a signal with a period outside the diurnal band) will
create spectral replicas in even bands. If one disregards the higher latitudes, the following key conclusions

for interpreting the Lomb—Scargle periodograms in the following sections can be made:

e Even with the frequency limitations of the periodograms, higher frequency signal can be indirectly ob-
served in the periodograms, as long as there is no spectral overlap with a more prominent diurnal or

semidiurnal constituent.

e Long-periodic signal, for example, submonthly hydrology or non-tidal mass variations in the atmosphere

and oceans might superpose semidiurnal signal.

4.3 Extracting Important Periods

The spectrum of each Lomb—-Scargle periodogram for the residual range-acceleration time series of a 5°x5°
grid cell includes several thousand frequencies. The aim of the analysis in the following sections is to offer
a thorough overview of the most significant tidal periods in the residual range-acceleration data on a global
scale. The primary criterion for assessing the significance of a peak in the periodogram is its amplitude
relative to the periodogram spectrum. Ocean tides, being global dynamic phenomena, are in general not
confined to specific locations. Instead, they can achieve relatively large amplitudes in different regions,
whether neighboring or distant, either simultaneously or with a time delay. This variability will be taken

into account as an additional factor in identifying globally significant periods.

4.3.1 Above 3-Sigma Amplitudes

To identify the most prominent peaks, the Lomb—Scargle periodograms of each grid cell are initially reduced
to a periodogram containing only peaks, i.e., local maxima. Due to the application of the oversampling
factor, this is a mandatory step. The resulting periodograms are then screened for amplitudes larger than
three times the standard deviation with respect to the mean amplitude of the periodogram (3-sigma, 30).
The screening procedure is applied iteratively, since larger peaks, such as those from regionally dominant
constituents, can cause the 3-sigma threshold to be set too high, potentially missing smaller but important
tidal peaks. To remove nearby spectral side lines and spectral leakage of large constituents, and to a certain
degree minimize redundant information in terms of spectral replicas, the following procedure is applied to

the diurnal and semidiurnal bands (see also Figure 4.11):

1. The extracted amplitudes of a grid cell exceeding the 3-sigma threshold are sorted in decreasing order

2. Beginning with the period that has the highest amplitude, periodograms of sine waves sampled at
GRACE(-FO) overflights are generated (compare Figure 4.8, further denoted as “simulated” periodogram)

3. The simulated periodogram is checked for peaks with amplitudes exceeding its 3-sigma threshold

4. Periods of all identified peaks in the simulated periodogram exceeding the threshold, except the largest,

are eliminated from the original periodogram, and the list of sorted periods is updated

5. The procedure is subsequently carried out for the remaining periods of the sorted list.
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FIGURE 4.11: 3-sigma scanning and the algorithm to minimize spectral leakage and replication for one
exemplary periodogram. The peaks marked with blue circles are those identified after performing the
iterative 3-sigma scanning. In total, there are 116 periods within the diurnal and semidiurnal bands,
which arranged in descending order based on their amplitude are: 0.9973 (K1), 0.9965, 0.5175 (Ms), 1.0758
(O1),... days. First, a periodogram of a sine wave with a frequency of 1/0.9973 1/d sampled at GRACE(-
FO) observation time is estimated. The periodogram will resemble the one shown earlier in the K; panel of
Figure 4.8. This periodogram is examined for periods with amplitudes surpassing its 3-sigma threshold. In
this example, 16 out of the 115 periods, exceed the threshold, including the spectral replica of 0.9973 days
at a period of 0.9965 days. These 16 periods are removed from the list of sorted periods resulting in the
updated list: 0.5175 (M2), 1.0758 (O1),... days. This procedure is subsequently applied to the other listed
periods, resulting at the end in a list containing 39 important periods. These are marked with red dots.

After the above procedure, the extracted periods and corresponding amplitudes of each grid cell are combined
into a single plot (see Figure 4.12), providing an overview of the most significant periods in the residual range-

acceleration data. From now on, this plot will be referred to as the “above 3-sigma periodogram”.
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FIGURE 4.12: Above 3-sigma periodogram: plot containing dominant periods of the Lomb-Scargle peri-
odograms of all grid cells (see Section 4.3.1). The black rectangle in the zoom view of the diurnal band
refers to Figure 4.14.
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FIGURE 4.14: Extracting cluster lines from the above 3-sigma periodogram. (a): Zoom view of Figure 4.12

on 1.06 to 1.14 days. (b): Number of values (n,) per period p in heuristic window p £ 0.00001 days. (c):

Extracted amplitudes where n, >16 values. Figure is taken from Koch et al. (2024b). Data points in all
three panels extend beyond the maximum value defined on the y-axis.

4.3.2 Clustering

By having a closer look on the above 3-sigma periodogram, clusters of points scattering around a central
period forming distinct lines can be noticed as exemplarily shown in Figure 4.14a. This scattering of points
emerges due to the individual definition of frequencies at which the Lomb-Scargle periodograms of the
residual range-acceleration time series are evaluated (compare Sections 2.4.2 and 4.1.3). The evaluation
frequencies depend mainly on the number of observations assigned to a grid cell. Another reason is the
changing sampling frequency, which varies due to the changing precession of the orbital planes (see Section
4.2.1). It can be assumed that using predefined frequency grids, such as those containing a set of tidal
frequencies, would theoretically result in the 3-sigma plot showing no scattering along the x-axis; only along
the y-axis depicting different amplitudes of a specific constituent across the grid cells.

To extract relatively distinct lines from the above 3-sigma plot, for each of the periods p in Figure 4.12,

the number of points n,, is calculated within a heuristically defined range p+0.00001 days. The period range
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0.00002 days approximately corresponds to the average spacing at which the periodograms are evaluated in
the diurnal and semidiurnal bands. By setting an appropriate threshold for n,, point clusters forming the
characteristic lines can be identified, as illustrated in Figure 4.14. The choice of an optimal threshold value
valid for larger period ranges is not trivial, and depends on the preferred level of detail and the specific

period range of interest.

4.4 Assessment of the Spectral Agreement with Tidal Periods

In this section, lines are extracted from the above 3-sigma periodogram (Figure 4.12), incorporating the
previously discussed point clustering (Section 4.3.2) as an additional criterion for defining the global signif-
icance of spectral components. This is followed by an assessment of whether the periods of the extracted
lines align with tidal periods, using information from the standard list of tidal constituents published by the
International Hydrographic Organization (IHO) Tidal Committee (IHO, 2017). Relevant to this section, the
THO list includes several hundred names of ocean tide constituents within the long-periodic to fourteenth-
diurnal bands, along with the corresponding frequencies and Doodson numbers. Unlike the TGP catalogs

(see Section 2.3.1), this list also includes relevant information on non-linear ocean tide components.

4.4.1 Diurnal Band

Figure 4.15 shows the spectral location assessment for the diurnal band, where a n, threshold of 25 data
points was applied to extract the most dominant spectral lines from the above 3-sigma periodogram (Figure
4.12). The empirical threshold value for the diurnal band was chosen to be slightly above the typical n,
numbers of the wider band containing the K;, S; and P; constituents (see Figure 4.15¢). The gray dots
indicate the original data from Figure 4.12, whereas the data points that exceed the threshold value are
highlighted in blue. Lowering the threshold value would result in a poorer line separation, especially in
the immediate proximity of K;, and would raise the likelihood of extracting irrelevant periods representing
noise. As will be shown in this section, almost every extracted line can be associated with a specific ocean
tide component, with few exceptions (lines without a name in Figure 4.15¢) that only slightly exceed the
threshold. Please note that the largest amplitudes in both the diurnal and semidiurnal bands reach up
to approximately 8.0x107% m/s?/ VHz (see Figure 4.12a). However, for the purpose of an easier visual
assessment of the spectral agreement between the point clusters and the theoretical periods of the IHO
list (marked by the red vertical lines), the y-axes in Figure 4.15 are restricted to 2.3x10~% m/s?/v/Haz.
Constituents included in the FES2014b ocean tide model are indicated with downward triangles (V) placed
above the red lines.

A significant portion of the extracted lines aligns well with the theoretical periods of the tidal constituents,
with the extracted amplitudes scattering around a theoretical diurnal band period from the IHO list, which
are: 001, SOy, J1/MQq, K;/SP;/MOy, S, P1/SKy, 71/MPy, O; /MK; and *M; (in the IHO list denoted as
M;j). The solidus in the previous list separates different constituents with an identical period. Despite efforts
to minimize redundancy from spectral replication (compare Section 4.3.1), the above 3-sigma periodogram
still retains some information at the periods of diurnal constituent spectral replicas. Constituents identified at
these frequencies are highlighted by underlined names in Figure 4.15. By recalling the algorithm described in
Section 4.3.1, these redundant lines can only be explained by the fact that for some grid cells, the periodogram
amplitude at the original frequency f is smaller than the amplitude at one of the corresponding frequencies
fa (see Equation 4.1). Exceptionally, in the case of Q1, the amplitude at the spectral replica period is usually
larger than at the original period, leading to an undercutting of the n, threshold value and a missing Q
line at the original period (compare Figure 4.15b,f).

The spectral replicas of diurnal constituents within the diurnal band, i.e., intraband replicas, are of a
redundant kind, meaning they do not provide any additional insights into residual tidal signal contained

in the post-fit residuals. Despite the fact that the computed Lomb-Scargle periodograms are restricted
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FIGURE 4.15: (a): Evaluation of spectral location alignment of extracted lines (blue) with periods from
the THO standard list of tidal constituents (red lines) in the diurnal band. (b)—(f): Zoom views of (a). V:
FES2014b ocean tide model constituent. The lines were extracted from Figure 4.12 using a n, threshold
of 25 (see Section 4.3.2). The corresponding series of n, is shown underneath each zoom view with the
blue line representing the n, threshold value. Underlined constituent name: spectral replicas (red lines and
triangles are not included for spectral replicas). A vertical line may represent multiple constituents with
the same period. For clarity, only one constituent name is displayed. Note that the values on the y-axes of
all panels exceed the y-axes limits. This figure is an extended version of Koch et al. (2024b, Figure 6).
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to a minimum resolvable period of around 0.41 days for a grid cell size of 5°x5° (see Table 4.2), possible
interband replicas of constituents from higher species could offer additional information on unmodeled signal
at higher frequencies. Generally, an imperfectly modeled and undersampled signal from uneven bands, such
as the terdiurnal or fifth-diurnal, can produce replicas in the diurnal band (see Table 4.2). In the diurnal
band, a scattering around the periods corresponding to spectral replicas of 3Ms, S3 and the compound tides
SP3, SK3 and 2MK35/MOj5 are evident. The constituent S3 is primarily a radiational wave, with a negligible
gravitational contribution (e.g., Balidakis et al., 2022; Ray et al., 2023), and two annual satellites T3 and
Rs, which share the same periods with SP3 and SK3, respectively (Ray et al., 2023).

Nearly all of the aforementioned astronomical constituents correspond to frequencies considered during
orbit modeling; they are either directly part of FES2014b (J;, K;, S1, Py, O1) or are interpolated from
FES2014b constituents by assuming linear admittance (OO1, SO1, 71). Given that ocean tide models are
expected to contain modeling errors, the appearance of these lines in Figure 4.15 is not surprising, especially
since they correspond to mostly larger constituents. The only not accounted for frequency in the orbit
modeling from the diurnal band is *M; with a frequency of exactly only cycle per lunar day (Doodson
number: 155.555), and therefore referring to a gravitionally excited tide of degree 3 (highlighted by the
leading superscript 3), in contrast to the other here mentioned tides of degree 2. The M; tidal group also
contains several other degree-2 tidal lines, especially the tidal line with the Doodson number 155.655, which
has a larger TGP than the degree-3 component (see e.g., Cartwright and Tayler, 1971; Hartmann and Wenzel,
1995; Woodworth, 2019). Unlike 3M;, increased residuals at the degree-2 M; lines (two red lines to the left
and right of 3M; in Figure 4.15d, with the line of 155.655 to the left) are not evident. This is likely due to
the their consideration via linear admittance. As the only terdiurnal constituent in the ocean tide model,
FES2014b contains a data-unconstrained solution with the same frequency as the gravitationally excited
degree-3 tide 3M3. However, it does not take into account the corresponding astronomical forcing and only
represents the non-linear contribution at this frequency, although no larger non-linear tides at the frequency
of 3M3 are known. The gravitational part of M3 and the other terdiurnal tidal constituents of different and
possibly mixed origin (S3, T3/SP3, R3/SK3 and 2MKj3/MO3), might therefore represent the total unreduced

contribution at these frequencies.

4.4.2 Semidiurnal Band

The spectral location assessment for the semidiurnal band is presented in Figure 4.16. One can notice that, in
contrast to the diurnal band, the above 3-sigma periodogram in this band (gray dots) contains significantly
more information. This is less related to the fact that more ocean tide constituents are present in the
semidiurnal band (compare red vertical lines in Figures 4.15 and 4.16); rather, it is related to the way how
GRACE(-FO) samples unmodeled long-periodic non-tidal signal, e.g., continental hydrology and non-tidal
ocean mass redistribution. As outlined in Section 4.2.2, unmodeled long-periodic processes, will superpose
semidiurnal signal and produce additional peaks in the periodograms. To extract significant lines from the
above 3-sigma periodogram in the semidiurnal band, a larger n, threshold of 50 values is utilized. This
value was chosen to be slightly above the n, values of the largest clusters of points in the semidiurnal band,
which are found at periods of around 0.4925 and 0.505 days (see Figure 4.16¢). Lines extracted applying this
threshold value are highlighted in blue, indicating that a tidal constituent can be assigned, and in purple,
where no agreement with a known tidal constituent can be found.

In Figure 4.16, an agreement with the following semidiurnal constituents from the IHO standard list
of tidal constituents can be observed: Ms/KOq, p2/2MSs, No/KQ2, A2, 2Na, So/KPo, Lo/2MNy/LoA,
€9/MNSy, M(KS)2, MSP2 /MBa, as/M(SK)2, MAs /MPS,, 2SMy, do /MKS,, 72 /KJ2, MSN,. The frequencies
of M(KS)z (Doodson: 256.554) and MSP5/MBs (256.555) are separated by only one cycle in 20940 years
(longitude of Sun’s perigee). Consequently, they are inseparable and represented by the same line in Figure
4.16. The same is true for as/M(SK)s (254.556) and MAy/MPSy (254.555). The frequency of the non-
linear tide M(KS)2 corresponds to that of the gravitational By tide (not mentioned in the IHO list). In
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FIGURE 4.16: Similar to Figure 4.15, but here for the semidiurnal band with a n, threshold of 50. Read
text for further annotations. Highlighted in purple are lines without an agreement with a known tidal
constituent. This figure is an extended version of Koch et al. (2024b, Figure 8).
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the FES2014b ocean tide model, solutions for the astronomical tides Ms, o, No, Ao, 2Na, So, Lo and &9
are available. The astronomical constituents asg, 2, d2 and 75 are considered in the gravity field recovery
processing via linear admittance. The only semidiurnal frequencies not taken into account during orbit
modeling is that of the compound tide 25M>, and the two largest semidiurnal degree-3 tides *Ly (Doodson:
265.555) and 3Ny (245.555). The two degree-3 tides are separated by one cycle in 8.85 years from the degree-2
tides Ly and Ny, respectively (e.g., Ray, 2020b). A closer look on these close-by located tidal lines is shown
in Figure 4.16e (see also Figure 7 in Koch et al., 2024b). Note that red vertical lines are missing for these two
tides since they are not included in the THO list. Besides intraband replicas of many of the earlier mentioned
constituents, in agreement with Table 4.2, also a clustering around the spectral replica periods of even band
sub-semidiurnal tides Mg, My, MNy, MS, and 2MKNy can be recognized in Figure 4.16. All of them are
explicitly modeled in FES2014b, except 2MKN,. In addition, two extracted lines are located at the spectral
replica periods of Mf/KOo/MKo and the solar semiannual Ssa, with Mf as well as Ssa being included in
FES2014b.

The purple lines in Figure 4.16 also exceed the introduced n, threshold value of 50. However, these
lines do not seem to correspond to any tidal frequencies and therefore likely represent non-tidal geophysical
effects. The corresponding GRACE(-FO) aliasing periods of these lines cover the range from approximately
10 to 40 days. The RMS amplitude maps (with the computation method detailed in Section 4.5.1) of these
lines show pronounced amplitudes over the major river basins, particularly the Amazon Basin, as well as in
other regions such as the Black Sea, the Mediterranean Sea, Northern Siberia, the Gulf of Carpentaria, the
Argentine Gyre, Alaska, and many more areas. While further investigations into these non-tidal frequencies

could yield valuable insights, they fall beyond the scope of this thesis.

4.4.3 Long-Periodic Band

In the long-periodic band, a clustering of points around the periods of Mf/KOo/MKo, Sta, Ssa and Sa can
be observed. Moreover, since the algorithm presented in Section 4.3.1 was only applied to the diurnal and
semidiurnal bands, the long-periodic band additionally must also contain all of the constituents from bands
such as the semidiurnal or fourth-diurnal, along with the side lines of these constituents. No significant peaks

or point clusters can be found beyond the annual peak (see Figure 4.12).

4.5 Assessment of the Spatial Characteristics of the Amplitudes

4.5.1 RMS Amplitude Maps

In the previous section, it was demonstrated that many significant components of the periodograms align
with tidal periods. Among these components are not only general tidal periods, which in principle may also
refer to non-oceanic tidal phenomena, but also specific compound tides that are exclusively linked to ocean
tides. This section will verify that the spatial patterns of the amplitudes for most of the identified tidal
constituents are indeed indicative of an oceanic origin. First, Figures 4.15 and 4.16 are used to determine
the spectral boundaries for each extracted line, as illustrated in Figure 4.17 for the extracted line containing
the period of the O; constituent. The extent of a line extracted from the above 3-sigma periodogram is
defined by the smallest and largest periods of the point scatter (shown by the two dashed lines in Figure
4.17a) or, equivalently, by the midpoint period (black line in Figure 4.17a) 4 the half-width of the line.

To globally visualize the spatial patterns of a specific extracted line, the RMS of the amplitudes is com-
puted from the Lomb-Scargle periodograms of each grid cell within the established boundaries (compare
Figure 4.17b). Due to the limited spectral resolution of the Lomb—Scargle periodograms, it is possible that
certain grid cells may lack a period within the specified boundaries to evaluate. Therefore, in instances of
very narrow lines, the boundaries are slightly extended, so an (RMS) amplitude can be computed for every

grid cell.
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FIGURE 4.17: (a): Period limits definition of an extracted line, exemplified by O;. (b): O; amplitude
evaluation at one of the grid cells. Maps (Figures 4.18-4.20) show the RMS amplitudes evaluated in the
defined period limits, i.e., RMS amplitudes of this grid cell will be computed from three values.

The corresponding global maps of the RMS amplitudes (hereafter referred to simply as “amplitudes”) are
shown in Figures 4.18-4.20. Please note the different upper limits of the color coding. Since the upper
limits have been set as a compromise to ensure comparability between maps with similar amplitudes and to
highlight the most critical regions of a specific constituent, the amplitudes in certain regions exceed these
limits. The corresponding period boundaries used for evaluating the amplitude are given in Table 4.3. As
shown, for example, in Figure 4.17a, the theoretical periods of the tidal constituents encoded by the Doodson
numbers (red line), slightly deviate from the mid-periods. For each of the entries in Table 4.3, the maximum
amplitude, as well as the average value of the 20 largest grid cell amplitudes (further referred to as “average
maximum amplitude”) are given. The entries of the table are arranged in descending order based on the
latter.

Figures 4.18-4.20 show that the largest amplitudes are located over the oceans, with no significant addi-
tional widespread variations over the continental areas. Clear patterns suggestive of atmospheric tide errors
(see for example the So maps in Ray et al., 2009, Figure 6) cannot be recognized in the amplitude maps of
the post-fit residuals. The highest amplitudes are predominantly located in shallow waters and near-coastal
areas, particularly at higher latitudes, which are regions where satellite altimetry cannot serve as a constraint
for the hydrodynamic solutions, suggesting ocean tides as the origin of the increased residuals. However,
certain partial tides also exhibit distinct amplitude patterns over the open ocean. This mainly involves
the unmodeled partial tides indicated with a “—”
frequency compound tides, like MS, and MNy. Although the constituents Sa, Ssa, Sta, d/MKS,, 72/KJ2,
MSN; and 2MKNy are noticeable in the above 3 sigma amplitudes shown in Figure 4.16, Figures 4.18-4.20

in the first column of Table 4.3, but also some higher

and Table 4.3 do not include these constituents, because of their mostly non-tidal character with largest
amplitudes across the continents. Due to their correspondence with the main seasonal periods, Sa, Ssa, Sta
predominantly reflect long-periodic hydrological signal not captured by the monthly gravity field parameters
(compare also the assessment of the signal content of the monthly gravity field solutions in Section 3.6).
Constituents d2/MKSs, n2/KJ2, MSNy and 2MKN, have the aliasing periods of approximately 14.6, 28.1,
33.3 and 26.0 days, respectively. Most of the signal presented in these maps is likely hydrology that cannot
be absorbed by the spherical harmonic coefficients of the gravitational potential due to the monthly sampling

of the solutions.
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TABLE 4.3: Lines in diurnal, semidiurnal and long-periodic bands (see Figures 4.15, 4.16, 4.12) that can be
assigned directly or indirectly via spectral replication to an ocean tide constituent from the THO standard
list of tidal constituents.

Doodson Amplitude Aliasing TGP

Name(s) Number  Period [d] [nm/s?/v/Hz| Period [d] [% of My

v 01/MK; 145.555  1.075795+4.215e-5 58.8/78.5 13.6 41.37
vV My/KOq 255.555  0.517526+1.764e-5 58.2/70.0 13.5 100.00
v  K;/SP;/MO;  165.555  0.9972754+2.548e-5 42.0/59.8 2610.0 58.15
v  P;/SK; 163.555  1.002751+2.320e-5 16.4/20.4 170.7 19.19
v Ji /M@ 175.455  0.96244143.463e-5 15.5/24.7 27.9 3.25
a  f2/M(KS); 256.554  0.51679041.555¢e-5 14.3/19.7 14.0 0.30
a 00 185.555  0.929429+2.831e-5 14.2/24.0 13.7 1.78
— 3L, 265.555  0.507905+1.636e-5 12.8/15.3 26.8 0.57
— R3/SK; 383.555  1.003542+3.838¢-5 12.4/17.0 150.5 -
v N3/KQq 245.655  0.527432+1.551e-5 11.9/14.6 9.1 19.11
Vo p2/2MSs 237.555  0.536322+1.300e-5 11.8/16.9 7.1 3.05
a 711/MPy 147.555  1.069520+2.027e-8  10.7/18.7 14.7 0.54
a  ag/M(SK)y 254.556  0.518262+1.708¢-5 10.6/14.0 13.0 0.34
— 3M; 355.555  1.120892+3.465e-5 10.4/15.4 9.0 1.21
— T5/SP3 381.555  1.009074+2.641e-5 10.2/14.5 82.6 -
SO, 183.555  0.934169+2.125e-5 9.88/21.1 14.9 0.54
So/KPs 273.555  0.500000+7.968¢-6 9.69/11.4 160.5 46.37

— 3N, 245.555  0.527515+1.631e-5 9.42/13.9 9.1 0.61
v Mg/KOo,/MK, 075.555  13.660786+2.86e-3 9.02/11.0 - 14.84
v MS, 473.555  0.519208+1.413e-5 8.51/11.5 12.5 0.00
—  2MKj3/MOs3 345.555  1.168828+2.349¢-5 8.31/12.9 6.8 -
—  2SM, 291.555  0.483624+1.253e-5 7.71/11.7 16.3 0.00
VoA 263.655  0.509243+5.860e-6 7.48/13.9 23.5 0.73
- 3M 155.555  1.035051+2.809e-5 7.06/10.5 27.0 0.63
vV 2N, 235.755  0.537724+5.463e-6 6.79/11.9 6.8 2.52
vV Ly/2MN3/LoA  265.455  0.5079851+9.632¢-6  6.66/8.37 26.6 2.81
vV MNy 445.655  0.548843+1.523e-5 6.53/8.66 5.4 0.01
v oS 164.556  1.000021+3.625e-8 6.21/8.87 318.8 0.45
v My 455.555  0.538130+£8.882e-6  6.12/7.47 6.8 0.02
vV  e2/MNS, 227.655  0.546971+5.739¢-6  5.94/7.81 5.6 0.74
vV Mg 655.555  0.448818+1.104e-5 5.54/6.66 4.5 0.00
- S 382.555  1.006293+2.320e-5 5.32/6.85 106.7 0.00

Table notes: Table is identical to Koch et al. (2024b, Table 4). Constituents 3L2, 3N, and S3 are not listed in the
THO list. For M(KS)2 the corresponding astronomical tide name > was added. For SK3 and SP3 the names of
radiational counterparts Rs, Ts were included. Several constituents (separated by /) can share the same theoretical
period which can be decoded from the Doodson numbers. The given period is the observed value in Figures 4.15,
4.16 and 4.12, which might differ slightly from the theoretical value (compare Figure 4.17). The listed amplitudes
(separated by /) are the average of 20 largest values in a map, and the observed maximum value. The table is sorted
according to the former in decreasing order. The approximate aliasing periods are computed using Equation 4.1 with
0= —0.136°/d. The astronomical TGP is taken from the HWO95 catalogue and is given in percent of the My TGP
(1.24x10° mm?/s?). v: part of FES2014b, a: modeled via linear admittance, —: unmodeled tide.
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FI1GURE 4.18: RMS amplitude maps of constituents listed in Table 4.3. Please note the different color bar
limits. Units of the color axes are m/s?/v/Hz. These maps were earlier published in Koch et al. (2024b).
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Fi1GURE 4.19: RMS amplitude maps of constituents listed in Table 4.3, continued. Please note the different
color bar limits. Units of the color axes are m/s?/v/Hz. These maps were earlier published in Koch et al.
(2024b).
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Fi1GURE 4.20: RMS amplitude maps of constituents listed in Table 4.3, continued. Please note the different

color bar limits. Units of the color axes are m/s?/v/Hz. These maps were earlier published in Koch et al.
(2024b).

.

FIGURE 4.21: (a): Cumulative amplitude of the constituents in Figures 4.18-4.20. Units of the color axes
are m/s?/v/Hz. Largest amplitudes exceed the color bar limit and reach up to 3.65x10™7 m/s?/vHz. (b):
Number of waves with an amplitude larger 6.5 nm/s?/v/Hz. Figure is taken from Koch et al. (2024b).

The cumulative amplitude of all constituents listed in Table 4.3, i.e., the sum of the individual maps from

Figures 4.18-4.20, is presented in Figure 4.21a. The highest cumulative amplitudes are to be found at high
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FIGURE 4.22: (a): TGP vs. amplitude for entries of Table 4.3. A line was fitted to the data (gray). Blue

lines represent +3 times the standard deviation of data minus fit. (b): Constituent has a larger amplitude

in given percent of oceanic and coastal grid cells than any other constituent in Table 4.3. In (b), only
constituents with a percentage of 1% or greater are displayed.

latitudes, including the Weddell and Ross Seas in the Antarctic region; and in the northern hemisphere in
the area between Hudson and Baffin Bays, in the marginal seas of the Arctic Ocean, in the Sea of Okhotsk,
and at a few isolated regions of the northeast Pacific coast. Additionally, at lower latitudes, significant
cumulative amplitudes can be observed in several marginal seas located between Japan and Australia.

Figure 4.21b illustrates the number of waves in a grid cell with an amplitude larger than 6.5 nm/s?/ VHz
(approximately the maximum amplitude of the smallest constituent in Table 4.3). There appears to be a
correlation with the total amplitude. The grid cell with the highest number of waves exceeding the defined
threshold is located in the Weddell Sea region.

4.5.2 The S, Outlier due to Aliasing

For reference, Table 4.3 provides the approximate TGP of the HW95 catalogue (Hartmann and Wenzel, 1995)
at the frequencies of the listed constituents, expressed as a percentage relative to the My amplitude (1.24x10°
mm? /s?). Although the oceans’ response to the theoretical TGP is quite complex, and therefore these values
can only serve as a very broad criterion for assessing the reasonability of the residual amplitude values, the
very general order of entries in Table 4.3 follows anticipated patterns: constituents with a substantial TGP,
such as Op, My, K; and P, exhibit larger amplitudes, while smaller tides like My, Mg and €5 are listed
at the end of the table. In Figure 4.22a, the amplitudes of the entries in Table 4.3 are plotted against the
corresponding TGP values. Larger discrepancies between amplitudes and TGP are evident for constituents
O; and Ss. The overall amplitudes of O; are comparable to those of the largest constituent Mo, even slightly
larger, although its TGP is only 41% of Ms. However, when examining the data in Figure 4.22b, which shows
the percentage of grid cells over the ocean and along the coasts where the amplitude of a specific constituent
is larger than that of any other constituent, the significance of O; relative to My, and also relative to the
larger K7, diminishes and aligns with the TGP values. Another partial tide with a noticeable deviation in
Figure 4.22a is So, the second-largest constituent in the semidiurnal band and the third-largest overall, with
46% of the My potential. While the presence of a significantly larger amplitude, e.g., located similarly to
O, above the upper blue line, could indicate ocean tide modeling challenges in certain regions, its unusually
small amplitude compared to its large TGP seems quite suspect.

Furthermore, when examining the amplitude map of S in Figure 4.19, a noticeable discrepancy emerges
compared to the other maps, since S is solely characterized by an increase in amplitudes in the northernmost
and southernmost grid cells, while globally, except for a few grid cells along the Antarctic coast in the Weddell
Sea and in the Amazon basin, the amplitudes remain relatively small, showing absolutely no indications of
potential geophysical processes. It is uncertain whether the increased amplitudes in the polar regions are due

to a geophysical contribution or are merely artifacts. The overall small amplitudes at this period suggest, in
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FIGURE 4.23: EWH amplitudes at the aliasing period of Sz (160.5 days).

contrast to the other periods listed in Table 4.3, a significant absorption especially of the residual So signal
by the parameters estimated during gravity field recovery.

Residual ocean tide signal present at the aliasing period of Sy (=161 days) in monthly gravity field solutions
is well-known (see e.g., Han et al., 2005¢; Chen et al., 2009; Schrama et al., 2007; Kvas et al., 2019a), which
here is additionally confirmed by the relatively small amplitudes of the post-fit residuals at the S, period.
Figure 4.23 shows the amplitudes at the So aliasing period of 160.5 days fitted along with a bias, trend, annual
and semiannual variation (see Section 3.6) to the EWH maps of the GRACE time series. The Cyg coefficient
in these EWH maps was replaced with SLR estimates, so the maps do not show the S, error absorbed
by this coefficient. The map of the TUG series does not show any significant variations, likely due to the
inclusion of an additional Sy tidal correction (see Kvas et al., 2019a). In contrast, the maps from LUH and
other analysis centers exhibit clear patterns of increased amplitudes, particularly prominent in shallow water
regions such as the Weddell Sea, near Svalbard, and along the northwest coast of Australia (especially in the
CSR solutions). The increased amplitudes observed in South America might be attributed to atmospheric
tides, particularly since the S, atmospheric tide is most pronounced along the equator; however, it seems

more likely that they represent residual hydrological signal.

4.5.3 Linear Admittance Partial Tides

Overall, through linear admittance (see Section 2.3.4), in addition to the 34 constituents of the ocean tide
model, 327 long-period, diurnal, and semidiural degree-2 tides were taken into account for orbit modeling. If
one considers only the tides that differ from the 34 constituents by at least the last two Doodson numbers, the
number is considerably smaller. Noticeable in the GRACE(-FO) post-fit residuals are increased amplitudes
at the periods of B3, OOq, 7y, @z, SO;. Upon examining Figure 2.7, it is evident that these tides exhibit
large TGP amplitudes, although they are not necessarily the largest among the gravitationally excited tides
not included in the ocean tide model. Therefore, a strict correlation with the amplitude of the TGP is not
given.

By examining O0O; and SO;, which do not have overlapping frequencies with non-linear tides, it appears
plausible that the increased amplitudes observed in Figures 4.18 and 4.19 might largely reflect errors in the
ocean tide solutions used for their inference. Figure 2.7 shows that OO; and SO, are located at the boundary
of the diurnal band, with no diurnal model solutions available for periods shorter than those of OO; and

SO;. The closest constituent included in the ocean tide model is J;, with which OO, and SO; share similar



Analysis of Post-Fit Residuals 105

locations of increased amplitudes. When deriving the ocean tide amplitudes from two waves as defined in
Equation 2.79, K, for which a solution is available in the employed ocean tide model, may serve as the
second reference point to extrapolate OO; and SO;. In the utilized admittance matrix, diurnal waves are
inferred from all diurnal constituents of the ocean tide model, excluding the radiationally dominated S; tide.
The lack of solutions for periods shorter than those of OO; and SO; introduces an uncertainty factor that
grows with the extent of extrapolation. An additional uncertainty factor is that the J; solution of FES2014b
is not data-constrained (see Table 2.8). By substituting the hydrodynamic J; solution from FES2014b with
the altimetry-constrained J; from EOT20 (incorporates residual tidal signal relative to FES2014b), the data-
constrained solution from the recently published FES2022 catalogue, or those from several other recent ocean
tide models (see Table 2.8) and recomputing the time series of GRACE(-FO) post-fit residuals, the potential
influence of data assimilation on J; and the inference of OO; and SO; could be examined. As demonstrated
later in Section 4.5.6, OO; exhibits a favorable signal-to-noise ratio in TOPEX /Poseidon altimetry data.
Data-constrained OO; solutions are available in the recently published TPXO10 and GOT5.6 catalogues
(see Table 2.8). For OOq, this enables the study of the effects of data-assimilation versus linear admittance,
while for SO;, then bounded by solutions on both sides, it allows for assessing the impact of extrapolation
versus interpolation.

The first two larger tides to be extrapolated on the other side of the diurnal band are o9 and 2Q1, both with
an astronomical TGP larger than that of SO; and a similar distance of extrapolation as SO; and OO, (see
Figure 2.7). Increased amplitudes in GRACE(-FO) post-fit residuals are indeed also visible at the periods
of o9 and 2Q1, but only at a few grid cells; the same applies to the data-constrained Q7, which would be the
pendant of J; on the other side of the band (see Figure 4.15f). All of these three tides slightly underpass the
threshold of n, = 25 and are therefore not listed in Table 4.3. Considering that the astronomical potential
of Q is about twice as large as that of J;, it seems quite plausible that the increased residuals of O0O; and
SO; might be caused by the lack of data assimilation.

The locations of the increased amplitudes of 77 in Figure 4.18 strongly correlate with the locations where
the total amplitude of this constituent is the largest, see e.g., the maps of the hydrodynamic TiME22 so-
lutions (Sulzbach, 2023) and also the altimetry amplitudes in Section 4.5.6. This might be suggestive of a
significant over- or underestimation of the amplitudes at the period of 7. A potentially relevant non-linear
contribution from MP; might also explain the relatively large observed amplitudes at the period of 71; pos-
sibly also the non-linearity included in the diurnal ocean tide model solutions used for linear interpolation.
Utilizing the hydrodynamic TiME22 solution (contains the gravitationally excited part) for orbit modeling

instead of the inclusion of 71 through linear admittance could possibly provide a bit more insight.

Among the semidiurnal tides considered via linear admittance and listed in Table 4.3 are as and (2, both
with a TGP smaller than that of the previously discussed diurnal tides. Both of these gravitationally excited
constituents share the same frequencies with the non-linear tides M(SK)2 and M(KS),. Directly adjacent to
a9 and (2, and inseparable from these tides, are the non-linear tides MPS; and MSPs. The periods of the
latter coincide with MAs and MBs, which are the seasonal lines of the principal semidiurnal tide My (e.g.,
Miiller et al., 2014; Ray, 2022). Consequently, it is possible that a rather complex combination of contribu-
tions from various non-linear sources may be responsible for the relatively large amplitudes of ay/M(SK)s
and B3 /M(KS)2 presented in Table 4.3. A simulation of the My seasonal modulation using a high-resolution
ocean circulation and tide model was carried out by Miiller et al. (2014). According to these simulations,
seasonal modulations of My are particularly pronounced in the Arctic region and several non-Arctic coastal
regions. Therefore, especially the increased amplitudes present in the GRACE(-FO) post-fit residuals in the
Artic region (and the absence of variations around Antarctica) may be indicative of a seasonal modulation of
My (compare with Figure 3 of Miiller et al., 2014). Indeed, when considering only data from the periods May
to October or November to April for spectral analysis, the seasonality of My in the GRACE(-FO) post-fit

residuals across the Arctic region becomes clearly evident. The difference of the amplitudes of these two
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FIGURE 4.24: Seasonality of the residual M, signal in GRACE(-FO) post-fit residuals. (a): Difference of
spectral amplitudes computed from post-fit residuals of the months May to October and November to April
on a 7.5°x7.5° grid. Units: m/s?/v/Hz. (b): Seasonal variation between Novaya Zemlya and Franz Josef
Land from a 6-month sliding window spectral analysis (1: November to March, 2: December to April,...).

periods can be seen in Figure 4.24a. A certain seasonality is present in most grid cells; however, the most
substantial differences are to be found in the Arctic region, which correlates with the location of increased
amplitudes in the maps of ay and f2. As can be recognized in Figure 4.24b, which depicts the monthly
spectral amplitudes for a grid cell located between Novaya Zemlya and Franz Josef Land, derived from a
6-month sliding window spectral analysis (where the January amplitude is based on data from November to
March, February from December to April, etc.), the largest residual signal is to be found in summer and the
beginning of autumn, while in winter the My amplitude is dampened, presumably due to the friction with
ice (e.g., St-Laurent et al., 2008). To further investigate the elevated residuals at the frequencies of as and
B2, ocean tide solutions for MAy, MB,, as well as the non-linear components, would be required. However,
currently, there are no solutions that have been made accessible in the form of amplitudes and phases or as
spherical harmonic coefficients. To explore the potential influence of the My error in the Arctic region on
ag and By through linear admittance, recently published solutions including CryoSat-2 data are of interest
(Andersen et al., 2023).

4.5.4 Unmodeled Partial Tides

The major part of the unmodeled constituents found in the GRACE(-FO) 1I-SST residuals and mentioned
in Table 4.3, are not part of present-day data-constrained ocean tide models (compare Table 2.8), and have
never been mapped globally (Koch et al., 2024b).2 Only a few years ago, the four largest degree-3 tides 3Lo,
3Ny, 3M; and 3M3 were mapped on a near-global scale (latitudes: —66° to +66°) using TOPEX /Poseidon
and Jason altimetry observations (Ray, 2020b). The empirical nearly-global solutions of these four degree-3
tides are part of the GOT5.6 ocean tide model. For the degree-3 tides, altimetry data has been assimilated
solely into the >Mj solution of TPXO09 and TPXO10. So far, no data-constrained ocean tide solutions have
been published for the other identified unmodeled partial tides.

For the tidal constituents discussed in this section, several data-unconstrained simulations are available.
In Platzman (1984), M; and 3N, are simulated on a coarse grid by means of the synthesis of normal modes.
A numerical model of 3Mj is presented in Woodworth (2019). The response of the oceans to the atmospheric
tides Rs, T3, S3 is simulated in Ray et al. (2023). A hydrodynamic map for the non-linear tide 2SMs is
shown in Weis et al. (2008). The TiME22 model provides an extensive catalog of over 50 hydrodynamically
modeled partial tides Sulzbach et al. (2021, 2022), including 3L, 3Ny, 3M;, 3M3, and R3, T3, and S3. No
hydrodynamic simulations are available for the compound tides 2MK3/MO3.

2This of course also applies to some of the frequencies discussed previously in Section 4.5.3. However, in contrast to the partial
tides discussed here, the linear admittance can be used to model the gravitational part, although with its limitations.



Analysis of Post-Fit Residuals 107

3M1 3L2 3N2, —
i W ey - T A S - TN AR ey - :
(@) [ g T NRAG. | %\ U VO | o -l Ve,
A AR T A AR G B | 90 S5
. e e o ™3 74 g
l . . ‘ D 10°
0 0.2 0.4 0.6 0.8 1
3M1 | 3L2 3N2
hﬁ@; L St @ T ; ho BN T, e
)’\ ',”/’l : 5@6 =y ot = R \""fl ) E%ﬁ = ‘é:?"‘ .7'\,( .1 Y %ﬁ =

Wis
7 = '_ E’V) I

A 3 < ‘/ : 3 "\‘I q 3 & . . \.-'-\‘j )
N = e

N
/v"

T
o~ ﬁé
J
~
Eave
[~ ﬁ
\)J
o~
>
o
\\IJ '
'
o~
Eave
2 )

(a) continued (b) continued
3M3 o— 3M3 =
h;——gg AP I k. N | T ==
- \‘- -"/‘l ,55 . )'\ 2 p 3 5

oy
: ¥ s =
NSl YDe e U \7’ YA
AP e R R AN el e
o

. . : el R
- ——-—-"“—’__'—1 . ’“—Mv‘-j

F1GURE 4.25: Comparison of amplitude patterns in RMS spectral amplitude maps with hydrodynamic

TiME22 solutions. (a): Amplitude maps of astronomical degree-3 constituents >Mi, 3Lz, 3Na, M3 on

a 5°x5° grid. (b): Daily maximum acceleration norm amplitudes computed from hydrodynamic TiME22

solutions on a 1°x1° grid for the 1 January 2000. Units of the color axes are m/s?/v/Hz for RMS amplitude

maps, and m/s2 for hydrodynamic solutions. (c): Grid cells where 3M17 3L2, 3N27 3M5 amplitudes are larger
than the amplitudes of any other constituent.

In Figures 4.25 and 4.26, amplitude maps derived from GRACE(-FO) 1I-SST residuals are compared to
the hydrodynamic TiME22 solutions. The maps from TiME22 illustrate the maximum daily amplitude in
terms of acceleration vector magnitude computed on a 1°x1° grid. These values refer to the surface of the
Earth. Amplitudes evaluated at satellite altitude appear smoothed and spatially blurred, making them in
terms of details of smaller spatial features less comparable to the 1I-SST maps (see supporting information
of Koch et al., 2024b).

For the diurnal degree-3 tide *M;, identified in Table 4.3 by its TGP as the smallest of the four astro-
nomical degree-3 tides, clear distinctive similarities with the hydrodynamic model TiME22 are apparent (see
Figure 4.25a,b). These include increased amplitudes in the northern Atlantic, along the coast of Antarctica,
and the total maximum located at the southern coast of Papua. The location of the maximum amplitude of
3M; also perfectly aligns with altimetry observations (Ray, 2020b). Relative to the hydrodynamic solutions,
and also to altimeter measurements, where the amplitudes in the Indian Ocean are even stronger than in
the Atlantic, the 11-SST data amplitudes in the Indian Ocean are significantly dampened. The 11-SST maps

for the semidiurnal partial tides 3Ny and 3Ls, exhibit very similar amplitude patterns, featuring notable
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FIGURE 4.26: Comparison of amplitude patterns in RMS spectral amplitude maps with hydrodynamic

TiME22 solutions. (a): Amplitude maps of Ts/SP3, S3, R3/SKs on a 5°x5° grid. (b): Daily maximum

acceleration norm amplitudes computed from hydrodynamic TiME22 solutions on a 1°x1° grid for the 1

January 2000. Units of the color axes are m/s?/v/Hz for RMS amplitude maps, and m/s? for hydrodynamic

solutions. (c): Grid cells where T3/SP3, S3, R3/SK3 amplitudes are larger than the amplitudes of any other
constituent.

oscillations in the Pacific Ocean (including eastern Coral Sea), the Weddell Sea, coasts of New Zealand, and
somewhat less pronounced oscillations in the Atlantic and Indian Oceans. These general patterns, along with
the relatively larger amplitudes of 3Ly compared to 3Ny—even though 3L, has a slightly weaker TGP—and
the generally larger amplitudes relative to 3M;, align with the TIME22 solutions and altimetry observations.
The data-unconstrained “M3” solution included in FES2014b has rather small amplitudes and models only
the non-linear contribution at this frequency. The larger gravitational excitation is not considered. In terms
of acceleration at an altitude of 425 km, the maximum values differ by one magnitude (few 10710 m/s?
for FES2014b and 1072 m/s? for the degree-3 tide from TiME22). Consequently, the M3 1I-SST signal
shown in Figure 4.25a shares amplitude pattern similarities with the hydrodynamic TiME22 solution (see
Figure 4.25b) with notable oscillations, for example, northeast of Brazil, in the northern Atlantic between
the British Isles and Spain, the Mozambique Channel, the Sea of Okhotsk, and the Great Australian Bight.
These patterns can also be observed in altimetry data (see Ray, 2020b, Figure 1), and altimetry-constrained
solutions of TPXO09 model (Egbert and Erofeeva, 2002, updated). A map of the amplitude of the latter can
be found in Devlin et al. (2023, Figure 1). As can be seen in Figure 4.25¢, the 1I-SST amplitudes of one
of the four degree-3 tides are always greater than those of any other constituent listed in Table 4.3 across

extensive ocean regions, particularly in the Eastern Pacific.

Unlike the previously discussed tides, which are of astronomical origin, S3 has a negligible gravitational
contribution (e.g., Hartmann and Wenzel, 1995), and the constituent is assumed to have a mainly radia-

tional origin (e.g., Balidakis et al., 2022; Ray et al., 2023). Although S3 has the smallest amplitudes among
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the constituents in Table 4.3 and therefore a relatively low signal-to-noise ratio, several distinct features are
still noticeable in the corresponding II-SST map in Figure 4.26a. Some prominent features of S3 are the
increased amplitudes along the Antarctic coast, accompanied by localized resonances in the Sea of Okhotsk,
Celebes Sea, northeast of Papua New Guinea, and near New Zealand and Newfoundland. Most of these loca-
tions also stand out in the TiME22 solutions (see Figure 4.26b) and, to some extent, in the modeled ocean’s
response to the Ss air pressure tides presented in Ray et al. (2023, Figure 6). R3 and T are annual side lines
of S3, differing from it by one cycle per year, and at the same time respectively share their frequencies with
the compound tides SK3 and SP3 (Ray et al., 2023). The 1I-SST amplitude maps of R3/SK3 and T3/SP3,
as illustrated in Figure 4.26a, exhibit pattern similarity, with the most prominent amplitude clusters located
in Antarctica, the northern Arabian Sea, at Africa’s southeastern coast, and around New Zealand. This
similarity is characteristic for a radiational origin (compare Figure 4.26b and Ray et al. (2023)). As can be
seen in Figure 4.26¢, also these three tides are significant in a few oceanic regions, where they exhibit larger

amplitudes than any other constituent.

There are no publicly available solutions for the compound tides 2SMs (the combination S2+S2—M2) and
2MK3/MO3 (Ma+Mo—K; and My+0q, respectively), so a comparison like the one shown in Figures 4.25
and 4.26 for the previously discussed tides cannot be made. However, an amplitude map of 25Ms from
hydrodynamic modeling is depicted in Weis et al. (2008, Figure 7a), with which the 1I-SST amplitudes share
several similarities, including increased amplitudes northwest of Australia and in the Weddell Sea. Notice-
able larger oscillations in the 11-SST map, occurring in the Bay of Bengal and the Arctic region, as well
as several other localized resonances, are not apparent in the hydrodynamic solution. Contrary, the signif-
icant amplitudes in the Mozambique Channel present in the hydrodynamic solution do not appear in the
1I-SST maps. The combined 11-SST map of 2MK3/MO3 highlights increased amplitudes in the western Wed-
dell Sea, around the Antarctic Peninsula, and in the Patagonian shelf. From in situ GPS measurements it
is known that MOs, My and SP3 are among the largest non-linear tides in the Weddell Sea (King et al., 2011).

Section 4.5.6 will attempt to qualitatively validate the global structures of the just recently discussed fre-
quencies, which lack available data-based references, by using independent altimetry data. However, the
logical next step for the other partial tides is to incorporate the respective hydrodynamic solutions from
TiME22 into the gravity field processing. To evaluate the impact of the degree-3 tides on the post-fit resid-
uals, reprocessing only the GRACE time series is completely sufficient, as the data length allows for the
separation of ®Ly and 3Ny from the degree-2 components (see Koch et al., 2024b, Figure 7), and is also long
enough to study terdiurnal effects. Figure 4.27 illustrates the impact of including the four degree-3 tides
and the radiational tides on the GRACE post-fit residuals. The shown maps of the diurnal and semidiur-
nal constituents were evaluated in the period boundaries as defined in Table 4.3. For the terdiurnal tides
observed at the spectral replica periods in the diurnal band, the offset of the left and right boundaries was
chosen 2.5 times larger, to take into account the influence of the missing GRACE-FO data on the spectral
location and variance of the replicas. For all of the four degree-3 tides, a significant reduction of the residuals
can be observed. In the map of 3Ly still increased amplitudes are to be found in the Argentine Basin near
the Zapiola rise. Large-scale variations at intraseasonal periods from 20 to 30 days are well known here
(e.g., Fu et al., 2001; Weijer et al., 2007; Yu et al., 2018). Therefore, due to the 27-day aliasing period
of 3Ls, the remaining elevated amplitudes may represent non-tidal variability. In fact, in the maps of the
GRACE(-FO) post-fit residuals, relatively large variations in the Argentine Basin are evident across broader
period bands (around 15-75 days), whereas the patterns of increased amplitudes typical for Lo, e.g., in the
Pacific Ocean, are very sharply localized, and disappear even after a small deviation from the 3Ly period.
A similar observation can be made for the elevated amplitudes in the Arctic region, which could indeed also

depict intraseasonal non-tidal variability. In the case of Ms, relatively large amplitudes remain present in
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FIGURE 4.27: Amplitude maps from GRACE range-rate post-fit residuals without (left) and with the
degree-3 and radiational tides from TiME22 (right). Units: m/s®/v/Hz.
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the Weddell Sea, possibly highlighting regional challenges in modeling of the hydrodynamic solution. A sig-
nificant reduction of the amplitudes can also be observed for R3 and T3, with the exception of the two larger
marginal seas of the Southern Ocean. In this context, aside from the potential under- or overestimation of
the Rz and T3 amplitudes, it cannot be dismissed that the remaining signal is related to the compound tides
SK3 and SP3. Generally, the map of Sz also tends to have slightly smaller amplitudes after the inclusion
of the hydrodynamic solution, although the improvements on a global level are not as clear as for the other
tidal components. In a few separate grid cells, however, slightly higher amplitudes can be observed. It should
be noted again that, according to Table 4.3, Sz exhibits relatively small amplitudes in the GRACE(-FO)

post-fit residuals, making it more uncertain to validate the influence of the S3 hydrodynamic model.

4.5.5 Examples of Aliasing in Submonthly Gravity Field Solutions

The aliasing periods for each of the constituents, given by 1/min(f4) (with f4 as defined in Equation 4.1),
are listen in Table 4.3. Consistent with the spectral replication scheme outlined in Table 4.2, for even band
waves, such as those from the semidiurnal band, amplitude maps evaluated at the aliasing period or any
other identified spectral replica period will exhibit nearly identical amplitude patterns, with differences that
mainly occur at highest latitude grid cells. In contrast, no agreement can be expected for periods from an
uneven band. Potential aliasing can therefore only be expected for constituents from one of the even bands if
the high-polar regions are disregarded. Since most of these even band constituents have submonthly aliasing
periods, the associated model errors cannot be directly observed in the time series of the monthly gravity
field solutions. As the temporal resolution of the gravity field time series improves, the likelihood of detecting
submonthly aliasing signals also increases, when assuming the amplitude of the residual or unmodeled signal

is significant enough. In this section, examples of aliasing are illustrated for the following time series:
e TUG: daily ITSG-Grace2018 gravity fields (Mayer-Giirr et al., 2018; Kvas et al., 2019a)
e CSR: RLO5 daily swath mascon solutions over the oceans (Save, 2019b)
e CNES/GRGS: RL05 10-day gravity fields (Lemoine and Bourgogne, 2020).

Considering the insufficient global coverage by the GRACE(-FO) satellites over periods significantly shorter
than one month, these higher temporal resolution solutions rely on stabilization strategies compared to the
typical unconstrained monthly gravity fields. The daily TUG solutions provided up to degree and order 40
combine GRACE observations with information from geophysical models in a Kalman smoother (Kurtenbach
et al., 2009, 2012). The signal definition of the daily solutions aligns with the monthly solutions of the
ITSG-Grace2018 series, with ocean tides reduced using the FES2014b model. Solutions of CNES/GRGS
traditionally combine GRACE observations with data of SLR missions, particularly to obtain more accurate
Cyp coefficients and to solve for the degree-1 coefficients. The RL05 CNES/GRGS 10-day solutions are
expanded up to degree and order 90, and are derived by combining three 10-day normal matrices, with the
central matrix given double weighting (Lemoine et al., 2007). As ocean background model FES2014b is
used.? The CSR daily swath mascon solutions are given in terms of EWH for the oceans and are limited to
latitudes between —66° and 66°. A specific mascon of the daily solution is updated each time the GRACE
satellites overfly it within a threshold of 250 km to the center of the mascon element (Bonin and Save, 2020).
Expected signal from constrained GRACE solutions of the respective month are used as a constraint to
regularize the daily solutions. Moreover, a land-ocean boundary mask is employed for regularization. CSR.
RLO5 solutions utilize GOT4.8 for modeling the contribution of diurnal and semidiurnal ocean tides, as well

as selected long-periodic components from other models (see Bettadpur, 2012). The contribution of these

3Details on background models, processing, and the inversion method of the CNES/GRGS RL05 solutions can be found here:
https://grace.obs-mip.fr/variable-models-grace-lageos/grace-solutions-release-05/r105-products-description/
(last accessed on 2025-01-30).


https://grace.obs-mip.fr/variable-models-grace-lageos/grace-solutions-release-05/rl05-products-description/
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FIGURE 4.28: EWH amplitudes in meters at the aliasing periods of ®Lg, Ly in daily TUG solutions, daily
swath solutions over the oceans of CSR, and 10-day solutions of CNES/GRGS (a); N2, N3 in daily TUG
and CSR solutions (b); a2, B2, p2 and 2SM; in daily TUG solutions (c).
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tidal components is reduced from the daily solutions. While the other two submonthly series do not include
non-tidal mass variation over the oceans and in the atmosphere (AOD1B RLO06 was applied as a background
model during gravity field recovery), the non-tidal contribution from AOD1B RL05 products (Dobslaw et
al., 2013) is restored in the CSR daily swath solutions.

The 10-day resolution of the CNES/GRGS solutions allows for the study of only a few additional con-
stituents with aliasing periods of 20 days or longer. In contrast, from a temporal resolution perspective,
the daily solutions enable the examination of the spatial amplitude structures at every aliasing period listed
in Table 4.3. Figure 4.28 illustrates the EWH amplitude maps at the aliasing periods of the semidiurnal
degree-3 tides Lo, 3Ny and their degree-2 counterparts Lo and Ny. These amplitudes were obtained by
adding the respective harmonic tidal term to the model in Equation 2.51, with the model being extended
by just one tidal period for each constituent studied. Simultaneously estimating reasonable amplitudes for a
degree-2 and its degree-3 counterpart is also impossible because of the very close proximity of these periods,
especially for Ny and 2Ny. The Cyg coefficients were not substituted in any of the time series. In the case of
the CSR daily swath solutions, no reduction of AOD was carried out. The EWH time series of CNES/GRGS
was filtered with a Gaussian filter with a smooothing radius of 400 km. The 3Ly, EWH amplitude maps of all
three submonthly time series clearly highlight increased amplitude structures in the Pacific Ocean, around
New Zealand, and in the Weddell Sea that are also present in the GRACE(-FO) post-fit residuals and in the
hydrodynamic solutions (see e.g., Figure 4.25). The increased amplitudes in South America present in the
TUG and CNES maps cannot be observed in the post-fit residuals maps. In the post-fit residuals, however,
increased residuals can be found on the coast, which would lead to the hypothesis that the patterns over
the continent might be an artifact of the stabilization strategy. In contrast, no notable mass variations are
observed in the Ly maps of TUG and CNES, which to a certain degree is in alignment with the overall smaller
amplitudes observed in the post-fit residuals, although the Ly map also highlights several distinct regions of
increased amplitudes (see Figure 4.20). Also in the Ly map of CSR the larger degree-3 related structures
disappear. The remaining signal that can be seen, particularly the larger structures such as north of Antarc-
tica in the Pacific and Indian Oceans, can likely be attributed to the restored non-tidal mass variations. As
discussed in Section 4.5.4, increased values for 3Ny are expected at similar locations as for 3Ly, but with an
overall slightly smaller amplitude. Indeed, the typical structures in the Pacific Ocean, around New Zealand,
and in the Weddell Sea (only TUG) can also be observed for 3N,. EWH maps from the daily solutions of
TUG for four additional constituents are shown in Figure 4.28¢c. As expected, qualitative agreements with

the 11-SST maps can also be observed here.

4.5.6 Amplitude Patterns of Selected Constituents in Altimetry Data

The methods for analyzing GRACE(-FO) post-fit residuals, introduced at the beginning of this chapter,
which involve geographical binning of data followed by spectral analysis using Lomb—Scargle periodograms,
can certainly also be applied to other data time series. In this section, SLA data (see Equation 2.63)
obtained from the measurements of satellite altimetry missions TOPEX /Poseidon, and Jason-1, Jason-2 and
Jason-3 are analyzed. As discussed in Section 2.3.3, data-constrained ocean tide models primarily rely on
measurements from these altimetry missions. This is because their orbit design, with a 9.9156-day repeat
cycle, is specifically optimized for observing the largest ocean tide constituents (Parke et al., 1987; Fu et al.,
1994), although limited to the low- to mid-latitudes (£66°) and a rather coarse ground track. The SLAs are
obtained from DGFI's OpenADB®*. The data utilized contains the following time series:

e TOPEX/Poseidon from 1992-09-25 to 2002-08-15

e TOPEX/Poseidon Extended Mission (EM) from 2002-09-17 to 2005-10-08

4nttps://openadb.dgfi.tum.de (last accessed on 2025-08-04)


https://openadb.dgfi.tum.de 
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binned on a 2.5°x2.5° grid.
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F1cUrE 4.30: Above 3-sigma periodogram (compare Section 4.3.1 and Figure 4.12) of TOPEX /Poseidon
and Jason-1, -2, -3 SLA on a 2.5°x2.5° grid. X-axis limited to periods from 0.3 to 750 days.

e Jason-1 from 2002-01-15 to 2009-01-26
e Jason-1 EM from 2009-02-10 to 2012-03-03
e Jason-2 from 2008-07-12 to 2016-10-02
e Jason-2 EM from 2016-10-13 to 2017-05-17
e Jason-3 from 2016-02-17 to 2022-04-07.

Data collected during the geodetic mission phases are not considered due to their different signal sampling
characteristics. The number of SLA observations per 2.5°x2.5° grid cell is shown in Figure 4.29. Due to
the orbit design of TOPEX/Poseidon, Jason-1, -2, and -3, no SLA observations are available for latitudes
beyond —66° and 4+66°. Moreover, for several shallow water regions no SLA observations are provided.

Figure 4.30 shows the “above 3-sigma” periodogram derived from the SLA time series of TOPEX /Posei-
don and Jason. The SLA values were binned into a 2.5°x2.5° grid. The algorithm shown in Figure 4.11 to
minimize spectral leakage and replication from the GRACE(-FO) periodograms was not applied here due
to the different characteristics of the altimetry periodograms. Accumulation of energy can be observed at
integer multiples of the 1 per 9.9156 days sampling frequency. Even though the annual and semiannual
constituents of the ocean tide model subtracted from the SLA account for the full signal at these frequen-
cies, the accumulations at integer multiples of the sampling frequency are primarily dominated by seasonal

signal, with the largest contributions from the annual and semiannual peaks, alongside significant mesoscale
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FIGURE 4.31: Residual SLA signal at the period of the S; constituent in TOPEX/Poseidon and Jason
altimetry data. (a): Zoom on S; in Figure 4.30, (b): amplitude map in m/vHz.

and interannual contributions. The informational content therefore differs significantly from that of the
GRACE(-FO) range-rate post-fit residuals.

For visualizing the amplitude maps, the algorithm used earlier in this chapter for the GRACE(-FO) post-
fit residuals is slightly extended. Similarly, the RMS value is calculated within a predefined range around a
tidal line of period p (see Figure 4.17). For simplicity, an empirical and constant half-width of § = 1x107°
or § = 4x107° days is chosen, depending on the variance of the constituent. In addition, the RMS maps to
the left (p — 30 £+ J) and right side (p + 35 £ §) of the tidal lines are evaluated. The mean value of the map
to the right and left is subtracted from the map of the tidal line at p & §. The half-width § is is selected to
be sufficiently small to prevent overlap between degree-2 and degree-3 tides. The most significant signal in
the mean amplitude maps is often found along the various ocean currents. Consequently, after subtracting
the mean, a positive amplitude value indicates that the signal at the tidal period is greater than at the
surrounding periods, where no tidal signal is anticipated. Finally, the negative amplitude values are set to

zero and a slight Gaussian smoothing is applied to the obtained map.

Since the SLA products have already been corrected for ocean tides using the EOT20 model—an empirical
model derived from a residual harmonic analysis of satellite altimetry data relative to FES2014—significant
variations at the periods of the 17 tidal constituents included in the model (see Table 2.8) are not expected,
except for Sa and Ssa. Indeed, the periodograms at the frequencies of these constituents reveal no evidence
of significant residual tidal signal. However, an exception is Si, where clustering typical of residual tidal
signal can be observed (see Figure 4.31a). In the corresponding amplitude map presented in Figure 4.31b,
increased amplitudes are observed near the geomagnetic equator, likely indicating errors in the ionospheric
delay correction (Ray, 2020a; Hart-Davis et al., 2021). In the amplitude maps of the annual side lines of
S1 which capture its seasonal variability, i.e., P; and K; (Ray, 2020a), similar patterns can be seen, albeit
in a much attenuated form. In contrast, no anomalies are observed at Sy and its annual side lines. In the
amplitude maps of the other constituents included in EOT20 (not shown), there is little, if any, significant
residual tidal signal to be seen, except closer to the Antarctic region for several constituents, and for J; along
the Pacific coast of North and South America.

There are altimetry-constrained solutions of 5 constituents in the a pirori model (FES2014), but for which
no empirical solution in EOT20 is available: Lo, Ao, vo, uo and 5. For us, and to a certain degree Lo,
relatively large residual signal is evident over extensive ocean areas in the analyzed SLA time series (see
Figure 4.32). The constituent uo, with an excellent signal-to-noise ratio, emerges as a promising candidate
for an updated version of the EOT model, followed by Lo and then A\o. Among the five constituents, v, and
€9 have the smallest signal-to-noise ratio. Nevertheless, also in the maps of these constituents (not shown),

signal likely of tidal origin is evident in several marginal seas.
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FI1GURE 4.32: TOPEX/Poseidon and Jason altimetry SLA amplitudes in m/+/Hz at the periods of selected
constituents. For 2MKj3 the amplitudes refer to the ERS-1, -2, and Envisat time series.

The amplitude patterns of the four largest degree-3 tides, illustrated in Figure 4.32, display similarities
to patterns found in GRACE(-FO) post-fit residuals, hydrodynamic solutions, and altimetry solutions of
Ray (2020b). Interestingly, and somewhat counterintuitively, the amplitudes of ®Ly are more pronounced
than of Lo, despite the latter having a larger TGP.

The three radiational frequencies T3, Sz, R3 exhibit in the TOPEX /Poseidon and Jason SLA time series
a rather small signal-to-noise ratio. Nonetheless, it is evident that in several regions—such as the Pacific
Ocean east of South America, the Mozambique Channel, around New Zealand, and the northern Arabian
Sea—the ocean tide signal emerges distinctly from the noise. However, in the map of Rg, several grid cells
exhibit increased amplitudes that are likely of non-tidal origin. These areas are located in the southern
Atlantic and Indian Oceans, as well as east of North America. These amplitudes are present in the Rg map
because the TOPEX /Poseidon and Jason aliasing period for R3 is closer to seasonal periods.

For the compound tide 2SMsy, the amplitude distribution shows a qualitative agreement with the GRACE(-
FO) 1I-SST amplitude maps with pronounced sea level variations in the Bay of Bengal, northwest of Australia,
around Great Britain and France, and in the marginal seas of the Pacific between Indonesia and the Philip-
pines. The TOPEX /Poseidon, Jason-1, -2, and -3 altimetry data highlights notable variations in the middle
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of the Indian Ocean, not noticeable in the GRACE(-FO) 1I-SST maps. However, slightly elevated EWH
values were previously recognizable at the aliasing frequency of 2SMs in the daily Kalman-filtered gravity
field solutions of TUG. Also in the hydrodynamic simulation of Weis et al. (2008) slight variations in this
region are recognizable with an amplitude of 0.5 to 1 cm.

According to the GRACE(-FO) 1I-SST maps, the amplitudes of 2MKj3/MOj3 are most pronounced in the
regions of the Antarctic Peninsula and the Patagonian Shelf (see Figure 4.19). Due to the inclination of
TOPEX /Poseidon and Jason-1, -2, and -3 orbits, the signal in the region of the Antarctic Peninsula cannot
be verified. For the grid cells in the Patagonian Shelf, either no data is available or there is only a very
limited number of SLA observations (see Figure 4.29). Therefore, also in this region the signal at the period
of the compound tide cannot be verified with TOPEX/Poseidon, Jason-1, -2, and -3 data. Specifically
for 2MKj3/MOg3, data from the time series of the ERS-1, ERS-2, and Envisat missions was utilized. The
analyzed data includes the 35-day repeat cycle phases from August 1992 to October 2010. Despite the
area being significantly better covered by measurements from these satellites, the amount of data remains
insufficient to adequately capture the frequency of interest on a 2.5°x2.5° grid. Therefore, a 5°x5° grid
was utilized instead. The corresponding map in Figure 4.32, similar to the GRACE(-FO) case, shows
pronounced variations localized on the Patagonian Shelf. For the assessment of the variations around the

Antarctic Peninsula, unfortunately, no data is available in the analyzed dataset.






Chapter 5

Summary and Conclusions

The quality of gravity field recovery results from GRACE(-FO) data is primarily limited by the inherent
noise of the electrostatic accelerometers, as well as the model inaccuracies for ocean tides and non-tidal mass
variations within the Earth system—despite significant advancements in the development of background
models for satellite orbit modeling and de-aliasing over the past two decades. Post-fit residuals as a byproduct
of gravity field recovery are particularly valuable for assessing model inaccuracies because of their high
temporal resolution and the extensive data availability spanning over two decades. In the context of this
work, a time series of over two decades of post-fit residuals was examined more closely to understand the
errors and identify which ocean tide constituents are the most significant.

This work showed that the 1I-SST post-fit residuals contain a considerable amount of information on resid-
ual and unmodeled geophysical effects that can be effectively extracted from the K-band range-rate residuals
using filtering, and to a certain degree disentangled to individual periodic components using spectral analysis
tools. The Lomb—Scargle approach revealed that the periodograms in the diurnal band are almost exclusively
dominated by ocean tide effects, whereas the semidiurnal band also contains significant information of a non-
tidal nature. Due to the satellite sampling characteristics, these do not necessarily have to be of semidiurnal
origin, since long-period mass variations also create redundant periodogram peaks in the semidiurnal band.
Nevertheless, the highest peaks in the semidiurnal band can be attributed to ocean tides. Moreover, the
diurnal and semidiurnal periodogram bands contain information on higher-frequency ocean tide signal by
way of spectral replicas, e.g., from terdiurnal and fourth-diurnal ocean tide constituents. In total, increased
amplitudes were detected at over 30 tidal frequencies, which correspond not only to the major astronom-
ical tides but also to minor degree-2 astronomical tides, major degree-3 tides, overtides, compound tides,
radiational tides, and potentially seasonal tidal modulations. Since tides of different origin can often share
the same frequency, it is not always clear which specific tidal component is responsible for the increased
amplitudes.

With the exception of a few tidal constituents, the amplitude maps at the respective frequencies almost
exclusively show increased amplitudes in polar regions, along coastlines and confined to some regions of the
open ocean, with no additional widespread variations over continents indicative of atmospheric tides. The
most complex region where a large number of tidal frequencies show increased amplitudes is the Weddell
Sea. The largest residual signal can be found at the periods of the major constituents O1, My, Ky and P;. In
contrast, a disproportionate discrepancy between the rather small observed error at the period of the major
solar semidiurnal constituent S, and its large astronomical TGP is evident, suggesting that the error is being
absorbed by the estimated gravity field parameters, i.e., is aliased at a period of around 161 days into the
gravity field products.

Among the gravitationally excited tides not included in the ocean tide model but accounted for in the
orbit modeling through linear admittance, OO, SO1, 71, as and (2 are prominent in the GRACE(-FO)
post-fit residuals. While these tides show relatively large astronomical forcing as indicated by the TGP,
they are not necessarily the largest tides that are not part of the ocean tide model, suggesting that there
is no strict correlation between the TGP and the observations in the GRACE(-FO) post-fit residuals. The
relatively large residual signal observed at the periods of OO; and SO; might be related to their location
at the edge of the diurnal band necessitating an extrapolation of the admittance, coupled with the purely
hydrodynamic character of J;, which is the nearest constituent included in the ocean tide model. By replacing

the hydrodynamic J; solution from FES2014b with an altimetry-constrained solution from one of the recently
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published ocean tide models, one could investigate the influence of data assimilation on the inference of
00; and SO;. Also data-constrained OO; solutions have been recently published (TPXO010 and GOT5.6),
which opens the opportunity to assess the OO; linear admittance solution, while for SO;, then bounded by
data-constrained solutions on both sides, this enables an assessment of the impact of extrapolation versus
interpolation. The increased residuals at the frequencies of as and (2, which are particularly significant
in the Arctic region, possibly represent seasonal modulations of Ms due to ice friction. A pronounced
seasonality of Ms can be observed in the GRACE(-FO) post-fit residuals in the Arctic region, with the My
amplitudes being dampened during the winter months and reaching maximum values in the late summer.
The seasonality cannot be accounted for using linear admittance, so dedicated solutions for the seasonal
side lines MA,, MB; are required for further investigations. The areas with heightened amplitudes of 7
closely align with the regions where the overall amplitude of this constituent is greatest, indicating a general
underestimation or overestimation of the amplitudes. For further investigation, the hydrodynamic solution
of 7 available in TiME22 is of interest. Data-constrained solutions for 71, as well as hydrodynamic solutions
for the non-linear contribution at its frequency, are not yet available.

It was demonstrated that the 1I-SST amplitude maps of the unmodeled partial tides M;, 3Ly, 3Ny, 3Ms,
T3/SP3, S3, R3/SK3 and hydrodynamic TiME22 solutions of the corresponding degree-3 and radiational
components show similarities in the location of the increased amplitudes. Analyzing a recomputed full
GRACE time series, with these hydrodynamic solutions accounted for, revealed a significant reduction in the
residual signal for the degree-3 tides, as well as T3y and Rs. However, for 3M3, T3, and Rs, particularly in
the Weddell Sea, prominent residual signal remains evident, which potentially highlights regional modeling
challenges, or, in the case of the radiational tides, the contribution of the unmodeled compound tides SPg
and SKs.

In general, owing to the sampling characteristics of GRACE(-FO), the absorption of ocean tide signal by
the monthly gravity field solutions can be anticipated for even period bands, for example, the semidiurnal
band. Most of the relevant constituents in these bands have GRACE(-FO) aliasing periods ranging from a
few days to up to a month. Therefore, a disturbing signal at these aliasing periods cannot be evaluated using
the standard monthly solutions, but it can be examined in alternative gravity field products with submonthly
resolution. Examples of ocean tide signal absorption have been demonstrated for daily and 10-day spherical
harmonic solutions, as well as for daily mascon solutions.

The Lomb—Scargle spectral analysis method was applied to the SLA time series of satellite altimetry mis-
sions TOPEX /Poseidon, Jason-1, -2, and -3. The analyzed time series had already been corrected for 17
larger tidal constituents from the EOT20 model, but not for the smaller tides identified in the GRACE(-FO)
post-fit residuals. It was shown that the locations of increased amplitudes of several constituents observable
in the altimetry data exhibit similarities with those in the GRACE(-FO) data, for example, the four degree-3
tides and 7. The altimetry maps at the frequencies of the radiational terdiurnal triple exhibit a rather low
signal-to-noise ratio. However, in several expected regions, a clear radiational ocean tide signal, previously
observed in the amplitude maps from GRACE(-FO) and TiME22, can be recognized. For the compound tide
2SMs, for which there are currently no publicly available hydrodynamic solutions, a qualitative agreement
in the amplitude distributions is also observed. Interestingly, although 2SMs is a compound tide, i.e., is
generated in shallow water regions, according to the TOPEX /Poseidon, Jason-1, -2, and -3 SLA time series
it also exhibits pronounced variations in the middle of the Indian Ocean. In contrast, in the GRACE(-FO)
1I-SST maps, no pronounced amplitudes are evident there. However, slightly elevated EWH values at the
aliasing frequency of 25M, are present in alternative daily gravity field products. The signal detected in the
1I-SST maps at the frequencies of 2MKj3/MO3 could not be verified with SLA data from TOPEX /Poseidon,
Jason-1, -2, and -3, due to the coarse ground track, the inclination of the satellites, and the highly localized
nature of the signal close to the coastlines. However, similar to GRACE(-FO), the SLA data from the ERS-1,

ERS-2, and Envisat missions, show pronounced variations in one of the two critical regions.



Summary and Conclusions 121

Based on the findings presented, it can be concluded that analyzing GRACE(-FO) 1I-SST post-fit resid-
uals derived from monthly gravity field modeling holds tremendous potential to assess the quality of ocean
tide models globally, which has not yet been fully exploited. This relates not only to the usual larger ocean
tide constituents but also to smaller tides that have received little to no study thus far. The analysis of
GRACE(-FO) post-fit residuals can contribute to various aspects within the domain of ocean tide model-
ing, gravity field recovery, and beyond that. Some thoughts on the applicability of GRACE(-FO) residual

analysis, as well as ideas for future research directions, are given below:

e For smaller tides that are now increasingly being integrated into newer models and are generally more
challenging to observe using satellite altimetry due to an unfavorable signal-to-noise ratio and the more
complex spatial patterns, the question arises whether an assimilated solution is better than a purely hydro-
dynamic solution, or, in the case of gravitationally induced tides, a solution derived through admittance.

The analysis of 1I-SST post-fit residuals could contribute to answering these questions.

e For the hydrodynamic modeling of smaller tides, the analysis of post-fit residuals can provide valuable
background information on the choice of optimal hydrodynamic variables and parametrization, while also

contributing to disentangling tidal frequencies with complex contributions from different origins.

e Disregarding long-period tides, generally, up until now, the common approach in gravity field recovery
is to utilize only a single specific ocean tide model, rather than a combination of individual constituents
from different models. Just recently, the Institute of Geodesy of TUG published a mixed ocean tide
model (MIXED2025), which consists of the GOT5.6 model extended with constituents from FES2022
and TiME22. An analysis of a broader set of ocean tide models using the methodology applied in this
thesis for FES2014b could possibly aid in fine-tuning the selection of solutions for such models.

e Since differences in quality between the various ocean tide models can be expected not only for individual
constituents but additionally also for different regions of a single constituent, the assessment based on
the post-fit residuals could contribute to a patched ocean tide model. Depending on the position of the
satellite, the better performing ocean tide model is chosen for the evaluation of the acceleration due to

ocean tides.

e In combination with other common gravity field solution quality indicators, the analysis of post-fit residual
could help to assess and fine-tune the choice of parameters to be estimated along the gravitational potential
coefficients to effectively address the influence of the imperfect ocean tide models. For instance, this could
be particularly interesting for the (co-)estimation of low-resolution tidal corrections or high-frequency
empirical parameters. In particular, the analysis of residuals time series from different GRACE(-FO)

analysis centers could potentially provide additional context.

e The examined Lomb—Scargle periodograms encompass a broader spectrum of geophysical effects. Future
studies could also focus on assessing information related to rapid non-tidal effects in the oceans and the

atmosphere, aiming to improve AOD products.

e In addition to its role as a validation tool, an important question for future studies is the degree to which

1I-SST measurements are suitable for assimilation into or combination with hydrodynamic models.
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